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The equivalent dynamic stiffness of a visco-elastic half-space in interaction 
with a periodically supported beam under a moving load 

T. Lu, A.V. Metrikine, M.J.M.M. Steenbergen * 

Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, the Netherlands   

A R T I C L E  I N F O   
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A B S T R A C T   

A periodically supported beam on a visco-elastic half-space is considered to model the vibration of railway tracks. 
The viscosity of the half-space is assumed to be of the Kelvin-Voigt type. Making use of the concept of equivalent 
dynamic stiffness, the reaction of the half-space to the sleepers is replaced by a system of identical spring located 
under each sleeper. The frequency-dependent equivalent stiffness of the springs is a function of the phase shift of 
vibrations of neighbouring supports. The equivalent stiffness is derived analytically employing the contour 
integration technique, resulting in a comprehensive expression for different phase velocities of the waves in the 
beam with respect to the wave speeds of the half-space. Apart from the Rayleigh type surface wave (quasi-elastic 
wave), an extra visco-elastic surface wave may exist in a visco-elastic half-space depending on the parameters of 
the half-space and the frequency range. The existence of this second surface wave has not been addressed within 
the field of train-induced ground vibration. The importance of this wave for the equivalent stiffness is analysed. 
An effective method to determine the frequency range for the visco-elastic surface wave to exist is proposed.   

1. Introduction 

With increasing computational power, in recent years numerical 
methods such as FEM, BEM and hybrid methods are commonly used in 
modelling train-induced ground vibrations (Hall, 2003; Sheng et al., 
2006; Degrande et al., 2006; Yang and Hung, 2009; Galvín et al., 2010; 
Triepaischajonsak and Thompson, 2015). Analytical methods however 
retain their significance since they are apt to reveal the underlying 
mechanisms of the generation of ground vibrations caused by moving 
trains. Various analytical/semi-analytical models for ground vibration 
induced by moving trains on open tracks (Sheng et al., 1999; Karlstr€om 
and Bostr€om, 2006) and in tunnels (Forrest and Hunt, 2006; Metrikine 
and Vrouwenvelder, 2000; Yuan et al., 2015; Di et al., 2018; Zhou et al., 
2020) can be found in the literature. Generally, the 
analytical/semi-analytical models have high calculation efficiency with 
reasonable accuracy. A disadvantage however is their assumption of 
linearity. A comprehensive review can be found in (Lombaert et al., 
2015) which covers various prediction methods and mitigation mea
sures for train-induced ground vibration. 

The train-induced ground vibration is essentially a three- 
dimensional problem. Dieterman and Metrikine (1996) introduced the 
concept of the “equivalent stiffness” to characterize the interaction 

between the track and an elastic half-space. The track was modelled as 
an infinitely long Euler-Bernoulli beam whereas the half-space repre
sents the subsoil. The equivalent stiffness was derived analytically for 
different phase velocities of waves in the beam with respect to the wave 
speeds in the soil using a contour integration procedure. By replacing the 
ground reaction by an equivalent foundation with frequency dependent 
stiffness, the three-dimensional coupled soil-track model was trans
formed to an equivalent one-dimensional description. Kononov and 
Wolfert (2000) reconsidered the beam on half-space model in which the 
viscosity of the half-space is addressed. A different choice of branch cuts, 
namely the EJP branch cuts (naming after the authors of (Ewing et al., 
1957)) was chosen such that a uniform expression for the equivalent 
stiffness was obtained regardless of the velocity range. In (Metrikine and 
Popp, 1999), the vibration of a periodically supported beam on an 
elastic half-space was investigated. This model is a more realistic 
description of ballasted railway track due to the inclusion of discretely 
located supports (railpad, sleeper). The expression of the equivalent 
stiffness of the elastic half-space under each support was derived. It was 
concluded that the Rayleigh wave velocity is a critical speed besides the 
ones caused by the periodical nature of the system. Vostroukhov and 
Metrikine (2003) extended this work to the case of a periodically sup
ported beam on a visco-elastic layer. Utilizing the equivalent 1D model, 
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the response of the track and the ground can be readily obtained for 
railway tracks on a half-space (Dieterman and Metrikine, 1997; Chen 
and Wang, 2006; Steenbergen and Metrikine, 2007) or a layer of soil 
(Metrikine and Popp, 2000; Vostroukhov and Metrikine, 2003). The 
equivalent stiffness of a saturated poro-elastic half-space interacting 
with an infinite beam to a moving load was studied numerically in (Xia 
et al., 2009). More recently, Sun et al. (2018) investigated the equivalent 
stiffness for the same case analytically. The steady-state displacements 
of an Euler-Bernoulli beam resting on a poroelastic half-space subjected 
to a moving constant load were investigated using the equivalent stiff
ness in (Shi and Selvadurai, 2016). 

In the above-mentioned references in which the concept of the 
equivalent stiffness is utilized, such stiffness has not been derived for a 
visco-elastic half-space coupled to a periodically supported beam. The 
first aim of this paper is to deduce analytically the expression of the 
equivalent stiffness for this case by means of contour integration. Similar 
to the approach in (Kononov and Wolfert, 2000), the EJP type of branch 
cuts (Ewing et al., 1957) is chosen to obtain a uniform expression for the 
entire velocity range. As an additional novelty, it is established that an 
extra visco-elastic surface wave may exist in a visco-elastic half-space 
besides the Rayleigh type surface wave as described in the literature 
(Currie et al., 1977; Currie and O’Leary, 1978; Carcione, 1992; Romeo, 
2001). For typical properties of underlying subsoil of railways, it is 
found that the second surface wave may exist in a certain frequency 
range. The contribution of this wave to the equivalent stiffness and 
consequently the dynamic response of the system cannot be ignored. 
This issue has not been addressed in the literature dedicated to 
railway-induced ground vibration. This work proposes also an effective 
method to determine the frequency range for the visco-elastic wave to 
exist. 

The paper is structured as follows. Section 2 presents the model and 

derivation of the equivalent stiffness of a visco-elastic half-space in 
interaction with a periodically supported beam. In Section 3 the 
equivalent stiffness is evaluated analytically making use of the contour 
integration. The results are validated by comparison with direct nu
merical integration as well as the corresponding elastic half-space case. 
The importance of the second surface wave is addressed explicitly in 
Section 4. In Section 5, the frequency range in which the second surface 
wave exists is analysed. An effective way to determine the frequency 
range is proposed regardless of the system parameters. The influences of 
both viscosity and Poisson’s ratio on this frequency range are analysed. 
Section 6 summarises the conclusions of this paper. 

2. Model and equivalent stiffness 

Fig. 1 shows the model adopted to study the steady-state vibrations 
of a railway track. Two infinitely long Euler-Bernoulli beams (rails) are 
supported by equi-distantly distributed supports (sleepers) resting on a 
half-space (subsoil) consisting of a homogeneous, isotropic visco-elastic 
material. This work adopts the Kelvin-Voigt model to describe soil 
behaviour. Although other models such as the hysteretic damping model 
(Verruijt and Co�rdova, 2001) may be more appropriate in this context, 
the description is chosen in line with previous work on the equivalent 
dynamic stiffness (Metrikine and Popp, 2000; Kononov and Wolfert, 
2000; Vostroukhov and Metrikine, 2003; Steenbergen and Metrikine, 
2007), allowing for a direct comparison. The method itself however 
allows for a similar study on the basis of other constitutive damping 
models. For the system parameters, ν is the Poisson’s ratio and ρ is the 
density of the half-space. λ and μ are the Lam�e constants. Each support 
consists of a rigid sleeper and a railpad which is modelled as a 
spring-dashpot element. Each sleeper occupies a rectangular contact 
area 2a� 2b as shown in Fig. 1. The distance between the centerlines of 
two neighbouring sleepers is denoted as d. A harmonic load PðtÞ ¼
P0expðiΩtÞ (i ¼

ffiffiffiffiffiffiffi
� 1
p

) moves uniformly at a speed V on the track. 
Considering the symmetry of the loading with respect to the centerline 
y ¼ 0 of the track, only one equation of motion for one beam is pre
sented. The coordinate system is shown in Fig. 1 as well. 

The governing equations of motion of the coupled system can be 
written as follows. 

The equation of motion for a visco-elastic half-space takes the form: 

bμΔuþðbλþ bμÞrðr ⋅ uÞ¼ ρ∂ttu (1)  

where uðx; y; z; tÞ ¼ ½uðx; y; z; tÞ; vðx; y; z; tÞ;wðx; y; z; tÞ�T is the displace
ment vector. To account for the viscosity according to the Voigt 
phenomenological model, the Lam�e constants λ and μ of the elastic case 
are replaced by bλ ¼ λþ λ�∂=∂t and bμ ¼ μþ μ�∂=∂t in the governing 
equation (1) of the soil, respectively. 

To solve Eq. (1), the Helmholtz decomposition can be used. How
ever, based on the assumption of zero shear stress at the soil-sleeper 
interface that is adopted in this paper, two so-called stress functions 

Fig. 1. Periodically supported railway track on a visco-elastic half-space.  

Fig. 2. The contour of integration and singular points of Eq. (16): (a) one pole, (b) two poles.  
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ϕðx; y; z; tÞ and ψðx; y; z; tÞ can be employed to decouple the original 
three-dimensional wave equations as shown in (Lamb, 1904; Dieterman 
and Metrikine, 1996; Vostroukhov, 2002). Hence, the governing equa
tions for the visco-elastic half-space become: 
�

c2
L þ δL

∂
∂t

�

△ϕ ¼
∂2

∂t2 ϕ;

�

c2
T þ δT

∂
∂t

�

△ψ ¼ ∂2

∂t2 ψ (2)  

where cL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλþ 2μÞ=ρ

p
is the speed of the compressional wave (P- 

wave) and cT ¼
ffiffiffiffiffiffiffiffi
μ=ρ

p
the speed of the shear wave (S-wave). The viscous 

constants in Eq. (2) are defined as δT ¼ μ�=ρ; δL ¼ ðλ� þ 2μ�Þ= ρ. The 
displacements of the half-space are expressed in terms of the stress 
functions as (Lamb, 1904; Dieterman and Metrikine, 1996; Vos
troukhov, 2002): 

u¼
∂ϕ
∂x
þ

∂2ψ
∂x∂z

; v¼
∂ϕ
∂y
þ

∂2ψ
∂y∂z

; w¼
�

∂ϕ
∂z
þ

∂2ψ
∂z2

�

�
ρ
bμ

∂2ψ
∂t2 : (3) 

The equation that governs the vertical motion of the beam is (Met
rikine and Popp, 1999): 

mW0
; tt þEIW0

; xxxx¼ � P0 expðiΩtÞδðx � VtÞ � K

�
X∞

n¼� ∞

�
W0ðx; tÞ � Wn

s ðtÞ
�
δðx � ndÞ (4)  

where m is the density of the beam, EI is the bending stiffness. K is the 
stiffness of the railpad, W0 and Wn

s are the vertical displacements of the 
beam and the nth sleeper, respectively. 

A uniform stress distribution is assumed at the interface z ¼ 0 of the 
half-space (Metrikine and Popp, 1999): 

σzz¼
1

4ab
X∞

n¼� ∞

�

K
�
W0ðnd; tÞ � Wn

s ðtÞ
�
� M

∂2

∂t2Wn
s ðtÞ
�

Hða � jyjÞHðb � jx � ndjÞ;

(5)  

τxzðx; y; 0; tÞ ¼ τyzðx; y; 0; tÞ ¼ 0 (6)  

in which M is the sleeper mass and H is the Heaviside step function. 
Displacement compatibility along the centre-line y ¼ 0 is assumed 

between the sleepers and the half-space for the vertical motion at the 
interface z ¼ 0 (Metrikine and Popp, 1999): 

Wn
s ðtÞ¼Wðnd; 0; 0; tÞ: (7) 

Eqs. (2)–(7) complete the mathematical description of the problem. 
The technique of integral transformation is used to transform the 

problem statement to wave-number and frequency domain. The 
following integral Fourier transforms are adopted: 

ff ;ggðk1;k2;z;ωÞ¼
Z∞

� ∞

Z∞

� ∞

Z∞

� ∞

fϕ;ψgðx;y;z; tÞexpðiωt � iðk1xþk2yÞÞdtdxdy

W0
ω;k1
ðk1;ωÞ¼

Z∞

� ∞

Z∞

� ∞

W0ðx; tÞexpðiωt � ik1xÞdtdx:

(8) 

All the governing equations, boundary and interface conditions Eqs. 
(2)–(7) are then transformed to the frequency and wave-number domain 
using Eq. (8). One is referred to (Metrikine and Popp, 1999) for the 
detailed derivation of the expression of the equivalent stiffness since the 
same procedure is used here. It is worth mentioning that the general 
solutions of Eq. (2) after applying the Fourier transforms (Eq. (8)) are 
assumed to be: 

f ¼Aðk1; k2;ωÞexpð� z~RLÞ; g¼Bðk1; k2;ωÞexpð� z~RTÞ (9) 

Accounting for the proper behaviour for large positive values of z. In 
Eq. (9) 

~RL;T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
1 þ k2

2 � ω2
�

~c
q 2

L;T
;Reð~RL;TÞ > 0 (10)  

where 

~c2
L;T¼ c2

L;T

�
1 � iωδL;T

.
c2

L;T

�
: (11) 

The expression of the equivalent stiffness from the half-space to the 
support can be written as (Metrikine and Popp, 1999):  

where 

Δ¼
�
2
�
k2

1 þ k2
2

�
� ω2�~c2

T

�2
� 4~RL ~RT

�
k2

1 þ k2
2

�
: (13) 

In Eq. (12), ~μ ¼ μ � iωμ� and qðωÞ is the phase shift of the vibrations 
of two neighbouring supports and is given by (Metrikine and Popp, 
1999; Vostroukhov and Metrikine, 2003): 

qðωÞ¼ ðωþΩÞd
V

: (14) 

Hence, the equivalent stiffness (Eq. (12)) of the springs under sup
ports is established. Note that Eq. (12) is the same as Eq. (20) in (Met
rikine and Popp, 1999), however, including the viscosity by replacing c2

T 

and μ of Eq. (20) in (Metrikine and Popp, 1999) with ~c2
T and ~μ, 

respectively. 

3. Evaluation of the equivalent stiffness 

To evaluate the equivalent stiffness, the denominator of Eq. (12) 
must be computed. This denominator can be rewritten as  

χh� s;s¼

0

@ ω2

4π2~μ~c2
T

X∞

n¼� ∞

Z ∞

� ∞

Z ∞

� ∞

~RL

Δ
sinðbk1Þ

bk1

sinðak2Þ

ak2
expðiðk1d � qðωÞÞnÞdk1dk2

1

A

� 1

(12)   

Ih� s;s¼
1

2iab
ω2

4π2~μ~c2
T

X∞

n¼� ∞

Z ∞

� ∞

Z ∞

� ∞

�
~RL sinðak2Þ

k1k2Δ
ðexpðik1bÞ � expð� ik1bÞÞexpðiðk1d � qðωÞÞnÞ

�

dk1dk2 (15)   
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The following auxiliary integral with respect to k1 is introduced 
(Metrikine and Popp, 1999): 

ZðrÞ¼
Z ∞

� ∞

~RL

Δ
expðik1rÞ

k1
dk1¼

Z ∞

� ∞

~RL

Δ
ðexpðik1rÞ � 1Þ

k1
dk1 (16)  

where r is a real value. The introduction of “100 in the numerator ac
counts for the contribution of the pole k0

1 ¼ 0 . It does not influence the 
result of integration since 

Rþ∞
� ∞ f

~RL =ðk1ΔÞgdk1 ¼ 0 (Metrikine and Popp, 
1999). 

Using the auxiliary integral, Eq. (15) can be written as   

Denoting the summation in the integrand of Eq. (17) as S and eval
uating yields:  

where the terms ZðbÞ;ZðndþbÞ;Zðnd � bÞ can be evaluated after obtain
ing an analytical expression for the auxiliary integral Eq. (16). 

3.1. Branch points and branch cuts 

Eq. (16) is evaluated using contour integration. The EJP branch cuts 
(Ewing et al., 1957) are used here. Firstly, the branch points are speci
fied from the radicals ~RL;TðkL;T

1 Þ ¼ 0, resulting in 

~k
L
1 ¼ �

ffiffiffiffiffiffiffiffiffiffiffi

ω2
�

~c
q 2

L
� k2

2¼ �ð~αLþ i~tLÞ;~k
T
1 ¼ �

ffiffiffiffiffiffiffiffiffiffiffi

ω2
�

~c
q 2

T
� k2

2¼ � ð~αTþ i~tTÞ:

(19) 

It is assumed that k1 > 0. The branch cuts can be chosen such that 
Reð~RL;TÞ > 0 everywhere on the path of integration in accordance with 
the assumed solution in Eq. (9). To meet these conditions, the cuts 
should satisfy the following equations: 

Reð~RL;TÞ¼ 0 ⇔ Imðγðk1ÞÞ¼ 0 ^ Reðγðk1ÞÞ < 0 (20)  

where 

γðk1Þ¼ k2
1 þ k2

2 � ω2
.

~c
2

L;T
: (21) 

The branch cuts are governed by the parametric equations: 

kL;T
1 ¼αL;T þ itL;T: (22) 

Substituting kL;T
1 into Eq. (20), one obtains 

αL;T¼
ω3δL;T

2
�
c4

L þ ω2δ2
L;T

�
tL;T

: (23) 

Note that ~αL;T and ~tL;T in Eq. (19) are functions of k2 and ω. The same 
holds for αL;T and tL;T in Eq. (22). 

3.2. Poles 

For a homogeneous, isotropic elastic half-space, it is well-known that 
in this case there is one and only one root of the secular equation Δ ¼ 0 
(Achenbach, 1975). This means the integrand of Eq. (15) has only one 
pole which represents the Rayleigh surface wave. However, in a 

half-space made of homogeneous, isotropic, linearly viscoelastic mate
rial, more than one surface wave may exist. It is found that two roots 
(representing two surface waves) of the secular equation (13) which 
satisfy the traction-free boundary condition and radiation condition may 

exist, depending on the material properties and the frequency (Currie 
et al., 1977; Currie and O’Leary, 1978). Fig. 2(a) shows an integration 
contour with only the Rayleigh type pole. For the parameters used in 
Fig. 2(b), two poles, related to two surface waves exist. The surface wave 
whose characteristics are close to the classical Rayleigh wave of the 
corresponding elastic body is termed as the “quasi-elastic wave” (pole 
kqe

1 in Fig. 2(b)), whereas the other surface wave is called a visco-elastic 
surface wave (pole kve

1 in Fig. 2(b)) in (Currie et al., 1977; Currie and 
O’Leary, 1978). The complete contour integration in Fig. 2(b) must 
include the contributions of both poles kqe

1 and kve
1 . 

3.3. Analytical expression of the equivalent stiffness 

The branch cuts, branch points, poles and integration contours are 
shown in Fig. 2. Since the contributions of integration along the big 
semicircular contour C0 and along the circular contours around the 
branch points are zero (Kononov and Wolfert, 2000), Eq. (16) can be 
solved as 

ZðrÞ¼ 2πi
XN

1

�
~RL

Δ
ðexpðik1rÞ � 1Þ

k1

�

k1¼kpN

�

Z

C1þC2þC3þC4

(24)  

according to the residue theorem, where kpN are the poles derived from 
Eq. (13). 

Substituting Eq. (24) into Eq. (18), the summation in Eq. (18) can be 
elaborated in the same manner as shown in (Metrikine and Popp, 1999). 
The contribution of the poles can be written as: 

Ih� s;s¼
1

2iab
ω2

4π2~μ~c2
T

Z ∞

� ∞

 
sinðak2Þ

k2

X∞

n¼� ∞
expð� iqðωÞnÞðZðndþ bÞ � Zðnd � bÞÞ

!

dk2: (17)   

S ¼
X∞

n¼� ∞
expð� iqðωÞnÞðZðnd þ bÞ � Zðnd � bÞÞ ¼

ZðbÞ � Zð� bÞ þ
X∞

1
fexpð� iqðωÞnÞðZðnd þ bÞ � Zðnd � bÞÞ þ expðiqðωÞnÞðZðb � ndÞ � Zð� nd � bÞÞg

¼ 2ZðbÞ þ
P∞

1
fðexpðiqðωÞnÞ þ expð� iqðωÞnÞÞðZðnd þ bÞ � Zðnd � bÞÞg;

(18)   
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Sp¼ 4πi
�

~RL

dΔ=dk1

expðik1bÞ � 1
k1

�

k1¼kqe
1

þ 2πi
�

~RL

dΔ=dk1

Q
k1

�

k1¼kqe
1

(25)  

if only the quasi-elastic wave exists as illustrated in Fig. 2(a), or 

Sp¼ 4πi
�

~RL

dΔ=dk1

expðik1bÞ � 1
k1

�

k1¼kqe
1

þ 2πi
�

~RL

dΔ=dk1

Q
k1

�

k1¼kqe
1 

þ4πi
�

~RL

dΔ=dk1

expðik1bÞ � 1
k1

�

k1¼kve
1

þ 2πi
�

~RL

dΔ=dk1

Q
k1

�

k1¼kve
1

: (26)  

where 

Q¼
2i sinðk1bÞðcosðqÞ � expðik1dÞÞ

cosðk1dÞ � cosðqÞ
: (27) 

The contribution of branch cuts can be written as follows, taking C1 

as an example: 

SC1 ¼ 2
Z ~tT

∞

�
~RL

Δ
expðik1bÞ � 1

k1

�

dkT
1 þ

Z ~tT

∞

�
~RL

Δ
Q
k1

�

dkT
1 

¼ � 2
Z ∞

~tT

�
~RL

Δ
expðik1bÞ � 1

k1

�

dkT
1 �

Z ∞

~tT

�
~RL

Δ
Q
k1

�

dkT
1 (28)  

where kT
1 is given by Eq. (22) and ~tT is given in Eq. (19). SC2 through SC4 

can be obtained in a similar way. Thus 

S¼ Sp � ðSC1 þ SC2 þ SC3 þ SC4 Þ (29)  

and 

Ih� s;s¼
1

2iab
ω2

4π2~μ~c2
T

Z ∞

� ∞

�
sinðak2Þ

k2
S
�

dk2: (30) 

The equivalent stiffness is the reciprocal of Eq. (30), namely 

χh� s;sðωÞ¼ ðIh� s;sÞ
� 1
¼

0

@ 1
2iab

ω2

4π2~μ~c2
T

Z ∞

� ∞

�
sinðak2Þ

k2
S
�

dk2

1

A

� 1

: (31) 

Eq. (12) can be reduced to the case of a beam on a visco-elastic half- 
space which was investigated in (Kononov and Wolfert, 2000); in this 
case the equivalent stiffness becomes 

χh� s;bðk1;ωÞ¼

0

@ � ω2

2π~μ~c2
T

Z ∞

� ∞

~RL

Δ
sinðabeamk2Þ

abeamk2
dk2

1

A

� 1

: (32) 

In Eq. (32) abeam is the width of the beam on the half-space. The 
above equation can be evaluated using the same contour integration 
technique presented to evaluate Eq. (12) previously. Eq. (32) is the same 
as obtained in (Kononov and Wolfert, 2000). However, the contribution 
of the possible extra pole (the visco-elastic surface wave) is not discussed 
in (Kononov and Wolfert, 2000). 

4. Verification of the solution and the contribution of the visco- 
elastic surface wave 

In this section, the derived expression is verified by comparison with 
both the analytical expression for the elastic half-space case and the 
results from direct numerical integration of the latter. The importance of 
the contribution of the visco-elastic wave is addressed. The following 
soil parameters are adopted from (Vostroukhov and Metrikine, 2003): 

μ¼ 2:6� 107N
�

m2; ρ ¼ 1960kg
�

m3; ν ¼ 0:3 (33) 

Fig. 4. (a) Equivalent stiffness of a visco-elastic half-space to periodically supported beam with small viscosity using Eq. (31), (b) Equivalent stiffness of an elastic 
half-space to periodically supported beam according to (Metrikine and Popp, 1999). 

Fig. 3. Equivalent stiffness of a beam directly on a half-space.  
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for the numerical evaluations. For simplicity, μ�=μ ¼ λ�=λ ¼ κ is 
assumed hereafter. However, the above-obtained expressions for χh� s;s 

and χh� s;b are also valid for the case μ�=μ 6¼ λ�=λ. 

4.1. Half-space with relatively small viscosity 

To show the validity of the expressions obtained in this paper for a 
visco-elastic half-space, the results are compared to those of the elastic 
half-space case. Firstly, the case of a half-space interacting directly 
(without the supports) with a beam is considered. The width of the beam 
is assumed to be 3.2 m, namely abeam ¼ 3:2 in Eq. (32). In Fig. 3 the 
result computed from Eq. (32) with a small viscosity (κ ¼ 1� 10� 7 s) is 
compared to that from (Dieterman and Metrikine, 1996) for an elastic 
half-space. The parameter vph is the phase velocity in x direction and is 
defined as vph ¼ ω=k1. It can be seen that the results agree with each 
other perfectly. 

In Fig. 4 the case of a periodically supported beam (Fig. 1) is 
considered. The soil parameters are according to Eq. (33) whereas the 
geometry of the sleepers is defined according to (Vostroukhov and 
Metrikine, 2003): 

2a¼ 2:7m; d ¼ 0:6m; 2b ¼ 0:27m: (34) 

In Fig. 4(a) the equivalent stiffness of a visco-elastic half-space for a 
constant phase shift q ¼ 1:0 is calculated considering a small viscosity 
(κ ¼ 1� 10� 7 s) using Eq. (31). For frequencies smaller than ω ¼ qcR=d, 
the imaginary part of the equivalent stiffness is zero because no waves 
are generated (Metrikine and Popp, 1999). At the frequencies where the 
equivalent stiffness equals to zero, the frequency satisfies 
ωd=cR ¼ jqðωÞþ2πnj where n is an integer (Metrikine and Popp, 1999). 
The result is compared with Fig. 4(b) in which the equivalent stiffness of 
an elastic half-space is evaluated based on the expression obtained in 
(Metrikine and Popp, 1999) using the same parameters of the soil and 
sleepers. Once again there is a perfect match between the slightly 
viscous half-space and the elastic half-space cases. The comparisons in 
Figs. 3 and 4 conform the validity of expressions obtained in this work 
for the equivalent stiffness. 

4.2. Half-space with relatively large viscosity 

When a relatively large viscosity is considered for the half-space, an 
extra root of the secular equation Δ ¼ 0 may appear for certain pa
rameters, meaning an extra pole of Eq. (15). Physically this implies the 
existence of an extra visco-elastic surface wave in the half-space caused 
by the viscosity. Some discussions on the existence of an extra wave can 

Fig. 5. Comparison of equivalent stiffness obtained using contour integration and numerical integration for a beam directly on a visco-elastic half-space for κ ¼ 1�
10� 2 s: (a) Contour integration without the extra pole, (b) Contour integration with the extra pole after βT > βcr

T . 

Fig. 6. Equivalent stiffness of a periodically supported beam on visco-elastic half-space: (a) κ ¼ 1� 10� 4 s, (b) κ ¼ 1� 10� 3 s.  

Table 1 
The first critical frequency ω1 versus damping ratio.  

κ k2  

0.1 5 10 30 

1� 10� 5 s  1206.88 Hz 1206.88 Hz 1206.88 Hz 1206.88 Hz 

1� 10� 4 s  120.69 Hz 120.69 Hz 120.69 Hz 120.69 Hz 

5� 10� 4 s  24.14 Hz 24.14 Hz 24.14 Hz 24.14 Hz 

1� 10� 3 s  12.07 Hz 12.07 Hz 12.07 Hz 12.07 Hz  

T. Lu et al.                                                                                                                                                                                                                                       



European Journal of Mechanics / A Solids 84 (2020) 104065

7

be found in (Currie et al., 1977; Currie and O’Leary, 1978; Carcione, 
1992; Romeo, 2001; Chiriţ�a et al., 2014; Sharma, 2019). In this sub
section the contribution of this second wave to the equivalent stiffness is 
analysed. 

4.2.1. Beam on a visco-elastic half-space 
In Fig. 5(a) the equivalent stiffness obtained from contour integra

tion with only the quasi-elastic wave (the conventional Rayleigh type) 
considered is compared to that obtained from direct numerical inte
gration for relatively large viscosity. It is found that at a certain value of 
βcr

T , a discontinuity of the stiffness occurs. This discontinuity indicates 
that a visco-elastic wave appears after βcr

T . Using Cauchy’s argument 
principle (Ying and Katz, 1988), two roots (equivalently two poles of the 
integrand in Eq. (32)) can be obtained from the secular equation (13) for 
βT > βcr

T . Results from contour integration with both poles included for 
βT > βcr

T and from direct numerical integration of the expression are 
shown to match completely in Fig. 5(b). 

4.2.2. Periodically supported beam on a visco-elastic half-space 
In Fig. 6(a), the equivalent stiffness of a visco-elastic half-space to a 

periodically supported beam is computed with and without the extra 
pole which appears after a critical frequency ω1, for damping ratio κ ¼
1� 10� 4 s. Similar to the case of a continuous beam on a half-space 
shown in Fig. 5, the omission of the extra wave leads to discontinuity 
of the equivalent stiffness and erroneous results after the critical 

frequency ω1. However, when damping is increased, there may be an 
upper limit-frequency for two poles as shown in Fig. 6(b). In Fig. 6(b), 
the absolute values of the equivalent stiffnesses are shown using a log
arithmic scale for κ ¼ 1� 10� 3 s. Two waves can be observed to exist in 
the frequency range ω1 < ω < ω2. 

Figs. 5 and 6 demonstrate the importance of taking into account the 
extra visco-elastic wave for the evaluation of the equivalent stiffness and 
eventually the prediction of the dynamic response to a stationary/ 
moving load. The contribution of this second surface wave can be 
relatively significant with respect to the first type as found in (O’Leary, 
1988; O’Leary, 1989) where the forced vibration of a semi-infinite 
viscoelastic medium due to an oscillating load applied at the free sur
face is investigated. 

4.3. Advantages of the proposed analytical method 

The proposed analytical method provides an exact expression for 
evaluating the equivalent stiffness. It has been shown in Fig. (5) that the 
prediction on the basis of the analytical method matches that from nu
merical integration for a beam on half-space. The agreement of the re
sults confirms the correctness of the contour integration procedure 
presented in this paper. For the case of a periodically supported beam on 
a visco-elastic half-space, direct numerical integration requires a trun
cation of the number of supports. A relatively large number of sleepers is 
required to obtain a convergent result. Furthermore, the number of 

Fig. 7. Transition of the number of poles around ω1 for κ ¼ 1� 10� 3 s.  

Fig. 8. Transition of the number of poles around ω2 for κ ¼ 1� 10� 3 s.  
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supports needed is different for different frequencies. In summary, on 
one hand, the proposed analytical method gives an exact solution 
without any truncation. On the other hand, it is far more computa
tionally efficient than the direct numerical integration. 

5. The frequency range for two surface waves to exist in a visco- 
elastic half-space 

In (Currie et al., 1977; Carcione, 1992) it is stated that the second 
surface wave exists for certain values of the material parameters as well 
as a given range of frequencies. In this section a way is presented to 
determine such frequency range for two waves to exist for specific pa
rameters. Before proceeding, one important observation can be made 
from Fig. 6. To obtain the equivalent stiffness from Eq. (12), integration 
of k2 should be carried out. The poles shown in Fig. 2 depend on both k2 
and the frequency ω. For different k2, the poles are different. One may 
expect that for different k2, a different critical frequency may exist 
which corresponds to appearance of the second surface wave. However, 
from Fig. 6 it is shown that there is one discontinuity, thus one critical 
frequency for all the k2. To examine the dependence of the critical fre
quency on the wavenumber k2, the critical frequency ω1 is calculated for 
various damping values and k2 shown in Table 1. Since the convergence 
over k2 is relatively fast, the calculation is only performed till k2 ¼ 30. It 
can be confirmed that the critical frequency is independent of k2. 
Interestingly, the change of the critical frequency is proportional to that 
of the damping ratio. For typical values of soil damping, the frequency 
beyond which the extra visco-elastic surface wave exists may range from 
approximately 10 to 1000 Hz, as shown in Table 1. The extra surface 
wave therefore may be also of practical relevance, since this frequency 
range overlaps the typical frequency interval in which ground-borne 
vibration (1–80 Hz) and ground-borne noise (16–250 Hz) are of 
importance. 

5.1. Determination of critical frequencies governing the number of surface 
wave 

It is always possible to determine the critical frequencies by exam
ining the positions of the discontinuities of the equivalent stiffness 
calculated including one pole (the quasi-elastic wave). Hereafter a sys
tematic way is presented of the determination of the critical frequencies 
and therefore the frequency range in which two waves exist. First, the 
roots of Eq. (13) are analysed. Since the critical frequency is indepen
dent of k2, hereafter k2 ¼ 0:1 is chosen for the following calculations and 
the parameters of the half-space are given by Eq. (33). To solve for the 
roots of Eq. (13), normally Δ ¼ 0 is rewritten to 
�
2
�
k2

1 þ k2
2

�
� ω2�~c2

T

�2
¼ 4~RL ~RT

�
k2

1 þ k2
2

�
(35)  

and rationalized into a cubic equation with respect to k2
1 by squaring 

both the left and right sides of Eq. (35). Using the Cardano’s formula, 
three roots are obtained for k2

1 of Eq. (35). Taking the square root of k2
1, 

at least two roots are found in the first quadrant of the complex k1 plane. 
It needs to be examined which ones of those are the admissible roots 
which satisfy the traction-free boundary condition and the radiation 
condition altogether. 

From Fig. 6(b) it is known that ω1 ¼ 12:07 Hz and ω2 ¼ 517:80 Hz. 
In Fig. 7 the branch cuts, the branch points and the roots of the secular 
equation Δ ¼ 0 derived using the Cardano’s formula in the first quad
rant of the complex k1 plane are plotted for a frequency ω < ω1 ¼ 12:07 
(the ω < ω1 surface) and another frequency ω1 ¼ 12:07 < ω < ω2 ¼

517:80 (the ω1 < ω < ω2 surface). It can be seen that on the ω < ω1 
surface, there is only one pole representing the quasi-elastic wave. A 
spurious pole is located on the right-hand side of the branch cut for shear 
wave. However, on the surface on which ω1 < ω < ω2, the pole of the 
quasi-elastic wave is still present, whereas the spurious pole crosses the 
branch cut for the shear wave and is now located in between the two 
branch cuts. The spurious pole becomes a pole for ω1 < ω < ω2. To track 
this extra pole with increasing frequency, Fig. 8 shows the branch cuts, 
the branch points and the poles for a frequency on the ω1 < ω < ω2 
surface and a frequency on the ω2 < ω surface. Consistent with Fig. 6(a), 
a pole related to a visco-elastic surface wave exists in between the 
branch cuts for the P and S waves for ω1 < ω < ω2. In contrast, when 
ω2 < ω, the visco-elastic pole crosses the branch cut for the P wave and 
becomes a spurious pole again. Therefore, it can be assumed that the 
first critical frequency ω1 is the frequency at which the pole for the 
visco-elastic wave is located on the branch cut for the S wave whereas 
the second critical frequency ω2 is the one at which the pole for the 
visco-elastic wave is on the branch cut for the P wave. This observation 
is confirmed by investigating the branch line integrals SC2 and SC4 in Eq. 
(29). The branch integral SC2 at ω1 has a discontinuity which indicates a 
pole on the path of integration C2. Therefore, this pole and ω1 satisfies 

Re
�
Δ
�
k1 ¼ kT

1

��
¼ 0;

Im
�
Δ
�
k1 ¼ kT

1

��
¼ 0:

(36) 

After substituting Eqs. 22 and 23 into Eq. (36), ω1 and the pole itself 
can be obtained for a specific value of k2. 

On the other hand, the extra pole may disappear after another fre
quency ω2, and the critical point of disappearance is when the extra pole 
kp

1 is located on the branch C4. Therefore, ω2 and the pole satisfy 

Re
�
Δ
�
k1 ¼ kL

1

��
¼ 0;

Im
�
Δ
�
k1 ¼ kL

1

��
¼ 0:

(37) 

Eqs. (36) and (37) together determine the frequency range in which 
two surface waves exist for visco-elastic half-space of the Kelvin-Voigt 
type. 

Fig. 9. The critical frequencies versus Poisson’s ratio: (a) κ ¼ 1� 10� 4 s, (b) κ ¼ 1� 10� 3 s.  
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5.2. Dependence of critical frequencies on Poisson’s ratio and damping 

It is of interest to investigate the dependence of the critical fre
quencies on the Poisson’s ratio. A threshold of the Poisson’s ratio ν� ¼
0:2631 is given in (O’Leary, 1981) and it is concluded that for all ν < ν�
there is one and only one surface wave and for all ν > ν� there may be 
more than one surface wave for certain parameter combinations and 
frequency range. Therefore, critical frequencies, i.e. the boundaries 
which determine the number of poles (waves) are plotted versus the 
Poisson’s ratio in Fig. 9 starting from ν ¼ 0:27. It can be concluded that 
the critical frequency is increasing with higher Poisson’s ratio. In Fig. 9 
(a) only ω1 is plotted. The reason is that for relatively small viscosity, the 
second critical frequency ω2 is large. For example, for ν ¼ 0:27, the 
second critical frequency ω2 is about 5178 Hz. The second critical fre
quency ω2 is even higher for ν > 0:27 which is of no interest for 
train-induced ground vibration and furthermore the Euler-Bernoulli 
description of the rail is no longer valid for such high frequencies. In 
Fig. 9(b) both ω1 and ω2 are plotted for a higher damping ratio. It is 
found that both the two critical frequencies become larger for increasing 
Poisson’s ratio. However, ω2 increases much faster than ω1. By 
comparing Fig. 9(a) and (b), it can be seen that larger damping ratio 
lowers the critical frequencies. 

6. Conclusions 

In this paper the equivalent stiffness of a visco-elastic half-space to a 
periodically supported beam under a moving load, as a model for train- 
track interaction, is investigated. A uniform expression is obtained for 
the entire velocity range of the moving load regardless of the ratio be
tween the load speed and the wave speeds of the half-space. The 
equivalent stiffness is evaluated analytically by means of the contour 
integration method and residue theorem. It is found that, apart from the 
Rayleigh type surface wave, a second surface wave exists in a certain 
frequency range due to the viscosity of the half-space for typical pa
rameters of the subsoil. The contribution of this second surface wave 
cannot be ignored. An effective method to determine the frequency 
range in which the visco-elastic wave exists is proposed. It is concluded 
that the critical frequencies for the occurrence of multiple surface waves 
are the ones at which a second pole of the integrand of the equivalent 
stiffness is located on one of the EJP branch cuts. The dependences of the 
related frequency range on the viscosity and Poisson’s ratio are inves
tigated. The critical frequencies increase with larger Possion’s ratio 
whereas they decrease for highly viscous materials. 
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