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ABSTRACT 
 

We report on the preliminary results of an Adaline neural method for the 
coupling of a custom CMOS wavefront sensor to a micromachined 
adaptive mirror. The algorithm does not rely on a fixed basis matrix -as 
opposed to traditional methods-, offers excellent immunity to round-off 
errors and admits real-time input adaptability to speed up computations. 

 
 

INTRODUCTION 
 
There has been an increasing demand for precision in the detection and correction of 
aberrations in optical systems, so that the maximization of quality parameters (e.g.: 
sharpness, power, uniformity) is achieved. These systems encompass telescopes, 
microscopes, the human eye and many others in industry, science and medicine.  
 
The whole detection and correction process is based on the concept of a wavefront, 
whose profile is affected by its propagation media (e.g.: cornea, atmospheric layers, 
lenses, etc). Detection and correction of wavefront aberrations, and consequently of the 
chief optical system, are achieved by a secondary optical system consisting basically of a 
wavefront sensor and an adaptive mirror. The coupling of these elements is usually 
performed by a control algorithm based on matrix algebra, where a fixed and necessarily 
invertible basis matrix stores the sensor responses to basic mirror modes. In this paper we 
present the preliminary results of a simple Adaline neural method both for the diagnosis 
of a wavefront aberration and for the control algorithm for an adaptive optical system (1). 
 
 

WAVEFRONT RECONSTRUCTION PRINCIPLES 
 
A wavefront is a hypothetical surface representing the points with equal phase in a beam. 
A flat wavefront is therefore a plane perpendicular to the direction of propagation of a 
collimated and monochromatic beam and limited by the beam diameter. If this flat 
wavefront traverses a homogeneous and isotropic transparent optical component with a 
given profile, for instance the human cornea, it adopts its shape with amplitude multiplied 
by the factor (n-1), where n is the index of refraction of the component. 
 
In the Hartmann wavefront sensing method, the probing laser beam impinges on an 
opaque mask with a number of sub-apertures. The beam is sampled as N sub-beams, 
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which propagate a small distance (usually from 1 to 10cm) towards an observation 
screen. Assuming Fresnel diffraction does not impart too much power divergence from 
mask to screen and that the wavefront is flat, then, the resulting spots will unmistakenly 
reproduce on the screen the sub-aperture grid present on the mask. Distortions on the 
wavefront result in the departure of the light spots from the initial grid. Recording the x 
and y displacements of the spots from the (i,j) grid points, one can geometrically calculate 
the respective (i,j) wavefront slopes and therefore reconstruct the initial wavefront. 
 
The reconstruction of a wavefront from a set of displacements basically means solving a 
system of linear equations, which is conveniently tackled by a matrix equation in the 
form s = B c. In modal reconstruction, B is an Lx2N basis matrix that contains the x and y 
displacements, at the N sub-aperture grid points, corresponding to L linearly independent 
optical functions (tip, tilt, defocus, astigmatism, spherical aberration, coma, trefoil, etc), 
which are usually Zernike polynomials (2). Vector s contains the N  x and y 
displacements for an arbitrary wavefront, and c is a vector of L coefficients (weights to 
the optical functions). 
 
In practice, since s is usually dimensionally larger than c, the system is overdetermined 
and the conventional least-squares method works to minimize the error between the left 
and right-hand sides of the above matrix equation. The convergence of this method 
requires that matrix B be neither singular nor nearly singular, which might be undermined 
by round-off errors during computations. Although robust concurrent methods are 
available (iterative methods and SVD), they still rely on a fixed basis matrix and do not 
offer the real-time adaptability an Adaline neural method does. 
 
A test wavefront ΞW can be represented on a native basis, for instance, Zernike 
polynomials Zi  ():  
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The sensor signals, associated with the test wavefront, yield a reconstructed wavefront ΞR 
that can be decomposed on a reconstruction basis with L functions and their respective λi 
coefficients, as in Equation [2]. The reconstruction order L is dictated mostly by the 
sensor geometry and noise. 
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In some cases, the weighted sum truncated to the first L terms might suffice for the 
wavefront reconstruction, as in ophthalmology where wavefront aberrations in the human 
eye have been observed to be substantial only to the first 14th Zernike orders. 
 
 

WAVEFRONT DIAGNOSIS WITH AN ADALINE NEURAL METHOD 
 

For the diagnosis of test wavefronts, the algorithm receives as inputs the reconstruction 
basis, consisting of L=14 Zernike functions. It outputs a weighted sum ΞR that is 
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compared to the test wavefront ΞW at each grid coordinate (ρ and θ). Then, the mean-
square error (mse) of the resulting residual matrix ΞW – ΞR serves as feedback to the 
neural net. Each internal iteration (epoch) adjusts the 14 nodal weights (λi) towards mse 
minimization. The internal algorithm step, ruling the gradient decrease on a hyper-
parabolic surface, is set consecutively as η=0.1 and η=0.01. The stop parameters are 
mse≤1e-6 and epochsmax=1000. Figure 1 illustrates the Adaline topology. The ultimate 
weights indicate the best coefficients (λi) to the respective Zernike terms in order to 
reconstruct the test wavefront. Data permutation in this algorithm prevents that it stacks 
at pseudo-minimum error levels. 
 

 
Figure 1: Adaline neural method topology. 

 
 
We executed the algorithm for six different test wavefronts, represented as a weighted 
sum to the kth order, where the conditions are described below. The purpose of each test 
is indicated within parentheses. 
 
test 1 - k=L, Ci=1 for i=0,...,13 (direct matching); 
test 2 - k<L, C0=1, Ci=0 for i≠0 (residual cross-coupling); 
test 3 - k<L, Ci=1 for i=0,2,4,5 and Ci=0.1 for i≠0,2,4,5 (classification ability and 

residual error for a highly asymmetric wavefront); 
test 4 - k>L, Ci=1 for i<14 and Ci=0.1 for i=14 (aliasing with one additional Zernike 

term); 
test 5 - k>L, Ci=1 for i<14 and Ci=0.1 for i=14,...,16 (aliasing with three additional 

Zernike terms); 
test 6 - k>L, Ci=1 for i<14 and Ci=0.1 for i=14,...,19 (aliasing with six additional 

Zernike terms). 
 
For each test we registered the number of epochs and respective mse achieved. The rms 
wavefront error is the normalized error to the maximum amplitude. The results are 
presented in Table 1. 
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Table 1: Test results with the Adaline neural method 

η=0.1 η=0.01 η =0.1 η =0.01 # Epoch 
mse rms mse rms 

1 1 2.6e-14 1.2e-7 6.2e-11 3.7e-6 
2 1 2.3e-14 1.3e-7 8.2e-7 9.0e-4 
3 1 9.5e-14 1.7e-7 6.6e-7 7.8e-4 

1 1.1e-3 3.5e-2 9.0e-4 3.1e-2 4 1e3 8.4e-4 3.2e-2 8.6e-4 2.9e-2 
1 3.8e-3 5.9e-2 2.2e-3 4.9e-2 5 1e3 2.8e-3 6.0e-2 2.3e-3 4.7e-2 
1 6.4e-3 7.6e-2 4.5e-3 6.3e-2 6 1e3 6.6e-3 7.5e-2 4.3e-3 6.2e-2 

 
 
Tests 1 through 3 indicate that a single epoch is sufficient to achieve minimum error 
provided that the test wavefront can be completely described by the set of reconstruction 
functions (k≤L). 
 
Tests 4 through 6 reveal that higher spatial frequency terms (k>L) must be somehow 
described by a restricted range of Zernike terms, resulting in an increase in aliasing and in 
a worse minimum error as more high-order terms are added. The aliasing error decreases 
for η=0.01 and remains practically unaltered regardless the number of epochs used. This 
derives from the fact that the algorithm was set to operate with a fixed number of inputs 
throughout the tests. The algorithm can be easily extended to include dynamic 
adaptability, where the number of Zernike reconstruction functions L can be changed 
between epochs depending on the mse convergence rate. 
 
 

THE ADAPTIVE OPTICAL SYSTEM 
 
The Adaptive Optical (AO) system was set up as shown in Figure 2. The laser beam (12-
mm diameter, He-Ne, λ=632.8nm) traverses the aberration plane (AB), impinges on the 
mirror and is reflected towards a beam-splitter that divides the beam between the custom 
CMOS wavefront sensor and a conventional CCD-based wavefront sensor. The planes of 
the mirror and the sensors are optically conjugated to the aberration plane by means of 
two relay-lens systems. 
 
The mirror is a 15-mm micromachined membrane deformable mirror (MMDM), Flexible 
Optical B.V., with 37 channels and electrostatic actuation. The membrane is kept at a bias 
position by maintaining an offset voltage of ~160V at all actuators with respect to the 
grounded membrane. The channel voltage can reach up to 250V and the maximum mirror 
stroke is 8μm.  
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Figure 2: Adaptive Optical system. 

 
The custom wavefront sensor consists of an opaque mask (Hartmann mask) with sixteen 
450μm circular sub-apertures laid on a regular square array with 1000μm pitch. The mask 
is positioned at 8.3cm away from a CMOS chip with a corresponding array of quad-cells 
(QCs) 600μm wide (3). Each pixel in a QC is passive and based on a double-junction 
structure (p+/n-well/p-epi). The spot intensity profile, centered on the QC, is shown in  
 along with the QC response to spot displacements over its area. The 64 pixels are 
selected by an internal multiplexer and their signals are prompted at four parallel output 
lines. The custom chip outperforms an off-the-shelf camera in operational speed because 
it delivers signals directly proportional do the x and y displacements, circumventing the 
need for image processing. 
 
The quad-cell response is clearly non-linear and can be closely fit with a sigmoidal curve. 
Although it is not detrimental to wavefront accuracy, upon calibration, linearization of 
this curve could speed up the numerical routines that relate the sensed signal to true 
displacements.  
 
The data-acquisition card is a custom ethernet board, Lynx Ltda., from which we used 4 
locked digital outputs and 4 analog inputs with 12-bit resolution. Sensor signals are 
communicated to the computer (Pentium IV, 2.4GHz) via a UDP protocol. The sensor 
was readout at a frequency of 1kHz. 
 
The conventional CCD-based sensor was used to monitor the test aberrations statically 
with FrontSurfer, a wavefront analysis software distributed by Flexible Optical B.V. The 
camera sensor is a low-light monochromatic CCD that captures the image of a Hartmann 
mask with a 6th -order hexagonal array with 91 sub-apertures, where each is 350μm in 
diameter. The mask is placed at 1.3cm from the camera. 
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Figure 3: Spot intensity profile at 8.3cm from the mask superimposed on the quad-cell 

response to displacements in the x direction. 
 
 

CONTROL OF THE DEFORMABLE MIRROR 
 
A mirror mode, or influence function, is the shape the membrane assumes when an 
incremental voltage step is applied to a single mirror electrode (actuator). For the mirror 
we used, there are thus 37 modes, each imparting a characteristic set of spot 
displacements on the CMOS wavefront sensor. We can consider the wavefront reflected 
from a biased membrane to be the reference wavefront, itself responsible for a set of x 
and y displacements marking reference positions. 
 
To cancel out any aberration introduced at plane AB, the mirror membrane must assume 
a shape that reproduces that distortion with twice as low amplitude to account for a phase 
path twice as large upon reflection (4). An aberrated wavefront reflected from a 
counterbalanced membrane incidently means the center of gravity of every light spot is 
driven back to its reference position. Therefore, from the control point of view, 
restoration can be achieved by identifying mirror shapes that minimize spot departures 
from their original grid.  
 
The Adaline neural method used for Zernike terms has been modified to attend to this 
system. The topology remains basically the same, but the input reconstruction functions 
have been substituted with the sensor responses to the 37 mirror modes Mi. Each mode 
corresponds to a vector with 32 elements representing sixteen x and y displacements. The 
algorithm delivers an output vector D, as a weighted sum of the basis vectors, in an 
attempt to minimize the error to a sample vector Dd associated with the aberrated 
wavefront ΞW. The weights wi (i=0,...,36) are related to the voltages to be applied to the 
mirror actuators. Refer to Figure 4 for the adapted Adaline topology. 
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Figure 4: Adaline topology for an Adaptive Optical system 

 
 

PERFORMANCE OF THE ADALINE ALGORITHM 
 
We introduced centered defocus with amplitude of 36μm (> 55λ) as the aberration. This 
value is far beyond the working stroke of the mirror membrane and is only intended to 
evaluate the convergence ability of the algorithm. This aberration exploits the spatial 
dynamic range of the quad-cells because it forces the outer spots to the edge of their 
respective QCs. The Adaline parameter mse indicates how close the solution is to the 
reference grid as a function of the number of epochs. The positional resolution rmsP 
normalized to displacements from -1 to 1 is related to mse as indicated in Equation [3]. 
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where N is the number of quad-cells in the wavefront sensor and M is the number of 
mirror modes. Figure 5 presents how the normalized positional error evolves with the 
number of epochs. For all epochs the error is well under 1%. 
 
Next we introduced a milder aberration with amplitude λ/2 (Figure 6) to check the 
algorithm convergence. 
 
When the neural algorithm starts with unity weights it takes a single epoch to reach an 
acceptable solution, i.e. a wavefront match better than λ/50. After ~80s and 1.5M epochs 
the mse reaches 0.00017 (rmsp < 3e-3, wavefront match better than λ/5000). 
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Figure 5: Mean-square error (mse) as a function of the number of epochs for an extreme 

situation in which the amplitude of the wavefront aberration imparts maximum detectable 
spot displacements. 

 

 
Figure 6: Profile of the mild aberration introduced, which contains mostly coma, 

astigmatism, trefoil and spherical aberration. 
 
In practice, dynamic distortions of a given wavefront occur smoothly and the Adaline 
weights oscillate within a somewhat limited range. By modifying the wavefront only 
slightly (~ λ/16 rms) we registered the algorithm convergence in a single epoch to 
mse=0.0018 (accuracy ~ λ/1000), in 200μs. Figure 7 shows the residual aberration 
introduced. 
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Figure 7: Residual aberration introduced to the system. 

 
As the sensor has been read at 1kHz (1ms) and all software routines take less than 400μs, 
the system has potential to be operated at rates higher than 600~Hz. 
 
To test the effect of one iteration of the AO system, we aimed at partially compensating 
the aberration in Figure 6 by applying a voltage to the mirror proportional to the weights 
that correspond to mse=0.0018. The resulting spots displacements are kept within ~10% 
of the reference grid, which corresponds to approximately λ/5. This indicates that a single 
iteration already complies with the wavefront accuracy of λ/4 usually used as a rough 
estimate of quality in conventional optical shop tests (5). The rate of accuracy 
improvement with increasing iterations is yet to be investigated. To improve the accuracy 
we need to employ a more accurate reference wavefront (6) and a larger number of quad-
cells, which might lower the system operational frequency.  
 
 

CONCLUSIONS 
 
The use of a simple Adaline neural method for the reconstruction of a wavefront based on 
the optical sensor signals proves effective and renders an error negligible compared to the 
system errors. It is rather immune to round-off errors and handles aliasing acceptably. An 
adaptive mirror can be controlled more directly from the sensor signals through a slight 
modification to the neural algorithm. A single iteration of the adaptive optical system, fed 
by coefficients delivered by the neural net, yielded an rms wavefront divergence from 
reference better than λ/4. These results indicate that further iterations are bound to 
improve accuracy even more. The algorithm is suitable for real-time system operation, 
requires no extensive training and is receptive to dynamic adaptability of the input 
functions. 
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