<]
TUDelft

Delft University of Technology

Relation between prognostics predictor evaluation metrics and local interpretability SHAP
values

Baptista, Marcia L.; Goebel, Kai; Henriques, Elsa M.P.

DOI
10.1016/j.artint.2022.103667

Publication date
2022

Document Version
Final published version

Published in
Artificial Intelligence

Citation (APA)

Baptista, M. L., Goebel, K., & Henriques, E. M. P. (2022). Relation between prognostics predictor evaluation
metrics and local interpretability SHAP values. Artificial Intelligence, 306, Article 103667.
https://doi.org/10.1016/j.artint.2022.103667

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.1016/j.artint.2022.103667
https://doi.org/10.1016/j.artint.2022.103667

Artificial Intelligence 306 (2022) 103667

Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

Relation between prognostics predictor evaluation metrics A
and local interpretability SHAP values

updates

Marcia L. Baptista®*, Kai Goebel b.c Elsa M.P. Henriquesd

a Delft University of Technology (TU Delft), Mekelweg 5, 2628 CD Delft, the Netherlands

b Luled University of Technology, 971 87 Luled, Sweden

€ Palo Alto Research Center (PARC), Palo Alto CA 94304, USA

d University of Lisbon - Instituto Superior Tecnico (IST), Av. Rovisco Pais n°1, 1049-001 Lisbon, Portugal

ARTICLE INFO ABSTRACT
ATfiC{e history: Maintenance decisions in domains such as aeronautics are becoming increasingly depen-
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techniques are used for this prognostic task, they often face headwinds due to their per-
ceived lack of interpretability. To address this issue, this paper examines how features used
in a data-driven prognostic approach correlate with established metrics of monotonicity,
trendability, and prognosability. In particular, we use the SHAP model (SHapley Additive

fggﬁﬁmrembmw exPlanations) from the field of eXplainable Artificial Intelligence (XAI) to analyze the out-
Model-agnostic interpretability come of three increasingly complex algorithms: Linear Regression, Multi-Layer Perceptron,
SHAP values and Echo State Network. Our goal is to test the hypothesis that the prognostics metrics
Monotonicity correlate with the SHAP model’s explanations, i.e., the SHAP values. We use baseline data
Trendability from a standard data set that contains several hundred run-to-failure trajectories for jet

Prognosability engines. The results indicate that SHAP values track very closely with these metrics with

differences observed between the models that support the assertion that model complexity

is a significant factor to consider when explainability is a consideration in prognostics.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Over the last decades, developments in storage and acquisition technologies have permitted access to large volumes of
data. The continual growth in computing power, followed by a corresponding decrease in costs, has also come to meet
the requirements of more advanced decision-making systems. These systems have started to revolutionize the way we
think about data and modeling, but have also brought additional challenges, especially at the interpretability level. Decision
systems based on machine learning are well-known for their promising results [79] but also for their complexity and lack
of transparency [142,76]. An accuracy-interpretability trade-off [42] is true for almost all machine learning methods. For
example, deep learning networks, an advanced form of machine learning, typically combine the activities of several hundred
or even thousands of neurons. Despite each neural unit’s relative simplicity, the network’s structure can be so intricate that
it may not be fully understood, even by its designer. Mostly due to this reason, neural network systems tend to be seen as
black-boxes, where the user is typically only aware of input-output relationships, but not the underlying reasoning.
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Machine learning algorithms have already revolutionized fields such as image recognition or natural language processing
[103]. However, several obstacles hinder their adoption in other fields. In highly regulated environments, strict requirements
on the audit and verifiability of decisions have limited their acceptance. For example, in aerospace, certification by regulatory
bodies requires the applicant to demonstrate that the system meets minimal safety criteria. Accountability and trust are
essential properties in many applications. As noted by Wilkinson et al. [135], from the Federal Aviation Administration
(FAA) and National Aero Space Agency (NASA), “understanding the mechanisms used (...) is essential to understanding the
impact on software assurance”. The General Data Protection Regulation (GDPR) approved by the European Parliament in
2016 has also imposed restrictions on automated decision-making by establishing the human right to obtain explanations
about the logic involved in algorithmic decisions that influence their lives [47,132].

Recognizing the importance of interpretability to accelerate machine learning progress, the Artificial Intelligence (Al) re-
search community has started to pay increasing attention to the explainability topic. Researchers from different backgrounds
and experiences have started to produce a significant body of research about explanations and intelligibility. A project of
note is the eXplainable Al (XAI) initiative [52] led by the Defense Advanced Research Projects Agency (DARPA) of the United
States. The XAl initiative aims at creating machines that can operate in their environments while also providing explanations
for their behavior.

Researchers from different fields have researched interpretability, and given the complexity of the subject, there is no
agreement on a single definition or taxonomy. As noted by Lipton [84], the concept of interpretability is not a monolithic
one, but it reflects several distinct ideas, such as trust or transparency. Given the lack of a “formal technical meaning” [84],
it is important to establish a definition for interpretability. Here, we adopt the definition of Biran and Cotton [19], as the
level that an observer can understand the cause of a decision. Following the work of Miller [92], and for simplicity, we
equate interpretability with explainability.

As described in the work of Arrieta et al. [8], there are many approaches to interpretability. One such approach is
the SHAP model (SHapley Additive exPlanations) [85]. This kind of XAI model uses Shapley values from game theory to
characterize the input variables’ relative importance. The approach is model-agnostic [107] as it only requires knowing the
black-box model’s output for the neighbor instances of an input sample. When using SHAP, each observed value of a feature
gets its SHAP value. The focus is on explaining what the model locally depends on, instead of learning the full mapping. In
other words, the goal is to achieve local interpretability [43].

The technique of local interpretability contrasts with global interpretability. Global interpretability consists of all the tech-
niques that are able to explain the structure of a model using a macro perspective. This type of approach is most often used
for simpler methods since as the complexity of the models increases it can become gradually more difficult to understand
them [93]. Global interpretability methods typically examine the black-box model’s input-output relationships to infer an
equivalent logical structure that can describe or simulate the black-box model’s behavior. In other words, the goal is to build
a surrogate model that is more transparent [60]. Local interpretability concerns the provision of independent explanations
for individual model responses. Models such as SHAP focus on calculating the importance of the different features for a
specific prediction. The goal is to isolate a single instance and build a surrogate model in the neighborhood (locally) of that
instance to explain how the model processes it. Because there is typically no explicit concern in maintaining the correlation
between the diverse independent local models, this work aims to understand better how the SHAP local models relate to
each other.

In this work, we are interested in understanding how SHAP can benefit Remaining Useful Life (RUL) estimation in aero-
nautics. To this end, we study three increasingly complex prognostics models: Linear Regression (LR), Multi-Layer Perceptron
(MLP), and the more recent algorithm of Echo State Network (ESN) [64,37]. The ESN is a recurrent neural network where
only the connections to the output are computed, and this is done with regression instead of gradient-based methods, which
simplifies and accelerates the training process. These networks have the additional capability of learning multidimensional
temporal patterns. As an ESN is fed with input signals, past signals can influence new ones due to the network’s feedback
loops. This kind of memory enables an ESN to capture the temporal dimension of the data explicitly. There are other archi-
tectures with memory, such as Long-Short Term Memory Network (LSTM) [59] or Gated Recurrent Unit (GRU) [29]. The ESN
is, however, a simple and efficient alternative that has shown promising results in prognostics [101,95,110,114,109].

This paper discusses the need for XAl in prognostics by providing a comprehensive literature review and investigating the
SHAP model according to the classical metrics of PHM (monotonicity, trendability, and prognosability) proposed in [32]. It is
advantageous that the trajectories of explanatory values produced by SHAP exhibit these properties. Monotonic SHAP values
imply that the weight associated with a given feature is changing monotonically over the unit’s lifecycle. Monotonicity is
desirable as it means that sensor features exhibit either increasing or decreasing importance over time. Having fluctuating
SHAP values would most likely mean that the SHAP model is unstable and probably not the most appropriate model to
analyze the importance of a prognostics feature over time. Trendability is also relevant as trendable SHAP values imply
that the SHAP trajectories, or SHAP sequences, of different units, follow the same trend line. In prognostics, the importance
of a feature should be consistent across different units. This consistency facilitates the prognostics and the interpretation
of results. Prognosable SHAP values imply that the weight associated with a specific feature at the end of life has a slight
variation when considering different units. Prognosability is also a desirable characteristic as it means that the explainability
at the different end of life points is consistent across units. This work’s main contribution is to show that SHAP values
exhibit the desirable properties of monotonicity, trendability, and prognosability. A secondary contribution is showing that
model complexity influences interpretability.
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The remainder of this article is organized as follows. Section 2 reviews related work in the field of Prognostics and
Health Management (PHM) and eXplainable Artificial Intelligence (XAI). Section 3 describes the approach. Section 4 focuses
on the case study and the methodology. The results of the experiments are presented and discussed in Section 5. Section 6
concludes the article.

2. Background and related work

In this section we describe the field of Prognostics and Health Management (PHM), review work on interpretability
techniques, and discuss some contributions to PHM in the interpretability domain.

2.1. Prognostics and health management

Prognostics and Health Management (PHM) is the engineering discipline that studies how to improve the system lifecycle
based on current health status and future condition [102]. PHM seeks to prevent unexpected failure based on real-time
monitoring technologies, improve control and maintenance operations, and use condition monitoring data to promote better
system design. Within PHM, prognostics focuses on predicting the future health state and failure modes of the equipment
based on condition monitoring, historical trends, and anticipated usage profiles [44]. The field’s significance comes from its
potential to enable more reliable operations and enhance understanding of aging factors and safety margins. Some benefits
of prognostics are less unscheduled maintenance, optimized lifecycle management, and increased availability of engineered
systems and infrastructure. These goals are particularly encouraged in aerospace engineering [63], where issues such as
performance, reliability, and safety are of concern.

Zio [149] makes a distinction between three approaches to prognostics: first principles model-based, reliability model-
based, and data-driven approaches. In the approach of first principles model-based, the prediction algorithm bases its
estimates on a mathematical model derived from first principles to describe engineering behavior. Mostly due to promising
results in the field [25,35,74,94], there is an almost established notion that these methods are superior in performance to
the remaining prognostics approaches. This notion premises that it is possible to derive a rigorous model of the degradation
process. In practice, defining a complete physical model is not easy and sometimes not even possible. Most complex systems
are subject to multiple, nonlinear, stochastic processes of degradation. In such cases, it may only be possible to partially
describe the actual physics, with much of the underlying phenomena being represented as a black-box or simplification.
Modeling errors can be minimized by optimizing the model parameters given experimental or field data. However, such a
design can be faulty if based on inadequate test-benches.

Reliability model-based approaches depend on classical reliability theory (e.g., bathtub curve and product failure behav-
ior) to estimate the time to failure of the equipment. In this approach, failure (or repair) time distributions are described by
statistical properties estimated from failure (or repair) records. The Weibull distribution is most often the preferred choice
for this analysis. Generally, these models do not include environmental (e.g., weather conditions) or operational parameters
(e.g., temperature, pressure, vibration, load). Several authors such as Peng and Huang [100], Rocchetta et al. [111], Alvehag
and Soder [5], and Naseri et al. [97] have worked on this limitation using techniques such as accelerated life models or
proportional hazard models. Nevertheless, even these advanced methods can be too simple to capture the full range of
system’s change and its complicated effect on deterioration.

Compared to the previous methods, data-driven methods do not rely on explicit domain knowledge. There is no reliance
on reliability theory nor the explicit physical representation of aging processes. There is often the misconception that there
is no underlying mathematical model in this kind of approach [71, p. 244]. This claim is, however, not entirely valid.
Data-driven models also build a mathematical model to describe the observed relationships between input data and target
variables. The way these models are built depends on the utilized artificial intelligence technique. For example, and in simple
terms, decision trees exploit causality, neural networks optimize function composition, and support vector techniques are
kernel-based estimation methods. The target output is an analytical and measurable model that relates input and output
variables irrespective of the procedure applied by the data-driven approach. Even though this kind of model does not have
easily obtainable physical meaning, data-driven modeling produces abstract yet useful physical phenomena representations.
The generalization capabilities these models bring may provide solutions to some significant issues in prognostics. For
example, they can help cluster data, address complex numerical problems, and capture nonlinear relationships automatically
[112].

In prognostics, and as noted by Zio and Maio [150], there has been some skepticism about data-driven methods. Deep
learning, a complex class of data-driven methods, has come to raise even more questions [144]. Fields such as video games,
computer vision, or natural language processing have hastened to adopt deep learning and have seen these techniques sur-
pass classical methods’ performance beyond most expectations [79]. The same trend has not been observed in prognostics,
not in such a manner. Two substantial differences between prognostics and these fields can explain such a discrepancy.
The first is a lack of failure data in prognostics, particularly for highly-reliable assets or new equipment. This issue is a
critical one [45], but several options exist to address it, from unsupervised anomaly detection [126] to data simulation [55].
The second difference, a major cause of mistrust in deep learning for critical systems [151], relates to the general lack of
interpretability of these models.
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Due to several factors, prognostics technologies still have a low Technology Readiness Level (TRL), and PHM may still
be considered an emerging field [116]. Over the last decades, a great deal of effort has been invested into improving
the accurate prediction of the Remaining Useful Life (RUL) of different systems and components. The focus has been on
accuracy rather than certification. However, increased concerns about trust, accountability, and auditing in diverse fields
such as nuclear energy [11, pp. 151-152], or aerospace [63,135], are bringing increased attention to this area. Recent works
[141,87,6,136,69,80] have started to apply methods from eXplainable Artificial Intelligence (XAI) to PHM. Before the latest
developments in “explainable” prognostics, several authors [150,38,133,82] used the fuzzy set theory of Zadeh [139] to
promote interpretability in PHM. This form of multi-valued logic was particularly successful in diagnostics applications
(see the review in [133]), showing that it is possible to capture nonlinear complexity while maintaining some degree
of transparency. However, and as Mencar [91] notes, fuzzy logic by itself does not guarantee interpretability. There are
several open questions in the field, namely, the difficulty to define exact fuzzy rules, membership functions, and optimize
fuzzy systems. As noted by Chimatapu et al. [28], fuzzy systems are often not perceived as an XAl technique. However,
it is interesting to observe that the original motivation [10,88] for fuzzy control systems came from artificial intelligence.
Regardless of the classification, the contribution of fuzzy techniques to advance the field of XAI and “explainable” prognostics
is of notice. In the next subsections, we review other important contributions to the field of interpretability.

2.2. Pre-model interpretability

Some authors, such as Carvalho et al. [23], consider the existence of pre-model, or data, interpretability. This kind of
interpretability consists of applying independent techniques to understand the data used to train or build the model. Such
approaches only depend on the data itself and are, therefore, model-agnostic. Principal Component Analysis (PCA), Dis-
tributed Stochastic Neighbor Embedding (t-SNE), and clustering methods are examples of exploratory data analysis methods
[53] that can be classified under pre-model interpretability. These techniques often do not have a high interpretability power
but they are considered by some authors [23,8,131] to be part of the XAl field. This follows from these techniques being
able to promote a better comprehension of the model and being able to aid experts to understand and gain insights into the
prognostics process. They can also work in combination with more advanced techniques to provide a more holistic overview
of the model.

In prognostics, pre-model interpretability has been subject to extensive study. For example, PCA is the preferred choice
of several authors in prognostics, such as Zhang et al. [146], Benkedjouh et al. [17], Mosallam et al. [96], Lasheras et al. [78],
and Yongxiang et al. [138] to reduce data dimensionality. A relevant study is that of Lall and Thomas [77], who compared
the utility of PCA and Indendepent Component Analysis (ICA) in capturing the damage evolution of electronic assemblies.
The authors reported that ICA could help discriminate between the before and after failure even though it did not clearly
indicate damage progression. The PCA helped to distinguish between the healthy and failure stage and the variance of the
principal components of the instantaneous frequency of the strain signals allowed to follow failure progression.

Another data exploration technique is t-SNE, a technique proposed by Maaten and Hinton [86], which allows visualizing
high-dimensional data in a two or three-dimensional map. The technique is typically used in PHM [27,56] to help separate
different failure modes. For example, Chen et al. [27] apply the dimension reduction methods of t-SNE, PCA, and Locality
Preserving Projections (LPP) to a PHM dataset related to bearings, with t-SNE achieving the best accuracy of the three
methods. The authors trained classifiers on the features derived from the different visualization techniques and from that
outcome it was possible to estimate accuracy.

2.3. In-model interpretability

The field of in-model interpretability [23] focuses on intrinsically interpretable models. These “transparent” [84] models
naturally, and by design, provide some degree of interpretability. Lipton [84] classifies transparency in three dimensions,
namely simulatability, decomposability, and algorithmic transparency. Simulatability relates to the ability to understand the
entire model. Lipton [84] notes that simulatability is not a direct consequence of the use of a particular model. For example,
and even though models such as linear regression, rule-based systems, and decision trees are typically easier to interpret
[8], in some cases, a compact neural network may be more transparent than the former alternatives. Note that even simple
methods such as linear regression can become very challenging as the number of predictors increases. In expert systems
based on if-then rules, it may not be possible to grasp all the rules and their interactions. Seemingly, decision trees can
become too deep or too broad for graphical visualization and comprehension. Lipton [84]'s second notion of transparency,
decomposability, defines to which degree the user can understand the model components — input data, parameters, and
calculation rules. The third notion of Lipton [84] is algorithmic transparency, which relates to the ability to understand the
inferential process. It is important to consider these three notions when designing “transparent” machine learning models.
We hereafter review some of the approaches proposed to achieve in-model transparency.

In their work, Fellous et al. [39] identifies four classes of approaches to achieve in-model interpretability: 1) hybrid
models, 2) architecturally explainable models, 3) explainable convolutional networks, and 4) models with regularization.
Arrieta et al. [8] review hybridization in XAIL Hybrid models in XAI combine simple and more interpretable models with
more complex models. One modeling trend that is becoming popular is to propose deep formulations of classical machine
learning models. A work of mention is Deep k-Nearest Neighbours (DkNN) by Papernot and McDaniel [99], a hybrid classifier
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that runs the K-Nearest Neighbors (KNN) algorithm on the data learned by each layer of a DNN. In a DKNN, the neighbor
instances can be used as human-interpretable explanations of the prediction.

Another hybrid model is the Deep Weighted Averaging Classifier (DWAC) by Card et al. [22]. The DWAC bases its expla-
nations of predictions on examples or prototypes [70]; presenting the user with the training samples similar to the given
input instance. Deep models are also often combined with probabilistic graphical models as in Deep Kalman filters (DKFs)
by Krishnan et al. [72], conditional random fields as RNNs by Zheng et al. [147], Deep Variational Bayes Filters (DVBFs) by
Karl et al. [68], and Structural Variational Autoencoders (SVAE) by Johnson et al. [67].

Other approaches to hybridization use transparency mechanisms inside the black-box models. Bennetot et al. [18] use,
for instance, a knowledge-base to enhance a neural network. Ensemble techniques have also been used by authors such as
Zhou et al. [148] to create hybrid models that integrate transparent and black-box models. Probabilistic graphical models
are another choice given their interpretability advantages: the learned graphical structures can often reveal relevance-
independence and causal relationships.

A survey of techniques to enrich neural networks with transparency techniques, extract symbolic rules from neural
networks, and utilize ANNs to define rule-based systems is provided by Andrews et al. [7]. Other examples of hybrid models
include Self-Explaining Neural Networks (SENN) by Melis and Jaakkola [90], Contextual Explanation Networks (CEN) by
Al-Shedivat et al. [3], and BagNets by Brendel and Bethge [20].

Architecturally explainable models display architecture adjustments that enhance their interpretability. For example, the
interpretable convolutional network proposed by Zhang et al. [145] is included in this class. The proposed architecture differs
from the conventional convolutional architecture in that a loss function is added to each filter in a convolutional layer, which
results in more meaningful representations. Another contribution of note is that of Alain and Bengio [4], who propose using
linear classifier “probes” to extract information from the intermediate layers of a neural network. The general idea is to use
each layer’s information to fit a linear classifier function and then observe how well the function can predict the output
classes. Joint prediction-explanation models are machine learning models explicitly trained to explain their predictions. An
example of such an approach is the Teaching Explanations for Decisions (TED) framework proposed by Hind et al. [58]. TED’s
underlying idea is to augment the training dataset to include the rationale for the outcome; the explanation is provided
explicitly to the algorithm.

Under model transparency, there are also regularization techniques. Note the difference between architectural change
and regularization techniques. Regularization techniques [73] are specific architectural schemes to reduce overfitting (e.g.,
weight decay, dropout, and data augmentation). Architectural modifications typically entail more complexity, such as a
change of network or altering the model’s structural components. As Zhang et al. [143] note, regularization has its signifi-
cance, however, architectural changes may hold increased interpretability potential.

2.4. Post-model interpretability

In addition to pre-model and in-model interpretability, there is post-model interpretability [23]. Post-model techniques
analyze the model after its creation (post-hoc); they are devised as independent methods that can interpret the final de-
cisions. There approaches can be model-specific or model-agnostic [8]. Post-hoc model-specific interpretability consists of
methods specifically designed for a given machine learning algorithm. In contrast, post-hoc model-agnostic interpretability
is agnostic to the analyzed machine learning model.

Several model-specific studies substitute the original model with a simplified version of it. For example, authors such
as Barakat and Diederich [14], Martens et al. [89], Barakat and Bradley [15] proposed Support Vector Machines (SVM) rule
extraction techniques to enhance the comprehensibility of the model. Assche and Blockeel [9] proposed a method to learn
a single decision tree from an ensemble of decision trees.

Aside from model simplification, there are other research directions in model-specific interpretability. For example,
DeepLIFT is a method proposed by Shrikumar et al. [123] that tries to compute internal neuron importance. The method
inspects deep learning models comparing the activation of a neuron to a “reference activation” and assigns a score to the
neuron contribution accordingly. The “reference activation” corresponds to a default input selected by the designer. Another
post-hoc model-specific technique is Layer-wise Relevance Propagation (LRP) proposed by Bach et al. [12]. The method
produces a heatmap highlighting the pixels responsible for the predicted class in an image classification task.

In addition to LRP, other model-specific visualization techniques have received considerable attention. For example, the
use of Saliency Maps (SM) [124] based on the parameters or gradients of neural networks is common. Saliency maps are
heatmaps that help visualize the importance of different regions of some visual input. Examples of works using these
techniques are by Springenberg et al. [127], Shrikumar et al. [123], Selvaraju et al. [119], Sundararajan et al. [129], Gu
et al. [51], Gu and Tresp [50,49].

A popular post-hoc model-agnostic interpretability approach consists in generating a neighborhood around the instance.
By observing the black-box model’s behavior in this neighborhood, it is possible to characterize the relative importance of
the input variables. Typically, this is done by fitting an interpretable surrogate model (e.g., linear regression) to the new
instances. This kind of approach is model-agnostic [107] as it only requires knowing the black-box model’s output for the
neighbor instances. The focus is on explaining what the model locally depends on instead of learning the full mapping.

Examples of models that follow the model-agnostic approach include Local Interpretable Model-Agnostic Explanations
(LIME) [108] and its variants. The variants of LIME attempt to address its limitations. For example, NormLime proposed by
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Ahern et al. [2] tackles the issue of deriving global interpretability from local explanations. LIME-Aleph by Rabold et al. [105]
combines the Inductive Logic Programming system Aleph with LIME to provide enriched visual and verbal explanations.
GraphLime by Huang et al. [62] is a model-specific (note that the vast majority of LIME approaches are model-agnostic)
LIME approach tailored to graph neural networks.

Some of LIME alternatives address the topic of neighborhood generation. By neighborhood generation, we mean creat-
ing a set of synthetic instances around the instance to explain. These instances serve to train an interpretable local model
from which to extract an explanation. The synthetic instances are classified during the training process utilizing the original
black-box model. A variant that uses clustering techniques to address neighborhood generation is KLIME by Hall et al. [54].
This variant of LIME partitions the training set into K clusters and then fits local models to each cluster. Zafar and Khan [140]
proposed an alternative neighborhood generation scheme to LIME called Deterministic Local Interpretable Model-Agnostic
Explanations (DLIME). In DLIME, instead of random perturbation, a clustering algorithm is combined with K-Nearest Neigh-
bors to discover each instance’s relevant cluster. This method’s advantage is that it provides stable explanations; however,
the quality of the clusters and the local predictions’ accuracy depends on the number of samples in the training dataset.
Shankaranarayana and Runje [120] proposed the autoencoder-based local interpretability model ALIME. The authors use an
autoencoder as data generator and weighting function. Instead of computing the Euclidean distance between generated data
and the instance to be explained, ALIME uses the distance on the latent vector space.

Another popular post-hoc interpretability model is SHAP (SHapley Additive exPlanations) [85]. SHAP works by assigning a
SHAP value [121] to each predictor to indicate its contribution to the final outcome. Lundberg and Lee [85] show that SHAP
provides guarantees of accuracy and stability and that LIME is actually a subset of SHAP lacking those properties. SHAP is
one of the most consistent approaches to post-hoc interpretability [85] and therefore, the method subject to investigation
in this paper. In the next section, we review some of the most important contributions to the field of interpretability in
prognostics.

2.5. Interpretability in prognostics

In prognostics, interpretability methods are starting to be used more extensively. Some authors have proposed model-
transparent methods for prognostics, such as Xie et al. [136], who explain hard disk failure predictions by performing a
series of feature replacement tests to determine failure causes. Keneni et al. [69] propose an explainable model for the
decisions of an Unmanned Aerial Vehicle (UAV). The explainable model is based on the Sugeno-type fuzzy inference. Other
authors, such as Amruthnath and Gupta [6], perform fault diagnosis using factor analysis classical techniques. In the work of
Amruthnath and Gupta [6], Gaussian mixture clustering is used to partition the data into significant groups, and spectrum
analysis to diagnose each cluster to a specific state of the machine. The significant features are identified with a random
forest classification scheme.

Recently, Lee et al. [80] proposed an explainable deep learning approach to estimate the remaining useful lives of ro-
tating machinery. The model first learns high-level features using an autoencoder. The features are used as input to a
feedforward neural network to estimate the remaining useful life. Octave-band filtering simplifies the model and improves
its interpretability.

Regarding post-hoc XAl modeling in prognostics, there are a few important contributions. For example, in the work of
Zeldam [141], the authors work with sensor data extracted from a 2.4L diesel engine. LIME is used to identify the critical
sensors concerning anomaly detection. Seemingly, LIME is utilized by Madhikermi et al. [87] to explain fault detection in
the heat recovery of an air handling unit.

A comparative study of interpretability techniques in prognostics that includes SHAP and LIME is by Jalali et al. [65]. This
work differs from our own in that we do not compare different interpretability methods from XAI but instead we compare
SHAP performance against classical pre-interpretability methods from prognostics. More specifically, we aim to investigate
the relationship between SHAP values and the metrics of monotonicity, trendability, and prognosability [32].

Despite the importance of these contributions, there is still considerable work to be done in the field of eXplainable
prognostics. XAl could help answer pressing industrial questions of data-driven prognostics models such as “why is the
model giving this prediction”, “which sensor is triggering the next failure” or also importantly “can a given model prediction
be trusted”. With this work we aim not only to analyze the SHAP modeling approach but also to motivate other researchers
to investigate the previously reviewed methods and how to apply them to the black-box models of PHM.

3. Approach

In this paper, we correlate three popular prognostics metrics of predictor importance with the SHAP values. We start by
describing the utilized prognostics metrics. We briefly review SHAP, the XAl method used in this work. We then describe
the denoising solution used and the three data-driven models studied in the paper.
3.1. Prognostics feature selection metrics

Metrics such as monotonicity, trendability, and prognosability are often used in Prognostics and Health Management
(PHM) applications [81] to compare potential predictors. Nevertheless, different authors often use distinct methods to com-

pute these evaluation indicators [81]. In this work, we adopt the definitions and formalization proposed by Coble and
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Hines [32]. Extensive work has been done in PHM [32,31,33,98,109] based on the concepts proposed by these authors. We
hereafter explain each metric in detail.

Monotonicity characterizes the increasing or decreasing trend of a predictor. Formally, the monotonicity of a predictor
(feature) is defined as

J
o xj(k+ 1) —x;(k))
monotonicity = — 1
= 2 = o
] 11 k=1

where:
M = number of units
N; = number of measurements of a feature on unit j
Xj = vector of measurements of a feature on unit j
xj(k+ 1) = a measurement of a feature of unit j at time k41

xj(k) = a measurement of a feature of unit j at time k
sgn sign function

With this metric we measure the degree of monotonicity of a signal. In PHM, if a predictor shows an obvious increasing or
decreasing trend over time, more accurate Remaining Useful Life (RUL) prediction results are expected. The monotonicity is
in the range [0, 1]. A monotonicity of 1 means that the feature is strictly monotonic, whereas a monotonicity of zero means
the feature has the least possible monotonicity and it is usually a non-desirable predictor for PHM applications.

Trendability measures the extent to which the predictor displays the same shape across a group of units. It is a measure
of similarity between all the damage trajectories of the population of units. The metric of trendability is devised for run-to-
failure data. Formally, the trendability of a predictor (feature) is defined as

trendability = mikn ]corr(xj, jk=1,....M (2)
J,
where:
M = number of units
Xj = vector of measurements of a feature on unit j
Xk = vector of measurements of a feature on unit k
corr = Pearson correlation function

When x; and x; have different lengths we (linearly) interpolate the smallest vector to match the length of the longer vector.
The linear interpolation between two points (xg, ¥o) and (x1, y1) is given by the formula

V= Yo+ (x— x) — Yo yo(Xl —X) + y1(x — Xp) 3)
— X0 X1 —Xo

The trendability metric is in the range [0, 1] and, as the monotonicity metric, it is positively correlated with the importance
of the predictor. This metric measures how much the signals of different units resemble one another.

Prognosability measures the variance of a predictor at the End of Life (EoL) for the set of units. Formally, the prognosability
of a predictor (feature) is defined as

stdi(xi(Nj
prognosability =exp | — J (& (Nj)) "
mean;j[x;(1) —x;(N;)|
where:
M = number of units
J = index of unit (j=1,..., M)

N; = number of measurements of a feature on unit j
Xj vector of me