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Abstract

A prevalent approach for learning a control policy in the model-free domain is by engaging
Reinforcement Learning (RL). A well known disadvantage of RL is the necessity for extensive amounts
of data for a suitable control policy. For systems that concern physical application, acquiring this
vast amount of data might take an extraordinary amount of time. In contrast, humans have shown
to be very efficient in detecting a suitable control policy for reference tracking problems (Chernova
and Thomaz, 2014). Employing this intuitive knowledge has proven to render model-free learning
strategies suitable for physical applications (Meriçli et al., 2011). Recent studies have shown that
learning a policy by directive action corrections is a very efficient approach in employing this do-
main knowledge. Moreover, feedback based methods do not necessarily require expert knowledge
on modelling and control and are therefore more generally applicable. The current state-of-the-art
regarding directional feedback was introduced by Celemin and Ruiz-del Solar (2015) and coined
COrrective Advice Communicated by Humans (COACH). In this framework the trainer is able to
correct the observed actions by providing directive advise for iterative policy updates. However,
COACH employs Radial Basis Function (RBF) networks, which limit the capabilities to apply the
framework on higher dimensional problems due to an infeasible tuning process.

This study introduces Gaussian Process Coach (GPC), an algorithm preserving COACH’s struc-
ture, but introducing Gaussian Processes (GPS) as alternative to RBF networks. Moreover, the em-
ployment of GPS allows for uncertainty estimation of the policy, which will be used for 1) inquiring
high-informative feedback samples in an Active Learning (AL) framework, 2) introduce an Adaptive
Learning Rate (ALR) that adapts the learning rate to the coarse or refine focused learning phase of
the trainer and 3) establish a novel sparsification technique that is specifically designed for iterative
GP policy updates. We will show by employing synthesized and human teachers that the novel algo-
rithm outperforms COACH on every domain tested, with the most outspoken difference on higher
dimensional problems. Furthermore, we will prove the independent contributions of AL and ALR.
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1
Introduction

As robots start pervading our daily environment, the need for adaptive and tailored behavior is be-
coming greater. Imagine an autonomous car that is fully adapted to the user’s way of driving, or an
autonomous vacuum cleaner that optimizes its trajectory based on the mapping of a house. The
challenge here is that the control software should be designed according the requirements for the
specific application or user, which may furthermore evolve over time. Model-based control design
is then intractable, since no general model can be derived that accounts for all potential applica-
tions. Instead, such problems require model-free techniques. A prevalent control implementation
in this field is Reinforcement Learning (RL), an approach that maximizes a measure of performance
by trial and error. The measure of performance is usually designed as a function of sensory values,
where the objectives are rewarded and unwanted behaviour is possibly penalized. Finding a suit-
able reward function, especially one that continually respects the purposes of the user, is however
a challenge and a subject of research in its own right. Moreover, the biggest challenge in RL that
hinders widespread application is that decent control requires a vast amount of input-output data
(Kober et al., 2013). This data is easy to acquire for simulated environments (e.g. computer games),
but rather problematic for real physical applications, such as the examples given earlier.

In contrast to RL, human tend to be very efficient in inferring a suitable control law when facing
new problems. A study by Hessel et al. (2018) described how human participants took minutes to
master an Atari game, whereas a RL implementation needed several days. Past studies have shown
that by employing the human domain knowledge into the learning process, an optimal solution for
control can be found much more efficiently. Let us consider Fig. 1.1, where it is shown that a human
can actively participate in the learning process by invoking interaction with the agent. Interaction-
based algorithms have shown to outperform autonomous learning techniques significantly on in-
tuitive problems (e.g. Argall et al., 2009). A well known approach is the Learning from Demonstra-
tion (LFD) framework where a policy is derived using examples of proper execution. Other meth-
ods, like Apprenticeship Learning, employ demonstrations to reversely derive the trainer’s choices
for autonomous improvement (Abbeel and Ng, 2004). To avoid superfluous (and possibly expen-
sive) interaction with the trainer, the LFD framework can be extended with Active Learning (AL),
where demonstration are inquired especially for uncertain policy executions (Gräve and Behnke,
2013). LFD could however be troublesome for systems that feature agile dynamics. Moreover, the
demonstrations require expert knowledge of the system and the solution and are hence not suitable
for everyone to execute.

A second, less demanding and cognitive approach concerns policy learning by evaluative feed-
back, as studied by Knox and Stone (2009). In this framework, the trainer provides scalar values that
qualify the actions of the agent. Although this implementation does not require expert knowledge,
Thomaz et al. (2006) argue that this does not fully utilize people’s intuition. Furthermore, Suay and
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Agent

State

Action
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Figure 1.1: Schematic of how humans fit in the control loop. The ’Environment’ (e.g. robot) is observed by the human
who provides demonstrations/evaluations/feedback, depending on the applied algorithm. The embedded control policy
in the ’Agent’ is subsequently updated.

Chernova (2011) motivate that evaluative approaches do not scale well to more complex problems,
in contrast to algorithms that employ corrective advice. This third means of human-machine inter-
action concerns the guidance of the agent by means of directive feedback. In comparison to eval-
uative feedback, corrections are more information-rich, whilst it is still not required to have expert
knowledge on the task or control. Argall et al. (2008) introduced a pioneering approach to learning
from corrective feedback that used advice operators (specific, static corrections). However, broad
application was problematic since these operators had to be programmed a priori, again requiring
the necessary knowledge. A more general and applicable approach was studied by Celemin and
Ruiz-del Solar (2015) with the introduction of the current state-of-the-art, COrrective Advice Com-
municated by Humans (COACH). COACH concerns a framework that learns a continuous policy
by corrective advise of trainers in the action-space. The methods outperform evaluative-based im-
plementations by complying with the intrinsic preference of human to guide. However, COACH
entails poor scaling abilities to higher order systems due to the employment of Radial Basis Func-
tion (RBF) networks, which concern an extensive design procedure. The potential of the feedback
principle is thereby partly undone by the meticulous tuning process.

This study is hence focused on the extension of COACH that improves on the points of scaling.
We introduce Gaussian Process Coach (GPC), a directive feedback implementation that introduces
Gaussian Processes (GPS) as an alternative to RBF networks. We will show that GPC has better
scaling abilities to higher dimensional problems compared to COACH. Moreover, by utilizing the
uncertainty estimates of the GPS we will establish advantages by 1) inquiring high-informative feed-
back samples in an AL framework, 2) adapt the learning rate to the learning phase of the teacher and
3) introduce a novel sparsification technique for iterative GP updates.

This report is organized as follows: in Chapter 2 the essential background for this study is cov-
ered. Chapter 3 will detail the novel algorithm, GPC. This algorithm is benchmarked using the
experimental setup described in Chapter 4. The results will be presented and discussed in Chapter
5. Finally, the study will be concluded with a conclusions and potential future research directions in
Chapter 6.



2
Background and Related Work

This chapter will provide an overview of the relevant concepts and the associated literature. The
items are assumed essential for good understanding of this study.

Section 2.1 will present the concept of model-free autonomous learning: Reinforcement Learn-
ing (RL). RL concerns a technique where a decision making policy is derived by trial and error. The
mathematical background and the concepts most relevant to this study will be introduced.

Autonomous learning can be assisted by humans due to their intuitive domain knowledge. This
information can be communicated by either evaluations, feedback samples or by demonstrating
the complete task. All the methods have their advantages and drawbacks, which will be covered
extensively in Section 2.2. Section 2.3 will introduce the current state-of-the-art of directional feed-
back implementation. This framework was studied by Celemin and Ruiz-del Solar (2015) and called
COrrective Advice Communicated by Humans (COACH). However, COACH employs Radial Basis
Function (RBF) networks as function approximator, which have some major drawbacks in terms
of scaling. We therefore introduce Gaussian Processes (GPS) as an alternative in Section 2.4. The
chapter will conclude with a conclusion in Section 2.5

2.1. Reinforcement Learning (RL)
The field of Reinforcement Learning (RL) concerns autonomous learning from interaction with the
environment. The nature of learning becomes clear when we observe infants and humans in gen-
eral: they interact with the environment and observe when the executed actions yield the conse-
quences they intend. The action itself and the direct output of this action is less of concern than its
effect: think of throwing a ball in a basket: the distance of the ball to the basket is more important
than the angle of the arm, for instance.

In RL the same concept is employed, but than in an environment with a computational agent.
Here, the output is not directly clear, but the effect is expressed in a reward-function. The learner
must, as a matter of fact, discover which actions obtain the highest return by means of trial and error
and develop a suitable sequential decision making policy. In this process no human knowledge is
employed. The learned behavior is entirely dependent on the explored actions.

RL can neither be regarded as supervised or unsupervised learning (see Sutton and Barto, 2018).
The performance of an algorithm is solely dependent on the obtained reward, which is determined
by its current state and executed action. A converged algorithm can be considered as a system that
knows the path towards a goal by yielding the maximum amount of accumulated reward.

Section 2.1.1 will introduce the framework that is used for modeling decision making policies,
called Markov Decision Process (MDP). The policy and concept relevant to this study will be intro-
duced here. Section 2.1.2 will dive into the applicability of RL to real-world systems.

3



4 2. Background and Related Work

2.1.1. Markov Decision Process (MDP)
A Markov Decision Process (MDP) provides a mathematical framework for modeling decision mak-
ing situations. In a MDP-framework, actions do not influence only immediate reward, but also con-
secutive situations and states, and therefore future rewards. The frameworks provides a theoretical
idealization that allows for predictions about future states and rewards.

The mathematical formalization of an MDP is described by a tuple 〈S, A,T,R,γ〉, where S de-
notes a set of states and A a set of actions, which can both be continuous or discrete. The transition
function is denoted by T , which is defined as T : S × A×S → [0,1], and represents the probability
of the respective state-transition. The reward per state-action pair is contained in R : S × A×S →R.
The discount factor is defined as γ ∈ [0,1) and represents scaling (importance) of future rewards.
When the state st+1 is solely determined by st and action at , we say that the system is memoryless
and therefore satisfies the Markov property.

Important elements in RL framework concern the policy, that provides a mapping from state
to action, and the state(-action) value function, which contains a measure of performance that the
policy is supposed to maximize. Both features will be covered more extensively next.

Policy

A policy is a rule, that given the state sk ∈ S, produces an action ak ∈ A. More formally, it concerns a
function π : S → A, that maps the state to an action. This mapping describes a deterministic policy.
Alternatively, we introduce a stochastic policy as π : S × A → [0,1], which is denoted as π(a|s) s.t.∑

a∈A
π(a|s) = 1.

Stochastic policies list their actions with the associated chance of executing them. The goal in RL
is to learn a policy that maximizes the discounted sum of future rewards (i.e. state value function,
given by (2.1)). The optimization regarding this policy search is enclosed in a trade-of between
exploration and exploitation. Exploration denotes the deviation from the known path, trying to find
a better alternative path that leads to the desired reference. Exploitation describes the execution of
the known policy. A converged policy solely exploits, and is denoted by

π∗(s) = argmax
a

Q∗(s, a),

with π∗ the optimal policy and Q∗ representing a converged value function, as will be detailed next.

State(-Action) Value function

Almost all RL algorithms involve estimating a value function, a measure for how good it is to be in
a certain state. This measure if formally defined as the reward that is expected for reaching the ref-
erence, starting from the current state (Sutton and Barto, 2018). We define the state-value function
that denotes the expected return for starting in s and following π thereafter. In the context of an
MDP, we can define

V π(s) = Eπ
{ ∞∑

k=0
γk rt+k |st = s

}
, (2.1)

Here, E is the expected value of a random variable given that the agent will followπ. Similarly, we can
define the state-action value function (Watkins, 1989). This function describes the expected return
in state s, taking action a and following π thereafter, i.e.

Qπ(s, a) = Eπ
{ ∞∑

k=0
γk rt+k |st = s, at = a

}
.

The given value function are estimated during the learning process. The policy combines explo-
ration and exploitation in a tuned settlement to find alternative better paths that lead to the final
(desired) state. A more profitable path is defined as a trajectory that yields are higher accumulated
return. This continuous search process is defined as RL.
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2.1.2. Applicability to physical processes
RL techniques are data driven, which means that performance is achieved by acquiring vasts amounts
of input-output data (Kober and Peters, 2012). Depending on the size of the problem this process
can take an extraordinary amount of time (Heess et al., 2017). An example given by Sutton and
Barto (2018) showed that mastering a TD-backgammon game by state-of-the-art RL techniques
needed 300.000 simulated games for achieving human performance. Analogously, Hessel et al.
(2018) showed that even for a simple Atari game days of experience were required for achieving
any performance. For small and confined problems RL techniques have shown to be applicable for
real-world applications, e.g., the study by Kober and Peters (2009), where robot motion primitives
were learned by RL implementations. However, the applications are mostly limited to very specific
problems consisting of a low dimensional state-space (Kober et al., 2013). Moreover, RL implemen-
tation face another problem, namely the requirement of a reward function. Control synthesis is fully
guided by maximizing the return (accumulated reward). However, as motivated by Abbeel and Ng
(2004), is determining an explicit reward function sometimes intractable. The study mentioned the
example of driving a car on the highway. Since many desiderata, such as pedestrians, safe driving
distance, maintaining a reasonable speed etc. are hard to quantify, it is very complex to model an
applicable and complete reward function.

In contrast, humans have shown to be perfectly capable of inferring a suitable control strategy
for such problems. In these cases, a ’reward function’ is instantly constructed by human intuition.
Moreover, in contrast to the data driven approach of RL, humans are able to achieve decent perfor-
mance at first try when facing new problems. The study by Hessel et al. (2018) showed for example
that humans took only minutes to master the Atari game that took days for RL techniques. Humans
employ a very valuable cognitive feature, called intuition, that lacks in autonomous learning appli-
cations. A combination of both world, where RL benefits from human domain knowledge, would
comprise a very fruitful cooperation. This combination will be detailed in the next section.

2.2. Learning with human interaction
This section will dig deeper into the employment of humans in the learning loop. Due to the en-
hanced learning capabilities, this feature has been studied quite some in the past. The associated
literature can roughly be divided into two sections of different cognitive requirements. The first sec-
tion concerns a low cognitive implementation which is called learning from evaluative feedback. In
this framework, trainers provide a signal that qualifies the observed behavior of the agent in order
to encourage contributing and discourage counterproductive actions. This approach is detailed in
Section 2.2.1. The second method concerns a more demanding framework, called feedback in the
action domain. In this framework a trainer guides the agent by directive advise or by examples of
a proper executions of the designated task, which is explained in Section 2.2.2. To prevent super-
fluous and expensive interaction with the trainer, existing implementations can be extended with
Active Learning (AL), where high-informative interaction is prioritized. This implementation will
hence will covered in Section 2.2.3.

2.2.1. Evaluative feedback
The least cognitive method that is covered in this study is control synthesis by means of evaluative
signals. The trainer observes the environment and the policy of the agent and reward good signals
for contributing actions and punishment signals for counterproductive behavior.

A well-known study of evaluative feedback for control synthesis is the work by Knox and Stone
(2009), who designed a framework which could be applied to domains without an explicit reward
function. The policy was fully derived from the feedback signals from the human. The main out-
line was as follows: the human observes the actions and provides scalar signals (e.g. between zero
and ten) to perform updates on the policy. This simple principle showed to be very effective on
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confined problems and showed to outperform autonomous algorithm significantly. This study also
lead to many more extensions to it. For example Vien and Ertel (2012), that extended the frame-
work to continuous action spaces, or Vollmer and Hemion (2017) that replaced the scalar signals
by a five-star rating framework. Analogously, Loftin et al. (2014) showed improvement by respond-
ing to the punishment- or reward-focused mindset of people. However, the study by Griffith et al.
(2013) argued that humans are unable to communicate how good or how bad actions are in a way
that is straightforward to interpret for computational agents. As an alternative, the work introduced
a Bayesian optimized approach in modelling feedback relative to the current policy, taking uncer-
tainty into account to compensate for inconsistent feedback.

Overall, the main advantage of employing evaluative feedback is the low cognitive demands for
the trainer. It entails a very intuitive way of interaction with the agent. It is furthermore easy to
implement, does not require a reward function, and little to no expert knowledge is required. Its
downside however, according to Suay and Chernova (2011) are the poor scaling abilities to higher
order systems. Moreover, according to Thomaz et al. (2006), humans tend to intrinsically guide
future actions in their evaluative signals rather than to evaluate the past actions. The next sections
will introduce implementations that have improved on these points.

2.2.2. Feedback in the action domain
This section will be concerned with feedback in the action domain. We will divide this feedback
approach into two sections, based on the expert knowledge required. The first section concerns the
Learning from Demonstration (LFD) domain, and corrective demonstration in particular. This im-
plementation requires the most expert knowledge from the trainer regarding control and execution
of the task. The second framework concerns directive feedback. An approach which requires less
expertise on the task, but rather a notion of execution. Both methods will be covered here.

Learning and Corrections from Demonstrations

In this framework the policy is derived from proper executions from the trainer (Argall et al., 2009) in
the LFD domain. The executions are considered as ground-truth and are generalized over the state-
space. An alternative method of employing demonstrations concerns the Apprenticeship Learning
framework, where the reward function or a systems model is reversely derived for autonomous im-
provement (Ng et al., 2000; Abbeel and Ng, 2004). For sub-optimal behavior, the trainer can provide
additional (or exclude counterproductive) demonstrations. To avoid superfluous (and possibly ex-
pensive) interaction with the trainer, Gräve and Behnke (2013); Losey and O’Malley (2018) improved
sample efficiency with an Active Learning (AL) framework where demonstrations are inquired es-
pecially for uncertain policy executions.

The framework of Corrections from Demonstrations does not concern a method that can be ap-
plied generally. First of all, the trainer needs to have a certain expert knowledge about the execution
of the task. Secondly, the system might feature agile dynamics, which may hinder the proper execu-
tion of the designated task. A less cognitive and active interaction implementation is covered next
in Directional feedback.

Directional feedback

A second means of feedback in the action domain concerns Directional feedback. A pioneering ap-
proach was conducted by Argall et al. (2008); Argall (2009), which introduced a framework, coined
A-OPI, where advise operators could be communicated to the agent. Later work by Meriçli et al.
(2011) applied this algorithm successfully on Bipad Walk systems. However, the application of ad-
vise operator has a disadvantage when it comes to generality, since the feedback was application
specific and had to be programmed in advance, with the required programming knowledge.

Later work improved on this point by introducing a more general framework, e.g., Chernova and
Thomaz (2014). This study introduced an algorithm that enabled the application of directive feed-
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back implementations to the discrete action-space domain. The extension to continuous state and
action spaces has been studied by Celemin and Ruiz-del Solar (2015), which the introduction of the
current state-of-the-art regarding directional learning, COACH. The main outline of COACH is as
follows. Analogously to evaluative implementations does the trainer observe the environment and
the policy of the agent. When the trainer want to correct the observed action, he or she provides
an increase or decrease signal in the respective action channel. The policy is subsequently updated
into the suggested direction. The method of directive feedback has a lot of advantages. First, no
explicit reward function is required for control synthesis, since the control law is fully established
by the trainer. Moreover, no expertise on the task and modelling is required, only a notion of the
execution suffices. The principle can basically be employed on any problem. Furthermore, accord-
ing to Suay and Chernova (2011), the principle scales better to higher order problems compared
to evaluative implementations. However, although the principle is very well promising, the frame-
work itself hinders the widespread application due to extensive design procedures, as will be further
elaborated in Section 2.3.

2.2.3. Active Learning (AL)

The studies by Gräve and Behnke (2013); Losey and O’Malley (2018) have shown that superfluous
(and possibly expensive) interaction with the trainer can be prevented by encouraging feedback for
uncertain executions. This extension to learning frameworks is coined Active Learning (AL).

The AL formalism is a rather comprehensive term according to Chernova and Thomaz (2014).
It describes the extension of any human assisted learning algorithm to a bi-directional feedback
framework. This means that instead of only human induced interaction, the agent communicated
when this interactions would be most useful. The inference whether interaction is requested is
usually done by a Bayesian framework.

The current literature in this field is mostly focused on the LFD application. A typical example
is the study by Gräve and Behnke (2013), where demonstrations were inquired for uncertain execu-
tions of the Gaussian Process policy. In addition, Maeda et al. (2017); Losey and O’Malley (2018) also
showed that by requesting demonstrations for uncertainty policy regions, a much higher sample ef-
ficiency could be established. A study that dissociates from the mainstream is the paper by Li et al.
(2016), who employed AL to an evaluative feedback framework. The uncertainty was estimated by
distance measures between the current state and the closest state (Euclidean resp.). Unfortunately
it did not yield the intended action, presumable because a feedback sample per state does not trig-
ger the optimal action instantaneously. Interestingly, there was no literature found that combines
AL with a directive feedback implementation.

2.3. COACH

Due to the required expert knowledge in the LFD domain and the implicit guidance and poor scal-
ing capabilities of evaluative implementations, as explained in Section 2.2, this study will be focused
on directive feedback algorithms. This section will introduce the current state-of-the-art regard-
ing directional feedback in continuous action spaces. The most recent and leading algorithm was
developed by Celemin and Ruiz-del Solar (2015) and called COrrective Advice Communicated by
Humans (COACH). This section will provide an overview of the properties and will assess its ad-
vantages and disadvantages. The main outline of COACH is presented in Algorithm 1 and will be
used for future reference.

In Section 2.3.1 the main architecture of COACH is explained with reference to Fig. 2.1. The
feature space will be explained more extensively in Section 2.3.2.
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Figure 2.1: Architecture of COACH by Celemin and Ruiz-del Solar (2015). The policy is shaped by human corrective
feedback only, no RL-algorithm is employed. Reprinted with permission of Celemin and Ruiz-del Solar.

2.3.1. Framework
COrrective Advice Communicated by Humans (COACH) is an algorithm for training agents by cor-
rective advise. The formalism consists of a policy Pc : S → Rn , with S the set of states and n the
action-space, that maps states to continuous actions. The human trainer observes the behavior of
the agent and suggest occasionally to either increase or decrease the respective action. This feed-
back h ∈ {−1,1} is modelled in the human feedback model: Hc : S → Rn . The parametrisation of
both models is done by Radial Basis Function (RBF) networks, where the respective models have
different weight to the feature vector φ(sk ), with sk denoting the state in time-step k. The learning
framework is supported by the following modules.

Policy Supervised Learner
This module models the policy Pc (sk ) of COACH. The policy provides the continuous action ak to
a given state sk , by taking the linear combination of the weights and the feature vector, i.e.

ak = Pc (sk ) = θT
k φ(sk ),

with θ the weight vector of the policy. For every directive correction h given by the teacher, the
weight vector is updated following a Stochastic Gradient Descent approach:

θk+1 = θk −α(sk )∇θ J (θ),

withα(sk ) the learning rate (obtained as described the next section) and J (θ) denoting the cost func-
tion, which is the squared error between the applied and ’desired’ action, given by h and magnitude
e. The latter denotes a free parameter set by the user within the range of the action domain. As a
result, implementing the gradient in the the weight vector, yields

θk+1 = θk +α(sk )φ(sk )he, (2.2)

with e a parameter based on the correction (error) magnitude of the trainer.

Human Feedback Supervised Learner
This module models the feedback of the trainer as a function of the state sk . The predictions are
carried out by a linear combination of the human model weights ψk and the feature vector φ(sk ).
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Algorithm 1 COACH framework

1: Given:
Policy learning rate e
Human model learning rate β
Constant learning rate cc

Feature space function φ(·)
2: for all k do
3: Get state sk

4: Compute new action ak ← θkφ(sk)
5: Obtain corrective advise h
6: if h 6= 0 then
7: H(sk) =ψT

k φ(sk)
8: ∆ψ=β(h −H(sk ))φ(sk )
9: Human model update ψk+1 =ψk +∆ψ

10: Get learning rate α(sk ) = |H(sk )|+ cc

11: ∆θ =α(sk )φ(sk )he
12: Policy update θk+1 = θk +∆θ
13: end if
14: end for

The updates on the weight vector ψk are conducted in the same fashion as (2.2), but now with a
known error magnitude eh = h −H(sk ):

ψk+1 =ψk +β(h −H(sk ))φ(sk ),

with β the learning rate of the human model. From this human model, the learning rate in (2.2) is
given by

α(sk ) = |H(sk )|+ cc , (2.3)

Note that H(sk ) ≈ 1 for repeating feedback in the same direction, and therefore accelerates the learn-
ing process. For alternating feedback the learning rate diminishes. To prevent the learning rate for
stagnating, (2.3) is appended with a constant factor cc .

The outline of the COACH framework is depicted in Algorithm 1. Lines 3-5 comprise of policy
executions. The update lines consist of the human prediction and human model updates (line 7-
10). The policy updates are subsequently given in lines 11-12. Furthermore, the COACH framework
can be extended by the Credit Assigner, which takes a human delay into account for the feedback
given by the teacher. Since this study will not exploit this feature it will not be covered here.

2.3.2. Modelling the feature space
The human model H and the policy P are modelled by means of feature spaces, which concern
a parameterized supervised learning method. Feature space modelling consist of two mappings:
first a (usually) non-linear mapping from the input data into a feature space by basis functions.
The second mapping concern a linear combinations of these basis functions. The combination
of having both linearity and non-linearity makes them suitable and flexible for multiple purposes
(Shin and Goel, 2000).

The feature space in COACH is given by a RBF network

Pc (sk) = θTφ(sk), φi (sk) = exp(−1

2
(sk −µi )Tδ−1

i (sk −µi )), (2.4)
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where sk denotes the state at time k and µi the center of the i ’th basis function. The δ represents a
tuning parameter. An alternative form of (2.4) is given by

Pc (sk) =
N∑

i=1
θiφi (sk ), (2.5)

where loop iterates over all N centers µi . The amount of centers is determined based on the rough-
ness of the data. The more fluctuations present per input dimension, the more centers are needed
for that respective input. A disadvantage of employing RBF and basis function in general is the
extensive search space for a good parameterization. Think of designing a grid for the entire state
space, where every input dimension requires a lower/upper bound and interval. This process re-
sults in a manual optimization in R3n , with n the input dimension. Suitable values for confined
state-spaces are feasible for reasonable guesses, but for extensive state spaces this tuning process
renders unfeasible.

2.4. Gaussian Processes (GPs)
In order to circumvent the extensive design procedure of RBF network, we introduce an alternative
regression method: Gaussian Processes (GPS). In addition to the favorable engineering properties,
a second advantage of this regression tool is the uncertainty estimates for predictions.

The section is organized as follows: the mathematical background of GPS is covered in Sec-
tion 2.4.1. The covariance function, hyperparameters and corresponding effect on the regression
will subsequently be detailed in Section 2.4.2.

2.4.1. Regression and uncertainty estimates
GPS are Bayesian Non Parametric function approximation models. It is a collection of random vari-
ables, such that every finite collection of those random variables has a multivariate normal distri-
bution. GPS do not require a specification of the model structure a priori. The structure if fully
dependent on the regression data. A GP is fully specified by its mean m(x) and covariance function
(i.e. kernel function) k(x,x′), which are defined as

m(x) = E[ f (x)]

k(x,x′) = E[( f (x)−m(x))( f (x′)−m(x′))].

The kernel function k(x,x′) is a measure of similarity between two input vectors x and x′, and is
an essential design choice in GP regression. We will cover this more extensively in Section 2.4.2. A
regression performed by means of GPS is denoted as:

f (x) ∼GP (m(x),k(x,x′)).

Let y = {y1, ...yn} be a set of observations from a stochastic process

yi = f (xi )+ε,

where xi denotes the input vector of observation yi . For an intuitive understanding of GPs the ob-
servations y can be seen as a single point drawn from an n-variate Gaussian distribution. The noise
ε is assumed Gaussian with standard deviation σo . The input matrix is defined as X = {x1, ...,xn}.
Applying the conditional distributions for GPS (Rasmussen and Williams, 2006), the following pos-
terior predictive equations for test inputs X∗ can be derived:

f∗|X ,y, X∗ ∼ N (f̄∗,cov(f∗)), where

f̄∗ , E[f∗|X ,y, X∗] = m(X ∗)+K∗[K +σ2
n I ]−1(y−m(X )), (2.9)

cov(f∗) = K∗∗−K∗[K +σ2
n I ]−1K∗,



2.4. Gaussian Processes (GPs) 11

4 2 0 2 4
Input x

3

2

1

0

1

2

3

O
ut

pu
t y

(a) Sub-optimal hyperparameter set

Mean
Data
Confidence

4 2 0 2 4
Input x

(b) Optimal hyperparameter set

Figure 2.2: Example of optimization of the hyperparameters of a GP. In Fig. (a) and (b) a regression is performed on
identical data points. In (a) the regression with sub-optimal hyperparameters values, in (b) a Bayesian optimized set.

where K∗ = k(X , X∗) and K∗∗ = k(X∗, X∗) as in

K∗ = K (X , X∗) = [
k(x∗,x1) k(x∗,x2) . . . k(x∗,xn)

]
, K∗∗ = K (X∗, X∗) =σ2

f I +σ2
n I ,

and K is the Gram matrix with entries Ki j = k(xi , x j ):

K = K (X , X ) =


k(x1,x1) k(x1,x2) . . . k(x1,xn)
k(x2,x1) k(x2,x2) . . . k(x2,xn)

...
...

. . .
...

k(xn ,x1) k(xn ,x2) . . . k(xn ,xn)

 ,

Note that the way regression is conducted by GPS has a lot in common with the employment of
basis functions. Another way to look at (2.9) is by considering it as a linear combination of n kernel
functions, i.e.

f̄∗ =
n∑

i=1
αi k(xi ,x∗),

where α = (K +σ2
n I )−1y and m(x) = 0. Note the similarity with (2.5). The foremost difference be-

tween GPS and feature spaces are the way the centers are mapped. Where feature space engineering
requires a predetermined set of centers, the employment of GPS does not. The locations are depen-
dent on the training data, which means that only no centers are found outside the relevant state
space. Moreover, due to the fact that for every data instance a new center is introduced, the mathe-
matical complexity of a GP hence scales with the amount input data. A consequence of employing
GPS is therefore the poor scaling capabilities for substantial regression data. Observing (2.9) shows
that for performing regression, the n ×n inverse is needed of all measurements combined. Despite
the fact that this matrix can be calculated off-line for predictions only, it is still a major drawback
in an online application. A remedy is to sparsify the GPS (e.g. Csató and Opper (2002)), yielding
more efficient predictions and uncertainty estimates at the costs of accuracy. Such sparsification
techniques will be applied to where necessary in the remainder of this report.

2.4.2. Kernel and Hyperparameter properties
A major advantage of employing GPS is the ability to create confidence bounds on predicted out-
puts. The propagation of this confidence along the input boundaries is enclosed in the kernel. The
choice of this covariance function depends on the data at hand. The main properties to be consid-
ered are the presence of discontinuities and the composition of the length-scales. For rough data a
rather short length-scale has to be adopted, while slow and more smooth data should be accompa-
nied by a longer length-scale.
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There exists numbers of kernel functions that can be applied to GPS. In fact, any function that is
symmetric and is positive semi-definite can act as a kernel function. However, In practice there are
some kernels that are applied more generally. The first one is the Squared Exponential (SE) kernel,
used to approximate smooth functions with no to little prior knowledge (See Duvenaud, 2014):

ks(x,x′) =σ2
c exp

(
−|x−x′|

2l 2

)
,

with βr = {σc , l } the hyperparameters of the kernel function, consisting of the signal variance σc and
length-scale l . The length-scale denotes a measure for the roughness of the data. In general, one
can assume that extrapolating more than l units away from the input data is considered unreliable.

A kernel that allows for more freedom in modelling smoothness and (dis)continuities is the
Matérn kernel:

km(x,x′) =σ2
c

21−ν

Γ(ν)

(p
2ν

2

l

)ν
Bv

(p
2ν

|x−x′|
l

)
,

with Bv (·) the modified Bessel function (Abramowitz and Stegun, 1965), Γ(·) the Gamma function
and the hyperparameters βm = {σc , l ,ν}. Here, ν denotes a ’smoothness’ parameter that correlates
with the amount of times the target function is differentiable (Rasmussen and Williams, 2006).

Every kernel and its hyperparameters shows different propagation of the uncertainty along the
data dimensions. For a decent design, one has to examine the data at hand very closely and choose
the kernel accordingly. The variance of the input-data itself does not have any influence on the
estimated uncertainty. The estimated variance is in GP solely dependent on the sample density
at a particular state, rather than the respective variance. A method to take the input-variance into
account as well is by employing Heteroscedastic GP (see Le et al., 2005).

Once the kernel function is chosen, one has to tune the hyperparameters of the function, and in
particular the length-scale. An example of its effect can be observed in Fig. 2.2. Two identical data
sets with two kernel functions with different length-scales are approximated by a GP. In (a) we ob-
serve sub-optimal behavior with extensive (and presumably inaccurate) uncertainty. In contrast, (b)
shows expected behavior and therefore uses an equitable values of the hyperparameters. For multi-
variate inputs one may adopt Automatic Relevance Determination (ARD) (Neal, 2012), which allows
to determine an independent length-scale per input dimension. Tuning can be conducted manu-
ally or by optimization, e.g. Cross-validation or Marginal Likelihood (See Rasmussen and Williams,
2006; Wahba, 1990).

2.5. Conclusion
This chapter introduced the main concepts relevant to this study. In Section 2.1 Reinforcement
Learning (RL) was covered. RL entails a learning framework where the policy is learned through trial
and error. Iterative policy updates are conducted based on the obtained return during an episode.
It typically takes a considerable amount of input-output data to achieve good performance: for
instance a simple Atari game that takes human minutes to master, took up to 83 hours of experience
for a RL algorithm to achieve similar performance (Hessel et al., 2018). The applications for RL are
therefore mostly limited to simple problems or problems that can be modelled and simulated.

In Section 2.2, this inefficiency of training samples was addressed though the employment of
the intuitive domain knowledge of a human. A human (or trainer) often possesses useful knowl-
edge that can guide the agent to eventually converge to the optimal policy. Instead of exploring the
whole state space, a learning problem can be accelerated significantly by limiting this. We have in-
troduced algorithms that rely on demonstrations (in the LFD framework), but also algorithms that
learning from evaluative and guidance feedback. The LFD paradigm has shown to require expert
knowledge of the trainer (Argall et al. (2009)), which can hinder widespread application. Moreover,
evaluations of humans have shown to implicitly contain guidance signals on future actions instead
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of only evaluation of the past actions (Thomaz et al., 2006). Furthermore, according to Suay and
Chernova (2011), evaluations have shown to have poor scaling capabilities to higher order systems.
We therefore introduced the concept of directive feedback implementations and the current state-
of-the-art: COACH by Celemin and Ruiz-del Solar (2015) in Section 2.3.

This algorithm engages RBF network to model the policy and the human model, and takes bi-
nary feedback to perform iterative updates. The disadvantage of this algorithm is the extensive pa-
rameterization procedure of the feature space inR3n , with n the input dimension. Since this process
is done manual, it renders application for multi-state problems nearly unfeasible.

To improve upon the convenience of parameterizing the state-space, we have introduced an
alternative to feature space engineering: GP in Section 2.4. GPS have a lot in common with the
RBF network in COACH. The both entail regression with a linear combination of the features. The
difference is that the centers of these features are predetermined in COACH, whereas a GP locates
them at every training-instance. This introduces some advantages: 1) The ignorant input-space can
be excluded from basis functions 2) It provides a natural way of obtaining the uncertainty. Moreover,
instead of the engineering three parameters per input dimension in RBF networks (lower/upper
bound and interval), a GP only need one (length-scale) per input dimension, which entails better
scaling capabilities to multidimensional problems. The following chapter will explain how GPS can
contribute to the learning process by presenting Gaussian Process Coach (GPC).





3
Gaussian Process Coach (GPC)

The current state-of-the-art regarding directional feedback implementations, COACH, suffers from
extensive parameterization of RBF networks in higher order problems. In this chapter we will in-
troduce an algorithm that will overcome this limitation by employing GPS as alternative to RBF
networks. This novel framework, coined Gaussian Process Coach (GPC), will show to comprise ad-
vantages in terms of engineering convenience and feedback sample efficiency.

This chapter will present the algorithm in fullest detail. We will start with a comparison with
COACH in Section 3.1, where the main differences and similarities will be covered. Section 3.2 will
describe the architecture of the agent, consisting of a human (feedback) model and a policy. Sec-
tion 3.3 will elaborate on the choice and parameters of the kernels of the GP models. Subsequently,
Section 3.4 will explain how the uncertainty estimations will be leveraged: we will introduce an
Adaptive Learning Rate (ALR) that will respond to the learning phase of the teacher. Moreover, the
uncertainty estimates are used to inquire feedback and establish a pioneering approach in employ-
ing Active Learning (AL) in a directive feedback implementation. Lastly, the uncertainty is engaged
for the design of a novel sparsification method specifically designed for iterative GP updates. The
chapter will conclude with the total framework and the conclusion.

3.1. GPC versus COACH
The novel algorithm preserves COACH’s structure in its architecture. A schematic of GPC is pre-
sented in Fig. 3.1. The policy is initialized idle. The trainer observes the environment and the actions
of the agent. When the trainer observes an action that he would like to correct, he provides feed-
back h ∈ {−1,1} in the respective action dimension. The human model and the policy are updated
immediately to observe the effect directly. This procedure, which is no different from COACH, is
repeated until convergence.

The differences arise when looking a bit further into the technical details. First of all, the hu-
man and policy RBF networks are replaced by GPS, which avoid the extensive parameterization
of feature spaces completely. Moreover, both GPS provide uncertainty estimations that are em-
ployed for 1) Communicating the uncertainty to the user to integrate AL and 2) Establish a learning
rate that responds to the learning phase of the trainer. These two features are displayed in orange
in Fig. 3.1. Since COACH does not allow for uncertainty estimations it is unable to leverage on
such confidence bounds. If we compare Fig. 2.1 to Fig. 3.1 side-by-side, we can say that the human
model of GPC combines the Human feedback Supervised Learner and Human Feedback Modelling
of COACH, since GPC do not employ feature weight vectors that require updates by an external
modules. The same accounts for the Policy and the Policy Supervised Learner, which are both inte-
grated into the policy for GPC. Further details on the differences and similarities are elaborated in
the following sections.

15
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3.2. Modeling the human feedback and policy
Analogue to the COACH, GPC consists of two models that are contained in the agent (see Fig. 3.1):
the policy P and the human model H . The prior of the policy is modelled as:

P : S →R∼GP (mp (s),kp (s,s′)), (3.1)

Here, mp (s) is assumed 0. The policy is trained with the set Np = {(s1, a1), (s2, a2), ..., (sm , am)}, which
contains state-action data derived from the directional feedback from the trainer (details in Sec-
tion 3.4.3). The human feedback is modelled by

H : S × A →R∼GP (mh(z),kh(z,z′)), (3.2)

with A the action space. The mean is assumed mh(z) = 0. This human model is trained with the
set Nh = {(z1,h1), (z2,h2), ..., (zv ,hv )}, where z denote the concatenation of state s and action a, and
h ∈ {−1,1} the suggested action correction of the teacher (decrease or increase). The proposed GPC
introduces a different human model with respect to the one of COACH, where the feedback was
only state dependent, i.e. Hc : S → R (see Section 2.3). We have integrated the action in our human
model to infer the human feedback per state-action, rather than state only. The associated uncer-
tainty estimates therefore also reflect the uncertainty per action. Further details on this principle
are provided in Section 3.4, where we elaborate on the corresponding uncertainty advantages.

Both models require a kernel function that represents how the target function and uncertainty
propagates along the input dimensions, as explained in Section 2.4. For the human model H we
assume a smooth propagation of the target function and therefore adopt the SE kernel. To allow for
more freedom in the policy function in terms of roughness and continuities, we adopt the Matérn
kernel for P (Rasmussen and Williams, 2006; Duvenaud, 2014). For the purpose of completeness
and convience, the respective kernels are reprinted here. The SE kernel for the human model H :

ks(x,x′) =σ2
s exp

(
−|x−x′|

2l 2

)
, (3.3)

with hyperparameters βr = {σs , l }. The Matérn kernel for the policy P is:

km(x,x′) =σ2
m
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)
, (3.4)

with hyperparameters βm = {σm , l ,ν}.
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Figure 3.1: General structure of GPC. The human observes the environment and suggest action corrections (h ∈ {−1,1}
for decrease and increase respectively) to the agent. The agent performs updates instantaneously on the human model
and the policy for immediate effect. This process is repeated until convergence.
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Algorithm 2 GPC Algorithm

1: Given:
Kernels k(·) for human model H and policy P
Hyperparameters β with Mcs or Mns

Constant learning rate cr

2: for all k within episode do
3: Get state sk

4: Execute action ak = P (sk ) with uncertainty σp (sk )
5: Obtain corrective advise h ∈ {−1,1}
6: if h 6= 0 then
7: zk = (sk , ak )
8: hest = H(zk ) with uncertainty σh(zk )
9: Learning rate rk ←σp (sk )+σh(zk )+ cr

10: New action an = ak + rk ·hk

11: Update dictionary P and apply SPARS(Np )
12: Update dictionary H : Nh = {..., (zk ,hk )}
13: Update scaling (Mp , Mh) ← cov(Np , Nh) // NS only
14: Train GPS: TRAIN(P, H)
15: end if
16: end for

3.3. Kernel for GPC and GPC-NS
The policy in (3.1) and human model in (3.2) both concern a multidimensional regression on the
input data. Each input dimension may however be subject to data with completely different orders
of magnitude, such that a single length-scale is unsuitable. We therefore take an approach that
allows us to set an independent length-scale per input dimension.

Let us consider the SE kernel from (3.3). Following Rasmussen and Williams (2006), the param-
eterization in terms of the hyperparameters results in

ks(x,x′) =σ2
s exp

(
−1

2
(x−x′)T ls M(x−x′)

)
,

with M the diagonal matrix consisting of the characteristic length-scales per axis. Such a covariance
function implements ARD (Neal, 1995). This study adopts two distinct methods for determining
the diagonal values of M . In the first approach we let the trainer decide on the respective relevance
of the input dimensions:

Mcs = diag(w)−2,

with w a vector consisting of custom weights on the input dimensions. These values are determined
a priori and deemed static throughout the learning process. This method is referred to as GPC(-
CS). The second method concerns the normalization of the independent inputs for an equal relative
dependency, resulting in an approach where any length-scale tuning is circumvented. The result is
an approach that does not scale with the input dimension and could hence be decisive for higher-
order systems. This parameterization is carried out by

Mns = diag(σm)−2,

with σm the vector containing the variance of the independent input dimensions, which is updated
for every feedback sample (see line 13 in Algorithm 2). This method will be referred to as GPC-NS.
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Figure 3.2: Hypothetical example of the propagation of the action for receiving 3 feedback instances. In t1 and t2 the
trainers provides twice an increasing action correction. Consequently, the uncertainty is reduced for a (s, a)-pair and the
action is increased. In t3, when no feedback is received, nothing happens.

The extension to the Matérn kernel (3.4) is straightforward with Mcs = diag(w) and Mns = diag(σm)
for every length-scale l . To distinguish between the scaling of the policy and the human model we
add subscript h and p, e.g. Mcs,h .

3.4. Leveraging uncertainty
GPS provide uncertainty estimates with every query point based on dissimilarity with the train-
ing data. For the policy, the uncertainty reflects the presence of feedback data in the respective or
surrounding state. Due to the integration of the action in the input of the human model, this uncer-
tainty reflects the presence of feedback for state-action pairs. To elaborate on this, a hypothetical
example is depicted in Fig. 3.2. The contiguous plots show the evolution of the policy and its un-
certainty as new feedback is obtained. At t1 the policy is idle and the action corresponding to state
x = 0 is zero. As an increasing action correction (i.e. h = 1) is received the action is increased as is
shown from t1 to t2. The uncertainty of the old state-action concatenation has decreased due to this
feedback sample. This process is repeated for t2 to t3. t3 and t4 show the consequence of receiving
no feedback. We may envision this principle as building a map that discloses certain and uncertain
regions with respect to past feedback. This feature comprises the main advantage of GPC over other
methods.

This advantage is separated into three contributions, the Adaptive Learning Rate (ALR) in Sec-
tion 3.4.1, AL in Section 3.4.2 and a novel sparsification technique for iterative GP policy updates in
Section 3.4.3

3.4.1. Adaptive Learning Rate (ALR)
We assume that the teacher encounters two teaching phases during the learning period. The initial
learning phase arises when the process is commenced and the policy is idle. We believe that the
feedback in this stage will mostly concern raw adjustments in order to create a coarse version of
the final policy. These coarse adaptations will gradually shift towards the second learning phase
where trainers apply small refinements to the policy for meticulous improvements. In this study, we
model the transition from coarse to fine adjustments not as a universal annealing process. Instead,
we adapt the learning rate to the intended correction per state.

Hence, we introduce the following Adaptive Learning Rate (ALR):

rk =σp (sk )+σh(zk )+ cr , (3.5)

with rk the learning rate, sk the state and zk the concatenation of (sk , ak ) (see line 7-9 in Algorithm 2).
The uncertainty of the policy σp allows us to accelerate the learning by increasing the learning rate
for the first feedback instances. The uncertainty estimation of σh adopts a high value for consis-
tent feedback (see Fig. 3.2). As soon as alternating feedback is given, the uncertainty, and thus the
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learning rate decreases to allow for refinements. The parameter cr denotes the constant rate and
prevents stagnation in the event that σp,h ≈ 0. GPC differs from COACH for updating the policy,
since the error magnitude e in (2.2) is now implicitly included in the computation of rk in (3.5).

An example of the policy and the learning rate during a learning process is depicted in Fig. 3.3.
It shows an environment with a two-dimensional continuous state-space and an unstable equilib-
rium as reference at (x1, x2) = (0,0). The policy (a) is trained by a teacher employing the ALR. The
corresponding learning rate is displayed in (b). Note that for critical states (area around (x1, x2) =
(0,0)) alternating feedback has caused the ALR to decrease, such that the policy can be refined.
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Figure 3.3: Snapshot of the policy (a) and learning rate (b) for controlling a system in an unstable equilibrium (0,0) (e.g.
Inverted Pendulum). The learning rate decreased as a result of the ALR for alternating feedback that allows for meticulous
action refinements in critical states.

3.4.2. Active Learning (AL)
The GPS used allow to actively elicit feedback in cases of high uncertainty in an Active Learning (AL)
framework. Past studies have shown great performance improvement by enabling agent-induced
feedback instances, mostly in the LFD domain (Losey and O’Malley, 2018; Gräve and Behnke, 2013).
This study is, to the authors knowledge, the first to assess the potential with a directional feedback
framework. Other than Chernova and Veloso (2009), who employed AL with the uncertainty of the
visited state, we believe that the uncertainty of the action can advance the convergence in a directive
feedback environment. The motivation for this reasoning is that, in contrast to the LFD paradigm,
inquiring human assistance in terms of feedback does not yield the optimal action instantaneously.
In GPC, multiple feedback instances are needed to approach the optimal action. Hence, rather than
employing uncertainty per state, we apply uncertainty per action, which is obtained by the human
model, i.e.

∆k = caσh(zk ), (3.6)

with zk the same as in (3.5) and a constant gain ca to decouple AL from the ALR, due to the fact
that in AL the relative differences between high and low uncertainty is relevant, rather than the
magnitude. By inquiring feedback for high values of ∆k we prioritize consistent feedback, since
inconsistent feedback would reduce ∆k . AL will therefore further aid in establishing an inaccurate
but rather complete policy as early as possible, before proceeding to the refinement stage.

3.4.3. Novel Sparsification for Corrective Learning
For every feedback instance provided by the trainer, the dictionary of the policy P is appended with
the new tuple:

Np = {..., (sm+1, am+1)} (3.7)

where (sm+1, am+1) is calculated based on the executed action ak , learning rate rk and feedback hk ,
i.e.

am+1 = ak + rk ·hk .
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This approach renders the previous action ak obsolete. A deficient property of GPS that hinders
convergence is that by appending the dictionary following (3.7), the updated action on sm+1 is an
average of ak and am+1 (assuming a coinciding or adjoining data instance). In this proposed spar-
sification method, the tuple most relevant to the obsolete action ak is omitted, rendering am+1 the
new action. A visualization of this process for a specific state is depicted in Fig. 3.4. In (a) we ob-
serve the effect of appending the policy dictionary following (3.7): the action is the average of all
data samples present. By removing redundant actions, we observe in (b) that that action follows the
learning rate, as is desired.

This process, of taking the highest relevancy into account while preserving accurate uncertainty
estimations has not been found in conventional online sparsification methods, (e.g. Nguyen-Tuong
and Peters, 2010). We therefore introduce a new sparsification technique that specifically applies to
applications with iterative updates on the GP policy model.

The main outline of this sparsification is as follows: for every new feedback instance (sm+1, am+1),
the uncertainty of the policy σp (sk ) is compared against a certain threshold σthres, i.e.,

σthres =
1

2

√
σ2

s,m ,

with σ2
s,m from either (3.3) or (3.4). The uncertainty at a particular state measures the presence of

neighbouring (sk , a) tuples. In the event that this threshold is exceeded, the dictionary sample with
the biggest covariance (i.e. smallest Mahalanobis distance (Mahalanobis, 1936)) is omitted. The
sparsification method is presented in Algorithm 3 and executed simultaneously with appending
Np , see line 11 in Algorithm 2. The existing input elements of the policy dictionary Np are denoted
by si .
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Figure 3.4: Sparsification of the Policy model P over time at a particular state. The consequences of repetitive feedback on
the action is shown. (a) denotes the case where no old data is removed from the policy dictionary. (b) shows the removal
of obsolete data, resulting in the action following the learning rate (blue arrow) seamlessly.

3.5. Framework GPC
The main outline of GPC is presented in Algorithm 2. Line 3-5 present the regular policy executions.
As feedback is received, the updates in lines 6-14 are activated. The learning rate is composed of the
uncertainty of both models, see line 9. Line 11-13 describe the dictionary updates and subsequent
training of the GPS, which will result in an immediate effect on the policy.

3.6. Conclusion
The chapter detailed the novel directive feedback algorithm GPC. It has an architecture similar to
the current state-of-the-art COACH, but comprises advantages by employing GPS instead of RBF
networks such that no modelling expertise is not required anymore.
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Algorithm 3 Sparsification of policy P training data

1: function SPARS(sk , an , σp , σthres, Np )
2: if σp <σthres then
3: index ← argmaxi kp (si ,sk )
4: Np (index) ← (sk , an)
5: else
6: Append dictionary Np = {. . . , (sk , an)}
7: end if
8: return Np

9: end function

The engagement of GPS allows to obtain uncertainty estimates of the policy. We employ this
uncertainty to 1) respond to the learning phase of the trainer by introducing an Adaptive Learning
Rate (ALR) that decreased the learning rate as meticulous action corrections are required. 2) We
furthermore establish a pioneering approach regarding AL in directive feedback frameworks. In
contrast to the existing literature, which employ state-uncertainty for inquiring feedback, we apply
the action uncertainty to trigger action corrections. 3) Lastly, we establish a novel sparsification
technique for iterative updates of a GP policy. The next chapter will introduce the benchmarks to
assess the significance of the introduced propositions.
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Experimental Design

This chapter will detail the benchmarks for the novel algorithm GPC, and is organized by two main
sections. The first section, Section 4.1, will explain what is going to be tested. This includes the per-
formance and robustness of the algorithm, human validation and the AL feature. Section 4.2 details
how this is tested. We will introduce three benchmark domain from the OpenAI gym (Brockman
et al., 2016), which will be explained here. The chapter is concluded with a conclusion.

4.1. Experimental setup
This section will introduce the setup that is adopted for benchmarking the novel algorithms GPC.
The experiments will be conducted with GPC, GPC-NS and baseline COACH. The performance is
measured by means of the accumulated return per episode.

The section is organized as follows. First we will detail how the performance and robustness
of all algorithms is measured. This is done in a fully customized setup by employing an oracle, a
synthesized human, in Section 4.1.1. Section 4.1.2 will detail how the novel algorithm is validated for
humans. The experiments regarding the significance of the AL and ALR proposition is subsequently
described in Section 4.1.3 and Section 4.1.4 respectively.

4.1.1. Performance and Robustness
For the performance and robustness of the algorithms we employ an oracle. An oracle is a synthe-
sized human that provides feedback, both ideal and erroneous, at a pre-specified rate. The em-
ployment of an oracle bypasses all human random factors, such as immeasurable inconsistencies
and tiredness, and establishes a very neatly regulated setup that allows for fair cross-comparison
between the algorithms.

An oracle measures the agent policy with a target policy. When the deviations is deemed signifi-
cant, a feedback signal is provided to the agent. The agent policy is considered converged for a state
when the deviation between target and executed action is δ close, and hence no feedback is pro-
vided. The target policy is pre-programmed by either a human, employing an interactive feedback
algorithm like GPC, or by means of a conventional control algorithm (e.g. PID).

The performance of the algorithm is tested with a feedback rate of γ = 5%. The robustness is
assessed by an error e of 0%, 10% and 20%, and administered following the protocol of Celemin Paez
et al. (2018), i.e., inverse the sign of h with likelihood e.

4.1.2. Human validation
This section will elaborate the experiments for validating the application of GPC to interactive set-
tings. The experiments are conducted by employing four human teachers (in the age of 20 to 30, of

23
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Algorithm 4 Oracle feedback

1: function FEEDBACK_ORACLE(sk , ak , Fb rate γ, error e)
2: h = 0
3: if r and(0,1) ≤ γ then
4: ao = optimal_action(sk )
5: if ao < ak −δ then
6: h =−1
7: else if ao > ak +δ then
8: h = 1
9: end if

10: if r and(0,1) ≤ e then
11: h =INVERSE_SIGN(h)
12: end if
13: end if
14: return h
15: end function

different background) to the three proposed benchmarks with the objective to achieve convergence
as fast as possible. The participants perform the training with every algorithm for every environ-
ment four times: two dummy runs to get acquainted with the environment, and two real runs that
are recorded. The tests runs are performed single blind: the participants are not informed about
which algorithm they controlled.

4.1.3. Active Learning (AL)

The potential regarding AL is assessed by encouraging feedback for uncertainty policy actions. In
order to exclude any random human factors, the performance is measured using an oracle. As such,
we will adapt the feedback rate by incorporating the uncertainty of the human model H , i.e.

γ=∆k +γc ,

with ∆k as in (3.6) and γc denoting the minimum constant feedback rate. The application of AL
is measured against a baseline with the same episodic feedback rate, but not uncertainty triggered
(see Table 4.1, ii and iv). The ALR is excluded from the test to circumvent any influences. To account
for feedback inconsistencies the erroneous feedback likelihood is set to e = 10%.

Table 4.1: Overview of the experiments from Section 4.1.3 and Section 4.1.4. The significance of both Active Learning
(AL) and the Adaptive Learning Rate (ALR) will be assessed. To account for feedback inconsistencies the error rate is set
e = 10%.

AL: ALR: Fb rate γ: Learning rate rk :
i X X ∆k +γc σp (sk )+σh(zk )+ cr

ii X 5 ∆k +γc rc

iii 5 X γep.avg(i ) σp (sk )+σh(zk )+ cr

iv 5 5 γep.avg(i i ) rc
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4.1.4. Ablation Study
The ablation assessment will analyze the contribution of the ALR (Section 3.4.1). We will run oracle
tests employing the learning rate in (3.5) and compare this to the baseline test from Section 4.1.3
with the same erroneous feedback likelihood. The episodic feedback rate γ is identical to i. In
addition, we will test a combination of AL and ALR. A summary of the experimental setup from
both Section 4.1.3 and this section is presented in Table 4.1.

4.2. Benchmarks
This section will introduce the benchmarks for testing the algorithms. The environments are all
adopted from the OpenAI Gym (Brockman et al., 2016), which is a toolkit for testing and benchmark-
ing RL algorithms. The algorithms adopted in this study are the Inverted Pendulum (Section 5.1.1),
the Cart Pole (Section 5.1.1) and the Lunar Lander (Section 5.1.3), as depicted in Fig. 4.1. The envi-
ronments are sorted with increasing complexity.

Figure 4.1: Snapshot of all domains adopted in this study. Most left the Pendulum-v0, in the middle the CartPole-v0 and
on the right the LunarLander-v2. The domains are sorted with increasing complexity.

4.2.1. Benchmark 1: Underactuated Inverted Pendulum
The first domain concerns the Underactuated Inverted Pendulum, as depicted in Fig. 4.1 on the
left hand side. The goal in this environment is to balance the pole upright with no velocity. The
dynamics of the environment is governed by the following equation of motion:

θ̈ml 2 +mg l sinθ = u(t ),

where g = 10m/s2, l = 1m and m = 1kg. The angle of the pole is denoted by θ. The environment
counts three continuous state-dimensions: x = [cos(θ),sin(θ), θ̇]T , and is initialized randomly for
every episode. Every episode takes 200 time-steps.

The pendulum domain employs a cost function rather than a reward function, i.e.,

C = (θ− 1

2
π)2 +0.1θ̇2 +0.001u2,

and consists of three parts: The first term denotes the deviation from the upright position, the rela-
tive velocity is represented by the second term and the third term accounts for the input costs. This
latter is accompanied with a very low gain and has low contributions to the total costs. It is primarily
used for fine-tuning in RL applied architectures, but will not be of major influence in this study. The
costs are accumulated for all 200 timesteps.

4.2.2. Benchmark 2: Cart Pole System
The second domain concerns the Cart Pole environment as displayed in the middle in Fig. 4.1. It
is slightly more complex compared to the inverted pendulum due to larger state-dimension. The
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goal of the environment is to balance the pole on the cart by only actuating a force on the cart. The
dynamics of the environment are governed by the following equations:

(M +m)ẍ +mL sinθθ̇2 −mL cosθθ̈ = u

mL2θ̈−mL cosθẍ −mg L sinθ = 0,

where M = 1kg and m = 0.1kg denotes the mass of the cart and pole respectively. The (half length)
of the pole is denoted by L = 0.5m and g = 9.8m/s2. The input is represented by u. The bounds
of the independent states are given as ±12° for the pole and ±2.4m for cart position. The episode
is terminated when one of the states exceeds the bounds, with a maximum of 2500 time-steps. All
states are randomly initiated in the range −0.05 > xi > 0.05 for every new episode. The continuous
states are given by x = [x, ẋ,θ, θ̇]T , with x the position of the cart and θ the angle of the pole.

The reward function for this environment is simple: for every timestep the reward is increased
by one. The maximum accumulated reward is therefore equal to the time-limit and hence 2500.

4.2.3. Benchmark 3: Lunar Lander
The final domain comprises the Lunar Lander, presented in Fig. 4.1 at the right hand side. This
environment is adopted in order to examine how the algorithms perform on more complex prob-
lems. The state-vector is given by x = [x, y, ẋ, ẏ ,θ, θ̇,δ1,δ2] and comprises both continuous and bi-
nary states. The first six states denote position, velocity and angular properties. δ1 denotes a binary
variable and is enabled whether the left leg is in contact with the ground. δ2 accounts for the right
leg.

The space ship needs to be landed between the two flags. The ship is always initiated at the
top of the frame. The surface and the position of the flags are randomized every new episode. The
difficulty in this environment is that the ship needs to be stabilized horizontally prior to landing on
the landing pad. The first input a1 is the main booster at the bottom to gain thrust into the direction
of the ship. The second input a2 controls the side boosters for rotation and translation. A value
−1 > a2 >−0.5 activates the left booster, whereas a value 0.5 > a2 > 1 activates the right booster. For
−0.5 > a2 > 0.5 the boosters are both not activated.

The reward for reaching the landing pad from the top of the screen is approximately 100 to 140
points based on the landing velocity. For landing between the flags an additional 100 is rewarded
and for crashing −100. For firing the main engine the reward decreased by 0.3 each frame. Leg
contact is awarded 10 per leg for the first contact.

4.3. Conclusion
This chapter introduced the experimental setup that is used to benchmark GPC. The novel algo-
rithm will be measured against baseline COACH for overall performance, robustness and human
applicability. The performance and robustness are measured by employing an oracle, a synthesized
human. An oracle allows us to establish a very controlled feedback setting in which the rate and the
error can be determined very accurately. The human applicability will subsequently be validated in
confined experiments. An additional experiment is conducted to test the potential regarding AL. In
this test, we increase the feedback rate of the oracle by the action uncertainty. The last experiment
concerns the ablations study regarding the ALR, where we will assess its contribution. The experi-
ments are ran on three different domains: the Underactuated Inverted Pendulum, the Cart Pole and
the Lunar Lander, all from the OpenAI Gym (Brockman et al., 2016), a well-known benchmark utility
for learning algorithms.
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Results

This chapter will present the results for the experiments described in Chapter 4. We will first focus
on the overall performance and the robustness of GPC compared to its baseline COACH in Sec-
tion 5.1. Apart from the theoretical tests with oracles we will validate the applicability of GPC to
human teachers in Section 5.2. The AL and ablation study is combined in Section 5.3. The results
are finally discussed and concluded in Section 5.4 and Section 5.5 respectively.

Note that the results in this chapter will be shown with transparent and opaque lines (e.g. Fig. 5.1).
The opaque lines are relevant to the respective figure. The transparent lines are shown to allow for
cross-comparison between the figures.

5.1. Performance and Robustness
This section will present the results for the performance and robustness of GPC trained by a syn-
thesized human. Each section will cover a different domain: the Underactuated Inverted Pendulum
in Section 5.1.1, the Cart Pole in Section 5.1.2 and the Lunar lander in Section 5.1.3. The conver-
gence properties will covered more extensively for the Pendulum domain since the limited state-
dimension allows for good visualizations of the details.

5.1.1. Benchmark 1:Underactuated Inverted Pendulum
This section will detail the performance and robustness of GPC in the Underactuated Inverted Pen-
dulum domain in the theoretical oracle tests. The adopted hyperparameters are depicted in 5.1 and
are tuned by reasonable guesses and trial and error. For the target policy of the oracle we performed
a training engaging the GPC framework. The tuning parameters for the baseline COACH are de-
picted in Appendix A.

Performance and Robustness

The return is presented in Fig. 5.1. We observe the most outspoken difference in the ideal feedback
case (a) with 0% erroneous feedback. GPC and GPC-NS, which show identical behavior, outper-
form COACH in the leading domain of learning process by having a steeper learning curvature.
GPC and GPC-NS have an advantage compared to COACH by having a coarser initial learning
rate, as motivated in Section 3.4. In contrast, due to the human feedback supervised learning (see
Celemin and Ruiz-del Solar (2015)) of COACH, a reduced learning rate is adopted for the leading
learning domain, resulting in a slower convergence. The advantage of GPC over COACH is reduced
by increasing erroneous feedback. for 20% in (c) we only observe a slight advantage of GPC over
COACH.

27
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Figure 5.1: Performance of the three experiments with erroneous feedback in the Pendulum domain. ’Oracle’ denotes
the performance of the (synthesized) trainer, and is fit with a one standard deviation confidence interval. The return is
depicted for [0,10,20]% erroneous feedback. The feedback itself is given at a constant rate of 5%. GPC and GPC-NS show
similar performance and outperforms COACH in leading domain. Differences get less explicit for increasing erroneous
feedback. The transparent lines are introduced to allow for cross-comparison between the respective figures.

Although the differences between the algorithms are not too outspoken in this domain, we will
assess the convergence properties of GPC as the principles also extend to other domains where the
differences will be more explicit.

Learning rate

The learning rate of the Pendulum domain is depicted in Fig. 5.2. The figure shows the learning rates
for 10% and 20% erroneous feedback in order to make the relative differences more explicit. GPC
shows in both figures the behavior we expect. Rough and coarse initial learning rate to create a raw
version of the policy and a more subtle rate upon convergence to allow for meticulous corrections.
Since for erroneous feedback the convergence is prolonged, the reduction of the learning rate is as
well. For COACH the initial learning steps are small before consistent feedback causes the rate to
increase, as can be seen in the figures.

State-space overview

A closer look on the converged GPC framework for 0% erroneous feedback is visualized in Fig. 5.3.
We observe the converged policy in (a) and the individual contributions of the ALR for both the
policy uncertainty σp (sk ) and the human model uncertainty σh(zk ) in (b) and (c) respectively. In-
teresting is the fact that the policy in (a) does not show the behaviour one would expect from a
symmetrical problem like the Inverted Pendulum. This is presumably the result of the inconsis-
tency of a human in its feedback. Additionally, a converged learning process from the trainer’s point
of view does not necessarily imply the overall optimal policy.

The learning rate in (b) induces the coarser learning phase in the leading domain of the learning
process. In here, the dark spots mark the states that have received feedback during the learning
process by having a reduced uncertainty. The light areas denote states without any feedback. The
learning rate in (c) is decreased for alternating feedback, which allows for action refinements. In this
figure zk is concatenated of the receptive state sk and the action ak following the policy P . Note that
the decreased uncertainty in (c) primarily occurs for θ̇ = θ = 0, i.e. where the pole is upright with no
velocity. The alternating corrections causes the learning rate to diminish, where small corrections
allow for an optimal fine-tuned policy.
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The total learning rate is, referring to Table 2, composed of the sum of the learning rated de-
picted in (b) and (c), plus an additional constant learning rate cr . This latter component ensures a
minimal value even when the learning rates induced by P and H stagnate and approximate zero.

Table 5.1: Hyperparameters for the Pendulum environment. See Section 2.4 for the properties of the hyperparameters.
The difference between the algorithms is explained in Section 3.2.

Pendulum
GPC GPC-NS

Kernel H : SE SE
Constant Kernel ch 0.7 0.45
Lengthscale lh 0.1 0.1

Kernel P : Matérn Matérn
Constant Kernel cp 0.01 0.03
lengthscale lp 0.7 0.5
parameter νp 0.5 1.5

Learning Rate c 0.01 0.02
Scaling w for GPC
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Figure 5.2: The average learning rate for the first 150 feedback instances of the learning process in the Pendulum domain,
both for 0% and 20% erroneous feedback. We observe a reduced learning rate for GPC and GPC-NS upon convergence,
which allow for policy refinements.
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Figure 5.3: Convergence properties of the GPC algorithm for the Pendulum environment. (a) denotes the policy, with
blue and red opposite action directions. For (b) and (c), the individual contributions of the components of the ALR (see
rk = σp (sk )+σh (zk )+ cr in (3.5)) are shown. (b) shows the learning rate induced by σp (sk ). The blue spots denote the
areas where feedback has been given and where the learning rate hence dropped. In (c), we observe the uncertainty for
the human model σh (zk ). The dark areas mark a reduced learning rate for policy refinements.

5.1.2. Benchmark 2: Cart Pole
This section will detail the performance in the Cart Pole domain for the performance and robustness
tests using an oracle. Again, the oracle is trained by a human employing GPC.

Performance and Robustness

The return for the oracle tests are depicted in Fig. 5.4 and concern the average return for n = 20
tests. The corresponding hyperparameters are displayed in Table 5.2. The parameters for baseline
COACH are depicted in Appendix A.

The return shows a more explicit performance difference between GPC and baseline COACH.
For ideal and erroneous feedback GPC is able to achieve superior and very robust performance.
Analogue to the observed behavior in the Pendulum domain, we notice a steep initial learning curve
of both GPC variants compared to baseline COACH. GPC-NS approaches the performance of GPC
for ideal feedback, but shows, similar to COACH, brittle behavior for increasing inconsistent feed-
back. In Section 5.4 we will further detail the reason for this slightly sub-optimal performance.
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Table 5.2: Hyperparmeters for the Cart Pole domain. See Section 2.4 for the properties of the hyperparameters. The
difference between the different algorithms is explained in Section 3.2.

Cart Pole
GPC GPC-NS

Kernel H : SE SE
Constant Kernel ch 0.01 0.08
Lengthscale lh 0.2 0.5

Kernel P : Matérn Matérn
Constant Kernel cp 0.01 10−3

lengthscale lp 0.2 0.7
parameter νp 1.5 1.5

Learning Rate c 0.02 0.05
Scaling w for GPC
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Figure 5.4: Return for the three experiments with increasing erroneous feedback in the Cart Pole domain. ’Oracle’ shows
the maximal obtainable return. Note the vast robustness of GPC to increasing erroneous feedback.

5.1.3. Benchmark 3: Lunar Lander
The last benchmarked environment is the Lunar Lander. The GPC hyperparameters are depicted
in Table 5.3. The parameters for baseline COACH are presented in Appendix A. In contrast to the
previous environment is the oracle not represented by a pretrained GPC policy. Instead, the target
policy is generated by a PID controller, provided by the creators of the respective environment of
the OpenAI Gym (Brockman et al., 2016).

Performance and Robustness

The return for the learning process with perfect feedback of the oracle can be observed in Fig. 5.5
(a) for n = 100 runs. The preset feedback rate of 5% was extended to two action-channels, resulting
in 5% feedback for each action independently and therefore a total rate of 10%.

We observe good performance and robustness for both GPC variants. For all error rates a steep
learning curve is shown that (presumably) converges on every tests. Interesting is the poor perfor-
mance (and robustness) of the COACH algorithm. The state-space of the Lunar Lander consists of
an eight dimensional continuous state space, which are all associated with an upper/lower bound
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Table 5.3: Hyperparameters for the Lunar Lander environment, as explained in Section 2.4. The difference between the
different algorithms is explained in Section 3.2.

Lunar Lander
GPC GPC-NS

Kernel H : SE SE
Constant Kernel ch 0.01 0.08
Lengthscale lh 0.2 0.2

Kernel P : Matern Matern
Constant Kernel cp 0.01 10−3

lengthscale lp 0.4 0.6
parameter νp 1.5 1.5

Constant Learning Rate c 0.02 0.05
Scaling w for GPC

[
1 1 1 1 1 1 1 1

]

and an interval for designing the RBF network. This vast amount renders a manual determination,
even in the case of educated guesses, unfeasible, and therefore results in poor performance. In
contrast, GPC only requires a length-scale for every additional input dimension, and therefore has
significant better scaling abilities to higher-order systems.
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Figure 5.5: Return for the experiments in the Lunar Lander environment. COACH is unable to achieve any performance
due to the infeasible parameterization of the feature space. GPC and GPC-NS show similar performance and achieve
convergence on all error rates.

5.2. Human Validation
The following results present the applicability of the benchmarks to human teachers. The goal for
adoption of these tests is to demonstrate that the algorithms can converge with humans and yield
similar performance to the tests with oracles.

The results in all domains are depicted in Fig. 5.6. The tests are averaged over eight training ses-
sions from four trainers with varying backgrounds following the protocol described in Section 4.1.1.
The individual results are depicted in Appendix B. For the Inverted Pendulum and the Cart Pole
environment both COACH and GPC seem to converge to maximal performance. Although some



5.3. Active Learning (AL) and Ablation Study 33

relative differences are visible in the initial learning curve and final performance, the variations are
not deemed statistically significant considering the number of tests. Interesting is the fact that the
lack of robustness, that was present in Fig. 5.4 for COACH does not emerge from this result. This
is probably due to the fact the human is better able to address possible shortcomings of a learning
algorithm and adapts the feedback strategy accordingly, whereas an oracle is rather static and does
not alter its feedback strategy to the observed behavior.

An interesting yet expected observation is the difference in return for the Lunar Lander environ-
ment in (c). Despite the fact that humans might have been able to overcome the sub-optimal RBF
network, they are still unable to achieve any performance for any run.
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Figure 5.6: Return of the GPC and COACH algorithms on all environments tested in this study: (a) Inverted Pendulum,
(b) Cart Pole and (c) Lunar Lander. The feedback was provided by four human teachers who initiated the learning process
two times for every algorithm for every environment. The results are in line the oracle tests.

5.3. Active Learning (AL) and Ablation Study
In this section we will cover the contributions of AL and the ALR, as has been described in Sec-
tion 4.1.4. The experiments were conducted in the Cart Pole domain, since the performance has
shown the most explicit differences between COACH and GPC, whilst still attaining convergence
for COACH. For the minimal feedback likelihood we adopted a value γc = 0.01 and a static learning
rate of rc = 0.4. For convenience purposes, the overview of Section 4.1.4 is reprinted here with the
used values in Table 5.4. The return of the tests is shown in Fig. 5.7. The learning rate as a function
of the feedback samples is depicted in Fig. 5.8.

First, let us focus on the advantages of AL. The comparison with the baseline learns us that in-
quiring feedback is very advantageous for the learning process. Both tests have the same feedback
rate, but uncertainty induced for ii and randomly given for iv, which show to accelerate the con-
vergence significantly. The convergence seems to benefit from the creation of a coarse policy first,
where the refinements are postponed until later stages.

Engaging ALR in a learning process shows to increase the feedback sample efficiency and con-
vergence rate. Compared to the baseline, enabling ALR reduces the required feedback, whilst still
yielding superior performance. The reason for this can be observed in in Fig. 5.8. The ALR shows to
balance the coarse and the refinement stage better, resulting in bigger learning steps in the leading
domain, and reduction of the step size upon convergence. Note that the average (AVG) learning rate
for the ALR is slightly less than for the static learning rates.

Superior overal performance is achieved for the combination of AL and ALR. This version, em-
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ploying both features, requires the least feedback and attains the highest return of all experiments.
Interesting is the slower decreasing learning rate curvature in Fig. 5.8 compared to ALR only in iii.
This relative difference is due to symbioses between AL and the ALR: the action uncertainty is em-
bedded into both the learning and feedback rate, resulting in a positive correlation and thus a higher
chance of feedback with higher learning rates.

Table 5.4: Reprinted overview of the experiments regarding AL and the ablation study, where the independent contribu-
tions of both propositions are assessed.

AL: ALR: Fb rate γ: Learning rate rk :
i X X ∆k +0.01 σp (sk )+σh(zk )+0.1
ii X 5 ∆k +0.01 0.04
iii 5 X γep.avg(i ) σp (sk )+σh(zk )+0.1
iv 5 5 γep.avg(i i ) 0.04
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Figure 5.7: The performance of Active Learning (AL) and Adaptive Learning Rate (ALR) experiment. Both features com-
bined shows superior performance, even though the least feedback was received. The significance of the independent
components is showed by comparing the baseline to respective AL and ALR. Both features show to accelerate the con-
vergence significantly.
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Figure 5.8: The learning rate as a function of the feedback samples from the experiments in Fig. 5.7. The static learning
rates for AL and the Baseline is 0.04. The ALR-engaged experiments establish a better balanced learning rate which is
even lower on average.

5.4. Discussion
This section will discuss the results from earlier sections. We will assess the advantages and disad-
vantages of GPC and COACH and drawn conclusions for applicability and generality. The overall
performance and robustness is discussed in Section 5.4.1. The results of the AL and ALR ablation
study are covered in Section 5.4.2. The side-to-side comparison of GPC and GPC-NS is done in
Section 5.4.3.

5.4.1. Performance and Robustness
This study covered the assessment of GPC and GPC-NS, a variant to GPC with a dynamical scal-
ing of the input data. Both variants have shown to outperform the current state-of-the-art on the
majority of the domains. In particular GPC, which performance was never exceeded by any other
algorithm. The most outspoken difference to the current state-of-the-art arose in the Lunar Lander
domain, the most complex problem adopted in this study. Both GPC variants showed to fast conver-
gence, whilst COACH was unable to achieve any performance. The reason for lack of performance
is that COACH has a major disadvantage when it comes to parameterizing the RBF network. This
parameterization process requires three dimension scales per input state, which renders unfeasible
for higher order systems. Reasonable guesses for the respective numbers are complex, since as-
sumptions about the input bounds and roughness are required for applicable numbers. In contrast,
GPC requires only one length-scale per input dimension and therefore employs better scaling abil-
ities to higher order systems. Furthermore, GPC-NS does not scale at all with the amount of inputs.
The input-vector is normalized in their respective length-scales, rendering equal dependencies for
every state-dimension. GPC and GPC-NS have shown to have greater scaling advantages, with su-
perior scaling abilities for GPC-NS.

However, while GPC-NS shows to be best scalable in terms of tuning parameters, it has also
demonstrated to have brittle robustness in the Cart Pole domain. This is, on one hand, presumably
partly due to the sub-optimal input scaling of the regression data, but the combination with the
hyperparameters could have amplified this effect. Observe Fig. 5.9, where the effect of an erroneous
feedback sample is displayed for two hyperparameters sets. Set 1 has a small length-scale for the
human model H whilst set 2 has a large length-scale. For the first set we observe desired behavior:
an inconsistent sample is easily compensated (orange arrow). In contrast, the erroneous sample in
set 2 shows to dwindle the learning rate due to a sudden decrease of σh(zk ) and σp (sk ) as a result of
the large length-scale. This undesired behaviour of stagnation can be easily compensated by adopt-
ing a shorter length-scale for the human model, but might be at the costs of performance for ideal
feedback. The tuning process regarding the GPC-NS algorithm for the Cart Pole environment was
due to this reason a trade-off between performance for ideal feedback and robustness to erroneous
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Figure 5.9: Effect of the hyperparameters on the development of the action as a function of feedback instances. An
optimal set compensates for erroneous feedback quickly (set 1), whereas a sub-optimal stagnates into regions of low
uncertainty and therefore needs multiple feedback samples for compensation (set 2).

samples, where the former was prioritized.

The validation with human teachers showed roughly the behavior that was in line with all oracle
tests. Two interesting observations were done. The first observation concerned the brisk robustness
of COACH in the Cart Pole environment, which did not arise in the human tests. Assuming that
human do provide inconsistent feedback, this effect is presumably the result of the human teachers
being able to respond to the consequences of their feedback, and are therefore able to compensate
for any algorithm shortcomings, in contrast to an oracle. The second interesting observation was
the inability for humans to converge Lunar Lander with the COACH algorithm. Due to reasons
given earlier this section, does COACH suffer from an unfeasible tuning process regarding the RBF
network and therefore attains no performance at all. This example shows the main proposition of
GPC over other methods.

5.4.2. Active Learning (AL) and Adaptive Learning Rate (ALR)
In this study we have covered two features that were introduced to advance the learning proper-
ties of GPC: AL, where a pioneering approach has been conducted regarding directional feedback
algorithms. And ALR, where the learning rate is adapted to the learning phase of the teacher.

The action uncertainty, obtained from the human model H , has shown to be an efficient mea-
sure to mark states that have not converged to the optimal (targeted) action. By increasing the
oracle likelihood for feedback by the uncertainty of the human model H we have seen a significant
increase in performance. However, the pioneering approach in this study does not prove the ac-
tual applicability to real human teachers. AL has shown potential in the adopted setting, however,
the extension to real trainer is a rather complicated procedure. This application would involve the
incorporation of many (for now) unknowns: like a good way of communicating the uncertainty to
humans. Moreover, a delay has to be taken into account to compensate for the time it takes for the
trainer to interpret the uncertainty together with the state and corresponding feedback. Therefore,
further examination to the human applicability should be conducted to conclude on this.

The second feature we have tested concerns the ALR. For the ALR we have shown that the
combination of policy uncertainty and human model uncertainty following (3.5) advanced the con-
vergence of the algorithm significantly. The proposed learning rate establishes a balanced trade-off
between a coarse initial policy creation and meticulous adaptions upon convergence.
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5.4.3. GPC versus GPC-NS
We have presented two variation of the newly proposed algorithm: The standard version of GPC and
its derivative GPC-NS. Whilst GPC has shown to outperform baseline COACH on every domain
tested, GPC-NS attained performance that was able to approach GPC, but showed sub-optimal
behavior on selected problems for erroneous feedback.

GPC concerns a method that does not employ RBF networks and therefore include advanta-
geous scaling properties for multidimensional systems. Where RBF networks parameterize the
state-space with three values per input dimension, GPC only needs one. Compared to COACH,
GPC attains higher performance while requiring less tuning parameters. A step further is the intro-
duction of GPC-NS. The difference with GPC is minor: the input data is normalized instead in stead
of manually pre-processed. The main innovation is that GPC-NS therefore does not scale with the
amount of input dimensions, establishing a very lean algorithm that can nearly be applied to any
domain straight out of the box. However, every benefit has a cost. The automatic relevance scal-
ing of GPC-NS shows to be sub-optimal on selected problems compared to GPC. The dynamical
scaling establishes a very scalable algorithm, but it is to the trainer to decide on which algorithm to
apply.

5.5. Conclusion
This chapter presented the results of the experiments depicted in Chapter 4.1. The novel algorithm,
GPC, was measured against baseline COACH on three different benchmarks: the Inverted Pendu-
lum, the Cart Pole and the Lunar Lander environment.

The first tests concerned the assessment of the overall performance and the robustness of the
algorithms. These experiments were carried out by an oracle, a synthesized human. The results
show that GPC is able to outperform baseline COACH on every domain tested. Interesting yet ex-
pected was the performance advantage of GPC in the Lunar Lander domain compared to baseline
COACH. COACH employs RBF networks, which are engineered by tuning a grid over the input
space, requiring a lower bound, upper bound and an interval per input dimension. This process
results in a parameterization in R24. Despite reasonable guesses, the tuning space dimension ren-
ders this process unfeasible. Alternative to GPC, we have benchmarked GPC-NS, a version that
performs automatic input scaling and therefore employs optimal scaling abilities to higher order
systems. It has shown to approach the performance of GPC but appears to be sup-optimal on the
Cart Pole domain for increasing inconsistent feedback.

The performance and robustness results were validated for by human teachers. For these tests,
four trainers performed two runs on each adopted domain. The results were in line with what was
expected from the oracle tests. Despite the fact that human are able to anticipate better to algorithm
shortcomings, no performance was attained for COACH in the Lunar Lander domain.

The results were concluded by the AL and ALR assessment. We have seen a significant improve-
ment of the convergence rate for both AL and ALR independently. The ALR balances the learning
rate very neatly, increasing sample efficiency and obtaining faster convergence. The action uncer-
tainty has shown in AL that it can be used to converge faster by inquiring feedback for high uncer-
tainty. Note that this study only provided a pioneering approach regarding AL. The actual human
application is still a very interesting topic.





6
Conclusion and Recommendations

The main objective in control engineering is to find a state-action policy that drives the system to
a certain reference. A prevalent model-free approach to derive a control law is the Reinforcement
Learning (RL) domain. Past studies (e.g. Hessel et al. (2018); Sutton and Barto (2018)) however show
that this technique requires extensive interaction with the environment and therefore renders real-
world applications unfeasible. In contrast, humans are very effective in inferring suitable control
strategies when facing new problems. Specifically for intuitive problems, like picking up objects or
playing simple games, humans are able to achieve decent performance on first try (Hessel et al.,
2018). Communicating this domain knowledge has shown to drastically accelerate model-free con-
trol techniques. A very recent and innovative development is the introduction of directive feedback
frameworks, which show to be very effective on intuitive problems without requiring expert knowl-
edge on the modelling and control. The current state-of-the-art regarding directional learning was
introduced by Celemin and Ruiz-del Solar (2015) and coined COrrective Advice Communicated by
Humans (COACH). COACH takes action corrections from the trainer to update the policy in an
iterative fashion. It shows to outperform conventional evaluative feedback algorithms on confined
problems. However, COACH employs Radial Basis Function (RBF) networks, which have poor scal-
ing abilities to higher order systems due to the vast amount of tuning parameters.

To improve on this point, we introduced Gaussian Process Coach (GPC). This algorithm pre-
serves COACH’s structure, but employs Gaussian Processes (GPS) as an alternative to RBF net-
works. It allows us to utilize the available uncertainty in three ways. 1) The learning rate is adapted
to the teacher’s learning phase in the Adaptive Learning Rate (ALR). 2) We provide a pioneering
approach regarding the application of Active Learning (AL) to directive feedback implementations.
3) We introduce an uncertainty based novel sparsification technique that specifically applies to it-
erative GP policy updates.

The novel algorithm was tested on three OpenAI Benchmarks (Brockman et al., 2016) for various
performance measures. The conclusions in the next section, Section 6.1. Suggestions on further
development are provided in Section 6.2.

6.1. Conclusions
The contributions of GPC can be summarized as follows:

• GPC has better scaling abilities compared to COACH GPC employs GPS as an alternative to
RBF networks of COACH. For every additional input parameter, a GP requires an additional
length-scale to be set. In contrast, RBF networks require 3 extra parameters per input dimen-
sion, rendering parameterization unfeasible for higher order problems. Employing GPS in
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the GPC framework has shown to be a suitable alternative to RBF networks, preserving fast
performance whilst requiring less tuning inconvenience.

• AL can accelerate the learning of GPC The action uncertainty estimate from the human
model H infers about the confidence of the executed action. For uncertain regions, the agent
can ask the trainer for feedback in order to converge faster. A pioneering approach regard-
ing AL has shown that inquiring feedback samples for high uncertainty advances the learning
properties significantly. A side-note is that these tests were executed with an oracle (synthe-
sized human) only. The human validation is an encouraged topic of research.

• The ALR accelerates convergence of GPC This study has employed an ALR, that establishes
a coarser learning rate for the leading domain which diminishes upon convergence. Abla-
tion tests have shown that this transition accelerates the learning drastically by establishing a
balanced rate per state.

• GPC-NS is a suitable alternative to GPC This study introduced an alternative version of GPC:
GPC-NS. The difference with GPC is minor: GPC-NS employs automatic scaling of the input
data and therefore does not scale with the state-dimension of the problem. This feature could
be decisive for higher-order systems where no extra tuning is required in contrast to other
methods. GPC-NS showed to approach GPC’s performance and robustness on the majority
of the experiments. However, some slight sub-optimal behavior was shown on the Cart Pole
environment to erroneous feedback. It is therefore up to the trainer and the application to
decide on the variant to employ.

6.2. Recommendations
Next to the conclusions that have been a result of this study, the potential of GPC and directional
feedback in general could be researched more in the following potential fields:

• Human validation of AL The foremost recommendation for future research is the study for
active learning. GPS have shown to be an effective manner of estimating the uncertainty of
actions and trigger feedback accordingly to accelerate the learning process. However, the hu-
man validation, including all factors that could be of influence, is still an interesting topic for
research.

• Further innovate dynamical scaling of GPC-NS It might be possible to further innovate the
dynamical scaling, such that the applicability and generality of GPC-NS is again extended and
shows robust behavior on all domains. Moreover, the setting with autonomous scaling is yet
to be validated on humans to conclude about physical applicability.

• Limitations GPC GPC offered a suitable alternative to RBF networks by introducing GPS.
However, a well known disadvantage is the poor online scaling abilities to vast amounts of
data. It would be interesting to know the limitations of GPC and ways to overcome this.



A
COACH Parameters

In Table A.1 the tuning parameters of the COACH framework are depicted for the adopted domains.
The RBF networks requires 3 parameters per input dimension n, which does not scale for higher
order problems, as has been detailed in Section 2.3.2.

Table A.1: Parameters of the COACH algorithm for all adopted environments. The meaning of the symbols is explained
in Section 2.3. The upper and lower bound of the feature space are denoted by ub. and lb. respectively. The amount of
intervals is represented by int.

COACH Parameters

Pendulum Cart Pole Lunar Lander
COACH:

Learning rate α 30 30
[
1 1

]
Error e 5 5

[
5 1

]
Constant learning rate c 1.8 1.8

[
1 20

]
Features RBF RBF RBF

Feature space: lb. int. ub. lb. int. ub. lb. int. ub.
State 1 −1 6 1 −1.44 4 1.44 −1 2 1
State 2 −1 6 1 −.12 4 .12 −1 3 1
State 3 −6 7 6 −.126 4 .126 −1 2 1
State 4 −.4 4 .4 −1 2 1
State 5 −1 2 1
State 6 −1 2 1
State 7 −1 2 1
State 8 −1 2 1
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B
Individual results Human teacher

Individual results of the experiments with human teachers. For the Underactuated Inverted Pen-
dulum in Appendix B.1, for the Cart Pole in Appendix B.2 and for the Lunar Lander in Appendix
B.3.

B.1. Underactuated Inverted Pendulum
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Figure B.1: Individual results for the Underactuated Inverted Pendulum environment for the experiments with human
teachers. The rows distinguish the 4 trainers.
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B.2. Cart Pole
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Figure B.2: Individual results for the Cart Pole environment for the experiments with human teachers. The rows distin-
guish the 4 trainers.
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B.3. Pendulum
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Figure B.3: Individual results for the Lunar Lander environment for the experiments with human teachers. The rows
distinguish the 4 trainers.
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Learning Gaussian Policies from Corrective Human Feedback

Daan Wout∗ Jan Scholten Carlos Celemin Jens Kober

Abstract

Learning from human feedback is a viable al-
ternative to control design that does not re-
quire modelling or control expertise. Partic-
ularly, learning from corrective advice garners
advantages over evaluative feedback as it is a
more intuitive and scalable format. The cur-
rent state-of-the-art in this field, COACH, has
proven to be a effective approach for con-
fined problems. However, it parameterizes the
policy with Radial Basis Function networks,
which require meticulous feature space engi-
neering for higher order systems. We intro-
duce Gaussian Process Coach (GPC), where
feature space engineering is avoided by em-
ploying Gaussian Processes. In addition, we
use the available policy uncertainty to 1) in-
quire feedback samples of maximal utility and
2) to adapt the learning rate to the teacher’s
learning phase. We demonstrate that the novel
algorithm outperforms the current state-of-the-
art in final performance, convergence rate and
robustness to erroneous feedback in OpenAI
Gym continuous control benchmarks, both for
simulated and real human teachers.

1 INTRODUCTION

In contrast to autonomous Machine Learning techniques,
humans are very effective in inferring suitable control
strategies when facing new problems. Specifically for
intuitive problems, like picking up objects or playing
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Figure 1: A schematic diagram of the feedback frame-
work of Gaussian Process Coach (GPC). The teacher
provides feedback h to corrected the observed action in
the respective state.

simple games, humans are able to achieve decent per-
formance on first try (Hessel et al., 2018). Communi-
cating this domain knowledge has shown to drastically
accelerate model-free control techniques. For example,
a well known approach is the Learning from Demon-
stration (LfD) framework, where a policy is derived us-
ing examples of proper execution (Ross et al., 2011).
Other methods, like Apprenticeship Learning, employ
demonstration to reversely derive the trainer’s choices
for autonomous improvement (Abbeel and Ng, 2004).
To avoid superfluous (and possibly expensive) interac-
tion with the trainer, Gräve and Behnke (2013); Losey
and O’Malley (2018) improved sample efficiency with an
Active Learning (AL) framework where demonstrations
are inquired especially for uncertain policy executions.

LfD could however be troublesome for systems that fea-
ture agile dynamics. Moreover, the demonstrations re-
quire expert knowledge of the system and the solution
(Argall et al., 2009). A less demanding approach has
been studied by, e.g., Griffith et al. (2013); Knox and
Stone (2009), where the trainer gives scalar reward sig-
nals (evaluative feedback) in response to the agent’s ob-
served behavior. Thomaz and Breazeal (2006) however
argue that trainers implicitly guide in their reward signal,
and base their feedback not solely on past actions but also



on what is going to happen. This intrinsic preference
in guidance has been studied by Celemin and Ruiz-del
Solar (2015) and resulted in COrrective Advice Com-
municated by Humans (COACH), an algorithm that al-
lows teachers to shape the optimal policy by providing
corrective feedback, i.e. in the action domain. This ap-
proach engages the users intuition without requiring ex-
pertise on the task. Moreover, teachers are now able
to guide a policy rather than to evaluate it, which has
shown to be better scalable to high-dimensional prob-
lems (Suay and Chernova, 2011). COACH has shown to
be very efficient on intuitive problems and outperforms
evaluative approaches in human assisted learning. How-
ever, COACH employs Radial Basis Function (RBF) net-
works, which require extensive design procedures. The
application of COACH is therefore limited to simple and
confined problems and hence does not exploit the full
potential of corrective feedback implementations.

In order to improve on this point, we introduce GPC,
a corrective feedback framework following COACH’s
structure but comprising engineering advantages by in-
troducing Gaussian Processes (GPs) as alternative to
RBF networks. In addition, we employ the avail-
able uncertainty estimations of GPs for 1) A pioneer-
ing approach of employing AL in an corrective feedback
framework, analogue to what Gräve and Behnke (2013);
Maeda et al. (2017) do with LfD. 2) Match the learn-
ing rate to the learning phase of the teacher and adapt
policy corrections accordingly. We apply the novel algo-
rithm to several benchmarks of the OpenAI gym (Brock-
man et al., 2016), both with simulated and real human
teachers, to show the significance of the proposed con-
tributions and the performance in a comparison against
previous work.

This study is organized as follows: background material
is covered in Section 2. Section 3 details the novel algo-
rithm GPC. The experimental setup and corresponding
results are presented in Section 4 and Section 5 respec-
tively.

2 BACKGROUND

In the following, we detail the key components of GPC,
starting with COACH which is the basis of the novel
framework. The principles of GP are covered thereafter.

2.1 COACH

COrrective Advice Communicated by Humans
(COACH), proposed by Celemin and Ruiz-del So-
lar (2015), is an algorithm that trains agents with
corrective advice. It has policy Pc : S → Rn, with S the
set of states and n the action-space dimensionality, that

Algorithm 1 COACH framework

1: Given:
Policy learning rate e
Human model learning rate β
Constant learning rate cc
Feature space function φ(·)

2: for all k do
3: Get state sk
4: Compute new action ak ← θkφ(sk)
5: Obtain corrective advise h
6: if h 6= 0 then
7: H(sk) = ψTk φ(sk)
8: ∆ψ = β(h−H(sk))φ(sk)
9: Human model update ψk+1 = ψk + ∆ψ

10: Get learning rate α(sk) = |H(sk)|+ cc
11: ∆θ = α(sk)φ(sk)he
12: Policy update θk+1 = θk + ∆θ
13: end if
14: end for

maps states to continuous actions. The trainer observes
the agent and occasionally suggests to either increase
or decrease the action. This feedback h ∈ {−1, 1} is
modelled in the human feedback model: Hc : S → Rn.
The parameterization of both models is done by RBF
networks, where the respective models have different
weight to the feature vector φ(sk), with sk denoting
the state in time-step k. The learning framework is
supported by the following modules.

2.1.1 Policy Supervised Learner

The policy Pc(sk) provides the action a for a given state
sk, by taking the linear combination of the weights and
the feature vector, i.e. ak = Pc(sk) = θTk φ(sk), with
θ the weight vector of the policy. For every directive
correction h given by the teacher, the weight vector is
updated according to a Stochastic Gradient Descent ap-
proach:

θk+1 = θk − α(sk)∇θJ(θ),

with α(sk) the learning rate (obtained as described in
Section 2.1.2) and J(θ) denoting the cost function,
which is the squared error between the applied and ’de-
sired’ action, given by h and magnitude e. The latter
denotes a free parameter set by the user within the range
of the action domain. Hence, taking the human feedback
into account, the gradient becomes

θk+1 = θk + α(sk)φ(sk)he. (1)

2.1.2 Human Feedback Supervised Learner

This module models the feedback of the trainer as a func-
tion of the state sk. The predictions are given by a lin-



ear combination of the human model weights ψk and the
feature vector φ(sk), i.e. H(sk) = ψkφ(sk). The up-
dates on the weight vector ψk are conducted in the same
fashion as (1), but now with a known error magnitude
eh = h−H(sk) such that

ψk+1 = ψk + β(h−H(sk))φ(sk)

with β the learning rate of the human model. By this
human model, the learning rate in (1) is given as

α(sk) = |H(sk)|+ cc. (2)

Note that H(sk) ≈ 1 for consistent feedback with equal
sign and hence increases the learning steps. For alter-
nating feedback the learning rate diminishes. To prevent
the learning rate from dwindling to zero, (2) is appended
with a constant factor cc.

The outline of the COACH framework is depicted in Al-
gorithm 1. Lines 3-5 comprise of policy executions. The
update lines consist of the human prediction and human
model updates (line 7-10) as motivated in Section 2.1.2.
The policy updates from Section 2.1.1 are subsequently
given in lines 11-12. Furthermore, the COACH frame-
work can be extended by the Credit Assigner, which
takes a human delay into account for the feedback given
by the teacher. Since this study will not exploit this fea-
ture it will not be covered here.

2.2 GAUSSIAN PROCESSES

Gaussian Processes (GPs) are Bayesian non-parametric
function approximation models. It is a collection of ran-
dom variables, such that every finite collection of those
random variables has a multivariate normal distribution.
GPs do not require specification of a model structure a
priori and provide the uncertainty along with the predic-
tions. A GP is fully specified by its mean m(x) and co-
variance function k(x,x′), i.e.

f(x) ∼ GP(m(x), k(x,x′)).

Let y = {y1, ...yn} be a set of observations from a
stochastic process

yi = f(xi) + ε, (3)

where xi denotes the input vector of observation yi.
The noise ε is assumed Gaussian with standard deviation
σo. The input matrix is defined as X = {x1, ...,xn}.
Applying the conditional distributions (Rasmussen and
Williams, 2006), the following posterior predictive equa-
tions for test inputs x∗ are given as:

f∗|X,y,x∗ ∼ N (f̄∗, cov(f∗)), where

f̄∗ = m(x∗) +K∗[K + σ2
nI]−1(y −m(X)),

cov(f∗) = K∗∗ −K∗[K + σ2
nI]−1K∗,

where K∗ = k(X,x∗), K∗∗ = k(x∗,x∗), and K is the
Gram matrix with entries Kij = k(xi, xj). The Gaus-
sian noise per observation is denoted as σn and has a sim-
ilar function as ε in (3). The kernel function k(x,x′) is
a measure of similarity between two input vectors x and
x′. In this study, we employ two kernel functions. The
first one is the squared exponential (SE) kernel, which is
given as

ks(x,x
′) = σ2

s exp

(
−|x− x′|2

2l2

)
, (4)

with βr = {σs, l} the hyperparameters of the kernel
function, consisting of the signal variance σs and length-
scale l. The length-scale denotes a measure for the
roughness of the data. In general, one can assume that
extrapolating more than l units away from the input data
is considered unreliable. The second kernel function, the
Matérn kernel, is specified as

km(x,x′) = σ2
m

21−ν

Γ(ν)

(√
2ν

2

l

)ν
Bv

(√
2ν
|x− x′|

l

)

(5)
with Bv(·) the modified Bessel function (Abramowitz
and Stegun, 1965), Γ(·) the Gamma function and the
hyperparameters βm = {σm, l, ν}. Here, ν denotes a
‘smoothness’ parameter that correlates with the amount
of times the target function is differentiable (Rasmussen
and Williams, 2006).

For multivariate targets, we train conditionally indepen-
dent GPs for each target dimension.

3 GAUSSIAN PROCESS COACH (GPC)

We now introduce Gaussian Process Coach (GPC), an al-
gorithm based on COACH that employs GP as an alter-
native to RBF networks to comprise advantage in scaling
and sample efficiency. A schematic of the method is de-
picted in Fig. 1. In the main format, the trainer observes
the environment and the current policy and provides ac-
tion corrections to advance the policy. These corrections
trigger agent updates in order to take immediate effect
on the policy. This process is repeated until convergence.
The pseudo-code of GPC is in Algorithm 2.

This section defines GPC for a one dimensional
action-space, but scales straightforwardly to higher di-
mensional problems.

3.1 MODELLING POLICY AND FEEDBACK

The GPC framework engages two GP models: the policy
P and the human model H . The prior of the policy is
modelled as:

P : S → R ∼ GP(mp(s), kp(s, s
′)), (6)



Algorithm 2 GPC Algorithm

1: Given:
Kernels k(·) for H and P
Hyperparameters β with Mcs or Mns

Constant learning rate cr
2: for all k within episode do
3: Get state sk
4: Execute action ak = P (sk) and obtain σp(sk)
5: Obtain corrective advise h ∈ {−1, 1}
6: if h 6= 0 then
7: zk = (sk, ak)
8: hest = H(zk) with uncertainty σh(zk)
9: Learning rate rk ← σp(sk) + σh(zk) + cr

10: New action an = ak + rk · hk
11: Update dictionary P and apply SPARS(Np)
12: Update dictionary H: Nh = {..., (zk, hk)}
13: Update Mp,Mh ← cov(Np, Nh) // NS only
14: Train GPs: TRAIN(P,H)
15: end if
16: end for

Here, mp(s) is assumed 0. The policy is trained with the
set Np = {(s1, a1), (s2, a2), ..., (sm, am)}, which con-
tains state-action data derived from the directional feed-
back from the trainer (details in Section 3.3.3). The hu-
man feedback is modelled by

H : S ×A→ R ∼ GP(mh(z), kh(z, z′)), (7)

with A the action space. The mean is assumed mh(z) =
0. This human model is trained with the set Nh =
{(z1, h1), (z2, h2), ..., (zv, hv)}, where z denote the
concatenation of state s and action a, and h ∈ {−1, 1}
the suggested action correction of the teacher (decrease
or increase). The proposed GPC introduces a different
human model with respect to the one of COACH, where
the feedback was only state dependent, i.e. Hc : S → R
(see Section 2.1). We have integrated the action in our
human model to infer the human feedback per state-
action, rather than state only. Further details on this prin-
ciple are provided in Section 3.3, where we elaborate on
the uncertainty advantages.

Both models of GPC require a kernel function that repre-
sents how the target function and uncertainty propagates
along the input dimensions. For the human model H we
assume a smooth propagation of the target function and
therefore adopt the SE kernel (4). To allow for more free-
dom in the policy function in terms of roughness and dis-
continuities, we adopt the Matérn kernel (5) for P (Du-
venaud, 2014; Rasmussen and Williams, 2006).

3.2 FEATURE SCALING

The policy in (6) and human model in (7) both concern a
multidimensional regression on the input data. Each in-
put dimension may however be subject to data with com-
pletely different orders of magnitude, such that a single
length-scale is unsuitable. We therefore take an approach
that allows us to set an independent length-scale per in-
put dimension.

Let us consider the SE kernel from (4). Following Ras-
mussen and Williams (2006), the parameterization in
terms of the hyperparameters results in

ks(x,x
′) = σ2

s exp

(
−1

2
(x− x′)T lM(x− x′)

)
,

with M the diagonal matrix consisting of the character-
istic length-scales per axis. Such a covariance function
implements Automatic Relevance Determination (ARD)
(Neal, 1995). This study adopts two distinct methods
for determining the diagonal values of M . In the first
approach we let the trainer decide on the respective rele-
vance of the input dimensions:

Mcs = diag(w)−2,

with w a vector consisting of custom ‘weights’ on the
input dimensions. These values are determined a priori
and deemed static throughout the learning process. This
method is referred to as GPC(-CS). The second method
concerns the normalization of the independent inputs for
an equal relative dependency, resulting in an approach
where any length-scale tuning is circumvented. The re-
sult is an approach that does not scale with the input
dimension and could hence be decisive for higher-order
systems. The parameterization is carried out by

Mns = diag(σm)−2,

with σm the vector containing the variance of the in-
dependent input dimensions, which is updated for ev-
ery feedback sample (see line 13 in Algorithm 2). This
method will be referred to as GPC-NS.

The extension to the Matérn kernel (5) is straightforward
with Mcs = diag(w) and Mns = diag(σm) for every
length-scale l. To distinguish between the scaling of the
policy and the human model we add subscript h and p,
e.g. Mcs,h.

3.3 LEVERAGING UNCERTAINTY

GPs provide uncertainty estimates with every query point
based on dissimilarity with the training data. For the pol-
icy, the uncertainty reflects the presence of feedback data
in the respective or surrounding state. Due to the integra-
tion of the action in the input of the human model, this
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Figure 2: This hypothetical situation clarifies how the ac-
tion and uncertainty evolves with every feedback sample.
The uncertainty is shown for the human model H and is
reduced for a (s, a)-pair as feedback is obtained.

uncertainty reflects the presence of feedback for state-
action pairs. To elaborate on this, a hypothetical example
is depicted in Fig. 2. The contiguous plots show the evo-
lution of the policy and its uncertainty as new feedback
is obtained. We may envision this principle as building a
map that discloses certain and uncertain regions with re-
spect to past feedback. This feature comprises the main
advantage of GPC over other methods.

3.3.1 Adaptive Learning Rate (ALR)

We assume that the teacher encounters two teaching
phases during the learning period. The initial learning
phase arises when the process is commenced and the pol-
icy is idle. We believe that the feedback in this stage
will mostly concern raw adjustments in order to cre-
ate a coarse version of the final policy. These coarse
adaptations will gradually shift towards the second learn-
ing phase where trainers apply small refinements to the
policy for meticulous improvements. In this study, we
model the transition from coarse to fine adjustments not
as a universal annealing process. Instead, we adapt the
learning rate to the intended correction per state.

Hence, we introduce the following Adaptive Learning
Rate (ALR):

rk = σp(sk) + σh(zk) + cr, (8)

with rk the learning rate, sk the state and zk the con-
catenation of (sk, ak) (see line 7-9 in Algorithm 2). The
uncertainty of the policy σp allows us to accelerate the
learning by increasing the learning rate for the first feed-
back instances. The uncertainty estimation of σh adopts
a high value for consistent feedback (see Fig. 2). As soon
as alternating feedback is given, the uncertainty, and thus
the learning rate decreases to allow for refinements. The
parameter cr denotes the constant rate and prevents stag-
nation in the event that σp,h ≈ 0. GPC differs from
COACH for updating the policy, since the error magni-
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Figure 3: Snapshot of a policy (a) and learning rate (b)
for controlling a system around an unstable equilibrium
(0, 0).

tude e is now implicitly included in the computation of
rk in (8).

An example of the policy and the learning rate during a
learning process is depicted in Fig. 3. It shows an envi-
ronment with a two-dimensional continuous state-space
and an unstable equilibrium as reference at (x1, x2) =
(0, 0). The policy (a) is trained by a teacher employ-
ing the ALR. The corresponding learning rate is dis-
played in (b). Note that for critical states (area around
(x1, x2) = (0, 0)) alternating feedback has caused the
ALR to decrease, such that the policy can be refined.

3.3.2 Active Learning (AL)

The available uncertainty of the GPs can be used in an
AL framework (Chernova and Thomaz, 2014), where
high-informative feedback can be inquired for uncertain
actions. Recent studies have shown great performance
improvements with agent-induced feedback, mostly in
the LfD domain (Gräve and Behnke, 2013; Losey and
O’Malley, 2018). This study is, to the authors’ knowl-
edge, the first to assess the potential with a directional
feedback framework. Other than Chernova and Veloso
(2009), who employed AL with the uncertainty of the
visited state, we believe that especially the uncertainty
in the action can advance the convergence of directive
feedback methods. The motivation for this reasoning is
that, in contrast to the LfD paradigm, inquiring human
assistance in terms of feedback does not yield the opti-
mal action instantaneously. In GPC - and feedback im-
plementations in general - multiple feedback instances
are needed to approach the optimal policy. Hence, rather
than employing state uncertainty, we apply uncertainty
per action, which is obtained by the human model

∆k = caσh(zk), (9)

with zk the same as in (7) and gain ca to decouple AL
from the ALR (see (8)). By inquiring feedback for high
values of ∆k we prioritize consistent feedback, since in-
consistent feedback would reduce ∆k. AL will therefore



Algorithm 3 Sparsification of policy P training data

1: function SPARS(sk, an, σp, σthres, Np)
2: if σp < σthres then
3: index← arg maxi kp(si, sk)
4: Np(index)← (sk, an)
5: else
6: Append dictionary Np = {. . . , (sk, an)}
7: end if
8: return Np
9: end function

further aid in establishing an inaccurate but rather com-
plete policy as early as possible, before proceeding to the
refinement stage.

3.3.3 Sparsification for Corrective Learning

For every feedback instance provided by the trainer, the
dictionary of the policy P is appended with the new tu-
ple:

Np = {. . . , (sm+1, am+1)} (10)

where (sm+1, am+1) is calculated based on the executed
action ak, learning rate rk and feedback hk, i.e.

am+1 = ak + rkhk.

This approach renders the previous action ak obsolete. In
this application, a deficient property of GPs that hinders
convergence is that by appending the dictionary follow-
ing (10), the updated action on sm+1 is an average of ak
and am+1 (assuming a coinciding or adjoining data in-
stance). We therefore propose a sparsification method in
which the tuple most relevant to the obsolete action ak
is omitted, rendering am+1 the new action. Taking rele-
vancy into account while preserving the uncertainty esti-
mations was not found in conventional online sparsifica-
tion methods (e.g. Nguyen-Tuong and Peters, 2010). We
therefore introduce a new sparsification technique that
specifically applies to applications with iterative updates
on the GP policy model.

The main outline of this sparsification is as follows: for
every new feedback instance (sm+1, am+1), the uncer-
tainty of the policy σp(sk) is compared against a certain
threshold σthres. We set this threshold to

σthres =
1

2

√
σ2
s,m,

with σ2
s,m either from (4) or (5). In the event that this

threshold is exceeded, the dictionary sample with the
biggest covariance (i.e. smallest Mahalanobis distance
(Mahalanobis, 1936)) is omitted. We thereby prevent the
policy from being negatively influenced by obsolete (old)
training data. The sparsification method is presented in

Figure 4: A snapshot of each domain used for the ex-
periments. the most left benchmark denotes the Un-
deractuated Inverted Pendulum(-v0), The Cart-Pole(-v0)
environment in the middle, and most right the Lunar
Lander(-v2) (Brockman et al., 2016). The environments
are sorted with respect to complexity.

Algorithm 3 and executed simultaneously with append-
ing Np, see line 11 in Algorithm 2. The existing input
elements of the policy dictionary Np are denoted by si.

4 EXPERIMENTAL SETUP

In this section we detail the experiments in which the
performance of GPC is evaluated. The tests are carried
out in three standardized benchmark problems from the
OpenAI Gym (Brockman et al., 2016), namely the In-
verted Pendulum(-v0), the Cart-Pole(-v0) and the Lunar
Lander(-v2). The experiments with oracles (synthesized
feedback source) are introduced to test the performance
with consistency for all algorithms. The oracle tests also
comprise the AL and ALR assessment. The applicabil-
ity to the interactive domain is tested in separate experi-
ments with actual human feedback. The performance of
GPC1 will be tested against baseline COACH throughout
(Celemin and Ruiz-del Solar, 2015)2.

4.1 ORACLE TESTS

An oracle simulates human feedback based on a compar-
ison of the executed action with a reference policy. The
oracle experiments are carried out to exclude human fac-
tors such as inconsistency and limited attention that hin-
der a fair comparison between methods. Furthermore,
it allows to accurately study the robustness of the algo-
rithms to erroneous feedback.

4.1.1 Performance and Robustness tests

First, we will assess the performance of GPC for perfect
and erroneous feedback. For the experiments we set a
static feedback rate γ = 5%. When the action is close to
the target action within the range δ, i.e. |ak − a∗| = δ,
the policy is considered converged and receives no more
feedback. The robustness of the algorithms is tested by
erroneous feedback. In this study, we will adopt error

1github.com/DWout/GPC
2github.com/rperezdattari/COACH-gym



rates of 10% and 20%, which will be administered fol-
lowing the protocol of Celemin et al. (2018).

4.1.2 Active Learning (AL)

The potential regarding AL is assessed by encouraging
feedback for uncertainty policy actions. In order to ex-
clude any random human factors, the performance is
measured using an oracle. As such, we will adapt the
feedback rate by incorporating the uncertainty of the hu-
man model H , i.e.: γ = ∆k + γc, with ∆k as in (9) and
γc denoting the minimum feedback rate. The applica-
tion of AL is measured against a baseline with the same
episodic feedback rate, but not uncertainty triggered (see
Table 1, ii and iv). The ALR is excluded from the test
to circumvent any influences. To account for feedback
inconsistencies the erroneous feedback likelihood is set
to 10%.

4.1.3 Ablation Study

The ablation assessment will analyze the contribution of
the ALR (Section 3.3.1). We will run oracle tests em-
ploying the learning rate in (8) and compare this to the
baseline test from Section 4.1.2 with the same episodic
feedback rate and erroneous feedback likelihood. In ad-
dition, we will test a combination of AL and ALR. A
summary of the experimental setup is presented in Ta-
ble 1.

Table 1: Overview of the experiments regarding Active
Learning (AL) and the ablation study for the Adaptive
Learning Rate (ALR). For fair comparison the experi-
ments are conducted with the same feedback (Fb) rate
γ.

AL: ALR: Fb rate γ: Learning rate rk:
i X X ∆k + γc σp(sk) + σh(zk) + cr
ii X 5 ∆k + γc rc
iii 5 X γep.avg(i) σp(sk) + σh(zk) + cr
iv 5 5 γep.avg(ii) rc

4.2 HUMAN TEACHERS

This section will elaborate the experiments for validating
the application of GPC to interactive settings. The exper-
iments are conducted by employing four human teachers
(in the age of 20 to 30, of different background) to the
three proposed benchmarks with the objective to achieve
convergence as fast as possible. The participants perform
the training with every algorithm for every environment
four times: two dummy runs to get acquainted with the
environment, and two real runs that are recorded. The
tests runs are performed single blind: the participants are
not informed about which algorithm they controlled.
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Figure 5: Average environmental return per episode for
the Pendulum-v0 domain. GPC and GPC-NS show
nearly the same performance, and outperform COACH
mainly in the leading domain. The final performance is
similar. The performance for every error rate is reprinted
(shaded) in all figures for cross-comparison.

5 EXPERIMENTAL RESULTS

In this section, we report GPC’s performance on the three
domains (see Section 4). The kernels and hyperparame-
ters for the human model and the policy are depicted in
Table 2. For readability purposes the presented results
are a walking mean of 3 samples, unless otherwise spec-
ified.

Table 2: Hyperparameters of the GPs in the benchmarks.
The policy and human model are modelled by Squared
Exponential (SE) and Matérn (Mat.) kernel. The con-
stant learning rate in (8) is denoted as cr.

Pendulum Cart-Pole Lunar Lander
CS NS CS NS CS NS

H: SE SE SE SE SE SE
ch 0.7 0.45 0.01 0.08 0.01 0.08
lh 0.1 0.1 0.2 0.5 0.2 0.2
P : Mat. Mat. Mat. Mat. Mat. Mat.
cp 0.01 0.03 0.01 10−3 0.01 10−3

lp 0.7 0.5 0.2 0.7 0.4 0.6
νp 0.5 1.5 1.5 1.5 1.5 1.5
cr 0.01 0.02 0.02 0.05 0.02 0.05

5.1 PERFORMANCE AND ROBUSTNESS

The return for the Pendulum domain is depicted in Fig. 5.
The GPC variants show similar convergence and robust-
ness properties. Due to the coarser exploration in the ini-
tial learning phase the learning curve is steeper in com-
parison to COACH. The final performance is similar.
The average learning rate for all consecutive feedback
instances is depicted in Fig. 6 for an error rate of 0%
and 20%. For GPC we see a more aggressive learning
rate for the initial learning phase, which diminishes upon
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Figure 6: Normalized average learning rate in the
Pendulum-v0 domain for both GPC and COACH. In
contrast to existing methods, the learning rates of the
GPC implementations diminish over time, such that the
corrections become more subtle upon convergence. As
desired, this reduction develops more gradually in case
of erroneous feedback.
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Figure 7: Average return per episode for the CartPole-
v0 domain. Both GPC implementations outperform
COACH for ideal feedback. GPC shows good robustness
to erroneous feedback, whereas GPC-NS is more brittle.

convergence. For 20% erroneous feedback this propa-
gation is more gradual, as it should be to reflect on the
impeded learning where refinements are appropriate at a
later time.

The steeper initial learning curve, which was observed in
the Pendulum domain in Fig. 5, also distinguishes GPC
from COACH in the Cart-Pole environment (see Fig. 7).
The protracted take-off time for COACH is presumably
a result of the human feedback supervised learner mod-
ule (see Celemin and Ruiz-del Solar, 2015) that adopts a
reduced learning rate for the initial learning phase. For
every error rate GPC outperforms COACH. The tuning
convenience for GPC-NS shows to trade with some sub-
optimal performance for erroneous feedback.

The performance of GPC and COACH in the Lunar Lan-
der domain is depicted in Fig. 8. Both GPC and GPC-NS
outperform COACH for every error rate. COACH was
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Figure 8: Average return for the LunarLander-v2 en-
vironment. Both GPC implementations achieve good
performance either for ideal or erroneous feedback.
COACH yields poor performance due to intractability of
the feature space, which is custom parameterized in R24.

unable to achieve any performance due to the unfeasi-
ble manual parameterization of the feature space in R24

(lower/upper bound and interval for every input dimen-
sion (Busoniu et al., 2010)).

5.2 ACTIVE LEARNING AND ABLATION

The result of the four test cases from Table 1 are dis-
played in Fig. 9 for the Cart-Pole environment with con-
stant feedback likelihood of γc = 0.01, constant additive
learning rate of cr = 0.01 and a static learning rate of
rc = 0.4. AL combined with ALR has superior perfor-
mance. The individual components (ALR and AL resp.)
both prove their significance compared to the baseline.
The average learning rate for the ALR tests measures
0.0386 for i and 0.0374 for iii, which is lower on av-
erage but better balanced to the static rate of rc = 0.4 in
ii and iv.

5.3 HUMAN VALIDATION

The performance for all environments is depicted in
Fig. 10. For the Inverted Pendulum and the Cart-Pole
environment both COACH and GPC converge to max-
imal performance. Although some relative differences
are noticeable in the learning curve, the variations are
not deemed statistically significant considering the num-
ber of testst. The fact that the lacking robustness of
the COACH implementation (Fig. 7) does not emerge
in this result is notable. In contrast to the static behav-
ior of oracles, humans anticipate to the consequences of
the provided feedback and adapt their feedback strategy
accordingly. When the corrections at a particular state
are deemed insufficient, teachers may choose to provide
multiple feedback samples subsequently in order to re-
alize the intended effect. An interesting observation is
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Figure 9: Average return (a) and feedback rate (b) for
the Active Learning (AL) and the ablation of Adaptive
Learning Rate (ALR) in the Cart-Pole domain. AL and
ALR combined achieve superior performance. It shows
that the Adaptive Learning Rate accelerates the conver-
gence with less feedback.

the difference in return for the Lunar Lander environ-
ment in (c), which validate the findings from the oracle
benchmarks in Fig. 8: The unfeasible parameterization
of the feature space severely deteriorate the performance
in higher dimensional problems.

6 CONCLUSION

Humans are very efficient in understanding control
strategies using intuition and common sense. Corrective
feedback is an especially effective means of communica-
tion and the current state-of-the-art, COrrective Advice
Communicated by Humans (COACH), enables one to
establish a control law without requiring control or en-
gineering expertise. Moreover, performance is superior
over methods that learn autonomously or from evalua-
tive feedback. However, COACH employs Radial Basis
Function (RBF) networks for modelling which requires
meticulous feature space engineering before these advan-
tages enter into force.

In this work, we have presented GPC. It has an ar-
chitecture similar to COACH, but it engages Gaussian
Processes (GPs) such that modelling expertise is no
longer required and the limitation to confined problems
is hereby overcome. Moreover, we leverage the avail-
able uncertainty with an Adaptive Learning Rate (ALR)
that adapts to the trainer’s learning phase. In addition,
we introduced a new sparsification technique, specifi-
cally designed for efficient and accelerated GP policy
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Figure 10: Average return of eight experiments from four
human teachers on the three adopted domains. Perfor-
mance is similar to oracle tests and validate the suitabil-
ity of GPC to the interactive domain.

updates. GPC was applied to three continuous bench-
marks from the OpenAI Gym: the Inverted Pendulum,
Cart Pole, and Lunar Lander. Our novel framework out-
perform COACH on every domain tested by means of
faster learning and better robustness to erroneous feed-
back. The greatest improvement was for the Lunar Lan-
der problem, where RBF parameterization fails but GPC
is flawless.

In addition to the performance and robustness assess-
ment, we performed two additional studies: 1) We have
addressed the potential of Active Learning (AL) and
demonstrated how eliciting feedback for actions with
greatest uncertainty yields drastic improvements on con-
vergence. 2) We have furthermore presented an alter-
native implementation GPC-NS where length-scale tun-
ing is circumvented by online normalization of the in-
put space. It is slightly suboptimal and trades some ro-
bustness in comparison to GPC, but a great advantage is
that it does not require any input parameterization in new
domains. This could especially be decisive in higher-
dimensional problems, and furthermore renders our work
feasible also for non-experts.

In future work, it might be possible to further innovate
the dynamical scaling, such that the applicability and
generality of GPC-NS is again extended. In addition, the
AL opportunities assessed here deserve further research
and should be validated also with human participants.
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Gräve, K. and Behnke, S. (2013). Learning sequential
tasks interactively from demonstrations and own expe-
rience. In IEEE/RSJ International Conference onIntel-
ligent Robots and Systems (IROS), pages 3237–3243.

Griffith, S., Subramanian, K., Scholz, J., Isbell, C. L.,
and Thomaz, A. L. (2013). Policy shaping: Integrat-
ing human feedback with reinforcement learning. In
Advances in Neural Information Processing Systems
(NIPS), pages 2625–2633.

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Os-
trovski, G., Dabney, W., Horgan, D., Piot, B., Azar,
M., and Silver, D. (2018). Rainbow: Combining im-
provements in deep reinforcement learning. In AAAI
Conference on Artificial Intelligence (AAAI).

Knox, W. B. and Stone, P. (2009). Interactively shap-
ing agents via human reinforcement: The TAMER

framework. In International Conference on Knowl-
edge Capture, pages 9–16.

Losey, D. P. and O’Malley, M. K. (2018). Including
uncertainty when learning from human corrections.
arXiv:1806.02454 [cs.RO].

Maeda, G., Ewerton, M., Osa, T., Busch, B., and Pe-
ters, J. (2017). Active incremental learning of robot
movement primitives. In Annual Conference on Robot
Learning (CoRL), pages 37–46.

Mahalanobis, P. C. (1936). On the generalized distance
in statistics. volume 2, pages 49–55. National Institute
of Science of India.

Neal, R. M. (1995). Bayesian learning for neural net-
works. PhD thesis, University of Toronto.

Nguyen-Tuong, D. and Peters, J. (2010). Incremental
sparsification for real-time online model learning. In
International Conference on Artificial Intelligence and
Statistics (AISTATS), pages 557–564.

Rasmussen, C. E. and Williams, C. K. (2006). Gaussian
Processes for Machine Learning, volume 2. MIT Press
Cambridge, MA.

Ross, S., Gordon, G., and Bagnell, D. (2011). A re-
duction of imitation learning and structured prediction
to no-regret online learning. In International Con-
ference on Artificial Intelligence and Statistics (AIS-
TATS), pages 627–635.

Suay, H. B. and Chernova, S. (2011). Effect of human
guidance and state space size on interactive reinforce-
ment learning. In IEEE International Symposium on
Robot and Human Interactive Communication (RO-
MAN).

Thomaz, A. L. and Breazeal, C. (2006). Reinforcement
learning with human teachers: Evidence of feedback
and guidance with implications for learning perfor-
mance. In AAAI Conference on Artificial Intelligence
(AAAI), volume 6, pages 1000–1005.





Bibliography

Abbeel, P. and Ng, A. Y. (2004). Apprenticeship learning via inverse reinforcement learning. In Pro-
ceedings of the twenty-first international conference on Machine learning, page 1. ACM.

Abramowitz, M. and Stegun, I. A. (1965). Handbook of mathematical functions: with formulas,
graphs, and mathematical tables, volume 55. Courier Corporation.

Argall, B. D. (2009). Learning mobile robot motion control from demonstration and corrective feed-
back. Diss. University of Southern California.

Argall, B. D., Browning, B., and Veloso, M. (2008). Learning robot motion control with demonstration
and advice-operators. In Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International
Conference on, pages 399–404. IEEE.

Argall, B. D., Chernova, S., Veloso, M., and Browning, B. (2009). A survey of robot learning from
demonstration. Robotics and autonomous systems, 57(5):469–483.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and Zaremba, W.
(2016). Openai gym.

Celemin, C. and Ruiz-del Solar, J. (2015). Coach: Learning continuous actions from corrective advice
communicated by humans. In Advanced Robotics (ICAR), 2015 International Conference on, pages
581–586. IEEE.

Celemin Paez, C., Ruiz-del Solar, J., and Kober, J. (2018). A fast hybrid reinforcement learning frame-
work with human corrective feedback. Autonomous Robots, 0(99).

Chernova, S. and Thomaz, A. L. (2014). Robot learning from human teachers. Synthesis Lectures on
Artificial Intelligence and Machine Learning, 8(3):1–121.

Chernova, S. and Veloso, M. (2009). Interactive policy learning through confidence-based auton-
omy. Journal of Artificial Intelligence Research, 34:1–25.

Csató, L. and Opper, M. (2002). Sparse on-line gaussian processes. Neural computation, 14(3):641–
668.

Duvenaud, D. (2014). Automatic model construction with Gaussian processes. PhD thesis, University
of Cambridge.

Gräve, K. and Behnke, S. (2013). Learning sequential tasks interactively from demonstrations and
own experience. In Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference
on, pages 3237–3243. IEEE.

Griffith, S., Subramanian, K., Scholz, J., Isbell, C. L., and Thomaz, A. L. (2013). Policy shaping: In-
tegrating human feedback with reinforcement learning. In Advances in neural information pro-
cessing systems, pages 2625–2633.

Heess, N., Sriram, S., Lemmon, J., Merel, J., Wayne, G., Tassa, Y., Erez, T., Wang, Z., Eslami, A., Ried-
miller, M., et al. (2017). Emergence of locomotion behaviours in rich environments. arXiv preprint
arXiv:1707.02286.

59



60 Bibliography

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Horgan, D., Piot, B.,
Azar, M., and Silver, D. (2018). Rainbow: Combining improvements in deep reinforcement learn-
ing. In Thirty-Second AAAI Conference on Artificial Intelligence.

Knox, W. B. and Stone, P. (2009). Interactively shaping agents via human reinforcement: The tamer
framework. In Proceedings of the fifth international conference on Knowledge capture, pages 9–16.
ACM.

Kober, J., Bagnell, J. A., and Peters, J. (2013). Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 32(11):1238–1274.

Kober, J. and Peters, J. (2009). Learning motor primitives for robotics. In 2009 IEEE International
Conference on Robotics and Automation, pages 2112–2118. IEEE.

Kober, J. and Peters, J. (2012). Reinforcement learning in robotics: A survey. In Reinforcement Learn-
ing, pages 579–610. Springer.

Le, Q. V., Smola, A. J., and Canu, S. (2005). Heteroscedastic gaussian process regression. In Proceed-
ings of the 22nd international conference on Machine learning, pages 489–496. ACM.

Li, G., Whiteson, S., Knox, W. B., and Hung, H. (2016). Using informative behavior to increase
engagement while learning from human reward. Autonomous agents and multi-agent systems,
30(5):826–848.

Loftin, R. T., MacGlashan, J., Peng, B., Taylor, M. E., Littman, M. L., Huang, J., and Roberts, D. L.
(2014). A strategy-aware technique for learning behaviors from discrete human feedback. In
AAAI, pages 937–943.

Losey, D. P. and O’Malley, M. K. (2018). Including uncertainty when learning from human correc-
tions. CoRR, abs/1806.02454.

Maeda, G., Ewerton, M., Osa, T., Busch, B., and Peters, J. (2017). Active incremental learning of robot
movement primitives. In CoRL 2017-1st Annual Conference on Robot Learning, pages 37–46.

Mahalanobis, P. C. (1936). On the generalized distance in statistics. volume 2, pages 49––55. National
Institute of Science of India.

Meriçli, Ç., Veloso, M., and Akın, H. L. (2011). Task refinement for autonomous robots using comple-
mentary corrective human feedback. International Journal of Advanced Robotic Systems, 8(2):16.

Neal, R. M. (1995). Bayesian learning for neural networks. PhD thesis, University of Toronto.

Neal, R. M. (2012). Bayesian learning for neural networks, volume 118. Springer Science & Business
Media.

Ng, A. Y., Russell, S. J., et al. (2000). Algorithms for inverse reinforcement learning. In Icml, pages
663–670.

Nguyen-Tuong, D. and Peters, J. (2010). Incremental sparsification for real-time online model learn-
ing. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statis-
tics, pages 557–564.

Rasmussen, C. E. and Williams, C. K. (2006). Gaussian Processes for Machine Learning, volume 2.
MIT Press Cambridge, MA.



Bibliography 61

Shin, M. and Goel, A. L. (2000). Empirical data modeling in software engineering using radial basis
functions. IEEE Transactions on Software Engineering, 26(6):567–576.

Suay, H. B. and Chernova, S. (2011). Effect of human guidance and state space size on interactive
reinforcement learning. In 2011 RO-MAN, pages 1–6.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. Cambridge, MA: MIT
Press, 2 edition.

Thomaz, A. L., Breazeal, C., et al. (2006). Reinforcement learning with human teachers: Evidence
of feedback and guidance with implications for learning performance. In Aaai, volume 6, pages
1000–1005. Boston, MA.

Vien, N. A. and Ertel, W. (2012). Reinforcement learning combined with human feedback in continu-
ous state and action spaces. In 2012 IEEE International Conference on Development and Learning
and Epigenetic Robotics (ICDL), pages 1–6. IEEE.

Vollmer, A.-L. and Hemion, N. J. (2017). Robot skill learning with user feedback: evaluating system
performance and human factors. Preprint: http://hemion.org/n/.

Wahba, G. (1990). Spline models for observational data, volume 59. Siam.

Watkins, C. J. C. H. (1989). Learning from delayed rewards. PhD thesis, King’s College, Cambridge.





Glossary

AL Active Learning

ALR Adaptive Learning Rate

ARD Automatic Relevance Determination

COACH COrrective Advice Communicated by Humans

GP Gaussian Process

GPC Gaussian Process Coach

LFD Learning from Demonstration

MDP Markov Decision Process

RL Reinforcement Learning

RBF Radial Basis Function

SE Squared Exponential
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