
 
 

Delft University of Technology

Fiber tracking uncertainty visualization for neurosurgery

Siddiqui, F.P.

DOI
10.4233/uuid:26158a6d-3f2e-4ec8-a2f1-f32fe0e4add4
Publication date
2025
Document Version
Final published version
Citation (APA)
Siddiqui, F. P. (2025). Fiber tracking uncertainty visualization for neurosurgery. [Dissertation (TU Delft),
Delft University of Technology]. https://doi.org/10.4233/uuid:26158a6d-3f2e-4ec8-a2f1-f32fe0e4add4

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:26158a6d-3f2e-4ec8-a2f1-f32fe0e4add4
https://doi.org/10.4233/uuid:26158a6d-3f2e-4ec8-a2f1-f32fe0e4add4


FIBER TRACKING UNCERTAINTY
VISUALIZATION FOR NEUROSURGERY

 

Faizan Pervez Siddiqui



FIBER TRACKING UNCERTAINTY VISUALIZATION
FOR NEUROSURGERY





FIBER TRACKING UNCERTAINTY VISUALIZATION
FOR NEUROSURGERY

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology

by the authority of the Rector Magnificus, prof. dr. ir. T.H.J.J. van der Hagen,
chair of the Board for Doctorates

to be defended publicly on
Tuesday 9 September 2025 at 15:00 o’clock

by

Faizan Pervez SIDDIQUI

Master of Science in Electrical and Electronics Engineering,
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SUMMARY

Fiber tracking enables the in-vivo reconstruction of white matter pathways in the brain
and has significant potential in clinical workflows such as neurosurgical planning. How-
ever, its broader clinical adoption remains limited due to the high degree of uncertainty
that arises throughout the processing pipeline, from diffusion MRI acquisition to model-
ing, tracking, and visualization. These uncertainties are rarely communicated in current
clinical visualizations, which often present results as definitive, potentially misleading
clinicians and affecting critical decisions.

This thesis explores the integration of fiber tracking uncertainty visualization into
neurosurgical workflow, aiming to enhance the interpretability and transparency of the
results in a clinical context. A key challenge lies in balancing computational complex-
ity with clear representation, while ensuring the solutions remain aligned with clinical
workflows.

To address this, we introduce interactive and computationally efficient visualiza-
tion approaches that represent uncertainties and support clinicians in understanding
how fiber tracking results may vary with inherent uncertainties. These techniques are
evaluated through collaborations with medical experts and incorporated into decision-
making studies to assess their practical relevance.

The contributions presented in this thesis advance the integration of uncertainty
into clinical fiber tracking visualization and highlight how embracing uncertainty, rather
than ignoring it, can lead to safer and more informed clinical decisions.
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SAMENVATTING

Fiber tracking maakt het mogelijk om de witte stofbanen in de hersenen in vivo te recon-
strueren en biedt daarmee belangrijke mogelijkheden binnen klinische toepassingen,
zoals neurochirurgische planning. De brede klinische toepassing blijft echter beperkt
door de aanzienlijke onzekerheden die optreden in de gehele verwerkingspijplijn—van
diffusie-MRI-acquisitie tot modellering, tracking en visualisatie. Deze onzekerheden
worden zelden gecommuniceerd in de huidige visualisaties, die de resultaten vaak als
eenduidig presenteren. Dit kan artsen misleiden en invloed hebben op cruciale beslis-
singen.

Dit proefschrift richt zich op de integratie van onzekerheidsvisualisatie binnen fiber
tracking in de neurochirurgische workflow, met als doel de interpretatie en transparan-
tie van de resultaten in een klinische context te verbeteren. Een belangrijke uitdaging
hierbij is het vinden van een balans tussen computationele complexiteit en heldere re-
presentatie, terwijl aansluiting bij bestaande klinische processen behouden blijft.

Om deze uitdaging aan te pakken, introduceren we interactieve en computationeel
efficiënte visualisatietechnieken die onzekerheden expliciet maken. Deze ondersteunen
clinici bij het begrijpen van hoe fiber tracking-resultaten kunnen variëren als gevolg van
onzekerheden in de modellering en parameterkeuzes. De ontwikkelde technieken zijn
geëvalueerd in samenwerking met medische experts en zijn opgenomen in besluitvor-
mingsstudies om hun klinische relevantie te toetsen.

De bijdragen van dit proefschrift bevorderen de integratie van onzekerheidsinforma-
tie in de visualisatie van witte stof en onderstrepen hoe het expliciet maken van ambi-
guïteit, in plaats van deze te negeren, kan bijdragen aan veiligere en beter onderbouwde
klinische besluitvorming.

xi





1
INTRODUCTION

Recent advancements in Magnetic Resonance Imaging (MRI) technology have led to the
development of various remarkable techniques for interpreting brain anatomy. Among
these, Diffusion-Weighted Imaging (DWI) has emerged as a key non-invasive technique
for assessing brain white matter connectivity. White matter, consisting of bundles of
myelinated axons, serves as the communication network of the brain, facilitating the
transfer of information between different regions.

DWI exploits the anisotropic diffusion of water molecules to map the orientation
of these white matter structures. The imaging and interpretation of molecular diffu-
sion have advanced significantly with the development of the modeling techniques such
as Diffusion Tensor Imaging (DTI), Diffusion Spectrum Imaging (DSI), Q-Ball Imaging
(QBI) which provide deeper insights into white matter architecture. Among these, DTI
allows direct in-vivo examination of the fibrous structure in the brain at a relatively low
acquisition cost. This makes DTI particularly suitable for clinical applications, where it is
valuable in visualizing structural connectivity in the brain and supporting the diagnosis
of neurological conditions.

Diffusion Tensor Imaging, as any other measurement, is inherently susceptible to
uncertainties across its processing pipeline—from MRI data acquisition to diffusion
modeling, and visualization. These uncertainties can arise from various factors, such as
noise in the data, the limitations of the tensor model, inaccuracies in fiber tracking
algorithms, and challenges in visualizing complex fiber structures. Due to the
complexity of the pipeline, it is often difficult for users to pinpoint the sources of errors.
Addressing these uncertainties is particularly critical in clinical contexts, where precise
and reliable information is vital for decision-making. This thesis explores the role of
uncertainty visualization in white matter, with a specific focus on the neurosurgical
workflow.

Traditional representations of DTI often fail to convey the inherent uncertainties, in-
stead presenting the results as definitive truths. This lack of information can mislead
clinicians and influence critical decisions. White matter visualization is crucial in clinical
contexts, such as surgical planning for tumor resection. To enhance decision-making,

1
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incorporating uncertainty visualization can ensure that clinicians are aware of the in-
herent risks and ambiguities in the data. The absence of uncertainty representation in
standard white matter visualizations means that clinicians are often unaware of the relia-
bility or potential errors in the data, making it difficult to fully assess the risks associated
with their decisions. The visualization of uncertainty can provide a more transparent
and informed view of the data, making it possible for clinicians to assess the confidence
in the results and adapt their decisions accordingly.

The motivation behind this thesis is to bridge the gap between the technical ad-
vances in uncertainty visualization and their practical application in clinical settings.
By addressing the challenges associated with uncertainty visualization in DTI pipeline
and offering effective visualization solutions, this work seeks to contribute to safer and
more informed clinical decision-making processes.

Several state-of-the-art reports exist on DWI visualization, [5, 7, 8, 9]. However, none
of them gives an overview of uncertainty, or they simply focus on some specific aspects.
Furthermore, most of the visualization literature on uncertainty focuses on issues re-
lated to visual representation rather than sources of error involved in the pipeline [3, 4,
7]. Moreover, the explicit visualization of uncertainty, particularly tailored to the clinical
workflow, remains largely under explored. Without clear and intuitive ways to visualize
the uncertainty in the results, clinicians may make decisions without an accurate under-
standing of the inherent errors. Some techniques have also been introduced in the liter-
ature specifically addressing the uncertainty visualization in DWI, [1, 2, 6]. However, the
significant computational resources required to implement these methods effectively in
a clinical setting pose a major challenge. This often makes them unsuitable for real-time
applications and integration into clinical workflows. Addressing the entire DWI pipeline
cohesively remains a challenge.

Even when uncertainty is incorporated into the visualization, interpreting it effec-
tively poses a significant challenge. Clinicians may struggle to understand or integrate
the uncertainty information into their decision-making processes, particularly when tra-
ditional representations fail to contextualize these ambiguities within the broader clini-
cal workflow. Misinterpretations of uncertainty can compromise the reliability of critical
decisions.

The aim of this thesis is to address these challenges by focusing on the development
of uncertainty visualization techniques specifically tailored to the clinical DTI pipeline.
By integrating uncertainty visualization into the standard workflow, this work aspires to
enhance the interpretability of uncertainty, making it a part of clinical practice rather
than an overlooked aspect. Ultimately, this research seeks to bridge the gap between
technical advancements in uncertainty visualization and practical clinical applications.

In this thesis the research begins with a literature review of existing uncertainty visu-
alization techniques for both DTI and non-DTI methods. This review identifies various
sources of error at each stage of the pipeline and examines their impact on the result-
ing visualizations and interpretations. This foundation study leads to the development
of innovative uncertainty visualization techniques aimed at enhancing the visual rep-
resentation of the uncertainty in DTI and their integration of uncertainty into clinical
workflows. The first core study focuses on addressing computational cost for modeling
and visualizing uncertainty. It introduces a progressive visualization approach that facil-
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itates addressing the computational costs, enabling uncertainty computations to occur
in the background while providing users with an interactive interface to explore and in-
terpret uncertainty in real time. The uncertainty quantification and visualizations are
adapted to handle the progressiveness of the solution. This combination of compu-
tational efficiency and interactivity can help in incorporating uncertainty visualization
into standard clinical DTI pipelines.

The second study investigates the uncertainty that arises due to the sensitivity of the
fiber tracking parameters. It introduces sensitivity maps to highlight regions where fiber
tracking results exhibit high uncertainty, providing clinicians with actionable insights to
optimize the placement of regions of interest. This study also prioritizes computational
efficiency, facilitating real-time analysis potentially in clinical environments.

These techniques provide representations of uncertainties involved in different
stages of the DTI pipeline, enhancing clinicians’ understanding of potential errors and
ambiguities in DTI results. Feedback from clinicians played a crucial role in refining
these techniques and ensuring their practical relevance. Following these studies, an
evaluation was conducted to assess the impact of uncertainty visualization on clinical
decision-making processes during neurosurgical procedures.The primary objective of
this study was to assess the impact of uncertainty visualization on clinical
decision-making. Conducted in collaboration with neurosurgeons and researchers, the
study involved presenting participants with an interactive questionnaire containing a
series of clinical questions. The findings highlight that integrating uncertainty
visualization into the neurosurgical workflow influences clinical decision-making.
However, other factors that also impact clinical decisions were not considered in this
study.

The development of these uncertainty visualization techniques was guided by a thor-
ough understanding of the practical requirements and constraints of the clinical neuro-
surgical workflow. The studies were carried out in close collaboration with our clinical
partners, including neurosurgeons, clinicians, and researchers, ensuring that the tech-
niques were both relevant and applicable to real-world clinical workflow and decision-
making scenarios. By addressing the gap between processing and visualization tech-
niques and their practical application in clinical settings, this work contributes to mak-
ing uncertainty information accessible and actionable for clinicians.

This thesis is structured to systematically address the background, challenges and
advancements in uncertainty visualization within the context of diffusion tensor imag-
ing (DTI). The thesis is organized as follows:

Chapters 2 and 3 provide the foundation. Chapter 2 covers the Medical Background,
including brain anatomy and clinical applications of DTI. Chapter 3 explains the tech-
nical background, detailing the DTI pipeline. Chapters 4, 5, 6, and 7 present the core
research. Chapter 4 focuses on Uncertainty in DTI, discussing sources of uncertainty,
uncertainty modeling, and visualization techniques. Chapter 5 introduces a Progressive
Approach for uncertainty visualization and a visual analytics pipeline. Chapter 6 ex-
plores Interactive Visualization of Sensitivities in fiber tracking. Chapter 7 examines the
Impact of Uncertainty Visualization on Neurosurgical Decision-Making, based on clin-
ical feedback. Finally, Chapter 8 summarizes the main contributions of the thesis and
outlines potential directions for future research.
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2
MEDICAL BACKGROUND

This chapter provides a background on basic concepts to understand the clinical signifi-
cance of DTI. We will begin by exploring the anatomy of the brain, with a particular focus
on white matter, its structure, and its crucial role in various cognitive functions. Follow-
ing this, we will delve into the clinical applications of DTI, with an emphasis on its role
in neurosurgery.
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(a) (b)

Figure 2.1: Structural organization of the brain [2].

2.1. BRAIN ANATOMY
The human brain is a complex organ composed of various structures that work together
to support a wide range of functions. This section provides a brief overview of the brain’s
anatomical structure.

2.1.1. STRUCTURAL OVERVIEW OF THE BRAIN
Structurally, human brain is broadly divided into three main regions: the cerebrum,
cerebellum, and the brainstem, as shown in Figure 2.1a.

• The cerebrum is the largest part, responsible for higher cognitive functions such
as reasoning, problem-solving, and emotional regulation. It is split into
two hemispheres connected by the corpus callosum, which facilitates
communication. Each hemisphere is divided into the following lobes which
specializes in different functions. Figure 2.1b shows the organization of these
lobes within cerebrum.

– Frontal Lobe handles executive functions, voluntary motor control, and
emotional regulation.

– Parietal Lobe processes sensory information and spatial awareness.

– Motor cortex helps plan, control, and execute voluntary movement, like
moving your arm or kicking a ball.

– Somatosensory cortex receives information about temperature, taste, touch,
and movement from the rest of the body.

– Temporal Lobe involved in auditory processing, memory, and language
comprehension.

– Occipital Lobe primarily responsible for visual processing.

• Beneath the cerebrum, the cerebellum coordinates voluntary movements, bal-
ance, and motor learning.

• The brainstem, connecting the brain to the spinal cord, controls essential func-
tions like breathing and heart rate.
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(a)

(b)

Figure 2.2: (a) Neuron (Wikipedia, 2017b). (Credit: Quasar Jarosz at English Wikipedia, CC BY-SA
3.0) (b) The arrangement of white and gray matter in the brain. (Credit: Technology Networks).

2.1.2. WHITE MATTER AND GRAY MATTER
The human brain consists of billions of neurons, which are electrically excitable cells that
interconnect in complex networks through electrical and chemical signaling. A typical
neuron possesses a cell body and dendrites, which are thin branches extending from the
cell body and connecting to hundreds of other neurons, as shown in Figure 2.2a. Besides
dendrites, each neuron also has a single axon which is a special extension of the cell body
transporting electrical signals across large distances to remote parts of the body. Axons
are encapsulated by a myelin sheath whose primary function is to speed up signal trans-
mission. Regions containing neuron cell bodies and dendrites are collectively known as
gray matter, while regions composed of myelinated axons are referred to as white matter,
shown in Figure 2.2b.

Gray Matter is primarily found in the outer layers of the brain, forming the cerebral
cortex, which is a vital layer of tissue coating the surface of the cerebrum and the cere-
bellum. Gray matter is responsible for processing and integrating information. It plays
a critical role in functions such as perception, cognition, and voluntary movement. The
density and organization of gray matter can influence cognitive abilities and is often a
focal point in studies of neurological disorders.

White Matter are long projections of neurons that transmit signals between different
brain regions. The myelin sheath, a fatty substance that insulates these axons, facilitates
faster signal transmission, allowing for efficient communication within the brain. White
matter forms the inner layer of the brain and is organized into various tracts that connect
different areas of gray matter, enabling coordinated activity across the brain.
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Figure 2.3: Major white matter Tracts a) Corticospinal Tract b) Corpus Callosum c) Frontal Aslant
Tract d) Inferior Longitudinal Fasciculus e) Arcuate Fasciculus f) Optic Radiation. (Credit: The

images are adapted from the Human Connectome Project [3], CC BY-SA 4.0).

The balance and health of both gray and white matter are crucial for normal brain
function. Disruption or degeneration of white matter pathways can lead to a range of
cognitive and motor impairments, highlighting the importance of white matter integrity
in maintaining overall brain health. Diffusion tensor imaging is particularly useful for
studying white matter, as it allows for the visualization of the direction and integrity of
the brain’s white matter.

2.1.3. MAJOR WHITE MATTER TRACTS
White matter bundles interconnect different gray matter regions and are also associated
with specific brain functions. For the purpose of this thesis, we limit ourselves to a de-
scription of only the major white matter bundles which are described below. As these
bundles are also discussed in the following chapters, we consider them to be the most
relevant. Figure 2.3 illustrate these bundles. For a complete overview of the other white
matter tracts, we refer the reader to the white matter atlas published by Oishi et al. [1].

CORTICOSPINAL TRACT:
This tract runs from the motor cortex in the frontal lobe to the spinal cord and is crucial
for voluntary motor control, as shown in Figure 2.3a. It mediates the transmission of
signals that execute movement, particularly fine motor skills.

CORPUS CALLOSUM:
The largest white matter structure in the brain, the corpus callosum connects the left
and right hemispheres, allowing for interhemispheric communication, as shown in Fig-
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ure 2.3b. It plays a critical role in coordinating activities between the two sides of the
brain, facilitating functions such as language, sensory perception, and motor control.

FRONTAL ASLANT TRACT:
This bundle connects regions within the frontal lobe, specifically linking the supplemen-
tary motor area (SMA) with parts of the inferior frontal gyrus, as shown in Figure 2.3c. It
is associated with speech initiation, planning and decision-making.

INFERIOR LONGITUDINAL FASCICULUS:
This tract connects the occipital lobe to the anterior temporal lobe and is involved in
visual processing and object recognition, as shown in Figure 2.3d. It plays a key role in
integrating visual information with memory and emotional responses, contributing to
the recognition of familiar objects and faces.

ARCUATE FASCICULUS:
A significant white matter tract that connects the frontal lobe with the temporal lobe, as
shown in Figure 2.3e. The arcuate fasciculus is vital for language processing and produc-
tion. It enables the integration of auditory information with speech production, making
it crucial for fluent communication.

OPTIC RADIATION:
It is a critical white matter pathway in the visual system. It transmits visual information
to the primary visual cortex located in the occipital lobe, as shown in Figure 2.3e. This
tract plays a pivotal role in processing visual signals received from the retina, enabling
the brain to interpret and respond to visual stimuli.

2.2. WHITE MATTER VISUALIZATION IN NEUROSURGERY
White matter visualization is widely used in neurology and neurosurgery. In this thesis,
the focus is on its application in the neurosurgical workflow using DTI. In neurosurgery,
visualizing white matter is crucial for preoperative planning, intraoperative navigation,
and postoperative prognosis. This is especially true for complex procedures like tumor
resection, which is the primary focus of this thesis.

Tumor resection surgery is a critical procedure aimed at removing brain tumors,
which are abnormal growths that can disrupt normal brain function. Among these,
gliomas are the most common type of primary brain tumor. Gliomas originate from
the brain’s supportive cells and are known for their ability to grow and spread surround-
ing brain structures, and care must be taken not to damage nearby critical functional
structures in order to avoid severe and permanent neurological deficits.

The primary goal of tumor resection surgery is to remove as much of the tumor
as possible while preserving essential brain functions. This is especially important for
gliomas, which often grow near regions of the brain responsible for movement, speech,
or vision.

Prior to the surgery, white matter maps can be created using DTI, allowing neuro-
surgeons to identify and preserve essential pathways during procedures. For example,
knowledge of the location of the corticospinal tract is vital when removing brain tumors
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in the vicinity to minimize the risk of postoperative motor deficits. White matter visu-
alization also aids in delineating the relationship between tumors and adjacent white
matter tracts, helping formulate surgical strategies that maximize tumor removal while
minimizing damage to critical areas. However, the presence of tumor, affect the behav-
ior of water diffusion in the brain, which is the fundamental property measured by DTI.
Additionally, tumors can directly impact the underlying fiber structures. For instance,
a tumor may displace, infiltrate, or disrupt fiber bundles. Some types of tumors are
also surrounded by fluid, known as edema, which can interfere with fiber tracking algo-
rithms, even when the fiber structure itself remains intact. In Chapter 4 we will discuss
probabilistic fiber tracking algorithms which attempt to deal with such problems.

Intraoperatively, white matter visualization, created by DTI, are frequently integrated
with neuronavigation systems to provide real-time guidance. This is particularly impor-
tant for surgeries involving eloquent brain regions, where even minor damage to critical
tracts can lead to significant neurological deficits. One of the applications of DTI is in
awake brain surgery, a technique often employed for removing tumors located in areas
responsible for speech or motor control. During these procedures, DTI-derived maps
are used alongside cortical and subcortical stimulation to identify and preserve func-
tional pathways while monitoring the patient’s neurological responses in real time. This
approach try to potentially minimize functional impairments during tumor resection
procedure. In Chapter 7, we examined the potential influence of decision-making pro-
cess for employing awake brain surgery in patients with gliomas.

2.3. CONCLUSION
In this chapter, we explained the medical background which is needed for understanding
the clinical context of the research to be discussed in later chapters. Understanding these
concepts sets the stage for Chapter 3, where we will explore the technical principles of
DTI.
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3
TECHNICAL BACKGROUND

In the previous chapter, we focus on the medical background, discussing the basic con-
cepts of brain anatomy and and the significance of the knowledge of white matter in clin-
ical applications. Chapter 3 transitions to the technical foundation of DTI. This chapter
will delve into the pipeline that transforms raw imaging data into the representations of
white matter architecture. In this chapter, we will discuss each aspect of the DTI pipeline
in detail, presenting the key principles and associated techniques.

11
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Figure 3.1: The DTI pipeline including acquisition of DW-MR image, diffusion tensor modeling,
fiber tracking and visualization.

3.1. DTI PIPELINE
The DTI pipeline consists of several interconnected stages that transform MRI acquired
diffusion-weighted images into representations of white matter architecture. This
pipeline, as shown in Figure 3.1, encompasses image acquisition, diffusion modeling,
fiber tracking, and visualization, each playing a critical role in transforming the MRI
data into valuable insights about white matter structure.

The first step in the pipeline is the acquisition of diffusion-weighted magnetic reso-
nance (DW-MR) images. This stage involves applying specific imaging protocols to cap-
ture the diffusion patterns of water molecules within the brain, which reflect the orien-
tation and integrity of white matter fibers. Following acquisition, the diffusion model-
ing phase applies models to characterize the diffusion properties of tissue. In DTI, this
stage estimates the diffusion tensor that describes the water diffusion at each voxel in the
brain. For other acquisition modalities, different modeling techniques are used, such as,
Spherical Deconvolution or Q-ball imaging.

Once the diffusion tensor is determined, fiber tracking is performed to reconstruct
the trajectories of white matter tracts, offering visual representation of its structural or-
ganization. Finally, the visualization phase employs various techniques to present the
reconstructed fiber tracts, facilitating interpretation and analysis. Next, we will describe
each steps of the pipeline in more detail.

3.2. IMAGE ACQUISITION
DW-MRI aims to measure the directional Brownian movement of water molecules in
tissue. Here we discuss the fundamental concepts of diffusion and MRI that underlie
DWI acquisition.

3.2.1. WATER DIFFUSION

Diffusion is the process by which molecules move randomly due to thermal energy, a
phenomenon known as Brownian motion. This molecular movement, which leads to a
gradual spread from areas of high to low concentration, is particularly informative in bi-
ological tissues, where the local structure influences diffusion patterns. Water molecules
move differently depending on whether they encounter barriers like cell membranes or
myelin in white matter. In unrestricted fluid, the water molecules moves freely, hav-
ing isotropic diffusion with a constant diffusion coefficient D , as shown in Figure 3.2a.
In tissues, however, water diffusion is directionally constrained, or anisotropic, as their
movement is restricted by physical barriers such as cell membranes or cytoskeletal struc-
tures (Figure 3.2b). In this case, the diffusion coefficient is reduced because of the re-
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Figure 3.2: Isotropic diffusion without physical barriers. (b) Restricted isotropic diffusion without
preferred orientation. (c) Restricted anisotropic diffusion with preferred orientation.

stricted movement. In fibrous tissues, water diffusion shows orientational dependency.
Molecules tend to move along the length of axonal fibers rather than across them, as
shown in Figure 3.2c. This anisotropic diffusion allows infering the orientation and in-
tegrity of these fibers locally. In the next section we describe how the Brownian motion
can be measured with MRI.

3.2.2. PRINCIPLES OF MRI
Magnetic Resonance Imaging (MRI) is a non-invasive imaging technique that utilizes
strong magnetic fields and radio frequency pulses to generate detailed images of the
body’s internal structures. The underlying principle of MRI is based on the behavior of
hydrogen nuclei (protons), which are abundant in biological tissues, particularly water
and fat.

When placed in a magnetic field, protons align with the direction of the field. A ra-
diofrequency pulse is then applied, causing the protons to absorb energy and temporar-
ily shift their alignment. Once the pulse is turned off, the protons gradually return to
their original alignment, releasing energy in the process. This released energy is detected
and converted into an image. The time it takes for protons to return to equilibrium,
known as relaxation time, varies depending on the tissue type and its micro environ-
ment.

3.2.3. DIFFUSION WEIGHTED MRI AND SENSITIZING GRADIENTS
Building on the principles of MRI, diffusion MRI extends conventional imaging to cap-
ture the random motion of water molecules within tissue. While MRI measures anatom-
ical structures and tissue properties, diffusion MRI specifically focuses on the random
displacement of water molecules, as explained in Section 3.2.1.

Bihan et al. [13] introduced diffusion MRI for clinical applications. The
degree to which water molecules diffuse is captured through the application of
diffusion-sensitizing gradients. The relationship between diffusion and the measured
MR signal is described by the equation below derived by Stejskal and Tanner [21], they
observed the anisotropic diffusion of water molecules in tissues and investigated the
related modeling of the diffusion effects using MRI.
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S(gi ) = S0 ·e−bDi (3.1)

In this equation, S(gi ) represents the signal acquired in the presence of a gradient
applied in direction gi, S0 is the baseline signal without diffusion-sensitized gradient, b
is the diffusion sensitivity factor, and Di is the so-called apparent diffusion coefficient
for the specific gradient direction gi . The term b is influenced by the gradient strength,
duration, and the time interval between the gradient pulses, which allows for the quan-
tification of diffusion coefficient in the specified direction, within a given time interval.
The amount of gradient directions and computed b-values define the acquisition type.
In DTI, images are typically acquired with 6 to 30 gradient directions and a b-value of ap-
proximately 1000 s/mm². In contrast, HARDI acquisition requires a substantially larger
number of diffusion directions, typically at least 60–90 and for DSI, images are acquired
with 15-500 gradient directions. Higher gradient direction acquisition can capture more
complex information of the diffusion, however, it leads to longer scan times, higher com-
putational complexity, and greater susceptibility to noise. DTI remains widely preferred
in clinical setting due to its simplicity, computational efficiency, and lower acquisition
requirement.

3.3. DIFFUSION MODELING
The spatial distribution of water molecule movement within a voxel is termed as dif-
fusion profile which describes how water diffuses in different directions, which is in-
fluenced by the microstructural properties of the surrounding tissue. There are many
methods for the modeling of the diffusion profile, e.g. Diffusion Tensor Imaging (DTI),
Q-ball Imaging (QBI), Constrained Spherical Deconvolution (CSD) etc. In this thesis, we
are focusing on DTI.

In DTI, water diffusion in tissue is modeled using a second-order symmetric
positive semidefinite tensor, a 3x3 matrix that characterizes diffusion process in
three-dimensional (3D) space. This modeling represents the diffusion as a 3D Gaussian
distribution, capturing various profiles such as isotropic (spherical), planar, and
anisotropic (ellipsoidal).

The diffusion tensor D , introduced by Basser et al. [1], is a symmetric positive
semidefinite tensor represented by a 3 × 3 matrix, with scalar elements denoted by Di j

as follows:

D =
Dxx Dx y Dxz

D y x D y y D y z

Dzx Dz y Dzz

 (3.2)

In this matrix, the diagonal elements Dxx , D y y , and Dzz represent the diffusion co-
efficients along the principal axes, while the off-diagonal elements (Dx y , Dxz , D y x , etc.)
capture the correlation of diffusion between different axes.

For any specific gradient direction, gi , the apparent diffusion coefficient can be cal-
culated as:

Di = gi
T Dgi (3.3)
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To estimate the elements of the diffusion tensor matrix D from the measured
diffusion-weighted magnetic resonance imaging data, the Stejskal and Tanner equation
can be used as given in Equation 3.1. Since the diffusion tensor is symmetric we need at
least 6 diffusion measurements S(gi ) in each voxel to reconstruct it. To estimate the
diffusion tensor D , we can combine Equation 3.1 and Equation 3.3 and solve system of
equations for N instances. Each equation is given by:

log

(
S(gi )

S0

)
=−b gi

T Dgi (3.4)

This system of equations can be simplified as follows.

s = B ·d (3.5)

where s is a vector containing the signal values for each gradient direction,

s = log
(

S(gi )
S0

)
, B is the B-matrix containing direction-dependent b-value and gradient

information, and d is a vector containing the 6 unique values of the diffusion tensor. If
N = 6, Equation 3.5 has the exact solution d = B−1s. To reduce noise effects, however, in
DTI, the applied gradients are commonly more than 6 directions. In this case, solving
the matrix equation becomes a least-squares problem.

3.4. TENSOR SHAPE AND DIFFUSION METRICS
The diffusion matrix D can be represented as a diffusion ellipsoid, where the shape of
the ellipsoid depends on the three eigenvectors (e1, e2, e3) and the corresponding eigen-
values (λ1, λ2, λ3) determined by the eigen analysis of matrix D. The orientation of the
ellipsoids represents the direction of the major eigenvector, while the length represents
the corresponding eigenvalue, as shown in Figure 3.3a. The 3D shape of water diffu-
sion in living tissues reveals valuable information about the underlying tissue structure.
As discussed in Section 3.2.1, areas where the tissue structure does not have barriers,
has isotropic diffusion. In this case, the diffusion tensor takes spherical shape within a
voxel. Conversely, in areas where tissue has a single dominant orientation, such as brain
white matter tracts, the diffusion tensor becomes elongated and ellipsoidal. However,
the brain’s white matter also contains complex fiber arrangements, including crossing,
kissing, bending, and diverging fibers. In this case, there is more than one dominant
diffusion direction. The second-order diffusion tensor cannot resolve these complex
structures instead represents them with a disk-like or planar shape. For the purpose of
analysis of diffusion tensor, several geometric measures exist to quantify tensor shape,
as presented by Westin [24]. These metrics provide insights into the structure and orga-
nization of the brain tissue, and they can be particularly useful for clinical and research
purposes. Following are some commonly used diffusion metrics:

MEAN DIFFUSIVITY (MD):
Mean diffusivity is calculated as the average of the eigenvalues of the diffusion tensor
and provides an overall measure of the diffusion capacity within a voxel. It is given by:

MD = λ1 +λ2 +λ3

3
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(a) Diffusion tensor shapes with three
eigenvectors (e1, e2, e3) and the

corresponding eigenvalues (λ1, λ2, λ3).
(b) Ellipsoid glyphs

(Westin [24]).

Figure 3.3: Shapes of the 2nd-order Diffusion tensor.

where λ1,λ2,λ3 are the eigenvalues of the diffusion tensor. Increased MD values may
indicate tissue edema or damage, while decreased MD may suggest restricted diffusion
associated with healthy, densely packed tissues, as shown in Figure 3.2.

FRACTIONAL ANISOTROPY (FA):
Fractional anisotropy quantifies the degree of anisotropy in diffusion, reflecting the di-
rectional dependence of water diffusion. It is the most widely used scalar measure in dif-
fusion tensor imaging [2] and represents the extent of the diffusion anisotropy. A low FA
value indicates that the diffusion is free (FA=0; isotropic) while a high value of FA implies
that the diffusion is restricted to a single direction (FA=1; anisotropic). FA is calculated
using the formula:

F A =
p

3

2

√
(λ1 −MD)2 + (λ2 −MD)2 + (λ3 −MD)2√

λ2
1 +λ2

2 +λ2
3

FA is commonly used to assess white matter integrity, where higher values typically in-
dicate healthier, more organized fiber tracts. However, FA cannot distinguish between
linear and planar shapes of diffusion because it only measures the overall deviation from
isotropic and not the specific geometry of the diffusion tensor.

CL , CP , CS :
Westin et al. [24] proposed additional anisotropy measures to distinguish between lin-
ear, planar and spherical diffusion:

CL = λ1 −λ2

λ1 +λ2 +λ3

CP = 2(λ2 −λ3)

λ1 +λ2 +λ3

CS = 3λ3

λ1 +λ2 +λ3
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Each of these measures has a range between [0; 1] and CL + CP + CS = 1. Figure 3.3b
represents the barycentric space of diffusion tensor shapes in which the three extremes
(linear, planar, and spherical) are at the corner of triangles.

Many other scalar measures have been proposed based on more complex behaviour
of molecular diffusion and are explained in detail in surveys by Novikov et al. [18], Ra-
jagopalan et al. [20] and Vilanova et al. [22].

3.5. FIBER TRACKING
The most exciting stage in the DTI pipeline is the reconstruction of the 3D pathways
by utilizing the per-voxel information about the orientation of the underlying neural
tracts. The process of virtual reconstruction of the neural fiber tract on the basis of the
diffusion tensor is named Fiber Tracking or Tractography. It involves tracing 3D paths
through diffusion tensor field. The main eigen vector (e1) of the diffusion tensor D, rep-
resents the principle fiber direction at each voxel. One of the most straight forward and
widely used technique is steamline tracing, which is a common concept and well known
in fluid dynamics [9] and flow visualizations [6]. In second-order diffusion tensor fields,
streamline follow the principal eigenvectors of the voxel [3]. Vector field integration is
performed using various schemes to define the streamlines in the eigenvector field. The
implementation of the fiber tracking algorithm typically involves these four major steps:

REGION DEFINITION AND FILTERING:
Regions are usually defined by the user to start, end or control the fiber pathways. The
seeding region refers to the starting point of the tracking process and defines the initial
conditions for numerical integration. Regions are also used to extract a specific bundle
of interest and filter out others to avoid visual clutter.

NUMERICAL APPROXIMATION:
Different types of numerical approximation schemes can be implemented in the fiber
tracking algorithm. Euler integration is the most straight forward technique [16]. Higher-
order methods, such as 2nd or 4th order Runge-Kutta methods [3], are typically less sen-
sitive to noise and can be used for more accurate results.

INTERPOLATION:
During the numerical approximation process, the sample position after each integration
step often lies between volume grid points, hence, interpolation is needed to estimate
values, based on the neighboring grid points. Commonly, linear interpolation is used
but other methods exists with different pros and cons, as explained by Kindlmann [12]

STOPPING CRITERIA:
These prevent the algorithm from tracing into regions where the main eigen vector is not
reliably defined. In DTI, this can occur in areas of planar or isotropic diffusion, such as
brain gray matter. Different scalar measures, such as FA, MD, Cl or curve angle can be
used as stopping criteria in the fiber tracking process.
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3.5.1. FIBER TRACKING TECHNIQUES
In principle, fiber tracking techniques can be divided into the following two main cate-
gories:

DETERMINISTIC FIBER TRACKING

Deterministic algorithms, given the same input, always produce the same output. There
are many deterministic fiber tracking algorithms that can be selected for DTI fiber track-
ing when the discrete fiber directional information is given. For example, the fiber as-
signment by continuous tracking (FACT) algorithm, is widely adopted and has been
implemented in several fiber tracking software packages [17]. It uses the conventional
voxel concept and its core propagation algorithm is close to Euler’s streamline integra-
tion method for extremely fast tracking speed.

PROBABILISTIC FIBER TRACKING

Probabilistic fiber tracking approach generates multiple possible fiber paths from each
seed point, based on a statistical distribution of diffusion orientations instead of select-
ing the most probable orientation from the measurements. By sampling the diffusion
direction from a probability distribution derived from the diffusion tensor, probabilistic
tracking can provide a representation of fiber pathways, especially in areas with crossing
fibers. This method is beneficial for visualizing complex anatomical structures, though
it can be computationally intensive and require additional parameters for accurate in-
terpretation. We defer an extensive discussion of probabilistic methods to Chapter 4.
Various techniques has been presented in the literature, and is summarized in the re-
view article by [10].

3.6. VISUALIZATION
Visualization of diffusion tensor imaging data is essential for translating diffusion infor-
mation into interpretable images, aiding both research and clinical applications. Follow-
ing we discuss several techniques employed to visualize DTI data, each offering insights
into different aspects of diffusion.

3.6.1. VOLUME RENDERING
Volume rendering is a technique commonly used to visualize three-dimensional scalar
fields. In the context of DTI, volume rendering allows for the representation of the entire
voxel space, providing an overview of the underlying anatomical structures and diffu-
sion properties. This can be done by converting tensor to one scalar quantity e.g, FA at
each voxel. This technique utilizes transfer function to convey different attributes of the
data. A transfer function maps data values to visual properties such as color and opacity,
enabling the differentiation of structures and features within the volume.

By manipulating the transfer functions, clinicians and researchers can emphasize
particular regions or features of interest. Transfer functions for diffusion tensor was first
defined by Westin [23] and used for the direct volume rendering of diffusion data. For
further elaboration, lighting effects were added by Kindlmann et al. [12], that account
for tensor anisotropy and diffusion orientation, as shown in Figure 3.4. Hlawitschka et
al. [8] presented a novel method that allows the interactive exploration of the volumetric
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(a) Lit-Tensors Kindlmann et al. [12].
(b) Interactive Volume rendering Hlawitschka et

al. [8].

Figure 3.4: Volume rendering techniques used for visualizing DTI data.

DTI data sets. Despite its usefulness, volume rendering technique also has certain lim-
itations. One major downside is the loss of information, as volume rendering visualizes
scalar fields rather than the full tensor data. Additionally, the technique suffers from oc-
clusion and overlap, as it displays the entire dataset simultaneously, making it difficult to
distinguish individual fiber tracts or regions of interest. As a result, alternative methods
such as glyph-based or line-integration-based visualizations are generally preferred for
their ability to represent the directional and structural details of white matter.

3.6.2. GLYPH-BASED VISUALIZATIONS

Glyph-based visualizations offer an alternative approach to represent diffusion data by
utilizing geometric shapes, or glyphs, to encode the local information of the diffusion
tensor. Data information is mapped to glyph characteristics such as shape and color.
Glyphs provide a way to represent the full six-dimensional information of a diffusion
tensor by mapping the eigenvectors and eigenvalues to the orientation and shape of a
geometric primitive. The most straight forward approach to visualize the diffusion
tensor are ellipsoidal glyphs, used by Pierpaoli and Basser [19] as shown in Figure 3.3b.
Among several other proposed techniques, the super quadratic glyph is considered
state-of-the-art for glyph-based tensor visualization. Instead of interpolating between
ellipsoidal shapes, Kindlmann [11] represents the diffusion by superquadrics with
shape parameters defined by the barycentric coordinates. Ellipsoids differing in shape
can be confusing, from certain viewpoints, because of similarities in profile and
shading. Superquadric glyphs, on the other hand, addresses the problems of
asymmetry and ambiguity with a new tunable continuum of glyphs based on
superquadric surfaces. The glyph based visualization provide the detailed directional
information of the tensor locally. However, for the global connectivity information, as
needed for fiber tract visualization, line-integration based approaches are used, as
discussed in the next section.
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Figure 3.5: a) Traditional polyline visualization. (b) Hull-based visualization [7].

3.6.3. LINE-INTEGRATION-BASED VISUALIZATIONS
Line-based visualization is a widely adopted technique for representing the results of
fiber tracking algorithms in diffusion imaging (See Section 3.5). This approach visual-
izes white matter tracts as a collection of polylines directly, where each poly line corre-
sponds to the computed fiber tract. Numerous strategies have been introduced, such
as thin polylines [15], illuminated streamlines [26] or cylindrical tubes [4]. Zhang et
al. [25] introduced streamtubes to encode the local diffusion tensor information along
the cross-section of the fiber tracts at each voxel. The spaghetti plot visualization has
several shortcomings. Most importantly, it suffers from clutter and occlusion, making
it difficult to distinguish between areas with a single fiber sample compared to number
of densely distributed ones. To reduce clutter, Enders et al. [7] presented a technique to
wrap the fiber bundles within a surface hull, as shown in Figure 3.5. Similar techniques
have been used by Merhof et al. [14] and Chen et al. [5]. We further discuss the more
complex line-integration-based visualization in Section 4.3.2.

CONCLUSION
This chapter provided a basic technical overview of diffusion tensor imaging (DTI), from
acquisition principles to diffusion modeling and visualization. We introduced key ele-
ments of the DTI pipeline, explaining MRI-based diffusion measurement, the diffusion
tensor model, and its fitting process. Diffusion metrics derived from these models for
characterizing white matter structure. We also discussed fiber tracking methods and
visualization techniques, including volume rendering, glyphs, and line based visualiza-
tion.

The DTI pipeline involves several complex stages, therefore, it is prone to uncertainty
from various sources, impacting the reliability of data interpretation. In the next chapter,
we will examine the uncertainties involved in DTI, focusing on uncertainty visualization
that aid clinicians and researchers in making more informed assessments.
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4
UNCERTAINTY VISUALIZATION IN

DTI

In the previous chapter, we presented the DTI pipeline, detailing its four main stages.
Each stage, however, relies on assumptions, parameters, and estimations that introduce
significant uncertainties. These uncertainties can propagate through the pipeline, lead-
ing to variability in the final output. In this chapter, we focus on examining the un-
certainties inherent in the DTI pipeline, particularly in the context of its clinical appli-
cations. We briefly cover the approaches used for quantification of uncertainties and
review state-of-the-art strategies for uncertainty visualization in DTI. We compare their
main characteristics and drawbacks. We explore various methodologies for uncertainty
visualization in other domains that have not yet been applied to DTI or, more broadly, to
DWI, and discuss how these techniques can be adapted for use in this field. This chapter
is based on the paper:

Siddiqui, F., Höllt, T., and Vilanova, A. (2021). Uncertainty in the DTI Visualization
Pipeline. In Anisotropy Across Fields and Scales (pp. 125-148). Springer Interna-
tional Publishing.
https://doi.org/10.1007/978-3-030-56215-1_6.

23



4

24 4. UNCERTAINTY VISUALIZATION IN DTI

Figure 4.1: The DTI processing pipeline with sources of uncertainties at each step.

The DTI processing pipeline, as discussed in the previous chapter, involves complex
stages of mathematical modeling, analysis, mapping, and rendering strategies, there-
fore, it is prone to uncertainty from various sources. Noise, patient movement, modeling
residuals, and distortion from imaging artifacts produce uncertainty in the orientation
of the diffusion tensor and are detrimental to fiber tracking algorithms. These uncer-
tainties hamper the link between the data being measured and visualized.

4.1. SOURCES OF UNCERTAINTY

In this section we extend the Figure 3.1 by adding sources of uncertainty involved at
each stage of the DTI pipeline, as shown in Figure 4.1. Following, we will go through this
pipeline and discuss the sources of error present at each stage. While our focus is on
the DTI modality, many sources of uncertainty also arise in DWI pipelines that extend
beyond DTI.

4.1.1. IMAGE ACQUISITION

MRI-based techniques usually suffer from various acquisition errors such as noise, mo-
tion artifacts, partial volume effects, etc. Signal to noise ratio in DWI sequences is rela-
tively high given that signal attenuation is being measured. The effect of noise on the DTI
output has been widely studied in literature [2, 36, 47]. There has been a growing trend of
increasing the gradient direction in DTI acquisition to improve the tractography quality.
However, this further increases the acquisition time. In HARDI, the gradient directions
for acquisition are much higher than that of DTI and, therefore, it needs more time. With
higher acquisition time, it is more likely that the subject move during the scan, which in
turn, introduces misalignment in the acquired image. These kinds of artifacts are known
as motion artifacts. Providentially, these misalignments can be corrected during the reg-
istration process. Several automated techniques have been introduced to remove this
artifact [77]. The finite resolution of the results also affects the output of the process.
The resolution of a clinical DWI acquisition is typically in the order of millimeter (mm)
in each direction, which is much lower than that of actual axons. Therefore, the signal
values have to be averaged to be able to fit in a single image voxel. This loss of infor-
mation is called the partial-volume effect (PVE). Several studies have been conducted in
neurological literature to investigate the PVE in DTI [58, 59, 68]. Other sources of error
during image acquisition involve Magnetic Distortion, Scanner setting and others [11].
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4.1.2. DIFFUSION MODELING

In DTI, the diffusion of a water molecule is mathematically represented by a second-
order tensor, known as the diffusion tensor. Numerous measurements are performed
along various gradient directions to determine the molecular diffusion at each voxel.
The least-squares method is the most commonly used fitting technique to calculate the
diffusion tensor, but other more accurate regression procedures can also be used [3, 4].
This fitting procedure introduces both a fitting error and a model selection step, con-
tributing to variability in the outcomes of the DTI process. DTI technique can only esti-
mate one dominant diffusion direction per voxel, and thus, is incapable of determining
the structure where the multi-fiber direction is present and, therefore, results in unre-
liable outcomes. HARDI models emerge to overcome this limitation and able to model
complex fibrous regions of the brain. It provides a way to estimate the multi-fiber popu-
lations that can then be used for robust tractography. HARDI models are more complex
and usually introduce more parameters and choices to be determined than DTI.

4.1.3. FIBER TRACKING

Fiber tracking involves the reconstruction of the fibrous structure of the brain white mat-
ter by gradually following the local fiber orientation estimated from the diffusion tensor,
as explained in Section 3.5.1. As discussed, there are several parameters in fiber track-
ing algorithm to control the tracking process, however, these parameters add variability
to the fiber tracking results. There are four major sources of uncertainties in the fiber
tracking algorithm:

1. Region definition and filtering

2. Numerical approximation

3. Interpolation

4. Stopping criteria

Region definition and filtering: The region definition in the fiber tracking process
can add variation in the outcome. Usually, these regions are defined manually, and
therefore introduce an implicit user bias. A minor variation in the definition, can re-
sult in largely different pathways. Recently, several techniques have been proposed to
minimize the effect of seed region in the fiber tracking algorithms [17, 36, 69].

Numerical approximation: The integration method, or the chosen step size, can fur-
ther affect the quality of these integration schemes [66], discussed in Section 3.5.1. Dif-
ferent schemes can lead to the different outcome, hence, adds variability in the results.

Interpolation: Several studies have been conducted to address the effect of interpo-
lation in fiber tracking [24, 74]. Various kinds of interpolation schemes are present, each
result in different pathways, and therefore, add variability in the results.
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Stopping criteria: Fiber tracking algorithms are often highly sensitive to these val-
ues, meaning that a very small variation in the stopping criteria can lead to a very large
change in the resulting fiber [66]. Brecheisen et al. [13] propose a visual exploration tool
that allows users to investigate the behavior and sensitivity of DTI fiber tracking to stop-
ping criteria.

In fiber tracking algorithms for HARDI models the principal directions are extracted
from a multifiber representation which adds another layer of complexity to the algo-
rithms.

4.1.4. VISUALIZATION
The visualization stage involves the mapping of the data into a geometric representation
or visual primitives that are finally rendered on to the screen. This process can be an-
other source of the uncertainty. Various photo-realistic rendering techniques are used to
simulate real world lighting as exact as possible, but this further complexity adds uncer-
tainty in the outcome. Lighting models and shadows enhance the structural perception
of the fibers and as such improve the recognition of the spatial relations between tracts;
however, the controlling parameters can add further variability in the final results.

4.2. UNCERTAINTY MODELING
As discussed in the previous section, many sources of uncertainties are present at each
stage of the DTI visualization pipeline that affect the outcome of the process. These un-
certainties propagate through the pipeline adding uncertainty in the derived quantities
including diffusion tensor and fiber orientations. Estimating the error distribution of
different sources is not a straight forward task. Different approaches have been used to
model the uncertainty, however, each with pros and cons. We have classified the meth-
ods used for the uncertainty quantification into two categories:

1. Analytical methods

2. Stochastic methods

4.2.1. ANALYTICAL METHODS
Analytical methods refer to approaches that provide an explicit mathematical formula-
tion of the error distribution. These modeling techniques are based on the Bayes theo-
rem [45] and were first introduced by Behrens et al. [8] in DWI. They estimated the proba-
bility distribution function (PDF) of the fiber orientation by a Bayesian model. The main
disadvantage of this modeling technique is that they rely on the assumption of prior
and noise present in the data. These techniques are computationally inexpensive, how-
ever, their dependence on the prior assumption limit their widespread use. Most of the
Bayesian model-based techniques are often combined with random sampling methods,
such as Markov Chain Monte Carlo (MCMC), to determine the distribution of model pa-
rameters [8, 9, 25]. The application of Bayesian model based methods in DTI and HARDI
has been reported several times [37, 43, 49].

Shortest path algorithms are another useful approach for quantifying structural
brain connectivity and were first introduced by O’Donnell et al. [55]. This approach
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relies on computing the connections between regions of interest rather than
connections from a seed. Schober et al. [62] presented the distribution of the shortest
path as a Gaussian process over the solution to an ordinary differential equation (ODE).
This strategy offers novel ways to quantify and visualize uncertainty arising from the
numerical computation and allow marginalization over a space of feasible solutions.
Hauberg et al. [32] extended this work and incorporated data uncertainty in DTI by
sub-sampling the diffusion gradients and solving the noisy ODE. Several other studies
using the shortest path algorithms in fiber tracking can be found in the literature [31,
48].

4.2.2. STOCHASTIC METHODS

Describing the probability distribution analytically and propagating it through the
pipeline is extremely difficult and often not feasible. The alternative and the most
straight forward way to estimate the probability distribution function is to repeat the
acquisition multiple times, this approach is called the bootstrap method [20]. However,
for robust estimation of the PDFs, hundreds of data sets are required, which is not
practical in a clinical setting. Several stochastic techniques were proposed to overcome
this limitation [16]. Among them, the most widely used technique is wild
bootstrapping [71].

WILD BOOTSTRAPPING

Wild bootstrapping requires only a single DTI scan at the expense of certain simplifying
assumptions [40]. In Section 3.3, we described the fundamental principle behind diffu-
sion modeling and specified how the diffusion tensor D is estimated using Equation 3.5.
As mentioned in Section 3.3, the 6 unique elements of the diffusion tensor D, can be
estimated using ordinary least squares fitting method.

Once the matrix D is determined, the model predicted signal value s′(gi) can be cal-
culated using Equation 3.1, which corresponds to the fitted tensor. A residual value r (gi)
is then calculated with

r (gi) = s′(gi)− s(gi). (4.1)

A new signal per orientation at each voxel, s′′(gi), is then stochastically generated ac-
cording to s′′(gi) = s(gi)+ sign(r (gi)), where the sign()-function randomly multiplies the
residual by 1 or −1. A new tensor sample of the diffusion tensor, D′, is estimated for
each voxel independently multiple times by fitting a tensor to the generated s′′(gi) sig-
nals. By perturbing residuals randomly, each tensor fit will be different from the previous
one. This repetitive estimation of the tensor for each voxel is carried out for all voxels
of the tensor volume multiple times, resulting in an ensemble of tensor volumes. The
wild bootstrapping method generates multiple DTI volumes, enabling the estimation of
uncertainty arising from acquisition noise and diffusion modeling. However, it is com-
putationally expensive. To address this limitation, we introduce the Progressive Visual
Analytics (PVA) pipeline, which will be explained in Chapter 5.
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(a) Uncertainty cones [39]. (b) HiFiVE Glyphs [64].

(c) Decomposed ensemble representation [76]. (d) ODF glyphs [67].

Figure 4.2: Glyphs with uncertainty encoding.

RANDOM SAMPLING

Another set of stochastic algorithms were introduced to incorporate uncertainty in fiber
tracking by adding randomness in the tracking process [9, 61, 65]. These algorithms es-
timate the probability density function of the fiber orientation at each voxel and deter-
mine the propagation direction by drawing random samples from the distribution. This
technique is preferable in most cases as it takes uncertainty into account and can esti-
mate the confidence interval for each reconstructed pathway [8, 19]. Koch et al. [46] pro-
pose to use Monte Carlo random walks for the estimation of the fiber connectivity. The
fiber tracking algorithm proceeds through each randomly selected neighboring voxel de-
pending on the angle between the voxel’s main eigenvector and its connecting angle with
the neighboring voxels. A similar approach has been used in other studies to establish a
connectivity map in a probabilistic sense [7, 10, 26, 57]. Monte Carlo methods have also
been used to generate fiber tracks based on random particle movement [30]. The PDF
obtained from the analytical methods can be used to perform tractography with these
stochastic techniques [25, 37]. These studies are based on DTI, however, the concept is
extendable to HARDI as well, but they are not used much in this context [49].

4.3. UNCERTAINTY VISUALIZATION

So far, we have discussed the sources of uncertainty present in the visualization pipeline
and the methods used for their quantification. Visualization provides a way to com-
municate data effectively and efficiently, however, uncertainty is often omitted in the
process. Visualizing uncertainty information in DWI can help assess the accuracy of the
acquisition and modeling, which ultimately guide the users in making critical decision.
However, the visualization of complex data in itself is not straightforward, adding un-
certainty representation to it further complicates the process. Issues of visual cluttering
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and loss of anatomical context are some of the few complications when visualizing un-
certainties.

In this section, we will survey the strategies used for the visualization of the uncer-
tainties in DTI and also discuss some related techniques used in the HARDI model. We
also summarize these strategies in Table 4.1. The modeling column refers to the uncer-
tainty quantification techniques, such as stochastic, bootstrapping, or analytical meth-
ods. Domain indicates the application area of the study and ensemble column catego-
rizes the method into the local or global level. The representation specifies the measure
used for the aggregations of the ensemble, and finally, the visualization column indicates
the technique used to display the uncertainties. The visualization of uncertainty in DTI
can roughly be divided into two categories.

1. Local uncertainty visualization

2. Global uncertainty visualization

4.3.1. LOCAL UNCERTAINTY VISUALIZATION
Local representations of the uncertainty depict variation per voxel inside the vector or
tensor fields. Glyphs are typically used to depict the voxel-wise information of the data.
Several glyph-based techniques have been proposed to visualize the inherent local un-
certainty in DTI. Jones et al. [39] proposed a method to represent the confidence interval
of the main fiber direction by rendering an uncertainty cone, as shown in figure 4.2a.
Basser et al. [6] used a similar technique to represent the main eigenvector and their
associated uncertainties. This visualization approach allows the representation of the
main diffusion direction and the confidence interval concurrently, also desccribed in
Table 4.1 Schultz et al. [64] demonstrate a new glyph design, called HiFiVE, that provides
a more detailed impression of the uncertainty. It represents the variation corresponding
to the main eigenvector by rendering a double cone (blue color) and the density esti-
mation of the uncertainty around it (represented as a gray surface), as shown in Figure
4.2b.

Another way to represent the uncertainty in multivariate data is to estimate its co-
variance. It does not only express the variance in each coefficient but also indicates their
linear dependencies. Since the diffusion tensor is a second-order tensor, its covariance
is represented by a fourth-order tensor, however, the visualization of the fourth order
tensor is rather difficult in this context. Basser et al. [5] presented a novel technique for
the spectral decomposition of the fourth-order covariance tensor and introduced the
concept of tensorial normal distribution. They proposed a glyph representation, called
radial glyphs, which depicts the overall variance and a composite glyph for representing
the eigentensor of the fourth-order covariance. They visualized the expected mean ten-
sor and its standard deviation as three isosurfaces. Abbasloo et al. [1] highlight that the
radial glyph does not convey the correlation with the mean tensor and also suffers from
high visual complexity in the tensor field. They proposed a more intuitive approach for
the visualization of the covariance by using multiple levels of detail. Unlike Basser et al.,
Abbasloo et al. visualize the confidence interval at each eigenmode separately by glyph
overlays and used animation to visualize the differences at each mode. Gerrits et al. [27]
pointed out the shortcoming in both of these visualization techniques and proposed a
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generic approach that incorporates all the coefficients of the mean tensor and covari-
ance in a single glyph.

Various studies has been published concerning the representation of the tensor en-
semble directly. Jones et al. [42] visualize the ensemble data simply by overlaying several
glyphs. Although the superposition depicts the overall picture of the data, it adds visual
clutter and occlusion during display. To remedy this, Zhang et al. [75] used transparency
to minimize the occlusion. Abbasloo et al. [1] tried to minimize this problem by render-
ing the superimposed glyphs in complementary colors. Zhang et al. [76] proposed an
approach to decompose the tensor data into three properties (i.e., scale, shape, and ori-
entation), representing the structure of the underlying fibers, and measure the variation
per property. A glyph based representation has been presented in this study to visual-
ize the ensemble effectively. The variation in the ensemble is represented by Halo and
texture over the surface as shown in Figure 4.2c

The orientation distribution function (ODF), associated with HARDI, specifies the
overall amount of diffusion in a given direction. Unlike the diffusion tensor model, ODFs
can have multiple maxima, and therefore are capable of modeling complex fibrous struc-
ture more accurately than DTI. However, this technique is computationally expensive.
The representation of the ODF itself is a challenging task and adding uncertainty infor-
mation only increases the complexity. Jiao et al. [38] proposed a technique to visualize
uncertainty over polar ODF glyphs by using a volume rendering technique. They in-
troduced shape inclusion probability (SIP) function to represent the orientation uncer-
tainty of the tensor. Tournier et al. [67] presented a method to visualize uncertainties
associated with ODFs by using semitransparent glyphs. They represent the mean ODF
by the opaque surface and the mean + standard deviation by the transparent surface, as
shown in Figure 4.2d.

The visualization of uncertainty in a diffusion tensor is similar to the uncertainty rep-
resentation in a vector field where orientation is considered important. Several glyph-
based techniques exists in this scope. Wittenbrink et al. [73] presented a glyphs based
representation of the uncertainty for atmospheric and oceanographic data. Likewise,
Hlawatsch [34] and Lodha et al. [50] visualize the local uncertainty in a fluid flow field
using glyph. Zuc et al. [78] proposed a glyph design to provide uncertainty information
in a bidirectional vector field. These techniques rely on the representation of the vec-
tor direction and magnitude with encoded uncertainties to depict the local uncertainty
present in the field.

4.3.2. GLOBAL UNCERTAINTY VISUALIZATION

In contrast to the local strategies, global uncertainty visualization in DTI aims at pro-
viding information on how accurate fiber tract information is throughout the complete
tensor field, and how the inherent uncertainties accumulate during the tracking process.
In DWI independently of DTI or HARDI models being used, probabilistic tractography is
often used to incorporate these uncertainties. The most widely used approach to visu-
alize fibers obtained through probabilistic tractography is to superimpose the resulting
fibers in a so-called spaghetti plot [10, 18, 40], see Figure 4.3a. This visualization tech-
nique, however, does not depict a clear view of the region-wise fiber connections and its
uncertainty and suffers from strong cluttering. Color coding the fiber tracts according to
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(a) Spaghetti plot [40]. (b) Wrapped streamlines [15].

(c) Illustrative visualization [12]. (d) Connectivity mapping [44].

Figure 4.3: Global uncertainty visualization strategies.

their seed points [18] does not suffice to minimize the complexity of the visualization.
Schober et al. [62] and Hauberg et al. [32] used wobbly spaghetti plot that emphasize the
fact that the individual resulting paths cannot be considered as real fibers in the brain
which is a common misinterpretation in spaghetti plot. Instead, they are uncertain esti-
mates of fibers.

To overcome the complexity and clutter caused by the multiple superimposed tracts,
Enders et al. [22] presented a technique to group the fibers related to a certain nerve
tract and generate a surface that wraps the resulting fibers. Similarly, Mehrof et al. [53]
and Chen et al. [15] presented a method to cluster the fiber with a proximity-based al-
gorithm and generate hulls encompassing the fiber bundles, as shown in Figure 4.3b.
The anatomical grouping helps the user to understand the underlying fibrous structure.
Outside of DTI, Frest et al. [23] used a similar technique to visualize uncertainty in flow
field ensembles. They performed principal component analysis to cluster the stream-
lines in a low dimensional space and determine the mean and confidence interval in an
ensemble. These representations are visualized with a line enclosed by a transparent
surface. The geometrical hulls and enclosed surfaces reduce clutter, however, they can-
not resolve complex cluster shapes. To alleviate these problems, Illustrative techniques
have been proposed to represent the confidence interval of the fiber bundle by creating
silhouette, outline, and contours [12, 56], as shown in Figure 4.3c.
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To improve the understanding of ensembles of curves, it has been proposed to vi-
sualize the statistical information such as mean or confidence intervals rather than the
direct ensemble visualization as spaghetti plot s. Table 4.1 indicates the various repre-
sentations used by the studies. These representations, e.g mean and confidence interval,
are the summarization of the raw samples. Unlike scalar values, the statistical measures
are not well defined for curves, and therefore, several approaches have been proposed
for the estimation of these terms. Brecheisen et al. [12] proposed to compute median
and confidence intervals based on pre-selected distance measures between curves. In
the field of fluid dynamics, a band-depth concept [51] has been introduced to analyze
curve ensembles in two-dimensions [70] and three-dimensions [54]. This concept pro-
vides a way to determine centrality within the present curves and estimate the variations.
Sanyal et al. [60] visualize the uncertainty in the wind trajectories by creating a ribbon
along the ensemble mean. The width of a ribbon represents the variability at each point.

A widely used approach for the visualization of the global uncertainty is to repre-
sent and visualize measures derived from the probabilistic tractography. Voxel-wise fiber
density computes the probability that a fiber tract traverses a voxel for a given seed re-
gion [14]. Voxel-wise fiber density [21, 30] helps to infer the anatomical connections.
Another measure is the connectivity probability, which represents the probability of a
fiber tract crossing a given voxel while connecting two fixed anatomical regions [63].
Von Kapri et al. [44] and McGraw et al. [52] used volume rendering for the visualiza-
tion of density maps, as shown in Figure 4.3d. The global visualization of the fiber tracts
does not provide the local tensor information. To visualize the local uncertainty along
with the probabilistic tracts, a stream tube technique has been proposed [41, 72], which
maps the local uncertainty measure onto the cross-section of the tube.

A common problem with the three-dimensional approaches is that the geometrical
representation often occludes the underlying information, hampering its interpretation.
Various slice-based methods have been proposed for the visualization of probabilistic
fibers [46, 57]. These techniques have been used in neuroscience as they provide a way
to directly visualize the anatomical information, making it easy to interpret anatomical
context. Goldou et al. [28, 29] presented a novel slice based approach for visualizing the
probability by rendering fiber stipples. The number of stipples, present at a particular
region depicts the fiber density. Hlawitschka et al. [35] proposes to use poisson-disk
sampling for the generation of the fiber stipples.

Table 4.1 summarizes the survey indicating the domain, representation, and visual-
ization strategies used to display the uncertainty. The table covers the approaches used
for local and global uncertainty visualization in both the DWI and non-DWI domain.

4.4. CONCLUSION
In this chapter, we explored uncertainty in the various stages of the DTI pipeline. Sev-
eral of the problems and solutions discussed throughout this chapter are also valid for
other models beyond Diffusion tensor, such as HARDI models. Even though we have
not covered the technical background, where applicable, we have discussed the appli-
cability of the strategies beyond DTI. Further, we have reviewed applicable uncertainty
visualization techniques beyond the DWI domain.

DWI is still a growing field, considering the recent advancements and the frequent
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development of new techniques, this survey should not be considered complete, it rather
should be enhanced in the future. Studies on uncertainty visualization so far are mostly
focused on the research aspect, however, no uncertainty visualization solution exists to
specifically support clinical DTI pipeline. In the following chapters we present interac-
tive visualization techniques that are specifically designed keeping clinical constraints
and applicability in consideration.

Table 4.1: Summary of uncertainty representation and visualization strategies

References Modeling Domain Ensemble Representation Visualization

Jones et al. [39] Stochastic DWI Local Direction interval Interval glyph
Basser et al. [6] Stochastic DWI Local Direction interval Interval glyph
Schultz et al. [64] Stochastic DWI Local Probability distribution HIfive glyph
Jones et al. [42] Stochastic DWI Local Mean and median Overlay glyph
Zhang et al. [76] - DWI Local Mean and variance Halo and texture
Zhang et al. [75] - DWI Local Difference encoding Overlay glyph
Tournier et al. [67] Stochastic DWI Local ODF mean and variance Semi-transparent glyph
Jiao et al. [38] Stochastic DWI Local ODF SIP Volume rendered glyph
Basser et al. [5] Analytical DWI Local Mean and covariance Superimpose glyph
Abbasloo et al. [1] Analytical DWI Local Mean and covariance Overlay/Animation glyph
Gerrits et al. [27] Analytical Both Local Mean and covariance Superimpose glyph
Wittenbrink et al. [73] Bootstrap Non-DWI Local Mean and variance Flow-field glyph
Zuk et al. [78] Bootstrap Non-DWI Local Probability distribution Flow-field glyph
Hlawatsch et al. [34] Bootstrap Non-DWI Local Mean and variance Flow-field glyph
Lodha et al. [50] Bootstrap Non-DWI Local Interval Flow-field glyph
Otten et al. [56] - DWI Global Line and interval Illustrative
Hermosilla et al. [33] - DWI Global Line and interval Illustrative
Brecheisen et al. [12] Stochastic DWI Global Line and interval Illustrative
Corouge et al. [18] Bootstrap DWI Global Ensembles Spaghetti plot
Bjornemo et al. [10] Stochastic DWI Global Ensembles Spaghetti plot
Jones et al. [40] Stochastic DWI Global Ensembles Spaghetti plot
Hangmann et al. [30] Stochastic DWI Global Ensembles Color-coded spaghetti plot
Ehricke et al. [21] Stochastic DWI Global Ensembles Color-coded spaghetti plot
Enders et al. [22] - DWI Global Fiber clusters Wrapped geometrical hull
Chen et al. [15] - DWI Global Fiber clusters Wrapped geometrical hull
Merhof et al. [53] - DWI Global Fiber clusters Wrapped geometrical hull
Jones et al. [41] Bootstrap DWI Global Ensemble/local estimates Streamtubes
Wiens et al. [72] Stochastic DWI Global Ensemble/local estimates Streamtubes
Goldau et al. [29] Stochastic DWI Global Fiber density Stipples glyphs
Hlawitschka et al. [35] Stochastic DWI Global Fiber density Stipples glyphs
Goldau et al. [28] Stochastic DWI Global Fiber density Stipples glyphs
Brown et al. [14] Stochastic DWI Global Fiber density Confidence region
Schultz et al. [63] Stochastic DWI Global Connectivity Probability Confidence region
Kapri et al. [44] - DWI Global Connectivity Probability Volume rendering
McGraw et al. [52] Stochastic DWI Global Connectivity Probability Volume rendering
Koch et al. [46] Stochastic DWI Global Connectivity Probability Density map
Parker et al. [57] Stochastic DWI Global Connectivity Probability Density map
Kaden et al. [43] Analytical DWI Global Connectivity Probability Density map
Schober et al. [62] Analytical DWI Global Ensembles Wobbly Spaghetti plot
Hauberg et al. [32] Analytical DWI Global Ensembles Wobbly spaghetti plot
Mirzargar et al. [54] Bootstrap Non-DWI Global Band Depth Wrapped geometrical hull
Whitaker et al. [70] Bootstrap Non-DWI Global Band Depth Contour lines
Ferstl et al. [23] Bootstrap Non-DWI Global Line and interval Wrapped geometrical hull
Sanyal et al. [60] Bootstrap Non-DWI Global Mean and std. deviation Ribbon
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5
A PROGRESSIVE APPROACH FOR

UNCERTAINTY VISUALIZATION IN

DIFFUSION TENSOR IMAGING

The previous chapter has provided an overview of the different sources of uncertainty
occurring in the DTI processing pipeline. In this chapter, we focus on the uncertainty in
the first two stages of the pipeline, i.e., uncertainty that arises due to acquisition noise
and errors in diffusion modeling. We propose an approach that addresses the high com-
putational and memory costs of using wild-bootstrapping as uncertainty estimation by
providing a progressive visual analytics paradigm. We present a local bootstrapping
strategy, and provide fiber-tracking results in a progressive manner. We have also im-
plemented a progressive aggregation technique that computes the distances in the fiber
ensemble during progressive bootstrap computations. We present experiments with dif-
ferent scenarios to highlight the benefits of using our progressive visual analytic pipeline
in a clinical workflow along with a use case and analysis obtained by discussions with our
collaborators. This chapter is based on the paper:

Siddiqui, F., Höllt, T., and Vilanova, A. (2021, June). A progressive approach for un-
certainty visualization in diffusion tensor imaging. In Computer Graphics Forum
(Vol. 40, No. 3, pp. 411-422).
https://doi.org/10.1111/cgf.14317.
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(a) (b)

Figure 5.1: (a) Sagittal MRI slice showing a segmented frontal brain tumor (dark green) and
deterministic streamline based fiber tracking of the nearby corticospinal tract. A fixed safety

margin is drawn as an outline in blue. (b) 150 wild bootstrapping [12] iterations using the same
parameters and region of interest as a), resulting in additional frontal and cerebellar pathways.

5.1. INTRODUCTION
The MRI-based acquisition suffers from artifacts such as noise, image distortion, mo-
tion artifacts, and partial volume effects (PVE) [1]. The modeling stage involves the es-
timation of the second order tensor using fitting techniques or higher-order regression
models, adding further variation to the final results [13]. These uncertainties accumulate
variations in the resulting visualization, influencing the decision making process.

In clinical applications, the visualization of uncertainty is often ignored, thereby
hampering the user to make effective decisions. In the absence of uncertainty
information, neurosurgeons may consider safety margins around critical brain
structures [20] based on experience and prior knowledge (see Figure 5.1a). Such safety
margins assume that there is a homogeneous distribution of the uncertainty, which is
not the case (see Figure 5.1b). Uncertainty information becomes even more critical
when fiber tracking is used in pathological anatomy, e.g., when fiber tracts are displaced
or infiltrated by a tumor. In such cases, the experience and anatomical knowledge of
the surgeon to estimate the uncertainty becomes even less effective. Figure 5.1 shows a
fiber bundle affected by a tumor present in its vicinity. As can be seen, deterministic
fiber tracking as used in the clinical workflow could not show the fibers going towards
the frontal area of the tumor (Figure 5.1b). Missing the possibility that fibers can be in
the frontal area of the tumor can lead to inadvertently damaging of the tracts during the
surgery.

Wild bootstrapping is a stochastic method, used to approximate uncertainty in DTI.
It approximates regular bootstrapping where multiple acquisitions are acquired [22] to
model uncertainty. Wild bootstrapping requires only a single scan and simulates multi-
ple acquisitions using probability distributions from the residuals that remain after fit-
ting the diffusion tensors to the data. Computing a large number of such simulated scans
allows to approximate a distribution, from which the output, together with its uncer-
tainty, can be derived. This procedure, however, incurs substantial computational costs
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and is difficult to be used in an interactive fiber tracking process, where parameters are
defined through exploratory trial-and-error which is the current clinical workflow for
the definition of fiber tracts in surgery planning. We propose a progressive approach
that allows interactive estimation and exploration of fiber tracts and their correspond-
ing uncertainty without pre-processing the data.

Wild bootstrapping provides an ensemble of fiber tracts (i.e., polylines) that cannot
be effectively visualized directly. Aggregation strategies are used to effectively visualize
this kind of data [2, 21]. However, these methods are not efficient when ensemble
members are progressively generated. We modified an existing solution by Brecheisen
et al. [2], to allow progressive fiber generation and synchronized visualization. The
main contribution of this paper is a progressive visual analytics framework for
stochastic based uncertainty visualization in DTI fiber tracking. The main aspects in
this contribution are listed below:

• We have developed a progressive visual analytics (PVA) pipeline for local calcula-
tion of tensor bootstrap samples combined with simultaneous fiber tracking.

• We have adapted the ensemble-based fiber tract aggregation and visualization to
work in a progressive framework.

The framework enables interactive generation, and visual analysis of fiber tracts with
uncertainties. We analyze the computational benefits through experiments and illus-
trate the potential of the framework by a set of use-cases.

5.2. REQUIREMENT ANALYSIS
This work has been carried out in collaboration with clinical partners who want to in-
corporate uncertainty into their current tractography workflow for neurosurgery plan-
ning. We base our visualization pipeline on the methods used in their current work-
flow, which incorporates diffusion tensor imaging (DTI), combined with deterministic
streamline generation of fiber tracts. While more sophisticated methods exist for mod-
eling the diffusion, as well as fiber tracking, our proposed solution must work with the
diffusion tensor model as well as deterministic fiber tract generation to maximize com-
patibility with the current clinical workflow. After acquisition and pre-processing of the
data, radiologists define a region of interest (ROI) and generate the corresponding fiber
bundle. Further, the proposed solution should minimize the time between acquisition
and analysis. Therefore, we propose a progressive visual analytics (PVA) approach to
generating the underlying bootstrap samples, as well as deriving fiber tracts. The pro-
posed PVA pipeline is designed to allow the interactive estimation of uncertainty in the
tractography and enables clinicians to define the regions of interest and explore the re-
sults interactively.

5.3. RELATED WORK
Several approaches are available in the literature that characterize, represent, and visual-
ize uncertainties due to noise and modeling errors in fiber tracking, each with their own
pros and cons. In this section, we present related work according to uncertainty estima-
tion methods for fiber tracking and corresponding uncertainty visualization techniques.
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To represent the error distribution within a fiber ensemble, statistical information,
such as mean or confidence interval, are of interest. However, these measures are not
as well defined for the curves as they are for scalar values. Several approaches to com-
pute these statistical information for ensembles of curves exist. Whitaker et al. [21] and
Mirzagar et al. [15] use the concept of band-depth to compute the centrality within the
set of curves and estimate the variations. Ender et al. [6] compute the average of the
curves in a bundle, resulting in the central fiber. Instead of computing the mean of the
fibers, Brecheisen et al. [2] compute the median and confidence interval of the curve by
calculating the distances among fiber pairs based on a chosen measure. This approach
enables the visualization of the complex fiber structure along with the uncertainty in-
formation. Here, we adopt a similar technique to calculate the most representative fiber
and the percentile of variation and modify it such that it can be incorporated in a pro-
gressive visualization framework.

In our work, we address computational cost and latency issues that are part of the
uncertainty visualization pipeline for DTI fiber tracking. We base our approach on wild
bootstrapping and streamline fiber tracking that we adapt the the Progressive Visual An-
alytics (PVA) paradigm introduced by Mühlbacher et al. and Stolper et al. [17, 19] and
later formalized by Fekete and Primet [8]. PVA provides intermediate results that help
users to understand the evolution of a lengthy computation, such as the wild bootstrap-
ping simulation, allowing to start the exploration of the data during the computation
without a need to wait until the end of the simulation. Further, PVA allows steering
the computations, similar to interactive program steering [9] and computational steer-
ing [11] approaches. Here, we introduce progressive generation and aggregation of the
fiber samples combined with immediate, interactive uncertainty visualization. To the
best of our knowledge, there is no related work that proposes using a progressive strat-
egy for the purpose of uncertainty visualization in DTI fiber tracking.

5.4. TOWARDS A PROGRESSIVE VISUAL ANALYTICS PIPELINE
In our work we focus on stochastic methods that simulate sample variations and facil-
itate the propagation through the pipeline. We have chosen wild bootstrapping for the
presented framework to estimate and propagate the uncertainty in the data acquisition
and diffusion modeling steps from a single DTI scan. Wild bootstapping method is ex-
plained in detail in Section 4.2.2. We have chosen wild bootstraping for our framework
given its use and demonstrated similarity to bootstraping in the DTI context [12]. The
naive pipeline is based on pre-computing the ensemble of tensor volumes followed by
deterministic fiber-tracking, i.e., streamline generation (see Figure 5.2). For each tensor
volume sample and a seed point, a new fiber sample is generated. Once all the fiber
samples are tracked, we obtain a fiber ensemble to be visualized. This process is able
to show the variations in the obtained fiber tracts. However, the pre-computation of the
whole tensor volumes ensemble requires long computation times and a large memory
footprint.

Accessibility within the clinical workflow is a major limitation for the use and evalu-
ation of uncertainty information in practice. The lack of availability of the tools and the
complexity in achieving the visualization of the uncertainty is one of the main bottle-
necks in their clinical use, despite its enormous potential. In neurosurgical applications,
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Figure 5.3: Processing pipeline of naive progressive approach, creating a complete volume per
iteration.
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for example, in pre-surgical planning, generating the fiber pathways is often a trial and
error process. It needs various iteration and requires constant tuning of fiber tracking re-
gions of interest and parameters to meet the expectations of the clinician. The large pre-
processing times of uncertainty modeling add latency in the visualization which breaks
the clinical workflow. We introduce a progressive approach that reduces the latency be-
tween acquisition and visualization and allow users to explore and interact with fiber
tracking parameters and their uncertainties directly during the computations. We iden-
tify and the bottlenecks present in the clinical workflow and provides a first step towards
making uncertainty visualization more accessible to the user. We do realise that our pro-
posed approach needs clinical validation and evaluation, just as tractography does in
general. However, we consider a clinical evaluation as future work.

In uncertainty modeling through bootstrapping, it is not known in advance how
many bootstrap samples will lead to an accurate enough result. Many factors, includ-
ing the shape of the bundles themselves, the area of the brain and the level of noise and
artifacts introduce variation in the number of required samples. Modeling uncertainty
for one bundle may require fewer bootstrap iterations than another. Computing a prede-
fined number of iterations ‘N ’, either misrepresents the uncertainty or wastes resources
and time. To circumvent this problem, a progressive visualization approach allows the
user to see intermediate results, observe the uncertainty simulation’s evolution, and ul-
timately identify when the results are stable enough on-the-fly, saving valuable time.

In the following, we start our discussion with a naive progressive visual analytic
pipeline, identify drawbacks, and proceed to our proposed local bootstrapping and
fiber tracking approach.

5.4.1. NAIVE PROGRESSIVE APPROACH

The first step towards a progressive visual analytics pipeline is to visualize the fiber sam-
ples during the wild bootstrapping calculations without a need to pre-compute all ten-
sor volumes. For this purpose, bootstrap sample calculation and fiber tracking stage are
combined. Figure 5.3 illustrates the pipeline of the naive progressive bootstrapping and
fiber tracking approach for a given seed point. In the progressive approach, a tensor vol-
ume is generated at each iteration by using the wild bootstrap technique. Based on the
newly created sample, fiber tracking from a given seed point is performed. Each itera-
tion results in a unique fiber sample, which can directly be visualized. The variations in
the fiber samples represent the effect of the noise and modeling errors. The bootstrap
iterations repeat continuously which increases the reliability in the estimation of the un-
certainty. The user can start the evaluation of the data immediately and define when to
take a decision given a perceived visual stability of the results.

The progressive approach reduces the memory footprint of the wild-bootstrapping
method, as no pre-computed tensor volumes need to be stored. However, computing
each complete diffusion tensor volume takes in the order of several seconds, which is
still too long to be used in an interactive system, making this progressive pipeline im-
practical.
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5.4.2. LOCAL BOOTSTRAPPING AND FIBER TRACKING

In most applications of fiber tracking, the users are mostly interested in a specific fiber
bundle or a particular region of the brain. In these cases, calculating the bootstrap sam-
ple for the whole volume is a large waste of computation resources, since just a small
portion will be used. However, the precise region of interest for the tracing is not known
in advance, and cannot be computed in pre-processing time. Taking this into consider-
ation, we propose a novel approach for accelerating the computations of the progressive
bootstrap method presented in previous section. Here, we combine wild bootstrapping
with fiber tracking and the computations are performed only for those cells that are nec-
essary for the currently tracked fiber. The pipeline for the local bootstrapping and fiber
tracking is illustrated in Figure 5.4.

The streamline algorithm is initiated with specific seed points. During the numerical
integration of the corresponding streamlines, we need to obtain the diffusion tensor that
defines the vector field at a specific position in the volume. We use tensor component-
wise trilinear interpolation [5] for the estimation of the diffusion tensor at any point in
the volume. For trilinear interpolation, we need the diffusion tensors at the eight vox-
els of the cell containing the current position. These voxel tensor values are determined
by performing wild bootstrapping calculations at the specific voxels as described in Sec-
tion 4.2.2. While tracing the streamlines in a single bootstrap sample, we keep track of
the voxels that have been already computed and store the corresponding tensor wild-
bootstraping sample. Every time a previously computed voxel is required, it is fetched,
without the need for re-computation. This ensures coherence through the streamline
integration steps. We also reuse the stored voxel tensors within a wild-bootstrapping
iteration when fiber samples from different seed points are traced. This preserves the
coherence between fibers, and produces the same results as the naive pipeline.

The resulting fiber samples (shown by the red lines in Figure 5.4) are then progres-
sively visualized after being calculated. The bootstrap iterations repeat, resulting in mul-
tiple fiber samples for each seed point.
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5.5. UNCERTAINTY VISUALIZATION
So far, we have discussed a method to progressively generate bootstrap fiber samples.
This progressiveness has no use if we cannot visualize the resulting fiber ensemble in
an effective and progressive manner. Directly rendering thousands of fiber samples in
a spaghetti plot adds cluttering and occlusion, making it difficult to effectively obtain
relevant information. We developed a progressive aggregation method to indicate the
relevant uncertainty information, and an interactive visualization approach for effective
exploration of the uncertainties.

5.5.1. PROGRESSIVE FIBER AGGREGATION
Many techniques for effective visualization of uncertainty in curve-like ensemble data
sets have been reported in literature [2, 3, 6, 14]. Most of these techniques, rely on the
availability of the complete data to create uncertainty aggregations similar to a boxplot
(e.g., median fiber, outliers, bounds definition) [2, 15, 21]. The progressive fiber genera-
tion and simultaneous visualization in our work pose extra challenges to the application
of such methods. In our approach, each bootstrap iteration generates a new fiber sample
that is added to the existing ensemble. Consequently, the uncertainty aggregation needs
to be updated after every bootstrap iteration. An efficient method for aggregation that
can be iteratively updated, rather than requiring a full re-computation from scratch with
every added sample is desired. The existing algorithms for aggregation rely on sorting
and ordering based on distance calculations between fibers. Making such calculations
progressive is not straight forward. In the following, we adapt the work by Brecheisen et
al. [2] to the progressive context.

Brecheisen et al. proposed to determine a representative fiber using pairwise dis-
tances between all fiber samples. The representative fiber is the fiber with the minimum
accumulated distance to all the other fibers in the ensemble and as such can be seen as
the most central fiber. In addition, all other fibers are ordered according to their accu-
mulated distances such that intervals of uncertainty can be defined.

To calculate the pairwise distances, Brecheisen et al. [2] used the mean of the closest
point distance [16]. We modify this approach presented by Brecheisen et al. to be used
within the scope of a progressive approach as follows.

We assign a distance score Si to each fiber sample Fi which is the accumulated dis-
tance of Fi to all other available fiber samples as

Si =
N∑

j ̸=i
d(Fi ,F j ), (5.1)

where d defines a distance measure between fibers, in our case the closest point dis-
tance. With each bootstrap iteration, a new fiber sample Fk is generated and added.
As the distance score Si is a simple sum it can be updated easily. We only have to com-
pute d(Fi ,Fk ) for each already computed fiber sample Fi and add it to the corresponding
existing distance score Si . Additionally, Sk is computed by summation of all newly com-
puted d(Fi ,Fk ) using Equation 5.1. We keep the scores in an sorted table such that the
lowest score, corresponding to the sample that has a minimum distance to all the others,
is selected as the representative fiber. Higher scores indicate that the samples are further
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Figure 5.5: Updates in a confidence score table with an inclusion of a new fiber sample at each
iteration.

away from the rest and can be interpreted as having higher uncertainty. Despite being
of linear order, the computation of d(Fi ,Fk ) is computationally costly. Therefore, we
progressively update the existing distance scores, as well as the new distance score Sk ,
in order of the distance score of the fiber samples. Furthermore, to avoid unnecessary
distance computations, if the distance d(Fi ,Fk ) is smaller than a pre-defined threshold,
we assume that the fiber samples Fi and Fk are similar enough to not need a higher pre-
cision in the distance calculation. By keeping track of all computed distances, we can
avoid the costly distance calculations d(F j ,Fk ) for the remaining samples F j , by simply
using the existing distance d(F j ,Fi ).

We illustrate the progressive updates of the distance score table in Figure 5.5. After
the third iteration (N = 3, Figure 5.5a), three fiber samples are present with the second
sample as the center line. During the fourth iteration (N = 4, Figure 5.5b), a new sample
is added to the existing ones. The distance scores are re-computed and the representa-
tive fiber is updated accordingly. At N = 5 (Figure 5.5c), another sample is added with a
distance less than a predetermined threshold to the existing fiber sample 3. In this case,
the distance score table is updated according to the distances of the similar fiber and
the new fiber is added to the same table entry as sample 3. Notice that the more fiber
samples we calculate the higher the costs of keeping the score table but also the higher
the chance of finding a similar fiber sample. An evaluation on the performance gain and
the accuracy is presented in section 7.

5.5.2. PROGRESSIVE RENDERING

Once the representative fiber and the aggregations have been determined, an effective
visualization is needed. We draw the representative fibers as red tubes and the
remaining fiber samples, representing the ensemble variation, as illuminated polylines
in orange. We use multi-layered rendering to avoid occlusion of the representative
fibers by the other fiber samples. We first render the fiber samples, followed by a
second pass to render the representative fibers on top, as shown in Figure 5.7.
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Figure 5.6: Progressive simulation and visualization of a single fiber, originating from Arcuate
Fasciculus showing the histogram and convergence behaviour of the simulation. a) to f) show the
results of the simulation after N iterations. T represents the total elapsed time of the simulation

in seconds. g) shows the histogram stability plot.

Figure 5.7: Visualization with
multi-layered rendering.

Representative fibers are rendered on
the top layer, followed by the selected

interval and fiber samples at the
bottom. The histogram widget shows

the selected interval, while the line plot
shows the Earth Mover’s Distance

(EMD) between the last two
consecutive histograms plotted against

the number of iterations.

In this way, the representative fibers are always
visible, regardless of occlusion by other fiber sam-
ples As a result, the depth perception of those
samples in relation to the representative fibers is
less clear. However, we deem the visibility of the
representative fibers more important, while the
fiber samples provide context.

As the simulation progresses, changes of the
representative fiber and fiber samples can be ob-
served by the user in the progressively updating
visualization. For further exploration of the fiber
aggregation, intervals can be specified similar to
the work by Brecheisen et al. [2] to show variation
from the representative fiber. An interval can be
expressed as a percentage range of the distance
score table, e.g., 0 − 50% closest fiber samples.
The selected fiber samples are rendered in blue.
We have chosen the color scheme for the repre-
sentative fiber, fiber samples and selection, using
the red to blue diverging color map from Color-
Brewer [10]. By using colors from one end of the
color map for the representative fiber and fiber
samples we indicate their connection, while us-
ing the other end for the selection provides a clear highlight.

To draw the selection in the multi-layered approach, described above, we use a third
layer, between the complete set of fiber samples and the representative fibers. As a re-
sult, selected fibers are shown on top of the complete set but may be occluded by the
representative fibers, as shown in Figure 5.7.
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5.5.3. LINKED DISTANCE SCORE HISTOGRAM

Selecting fibers based on the interval ranges, as described in Section 5.5.2 allows the user
to gain an impression of the variance of the samples from the representative fiber, for
example, to identify outliers. To provide further insight into the distribution of the gen-
erated fiber samples, we compute the distance of each sample from its corresponding
representative fiber and show these in a histogram (inset, Figure 5.7). The fiber distri-
bution in the histogram is represented so that the left part of the histogram depicts the
fiber samples closer to the representative fibers, while the extreme right part denotes the
fibers further away.

We further allow the user to select intervals visually, by brushing in the histogram
view, providing an intuitive way to understand the uncertainty distribution. We use
the same color scheme used for the 3D representation (Section 5.5.2) to indicate fiber
samples and selections in the histogram. Together with the stability of the actual fiber
visualization, the continuously updating histogram is an indicator of the stability of the
estimated uncertainty. Over time, it is expected that the histogram will have fewer fluctu-
ations, indicating that the addition of samples has less influence on the final uncertainty
estimation. To aid the evaluation of the stability of the uncertainty estimation beyond
animation, we calculate the earth mover’s distance (EMD) [18] between the histograms
of consecutive bootstrap iterations. The EMD quantifies the differences in the distribu-
tion for the two consecutive histograms. Hence after several iterations, the histogram
becomes more stable, consequently the distance between the histograms reduces de-
picting the stability of the simulation. We show these values in an optional, on-demand
line plot, shown in the bottom right corner of Figure 5.7.

5.6. RESULTS

In this section, we evaluate the developed framework and discuss the interactivity of the
progressive simulation, uncertainty estimation, and rendering. We used two DW-MRI
data sets, one from a healthy subject, one of a patient with a brain tumor, provided by
our collaborators. During separate sessions with two clinical collaborators, we extracted
several fiber tract bundles (i.e., Inferior Front Occipital Fasciculus (IFOF), Corticospinal
Tract (CST), Arcuate Fasciculus (AF), Optic Radiation (OR)) from these datasets, using
our tool. The original volume datasets comprise of 112×112×70 voxels, with a resolu-
tion of 2× 2× 2mm3, a b-value of 1,000, and 56 gradient directions. All computations
were performed using an Intel (R) Core i7-4820K CPU at 2.6 GHz. Our framework is
implemented in C++, as a plug-in for the open-source medical image processing and
visualization framework 3D Slicer [7].

5.6.1. PROGRESSIVE SIMULATION

In clinical applications, generating the specific fiber tract requires constant tuning of
the parameters, especially the regions of interest (ROIs). Our framework allowed our
clinical partners to generate and manipulate the fiber tracking regions of interest during
the progressive generation of fiber samples. The interactions provided in our framework
were found to be useful to create the fiber tracts.
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Figure 5.8: Progressive simulation and visualization of the
Arcuate Fasciculus. a) to c) show the results of the

simulation after N iterations. d) shows the histogram
stability plot.

Figure 5.6 illustrates the pro-
gressive computation and visu-
alization of a representative fiber
and the corresponding variation
for a single seed point. The fiber
is part of the Arcuate Fasciculus
(AF) bundle as was defined by
our collaborators. At each boot-
strap iteration, a new fiber sam-
ple is generated from the seed
point, which in turn updates the
distance score table, and subse-
quently the representative fiber.
The variation in the representa-
tive fiber and inclusion of the
new fiber samples can be seen in
Figures 5.6b-f, illustrating the re-
sult after 5, 10, 100, 350, and 500
iterations, respectively. In Fig-
ures 5.6a-d, it can be seen that
the 3D representation and the

histogram changes significantly between the different snapshots. As the number of sim-
ilar fiber samples increases within an ensemble, the representative fiber updates accord-
ingly. After an adequate number of bootstrap iterations, the overall structure of the fiber
tract, along with its variations, becomes stable, as indicated in Figures 5.6e and f. As
can be seen, there are no major changes in the fiber structure and histograms, and the
simulation can be considered as converged. The stability of the histogram can also be
analyzed with the histogram stability plot as discussed in Section 5.5.3. With increas-
ing number of iterations, the histogram becomes stable and consequently the distance
among the consecutive histograms diminishes, as shown in the line plot in Figure 5.6g.
However, it should be noted that the stability plot alone is not an indicator of the con-
vergence of the simulation, rather it only depicts how stable histogram is. Convergence
of the simulation is always observed in combination with analyzing the 3D shape of the
fiber structure and the stability of the histogram.

Figure 5.8 shows the convergence behavior when using a seed region instead of a
single seed point in the AF tract. As the simulation proceeds, the inclusion of more
fiber samples stabilizes the distribution. Since the bundle is rather compact and is not
strongly affected by noise, there are consistent updates in the fiber structure from the
beginning of the simulation. The distance distribution and the fiber samples shows no
major changes even as early as 50 iterations. The structure of the fiber tract samples
seems stable from the early stage of the simulation, and hence, one can estimate that
only few bootstrap iterations are required for estimating the uncertainty in this case. Fig-
ure 5.8d shows the histogram stability plot which further clarifies the consistency of the
histogram, as evident from the plot, the histogram distributions remains homogeneous
from the early stage of the simulation.
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Figure 5.9: Progressive simulation and visualization of the part of corticospinal tract with tumor
in the vicinity. Figures a) to e) show the results of the simulation after N iterations. f) shows the

histogram stability plot.

Figure 5.9 shows a second example, using region-based seeding to generate the CST
tract as defined by our collaborators. Here, a tumor causes displacement of the CST tract.
Initially, the distance distribution and the representative fibers update more rapidly be-
cause insufficient fiber samples are present. This can be seen from the samples and
histogram in Figures 5.9a-c. The histogram stability plot, shown in Figure 5.9f further
shows the large distance among the histogram distribution in the early stage of the sim-
ulation. As the simulation proceeds, the inclusion of more fiber samples stabilizes the
distribution.

The examples shown indicate that convergence, as indicated by our partners, is
reached after a different number of iterations. With our progressive framework, the
users do not need to define the total number of iterations in advance and wait for the
results. They can directly analyze the progressive results according to their stability
estimated from the 3D visualization and the histogram.

EXPERT FEEDBACK

We have conducted multiple feedback sessions with our collaborators, including two
radiology operators and a surgeon in training. Our collaborators generated the core fiber
bundles presented in this paper using our tool and provided feedback, both informally,
as well as through a questionnaire. They noted that using our framework improved their
understanding of the uncertainty present in the data and the extracted bundles.

The stability of the simulations was identified by analyzing histogram stability and
the 3D shape of the bundle. Our collaborators were enticed by the interactive definition
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of bundles. However, they also remarked that they would need more experience with
such methods and uncertainty in general, to be able to provide reliable evidence of the
benefits. We also got feedback from a collaborating neurosurgeon, on the visualization
of the uncertainty, discussed in more detail in section 5.6.2.

5.6.2. INTERACTIVE UNCERTAINTY EXPLORATION

Similar to strategies presented by [2], we provide the possibility to specify confidence in-
tervals of fiber samples to be visualized. The interval can be selected based on a percent-
age of fiber samples closest to their corresponding representatives, similar to quantiles
in scalar value distributions. Figure 5.10c shows the 0−50% interval of the fiber samples
closest to their representative for the AF tract. The selection is highlighted in blue. Fig-
ure 5.10d illustrates the 90−100% interval, showing the 10% fibers that are farthest away
from their representative fiber. The interval selection through the percentage of closest
fibers has a direct interpretation on the chance to track a fiber within the region.

Figure 5.10: Visualization of fiber confidence intervals:
a-b) selection of intervals based on the modes present in
the distance score histogram c) 0−50% and d 90−100%

closest fibers interval selection.

As explained in
Section 5.5.3, our framework
also allows to select
interval based on the histogram
distribution of the distances
to the representative fiber.
Figure 5.10a and 5.10b illustrate
the selection using the distance
score histogram. By observing
the histogram, one can identify
the branch present in the
fiber ensemble. The selection
in Figure 5.10a corresponds
to the fiber samples that
are closer to the representative
while the selection
in Figure 5.10b corresponds
to the branch which is further
away. As illustrated it is possible
to identify deviations from
a uni-modal distributions. Our

representative-fiber calculation assumes that the distribution of fibers originating from
a seed point is uni-modal. However this does not always hold and one calculated
representative fiber is not adequate. The histogram is likely to show multiple peaks
when this is the case (see Figure 5.7). In discussion with our collaborators, this
interaction with the histogram helps in understanding the variations present in the
bundle and identifying the outliers.

Figure 5.1a was generated together with our collaborators and would be
the result of tracing the CST bundle with deterministic fiber tracking used
in their common workflow. As illustrated in Figure 5.1, deterministic fiber
tracking can miss relevant fiber tracts, and thereby has false-negatives.
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Table 5.1: Comparison of the number of voxels used in the bootstrap computations per iteration
for the Corticospinal tract (CST), Arcuate Fasciculuss (AF) and Optic Radiation (OR).

Naive Progressive

CST AF OR

µ voxels 1,540,096 324 288 209

σ voxels - 39 31 30

µ time [ms] 4,650 4.5 4.1 3.9

σ time [ms] - 0.6 0.55 0.52

Figure 5.11: Visualization of the fibers with the interval
selected from histogram for corticospinal tract (CST) with

the tumor in the vicinity.

A fixed safety margin around de-
terministic fiber tracking results,
which is indicated by the blue
line in Figure 5.1a, is a common
clinical practice used to deter-
mine the area of risk. The mar-
gin is equally distributed along
the fibers however, it is not re-
liable as can be seen in Fig-
ure 5.1b. Our collaborators neu-
rosurgeons indicated that false
negative as the ones missed in
Figure 5.1a are specially danger-
ous, as neurosurgeons may in-
advertedly damage tracts and in-
duce neurological deficits.

We further utilize histogram for interval selection to analyze uncertainties.
Figure 5.11 illustrates the interval selection in the case where the CST bundle is affected
by a tumor. Figure 5.11a illustrates the selection of the 40% fibers that are closest to
representatives and Figure 5.11b represents the interval of 70%. As can be seen in the
Figure 40% fibers are in the back area, however, on increasing the interval to 70%, the
branch towards frontal area can be observed. As indicated from our collaborators, the
interval selection helps define the risk area for planning tumor resection surgery.

5.6.3. COMPUTATIONAL ANALYSIS

To analyze the computational cost and acceleration, achieved with our progressive ap-
proach, we have generated three fiber ensembles, corresponding to different anatomical
regions defined with our collaborators. First, we compare the number of voxels neces-
sary to compute each fiber tract sample. As the computation per voxel is identical be-
tween methods, we decided to use the number of voxels, instead of the computation
time for comparison. It should be noted that the naive approach can easily be paral-
lelized even for a single fiber and member. However, this advantage can be offset by
computing multiple fibers in parallel with our approach. As discussed earlier, the naive
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bootstrap method computes the ensemble of the complete diffusion tensor field, hence,
the number of voxels corresponds to all voxels comprising the volume (approximately
1.5 million). Our local bootstrap strategy only computes bootstrap samples for voxels
along the fiber of interest. We provide an overview of the required mean (µ) number of
voxels and the standard deviation (σ) per iteration of the same tract in Table 5.1. The
mean and standard deviation are computed over 100 bootstrap iterations. In summary,
our local bootstrap strategy significantly reduces the number of bootstrap computations
required for each iteration. Consequently, the computation time for the required voxels
as well as the required memory is significantly lower compared to the naive approach.

In typical applications, users are interested in fiber bundles consisting of multiple
fiber tracts. Typically, those fiber tracts share a significant amount of voxels, meaning
that as we increase the number of fiber tracts computed for the same seed regions, these
shared voxels can be re-used. Figure 5.12 shows the number of voxels that need to be
computed for the Corticospinal tract (CST, ) and Arcuate Fasciculus (AF), with increasing
seeding density. As can be seen in Figures 5.8 and 5.9, the fibers are much less spread in
the AF compared to the CST. Consequently, the amount of voxels, needed for computing
the bundle flattens out much quicker for the AF than for the CST (Figure 5.12). Nonethe-
less, in both cases, we can observe a flattening of the curves indicating that performance
gains are even bigger for bundles, than for individual fibers.

Our framework consist of two major stages progressive bootstrap and fiber tracking,
where fibers are generated, and progressive fiber aggregation where the derived data,
such as the representative fiber are computed. The computation time for the bootstrap
and fiber-tracking stage only varies, depending on variations in the data, i.e., tracts tak-
ing longer or shorter paths in the current iteration. The computation time for the pro-
gressive fiber aggregation stage, however, increases with each iteration, i.e., at iteration
n, n −1 pairwise distances need to be computed. While this sums up to the same N 2/2
distances that need to be computed without the progressive approach, distributing the
computations over the iterations reduces the wait time for the visualization significantly.
Further, introducing the similarity threshold can drastically cut computation times. We
illustrate the correlation between the cut off threshold and computation time in Fig-
ure 5.13. We performed the progressive aggregation for 1,000 bootstrap iterations with
increasing threshold values. As can be seen, the computation time (green) drastically de-

Figure 5.12: Number of voxels required to
compute fiber tracts with increasing

seeding density.
Figure 5.13: Computation time and Error.
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creases, even for small threshold values. At the same time, the error (red line, Figure 5.13)
compared to the exact computation without a threshold is increasing with larger thresh-
old values. The error is calculated as the mean of the closest point distance between the
exact representative fiber, and the representative fiber computed with the given thresh-
old value. Since the fiber ensemble is computed using a stochastic process, we repeated
the calculations 100 times, represented by the error bars in Figure 5.13. Given the curves
in Figure 5.13, we estimate that a small cut off can provide significant speed up, with no
noticeable reduction of accuracy.

5.7. CONCLUSION AND FUTURE WORK
In this chapter, we have presented a progressive visual analytics strategy for uncertainty
visualization in DTI fiber tracking, based on stochastic modeling. We have modified
the wild-bootstrapping and fiber-tracking pipeline to enable a progressive approach. In
particular, we have designed a local wild-bootstrapping approach, integrated into and
driven by interactive fiber tracking. Although we developed our progressive pipeline for
DTI, the concept is extensible to HARDI and other models, as long as a local simulation
method for uncertainty estimation is present such as [4].

Our clinical collaborators stress the relevance of adding uncertainty to their exist-
ing current workflow. However the lack of access to tools that show uncertainty makes
it difficult to show its real benefit in practice. Our proposed progressive approach is
a first step towards reducing the clinical bottleneck making uncertainty visualization
more accessible to clinicians. As future direction we want to integrate the progressive
uncertainty visualization in their workflow and evaluate whether and how uncertainty
influences the decision making process. A progressive pipeline provides the possibility
of immediate analysis at the danger of evaluating premature results. In this paper, we
rely on the stability shown by the animation of the visualized results to indicate relia-
bility of the results. However, more research is needed to evaluate the implications of
the progressive pipeline. Despite positive anecdotal feedback from our clinical partners,
the acceptance of our progressive framework by clinical users cannot be assumed, as
the users are unaccustomed with uncertainty visualization and it requires some expe-
rience to adopt it in a routine workflow. The focus of this work was on the progressive
computation rather than the visual representation. More sophisticated visual represen-
tations, integrated with the progressive aggregation method are an interesting avenue for
future work. Furthermore, we have explored a limited amount of sources of uncertainty.
The progressive framework can be extend to accommodate other sources of uncertainty
coming from other stages of the pipeline.
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6
INTERACTIVE VISUAL EXPLORATION

OF REGION-BASED SENSITIVITIES

IN FIBER TRACKING

While Chapter 5 focused on addressing uncertainty in the early stages of the DTI pipeline
and visualizing it within the progressive visual analytics paradigm, this chapter shifts fo-
cus to the user-defined parameters in fiber tracking. One such parameter is the defini-
tion of seed-points, which plays an important role in shaping the results of fiber tracking.
In this chapter, we explore how sensitivity analysis of seed-points can enhance the defi-
nition of regions of interest (ROI) and improve the accuracy of fiber tract generation. We
present an interactive approach that leverages seed-point sensitivities to guide users in
defining optimal ROIs, with a focus on clinical applications and visualization strategies
for effective decision-making. This chapter is based on the paper:

Siddiqui, F., Höllt, T., and Vilanova, A. (2023). Interactive visual exploration of
region-based sensitivities in fiber tracking. In Eurographics Workshop on Visual
Computing for Biology and Medicine 2023 (pp. 13-22).
https://doi.org/10.2312/vcbm.20231208.
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6.1. INTRODUCTION

In clinical fiber tracking applications, Regions of Interest (ROIs) like the seed region,
are defined by users manually to extract a specific bundle, i.e., a coherent set of fibers
connecting two specific regions in the brain. In most cases, users take guidance from
anatomical imaging in combination with a 2D directional encoded color (DEC) map (see
Figure 6.1a and 6.1b). A DEC map encodes the main tensor direction by mapping the
(x, y, z)-components of the direction to RGB color channels, respectively, weighted by
Fractional Anisotopy (FA) [32]. Interactive and automated ROI definition based on the
local diffusion properties is well studied [43, 44].

Figure 6.1: Potential ROI R overlaid on a T1 image (a) and DEC
map (b). In both images, the values in R are homogeneous.

However, the resulting fiber tract from the given seed region R
is divided into two different fiber bundles (c, orange, and

purple) corresponding to a division in the ROI shown in the
inset.

Automatic ROI defini-
tion methods often require
manual tuning and redefi-
nitions, resulting in a trial
and error process, requir-
ing multiple iterations to ex-
tract the desired fiber tracts
and meet the expectations
of the clinician [44]. Rely-
ing solely on the DEC maps
and the anatomical infor-
mation is sometimes not
enough for ROI definition
since it only indicates the lo-
cal directional and anatom-
ical information. Figure 6.1
shows an example where
both the anatomical image
(Figure 6.1a) and the DEC map (Figure 6.1b) indicate homeogeneouos values within a
potential ROI R. This could indicate that the fiber tracts seeded from this region may
form a coherent bundle. However, the resulting fiber tracts generated from the region R
are from two different bundles namely Arcuate Fasciculus (AF) bundle and the superior
longitudinal fasciculus (SLF) bundle, as shown in Figure 6.1c. The resulting fiber demon-
strates that there is a division in the region that is not visible on anatomical images and
DEC maps, which are the common visualization techniques in a clinical setting.

In this paper, we explore the use of seed-point sensitivity as additional guidance for
users. Seed-point sensitivity refers to the variation in fiber tract structures due to slight
changes in the seed-point location. By quantifying and visualizing seed-point sensitivity,
users can identify the boundaries of desired fiber bundles, aiding in the generation of
optimal fiber tracking results. In the example, ROI R in Figure 6.1, such a measure would
produce large sensitivity values in the region where the bundle diverges and as such,
alleviate the adjustment of R. Our main contributions are:
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• the identification and analysis of scenarios in which seed-point sensitivity can aid
in ROI definition,

• corresponding ROI guidance and course of action per scenario for ROI optimiza-
tion,

• visualization and interaction techniques to guide the definition of ROIs based on
the defined scenarios and course of action.

6.2. CLINICAL WORKFLOW
To understand the fiber tracking workflow in the neurosurgical setting, we conducted
exploratory sessions with our collaborators, which include neurosurgeons, radiologists,
and researchers who use fiber tracking for planning tumor resection surgeries. Our clin-
ical collaborators expressed a specific interest in reconstructing the core bundles: Ar-
cuate Fasciculus (AF), Inferior Frontal Occipital Fasciculus (IFOF), Corticospinal Tract
(CST), Optic Radiation (OR), and the Frontal Aslant Tract (FAT). These bundles are rele-
vant for neural communication and function in visual perception, recognition, language
processing, and motor movements.

Our collaborators employ both automatic and manual pipelines for fiber tracking
during preoperative planning. In the manual clinical pipeline, the workflow starts with
the image acquisition, followed by the preprocessing of the data, which includes correct-
ing for motion artifacts and eddy currents and normalizing the data to a common space.
After the data has been preprocessed, diffusion modeling takes place. The manual clin-
ical pipeline relies on diffusion tensor imaging (DTI) [26]. However, in our work, other
modeling techniques such as HARDI [42] can also be integrated. After diffusion tensor
modeling, ROIs are defined using anatomical information and DEC maps. The ROIs in-
clude seed regions and AND regions that are used to filter irrelevant fibers [23, 25, 31,
37]. Using AND ROIs in fiber tracking improves the specificity and reliability of result-
ing fiber bundles, avoiding spurious fibers. Within the clinical workflow, users manually
define ROIs to extract particular bundles. Typically, anatomical cues like T1 images and
DEC maps offer partial guidance yet prove insufficient for accurate ROI definition. The
task requires multiple iterations to adequately define ROIs, demanding expertise and
anatomical insight for optimal accuracy. To circumvent this issue, a guidance strategy
is needed to help users in defining desired ROIs. Our collaborators are also testing an
automatic pipeline for use in the clinical workflow. Here, ROIs are defined automati-
cally using Spatially Localized Atlas Network Tiles (SLANT) [20], which use deep learning
to compute subject-optimized whole brain segmentations. Fiber tracking is performed
using Constrained-Spherical Deconvolution (CSD) method [41]. Although ROIs are de-
fined automatically, manual user input and tuning are needed when the generated re-
sults are not adequate.

Our work aims to provide interactive visual guidance in determining ROIs based on
seed point sensitivity. Our framework can be used with any diffusion modeling and fiber
tracking method that provides fiber tracts through ROI definitions, as we base our sensi-
tivity computation solely on the resulting fiber tracts, i.e., the geometrical features of the
fiber tracking results. We demonstrate the feasibility of our framework by utilizing both
the manual and automatic workflows of our collaborating partners.
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6.3. RELATED WORK
In this section, we provide a comprehensive review of the literature that is relevant to our
work, specifically focusing on studies that investigate fiber tracking parameters and their
sensitivities, as well as the definition of ROIs. In addition, we also examine related work
on the visual encoding of multiple scalar fields along with the discussion on coherence
measures. Our primary emphasis is on papers that explore sensitivities and ROIs.

The fiber-tracking pipeline comprises several input parameters that control the
tracking process. The most critical user-defined parameters are Fractional Anisotropy
(FA) thresholds and ROIs. Taoka et al. [40] evaluated the influence of FA thresholds in
measuring diffusion tensor parameters for tract-based analysis. Gutierrez et al. [15]
presented a framework to optimize FA thresholds of fiber tracking algorithms using
multi-objective optimization techniques. Brecheisen et al. [4] evaluated the sensitivity
of FA thresholds in fiber-tracking algorithms and provided an interactive visualization
for parameter exploration.

Schlaier et al. [36] studied the influence of seed regions to delineate
cerebellar-thalamic fibers in deep-brain stimulation and analyze how seed regions
affect the results in both deterministic and probabilistic fiber tracking. Huang et al. [18]
assessed the effects of noise, ROI size, and location on DTI-based fiber reconstruction
results for one-ROI (i.e., seed region only) and two-ROI approaches (i.e., seed region
plus AND regions). They analyzed the differences in the resulting tracts by dilating the
ROI size and perturbing the location. Even though the study was principally focused on
comparing one- and two-ROI approaches, they concluded that the ROI placement
could be a major source of poor reproducibility in fiber tracking. Several approaches
have been proposed in the literature to automatically define ROIs [11, 19]. Weiler et
al. [44] employed local diffusion parameters, such as fractional anisotropy and radial
diffusivity, to generate automated ROIs for fiber tracking. Despite the existence of
automatic methods, manual user input in ROI definition is still needed in complex
cases. Schonberg et al. [38] propose to use functional MRI (fMRI) data to define ROIs for
adequate fiber tracking results, especially when ROIs have to be placed within or in the
vicinity of a lesion. The presence of lesions deforms the fiber structures, affecting the
DEC map and T1 image and thus impeding ROI definition. In complex cases, fMRI data
is also affected by edema or glioma. Voltoline et al. [43] proposed to combine shape and
FA information and show them as glyphs to guide ROI definition. To the best of our
knowledge, there has been no research on the inclusion of seed-point and ROI
sensitivities.

The use of tensor lines to visualize tensor fields is closely related to vector field visu-
alization using integral curves, modeling the trajectories of particles through the field.
Visualizing the coherence of motion among neighboring particles has been studied in
this context [7, 13, 27, 35]. These approaches locally express the change of the particle
trajectory with a variation of the initial position. Hlawitschka et al. [17] presented an ap-
proach based on similar concepts applied to tensor lines. They introduced a coherence
measure defined for fiber tracts and provided an effective visualization to represent the
fiber coherence combined with the existing visualization. Moberts et al. [30] and Qazi
et al. [33] discuss measures for the quantification of coherence of neighboring fibers in
diffusion tensor data. In our work, we use existing coherence measures based on the
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global geometrical shape to compute the sensitivity of seed point placement and pro-
vide guidance to the users to define an optimal ROI. To the best of our knowledge, no
related work proposes using sensitivity analysis for ROI definition and guidance in fiber
tracking workflow.

Numerous contributions have been presented in the literature concerning the
visual encoding of multiple scalar fields, encompassing measures like coherence,
hemodynamics, uncertainty, etc. Meuschke et al. [28] introduced a method for
concurrently displaying two scalar fields for the visual analysis of aneurysm data,
aiming to enhance insights into complex anatomical structures. The first attribute is
color-coded, while the second utilizes an image-based hatching scheme. Building on
this foundation, Meuschke et al. [29] further proposed a checkerboard visualization that
facilitates the simultaneous exploration of diverse attributes. Hlawitschka et al. [17]
adopt a continuous scalar map with distinct color scales to represent point-wise
coherence measures. In our work, we embrace a similar concept, utilizing an
interactive discrete color map for scalar field visualization to mitigate visual clutter and
effectively portray sensitivity alongside anatomical information.

6.4. SENSITIVITY ANALYSIS
Based on the sensitivity definition [6], we present the seed-point sensitivity as the rela-
tion of a slight change, δs, in the seed-point position, s, and the amount of change of
the resulting fiber tract, f (s), i.e., amount of change of seed point, ||δs|| versus distance
between resulting fiber tracts d( f (s+δs), f (s)).

We calculate the seed point sensitivity in a predefined grid as a scalar field. To do so,
we first assign a sensitivity value Si to each seed-point position si . Si is defined as the
mean of the distances of its corresponding fiber Fi to all other fiber samples within a ra-
dius ||δs||. The sensitivity Sc for each grid cell c in the field is then calculated by averaging
the sensitivity values Si of each seed point within the cell. The resolution of the grid can
also be adjusted to achieve the desired precision. Seed points are distributed randomly
within the cell based on the predetermined number of fibers per grid cell. However,
when pre-computed fibers are utilized, the quantity of fibers per cell depends on the
defined fiber density parameter.

There are various options to define the distance d( f (s+δs), f (s)), depending on the
goal. Here, we focus on definitions that consider the geometrical properties of the fiber
tracts since the evaluation of the fiber bundle relies primarily on the geometry of the
tracts. Other sensitivity parameters, e.g., diffusion properties [17], could also be in-
corporated. There has been a considerable amount of research on similarity measures
between fiber tracts and, more generally, integral lines or curves in vector field [9, 14,
24]. The first category measures the Euclidean distance between pairs of points on two
curves, such as the closest point measure, the Hausdorff distance [34], or the Fréchet dis-
tance [1]. A second category is the mean Euclidean distance along the run lengths of the
curves, such as the mean distance of closest distances [8] or the mean threshold closest
distances [45]. There are also distances computed based on Euclidean space embedding
of the curves, such as the Gaussian kernel distance [5]. Each of these measures has its
own strengths and limitations in terms of sensitivity and invariance. In our work, we fo-
cus on the coherent geometrical features of fiber tracts as it is considered an essential



6

66 6. INTERACTIVE EXPLORATION OF REGION-BASED SENSITIVITIES

criterion that characterizes bundles. A general assumption is that the fiber tracts be-
longing to the same bundle have smoothly changing geometrical properties. We explore
distance-based metrics, as discussed by Moberts et al. [30] and Corouge et al. [10]. We
compute the distance measure d between the fiber tracts Fi and F j using the mean of
the closest point distance, which is proven as a relevant distance measure for automatic
clustering for bundle identification [10, 30]. The distance is defined as:

dm(Fi ,F j ) = mean
pi∈Fi

min
p j ∈F j

||pi −p j || (6.1)

where the minimum distance for each point pi of Fi to the points p j of F j is computed,
and then the mean of all closest distances of pi to F j is used. Notice that dm is not
symmetric; therefore, the distance between the two fiber tracts d is then computed by
min(dm(Fi ,F j ),dm(F j ,Fi )). Using the minimum allows us to account for different fiber
lengths. Other distance measures to calculate the similarity between two curves can be
integrated into the pipeline. The choice depends on the specific case to be explored and
the fiber tracking algorithm used.

6.5. SCENARIO ANALYSIS

Figure 6.2: Illustrations of the possible scenarios for
ROI definition.

To support ROI definition in a struc-
tured way, we analyze different sce-
narios in relation to the use of com-
puted sensitivities for ROI definition.
As discussed in Section 6.4, fiber
tracts belonging to the same bundle
generally have similar or smoothly
changing geometrical features. Our
assumption is that sensitivity can in-
dicate potential boundaries of bun-
dles that indicate relatively large sen-
sitivity. In the following, we fol-
low previous works [21, 22, 30] and
use the terms complete and correct
to evaluate the fiber tracts, resulting
from a defined ROI. Here, correct-
ness means that all produced fibers
belong to the correct bundle, while
completeness means that all fibers
belonging to a specific bundle are
produced. Given the absence of
ground truth in fiber tracking data
and our goal being to support the in-
teractive definition of ROIs, correct-

ness, and completeness rely on the specific user requirements and may differ from user
to user. Hence, we provide the guidance strategy based on the defined assumptions of
similarity of bundles but ultimately leave it to the user’s discretion to decide.
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Figure 6.2 illustrates four basic scenarios concerning sensitivity based only on the
seeding ROI. To explain the possible scenarios, we give an example of a region where
two different bundles are diverging and close to each other. We are interested in gen-
erating one fiber bundle. The area where the bundles meet can also be identified and
investigated with the sensitivity map. For simplicity, we only show two sensitivity levels:
dark for high sensitivity and light for low sensitivity. The black outline represents the
seed ROI, and the blue curves depict fiber tracts. Solid curves show selected tracts, while
transparent ones display filtered fibers based on defined ROIs.

Scenario 1 in Figure 6.2 shows the ideal case where all fibers of the desired bundle
are produced, i.e., complete and correct. This situation occurs when the ROI extends to
the boundary between a low and high-sensitive area without including parts of the high-
sensitivity area. Scenario 2 shows the case where the seed ROI does not produce the
whole bundle, i.e., the produced fibers are correct but incomplete. The defined region
needs to be extended to cover the complete bundle. In Scenario 3, the defined seed ROI
has two low sensitivity areas divided by a high sensitivity area depicting that the resulting
fibers are complete, but due to coverage of an incorrect region, some of the fibers are
incorrect. The ROI needs to be shrunk to only one of the low sensitivity areas. Scenario
4 shows the combination of Scenarios 2 and 3, where the seed ROI contains low and high
sensitivity areas; hence, the resulting set of fibers is incomplete and incorrect.

Figure 6.3: Summary of the characteristics of the Seed and
AND ROIs and their combined effect for each scenario.

As discussed
in Section 6.2, users employ
AND ROIs, in addition
to the seed region in most
clinical cases, to extract
specific fiber bundles [2].
We extend the previously
discussed scenarios by
adding an AND region. We
do not consider Scenario
4 as it is a local combination
of other scenarios.
The scenarios summarized
in Figure 6.3 specify
the characteristics of the
defined ROIs and the corresponding fiber bundle selection. As previously discussed, we
distinguish the ROIs in each scenario based on the completeness and correctness of the
selected fiber bundle. In Scenario 1.1, both the Seed and AND ROIs generate complete
and correct fiber tracts. The combination of these defined ROIs results in a complete
and correct fiber bundle. All scenarios with the addition of an AND ROI (represented
with the green area) are illustrated in Figure 6.4. The glyph on the top left shows the
scenario according to Figure 6.3.

In Scenarios 1.x, the seed ROI is defined as complete and correct, as discussed earlier.
Therefore, only a too-small AND ROI impact the result, thus producing an incomplete
result (Scenario 1.2). Here, the AND region needs to be extended or removed.

In Scenarios 2.x, the seed ROI misses similar fibers which belong to the desired bun-



6

68 6. INTERACTIVE EXPLORATION OF REGION-BASED SENSITIVITIES

Figure 6.4: Illustrations of the possible scenarios for the definition of the seed and the AND ROI.
The glyphs at the top left for each scenario refer to the scenarios illustrated in Figure 6.3.
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dle. Therefore all scenarios are incomplete. This cannot be addressed by adjusting the
AND ROIs. Thus, the user will want to extend the seed ROI to be complete and correct.
The result will be the corresponding Scenarios 1.x.

In Scenarios 3.x, the seed ROI covers fiber tracts from different bundles generating
complete but incorrect results. In Scenario 3.1, the AND ROI makes the result complete
and correct being the only scenario in 3.x that generates such an outcome. In Scenario
3.2, the AND ROI is incomplete. In this scenario, a user can shrink the seed ROI to get
Scenario 1.2 or extend the AND ROI to get Scenario 3.1. Similarly, in Scenario 3.3, both
ROIs generate complete but incorrect results. The user can shrink one of the ROIs to get
either Scenario 1.3 or 3.1. A summary of the corresponding courses of action to reach the
complete and correct results (i.e., Scenarios 1.1, 1.3, and 3.1) is illustrated in Figure 6.5.

In this section, we discuss our proposed visualization design to facilitate the inter-
pretation of sensitivities based on the scenarios and corresponding actions to aid the
ROI definition described in Section 6.5. We used anonymized DW-MRI data sets of two
different patients provided by our collaborators. The volume data sets comprise of 128×
128× 60 voxels, with a resolution of 1.75× 1.75× 2mm3. The scanner parameters are
b-value= 1,000 and gradient-directions= 32.

6.5.1. SENSITIVITY MAPS

Our aim is to provide sensitivity information, which we derive as a scalar field (Sec-
tion 6.4), alongside the DEC map and anatomical information commonly used in clinical
settings. This combination serves to provide guidance for ROI definition. Understanding
the seed-point sensitivity within and near the ROI is the basis for identifying the course
of action (Section 6.5).

6.6. VISUALIZATION DESIGN

Figure 6.5: Action sequences to reach the complete and correct
scenarios.

A straightforward approach
to visualize the calculated
sensitivities is to use quan-
titative color maps. The
maps can be overlaid on
top of the anatomical slices
or the DEC map. How-
ever, the overlaying of the
color map occludes struc-
tures presented in the DEC
map and the anatomical
slice. To circumvent this
problem, we propose to use
a discrete color map with a
limited number of bins (e.g.,
defined using ColorBrewer [16] for sequential data). Based on the proposed interactions
and guidance strategy in the previous section, the focus is on identifying and visualiz-
ing the highly sensitive regions. Anatomical information, e.g., T1 images, use luminance
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values to represent the data, while DEC maps use hue channels to encode the tensor
directional information. To distinguish our sensitivity map when combined with the
anatomical information and the DEC map, we chose a color map that is distinguishable
and minimally interferes with the hue of the DEC map. Moreover, we enable users to
interactively set and adjust the number of bins to be visualized such that they are more
clearly recognizable. Commonly, a relatively low number of bins will be used, making
the boundaries of the bundles more obvious. The user can adjust the transparency of
each bin, which helps combine different information from the other scalar fields. Fig-
ure 6.6 illustrates the color overlay using the case shown in Figure 6.1. Figure 6.6a, Fig-
ure 6.6b, and Figure 6.6c show the sensitivity map for two different bins, 7 and 5, overlaid
on T1 and the DEC map with adjusted transparencies. The sensitivity map is generated
with 8x resolution and a neighborhood window of 5x5x5 voxels. We use the Colorbrewer
OrRd color map, with the higher bins made more opaque while the lower bins are semi-
transparent. In this way, only the regions with high sensitivities are highlighted. The
color maps are shown at the bottom left insets in Figure 6.6 with a black border repre-
senting non-transparent bins.

Figure 6.6: The sensitivity map is represented as a discrete
color map with a) 7, b, c) 5 bins. The number of bins and

transparency are adjusted to reduce cluttering. Seed ROI for
different cases is represented with the blue curves, and the

fiber tracts are rendered as shaded tubes shown on the 3D view
in d). The black arrow highlights the high sensitivity area

within the region R. The color scale is shown at the bottom left.

As can be seen
in Figure 6.6a,
a higher number of
bins provides more detailed
sensitivity distribution
but makes the visualization
overly complex and
cluttered. The number of
bins and transparency both
are adjusted, as shown in
Figure 6.6b and Figure 6.6c,
making it easier to identify
different sensitivity levels
with less cluttering on the
anatomical information.
The same region
R introduced in Figure 6.1
is selected as a seed region,
which shows a uniform
coloring in the DEC
map and anatomical slice.
Our sensitivity map shows a
high-sensitivity region that
suggests a boundary cutting
the region in two, as shown
in Figure 6.6. The black
arrow points to the high

sensitivity area within the region R, depicting that the ROI contains seeds for two
different bundles (Scenario 3) as shown in Figure 6.1c. As expected, the generated fiber
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tracts are diverging since the ROI encompasses two individual homogeneous sensitivity
regions separated by high sensitive boundaries. The sensitivity map makes it easy for
the user to identify the boundary between the two bundles and thus helps in optimizing
the ROI. Following the guidance strategies as explained in Section 6.5, the ROI needs to
be shrunk to extract a coherent set of fibers, as shown in Figures 6.6c and 6.6d.

It is important to note that the computation of the sensitivity as a scalar field can be
computationally expensive, with the computation time dependent on both the neigh-
borhood size and the sampling rate within each fiber. We use the same sampling as the
integration step of each fiber. The overall computation time for the sensitivity calcula-
tion for each cell is around 0.025 seconds for the neighborhood size of 5×5×5 voxels. To
further accelerate the interactions, we enable progressive computation of the sensitiv-
ity map in the background, allowing users to continue exploring sensitivities and defin-
ing regions of interest (ROIs) without any delay. The computations start from a user-
selected ROI progress throughout the plane until the desired area has been computed.
The framework also supports the utilization of precomputed fiber tracts and sensitivity
maps for ROI definition.

6.6.1. AND ROI PROJECTION

Figure 6.7: ROI projection is represented as a green
semi-transparent overlay on the top of a ) direction-weighted
FA map b) T1 slice with overlaid sensitivity map. The defined
seed ROI is represented with a blue curve. The corresponding

fiber tracts are shown in c) and d), representing the 3D
orthogonal views. Guiding glyphs are shown at the boundaries

of the defined ROI.

As discussed in Section 6.2,
AND ROIs are used to filter
the fiber tracts. The most
relevant information for the
user defining the seed ROIs
is whether the region being
analyzed is connected to the
defined AND ROI. We pro-
vide this information by a
projection of the AND ROI
in the seed ROI area. The
projection is calculated by
marking the voxel if at least
one fiber traced from the
cell intersects the defined
AND ROI. It is worth men-
tioning that the projections
only rely on the slice being
analyzed for seeding; hence,
there can be areas of the AND ROI that are not projected. The projection is basically a
binary mask that we use in combination with the seed ROI sensitivity. The computed
projection is represented as a green semi-transparent area overlaid on the top of the
sensitivity map and the anatomical slice, representing the complete area where the fiber
tracts are connected to the defined AND ROI. We have used a green overlay on the top
of OrRd color scale of the sensitivity map, combined with an anatomical slice accord-
ing to the diverging color suggestion from Colorbrewer. Since the DEC map uses hue as
a channel to encode the directional information and uses the full range of color tones,
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there is interference. We outlined the binary map to make the projections more distin-
guishable and recognizable. We provide interactive means to define and optimize the
seed and AND ROIs by simply brushing on the corresponding slices. Derived data, such
as the AND region projection, are linked and updated interactively.

Figure 6.7 illustrates an example of the generation of OR bundle that connects the
lateral geniculate nucleus (LGN) to the primary visual cortex and is responsible for trans-
mitting visual information from the retina of the eye to the visual cortex. In most clin-
ical cases, the AND ROIs are also needed to optimize the resulting fiber tracts. Figure
6.7a shows the initial seed ROI along with the AND ROI projection. The curved course,
the sharp turn of the OR, and their proximity to other white matter tracts, including
the uncinate fasciculus, the Inferior Fronto-Occipital Fasciculus (IFOF), and the infe-
rior occipito-temporal fasciculus, make its ROI definition quite challenging. The defined
seed ROI is represented with a blue curve, and the corresponding generated fiber tracts
are shown in Figure 6.7c-d. As can be seen in Figure 6.7a, the defined seed ROI contains a
high sensitivity region, corresponding to Scenario 4. The AND ROI in OR is usually fixed
as the bundle terminates in the primary visual cortex. Given the projection information
and guidance strategy from Scenario 3.3, the user can modify the seed ROI to get the ad-
equate bundle, as shown in Figure 6.7d. The ROI can be further adjusted per suggestions
to achieve the desired bundle.

6.6.2. GUIDING GLYPH

In addition to visualization of the sensitivity based on color maps, we provide further
guidance based on Scenario 2 (see Section 6.5), which indicates that the sensitivity just
outside the defined ROI is homogeneous. The ROI can be extended, suggesting coher-
ent fiber tracts in the vicinity. We use glyph-based visual cues to convey the sensitivity
information outside of the currently defined ROI and guide the user on where to extend
the ROIs to encompass the coherent fibers. We use simple arrow-based glyphs placed or-
thogonal to the boundary of the defined ROI. The direction of the arrow indicates the po-
tential direction of extension based on the sensitivity value at the given point, as shown
in Figure 6.7. The length of the arrow indicates the inverse of the sensitivity at the given
position, which means that if the sensitivity value is low, the arrow will be longer and
vice-versa. The arrows are only visible when the sensitivity value at the given position is
lower than a certain threshold and when there is no need to extend the ROI. This visual
cue guides the user to extend the defined ROI until the sensitivity at the boundaries is
high, as explained in seed ROI scenarios 2 and 4 in Section 6.5. As shown in Figure 6.7b,
the defined seed ROI covers the incomplete OR bundle corresponding to Scenario 2 and
is guided to extend the ROIs.

6.7. RESULTS

In this section, we present use cases of our visualization and initial feedback from our
clinical partners with whom we developed the system. We have conducted feedback
sessions with two of our collaborators during the course of this work. We explore the def-
inition of ROIs for two fiber tract bundles using two different pipelines and fiber tracking
techniques. We analyzed the Arcuate Fasciculus (AF) bundle generated with the man-
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ual pipeline using DTI and the Frontal Aslant Tract (FAT) generated with the automatic
pipeline using CSD. All computations were performed using an Intel (R) Core i9-9900K
CPU (3.6 GHz). Our framework is implemented in C++ and Python as a plug-in for the
open-source medical image processing and visualization framework 3D Slicer [12]. The
parameters for the fiber tracking are suggested by our collaborators, which include the
stopping FA threshold= 0.2, integration step length=0.5mm, and stopping curvature=
0.7.

Figure 6.8: ROI definition for Arcuate Fasciculus (AF) bundle.
The definition starts with incomplete ROIs and is guided till the

complete and correct bundle is generated based on the
provided guidance. The glyphs refer to the action sequence

shown in Figure 6.5.

In Section 6.5.1, we ex-
plored the computed sen-
sitivity map to adequately
define seed ROI for Arcu-
ate Fasciculus (AF) bundle.
We start our analysis by
defining the ROIs based on
anatomical knowledge and
utilizing the sensitivity map
by interactively selecting the
region and visualizing the
corresponding fibers, as
shown in Figure 6.6. It is to
be noted that the region ma-
nipulation and visualization
are interactive and are done
in real time. As discussed,
AND regions are also in-
corporated by users to fil-
ter out undesired fiber tracts
during fiber bundle defini-
tion. To aid users in this
process, our framework in-
troduces a projection visu-
alization of the AND region,
which enables them to com-
prehend the connectivity of
fiber tracts. Figure 6.8 de-
picts a use case where the
user defines the ROIs based
on the provided sensitivity
visualization and guidance.
The definition starts with an

initial placement of ROIs, as discussed in Section 6.5.1. The initial AND ROI, shown at
the bottom right, is defined by our collaborators based on anatomical knowledge. The
projection of the AND region is shown as a green transparent surface on the top of the
sensitivity map, along with the defined seed ROI and the anatomical information.

It can be observed that the AND and the seed ROIs do not cover the whole region
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where the sensitivity is low, indicating that the case is potentially incomplete, corre-
sponding to Scenario 2.2, as shown in Figure 6.8a. There is a homogeneous low sen-
sitivity region outside of the boundaries. As fiber tracts within a low sensitivity region
are assumed to have belonged to the same bundle, some desired tracts are missed in
this case. The suggested actions is either to extend the seed ROI to achieve Scenario 1.2
(Figure 6.8b) and modify the AND region to reach Scenario 1.1 (Figure 6.8d). The other
option is to extend the AND region first, as shown in Figure 6.8c, and then extend the
seed ROI based on visual cues to achieve the final correct state, as shown in Figure 6.8d.
The inset images between the figures represent the course of action to go from one sce-
nario to another, as explained in Section 6.5.

In our second case, we employed our developed framework to refine the ROIs of the
automated pipeline used by our collaborators. As detailed in Section 6.2, the automated
pipeline employs SLANT for automatic ROI definition and subsequently utilizes the CSD
method for fiber tracking.

Figure 6.9: ROI used by the automatic pipeline, shown with the
blue curve, overlaid on the a) DEC map and b) Anatomical

slice. The region shows the uniform distribution, Inset:
Coronal and Axial views of the resulting fiber tracts.

Nevertheless,
in certain scenarios,
manual adjustment of
the automatically generated
ROI becomes necessary
if the resulting fiber tracts
are not adequate, especially
in the presence of a tumor.
The automatic pipeline is
not interactive and requires
repeated rerunning after
each adjustment of the ROI.
Here, we present a case on
tuning ROIs for the Frontal Aslant Tract (FAT) bundle. Figure 6.9 shows the initial ROI
represented with a blue curve overlaid on the DEC map and anatomical slice, which
shows the homogeneous distribution. The resulting fiber tracts are displayed in the
inset figure with coronal and axial views. It is observed by our collaborators that the
resulting fiber tracts also encompasses the fibers from the neighboring bundle. We
employed our visualization strategy to tune the ROIs aiming to achieve a complete and
correct bundle. The sensitivity map is generated using 8x resolution and 5 × 5 × 5 of
neighborhood window. Figure 6.10 shows the computed sensitivity map overlaid on an
anatomical T1 slice, while the resulting fiber tracts are displayed at the bottom section
with coronal and axial views. As shown in Figure 6.10a, there are regions of high
sensitivity within the initial seed ROI, representing the boundaries among distinct
bundles. This information is not visible in the DEC map nor in the anatomical slice, as
shown in Figure 6.9. The projection of AND ROI are also represented with a
semi-transparent green overlay. It was noticed that the high sensitivity regions shown in
the sensitivity map corresponded to fiber tract branches located in the anterior and
posterior sides of FAT, which were not part of the desired bundle. This state
corresponds to Scenario 3.3, as discussed in Section 6.5. To achieve the complete and
correct Scenario 1.3, the suggested course of action involves shrinking the seed ROI to
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the low homogeneous sensitivity region while considering the sensitivity map and ROI
projection. The resulting ROI and the fiber tracts are shown in Figure 6.10b. The
resulting fiber tracts are validated by our collaborators. With the utilization of the
sensitivity map, the user achieved the desired fiber tracts in just one iteration, which
would otherwise take four iterations of ROIs adjustments and manipulations in the
automatic pipeline.

Figure 6.10: ROI definition for Frontal Aslant
Tract (FAT) bundle using automatic pipeline.

The definition starts with incorrect ROIs and is
guided till the complete and correct bundle is

generated based on the provided guidance. The
inset refers to the action sequence shown in

Figure 6.5.

We had a general feedback
session with our collaborators
regarding the proposed visualization
and guidance strategies. They
agreed that our proposed visualization
strategy could improve their
understanding of the sensitivities in the
ROIs and help in defining the accurate
ROI for the bundle by using the provided
visual guidance. Our collaborators
were enticed by the interactive
definition of the ROIs and especially
by the projection visualization of the
AND region. However, it was remarked
that usability needs to be further studied,
which we plan to do in future work.

6.8. CONCLUSION AND FUTURE WORK
There are several parameters in the fiber tracking pipeline that considerably affect the
results. In this chapter, we have presented an approach to use seed-point sensitivity to
guide ROI definition in the fiber tracking pipeline. We have analyzed the use of sen-
sitivity for ROI definition and presented various scenarios that users experience in the
ROI definition process. Based on the provided scenarios, corresponding guidance has
been addressed. We have developed an interactive visualization approach as a proof
of concept that allows users to investigate the region-based sensitivities and enables
sensitivity-aware ROI definition by utilizing the computed seed-point sensitivity feature
and projection map. Being able to visualize the sensitivity based on seed-point place-
ment provides additional information to choose the optimal ROI. We also integrated our
visualization framework with the automatic pipeline used by our collaborators in their
workflow. We explored the feasibility of using a sensitivity map to refine the automati-
cally generated ROIs in a case where manual user input is required. The computed map
provided guidance to the user in tuning the ROIs based on the sensitivity information
and potentially saving various iterations for ROI adjustments.

While the utilization of color bins and transparency for the overlaid sensitivity map
can help reduce clutter to some extent, the sensitivity map still overcrowds essential
anatomical information, potentially impeding the user’s ability to make accurate judg-
ments. The enhancement of effectively integrating sensitivity information with anatom-
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ical data could be contemplated as a prospect for future research. For this study, we limit
our work to isotropic perturbation in the seed point. However, anisotropic variations in
the seed point could also be explored. The selected distance measure used in sensitivity
computation is capable of identifying bundle boundaries through proper bin selection.
Nonetheless, there is room for exploring alternative measures to enhance the accuracy
of bundle boundary detection even further.

We consider future work to develop a user study to evaluate our designed techniques
and the effect of these sensitivities in the definition of ROIs. It would also be interesting
to embed our work with other uncertainty visualizations [3, 39] of the DWI pipeline. This
would facilitate gaining a better understanding of how uncertainties propagate through
the whole system.
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7
EFFECT OF WHITE MATTER

UNCERTAINTY VISUALIZATION IN

NEUROSURGICAL DECISION

MAKING

In the previous chapters, we have addressed the key sources of uncertainties in DTI
pipeline and proposed interactive techniques for the effective visualization of the
uncertainties. This chapter changes focus where we assess the potential impact of
uncertainty visualization on neurosurgical decision-making. In general, many
techniques have been developed to visualize uncertainties, however, there is limited
evidence to suggest whether these uncertainty visualization influences neurosurgical
decision-making. In this chapter, we evaluate the hypothesis that uncertainty
visualization in fiber tracking influences neurosurgeon’s decisions and confidence in
their decisions. We conducted a user study using an online interactive questionnaire to
assess the impact of uncertainty visualization on neurosurgical decision-making with
clinically relevant cases. The results indicate that uncertainty visualization affects
participants’ decisions, albeit its extent is also influenced by other factors. Additionally,
our analysis found no clear relationship between the presented uncertainty intervals
and participants’ confidence in their decisions. This chapter is based on the paper:

Siddiqui, F., Brouwers, H. B., Rutten, G. J., Höllt, T., and Vilanova, A. (2024). Effect
of white matter uncertainty visualization in neurosurgical decision making. IEEE
Computer Graphics and Applications, vol. 45, no. 1, pp. 106-121, Jan.-Feb. 2025.
https://doi.org/10.1109/MCG.2024.3462926.
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7.1. INTRODUCTION
Numerous techniques have been presented in the literature for visualizing uncertainties
in the context of fiber tracking [20]. However, there are no studies to indicate how un-
certainty visualization influences reasoning and decision-making. While some studies
evaluate the impact of uncertainties on decision-making in general [14], extrapolating
these results to the context of fiber tracking proves challenging. This difficulty arises
due to the intricate task of representing uncertainty in complex objects like fiber tracts,
which contrasts with the relative simplicity of handling uncertainty in scalar values like
a vessel diameter.

In this work, we address this gap by designing and implementing a user study that
provides insights into whether the visualization of uncertainty in fiber tracking results
can affect neurosurgical decision-making. To facilitate this study, we implemented a
framework to visualize uncertainty information within a fiber tracking visualization,
based on previous work [21]. We use this framework to embed interactive 3D views in
an online questionnaire, allowing participants to explore and interact with the
uncertainty visualization. This implementation ensured that our questionnaire was
grounded in practical and clinically relevant scenarios, and provided the necessary
information to answer the questionnaire. Drawing from the hypotheses presented by
Padilla et al. [14], we hypothesize that the representation of uncertainty will influence
participants’ judgments, leading them to make more cautious decisions as the
presented uncertainty increases. In this work, we use different confidence intervals to
show such varying levels of uncertainty. To not confuse these with the confidence of
participants in their decision, that we also want to test, we call them uncertainty
intervals in the remainder of this paper. Accordingly, we have formulated the following
hypotheses based on the role of uncertainty in decision making:

• H1: Visualization of uncertainty will influence the participants’ decision.

• H2: Participants will make a more cautious decision when a larger uncertainty
interval is visualized.

• H3: Confidence of the participants in decision-making will be affected by the un-
certainty visualization.

7.2. CLINICAL DECISION MAKING
We already discussed the clinical background relevant for this study in Section 2.2. In
this section, we introduce the basic concepts related to understand the clinical decision
making process.

While MRI-based fiber tractography is commonly used as a non-invasive tool to
analyze white matter fiber tracts before surgery, intraoperative neuromonitoring [18]
(IONM) is considered the gold standard method to identify white matter tracts. White
matter tracts are not visible when the brain tissue is directly inspected during tumor
resection. IONM keeps the patient awake and, through electrical stimulation, allows the
surgeon to identify whether specific fiber tracts are present. For example, the patient is
asked to speak; if, with direct stimulation of the tissue, the patient experiences
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Figure 7.1: Uncertainty intervals for the Arcuate Fasciculus bundle. A) No uncertainty B) 25%
interval visualization C) 75% interval visualization D) 100% interval visualization

difficulties speaking, it indicates that the language tract is in the stimulated area and,
therefore, should be avoided. Although it has been shown that IONM in an awake
setting improves both the surgical extent of resection and postoperative neurological
status, it adds discomfort and complexity to the procedure and is avoided if possible.
However, it is currently not known which patients will benefit from IONM [6]. Generally
speaking, when there is a margin between the tumor border and specific critical
functional brain regions or tracts, surgeons will refrain from using IONM. However, this
is a qualitative judgement: margins are seldom specified in the literature, and there is
significant variability in decision-making between neurosurgeons even within a
neurosurgical center.

7.3. RELATED WORK
Decision making is a common goal for visualization, yet Dimara et al. [3] suggested that
visualization studies largely lack explicit ties to decision making. In uncertainty visu-
alization, Hullman [7] presented the complexities in the effective communication of the
uncertainty results and highlighted the risk if the results are not properly communicated.
Although uncertainty visualization has a strong tradition of empirical research in visual
design and user comprehension, research into the effectiveness of uncertainty visualiza-
tion as it relates to decision support remains critical and an important area of work [2].
Researchers have emphasized the need for empirical research to test the effectiveness of
visual representations of uncertainty and their usefulness in the decision-making pro-
cess [13].

A few studies in the field of psychology showed that providing uncertainty informa-
tion has a positive influence on decision-making. In a study conducted by Roulston et
al. [17], participants made more accurate decisions when standard errors were presented
in addition to a point estimate. Joslyn et al. [9] evaluated decision making when involving
uncertainty in weather forecasts, and the results suggest that uncertainty information
improved decision quality overall and increased trust in the forecast. Padilla et al. [14]
evaluated participants’ judgment in the presence of direct and indirect uncertainties.
The results suggest that participants could incorporate the communicated uncertainty
into their judgments relatively accurately. Similar results were observed in other appli-
cation scenarios, such as weather forecasting [16] or flood forecasting [15]. However,
some studies suggest that uncertainty visualization has little to no effect compared to
decisions made without uncertainty [10]. Overall, findings regarding the impact of un-
certainty visualizations are varied, highlighting the substantial influence of visualization
selection on comprehension.
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Clinical decision-making is a unique process that involves the interplay between
knowledge of pre-existing pathological conditions, explicit patient information, and the
provided imaging data. Clinical decisions can have substantial consequences and in-
volve many sources of uncertainties that may critically hamper the decision-making
process. In a recent study, Gillmann et al. [5] provided a survey of uncertainty-aware
visualization in medical imaging and emphasized the need for empirical research to an-
alyze the effectiveness of the presented uncertainty visualization techniques. Galesic [4]
presented icon arrays to communicate medical risk and the results suggested that this
technique improved the accuracy of the understanding of the risk in wide range of pa-
tient groups. McDowell and Kause [11] investigated how different types of uncertainty
in medical evidence affect perception when presented through tables, bar graphs, and
icon arrays. They found that clear and well-designed displays of uncertainty did not neg-
atively affect participants’ understanding or trust in the information. This suggests that
the way uncertainty is presented visually is more important than the specific type of un-
certainty being communicated. To the best of our knowledge, there does not exist any
research on the influence of uncertainty visualization in the decision making process
that includes information from fiber tracking. In our work, we took inspiration from
the studies on the effect of uncertainty visualization in decision-making from the field
of psychology [14] and visualization [8] and designed our study to test the effectiveness
and consequences of uncertainty visualization in neurosurgical decisions.

7.4. STUDY DESIGN
We embraced the context as employed in the study by Padilla et al. [14], where the impact
of uncertainty visualization on decision-making is evaluated on the weather forecaster
by manipulating uncertainty intervals in the results and analyzing how the decisions are
changing based on these presented uncertainties. Padilla et al. [14], showed participants
the distribution of possible variations in temperature based on an artificial scenario and
were tasked to make a decision. They found that participants made more informed and
cautious decisions when uncertainty was shown. Based this work, we aim to analyze
the impact of uncertainty visualization on clinical decision making, specifically when
showing uncertainty for fiber tracking results.

We want to test whether the participants have taken uncertainty visualization into
account (H1), they made a more cautious decision when uncertainty was visualized
(H2), and to whether their confidence was influenced (H3). To do so, we present eight
patient/uncertainty combinations to each participant in a mixed-design setup. For each
patient, four different uncertainty intervals were created (see Figure 7.1 for one exam-
ple patient), from which two are randomly drawn for each participant. Each participant
sees all four different clinical cases or patients (see Figure 7.2). The resulting eight pa-
tient/uncertainty combinations are then shown to the participants in random order (Fig-
ure 7.3). This allows us to track changes for the decision for a patient within-participant,
but general claims over all uncertainty levels can only be done between-participants. We
performed a formative user study using an interactive online questionnaire presented to
surgeons who use fiber tracking in their clinical workflow. The design of the user study
was an iterative process involving multiple meetings and interviews with a panel of neu-
rosurgeons.
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Figure 7.2: Cases of the four patient data sets used in the evaluation. Left: Fiber tracking results
without uncertainty information. Right: Fiber tracking results with 100 % interval of uncertainty

visualization
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7.4.1. EXPERT INSIGHTS AND INITIAL INTERVIEWS

During the initial design phase of the study, we conducted the first round of interview
sessions with four oncology neurosurgeons and two researchers in neurosurgery to gain
insights into their approach to analyze fiber tracking results and to identify specific
scenarios where uncertainty visualization would be relevant. We discussed how the
resulting fiber tracts affect the neurosurgical decision-making process through
semi-structured interviews. Decision making in neurosurgical context is complex.
Different decisions are taking place and many factors beyond fiber tracking influence
the decisions. We identify the scenarios, and the formulation of the questions such that
the neurosurgeons answers would be focused on the fiber tracking uncertainty
visualization and not in other external factors. For example, it was identified that the
decision on IONM was the most appropriate for our purposes and that gliomas would
be the type of tumors to study. The questionnaire was presented and refined in four
feedback moments with our collaborators. During these feedback sessions, the
information and interactions that should be provided to neurosurgeons to evaluate the
cases were also discussed. Furthermore, together with the neurosurgeons and
radiologists, we prepared clinically relevant data sets for the participants. The
neurosurgeons suggested seven data sets from their past experiences, where fiber
tracking results played an important role in decision-making. We prepared the results
with uncertainty visualization which were discussed in the interactive sessions with the
collaborators to select the most appropriate ones.

7.4.2. FIBER TRACKING AND UNCERTAINTY COMPUTATION

Our work involves assessing the impact of uncertainty on decision-making in brain tu-
mor surgery where information from fiber tracking is available, regardless of the specific
fiber tracking and uncertainty visualization techniques employed. For this purpose, the
fiber ensembles were generated together with our collaborators. We followed the work-
flow that is currently used in their practice as close as possible. The fiber tracking process
starts with the manual definition of the seed region from which the seed point for each
fiber tract is drawn. In scenarios without uncertainty information, we employ determin-
istic fiber tracking [12], a widely utilized method in the standard clinical workflow. Con-
versely, when uncertainty information is integrated, we adopt the bootstrapping method
[21]. The result of this process is an ensemble of tracts for each seed point, representing
the possible variations for the corresponding fiber.

7.4.3. UNCERTAINTY VISUALIZATION

Without uncertainty, the fibers are visualized as green tubes, as shown in Figure 7.1A.
For the uncertainty visualization, we compute the median and uncertainty interval

for each fiber by calculating the distances among fiber pairs based on a chosen measure,
presented by Brecheisen et al. [1]. The median, termed as the representative fiber, is de-
termined by considering the minimum accumulated distance to all the other fibers in
the ensemble and, as such, can be seen as the most central fiber. In addition, all other
fibers are ordered according to their distances to the representative fiber such that the
uncertainty intervals can be defined on the resulting distribution. For example, a uncer-
tainty interval of 25% includes the 25% fibers with lower distance to the representative
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fiber. For the visualization, the representative fibers are shown as red tubes, and the re-
maining fiber samples that correspond to the selected interval, as illuminated polylines
in orange (Figure 7.1B-D). This is a simple visualization, similar to the standard repre-
sentation our collaborators are used to, where all fibers corresponding to one interval
are shown, indicating the uncertainty interval also visually. The visualization makes sure
that the representative fiber is always visible by drawing it on top [21]. The uncertainty
intervals can be selected to understand the distribution better. To cover a meaningful
variety of uncertainty information we chose several different uncertainty intervals for
inclusion in the questionnaire, originally based on quartiles, including 0% and 100%. At
the same time, after discussion with our collaborators, it also became clear that we must
keep the number of different uncertainty intervals small to not overburden participants
with too many cases. Thus, we removed the 50% uncertainty interval to reduce the num-
ber of tests. As a result we ended up with three uncertainty intervals in addition to no
uncertainty: 25%, 75%, and 100%, shown in Figures 7.1B, C, and D, respectively.

7.4.4. PATIENT CASES
We chose four different anonymized patient datasets for testing our hypotheses shown
in Figure 7.2 without uncertainty and with a 100% interval. Four cases were considered a
good number to generalize from the nuances of each specific case. Given the complexity
of the problem, more cases were seen as unfeasible. The cases were selected based on
suggestions by our collaborating neurosurgeons. Specifically, we focus on cases where
the tumor is present in the vicinity of the corticospinal tract, and the tracts are distorted
with the presence of the tumor. This tract plays a critical role in motor functioning. Dam-
age will very likely result in severe and permanent motor deficits. Neurosurgeons will not
risk damaging the corticospinal tract to improve the extent of tumor resection. These
cases were selected since for all of them it is not obvious, whether the procedure should
be carried out using IONM or not. There is a balance of risks between full tumor resec-
tion and damage to the motor tract. Using IONM would be a conservative decision but
it involves invasiveness and higher costs of the procedure. This means that it is not pos-
sible to know what is the correct choice before the procedure. I.e., there is no ground
truth or correct answer. Note, testing for the correct answer is also not the goal of this
study, but rather evaluating whether showing uncertainty has an impact in the decision
making.

7.4.5. PATIENT/UNCERTAINTY COMBINATION
For each patient fiber tracking results are then prepared with the uncertainty intervals
discussed above: no uncertainty 25% (Low interval), 75% (Medium interval), and 100%
(High interval) as shown for one example in Figure 7.1. Combining the four patients
with four uncertainty intervals creates a total of 16 cases. To not overburden the par-
ticipants, we decided to draw eight pseudo-random cases to review for each participant
in the study. As discussed above, each participant was presented with all four patients
but only two randomly selected two uncertainty intervals per patient. Cases were shown
in random order but the same patient was never shown consecutively to reduce further
learning biases. The complete process is also illustrated in Figure 7.3. As a result, all par-
ticipants had an equal opportunity to explore cases from all four patients with varying
uncertainty intervals.
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Pat. 1 Pat. 2 Pat. 3 Pat. 4

no uncertainty

25% interval

75% interval

100% interval

Random selection

Randomized order

Two per patient

Final selection and order

Figure 7.3: The distribution of the cases among participants.

7.5. QUESTIONNAIRE
In this section, we discuss the process behind formulating the evaluation questionnaire
and elaborate on its integration into the interactive web app designed for the evalua-
tiona.

7.5.1. HYPOTHESIS DRIVEN QUESTION FORMULATION

One of the main aspects of the design of the questionnaire are the questions to be asked
per presented case. We aim at concrete question(s) that can be used to compare and ana-
lyze the decision making of the participants. We held a number of meetings with collabo-
rators. Here, we discussed the surgeons’ routine decisions during fiber tracking analysis.
These vital choices involve diverse aspects, like planning tumor resection paths, decid-
ing on sleep or awake surgery, or utilizing Intraoperative Neurophysiological Monitoring
(IONM) for surgical assistance, among others. It is important to note that these clinical
decisions are also influenced by numerous other factors, including the patient’s health
condition, tumor type, preoperative counseling and patient preferences regarding the
functional/oncological balance (operate more on the safe side or be more aggressive to
maximize resection), and more. To mitigate their impact and isolate the influence of
fiber tracking visualizations on decision-making, we provide the participants with spe-
cific clinical context conditions. We instructed participants, that the tumor should be
assumed to be a glioma, and the patient is eligible for IONM/awake surgery, so no other
factors influence the decision. We also emphasize that the quality of the generated fiber
tracts and their anatomical representation is not part of the evaluation such that the an-
swer does not diverge into the quality of the fiber tracking results or the used algorithm.
It was advised by the neurosuregeons to pose only a single decision-making question
per provided case to minimize the burden and potential study dropouts. Following the
input from our collaborators, we defined the following main question:

aThe questionnaire can be accessed online and is open source on GitHub.

https://uncertaintyviz.netlify.app/
https://github.com/FaizanSiddiqui91/Uvis_nodejs
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Based on this visualization, will you recommend using Intraoperative Neurophysiologi-
cal Monitoring (IONM) during the surgical procedure?

The participant has to make a binary decision, either Yes or No, based on the provided
uncertainty visualization case. Participants might be inclined to utilize Intraoperative
Neuromonitoring (IONM) if they believe that the tumor resection process could impact
the integrity of healthy fiber bundles and if they require additional assistance throughout
the procedure.

Moreover, we ask the user an optional open question to comment on their decision
to understand the reasoning behind their decisions.

Would you like to comment on your decision? You may want to comment, for instance,
what arguments led you to this decision?

After each question, participants were also asked about their confidence on a Likert
scale ranging from 1 (not confident) to 5 (very confident):

How Confident are you about the decision?

7.5.2. INTERACTIVE 3D WEB VISUALIZATION
To be able to respond to the questions effectively based on the provided fiber tracking
case results and uncertainty interval, 3D interaction with the results is necessary. We
have added the needed interactions suggested by our collaborators such that the par-
ticipants can effectively explore the fiber tracking and uncertainty results. The ques-
tionnaire was developed as a web application such that it could be distributed indepen-
dently. In order to integrate the proposed interactions using VTKjs [19] and HTML. The
basic requirement for surgeons to understand and analyze the fiber tracking results is to
have an interactive 3D view in which a user can pan, rotate, and zoom. Furthermore,
they need to manipulate the magnetic resonance T1-weighted slices to comprehend the
relation to the anatomy. How users used those interactions was not part of the study and
was not recorded to comply with data minimization goals of the host institutions’ ethics
guidelines for human studies.

7.5.3. QUESTIONNAIRE SETUP
To fill in the questionnaire and be a part of this study, participants were first requested
to provide digital consent, indicating their willingness to partake in the study. This ini-
tial step ensured that participants were fully aware of their involvement and agreed to
the terms of the study. Its to be noted that the participants were not asked for any Per-
sonal Identifiable Information (PII), such as name or email address. Once consent was
obtained, the participants were asked for information about their experience with fiber
tracking techniques, such as for how long they have been using fiber tracking results in
their workflow. By obtaining this context, we aimed to gain insights into potential varia-
tions in the interpretation and utilization of the provided uncertainty visualization.

In the following step, participants were presented with a set of instructions that
served to introduce them to the concepts of uncertainty visualization used in fiber
tracking results and a description of the tasks they would undertake. These instructions
were crucial in establishing a common understanding and setting the stage for the
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Figure 7.4: This screenshot captures the training page, delineating essential elements for the
evaluation process. On the left side, detailed information regarding the assumptions made for the

evaluation and instructions for utilizing the 3D interface is provided. The right side of the page
features an interactive 3D interface seamlessly embedded, accompanied by controls located at

the bottom for user interaction.

Figure 7.5: This screenshot encapsulates a specific case within the evaluation framework. On the
left side, a set of questions related to the case is presented. Simultaneously, on the right side, an
interactive 3D interface is integrated, facilitating a comprehensive exploration of the case, with

user controls conveniently positioned at the bottom for enhanced interaction.
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subsequent phases of the evaluation. Once the details are provided, participants are
presented with the training page, depicted in Figure 7.4. This page served as a tangible
introduction to the 3D interface participants would be utilizing throughout the
evaluation process. The training page showcased the layout of the visualization and
outline of how they could interact with the system, thereby allowing participants to
become acquainted with the 3D interface and its features. In the training phase,
participants were allowed to explore all the uncertainty intervals by selecting the
corresponding icon. The participants could get familiar with the different uncertainty
intervals as concepts and the consequences of making specific selections. After the
training phase, participants were asked to answer questions to check if their
understanding of the uncertainty visualizations presented.

In total, each participant was presented with eight different cases as discussed above.
Each case was presented using an interactive 3D view showcasing the fiber tracking
results, anatomical context, and the tumor on its own page, together with the corre-
sponding questions as shown in Figure 7.5. Responses from participants were collected
through the selection radio buttons and the dialog box.

By visualizing the results with and without uncertainty information along with dif-
ferent intervals, we were able to test if participants were switching their decision to us-
ing IONM. This allowed us to determine how the inclusion of uncertainty information
changed the participant’s response (H1). By analyzing their decisions based on the in-
terval of visualized uncertainties, we can determine if the participants are making more
cautious decisions with higher intervals of uncertainty visualization (H2). The question
on the confidence rating allows analysis of the influence of uncertainty visualization on
participants’ confidence (H3). Following the participants’ evaluation of all presented
cases, we posed several open-ended questions concerning the uncertainty visualization
in fiber tracking results. More precisely, we inquired whether the provided uncertainty
information had any influence on any other clinical decisions beyond the application of
IONM. Furthermore, we sought to determine whether the conveyed uncertainty infor-
mation contributed to enhancing their decision-making confidence.

7.6. RESULTS

The developed web application for the questionnaire was distributed among neurosur-
geons throughout the Netherlands through the Dutch Association for Neurosurgery (De
Nederlandse Vereniging voor Neurochirurgie). The association includes nearly all neu-
rosurgeons practicing in the Netherlands. However, not all of these neurosurgeons per-
form brain tumor surgery, and only a portion of those who do use fiber tracking in their
workflow. We received responses from 16 participants who were utilizing fiber tracking
for their neurosurgical planning. Among these participants, one response was incom-
plete, leading us to base our analysis on the data from 15 complete responses. All the
participants’ responses to the training phase were 100 % correct, which indicates that
the participants were able to understand the uncertainty interval visualization. To assess
the potential impact of distinct uncertainty visualization intervals on participants’ deci-
sions (H1 and H2) and their corresponding confidence (H3), we utilized the responses
to the provided questions for each case. We refrain from quantitative statistical analysis
given the limited amount of samples. Therefore, we opt for a qualitative analysis.
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7.6.1. IMPACT ON DECISIONS (H1 AND H2)
We start our analysis by examining the choices made by participants in response to
the question “Will you recommend using Intraoperative Neurophysiological Monitoring
(IONM) during the surgical procedure?” across varying uncertainty interval visualiza-
tions. Figure 7.6 shows the percentage of decisions classified as Yes, use IONM, and No,
do not use IONM, across the four different visualized uncertainty intervals. The results
are summarized for all cases and participant responses. As can be observed in the plot, in
the absence of uncertainty visualization (no uncertainty interval), a larger proportion of
participants opted not to employ IONM for tumor resection procedures, and, therefore,
taking a higher risk. However, as an uncertainty interval was visualized, an indication of
a shift in the trend occurred, with participants displaying a greater inclination towards
utilizing IONM, as depicted with the upward trend of the orange line in the plot, thereby
supporting our hypothesis H1. This indicates that participants tend to adopt more con-
servative decisions when confronted with visualization of higher uncertainty intervals,
providing support for hypothesis H2.

Figure 7.7 further divides the results into patient-specific trends to identify whether
there were biases depending on the data sets (see Figure 7.2 as reference). The results
depict the percentage of decisions classified of all participants for the four different pa-
tients. The results are similar to the overall results as shown in Figure 7.6. For Patient 1
and Patient 4, all participants opted for Yes for the 75% and 100% uncertainty interval vi-
sualizations. However, for Patient 2 and Patient 3, there is larger disagreement among
participants. Independently of the visualized uncertainty interval, some participants
chose No. This diversity in decisions can be attributed to the less clear margins of the
tumor for Patients 2 and 3. The results indicate that uncertainty visualization impacts
decision-making differently across different patients and participants.

For further analysis of the results, Figures 7.8 and 7.9 summarize the decisions and
changes thereof for each participant individually. We want to account for participants in-
trinsic biases, for example, being prone to take more risks than others. We are interested
in the changes in decision-making due to uncertainty visualization, not necessarily on
the exact decision concerning IONM. Figure 7.8 depicts the count of the responses per
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Figure 7.8: Count of the binary decisions versus uncertainty intervals for each participant.

participant for each uncertainty interval accumulating over the four presented patients
(see Section 7.4: Study Design).

Figure 7.9 presents the individual decisions as dots to highlight variation in the deci-
sions per participant for different uncertainty intervals and per patient data-set. There-
fore, the participant panels are further subdivided into four quadrants for the four pa-
tients (same order as Figure 7.7). The two dots corresponding to the two different un-
certainty intervals for the same patient are connected to indicate change in decision.



7

94 7. EFFECT OF WM UNCERTAINTY VISUALIZATION IN DECISION MAKING

Participant 7 Participant 8 Participant 9

Participant 10 Participant 11 Participant 12

Participant 13 Participant 14

Participant 1 Participant 2 Participant 3

Participant 4 Participant 6Participant 5

Participant 15

N
on

e

25
%

75
%

10
0%

N
on

e

25
%

75
%

10
0%

N
on

e

25
%

75
%

10
0%

N
on

e

25
%

75
%

10
0%

N
on

e

25
%

75
%

10
0%

N
on

e

25
%

75
%

10
0%

Uncertainty Intervals

De
ci

si
on

 T
ak

en

No to YesDecision Change Yes to No None

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

A

D

B

E

C

Figure 7.9: Change in participants’ decision with uncertainty intervals. Dots represent the
individual decision per participants for different uncertainty intervals and per patient data-set.

The plots are further subdivided into four quadrants for the four patients. The dots are connected
to indicate the change in decision.

Green lines denote instances where the decision changed from No to Yes meaning
changing to a less risky decision, while red lines signify the opposite, indicating a
shift towards a more risky decision which is less expected. Grey lines indicate no
change in the decision. Figure 7.8 underscores the general trend of participants shift-
ing their decisions from No to Yes in response to larger uncertainty intervals visualized,
consistent with earlier observations.
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Overall, these results exhibit a consistent pattern similar to the previous results,
where participants tend to favor the Yes decision when a larger uncertainty interval is
visualized. No answers are mainly present when no or 25% of uncertainty is presented.
Similarly, we observe in Figure 7.9 that most participants either did not change their
decision ( ) or changed from No to Yes ( ) when larger uncertainty intervals
were presented.

We will illustrate the results with some examples marked as A and B; and participants
that behave differently than the main trend, marked C and D.

Let us first consider Participant 4 marked A in Figures 7.8 and 7.9. Participant 4 only
makes the more conservative decision Yes once presented with uncertainty intervals of
75% and larger (see A in Figure 7.8). For Patient 1 (see top left corner in the panel marked
A in Figure 7.9), Participant 4 was faced with no uncertainty and a 75% uncertainty in-
terval. With no uncertainty presented, Participant 4 opted for No. However, when pre-
sented the 75% uncertainty interval of the same patient their decision changed to Yes. A
similar effect can be seen in the answers of Participant 4 with the other patients. Their
responses align with the majority of participants.

Participant 8 (B) consistently selects Yes for all presented cases, regardless of the in-
terval of uncertainty visualization or the patients involved. This would indicate that this
participant favors minimal risk and it is more inclined to operate with IONM regardless.

The trend of either not changing the decision or changing towards a more conserva-
tive decision when presented with higher uncertainty intervals is present in the majority
of the answers. However, Participants 9, 10, and 14 (C, D, and E, respectively) exhibit a
distinct pattern concerning Patient 3 (i.e., bottom-left corner of the respective panels in
Figure 7.9). They chose No for cases with high uncertainty interval visualization and Yes
for low uncertainty intervals. It is unclear why these distinct choices were made by these
participants. There might be some specifics of the Patient 3 data set that make this deci-
sion different. We also observe that Participant 10 (D) exhibits the same distinct pattern
with Patient 2, although this is not observed in any other participant.

7.6.2. IMPACT ON CONFIDENCE (H3)
To test Hypothesis H3, we analyzed the relation between participants’ confidence and
the visualized uncertainty interval. Figure 7.10 displays the self-reported confidence per
participant, case and uncertainty interval. Participants were requested to rate their de-
cision confidence on a 5-point Likert scale. The results offer an overview of participants’
confidence across different uncertainty scenarios. We can observe two main trends: par-
ticipants have a rather constant confidence level that is not influenced by the presented
uncertainty (i.e., Participants 1, 2, 3, 5, 10, 11, 12, 14, 15) or there is a slight correlation
between confidence and intervals of uncertainty (i.e., Participants 4, 6, 7, 8, 13). Partic-
ipant 9 (C) is the only participant that shows a negative correlation with the visualized
uncertainty interval.

These results provide initial insights into how uncertainty visualization impacts
confidence of participants in their decisions (H3). The visualized uncertainty intervals
mostly seem to not influence the level of confidence, while for a few participants, they
slightly correlate with the level of confidence positively.

Analogous to the previous section, we also want to examine whether the confidence
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of the participants changes with increasing uncertainty intervals. Figure 7.11 presents
the changes in the confidence level of each participant for all four patients along with
the uncertainty interval. Similar to above, green lines indicate increasing confi-
dence while red lines represent decreasing confidence. Flat grey lines indi-
cate no change in confidence. The chart reveals that the dominant trend is no change
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in confidence (38 cases), followed by increase in confidence (18 cases) and only four oc-
currences with a decrease in confidence. The confidence of Participants 9 and 10 (C and
D, respectively) decreased, coinciding with the change of decision from Yes to No in Pa-
tient 3. These results confirm the results from Figure 7.10, although here we looked at
the concrete change in confidence within the same decision context, i.e., patient.

7.6.3. FURTHER INFORMATION

We also compiled data regarding the years of professional experience of each participant
to conduct an analysis of the relationship between their experience and decision-making
processes. However, we did not identify any correlation between experience and the
answers to the questionnaire and thus omit the data in this presentation.

Open-ended responses for each case were rather limited and focused mainly on clar-
ifying the use of the distance from the tumor to the fiber tracts presented. A total of four
participants responded to each open-ended question for all the cases, while others just
responded once or twice. In total, we got 43 responses. Some examples being “Too close,
I would recommend using monitoring”, “In the results shown by DTI, the tracts are close
proximity with edema and glioma”, and “there is enough space and window to remove the
tumor.” These responses indicate that the decision making is highly dependent on the
distance of the fibers to the tumor. However, the answers do not reveal any reasoning
concerning uncertainty.

7.7. DISCUSSION

The findings from this study indicate that participants incorporate the uncertainty in-
formation presented alongside the fiber tracking results into their decision-making pro-
cess. When faced with visualizations showing higher uncertainty, participants tended to
make more cautious judgments, as depicted in Figure 7.6 and Figure 7.7. Both analyses
provided support for the hypotheses, largely aligning with the expected patterns which
also align with the results of the study by Padilla [14]. Nevertheless, certain individual
responses displayed distinct behaviors. For instance, Participant 8 (B) consistently fa-
vored employing IONM. It is difficult to speculate about what accounts for the lack of an
impact of uncertainty visualization in the participant’s decision. Participants 9, 10, and
14 (C, D, and E) opted for not using IONM when presented with higher uncertainty in-
tervals for Patient 3. However, the confidence of Participants 9 and 10 (C and D) also de-
creased. Possible reasons might be participants ignoring the uncertainty information or
making extremely cautious decisions. There might be some particular context of Patient
3 that contributed to these decisions. However, we could not identify any such cause.
Furthermore Participant 9 (C) seems to have an overall different behaviour changing the
decision making to a more risky situation, i.e., No IONM, when presented with higher
intervals of uncertainty. Furthermore, the participant was the only one that showed a
negative correlation of uncertainty with confidence. The participant might be an outlier
on the decision-making process, or other factors had influence. Some of these factors
could be misunderstanding what was presented or how uncertainty influenced the de-
cision process was different than the rest of participants. However, within this study, we
could not identify any such factors. Given the limited number of participants, a statisti-
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Figure 7.11: Change in participants’ confidence with increasing uncertainty intervals. Dots
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cal analysis was not possible. However, the qualitative evaluation of the evidence shows
the trends where uncertain information gives more cautious decisions.

It is important to acknowledge that numerous factors exert influence on neurosurgi-
cal decisions, including tumor type, or patient age. Despite our efforts to isolate uncer-
tainty visualization from other variables and emphasize decision-making based on the
provided visualization, it is not easy to judge that the decisions are purely based on the
uncertainty visualization. Our conjecture was that presenting uncertainty information
might impact participants’ decisions. However, upon analyzing the limited open-ended
responses, it indicates that those participants based their decisions on the proximity of
resulting fiber tracts to the tumor. Consequently, our analysis suggests that while partic-
ipants’ decisions were influenced by provided uncertainty information, their focus pre-
dominantly might lay in assessing fiber tracking margins relative to the tumor and the
number of fibers and potentially ignoring the statistical information of the uncertainty
intervals of the fibers. Increasing uncertainty intervals also increases the total number of
fibers shown. As a result more fibers closer to the tumor will be shown. However, we had
very limited responses to our open questions, and our study was not designed to clarify
the reasoning made by the participants when evaluating uncertainty. A full new study to
evaluate this impact should be designed to make any conclusions.

Using a web-based questionnaire allows us to reach more participants, but at the
same time, it discourages the answer to open-ended questions. These are essential to
understand the reasoning aspects behind the decison-making of the participants. Ex-
ploring other user-study methods that include a stronger feedback loop could help in-
crease responses to open-ended questions.

Lastly, our analysis delved into the influence of the presented uncertainty interval
on the participants’ confidence in their decision. Notably, the majority of responses in-
dicate no change in confidence for different uncertainty intervals in the same patient,
while an increase in confidence could be observed in a smaller amount of cases. A de-
tailed examination of individual cases reveals a prevailing trend of either unaltered con-
fidence or, for a few cases, a shift towards higher levels in scenarios with greater uncer-
tainty. Our results are rather indecisive. A correlation is not evident, the findings indicate
the partial influence of uncertainty for some participants. More extensive studies would
be needed to achieve stronger statements.

7.8. CONCLUSIONS AND FUTURE DIRECTIONS
In this chapter, we presented the study that was built up upon the context and hypothe-
ses established by Padilla et al. [14] to examine how uncertainty visualization affects
decision-making when dealing with intricate fiber-tracking results in brain tumor pa-
tients. Collaborating with surgeons and radiologists, we designed and implemented a
user study tailored to inquire about specific clinically relevant cases and analyze par-
ticipants’ decisions. Our investigation centered on exploring the impact of uncertainty
visualization on neurosurgical decision-making through fiber tracking results. We care-
fully designed an interactive web-based questionnaire that allowed the participants to
explore the necessary information to answer the decision-making questions. The eval-
uation, guided by the presented hypotheses, provides insights into the relationship be-
tween uncertainty presentation and participants’ judgments. The findings underscore
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that uncertainty visualization influences participants’ decisions, albeit its extent is also
influenced by other factors.

As hypothesized, participants exhibited a tendency to make more cautious deci-
sions when confronted with larger uncertainty intervals in the visualization. It should
be noted, however, that the participants’ decisions seem to be influenced by the number
of fibers present, regardless of the statistical significance of the uncertainty interval visu-
alization. In future studies, this should be explored to better understand the reasoning
behind the decisions made.

Moreover, our analysis could not identify any clear relationship between the uncer-
tainty intervals presented and participants’ confidence in the decision-making. There is
an indication of a positive correlation for some participants. Further studies are needed,
to better understand the possible influence of uncertainty presentation on confidence.

Our analysis is constrained by several limitations. These limitations encompass a
restricted number of users, limited data sets, limited questions, difficulty to acquire re-
sponses to open questions, and constraints related to the visualization itself. Further
studies are needed such that these limitations can be overcome. In essence, this study
contributes to our understanding of how uncertainty visualization intertwines with neu-
rosurgical decision-making. The findings underscore the need to consider uncertainty
information as a valuable component in the decision-making process, yet also highlight
the complex nature of clinical judgments, which are shaped by a multitude of factors.
Future research could delve deeper into understanding participants’ decision strategies
and their ability to grasp and use the concept of uncertainty. Furthermore, the influ-
ence of the specific visualization technique in the decision-making process was out of
the scope of our work, but would also be of interest for future work.
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This thesis focuses on advancing the understanding and practical application of uncer-
tainty visualization in the DTI pipeline, with particular attention to its integration into
neurosurgical workflows. In this chapter, we summarize our contribution (Section 8.1),
and conclude with the future outlook (Section 8.2).

8.1. SUMMARY

The first three chapters of this thesis establish the clinical and technical background of
DTI. We began by introducing the fundamental concepts of DTI, including its role in
medical imaging and neurological applications. We then provided a detailed explanation
of the DTI pipeline, covering each step from data acquisition, modeling, fiber tracking,
and visualization.

In Chapter 4, we explore the sources and implications of uncertainty in the various
stages of the DTI pipeline. We surveyed existing uncertainty modeling and visualization
techniques, including those outside the diffusion-weighted imaging (DWI) domain. We
identified a gap in clinical applicability, highlighting the need for uncertainty visualiza-
tion techniques tailored to the clinical DTI pipeline. This analysis sets the stage for the
development of interactive visualization strategies presented in subsequent chapters.

In Chapter 5, we introduced a progressive visual analytics framework for uncertainty
visualization in the DTI pipeline that addresses interactive visualization and computa-
tional challenges. By integrating a local wild-bootstrapping approach with interactive
fiber tracking, the framework facilitates real-time exploration of uncertainty, making it
more accessible to clinicians. Although the feedback from clinical collaborators was en-
couraging, the chapter also acknowledged the challenges of integrating such tools into
existing clinical workflows. This progressive framework marks a significant step toward
bridging the gap between research and clinical practice, though further work was needed
to evaluate its impact on decision-making processes, which we addressed in Chapter 7.

In Chapter 6, we present a solution to visualize the uncertainty that arises in the fiber
tracking stage of the pipeline. This approach addresses the variability introduced by pa-
rameter selection during fiber tracking by providing users with information concerning
parameter sensitivity that helps refine region of interest (ROI) boundaries. By incorpo-
rating sensitivity information, the framework reduces the need for repeated manual ad-
justments, improving both efficiency and accuracy. This chapter indicates the potential
of sensitivity-based visualization to enhance clinical workflows, offering users intuitive
means of navigating the complexities of ROI definition.

In Chapter 7, we designed a user study to analyze the influence of fiber tracking un-
certainty visualization on neurosurgical decision-making for brain-tumor resection. The
user study involving neurosurgeons indicated that uncertainty visualization encourages
more cautious decision-making, particularly in cases with high uncertainty intervals.
However, the findings also highlighted the complex nature of clinical judgments, which
are shaped by factors such as fiber density and individual interpretation. This chapter
contributes to how uncertainty visualization can support complex clinical decision.
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8.2. CONCLUSION AND FUTURE OUTLOOK
Uncertainty visualization plays a crucial role in interpreting complex data by providing
insights into its reliability and confidence. However, quantifying, communicating, and
evaluating uncertainty remains challenging, particularly in medical applications, due
to the complexity of the data and the interdisciplinary expertise required. This thesis
has focused on developing and evaluating uncertainty visualization techniques for fiber
tracking, based on diffusion tensor imaging (DTI), specifically tailored for neurosurgical
workflows. While our work addresses some barriers to integrating uncertainty visualiza-
tion into clinical practice, widespread adoption remains challenging and requires fur-
ther research. Close collaboration between researchers and clinicians will be essential
to refine these techniques, ensuring they align with clinical practice while maintaining
usability and interpretability.

The interactive uncertainty visualization methods presented in this thesis have
shown potential in supporting neurosurgical assessment and surgical planning by
helping clinicians better understand the uncertainties involved in the results. However,
additional research is needed to evaluate their practical applicability and effectiveness
in real-world clinical settings. Moreover, clinical decision-making is a multifaceted
process influenced by various factors, including patient history, physical condition,
lesion characteristics, medication, intraoperative navigation, and surgical expertise.
These factors often have a more direct impact on patient outcomes than fiber tracking
results alone. As discussed in this thesis, isolating the specific contribution of
uncertainty visualization to surgical decisions and patient recovery remains complex.
Future research should explore how uncertainty visualization integrates with other
decision-making factors to assess its broader clinical impact.

This research primarily focused on the computational aspects of uncertainty visual-
ization rather than the development of new visual representations. The techniques and
workflows developed in this thesis can be integrated into clinical practice using existing
visualization methods. However, future research could explore the integration of more
advanced visual representations to enhance the communication of uncertainty to neu-
rosurgeons.

Like other studies on uncertainty visualization techniques in DTI, we have also pre-
sented the preoperative planning stage of the neurosurgical workflow as the primary
application area. However, the presented methods could also be extended to intraop-
erative applications, such as tumor resection surgery. By visually conveying uncertainty
information during the procedure, surgeons could assess the confidence levels associ-
ated with fiber tracking results, identify regions of potential ambiguity, and incorporate
this knowledge into their decision-making process.

Additionally, more extensive validation studies are needed to assess the practical
applicability of these methods in real-world clinical settings. Engaging neurosurgeons
and other stakeholders in the evaluation process will be crucial to ensure that these
techniques align with clinical needs and workflows. By addressing these challenges,
future research can help bridge the gap between uncertainty visualization research and
its practical application in neurosurgery, ultimately contributing to better-informed
decision-making and improved patient outcomes.
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