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A B S T R A C T

Impurity in transparent-bottled liquid is a serious production accident in the field of beverage and medicine
industry. However, the existing detection systems are difficult to distinguish impurities with dynamic inter-
ference (bubbles and stains) and detect impurities located at the edge of the bottle. In order to solve the problems
stated above, a new machine vision system for detecting tiny and dynamic impurities is proposed in this paper.
In the system, circularity calculation, longitudinal frame-difference method, orthogonal-axis inspection and K-
Nearest Neighbor (KNN) machine learning algorithm are combined together to realize the automatic and real-
time detection. Experimental results demonstrate that, after completing machine learning, the weighted error of
the proposed system for detecting impurities can be effectively controlled at about 0.9% even in dynamic in-
terference environment, which is great significance to safety production in beverage and medicine industry.

1. Introduction

Beverage and medicine industry is an important part of industrial
production. Transparent-bottled liquid accounts for a great proportion
in the whole products of beverage and medicine industry [1]. In the
process of liquid production, inevitably, some transparent-bottled li-
quid may include impurities, such as floc (indicating that the liquid has
gone bad), residue (indicating a filtration system error) and glass
fragment (directly damaging the human body). Therefore, detection of
impurities is of great significance for production safety in beverage and
medicine industry.

However, impurity detection is mainly based on manual-visual in-
spection traditionally, which is time-consuming and inefficient.
Especially in the situation of long working hours (about 2 h), serious
discomfort with visual deterioration and impaired concentration may
occur to inspectors, which overwhelmingly damages the quality of
impurity inspection and the health of workers. With the development of
automatic detection technologies, a series of automatic inspection sys-
tems have been proposed based on High Performance Liquid
Chromatography (HPLC) by researchers [2–4], which have a satisfac-
tory performance. However, the HPLC systems are difficult to realize
real-time impurity detection of products on assembly line.

Because of the advantages of stability, accuracy and cheapness

[5–9], machine vision has become one of the development tendencies
for impurity detection, and a great many of detection systems have been
proposed. Huang, Li, Wang, et al., have proposed a least squares fil-
tering detection system [10], which uses least squares filtering algo-
rithm to obtain low noise images, and take the closed pattern in the
image as impurity. Huang, Ma, Lv, et al., have proposed a fuzzy least
squares support vector machine system [11], which uses fuzzy least
squares support vector machine to recognize the impurities which are
similar with bubbles. However, the least squares filtering detection
system is hard to distinguish impurities and dynamic bubbles, and fuzzy
least squares support vector machine system may misjudge the stains on
the surface of bottle as impurities. Besides, impurities at the edge of
bottles (the impurity images may become deformed) is difficult to be
recognized in the existing impurity detection systems.

In this paper, a new real-time detection system for impurities in
transparent-bottled liquid is proposed based on machine vision. The
system combines technologies such as circularity calculation, long-
itudinal frame-difference method, orthogonal-axis inspection and K-
Nearest Neighbor (KNN) machine learning algorithm to solve the pro-
blems in existing detection systems.

1. The orthogonal-axis inspection method uses two CCD cameras, the
optical axes of which are configured to be orthogonal so that at least
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one camera captures the undeformed image of impurity at the same
time.

2. The circularity calculation calculates the circularity of every closed
pattern, which is able to separate tiny impurities from bubbles.

3. The longitudinal frame-difference operation identifies all objects
that have longitudinal motion components, which is responsible for
distinguishing impurities and stains on the surface of bottles.

4. By contrasting with the database, K-Nearest Neighbor (KNN) ma-
chine learning algorithm determines whether there is any impurity
in the detected sample, which can improve adaptability of the
system in complex detection environment.

On the experimental platform in the laboratory, massive experi-
ments are carried out to test the impurity detection effectiveness of the
system. Experimental results demonstrate that, after completing ma-
chine learning, the weighted error of the designed system for detecting
impurities with dynamic interference is about 0.9%.

In this paper, Section 2 describes the principle of digital image
processing method (circularity calculation, longitudinal frame-differ-
ence method and orthogonal-axis inspection) used in the system. Sec-
tion 3 represents the mathematical model of KNN machine learning
algorithm and the effect of this algorithm. Section 4 illustrates the
structure and detection process. Sections 5 and 6 individually display
experimental scheme & results and conclusion.

2. Visual recognition method

In the actual detection environment, the kinestate of detected
samples can be divided into two stages–rotation and translation. In the
process of rotation, the samples rotate 180 degrees quickly in vertical
direction, which stirs the impurities contained in the samples and im-
proves the accuracy of impurities identification. However, a large
number of bubbles may appear in the liquid when the impurities are
stirred. In the process of translation, samples are measured horizontally
in constant speed, yet stains on the surface of samples may be mis-
judged as impurities. Besides, impurities at the edge of bottles are really
difficult to be detected because of the deformation of them. In this
paper, the digital image processing method of the designed system can
filter out above interference effectively.

2.1. Circularity calculation

Circularity calculation is able to realize separation of impurities and
stains from bubbles in the field of morphology [12–15]. Impurities in
bottled liquid are mainly composed of flocs, glass ballast and food
debris, meanwhile the stains attached to the surface of samples are
mainly composed of glue marks, glass cracks and dust. The common-
ness of above impurities and stains is that they are all irregular shapes
in the detection images. By contrast, bubbles in detection images are
regular circles because of the minimal volume. The different morpho-
logical features of impurities/stains and bubbles are shown in the Fig. 1.
In this paper, the calculated circularity is used as a reference standard
to distinguish impurities/stains and bubbles in the process of detecting
impurity.

The formula of calculating circularity is shown as follows.

=C πA
P

4
2 (1)

In formula, C is the circularity of geometric figures, A is the area of
geometric figures, and P is the perimeter of geometric figures.

The laboratory has received about 50 random impurity samples (the
impurity samples and the qualified samples each account for half)
provided by the cooperative enterprise and measured the circularity of
impurities and bubbles successively. The measuring results show that
the circularity of most impurities and stains is within the range of
0.1–0.5, meanwhile the circularity of subtotal bubbles is within the

range of 1.0–1.3. The circularity difference of impurities and bubbles is
shown in Fig. 2.

Based on the above principle, circularity calculation method can
effectively avoid error detection in case of impurities mixing with a
large number of bubbles. Circularity and area from circularity calcu-
lation are involved in machine learning as important parameters.

2.2. Longitudinal frame-difference algorithm

Longitudinal frame-difference algorithm realizes separation of im-
purities and stains on the surface of bottles in the field of kinematics.
Transparent bottles on assembly lines are occasionally scratched and
stained. Most stains attached to the surface of bottles are hardly to be
distinguished from impurities only based on their morphological
characteristics.

Different from the traditional frame-difference method, this paper
merely detects objects with longitudinal motion component by frame-
difference operation.

The formula of longitudinal frame-difference method is as follows.

= −T k A k B k( ) ( ) ( ) (2)

In this formula, A(k) and B(k) are longitudinal location-component
vectors of objects conforming circularity constraints in two consecutive-
detected images. T(k) is longitudinal motion-component vectors of
objects, which conforming circularity constraints. And T(k) is involved
in machine learning as an important parameter.

2.3. Orthogonal vision inspection

After overturning of bottle, impurities may be anywhere in bottles
and move irregularly with liquid. Once they are excessively close to the
side of glass bottles, they may become deformed or even disappeared in
detection images because of the refraction and reflection of light.

Therefore, an orthogonal vision inspection method is proposed. The
optical axes of two HR CCD cameras are arranged orthogonally. The
main CCD camera is responsible for shooting the side of glass bottles;
meanwhile, the auxiliary CCD camera is responsible for shooting the
other side of glass bottles. The impurities missed by the main CCD
camera can be captured by the auxiliary CCD camera. In Fig. 3, the
image of main camera does not contain any impurity, however, there is
an obvious impurity in the image of auxiliary camera, which can ef-
fectively avoid the vision blind area of the main camera.

Specifically, as shown in Fig. 4, the two HR CCD cameras are im-
mobilized at the side of samples, whose optical axes are orthogonal to
each other. The edge positions of samples captured by main camera are
at the central positions in camera B. The orthogonal vision inspection
guarantees that at least one CCD camera obtains images of the un-
deformed impurities, thus the problem of deformed impurity recogni-
tion can be solved effectively.

3. Machine learning based on K-Nearest Neighbor

Traditionally, the detection systems realize the identification of
impurities by artificially determining the threshold of sensitive para-
meters. However, the threshold segmentation method is too subjective
to adapt to complex detection environment (parameters such as illu-
mination, shape of samples, and movement state of samples vary all the
time). Subsequently, some dynamic adjustment algorithms were pro-
posed for determining the threshold. Yet a single-deterministic
threshold is unable to satisfy the increasing accuracy requirement of
detection systems. Therefore, the K-Nearest Neighbor (KNN) machine
learning algorithm is adopted to discriminate impurities because of its
satisfactory parameter clustering performance [16–19].

Identifying impurities requires three key parameters: circularity,
area and longitudinal motion component. Each parameter can form a
parameter vector independently. Because the parameters are
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independent of each other, thus the three parameter-vectors can be
orthogonal to each other for forming a three-dimensional parameter-
space. In the process of machine learning, the training-samples are ar-
ranged according to the method of impurity/non-impurity. Every de-
tected training samples can extract three parameter-coordinates, thus
every sample can have a unique-determined position in the parameter-

space. The aggregation condition of every key parameter is shown in
the Fig. 5. In Fig. 5, there are three aggregation regions in the para-
meter space, which respectively indicate impurities (low circularity,
small area and high longitudinal displacement), bubbles (high circu-
larity, small area and high longitudinal displacement), and stains on the
surface of transparent bubbles (low circularity, big area, and low
longitudinal displacement). Through extensive samples training, three

Fig. 1. The different morphological features of (a) impurities, (b) stains and (c) bubbles.

Fig. 2. The circularity difference of (a) impurities and (b) bubbles.

Fig. 3. Effect of orthogonal vision inspection image of (a) main CCD camera and (b) auxiliary CCD camera.

Fig. 4. Diagram of orthogonal vision inspection.
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aggregation regions are increasingly apparent within the parameter-
space. After machine learning, the standard of judging impurities can be
determined by the correlation between the parameter-coordinate of
samples and the aggregation regions.

Concretely, the correlation between the parameter-coordinate of
samples and the aggregation regions is the distance between new
sample parameter-coordinates and the geometric center of the ag-
gregation domain regions. The geometric center is determined by K-
means clustering algorithm [20–22]. The detailed description of the K-
mean algorithm is as follows.

1. In the parameter space, the existing sample parameter coordinates
are … ∈a a a a R{ , , , },n i1 2

3. From KNN algorithm, exactly, there are 3
aggregation regions (clusters) in the parameter space. Therefore, 3
cluster centroids are randomly selected (In principle, selecting ex-
isting parameter points), which are {μ1, μ2, μ3}, μi∈ R3.

2. {c1, c2, c3} are 3 clusters in the parameter space, indicating impurity,
bubble and stain. The formula for determining which cluster the
sample parameter- coordinate belongs to is shown as follows.

≔ −c min
j a μarg ‖ ‖i i j

2
(3)

According to the existing clusters, the formula for determining new
cluster centroid is shown as follows.

=
∑ =
∑ =

=

=
μ

c j a
c j

1{ }
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i
m

i i

i
m

i

1

1 (4)

The new cluster centroids can gradually converge to actual cen-
troids with the process of persistently repeating formula (3) and (4). It
is worth noting that, in the process of impurity detection, new sample
parameters are continually added to the clusters. The new added
sample may cause movement of the original cluster centroids. The
formula for calculating new cluster centroid after adding new sample is
shown as follows.
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(5)

B(x, y, z) is the original centroid, and B1(x1, y1, z1) is the new sample
parameter. N is the existing sample size. B2(x2, y2, z2) is the new cluster
centroid.

With the increasing number of sample size of clusters, the detection
accuracy of KNN machine learning algorithm is constantly improved.
Experimental result shows that the KNN machine learning algorithm
completely eliminates subjective interference in impurity detection,
and it is able to adapt to a variety of complex detecting environment.

4. System design

Design of the impurity detection system can be divided into two
parts: hardware and process.

4.1. Hardware design

The system is composed of three parts: image acquisition subsystem,
impurities detection subsystem, alarm and control subsystem. The
image acquisition subsystem consists of large area light source (MIN-
DVISION, 500mm ∗ 300mm), infrared trigger switch, and HR (high
resolution) CCD camera (IMAGINGSOURCE, 10 million pixels). The
impurities detection subsystem consists of IPC (industrial personal
computer, I7 7700HQ, 8G memory) and central monitor (DELL). The
alarm and control subsystem consists of PLC (SIEMENS, S7-200) and
ejecting mechanical device (MTSCITECH). The image acquisition sub-
system is installed on both sides of assembly lines; meanwhile, the
alarm and control subsystem is installed at the downstream position of
the image acquisition subsystem. The IPC is installed in the central
control room which is adjacent to the production workshop. The in-
stallation of system is shown in Fig. 6.

4.2. System process

The large area light source provides adequate illumination for glass
bottles and highlights the characteristics of impurities. The CCD cam-
eras are responsible for capturing impurities in bottled liquid images
when receiving rigger signal from infrared trigger switch. Subsequently,
the HR CCD camera transmits impurities images to IPC. After receiving
impurities images, IPC judges whether there are impurities in detected
glass bottles based on the correlation between the sample parameter

Fig. 5. Three aggregation regions in the parameter space.
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Fig. 6. Installation of the whole system.

Fig. 7. Structure diagram of the whole system.
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and the aggregation regions in database, and adds sample parameters to
the database. Meanwhile, IPC displays detection results on the central
monitor in real time. The alarm and control subsystem takes ejection or
hold operation to detected glass bottle based on control signal from IPC.
The structure diagram of whole system is shown in Fig. 7.

5. Experiments

Experiments are carried out to test and verify the performance of
designed system. The testing platform is shown in Fig. 8. The experi-
mental design, results and limitation analysis are described as follows.

5.1. Experimental design and results

In order to simulate the actual assembly line as much as possible, a
sample carrier platform (turntable) is set up in the laboratory, which
can achieve all the basic actions of the assembly line. There are 6
sample brackets on the sample carrier and brackets are numbered from
No. 1 to No. 6 successively. The No. 1, No. 3 and No. 5 brackets are
installed impurity samples, the No. 2, No. 4 and No. 6 brackets are
installed qualified samples, and almost every sample contains bubbles
and stains. In the process of experiment, existence of minimal prob-
ability, the detection system may misjudge the qualified samples as
impurity samples (vice versa). Therefore, the designed experiment will

focus on measuring the error of each sample individually and the above
error is used as the core reference index to evaluate the performance of
the designed system. In addition, because samples on the turntable are
difficult to be ejected by mechanical device, thus the ejection me-
chanical device is replaced by a warning light in the experiment.

Before the test begins, the IPC invokes the large area light source,
HR CCD camera, infrared trigger switch and returns self-inspection
report. After confirmation, the assembly line starts and the whole
system detects every glass bottles which across the trigger switch.
According to the result of impurity recognition, the alarm and control
subsystem judges whether the alarm is triggered and the detected glass
bottles containing impurities are ejected. The experimental flow chart is
shown in Fig. 9.

The performance of the designed impurity detection system with
machine learning is validated by the contrast experiments between LID
(Liquid Impurity Detection) and LIDML (Liquid Impurity Detection with
Machine Learning). The LID experiment and the LIDML experiment are
independently in progress and the samples arrangement of the above
two experiments is exactly the same. In each experiment, the system
individually carries out 1000 times detection for samples in each
bracket and compare the detection results (the times of each sample
determined as impurity or qualification) with the presupposed ar-
rangement of samples (the No. 1, No. 3 and No. 5 brackets are installed
impurity samples, the No. 2, No. 4 and No. 6 brackets are installed
qualified samples). After the last experiment, new samples are installed
according to the presupposed arrangement and repeat the experiment
(aggregately conducting 6 times repeated experiments), which aims to
validate accuracy and stability of the detection system. The experi-
mental results of LID are shown in Table 1 and the experimental results
of LIDML are shown in Table 2.

The experimental results show that with the support of machine
learning algorithm, not only the overall detection error has declined
obviously, but also the stability of the detection results has significantly
increased. Concretely, the weighted detection error and the weighted
standard variance of the LIDML experiment (0.901% and 0.097%) are
much lower than that of the LID experiment (2.772% and 0.409%). In
addition, the maximum speed of the sample carrier in laboratory is 11
samples/s (39,600 samples per hour). The minimum exposure time of
the industrial CCD (type: MV-GE1000M-T) is about 2.5 ms. The
minimum time of analyzing a sample by IPC is about 150ms (in the
case of the industrial camera resolution ratio is adjusted to 2 million
pixels). In theory, the highest detection speed of samples in the la-
boratory can reach to 24,000 samples per hour. However, maximum
working speed of the ejection device designed by the cooperative en-
terprise can only reach to 10,000–12,000 samples per hour. Therefore,
with a comprehensive analysis of the above detection conditions, the
experiments we have conducted were carried out at the speed limit of
12,000 samples per hour. The impurity detection speed of the designed
system is far greater than the traditional manual detection (3000–4000

Fig. 8. The testing platform.

Fig. 9. The experimental flow chart.
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per hour) and the most automated detection systems (under 10,000
samples per hour). Meanwhile, with the continuous technology devel-
opment of the sample ejection device, impurity detection speed of the
designed system still has a large room for improvement.

5.2. Limitation analysis

With the support of machine learning algorithm, the weight detec-
tion error of the designed system is about 0.9%. However, the impurity
detection error is stable at about 1.5%. The cause of the impurity de-
tection error is much higher than the weighted error can be attributed
to the phenomenon of impurities at the bottleneck of samples. Because

of obvious material change at the bottleneck of samples, light may re-
fract seriously when passing through the bottleneck. The image of im-
purity at the bottleneck deformed severely at the same time. It is worth
noting that the orthogonal-axis inspection is difficult to eliminate such
deformation. The contrast between the image of impurities in normal
region and bottleneck region is shown in Fig. 10.

6. Conclusion

In this paper, a real-time detection system for impurity in bottled
liquid based on machine learning is proposed. The system employs two
orthogonal optical-axes HR CCD cameras to obtain undeformed visible
images of detected samples. Circularity calculation combines with
longitudinal frame-difference method to distinguish whether there are
particular characteristics of impurities. KNN machine learning greatly
improves adaptability of the system in complex environment.
According to the result of detection, the system gives an alarm and
ejects impurity samples controlled by PLC. Experimental results show
that the proposed system has satisfactory sensitivity to dynamic and
small impurities, the system has commendable capacity of resisting
disturbance to interference factors such as bubbles, stains and distorted
images of impurities. Meanwhile, the designed system still has a great
room for improving impurity detection speed.
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