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Abstract— Electrical load forecasting in long-term horizon of 

power systems plays an important role for system planning and 

development. Load forecast in long-term horizon is represented 

as time-series. Thus, it is important to check the effect of 

volatility in the forecasted load time-series. In short, volatility in 

long-term horizon affects four main actions: risk management, 

long-term actions, reliability, and bets on future volatility. To 

check the effect of volatility in load series, this paper presents a 

univariate time series-based load forecasting technique for long-

term horizon based on data corresponding to a U.S. independent 

system operator. The study employs ARIMA technique to 

forecast electrical load, and also the analyzes the ARCH and 

GARCH effects on the residual time-series.  

Keywords—ARIMA; ARCH; GARCH; long-term load forecast; 

volatility. 

I. INTRODUCTION 

Long-term load forecasting (LTLF) plays an important role 
in power systems for system planning, scheduling expansion of 
generation units by construction and procurement of generation 
units. It spans from a few years (> 1 year) to 10-20 years [1]. 
Because it takes several years and requires a huge investment 
for construction of power generation and transmission 
facilities, accurate and error-free forecasting is necessary for an 
electric utility. Accuracy of LTLF has a direct impact on 
development of future generation and transmission planning, 
and hence it is a crucial instrument for planning and 
forecasting future conditions of the electricity network. Based 
on the forecast, electric utilities coordinate their resources to 
meet the forecasted demand using a least-cost plan. In general, 
LTLF is subjected to a large number of uncertainties and ample 
amount of research indicates that load predication in presence 
of uncertainties is required for future capacity resource needs 
and operation of existing generation resources. 

Based on time-scale, load forecast can be broadly classified 
into three main categories [2]: 

 Short-term load forecast (STLF): The time-period of 
STLF lasts for few minutes, hours to one-day ahead or 
a week. STLF aims at economic dispatch and optimal 
generator unit commitment, while addressing real-time 

control and security assessment. 

 Mid-term load forecast (MTLF): The time-period of 
MTLF is a month to a year or two. MTLF aims at 
maintenance scheduling, coordination of load dispatch 
and price settlement so that demand and generation is 
balanced. 

 Long-term load forecast (LTLF): The time-period of 
LTLF is few years (> 1 year) to 10-20 years ahead. 
LTLF aims at system expansion planning, i.e., 
generation, transmission and distribution. In some 
cases, it also affects the purchase of new generating 
units. 

Forecasting for the mid-term and specially for the long-
term horizon is a whole different problem from forecasting for 
the short term. It cannot be done by simply fitting a model 
(either statistical or computational) over a dataset, and then 
extrapolating from it. It is evident from refs. [3-4], that MTLF 
or LTLF is usually ignored because of the complications. 
Makridakis et al. [5] clearly stated that long-term forecasting 
‘requires a different approach’, and suggests that these 
forecasts should be based on (an) identifying and extrapolating 
mega-trends going back in time as far as necessary (as an 
example, they discuss the variations in the price of copper, 
since the year 1800); (b) analogy and (c) constructing scenarios 
to consider future possibilities. Hong [6] performed a study on 
past, current and future trends in energy forecasting. The article 
showcased the trend in spatial, STLF, LTLF and energy price 
forecasting in a lucid manner. Ref. [7] can be referred for a 
detailed review of MTLF and LTLF studies. 

Load forecasting is usually tied to reliability analysis [8-
10], and very recently in European projects (for e.g., GARPUR 
(www.garpur-project.eu)). Preciseness of long-term forecast 
significantly affects the development of future generation 
systems. For example, construction of a new generation plant 
takes approximately 5-10 years, and involves huge amount of 
capital investment. In order to need the demand and make the 
economic growth continuous, load forecasting is required for 
the related electricity utilities. Utilities do not want a huge 
investment going in vain. 

In the long run, it has become more important for planners 
and forecasters to study movements of load time-series and its 
fluctuations. The movements are usually measured by the 
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volatility (or conditional standard deviation) of the load time-
series. One of the biggest problem with modelling the volatility 
is one of its features, it has periods with low movements and 
then suddenly periods with high movements. Traditional time-
series models such as ARIMA model have been extended to 
essentially analogous models for the variance. Autoregressive 
conditional heteroskedasticity (ARCH) [11] was developed in 
order to model and forecast the variance of economic time 
series over time. Later, ARCH models have been generalized 
to become the generalized ARCH or GARCH models. ARCH 
and GARCH models have become common tools for dealing 
with time series heteroskedastic models, considering the 
moments of a time series as variant. They have proven to be a 
useful means for empirically capturing the momentum in 
conditional variance and had been used intensively in academic 
studies. Literature survey did not reveal any study on this 
aspect of power systems. Hence, this paper aims at a maiden 
approach to study the volatility in forecasting electrical load for 
long-term horizon.  

The rest of the paper is organized as follows: Section II 
discusses long-term load forecast and the ARIMA 
methodology. Section III presents an in-depth learning of 
volatility in time-series for long-term horizon, while addressing 
the various statistical terminology used to assess it. Finally, 
section IV concludes the paper. 

II. LONG-TERM LOAD FORECASTING 

Long-term load forecasting is much more complex than 
simply fitting a mathematical model to some data, and it 
requires a lot more knowledge about the “substantive” 
problem. Compared to STLF that uses a sort of exercise on 
data modeling (for e.g., fitting models to datasets and 
extrapolating from them, without really understanding much 
about the way an electrical system works), MTLF/LTLF, on 
the other hand, depends less on the analyst’s expertise on 
modeling, and more on experience with power systems, and a 
thorough understanding of the way the system works, and how 
the electricity market may be affected by the changes in a 
country’s economy throughout the years, or by changes in 
technology, etc. 

The MTLF/LTLF takes into account some explicit factors 
like historical load and weather data, economic indicators like 
gross domestic product (GDP) and their forecasts, and 
demographic data which includes consumer data like 
population, appliances in use, etc. Influence of weather follows 
a hierarchy in MTLF/LTLF as compared to STLF where all 
weather variables are treated with equal importance. Ref. [12] 
indicated that the weather variables follow a decreasing order 
of importance starting with temperature, humidity, wind and 
precipitation being the last on the list. To tackle this large 
number of factors for forecasting problem, the three methods 
suitable for MTLF/LTLF are [13]: Time-series approach, 
econometric approach, and end-use approach. Literature survey 
suggests another classification theory of MTLF/LTLF methods 
based on load impacting factors taken into consideration. The 
methods can be classified to two methods [14]: Conditional 
modeling approach, and autonomous approach.  

In this study, a univariate regression-based model, called 
Autoregressive Integrated Moving Average (ARIMA) method 

is employed. It is a model based on a history of itself and it’s 
moving average. And, the term “integrated” in ARIMA refers 
to the differencing process which is explained later in this 
section. Literature survey reveals that ARIMA technique has 
been successfully implemented in short-term load forecasting 
[15-16], and forecasting electricity prices [17-18]. Features of 
this approach are: 

 Only looks at a single variable to model. In this study, the 
model only works with load data from an U.S. Regional 
Transmission Organization. 

 ARIMA model can be used to model stationary time-series. 
The term “stationary time-series” in this study indicates 
the fact that both mean and standard deviation of data are 
finite and constant over time. If the time series exhibits 
variations that violate the stationary assumption, then there 
are specific approaches that could be used to render the 
time series stationary. The most common one is what is 
often called the “differencing operation”, which is dealt 
later in this section. 

A. ARIMA Modeling 

ARIMA models are based on the theory that the behavior 
of the variable itself answers for its future dynamics [3], and 
are used to remove serial correlation. The parameters of 
ARIMA consist of three components: 𝑝 (autoregressive 
parameter), 𝑑 (number of differencing), and 𝑞 (moving average 
parameters). In general, the ARIMA ( 𝑝, 𝑑, 𝑞 ) model is 
expressed as [19]: 

 𝜙𝑝(𝐵)[∇
𝑑𝑦𝑡 − 𝜇] = 𝜃𝑞(𝐵)𝑎𝑡 for 𝑡 = 1,… , 𝑁 (1) 

 
where, 𝜙𝑝  is the autoregressive polynomial of 𝐵  for order 𝑝 

and is given as 𝜙𝑝(𝐵) = 1 − 𝜑1𝐵 − 𝜑2𝐵
2 −⋯− 𝜑𝑝𝐵

𝑝 . In 

the representation, 𝜑𝑝  refers to the autoregressive estimated 

parameters. 

𝐵 is the backward shift operator, a simplified version to 
represent lag values. For e.g., the time-series 𝑦𝑡  under 
investigation can be represented as 𝐵𝑦𝑡 = 𝑦𝑡−1 and the white 
noise 𝑎𝑡 normally distributed with mean zero and variance 𝜎𝑡

2 
can be represented as 𝐵𝑎𝑡 = 𝑎𝑡−1.  

∇ is the differencing operator (∇= 1 − 𝐵) 

𝜇  is the stationary series mean, assuming the series is 
stationary after differencing 

𝜃𝑞 is the moving average polynomial of 𝐵 for order 𝑞 and 

is given as 𝜃𝑞(𝐵) = 1 − 𝜗1𝐵 − 𝜗2𝐵
2 −⋯− 𝜗𝑞𝐵

𝑝 . In the 

above representation, 𝜗𝑞  refers to the estimated moving 

average parameters. 

𝑁 is the number of samples 

Next important thing is choosing the right model or in other 
words, order of ARIMA model. The autocorrelation function 
(ACF) and partial autocorrelation function (PACF) are the core 
of ARIMA model. Box-Jenkins method [3] provides a way to 
identify ARIMA model according to autocorrelation and partial 
autocorrelation graph of the series. In order to achieve this, 
there are three rules to identify ARIMA model: 
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Fig. 5. Forecasted load  for the year 2015 

 

 If ACF (autocorrelation graph) cut off after lag n, PACF 
(partial autocorrelation graph) dies down: ARIMA(0, d, n) 
-> identify MA(q) 

 If ACF dies down, PACF cut off after lag n: ARIMA(n, d, 
0) -> identify AR(p) 

 If ACF and PACF die down: mixed ARIMA model, need 
differencing 

 Fig. 1. ACF and PACF of residuals without seasonality 

  Fig. 2. ACF and PACF of squared residuals without seasonality 

 

Fig. 3. ACF and PACF of residuals with seasonality 

 Fig. 4. ACF and PACF of squared residuals with seasonality 

If ACF & PACF of the model residuals show no significant 
lags, the selected model is appropriate. The model selected in 
our study is ARIMA (1,1,1), i.e., a model with one 
autoregressive term, a first difference, and one moving average 
term. Since seasonality is one of the impacting factors in load 
forecasting for long-term horizon, we analyzed the time-series 
with and without seasonality. Fig. 1 and Fig. 2 illustrates ACF 
and PACF of residuals and squared residuals without 
seasonality, and Fig. 3 and Fig. 4 illustrates ACF and PACF of 
residuals and squared residuals with seasonality. A first 
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difference is used to account for a linear trend in the data. We 
avoid using higher orders i.e. > 1, as we prefer the model to 
refer to the most recent events since the more distant the 
historical events from the present, the less confident we can 
argue that the relationship is linear. The Box-Jenkins 
methodology is employed to fit linear time series models [5]. 
To assess the effectiveness of our proposed forecast 
methodology, MATLAB [20] is used. Fig. 5 shows the forecast 
load for known year (2015) using the historical data for years 
(1993-2014). 

B. Stationarity Testing 

As we see from the simulated results, forecasted load is a 
time-series and it is important to analyze data set to study the 
characteristics of the data and extract meaningful statistics in 
order to predict future values of the series. Time-series analysis 
is performed by two methods: time-domain and frequency-
domain. The former closely investigates the autocorrelation of 
the series and is of great use of Box-Jenkins and 
ARCH/GARCH methods to perform forecast of the series 
while the latter is based mostly on Fourier Transform. In time-
domain method, the first step in modelling time-series data is 
to convert the non-stationary time-series to stationary one. This 
is important because a lot of statistical and econometric 
methods are based on this assumption and can only be applied 
to stationary time series. Non-stationary time-series are erratic 
and unpredictable while stationary process is mean-reverting, 
i.e., it fluctuates around a constant mean with constant 
variance. One can difference 𝑁  times the data to create a 
stationary process from a non-stationary time-series, which is 
described in the next sub-section. 

It is generally believed that the method is relatively rough 
that the stationarity of time series is tested by autocorrelation 
analytic map. The unit root test is considered to be a more 
official method. Unit root test includes DF test, ADF test, PP 
test, Said-Dickey test, DF-GLS test, etc. [21]. Our study used 
ADF test for unit root test to check for stationarity in the load 
time-series. 

C. Differencing 

Differencing is a better way to remove locally varying 
trends to make it stationary than explicitly subtracting a fitted 
trend. Any trend observed in the time series (say, through 
curve fitting, regression analysis or first principles) can be 
subtracted out to leave what remains to be modelled. 
Evaluating a forecasting model requires quantifying the 
prediction error. Differencing transforms a time series 𝑋 into 
another series 𝑌 where 𝑦𝑡 = 𝑥𝑡 − 𝑥𝑡−1, trying to find a better 
fitting model. Differencing does not require estimating a 
parameter, although it costs one series point per difference. The 
first difference accounts for a trend that impacts the change of 
the mean of the time series, the second for a change in the 
slope. 

III. VOLATILITY IN LONG-TERM HORIZON 

In long-term horizon, utmost care should be taken while 
designing the model. The model should account for future 
upward and downward trends from affecting factors (for e.g., 
economic factors such as energy prices, GDP, unemployment), 
so that it can self-tune over time. The trend initiates volatility, 

and it not only spikes up during a crisis, but it eventually drops 
back to approximately the same level of volatility as before the 
crisis. The designed model should be able to address this. 
Another observation in time-series modeling is that the error 
series usually have the characteristic of fat tail assembly, once 
it happens, if we still regard the error series as the independent 
identical distribution (IID) variable according to the classical 
assumption of least-square method, it is unreasonable. 
Actually, this time-series model can only explain time-series 
fluctuation partly and there is still a part of information exists 
in the error term of the regression equation. In this study, the 
forecasted load series is treated as error series. From Figs. 1 
and 2, it is evident that although ACF & PACF of load series 
have no significant lags, the time-series is still checked for any 
cluster of volatility. It is important to remember that ARIMA is 
a method to linearly model the data and the forecast width 
remains constant because the model does not reflect recent 
changes or incorporate new information. In other words, it 
provides best linear forecast for the series, and thus plays little 
role in forecasting model nonlinearly. Consequently, the error 
terms do not satisfy the homoscedastic assumption of constant 
variance. As a reminder, heteroscedastic means a set of 
statistical distributions having different variances and 
heteroskedasticity means non constant volatility. 

From the ARIMA model result in Fig. 5, we look for a 
residual series with zero mean and constant variance and which 
is non-autocorrelated. If this condition is satisfied, the ARIMA 
model is able to remove the autocorrelation effect from the 
data. However, if the quadratic residual series is correlated, the 
residual series is denoted as heteroskedastic and a non-linear 
model should be used to represent it because the series has 
non-pure random behavior. The residuals are obtained by 
absorbing the content of time-series. This is obtained by using 
the curvefitting toolbox in MATLAB. Even though the 
residuals are white noise, the ARCH-test is performed to verify 
the homoskedasticity. If this supposition is not met, it is 
necessary to fit an ARCH model to estimate the variability 
behavior. This becomes important because the 
heteroskedasticity presence is a signal that the process may 
have large variability and can influence the mean trajectory as 
the control limit estimation. The ARCH test conformed that 
there still remains serial correlation in the series and the model 
needs modification. 

An autoregressive conditional heteroskedastic (ARCH) 
model with order 𝑝 ≥ 0 is defined as: 

 

 𝑍(𝑡) = √ℎ(𝑡)𝑒(𝑡) (2) 

 

 

ℎ(𝑡) = 𝛼0 +∑𝛼𝑖𝑍𝑡−𝑖
2

𝑝

𝑖=1

 (3) 

 

where 𝑒(𝑡)~𝐼𝐼𝐷(0,1) , 𝛼0 > 0 , and 𝛼𝑖 ≥ 0  are constants 
and 𝑒(𝑡) is independent of 𝑍𝑡−𝑘, 𝑘 ≥ 1. A stochastic process 𝑍𝑡 
defined by the equations (2) and (3) is called a ARCH (p) 
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process. Here ℎ𝑡 is the variance of 𝑍𝑡 and 𝑒𝑡 is the innovation 
(error) variable. For simplification, we set 𝑝 = 1. 

The time-varying variance (i.e., volatility or 
heteroskedasticity), which depends on the observations of the 
immediate past, is called conditional variance, and the ARCH 
model can describe this problem well [22]. Firstly, check if 
load series displays any cluster of volatility. Our results 
confirmed the presence. Next, observe the squared residual 
plot. If there are clusters of volatility, ARCH/GARCH should 
be used to model the volatility of the series to reflect more 
recent changes and fluctuations in the series. At this stage, it is 
important to understand the GARCH model. The basic ARCH 
model has been transformed and developed into more 
sophisticated models, such as GARCH, EGARCH, TGARCH 
and GARCH-M. Many of the different models have different 
features, which makes the forecast accuracy better. To keep it 
simple for our study, the scope of this paper restricts us to use 
the Generalized-ARCH or GARCH model as well as the 
ARCH model to study volatility. 

In 1986, Bollerslev proposed a transformation of the 
ARCH model, called the generalized ARCH or GARCH model 
[23]. The aim was to overcome several restrictions in ARCH 
model that has to be fulfilled so that the model can sufficiently 
estimate the volatility. The GARCH model is an extension of 
the ARCH model. A generalized autoregressive conditional 
heteroskedastic (GARCH) model with order 𝑝 ≥ 0 and 𝑞 ≥ 0 
is defined as: 

 

 𝑍(𝑡) = √ℎ(𝑡)𝑒(𝑡) (4) 

 

 

ℎ(𝑡) = 𝛼0 +∑𝛼𝑖𝑍𝑡−𝑖
2

𝑝

𝑖=1

+∑𝛽𝑗ℎ𝑡−𝑗
2

𝑞

𝑗=1

 (5) 

 

where 𝑒(𝑡)~𝐼𝐼𝐷(0,1) , 𝛼0 > 1 , 𝛼𝑖 ≥ 0  and 𝛽𝑗 ≥ 0  are 

constants with 

 

 

∑𝛼𝑖

𝑝

𝑖=1

+∑𝛽𝑗

𝑞

𝑗=1

< 1 (6) 

 

and 𝑒(𝑡)  is independent of 𝑍𝑡−𝑘, 𝑘 ≥ 1 . A stochastic 
process 𝑍𝑡  defined by the equations (4) and (5) is called a 
GARCH (p, q) process. Here ℎ𝑡 is the conditional variance of 
𝑍𝑡, given {𝑍𝑠, 𝑠 < 𝑡}  and 𝑒𝑡 is the innovation (error) variable. 
For simplification, we set both 𝑝 = 1 and 𝑞 = 1. 

GARCH is not only used to forecast the conditional 
variances, it is also used to provide unconditional variances. 
The term conditional implies explicit dependence on a past 
sequence of observations whereas the term unconditional is 
more concerned with long-term behavior of a time series and 
assumes no explicit knowledge of the past. The conditional 

variance plot for load series is shown in Fig. 6. Both conditions 
are crucial in providing an essential piece of information about 
risk forecasting. If our forecast horizon lead time is short, 
conditional volatility forecasts should be used to refine the 
return estimate. On the contrary, if the lead time is significant, 
unconditional volatility forecasts may be the only feasible 
estimate. This is because the forecast lead time is large enough 
to question the validity of the variance forecasts [24]. 

 

Fig. 6. Conditional variance plot of forecasted load series 

 

Fig. 7. Innovation plot for the forecasted load series 

Fig. 7 illustrates the innovation plot for the load series. The 
innovation plot is obtained by choosing 5 paths of length 100 
from the GARCH(1,1) model, without specifying any pre-
sample innovations or conditional variances. The model being 
simulated does not have a mean offset, so the response series is 
an innovation series. Another important observation from Fig. 
6 and Fig. 7 is that the starting conditional variances are 
different for each realization because no pre-sample data was 
specified. Our basic understanding is that the load series 
follows a stationary time-series model with a stochastic 
volatility structure. The presence of stochastic volatility implies 
that the load series is not necessarily independent over time. 
Hence the model considers the unconditional and conditional 
distribution where the conditioning is on the current volatility. 
The estimated GARCH and ARIMA-GARCH parameters are 
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shown in Table I and Table II. In our study, the ARCH and 
GARCH function in MATLAB is used. One of the 
assumptions in the functions is that a t-statistic > 2 in 
magnitude corresponds to approximately a 95% confidence 
level. The t-statistic column is the parameter value divided by 
the standard error, and is normally distributed for large 
samples. It measures the number of standard deviations the 
parameter estimate is away from zero. 

TABLE I.  GARCH (1,1) PARAMETERS 

Parameter GARCH values 
Standard 

Errors 
t-Statistic 

𝛼  -67.9842 245.17 -0.277294 

𝛼1 -0.361694 0.0246818 -14.6543 

𝛽1 -0.361694 0.0246818 -14.6543 

TABLE II.  ARIMA-GARCH PARAMETERS 

Parameter 
ARIMA-

GARCH values 
Standard 

Errors 
t-Statistic 

𝛼  1.37368e+07 0.000162653 8.44549e+10 

𝛼1 0.812068 0.019251 42.1832 

𝛽1 0.0381873 0.0212819 1.79435 

 

IV. CONCLUSION 

In conclusion, it is important to highlight three important 

aspects. The first aspect is how to forecast electrical load for 

long-term horizon using univariate technique, when adequate 

data is not available (only load data is used in this study). The 

second aspect is related to the modelling techniques presented. 

Although ARIMA-ARCH models are not so straightforward, 

the parameter estimates using the joint methodology are 

efficient, providing a better fit to the process. Finally, the 

ARCH and GARCH models was able to quantify the impact 

of an external effect that can occur in the process. ARCH-

GARCH incorporates new information and analyses the series 

based on conditional variances where users can forecast future 

values with up-to-date information. Another observation is 

that ARIMA model focuses on analyzing time-series linearly 

and it does not reflect recent changes as new information is 

available. Therefore, in order to update the model, users need 

to incorporate new data and estimate parameters again. And, 

this coins the term dynamic modelling. The variance in 

ARIMA model is unconditional variance and remains 

constant. ARIMA is applied for stationary series and 

therefore, non-stationary series should be transformed, as we 

did to the load series in this study. 
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