
Scaling up data analytics in Python using multiple
FPGAs

Shashank Aggarwal

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on 05.08.2020 at 12:00.

Student number: 4790626
Thesis number: Q&CE-CE-MS-2020-08
Project duration: February 1, 2020 – August 5, 2020
Thesis committee: Prof. Dr. Zaid Al-Ars, TU Delft, supervisor

Dr. Jan S. Rellermeyer, TU Delft
Prof. Peter Hofstee, TU Delft
Dr. Joost Hoozemans, TU Delft

Abstract

Big data applications are becoming more commonplace due to an abundance of digital
data and increasingly powerful hardware. One of these classes of hardware devices
are FPGAs, which are being used today in various ways such as data centers and
embedded systems. High performance, power efficiency, and reprogrammability are
the primary reasons behind their wide use.

Another trend over the previous years has been to use distributed data processing
frameworks such as Apache Spark to improve the performance of big data applications.
Traditionally, such frameworks are deployed on commodity hardware to save costs.
This approach is fairly popular, with organizations often having on-premise compute
clusters or using a cloud provider to access a managed cluster.

This project attempts to combine the above-mentioned worlds - FPGAs and dis-
tributed data processing. We have designed an architecture that allows us to use FP-
GAs as end-devices in a compute cluster to perform the actual computation instead
of CPUs. This architecture is designed by composing together several open source
technologies and allows us to interact with an FPGA cluster using Python. Using a
high-level programming language such as Python makes this system easy to use for
software developers and data scientists, and also abstracts away the internal commu-
nication within the cluster. We have built prototypes based on this architecture for 3
hardware platforms (FPGA families) and 3 specific applications to demonstrate general
applicability. We have observed noticeable performance gains in these applications by
scaling up the FPGA cluster.

iii

Preface

I am writing my Master thesis with the Accelerated Big Data Systems (ABS) group at
TU Delft. The thesis is in fulfillment of the requirements of the EIT (European Institute
of Innovation and Technology) Digital Master School program.

My technical major in this program is Distributed Data processing, and hence this
project, which deals with parallelization of data analytic tasks, is very closely related
to my interests. My previous experience with data analysis and distributed systems
motivated me to choose this project, and fortunately, I was able to apply my knowledge
in the project. Interestingly, being completely from a software background, I was pushed
into the realm of hardware in this project, which took some effort to grasp initially. While
admittedly there were parts when I was unsure of the underlying technology, I can now
safely say that I have a much better understanding of FPGAs and their applications.
I have also learned about several open-source technologies such as Apache Arrow,
Dask, and Fletcher, which I hope to use again in real-world applications.

This was one of the most interesting and novel projects I have worked on, and for
this, I would like to thank my supervisor, Prof. Dr. Zaid Al-Ars, for giving me this opportu-
nity, and for his constant feedback and suggestions. Also, I am grateful to Joost Hooze-
mans, who patiently helped resolve all my queries and gave very insightful feedback.
I would also like to thank other members of the Accelerated Big Data Systems group,
especially Johan Peltenburg and Matthijs Brobbel, for their advice and tips throughout
the project.

As goes without saying, I thank my family and loved ones for their support and en-
couragement.

Delft, August 2020

v

Contents

1 Introduction 1
1.1 Context . 1
1.2 Problem statement . 2

1.2.1 Scalability issues . 2
1.2.2 Absence of support in high-level programming languages 2
1.2.3 Research questions . 2

1.3 Solution approach and contributions . 3
1.4 Thesis structure. 3

2 Background and related work 5
2.1 FPGA applications . 5

2.1.1 Streaming applications . 5
2.1.2 Machine learning . 6
2.1.3 Data transformation . 6
2.1.4 Fully HW vs HW/SW co-design 7

2.2 Parallelization using multiple FPGAs . 7
2.3 Background about used frameworks/technologies 8

2.3.1 Apache Arrow. 8
2.3.2 Fletcher . 9
2.3.3 Hardware Description Language (HDL) 9
2.3.4 Pynq. 10
2.3.5 Dask. 10

3 Parallelization on multiple FPGAs 11
3.1 Solution architecture . 11
3.2 Multi-FPGA system setup . 13

3.2.1 Build/Reuse appropriate accelerator bitstreams 13
3.2.2 Setup a cluster of FPGAs . 14
3.2.3 Use Dask to distribute the data analysis 16

3.3 Experimental results . 17

4 Parallelization optimization using Apache Arrow 21
4.1 Advantages of using Arrow . 21
4.2 Solution architecture . 23
4.3 Example prototype . 23
4.4 Experimental results . 25

vii

viii Contents

5 Conclusions and future work 29
5.1 Conclusions. 29
5.2 Future Work. 30

A Programming snippets 33

Bibliography 39

1
Introduction

1.1. Context
Data analysts and researchers are increasingly faced with the problem of extremely
large data sets and computationally expensive operations. Distributed data processing
frameworks (such as Apache Hadoop and Spark) running on top of large clusters are
now the de facto method used for solving these problems at scale.

While horizontal scaling and distributed filesystems have solved the problems of
large datasets, an issue that remains is the poor performance of the hardware itself.
An example is deep neural networks, whose training and inference stages can be very
computationally expensive, and not feasible to run on a CPU (even in a large cluster of
CPUs). GPUs offer a solution to this problem due to their fast arithmetic capabilities.

Another type of specialised hardware that is used for data analysis is Field Pro-
grammable Gate Arrays (FPGA). These offer the advantages of performance, re-
programmability, and high power efficiency. In view of this, large cloud providers such
Amazon andMicrosoft now provide FPGAs as generic cloud resources, along with more
traditional resources such as CPUs and GPUs.

As was the case with CPUs, horizontal scaling lets us extract more utility from FP-
GAs. Creating a cluster of FPGAs lets us perform data analytics jobs that are too large
for a single FPGA instance. This is where this project fits in. During the course of the
thesis, we have developed several prototypes as proofs of concepts to demonstrate the
possibility of using multiple FPGAs to improve the performance of data analytic jobs.
We have also implemented distributed versions of existing FPGA examples built previ-
ously by students at TU Delft and demonstrated the performance gain obtained due to
parallelization.

A primary focus has been to make this process friendly for software developers by
using a high-level programming language and popular data processing frameworks.

1

2 1. Introduction

1.2. Problem statement
While FPGAs have been shown to be useful for several common data analysis tasks,
there are certain problems we observe when trying to use them in real-world applica-
tions:

1. Scalability issues

2. Absence of support in high-level programming languages

1.2.1. Scalability issues
FPGAs have inherent limitations when trying to work on large data analysis jobs:

1. Area limitations of FPGAs: FPGAs have limited memory buffers and pro-
grammable logic elements. In this case, we cannot scale up our data task beyond
what a single FPGA can handle.

2. Optimizing kernel design is hard: Accelerators can be optimized to reduce syn-
thesis time and increase runtime performance with several strategies. However,
for a hardware engineer, it is often time-consuming to look for bottlenecks and
optimize the kernel.

With the increasing size of data we process in modern data analysis pipelines, it
is often not possible to have a single FPGA perform the entire computation for us. Of
course, it is possible to use larger FPGAs with a high number of logic cells, memory
bandwidth, I/O segments, etc., but these are often very expensive, and difficult to design
for in an optimized manner.

1.2.2. Absence of support in high-level programming languages
Designing FPGA accelerators is usually much more difficult and time-consuming than
their software counterparts, mainly due to complex tools and slower debug cycles.
Hence, FPGA design is usually done by a few skilled and experienced hardware engi-
neers. Hence, for software engineers to be able to use FPGAs for data analysis, it is
important to be able to deploy and reuse existing FPGA designs.

Software developers and data engineers find it difficult to use FPGAs for day to day
tasks, even if there is an existing FPGA accelerator available with the required func-
tionality. This is because FPGAs are not directly accessible via high-level programming
languages such as Python. The functionality of an FPGA is often exposed by binary
executables or other low-level APIs (such as OpenCL), which are unwieldy to use via
programming languages such as Python or have a very steep learning curve. It is for
this reason that libraries such as Pynq [7] are being developed, which let software devel-
opers use Python to interact with an FPGA without having to think about the underlying
hardware.

1.2.3. Research questions
This project investigates the above mentioned problems, and aims to provide solutions
to mitigate them. More precisely, the following research questions are answered:

1.3. Solution approach and contributions 3

1. Is it possible to improve the run time performance of existing FPGA data analytics
applications by using multiple FPGAs in parallel instead of one?

2. Is is possible to interact with the FPGA cluster using a high level programming
language (such as Python) transparently?

3. Can we further optimise the performance of the above applications using a colum-
nar data format to represent our application data?

1.3. Solution approach and contributions
To answer the above mentioned research questions, we propose a simple architecture
with 2 main components:

1. A cluster of FPGAs: Instead of using a single FPGA, we connect several FPGAs
together. Since FPGAs are usually attached to a complete CPU host, this means
that we connect several hosts together into a local network.

2. A Python interface to the cluster : We should be able to communicate with the
cluster directly via Python. This means that we should be able to issue commands
and transmit data between our Python process and all the FPGAs. Additionally,
we should be able to split our task easily into smaller chunks based on the number
of connected FPGA instances.

With this approach, given access to an FPGA cluster, software engineers and data
scientists will be able to scale up their tasks transparently to the entire cluster without
having to think about the internal workings of the cluster. The technical architecture of
the system will be explained in subsequent chapters.

The main contributions of this project are as follows:

• We design an architecture to enable parallel data analysis on multiple FPGAs
geared towards software engineers.

• We develop a few prototypes to validate our architecture. These prototypes use
a combination of different software and hardware platforms to demonstrate the
general applicability of our solution.

• We provide performance benchmarks to demonstrate speedup due to the use of
multiple FPGAs instead of one.

1.4. Thesis structure
The structure of this report is as follows: In Chapter 2, we first discuss some existing
research explaining use cases where FPGAs have been shown to be useful. Then
we look at existing examples of using multiple FPGAs in a cluster/data center. This is
closely related to our work and provided us the initial motivation for the project. Then we
give a quick background of the tools and concepts we have used to build our solution.

In Chapter 3, we discuss the architecture of the proposed solution and specify the
steps we have taken to build a few prototypes based on the architecture. We also

4 1. Introduction

provide a few performance benchmarks to demonstrate the speedup obtained by using
multiple FPGAs.

In Chapter 4, we demonstrate additional prototypes we build using a modified ar-
chitecture. In this case, we use the Apache Arrow data format to represent our input
data to the FPGAs. We discuss the advantages of this architecture, followed by some
performance benchmarks. The final chapter discusses our conclusions and future work.

2
Background and related work

In recent years, FPGAs have been deployed in a variety of applications. Owing to their
ability to be reprogrammed and their low power consumption, they have been used in
machine learning, graph processing, database applications, etc. In the following sec-
tions, we first present existing research demonstrating the use of FPGAs in various
types of systems - streaming applications, machine learning, and bulk data transforma-
tion. Then, we discuss a few systems that utilize multiple FPGAs to scale up computa-
tional tasks. Many of these are based on open source technologies such as Spark and
Pynq and aim to solve the same problem as ours.

Finally, we explain the important tools and concepts that we have used throughout
the project to provide readers some context.

2.1. FPGA applications
FPGAs have been shown to be able to accelerate many software-based systems, espe-
cially for compute-intensive big data applications, such as genomics algorithms [29][19],
data decompression [16], and image processing [18]. By offloading the compute-heavy
or I/O heavy operations to FPGAs, these systems have been able to improve their per-
formance. In this section, we describe some categories of these systems and how they
use FPGAs.

2.1.1. Streaming applications
Networking devices such as routers and switches have to be able to process traffic at
high throughput, and also comply with changing standards. In this case, FPGAs can
offer performance at par with dedicated network processors. In [14] for example, the
authors developed a switch fabric entirely using FPGAs and found the port-to-port la-
tency to be similar to that of existing ASIC-based switches. FPGAs are also used for
implementing network security through packet filtering. Network intrusion detection sys-
tems (NIDS) identify packets containing viruses, trojans, etc. using regular expression

5

6 2. Background and related work

matching. In [20], and FPGA-based string matcher was shown to outperform the GNU
regex program by 600 times for large regular expression patterns.

Digital signal and image processing is also a suitable application for FPGAs. Due
to a fixed transformation logic, which is generally simple, highly pipelined accelerators
can be built to achieve high throughput. For example, authors in [21] developed a Fast
Fourier Transformation architecture for FPGAs with low power consumption and low
latency. Background detection, which is used in applications such as video surveillance
and traffic monitoring, requires hardware processing for large output frame rates. While
GPU implementations have been developed, they are unsuitable for embedded systems
due to their power constraints. In [17], a real-time background identification circuit was
implemented on an FPGA with the ability to process video with a high frame size and
frame rate.

In [15], the role of FPGAs in several Internet of Things (IoT) applications is dis-
cussed, and compared to traditional IoT edge devices such as microcontrollers and
ASICs. Some of the applications discussed include cryptographic algorithms and im-
age processing.

2.1.2. Machine learning
Several common machine learning algorithms have been implemented on FPGAs, and
have been shown to outperform their corresponding software implementation, often by
an order of magnitude or more.

K-means clustering is a very popular algorithm which is used in several data analysis
applications such as pattern recognition, image processing, business analytics, etc.
This algorithm is inherently parallel, and also has a simple control flow. Hence, it is
especially suitable to be implemented on an FPGA. In [35], the popular modification of
the K-mean algorithm called the filtering algorithm was implemented on an FPGA. In
[13], a distributed version of the K-means algorithm is considered. The implementation
was deployed on an FPGA cluster with 3 nodes connected via Ethernet, and a speedup
of over 15x was observed as compared to the software implementation.

Another class of ML algorithms that have been implemented in FPGAs are Neural
Networks (NN). Network models such as convolutional NN and recurrent NN have im-
proved performance over traditional ML algorithms, especially in areas of image, video,
and speech processing. Several FPGA accelerators have been built for such neural
networks, and these offer advantages over CPUs and GPUs due to better performance
and power efficiency, respectively. In [22], [25] and [26] for example, FPGA accelerators
have been build for binarized neural networks, where the weights and/or activations are
restricted to be 1- bit boolean values. Binarized neural networks lead to more compact
models, and the authors above show their models to be comparable in performance to
GPUs with better energy efficiency.

2.1.3. Data transformation
Here, we discuss some commonly performed data transformations such as data com-
pression and encryption, and their FPGA implementations.

2.2. Parallelization using multiple FPGAs 7

Generally, CPU based compression and decompression implementations provide
limited throughput due to memory and CPU constraints. In [28], the authors developed
an FPGA hardware architecture for GZIP compression and decompression by offload-
ing CPU intensive operations to a cluster of 4 Intel Cyclone-III (formerly Altera) FPGA
devices and observed better disk utilization and (de)compression throughput. In [32],
a decompressor for Snappy-compressed files was implemented on an FPGA and the
input throughput of the decompressor was demonstrated to exceed that of a single i7
core. Furthermore, placing more such engines on the same FPGA led to a correspond-
ing improvement in performance.

FPGAs can also be coupled with Database Management Systems to offload some
expensive data analytics operations. Apart from the traditional transactional queries
which are performed on a database, it is often necessary to perform ad-hoc analysis on
the data to gather business insights. In [33], such CPU-intensive analytics queries were
offloaded to FPGAs. These operations include row decompression and predicate eval-
uation. An end-to-end performance improvement of up to 6.2x was observed, including
the data transfer time and time spent on the FPGA.

2.1.4. Fully HW vs HW/SW co-design
An important aspect to consider in the above applications is whether the system is
deployed entirely on specialized hardware, or only partially. These two approaches are
generally referred to in the literature as fully hardware design and HW/SW co-design.

In the fully hardware-implemented approach, the entire task (machine learning al-
gorithms in most cases) is implemented on the FPGA. In [12] and [24] for example, the
entire map and reduce stages for applications such as K-Means clustering and Finite
impulse response (FIR) filter are implemented on the FPGA, with the host CPU only
responsible for distributing and collecting data. While this provides high performance, it
also requires more effort during the design phase and is also more HW resource-heavy.

Co-designed algorithms, on the other hand, offload only the time-consuming parts
of the algorithm to the FPGA. While this does not achieve as much speedup as in the
fully-hardware accelerated case, it requires lesser FPGA resources and is also simpler
to design. In [27], various machine learning algorithms (such as K-means, SVM, etc.)
are analyzed for performance bottlenecks (called ’hotspots’). These bottlenecks are
then implemented on the FPGA using High Level Synthesis (HLS) tools. HLS is the
process of transforming high-level code (in C/C++, for example) into lower-level code
suitable to be deployed on FPGAs. Of course, even when using high-level program-
ming languages, the designer has to optimize it to fully utilize the parallelizable nature
of FPGAs using techniques such as loop unrolling (running multiple loop iterations in
parallel) and pipelining (parallel execution of different stages of a pipeline).

2.2. Parallelization using multiple FPGAs
Here we discuss frameworks built to enable the use of a cluster of FPGAs to improve
the performance of data analysis tasks. These frameworks are not built for specific
applications, but instead, propose general architectures allowing for the deployment of

8 2. Background and related work

any specific application.
SPynq [23] is a framework that allows us to use Apache Spark, a popular distributed

data processing framework, to perform data analysis on a cluster of FPGAs, which in
their case was a cluster of 4 Xilinx Pynq-Z1 FPGA boards. While the example of logistic
regression has been implemented on the cluster, it is possible to replace it with any other
operation/algorithm, provided one can develop the required FPGA hardware designs.
The resulting architecture has been compared to both high-performance cloud comput-
ing Xeon clusters and low-power embedded processors and been shown to perform
faster with better energy efficiency. An important focus has been to expose an easy
to use API for software developers to enable them to interact with the FPGA, i.e., al-
locate/deallocate buffers, obtain results from the programmable logic. This work is in
close relation to what our project aims to do, with the following differences:

• SPynq is based on the Spark environment (JVM), while our system is based on
the Python ecosystem.

• SPynq works with Xilinx’s Pynq framework, and hence supports only compatible
FPGA boards. Using Fletcher on the other hand, as we have, lets us integrate
with other platforms as well (OpenCAPI, for example).

There is a large body of research on making FPGAs available as generic cloud
resources. The intention with such systems was to allow organizations to procure FPGA
instances instead of ordinary VMs from the cloud provider. Since FPGAs are generally
more performant than VMs and also power efficient, this stands to benefit both the cloud
provider and its customer.

In [10], FPGA resources were made available as OpenStack cloud resources, al-
lowing users to quickly scale up/down the size of their clusters. FPGAs were presented
as virtual cloud accelerators and were shown to be able to boot up faster than virtual
machines and be more performant.

A similar framework was developed by IBM in [11], which abstracted FPGA as Open-
Stack resources. Sample applications, such as load balancing, encryption, etc. were
implemented and the overhead due to virtualization was shown to be minimal.

2.3. Background about used frameworks/technologies
This project integrates several hardware and software frameworks together in order to
build a complete data analytics workflow. Each of these components was chosen based
on their ease of use, as well as their availability (since some of them are proprietary) on
TU Delft’s infrastructure. In the following paragraphs, we explain the important ones in
a ”chronological” sequence, in the sense that we start with tools we used to build/test
FPGA accelerators, then the platforms to deploy these accelerators, and finally the
frameworks to build and use multi-node clusters of the deployed accelerators.

2.3.1. Apache Arrow
Arrow is a memory format based on a columnar representation of data structures. This
format is designed to be used for data analysis tasks since it allows CPUs to take ad-

2.3. Background about used frameworks/technologies 9

vantage of optimizations such as SIMD (Single instruction, multiple data) and cache lo-
cality. Arrow also provides software libraries in more than 10 commonly used program-
ming languages to create and transfer Arrow-formatted data structures (called Record
batches and Tables). The memory layout is designed such that no (de)serialization is
needed when transferring data over the wire or between processes. In this project,
we have used Arrow for representing our dataset in memory and distributing it to the
FPGAs. This has helped to reduce the communication overhead between the cluster
nodes and also lets us make use of Fletcher (discussed subsequently) to interface with
the FPGAs.

2.3.2. Fletcher
Fletcher [31] is a collection of tools and libraries that an FPGA developer can use to build
and use accelerators which consume and/or produce data in the Apache Arrow format.
Fletcher is based on the idea that columnar in-memory data formats such as Arrow are
highly suitable for FPGA accelerators due to a contiguous memory layout which allows
for faster data traversal. Fletchgen, which is one of these tools, creates boilerplate
Hardware Description Language (HDL) templates based on the schema of the Arrow
data structure expected by the accelerator during runtime. The developer provides
the so-called Arrow schema, and Fletchgen outputs VHDL code for the accelerator
kernels. This code sets up memory input and output streams, which the developer can
hook on to, and then implement the logic of the kernel. This decreases the setup time
for developing a new FPGA kernel. An important consideration here is that Fletcher
supports any arbitrarily complex Arrow schema, which is necessary to support a broad
range of applications. Fletcher does this by implementing components such as Column
Readers/Writers, Buffers to support corresponding Arrow data structures such as arrays
and buffers [30].

Fletcher also provides platform-agnostic host libraries that allow us to send and re-
ceive Arrow data structures from the FPGA during runtime. This allows the same data-
analytics code to be reused on any underlying hardware platform supported by Fletcher
(for example - AWS F1, CAPI SNAP, etc.)

2.3.3. Hardware Description Language (HDL)
HDLs are computer languages that are used to describe digital circuits. VHDL and
Verilog are popular examples. These languages allow a hardware developer to specify
the layout of the digital circuit using programming language constructs. While these look
similar to traditional programming languages such as C/C++, they work on the notion of
data flow, i.e., the logic of transforming input data into output data as opposed to control
flow, which is an imperative list of instructions for the CPU to follow. HDL code is used
for one or both of the following:

• Synthesis: This is the process of generating the actual digital circuit descrip-
tion in terms of logic gates, which is then deployed on real hardware such as
an Application-specific integrated circuit (ASIC), FPGA, etc.

10 2. Background and related work

• Simulation: Simulation tools allow the developer to test the HDL program without
using real hardware. This makes it easier to debug and optimize the circuit.

2.3.4. Pynq
Pynq (abbreviated from Python + Zynq) is an open-source framework from Xilinx de-
signed originally for their Zynq SoCs. It allows accelerator designers to provide an
easy-to-use interface to their accelerators using Python. This way, software develop-
ers can utilize accelerator wrappers called overlays without having to worry about the
interface of the internal accelerator kernel. Using pre-installed Jupyter notebooks on
the SoC, the developer can download and instantiate pre-built overlays and use them
directly from Python.

The underlying FPGA accelerator can be built using any Xilinx Synthesis tool (such
as Vivado and Vitis, etc.). The Pynq python package can then be used to set register
and buffer values on the Programmable Logic (PL) of the FPGA.Xilinx also provides pre-
built overlays for a few common use-cases. One of these which we have used in this
project is the Quantized Neural Network (QNN) overlay. These neural network overlays
let us perform image classification on popular image datasets (MNIST, Cifar10).

The reason we use Pynq for this project is that its Python support makes it work well
with Dask, which is a Python library for distributed data processing.

2.3.5. Dask
Dask is a Python framework which lets us parallelize data analytics task natively in
Python. It allows us to split up large data processing tasks into smaller chunks, and
distributes them in one of two ways:

1. Large multi-node clusters connected by a network, or supercomputers.

2. A single machine, in which case the data task is split across the available CPU
cores, also letting us use local disk in case of memory constraints.

Dask also provides parallelized versions for several functions from common Python
libraries such as Numpy and Scikit-learn, allowing the programmer to parallelize them
without having to learn a new API. In this project, however, we use the lower level func-
tionality offered by Dask, which lets us specify arbitrary data sets and custom business
logic. For example, as we will discuss later, we use Dask’s scatter and submit functions
to distribute binary data to several worker nodes.

3
Parallelization on multiple FPGAs

The first half of this project dealt with developing proofs of concept to demonstrate that
any data analytics task can be split up to run onmultiple FPGAs. That is, using concepts
of data parallelism, we can use popular data processing frameworks to execute the
same data transformation function on all the subsets of a dataset simultaneously on
different FPGAs.

3.1. Solution architecture
We now describe the general architecture of the system we have built. The general idea
was to combine different (mostly open-source) tools and layer them in such a way that a
Python data analytics script would internally be able to communicate with remotely con-
nected FPGAs and distribute the task transparently among them. A schematic diagram
of the architecture is shown in Figure 3.1.

The main components of the system are as follows:

1. Dask client: This is a Python class that acts as the entry point to access a Dask
cluster. Initialising a client requires a Dask-scheduler to be running (possibly on
another machine) beforehand. The client can then connect to this scheduler, and
provides the users an API to submit tasks to the scheduler. Optionally, as in our
case, the client can distribute the data to the workers before submitting the com-
putations to the scheduler. The other possibility is that the workers can directly
access the data from a distributed file system/storage.

2. Dask-scheduler : This is a process that coordinates all the connected worker
nodes. Given a data analytics task (in the form of a task graph), it is responsi-
ble for executing it in parallel on the workers. Depending on the type of sched-
uler instantiated by the user, it may distribute the task between different threads,
processes, or machines. In this project, the Dask client and the scheduler were
running on the same machine. The client would read the input data (either from a

11

12 3. Parallelization on multiple FPGAs

file or from an in-memory python data structure such as a Numpy array), scatter
it to the workers, and then submit the task to the scheduler, which would, in turn,
trigger the required computations on the workers.

3. Dask worker(s): These are processes that perform the actual computations using
a thread pool. The size of this thread pool is by default equal to the number of
CPU cores. In our case, since we have only one FPGA instance connected per
worker, we set the number of threads in the pool to be 1. The workers also hold
the computed results unless explicitly asked for by the client or other workers.
Workers also spill this data to disk if the memory usage exceeds user-specified
thresholds.

4. FPGA interface library: These are Python libraries that let us interface with the
accelerator. These expose APIs to send data to the FPGA, set specific registers,
and get the results back. In this part of the project, we used the Pynq library for
this purpose. Pynq provides APIs to download the bitstream in the Programmable
Logic, and then interact with it by setting register values.

$UFKLWHFWXUH

'DVN�6FKHGXOHU�3URFHVV

'DVN�&OLHQW

'DVN�ZRUNHU��

,3�������������

+RVW��
�����������

7DVN�JUDSK
'DWD��5HVXOWV

)3*$�LQWHUIDFH�OLEUDU\

'DVN�ZRUNHU��

+RVW��
�����������)3*$�LQWHUIDFH�OLEUDU\

�7DVNV

'DWD��5HVXOWV

Figure 3.1: Architecture of the system

In the following section, we describe the steps of setting up this system in more
detail:

1. Build/reuse suitable accelerator(s) to install on the FPGAs

2. Setup a small Dask cluster of 2 FPGAs over a local network. These nodes should
communicate with a Dask-scheduler running on a third host.

3. Using Python, one should be able to specify an input dataset, and a custom data
processing method one wants to run on the dataset.

3.2. Multi-FPGA system setup 13

3.2. Multi-FPGA system setup
3.2.1. Build/Reuse appropriate accelerator bitstreams
In order to use the Programmable Logic (PL) of the FPGA, we needed to deploy an
accelerator overlay on the Pynq boards. We can design the PL ourselves using Xil-
inx’s Vivado software. This will generate the bitstreams (binary files) that we can install
on the board. Also, a Python driver can be optionally implemented which wraps the
functionality of the bitstream into easy to use methods.

In our case, however, we reuse existing overlays provided by Xilinx. In particular,
we experimented with an image resizer accelerator and an image-classification neural
network overlay.

Image resizer overlay
This [8] is a pre-built bitstream provided by Xilinx. It accepts an image in the form of
a buffer array and then resizes it based on a user-specified scaling factor. A purely-
software implementation based on OpenCV is also provided for performance bench-
marking.

There is no Python ’driver’ provided for the overlay, and hence the process of calling
the accelerator kernel is fairly low level. Some of these APIs (provided by the Pynq
package) we have used in our python code are:

• Xlnk.cma_array(shape, dtype)

Create a contiguous buffer of shape, data type dtype

• DMA.sendchannel.transfer(buffer)

Transfer buffer from memory to the DMA write channel, used to send input data
to the FPGA.

• DMA.recvchannel.transfer(buffer)

Transfer data from the DMA read channel into buffer, used to read output data
from the FPGA.

• Pynq.overlay.DefaultIP.write(offset, value)

Write value to the address offset of the MMIO device.

However, the hardware developer can choose to provide a driver to make it easier
to access the accelerator’s functionality by extending Pynq’s DefaultIP class, which is
the default driver in case a more specific driver is not provided.

Image classification overlays
These overlays are a set of 5 quantized neural network overlays provided by Xilinx
to perform image classification. The neural networks are based on the topologies de-
scribed in the FINN paper [34]. The overlays support different precision for the weight
and activation of the neurons in the network, namely either 1-bit or 2-bit precision.
The networks are pre-trained on various datasets such as MNIST [6] and CIFAR10 [4].
Quantized neural networks help overcome the limitations of limited resource and power

14 3. Parallelization on multiple FPGAs

budgets in floating-point based neural networks. A purely-software implementation is
also provided for performance benchmarking.

For this overlay, a python driver in the form of the bnn package is provided which
exposes convenient wrappers around the overlay functionality:

• bnn.CnvClassifier(bnn.NETWORK_CNVW2A2,’cifar10’,bnn.RUNTIME_HW)

Instantiate a classifier instance, passing in as arguments the type of neural net-
work, the dataset name, and whether to run the software or the hardware imple-
mentation.

• classifier.classify_image(img)

Return the class to which the image img belongs

Vector addition
The latest version of the Pynq package, released recently, also supports Xilinx’s Alveo
FPGA cards and AWS-F1 instances. TU Delft’s data cluster has a server installed with
two Alveo FPGA cards, and hence we chose this specific overlay as well to demonstrate
our results on Alveo. This overlay is provided in the official Alveo Pynq repository [1],
and performs 2D vector addition. This example allows for straightforward parallelism
by allowing us to split the dataset into smaller parts and performing addition separately
on each part.

3.2.2. Setup a cluster of FPGAs
FPGAs used
The first step was to build a small cluster of 2 FPGAs. We used two different FPGA
devices:

1. Pynq-Z1: These boards belong to Xilinx’s Zynq-7000 family of FPGAs. FPGAs
from this family consist of a programmable FPGA fabric along with an ARM-based
processor. The Pynq-Z1 board, specifically, consists of a dual-core ARM A9 pro-
cessor and runs on a Linux OS. More importantly, it is pre-installed with a Jupyter
Notebook Web server and the Pynq python package:

• Jupyter Notebook: Jupyter notebook is a web application that allows users
to run programming languages such as Python on the browser. The inter-
face allows for quick development and debugging cycles, and is the de facto
standard used today for data exploration/analysis tasks in Python.

• Pynq : Pynq is a Python package that allows users to include pre-built FPGA
accelerators called overlays into their Python code, similar to including soft-
ware packages. Pynq also lets the programmer interact with the FPGA,
for example, allocate memory on the Dynamic RAM (DRAM), stream au-
dio/video from the on-board mic and HDMI ports, etc.

Pynq-Z1 FPGAs are particularly suited for quick prototypes due to their small di-
mensions and host of IO ports. Two Z1 boards for this project were provided by
TU Delft’s Accelerated Big Data Systems group.

3.2. Multi-FPGA system setup 15

2. Alveo: These are larger, more expensive FPGA cards aimed at large data pro-
cessing workloads. We had access to 2 Alveo cards installed on a single server -
the Alveo U200 card, and the larger Alveo U280 card. The Pynq library supports
multi-device operations as well, i.e., it is possible to specify which card we would
like to run the bitstream on using simple arguments to the Pynq API. In our case,
we ran two dask workers, each interacting with a separate card to enable parallel
execution.

Setup a Dask cluster
A Dask cluster is a set of worker nodes and a single scheduler node. The worker nodes
perform the actual data analysis, while the scheduler is responsible for managing the
worker nodes. This involves distributing and collecting data to/from the worker nodes,
building task graphs and scheduling them, etc. A dask cluster can be set up in various
ways:

• Manual setup using helper command-line utilities provided by Dask.

• Kubernetes: Dask provides Helm charts to quickly set up a cluster where sched-
ulers and workers are deployed as pods in a Kubernetes cluster.

• Hadoop YARN cluster: Dask can also deploy itself on YARN cluster, allowing one
to use YARN’s resource management capabilities

In our case, we chose to use the first method, i.e., manually setting up the cluster
using dask-scheduler and dask-worker utilities because of its flexibility and ease-of-use.
The following steps were performed to obtain a fully functioning Dask cluster. These
steps serve as guiding principles for anybody looking to get an FPGA cluster up quickly.

1. In the case of Pynq Z1, connect the 2 boards to a local Laptop via a Gigabit router
and Ethernet. This setup is shown in Figure 3.2. This step is not needed for the
Alveo cards since they are attached to the same host.

2. Install dask-distributed on the 3 nodes (2 FPGA node, one local scheduler
laptop). Python’s venv module can be used here for ensuring isolation and re-
producibility of the setup environment.

3. Run dask-scheduler on the laptop. This runs a scheduler process on the node
and spits out an IP address for workers to connect to.

4. Run dask-worker <ip-of-scheduler> on each of the two Z1 boards (after
connecting via SSH). This spawns worker processes on the FPGA which are in-
ternally connected to the scheduler on the laptop. In the case of Alveo, we ran
this command twice in two separate shells and used an environment variable to
specify which device/card to use.

At this point, we had a fully functional Dask cluster. This was verified by running
a simple matrix transpose Dask example on the scheduler node. Using Dask’s dash-
board, we could see the data computation being split up between the two workers. Note
that at this point, we were not using the nodes’ capabilities as an FPGA, but only as CPU
nodes.

16 3. Parallelization on multiple FPGAs

Figure 3.2: Cluster setup

3.2.3. Use Dask to distribute the data analysis
When running in distributed mode, Dask provides broadly 2 ways of distributing work:

1. High-level collections: Dask implements scalable versions of common Python
data structures often used for data analytics. For example, Dask provides an
Array API, which is functionally similar to the Numpy API, but internally it exe-
cutes many of its operations in parallel on the cluster. Similarly, it provides the
Dataframe API as a parallel version of Panda’s Dataframe API.

This way of using Dask is especially useful if we want to parallelize an already
existing codebase with minimal code changes, and is also easier to understand
for people familiar with the Python data science ecosystem.

2. Low-level interfaces: Dask also provides a low-level API to allow us to execute
custom algorithms on arbitrary data structures. This API lets us submit functions
along with their arguments to the Dask-scheduler, and the Dask-scheduler exe-
cutes them on the cluster.

For our project, we have used the second approach since our computation was
highly custom and application-specific. For example, we wrote custom functions that
contain the logic to communicate with the FPGAs. Following is a Python snippet that
demonstrates the typical flow in our examples (The entire example is in Appendix A).

1 # Import the python driver for the overlays
2 from dask.distributed import Client
3

4 # Instantiate Dask client to communicate with the cluster
5 client = Client(IP_OF_DASK_SCHEDULER)
6

7 # Read input data (from a file or an in-memory Python object)

3.3. Experimental results 17

8 input_data = read_input_data()
9

10 # Split data into based on number of workers present
11 split_data = split_data(input_data, number_of_workers)
12

13 # Scatter data to the workers
14 distributed_data = client.scatter(split_data)
15

16 # Instruct the scheduler to run the function ’run_on_worker’ on all the workers
17 futures = client.map(run_on_worker, distributed_data)
18

19 # Wait until all the operations complete, and then get the results
20 results = client.gather(futures)

Here, run_on_worker is the function that is executed on the workers. This method
is responsible for sending the data to the FPGA, fetching the results back, and returning
it to the Dask client. Depending on the chosen overlay (refer to Section 3.2.1), we use
the appropriate API provided by the overlay to communicate with the FPGA.

3.3. Experimental results
To verify the performance gain obtained due to parallelism, we carried out experiments
to measure the time to completion of the above examples for two cases:

1. Single Dask worker: Only one dask-worker was instantiated. This served as the
basis to measure our speedup against since it represents a non-parallelized ver-
sion of the application.

2. Two Dask workers: Two dask-workers were instantiated, and each worked on
only half of the input dataset. This represents the parallelized version.

This performance analysis was carried out for two of the three examples in section
3.2.1 - the image classification example and the vector sum example.

3.3.1. Image classification using QNN on Pynq-Z1
This example involved the classification of 10000 32*32 color images into 10 classes -
airplane, bird, cat, etc. using a quantized convolutional neural network with 2-bit weights
and activations.

Experimental setup: Two Pynq-Z1 FPGA devices were connected via a Gigabit
router to a laptop. These devices were loaded with a bootable Linux image available
from the Pynq website [7]. This image includes the Pynq python package (version
v2.5.1). A Dask cluster was created using the Dask Python package with Python 3.6.
The test batch of the CIFAR-10 [4] dataset was used for testing the neural network. Pre-
trained neural network models were obtained using Xilinx’s [3] Python package. This
package provides bitstreams for different neural networks, including the 2-bits weight
and activation NN we have used for this experiment. It also includes a software-only
implementation of the network built using Xilinx’s C++ deep learning framework Tiny-
CNN [9] .

18 3. Parallelization on multiple FPGAs

Attempting to run the software version of the network on the Pynq-Z1 led to a timeout.
This is likely due to the small ARM Cortex-A9 processor present on the board.

The FPGA implementation, however, completed successfully. For classifying the
entire dataset using 1 dask worker, it took a total of 38s. This includes the time taken
to read the input file, send it to the remote worker, execute the inference on the FPGA,
and get the result back. On scaling the setup to 2 Dask workers, the total time taken
was reduced to 22 seconds, implying a speedup of 1.7x (Figure 3.3).

1 worker 2 workers
Number of Pynq workers

0

5

10

15

20

25

30

35

Ex
ec

ut
io

n
tim

e
(s

)

CIFAR-10 classification on Pynq cluster

Figure 3.3: Performance comparison between 1 and 2 FPGAs

Ideally, a speedup of 2x should be observed. However, all stages of the process are
not parallelized, for example reading the file from disk. This can be mitigated by having
the workers pull the data themselves in parallel from the client or a distributed storage
(Amazon S3, for example).

3.3.2. Vector sum on Alveo
This example involved the addition of 2 vectors of size 4096*4096 using the overlay
provided in the official Pynq Alveo repository [1].

Experimental setup: This experiment was run on two Alveo FPGA cards (U200 and
U280) attached to a single machine. Dask with Python 3.6 was used to create a virtual
cluster consisting of two workers and a scheduler (also running on the same machine).
The vectors to be added were populated by randomly-generated unsigned integers.

As in the previous example, we compared the performance of using 1 Alveo acceler-
ator card vs using both of them. In the case of 2 workers, the data was split equally, i.e.,
into two 2D arrays of shape 2048*4096. We also performed a more detailed split-up of
the total elapsed time, by splitting the entire run-time into 3 components:

1. Time to scatter : Time taken to send the chunks of data to their respective workers.
This is done using Dask’s scatter method, which allows us to distribute our data

3.3. Experimental results 19

across the cluster directly from the client to the workers, without having to go
through the scheduler.

2. Time to execute: This is the time spent inside the workers, and consists of the
time taken to allocate the required buffers, call the FPGA accelerator and get the
results.

3. Time to gather : This consists of the time taken to transmit the result back from
the workers to the clients.

1 worker 2 workers
1 vs 2 workers

0

1

2

3

4

To
ta

l t
im

e
to

 a
dd

 v
ec

to
rs

 (i
n

se
co

nd
s)

Performance of sum of two 4096*4096 vectors on Alveo
Time to scatter data to workers
Avg. time to execute on workers
Time to gather results from workers

Figure 3.4: Performance comparison between 1 and 2 FPGAs

The results of the experiment are shown in Figure 3.4. As expected, a major portion
of the time was spent in data transmission (scattering the input data and collecting the
results). Also visible is a speedup of ~1.3x obtained in scaling our setup from 1 to 2
FPGAs. This speedup is lesser than the previous example because of the large non-
parallelizable components of data scattering and gathering.

4
Parallelization optimization using

Apache Arrow

In the previous chapter, we showed examples where the data was in an arbitrary mem-
ory format. For example, in the image resizing and classification prototypes, the input
data sent from the client to the workers was of type PIL.image, which is a Python-
specific data format for representing images. In the 2D vector sum example, we used
Numpy 2D arrays as the input data format. During the second half of this project, we
developed a prototype that used Apache Arrow as the data format for communication
between the hosts and the FPGA. Fletcher, which easily lets us build and communicate
with such accelerators, was used in the prototype. In the following sections, we justify
the use of Apache Arrow and also explain our prototype in more detail.

4.1. Advantages of using Arrow
One of the bottlenecks observed when designing an FPGA accelerated system is the
cost of serialization and deserialization which occurs at the interface of different pro-
gramming languages, as well as when transmitting data over the wire. In many cases,
this serialization is slower than the bandwidth of the FPGA accelerator interface, and
hence reducing this overhead leads to a direct and noticeable improvement in runtime.

Apache Arrow was designed keeping such problems in mind. Instead of us-
ing Python-specific data representation formats such as Numpy arrays or Pandas
Dataframes, using Arrow-based data structures for communicating between the Dask
client and workers led to significant improvement in the time taken to scatter data.

The Arrow memory format is columnar, and this provides many benefits for big data
analytic systems:

• Better data locality: Since all values for a particular column are stored together,
it is possible to run aggregation and selection queries without having to scan the
entire memory occupied by the table.

21

22 4. Parallelization optimization using Apache Arrow

• Support for SIMD: Columnar data allows compilers to use Single Instruction, mul-
tiple data (SIMD) on modern CPUs to allow for data parallelism.

Since a major portion of the total runtime for experiments was the time taken to scat-
ter the input data to the workers, decreasing the serialization cost (which is a significant
portion of the scatter time) was an important priority. Fortunately, Dask provides cus-
tom support for the Arrow data format. Dask uses different serialization methods based
on the type of data being moved. While for some data types, the simple pickle se-
rializer is used, Dask maintains several custom serialization families for some special
cases, with Arrow being one of them. For Arrow RecordBatch and Table, Dask uses
PyArrow’s APIs (the official Python bindings for Apache Arrow) to serialize them.

To quantify the performance gain obtained when using Arrow, we compared the time
for scattering data (read from CSV files) from a client to a worker for both Arrow Tables
and Pandas Dataframes, which is a popular format used in data analysis. This time in-
cludes the time for serialization at the sender, network transmission, and deserialization
at the receiver. The results are shown in Figure 4.1. Arrow was found to be roughly 2x
faster in these experiments.

25 50 75 100 125 150 175
Size of CSV file (in MB)

0.0

0.5

1.0

1.5

2.0

2.5

Ti
m

e
ta

ke
n

to
 sc

at
te

r(s
ec

on
ds

)

Arrow vs Pandas (de)serialisation performance
Arrow
Pandas

Figure 4.1: Scatter performance - Arrow Table vs Pandas Dataframe

4.2. Solution architecture 23

Using Arrow also enabled us to use the Fletcher runtime libraries for communicat-
ing with our FPGA kernel. In the previous chapter, the Pynq package was used for this
purpose. Fletcher also provides the functionality, with the additional advantage of sup-
porting more than one platform. In our experiments, we used Fletcher on the OpenCAPI
and AWS-F1 environments.

4.2. Solution architecture
While the architecture, in this case, is similar to the previous experiments from the last
chapter, there are some differences:

• The bitstream loaded on the FPGA should be built using Fletcher’s interface gen-
eration tool (Fletchgen) to allow us to send Record Batches to it. Fletchgen gen-
erates streams of the same data type as the Arrow schema specified during the
kernel design stage.

• Fletcher’s runtime library in Python (Pyfletcher) is used to connect to the FPGA
from the Python code. Pyfletcher auto-detects the underlying hardware platform
(aws, capi or echo), and hence the resulting Python code is platform agnostic.

• Arrow is used as the data format used for communication between the client and
the workers, and further between the workers and the FPGA.

$UFKLWHFWXUH

'DVN�6FKHGXOHU�3URFHVV

'DVN�&OLHQW

'DVN�ZRUNHU��

,3�������������

+RVW��
�����������

7DVN�JUDSK
$UURZ�5HFRUG�EDWFK��
5HVXOWV

)OHWFKHU�5XQWLPH�

'DVN�ZRUNHU��

+RVW��
�����������

�7DVNV

$UURZ�5HFRUG�EDWFK��
5HVXOWV

5HFRUG�EDWFK

6WUHDP�RI�GDWD

)OHWFKHU�5XQWLPH
5HFRUG�EDWFK

6WUHDP�RI�GDWD

5HVXOWV 5HVXOWV

%LWVWUHDP�JHQHUDWHG�
XVLQJ�)OHWFKJHQ

%LWVWUHDP�JHQHUDWHG�
XVLQJ�)OHWFKJHQ

Figure 4.2: Architecture of the system (Differences from previous architecture highlighted in red)

4.3. Example prototype
One of the platforms supported by Fletcher is AWS-F1. Amazon’s EC2 F1 instances
are high performance compute systems (upwards of 122 GiB memory and 8 vCPUs,
where each vCPU is a core on the 2.3 GHz Intel Xeon processor) with Xilinx Virtex

24 4. Parallelization optimization using Apache Arrow

FPGAs. For our experiments, we chose the f1.2xlarge instance which contains 1
such FPGA. For the purpose of measuring scalability improvements, we created up to
3 such instances. They were all co-located in the same availability zone to maximize
network throughput between them. The Dask-scheduler was running on one of these
instances, and the 3 workers were distributed across the 3 instances.

The example we used was a regular expression matching example available as
one of the Fletcher examples for AWS integration. The accelerator performs a search
for multiple regex patterns in a text input file. The input data format is an Arrow
RecordBatch whose schema consists of a single column of strings, where each string
is a line from a text file. The Verilog source files for the accelerator are present on the
Github repository [5], and the run-time python code was adapted from the host code
available in the same repository.

To synthesis and deploy the bitstream on the 3 instances, the following steps were
taken:

1. Generate a design checkpoint (DCP) for the regexp example using Vivado and
the hardware development kit (HDK) of the AWS EC2 FPGA Development kit [2].

2. Upload the DCP to AWS S3 using the AWS CLI.

3. Use the create-fpga-image AWS command to create an Amazon FPGA Im-
age (AFI) from the DCP stored in S3. An AFI contains the required bitstream and
has a unique AFI ID, which can be used to deploy the bitstream on any F1 instance
using the fpga-load-local-image command of the FPGA kit.

Once the bitstream is loaded on the 3 instances, we can run interact with it via Python
using Pyfletcher. This is done in the following manner (see Appendix for the complete
code):

1

2 # Auto detect the hardware platform.
3 platform = pf.Platform()
4

5 # Initialize the Platform.
6 platform.init()
7

8 # Create a Context for our data on the Platform.
9 context = pf.Context(platform)

10

11 # Queue the RecordBatch ‘batch‘ to the Context.
12 context.queue_record_batch(batch)
13

14 # Enable the Context, (potentially transferring the data to FPGA).
15 context.enable()
16

17 # Set up an interface to the Kernel, supplying the Context.
18 kernel = pf.Kernel(context)
19

20 # Start the kernel.
21 kernel.start()
22

4.4. Experimental results 25

23 # Wait for the kernel to finish, and get the result back.
24 kernel.wait_for_finish()
25

26 result = kernel.get_return(np.dtype(np.uint32))

Running the above code as a Dask task on the workers lets us split up the text
file, and perform the pattern search on all of the workers simultaneously. To check
the usefulness of this experiment, we first compared the FPGA accelerated version
to an optimized CPU implementation, which used OpenMP to build a multithreaded
parallelized version of the regular expression matching example.

0 200 400 600 800 1000
Size of input file (in MB)

0

1

2

3

4

5

6

7

Ti
m

e
ta

ke
n

(in
 S

)

Regexp example (CPU vs FPGA)

CPU implementation (OpenMP)
FPGA implementation

Figure 4.3: Performance comparision between CPU and FPGA-accelerated versions

From Figure 4.3 , it is evident that using an FPGA provides a significant benefit over
a CPU implementation. In the next section, we look at how to further optimize the FPGA
runtime using Dask parallel processing.

4.4. Experimental results
In addition to comparing the execution times of the CPU and the FPGA versions, we
also perform a more detailed split-up of the entire runtime along with the Dask setup,
including the time needed to read, prepare and distribute the data for both the versions.
The results are shown in Figure 4.4.

Apart from the obvious performance difference between the FPGA and the CPU
versions, two other things can also be inferred from Figure 4.4:

1. Using two Dask workers provides an improvement in runtime for both the versions,
especially the CPU version where the execution time dominates the total runtime.

2. For the FPGA version, the actual execution time is a very small percentage of the
total runtime.

26 4. Parallelization optimization using Apache Arrow

CPU FPGA
CPU vs FPGA performance

0

5

10

15

20

25

30

35

40

45
To

ta
l t

im
e

to
 se

ar
ch

 (i
n

se
co

nd
s)

1

1

2

2

Performance on regular expression matching on a 2GB file
Time to read input file
Time to split data by newline
Time to scatter data to workers
Time to execute on worker

Figure 4.4: Performance comparision between CPU and FPGA-accelerated versions (the numbers on top of
the bar indicate the number of Dask workers)

Point 2 above hints to the need to optimize the scatter time since it constitutes a
major portion of the total time. Using more than 1 worker helps us do this. Hence, we
performed a more detailed analysis by using up to 3 Dask workers and various input
sizes. The results are summarized in Figure 4.5.

In the cases in Figure 4.5, it can be seen that using more than one worker reduces
the runtime significantly. Up to 1.45x speedup is obtained when using 3 workers instead
of 1. Parallelising the process has reduced the scatter time and execution time, reducing
the overall time noticeably.

4.4. Experimental results 27

500 750 1000 1250 1500 1750 2000
Size of input file (MB)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

To
ta

l t
im

e
to

 se
ar

ch
 (i

n
se

co
nd

s)

1

1

1

1

2

2

2

2

3

3

3

3

Scalability

Time to read input file
Time to split data by newline
Time to scatter data to workers
Time to execute on worker

Figure 4.5: Scaling of Dask workers (the numbers on top of the bar indicate the number of Dask workers)

5
Conclusions and future work

5.1. Conclusions
In this project, we have proposed an architecture to be able to tie together several
FPGA devices, running the same pre-built accelerator, into a cluster and to execute our
computation tasks on the cluster using a high-level programming language. We have
also used different combinations of software and hardware platforms to demonstrate
the general applicability of our solution.

More precisely, we have been able to address the research questions formulated in
the beginning of the project.

The first research question involved determining whether we can improve an ap-
plication’s performance using multiple FPGAs. This was answered by implementing
distributed versions of existing FPGA applications on two or three FPGA devices, and
comparing them to the single-FPGA implementation. Three such applications were ex-
amined:

1. Image classification using a quantised neural network: Total time for classifying
10000 images was reduced from 38 to 22 seconds on scaling from 1 to 2 Pynq-Z1
FPGA devices.

2. Addition of 2 integer vectors : A performance gain of 1.3x was obtained by using
2 Alveo FPGAs devices. Performance gain was observed both in the execution
phase and the data distribution phase.

3. Regular expression matching for multiple patterns on a text file: With large text
files and 4 regular expressions, the application was scaled to up to 3 AWS FPGA
instances. For a text file of size 1.5GB, the total runtime reduced from 16 to 11
seconds (1.45x speedup).

The second research question dealt with using a high level programming language
to interact with the cluster of FPGAs. This project used simple Python scripts and pack-
ages to do the following:

29

30 5. Conclusions and future work

• Given a set of hosts connected over a network, the Python framework Dask was
used to connect them together into a simple scheduler-worker architecture, with
an FPGA card attached to each of the workers.

• Python libraries (Pynq and Pyfletcher) were used by the Dask workers to interact
with the FPGA. This helps us avoid writing complex host binaries (often written in
C/C++) to use the accelerator.

• All the data handling, i.e. reading, distributing and collecting results, was com-
pletely performed using Python. This lets us use the rich Python ecosystem of
data analytics libraries such as Pandas and Numpy.

This makes it possible for data scientists and software engineers to reuse highly special-
ized and optimized FPGA implementations without having to deal with low-level com-
munication drivers. The user also does not have to think about the internal workings of
the cluster (how nodes communicate with each other, data distribution, network error
handling, etc.), and can treat the system as a single entity which internally provides
parallelism.

The third research question dealt with using a columnar memory format to further
optimise the application. We have demonstrated the performance gains due to the use
of Apache Arrow, a popular framework for in-memory data, for representing our program
data instead of traditional data structures. The regular expression matching example
mentioned above uses Apache Arrow to reduce the serialisation and deserialisation
costs of the program data. In a standalone experiment involving the scattering of a large
file over the network, Arrow performed over twice as fast when compared to Pandas, a
popular Python framework for representing in-memory data in big data applications.

From the experiments in this project, it can be seen that there exist several cases
where a distributed FPGA cluster can provide better performance when compared to
a single FPGA or a software implementation. However, there still exists a scope for
improving the general adoption of FPGAs in the industry. Similar to software libraries,
being able to use off-the-shelf accelerators built by highly skilled hardware designers
is one way of improving the adoption of FPGAs. In this project, we have developed
prototypes that demonstrate ways to achieve this goal.

5.2. Future Work
There are a few improvements to this system that can make it further useful. Most im-
portantly, we would like to use remotely available data instead of reading data serially
from a filesystem. This includes data from HDFS, S3, etc. This should help parallelize
the data-reading process by allowing the workers to pull chunks of data themselves in
parallel instead of the Dask client reading all the data serially and then distributing to
workers. Then the client only has to provide pointers/offsets to the data to the workers
(HDFS filenames, S3 object keys, etc.), and network communication will be minimized/-
parallelized.

We would also like to provide easy-to-use cluster setup utilities to allow users to
easily deploy our architecture stack on various operating systems and FPGA devices.

5.2. Future Work 31

This task is fairly tedious due to a host of software requirements (Dask, Fletcher, Arrow)
as well as hardware-specific requirements (AWS FPGA SDK, etc.)

A
Programming snippets

• Python code to run the image resizer overlay. Shows some of the capabilities of
the Pynq framework.

1 #Import necessary methods from Pynq Python package
2 from pynq import Xlnk, Overlay
3

4 #Download the bitstream on the FPGA
5 resize_design = Overlay(”resizer.bit”)
6

7 #Create references to the DMA and the resizer IPs
8 dma = resize_design.axi_dma_0
9 resizer = resize_design.resize_accel_0

10

11 #Create input and output buffers in the on-chip DRAM
12 in_buffer = xlnk.cma_array(shape=(old_height, old_width, 3),
13 dtype=np.uint8, cacheable=1)
14 out_buffer = xlnk.cma_array(shape=(new_height, new_width, 3),
15 dtype=np.uint8, cacheable=1)
16

17 # Copy image data from Python local memory to input buffer
18 in_buffer[:] = np.array(original_image)
19

20 #Set values in the predefined MMIO registers on the FPGA
21 resizer.write(0x10, old_height) # number of rows for original picture
22 resizer.write(0x18, old_width) # number of columns for original picture
23 resizer.write(0x20, new_height) # number of rows for resized picture
24 resizer.write(0x28, new_width) # number of columns for resized picture
25

26

27 #Run the accelerator kernel
28 dma.sendchannel.transfer(in_buffer)
29 dma.recvchannel.transfer(out_buffer)
30 resizer.write(0x00,0x81) # start
31 dma.sendchannel.wait()
32 dma.recvchannel.wait()

33

34 A. Programming snippets

33

34 #Output image
35 resized_image = Image.fromarray(out_buffer)

• Python code to run the image classification overlay. Demonstrates code simplicity
when using a Python driver instead of making low level Pynq API calls.

1 # Import the python driver for the overlays
2 import bnn
3

4 #Import one of the hardware overlays
5 # W1A1 - 1 bit weight and 1 bit activation
6 hw_classifier = bnn.CnvClassifier(bnn.NETWORK_CNVW1A1,’cifar10’,bnn.

RUNTIME_HW)
7

8 #OR W1A2 - 1 bit weight and 2 bit activation
9 hw_classifier = bnn.CnvClassifier(bnn.NETWORK_CNVW1A2,’cifar10’,bnn.

RUNTIME_HW)
10

11 #OR W2A2 - 2 bit weight and 2 bit activation
12 hw_classifier = bnn.CnvClassifier(bnn.NETWORK_CNVW2A2,’cifar10’,bnn.

RUNTIME_HW)
13

14 # Call accelerator kernel
15 inferred_class = hw_classifier.classify_image(img)

• Python code for a simple Dask example to resize an image using Pynq-Z1 FPGA:

1 # Function which is executed on every worker
2 def run_on_worker(data):
3 from multiprocessing import Process,Queue
4 from PIL import Image
5

6 def use_overlay(queue, file_path):
7 import bnn
8 from pynq import Xlnk
9

10 hw_classifier = bnn.CnvClassifier(bnn.NETWORK_CNVW2A2,’cifar10’,
bnn.RUNTIME_HW)

11 result_W2A2 = hw_classifier.classify_cifars(file_path)
12 xlnk = Xlnk()
13 xlnk.xlnk_reset()
14 queue.put(result_W2A2)
15

16 # Writing to a file is necessary since this overlay expects a file
path present on the Pynq board

17 file_path = ”input_data.bin”
18 with open(file_path, ”wb”) as outfile:
19 outfile.write(data)
20

21 ’’’
22 We need to run the Pynq overlay in a new forked process since
23 the Pynq library cannot be run in a non-main thread, which happens to

be
24 the default Dask behaviour for all workers

35

25 ’’’
26 queue = Queue()
27 p = Process(target=use_overlay, args=(queue,file_path))
28 p.start()
29 result = queue.get()
30 p.join()
31 return result
32

33

34

35 #The following code is executed on the machine acting as the Dask Client.
36 from dask.distributed import Client
37 client = Client(”tcp://192.168.2.1:8786”) # IP of scheduler
38

39

40 # Split up the CIFAR-10 dataset into equal sized chunks based on number of
available dask workers

41 num_of_workers = len(client.scheduler_info()[”workers”])
42 data_split = []
43 with open(”cifar-10-batches-bin/data_batch_1.bin”, ”rb”) as ifile:
44 total = ifile.read()
45 start = 0
46 chunk_size = int(len(total)/num_of_workers)
47 for i in range(num_of_workers):
48 data_split.append(total[start: start+chunk_size])
49 start += chunk_size
50

51

52 # Scatter the data to the workers before calling run_on_worker on the
workers

53 distributed_data = client.scatter(data_split)
54 futures = client.map(run_on_worker, distributed_data)
55

56 # Get the output returned by the workers
57 result = client.gather(futures)

• Python code to demonstrate regular expression matching using Apache Arrow.
Tested on up to 3 AWS F1 instances, but also works on any Fletcher-supported
hardware platform.

1

2 class RegExCore(pf.UserCore):
3 #... Class definition available at https://github.com/abs-tudelft/

fletcher-example-regexp/blob/master/software/python/regexp.py#L49
4 #... Not provided here for brevity
5

6 # function which executes on the workers
7 def run_on_worker(batch, regexes):
8

9 platform = pf.Platform() #Auto detect the platform
10 context = pf.Context(platform)
11 rc = RegExCore(context)
12

13 # Initialize the platform
14 platform.init()

36 A. Programming snippets

15

16 # Reset the UserCore
17 rc.reset()
18

19 # Prepare the column buffers
20 context.queue_record_batch(batch)
21 context.enable()
22

23 # Set required parameters of the accelerator
24 rc.set_reg_exp_arguments(0, batch.num_rows)
25

26 # Start the matchers and poll until completion
27 rc.start()
28 rc.wait_for_finish(10)
29

30

31 # Get the number of matches from the UserCore
32 matches = rc.get_matches(len(regexes))
33

34 return (matches, t2-t1)
35

36

37

38 #The following code is executed on the machine acting as the Dask Client.
39

40 # Initialise Dask client
41 client = Client(IP_OF_SCHEDULER)
42

43 #Read input data
44 filename = ’input_data.txt’
45 f = open(filename, ’r’)
46 strings_native = f.readlines()
47

48

49 # Declare the Arrow schema for our input data
50 column_field = pa.field(”text_corpus”, pa.string(), False)
51 schema = pa.schema([column_field])
52

53 # Split input data into chunks, where each chunk is a record batch of
schema ‘schema‘

54 num_rows = len(strings_native)
55 num_of_workers = len(client.scheduler_info()[”workers”])
56 data_split = []
57 chunk_size = int(num_rows/num_of_workers)
58 start = 0
59 for w in range(num_of_workers):
60 data_split.append(pa.RecordBatch.from_arrays([pa.array(strings_native[

start: start+chunk_size])], schema))
61 start += chunk_size
62

63 # The regex patterns to search for
64 regexes = [”.*(?i)bird.*”, ”.*(?i)bunny.*”, ”.*(?i)cat.*”, ”.*(?i)dog.*”,

”.*(?i)ferret.*”, ”.*(?i)fish.*”,
65 ”.*(?i)gerbil.*”, ”.*(?i)hamster.*”]
66

37

67

68 # Scatter the data to the workers before calling run_on_worker on the
workers

69 scattered_data = client.scatter(data_split)
70 futures = client.map(run_on_worker, scattered_data, [regexes]*

num_of_workers)
71

72 # Get the output returned by the workers. Note that these results need to
be merged to get the total matches

73 results = client.gather(futures)
74

75 #Combine matches from all the workers
76 total_matches = [0]*len(regexes) # total matches = [0,0,0,....], where

each index corresponds to a single regex pattern
77 for result in results:
78 total_matches = [sum(x) for x in zip(total_matches, result)]

Bibliography

[1] Official examples for using pynq with alveo. URL https://github.com/

Xilinx/Alveo-PYNQ.

[2] Aws ec2 fpga development kit. URL https://github.com/aws/aws-fpga.

[3] Quantized neural network (qnn) on pynq. URL https://github.com/Xilinx/
BNN-PYNQ.

[4] The cifar-10 dataset. URL https://www.cs.toronto.edu/~kriz/cifar.

html.

[5] Fletcher regular expression matching example. URL https://github.com/

abs-tudelft/fletcher-example-regexp.

[6] The mnist database. URL http://yann.lecun.com/exdb/mnist/.

[7] Pynq: Open source project from xilinx, . URL http://www.pynq.io/.

[8] Pynq image resize example from xilinx, . URL https://github.com/Xilinx/
PYNQ-HelloWorld.

[9] tiny-cnn: A header only, dependency-free deep learning framework in c++11. URL
https://github.com/Xilinx/xilinx-tiny-cnn.

[10] Stuart Byma, J Gregory Steffan, Hadi Bannazadeh, Alberto Leon Garcia, and Paul
Chow. Fpgas in the cloud: Booting virtualized hardware accelerators with open-
stack. In 2014 IEEE 22nd Annual International Symposium on Field-Programmable
Custom Computing Machines, pages 109–116. IEEE, 2014.

[11] Fei Chen, Yi Shan, Yu Zhang, YuWang, Hubertus Franke, Xiaotao Chang, and Kun
Wang. Enabling fpgas in the cloud. In Proceedings of the 11th ACM Conference
on Computing Frontiers, pages 1–10, 2014.

[12] Y. Choi and H. K. So. Map-reduce processing of k-means algorithm with fpga-
accelerated computer cluster. In 2014 IEEE 25th International Conference on
Application-Specific Systems, Architectures and Processors, pages 9–16, 2014.

[13] Yuk-Ming Choi and Hayden Kwok-Hay So. Map-reduce processing of k-means
algorithm with fpga-accelerated computer cluster. In 2014 IEEE 25th Interna-
tional Conference on Application-Specific Systems, Architectures and Processors,
pages 9–16. IEEE, 2014.

39

https://github.com/Xilinx/Alveo-PYNQ
https://github.com/Xilinx/Alveo-PYNQ
https://github.com/aws/aws-fpga
https://github.com/Xilinx/BNN-PYNQ
https://github.com/Xilinx/BNN-PYNQ
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://github.com/abs-tudelft/fletcher-example-regexp
https://github.com/abs-tudelft/fletcher-example-regexp
http://yann.lecun.com/exdb/mnist/
http://www.pynq.io/
https://github.com/Xilinx/PYNQ-HelloWorld
https://github.com/Xilinx/PYNQ-HelloWorld
https://github.com/Xilinx/xilinx-tiny-cnn

40 Bibliography

[14] Zefu Dai and Jianwen Zhu. Saturating the transceiver bandwidth: Switch fabric
design on fpgas. In Proceedings of the ACM/SIGDA international symposium on
Field Programmable Gate Arrays, pages 67–76, 2012.

[15] Mohammed Elnawawy, Abid Farhan, Ahmad Al Nabulsi, AR Al-Ali, and Assim
Sagahyroon. Role of fpga in internet of things applications. In 2019 IEEE Inter-
national Symposium on Signal Processing and Information Technology (ISSPIT),
pages 1–6. IEEE, 2019.

[16] Jian Fang, Jianyu Chen, Jinho Lee, Zaid Al-Ars, and H Peter Hofstee. Refine and
recycle: A method to increase decompression parallelism. In 2019 IEEE 30Th
international conference on application-specific systems, architectures and pro-
cessors (ASAP), volume 2160, pages 272–280. IEEE, 2019.

[17] Mariangela Genovese and Ettore Napoli. Asic and fpga implementation of the
gaussian mixture model algorithm for real-time segmentation of high definition
video. IEEE transactions on very large scale integration (VLSI) systems, 22(3):
537–547, 2013.

[18] Joost Hoozemans, Rolf Heij, Jeroen van Straten, and Zaid Al-Ars. Vliw-based fpga
computation fabric with streaming memory hierarchy for medical imaging applica-
tions. In International Symposium on Applied Reconfigurable Computing, pages
36–43. Springer, 2017.

[19] Ernst Joachim Houtgast, Vlad-Mihai Sima, Koen Bertels, and Zaid Al-Ars. Hard-
ware acceleration of bwa-mem genomic short read mapping for longer read
lengths. Computational biology and chemistry, 75:54–64, 2018.

[20] Brad L Hutchings, Rob Franklin, and Daniel Carver. Assisting network intrusion
detection with reconfigurable hardware. In Proceedings. 10th Annual IEEE Sym-
posium on Field-Programmable Custom Computing Machines, pages 111–120.
IEEE, 2002.

[21] Preston A Jackson, Cy P Chan, Jonathan E Scalera, Charles M Rader, and
M Michael Vai. A systolic fft architecture for real time fpga systems. Technical
report, MASSACHUSETTS INST OF TECH LEXINGTON LINCOLN LAB, 2005.

[22] Li Jiao, Cheng Luo, Wei Cao, Xuegong Zhou, and Lingli Wang. Accelerating low
bit-width convolutional neural networks with embedded fpga. In 2017 27th Inter-
national Conference on Field Programmable Logic and Applications (FPL), pages
1–4. IEEE, 2017.

[23] Christoforos Kachris, Elias Koromilas, Ioannis Stamelos, and Dimitrios Soudris.
Spynq: Acceleration of machine learning applications over spark on pynq. In 2017
International Conference on Embedded Computer Systems: Architectures, Mod-
eling, and Simulation (SAMOS), pages 70–77. IEEE, 2017.

[24] Zhongduo Lin and Paul Chow. Zcluster: A zynq-based hadoop cluster. pages 450–
453, 12 2013. ISBN 978-1-4799-2198-0. doi: 10.1109/FPT.2013.6718411.

Bibliography 41

[25] Duncan JM Moss, Eriko Nurvitadhi, Jaewoong Sim, Asit Mishra, Debbie Marr, Su-
chit Subhaschandra, and Philip HW Leong. High performance binary neural net-
works on the xeon+ fpga™ platform. In 2017 27th International Conference on
Field Programmable Logic and Applications (FPL), pages 1–4. IEEE, 2017.

[26] Hiroki Nakahara, Tomoya Fujii, and Shimpei Sato. A fully connected layer elimi-
nation for a binarizec convolutional neural network on an fpga. In 2017 27th Inter-
national Conference on Field Programmable Logic and Applications (FPL), pages
1–4. IEEE, 2017.

[27] K. Neshatpour, M. Malik, M. A. Ghodrat, A. Sasan, and H. Homayoun. Energy-
efficient acceleration of big data analytics applications using fpgas. In 2015 IEEE
International Conference on Big Data (Big Data), pages 115–123, 2015.

[28] Jian Ouyang, Hong Luo, ZilongWang, Jiazi Tian, Chenghui Liu, and Kehua Sheng.
Fpga implementation of gzip compression and decompression for idc services. In
2010 International Conference on Field-Programmable Technology, pages 265–
268. IEEE, 2010.

[29] Johan Peltenburg, Shanshan Ren, and Zaid Al-Ars. Maximizing systolic array effi-
ciency to accelerate the pairhmm forward algorithm. In 2016 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM), pages 758–762. IEEE,
2016.

[30] Johan Peltenburg, Jeroen van Straten, Matthijs Brobbel, H Peter Hofstee, and Zaid
Al-Ars. Supporting columnar in-memory formats on fpga: The hardware design of
fletcher for apache arrow. In International Symposium on Applied Reconfigurable
Computing, pages 32–47. Springer, 2019.

[31] Johan Peltenburg, Jeroen van Straten, Lars Wijtemans, Lars van Leeuwen, Zaid
Al-Ars, and Peter Hofstee. Fletcher: A framework to efficiently integrate fpga ac-
celerators with apache arrow. In 2019 29th International Conference on Field Pro-
grammable Logic and Applications (FPL), pages 270–277. IEEE, 2019.

[32] Yang Qiao. An fpga-based snappy decompressor-filter. Master’s thesis, 2018.

[33] Bharat Sukhwani, Hong Min, Mathew Thoennes, Parijat Dube, Balakrishna Iyer,
Bernard Brezzo, Donna Dillenberger, and Sameh Asaad. Database analytics ac-
celeration using fpgas. In 2012 21st International Conference on Parallel Architec-
tures and Compilation Techniques (PACT), pages 411–420. IEEE, 2012.

[34] Yaman Umuroglu, Nicholas J Fraser, Giulio Gambardella, Michaela Blott, Philip
Leong, Magnus Jahre, and Kees Vissers. Finn: A framework for fast, scalable
binarized neural network inference. In Proceedings of the 2017 ACM/SIGDA In-
ternational Symposium on Field-Programmable Gate Arrays, pages 65–74, 2017.

[35] Felix Winterstein, Samuel Bayliss, and George A Constantinides. Fpga-based k-
means clustering using tree-based data structures. In 2013 23rd International Con-
ference on Field programmable Logic and Applications, pages 1–6. IEEE, 2013.

	Introduction
	Context
	Problem statement
	Scalability issues
	Absence of support in high-level programming languages
	Research questions

	Solution approach and contributions
	Thesis structure

	Background and related work
	FPGA applications
	Streaming applications
	Machine learning
	Data transformation
	Fully HW vs HW/SW co-design

	Parallelization using multiple FPGAs
	Background about used frameworks/technologies
	Apache Arrow
	 Fletcher
	Hardware Description Language (HDL)
	Pynq
	Dask

	Parallelization on multiple FPGAs
	Solution architecture
	Multi-FPGA system setup
	Build/Reuse appropriate accelerator bitstreams
	Setup a cluster of FPGAs
	Use Dask to distribute the data analysis

	Experimental results
	Image classification using QNN on Pynq-Z1
	Vector sum on Alveo

	Parallelization optimization using Apache Arrow
	Advantages of using Arrow
	Solution architecture
	Example prototype
	Experimental results

	Conclusions and future work
	Conclusions
	Future Work

	Programming snippets
	Bibliography

