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A B S T R A C T   

The tremendous progress in sequencing technologies has made DNA sequencing routine for microbiome studies. 
Additionally, advances in mass spectrometric techniques have extended conventional proteomics into the field of 
microbial ecology. However, systematic studies that provide a better understanding of the complementary nature 
of these ’omics’ approaches, particularly for complex environments such as wastewater treatment sludge, are 
urgently needed. 

Here, we describe a comparative metaomics study on aerobic granular sludge from three different wastewater 
treatment plants. For this, we employed metaproteomics, whole metagenome, and 16S rRNA amplicon 
sequencing to study the same granule material with uniform size. We furthermore compare the taxonomic 
profiles using the Genome Taxonomy Database (GTDB) to enhance the comparability between the different 
approaches. Though the major taxonomies were consistently identified in the different aerobic granular sludge 
samples, the taxonomic composition obtained by the different omics techniques varied significantly at the lower 
taxonomic levels, which impacts the interpretation of the nutrient removal processes. Nevertheless, as demon
strated by metaproteomics, the genera that were consistently identified in all techniques cover the majority of the 
protein biomass. The established metaomics data and the contig classification pipeline are publicly available, 
which provides a valuable resource for further studies on metabolic processes in aerobic granular sludge.   

1. Introduction 

Microbial communities play a central role in the global biogeo
chemical cycles, and their close association with humans has a direct 
impact on health and disease (Cho and Blaser, 2012; Falkowski et al., 
2008; Integrative et al., 2019; Rousk and Bengtson, 2014; Turnbaugh 
et al., 2007). Moreover, microbial communities are increasingly used in 
biotechnology and engineering. For example, microbes are employed to 
degrade and remove pollutants from wastewater and soils, or microbes 

produce novel materials, greener chemicals, or energy to support a more 
sustainable society (Angenent et al., 2004; Balcom et al., 2016; Lovley, 
2017; Rabaey and Verstraete, 2005; Tawalbeh et al., 2020; Temudo 
et al., 2008). Of more recent interest are also synthetic and engineered 
microbial communities. However, the complex nature of microbial in
teractions hampers efforts to engineer specific functions into such con
sortia (Kehe et al., 2019; Lawson, 2021). Therefore, systems biology 
approaches that provide molecular-level information from complex 
microbial communities become increasingly important in biotechnology 
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and microbial ecology. 
The emergence of next-generation sequencing (NGS) technologies 

finally enabled large-scale genomic studies of microbial communities 
directly from their natural environments. The simplest of these ap
proaches is 16S rRNA gene sequencing. 16S rRNA genes are highly 
conserved between different bacteria and archaea and, thus, are widely 
used to perform taxonomic profiling of environmental communities (Ali 
et al., 2019; de Sousa Rollemberg et al., 2019; Ramos et al., 2015; Wu 
et al., 2019; Zhang et al., 2012; Zhou and Sun, 2020). However, this 
approach suffers from variable 16S rRNA gene copy numbers (Louca 
et al., 2018; Starke et al., 2021; Stoddard et al., 2015) and primer effi
ciencies across microbes (Albertsen et al., 2015; Brown et al., 2015). 
Furthermore, metabolic functions are only inferred from prior taxo
nomic knowledge and, thus, remain purely predictive (Kyte and Doo
little, 1982; Morrissey et al., 2016). Alternatively, whole metagenome 
sequencing (commonly referred to as metagenomics) aims to sequence 
the genomes of all community members. Following assembly and 
binning into metagenome-assembled genomes (MAGs), the genomes can 
achieve strain-level resolution and provide the metabolic potential of 
individual community members (Jansson and Hofmockel, 2018; Ranjan 
et al., 2016; Rubio-Rincón et al., 2019). However, the sequences ob
tained through metagenomic sequencing may not only encompass the 
active microbial population, but may also cover free DNA and DNA from 
dead and dormant microbes (Quince et al., 2017). Advancements in RNA 
sequencing moreover enabled to measure the actively expressed genes 
in microbial communities. This approach, known as metatran
scriptomics, however still faces challenges, such as obtaining 
high-quality RNA from biological samples and the short lifespan of 
mRNA, which hinders the detection of rapid or short-lived responses 
(Bashiardes et al., 2016). Advances in high-resolution mass spectrom
etry and the increased ease of constructing proteome sequence data
bases furthermore enabled deep metaproteomic studies on complete 
microbial communities (Hagen et al., 2017; Heyer et al., 2015; Kleiner 
et al., 2017; Muth et al., 2018; Püttker et al., 2015; Wilmes et al., 2015, 
2008; Zorz et al., 2019). Most importantly, because metaproteomics 
measures the gene products (i.e., proteins), it provides a complementary 
view on the microbial community. The microbial composition obtained 
by metaproteomics correlates to the amount of protein biomass pro
duced per microbe (Kleikamp et al., 2021; Kleiner et al., 2017). There
fore, metaproteomic data resemble more closely the metabolic capacity 
of individual community members (Blakeley-Ruiz et al., 2019; Kleiner, 
2019; Salvato et al., 2021). Moreover, metaproteomics allows to mea
sure regulatory events such as protein modifications, which cannot be 
obtained from genomic information alone (den Ridder et al., 2020; Li 
et al., 2014). However, in contrast to DNA, proteins cannot be amplified 
prior to analysis, and peptide sequencing is performed consecutively (or 
only at low multiplexing level) rather than in parallel. Therefore, the 
depth of information that can be obtained by metaproteomics depends 
on the taxonomic complexity and the mass spectrometric effort taken to 
sequence the sample (Hagen et al., 2017; Narayanasamy et al., 2015; 
Wilmes et al., 2015). The dependency of metaproteomic performance on 
community complexity has been investigated more in detail by Loh
mann and co-workers also only recently (Lohmann et al., 2020). Infor
mation obtained from DNA and rRNA-based experiments, have often 
been found to contradict staining experiments or measured metabolic 
conversions (Azizan et al., 2020; de Sousa Rollemberg et al., 2019; 
Welles et al., 2015). This highlights the importance of employing 
additional (complementary) approaches–such as metaproteomics–when 
characterizing microbial communities. 

Nevertheless, the lack of standardization within the omics field 
makes comparison of different experiments challenging, even if studies 
used the same omics approach (Balvočiūtė and Huson, 2017; Sczyrba 
et al., 2017; Van Den Bossche et al., 2021). For example, metagenomics 
experiments are commonly employed to construct protein sequence 
databases for metaproteomics studies to enable deep sequence coverage 
and high taxonomic and functional resolution. A comprehensive 

taxonomic classification of the metagenomic data, however, relies on 
accurate and complete reference sequence databases. Consequently, a 
potential source of large variation and inaccuracy already derives from 
the reference databases used to taxonomically classify the metagenomic 
sequences. Different reference databases vary substantially in taxonomic 
coverage, sequence content, and the nomenclature and employed phy
logenies. Modern phylogenetic placement tools use a range of methods 
such as 16S similarity, average amino acid identity and average nucle
otide identity (Konstantinidis and Tiedje, 2005; Yarza et al., 2014). The 
NCBI taxonomy, which is used for RefSeq and UniProtKB, employs a 
mixture of historical taxonomies and modern placement methods and it 
lacks a rank normalization. This results in lineages with gaps in taxo
nomic annotations (further referred to as ‘gapped lineages’) (Federhen, 
2012; Schoch et al., 2020). In addition, NCBI taxonomies contain clus
ters that group uncultured organisms (further referred to as ‘dump taxa’) 
(Hugenholtz et al., 2016). Thus, the NCBI taxonomy is often not 
consistent with respect to true evolutionary relationships. Many taxa 
circumscribe polyphyletic groupings and there is an uneven application 
of ranks across the phylogenetic tree (Abbott and Janda, 2006; McDo
nald et al., 2012; Parks et al., 2018). Standardized reference sequence 
databases with accurate taxonomies are therefore of utmost importance 
for accurately describing microbial diversity, enabling comparison be
tween experiments, and communicating scientific data (Godfray, 2002; 
Parks et al., 2018). The recently established genome taxonomy database 
(GTDB) addresses these issues by using a set of conserved proteins and 
employing a placement method that normalizes taxonomic ranks based 
on relative evolutionary divergence (Chaumeil et al., 2020; Parks et al., 
2020, Parks et al., 2022; 2018). The GTDB taxonomy offers an objective, 
phylogenetically-consistent classification of prokaryotic species, and 
therefore enables a more accurate description of the taxonomic and 
metabolic diversity of a microbial community (Parks et al., 2018). The 
Genome Taxonomy Database Toolkit (GTDB-Tk) supports the classifi
cation of draft bacterial and archaeal genomes (Chaumeil et al., 2020). 
However, GTDB-Tk was developed for genome assemblies or 
metagenome-assembled genomes constructed by clustering related 
contigs into bins (Lin et al., 2021; Sedlar et al., 2017). The binning 
procedure, however, leaves a substantial fraction of unbinned sequences 
for complex metagenomes (Sczyrba et al., 2017). Consequently, 
assembled genomes often provide a substantially less complete sequence 
reference database compared to the alternative reads- or contig-based 
databases (Chen et al., 2020; Jouffret et al., 2021; May et al., 2016; 
Olson et al., 2019; Tanca et al., 2016), which is a major limitation for 
metaproteomic studies. For that reason, database construction and 
taxonomic classification have been frequently performed on contigs or 
scaffolds, e.g. as demonstrated by the contig annotation tool (CAT) (von 
Meijenfeldt et al., 2019). 

From the many applications in industrial biotechnology, microbial 
water treatment is perhaps one of the fastest-growing areas. For 
example, the activated sludge process is the most widely employed 
biological wastewater treatment process to purify wastewater in devel
oped areas (Orhon et al., 2009; van Loosdrecht and Brdjanovic, 2014). 
Large-scale 16S rRNA sequencing efforts on activated sludge established 
the wastewater microbiome specific database termed ‘MiDAS’ (Micro
bial Database for Activated Sludge). The consortium created a global 
map of microbes present in activated sludge systems, with the aim of 
linking organisms to nutrient-removal functions [38–40]. An advance
ment of this process – known as aerobic granular sludge (AGS) tech
nology – has the advantage of operating with reduced space and energy 
requirements (de Sousa Rollemberg et al., 2019; Pronk et al., 2015; 
Świątczak and Cydzik-Kwiatkowska, 2018). In AGS, the microbes form 
dense granules following the production of extracellular polymeric 
substances (Adav et al., 2009; Liang et al., 2019; Panchavinin et al., 
2019). Consequently, the granules allow a higher settling speed and 
biomass density. In microbial wastewater treatment, several synergistic 
roles for nutrient removal have been identified that include 
polyphosphate-accumulating organisms (PAO), glycogen-accumulating 
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organisms (GAO), nitrite-oxidizing bacteria (NOB), ammonia-oxidizing 
bacteria (AOB), and nitrate reducers (NR) (Szabó et al., 2017; Weiss
brodt et al., 2013, 2014). Although microbial wastewater treatment has 
a long history, the exact molecular-level processes and the organisms 
that are involved in nutrient removal are still poorly understood (Ali 
et al., 2019; Leventhal et al., 2018). Therefore, determining the taxo
nomic composition of the core microbiome and the expressed metabolic 
functions are important in optimizing purification processes and 
developing advanced purification strategies. 

Here, we provide the first comparative metaomics study on aerobic 
granular sludge microbiome, which was sampled from three different 
wastewater treatment plants. We systematically compare the taxonomic 
and metabolic profiles obtained by the different omics approaches as 
well as reference sequence databases. The established data demonstrate 
the different perspectives that can be obtained on the aerobic granular 
sludge microbiome, which provides a valuable resource for future 
studies on the nutrient removal processes. 

2. Materials and methods 

2.1. Sampling of aerobic granular sludge 

Aerobic granular sludge (AGS) was collected from three different 
full-scale AGS wastewater treatment plants in the Netherlands: Dinx
perlo (DX, plant 1), Garmerwolde (GW, plant 2) and Simpelveld (SP, 
plant 3). Each plant performed stable operation with simultaneous 
denitrification and phosphorus removal. AGS granules were sieved to 
select a size fraction with a diameter of approximately 2.0 mm. Granules 
were stored at − 80 ◦C until further processed 

2.2. Protein extraction and proteolytic digestion 

The collected granules were freeze-dried and ground with a mortar 
and pestle. Two hundred milligrams of acid washed glass beads 
(150–212 μm) and 350 μL of both TEAB and B-PER buffer were added to 
approximately 5 mg starting material. Bead beating was performed for 
20 s (× 3) with a 30 s pause between cycles. Samples were centrifuged 
and freeze/thaw cycles (× 3) were performed by freezing the sample at 
− 80 ◦C and subsequently thawing at 95 ◦C in a water bath. The samples 
were centrifuged, and the supernatant was collected. Protein precipi
tation was performed by adding TCA at a ratio of TCA to supernatant of 
1:4. The samples were incubated at 4 ◦C for 10 min. and then centrifuged 
at 14,000 r.p.m. for 5 min. The pellets were washed with 200 μL ice-cold 
acetone. The protein pellets were reconstituted in 250 µL 6 M urea and 
the protein extracts were then reduced with 10 mM dithiothreitol (DTT) 
for 60 min. at 37 ◦C. Next, the samples were alkylated with 20 mM 
iodoacetamide (IAA) and incubated in the dark at room temperature for 
30 min. Thereafter, the samples were diluted with 200 mM ammonium 
bicarbonate (AmBiC) to <1 M urea. Finally, sequencing-grade trypsin 
was added (Promega) at an approximate enzyme to protein ratio of 1:50 
and incubated at 37 ◦C overnight. The obtained peptides were purified 
by solid-phase extraction using Oasis HLB solid-phase extraction well 
plates (Waters) according to the protocol provided by the manufacturer. 
Purified peptide fractions were then dried in a SpeedVac concentrator, 
reconstituted in aqueous 0.1 % TFA and separated (according to the 
instructions supplied by the manufacturer) into 8 fractions using the 
Pierce high pH reversed-phase fractionation kit (Thermo Scientific). For 
plants 2 (DX) and 3 (GW) the fractions 2 + 6, 3 + 7, 4 + 8 were com
bined. The obtained samples were dried in a SpeedVac concentrator and 
dissolved in water containing 3 % acetonitrile and 0.1 % formic acid, 
resulting in 8 fractions for plant 1 (DX), 4 fractions for plant 2 (GW) and 
3 (SP). The approximate concentration of the protein digest was deter
mined using a NanoDrop micro-volume spectrophotometer. 

2.3. Shotgun metaproteomic analysis 

Briefly, the prepared fractions were analyzed by injecting approx. 
300 ng proteolytic digest using a one-dimensional shotgun proteomic 
approach on a nano-liquid-chromatography system consisting of an 
EASY nano-LC 1200 equipped with an Acclaim PepMap RSLC RP C18 
separation column (50 μm × 150 mm, 2 μm and 100 Å) coupled to a QE 
Plus Orbitrap mass spectrometer (Thermo Scientific, Germany). The 
flow rate was maintained at 350 nL/min using as solvent A water con
taining 0.1 % formic acid, and as solvent B 80 % acetonitrile in water 
and 0.1 % formic acid. The Orbitrap was operated in data-dependent 
acquisition mode acquiring peptide signals at 70 K resolution and a 
max IT of 100 ms, where the top 10 precursor ions were isolated by a 2.0 
m/z window with an 0.1 m/z isolation offset, and fragmented at an NCE 
of 28. The AGC target was set to 2e5 at a max. IT of 75 ms and 17.5 K 
resolution. Mass peaks with unassigned charge state, singly, 7 and >7, 
were excluded from fragmentation. For the prepared fractions from 
plants 2 (GW) and 3 (SP) analysis in duplicates was performed using a 
linear gradient from 5 % to 28 % solvent B for 115 min and finally to 55 
% B for additional 60 min. The individual fractions obtained from plant 
1 were analysed by single injections using a short linear gradient from 6 
% to 26 % solvent B for 45 min and finally to 50 % B over additional 10 
min. 

2.4. Processing of metaproteomic raw data 

Mass spectrometric raw data (obtained from the fractions of each 
plant) were combined and analysed using PEAKS StudioX (Bioinfor
matics Solutions Inc., Canada) by either database searching against the 
metagenomic-constructed databases from predicted ORFs, or by de novo 
sequencing as quality control and to estimate the percentage of 
eukaryotic sequences (Kleikamp et al., 2021; Pabst et al., 2021). 
Redundant sequences in the constructed databases were removed by 
employing a local installation of CD-HIT, by clustering ORFs at 100 % 
identity (Li and Godzik, 2006). Database searching was performed by 
including cRAP protein sequences (https://www.thegpm.org/crap/), 
setting carbamidomethylation (C) as fixed and oxidation (M) and dea
midation (N/Q) as variable modifications, allowing up to 2 missed 
cleavages and 2 variable modifications per peptide. Peptide-spectrum 
matches were filtered for 1 % false discovery rate. Protein identifica
tions with ≥2 unique peptides were considered as significant. Taxo
nomic annotation of database-matched peptide sequences was based on 
the taxonomic classification obtained for the contigs (see below for 
taxonomic classification of metagenomics data). Metabolic annotation 
of ORFs using BlastKOALA (Kanehisa et al., 2016) was performed to 
obtain KEGG orthologies. WEBMGA (Wu et al., 2011) was used to 
annotate Clusters of Orthologous Groups (COGs) and protein families, 
PFAMs and the complementary TIGRFAM terms. DIAMOND v2.11 
(Buchfink et al., 2015) was employed to annotate ORFs with UniprotKB 
genes. 

2.5. DNA extraction and sequencing 

DNA extraction was done using a DNeasy UltraClean Microbial Kit 
(Qiagen, Germany). The extracted DNA was quantified with a Qubit 
fluorometer. 16S rRNA gene amplification (by amplifying V3‒V4 re
gions with 341F, 806R primers) and sequencing, and whole meta
genome sequencing was performed on an Illumina NovaSeq platform 
with paired-end reads (Novogene Co. Ltd., China). 

2.6. Processing of 16S rRNA raw sequencing data 

Amplicons were sequenced on an Illumina paired-end platform to 
generate 250 bp paired-end raw reads. Subsequently, FLASH (V1.2.7) 
(Magoč and Salzberg, 2011) was used to merge the paired-end reads into 
raw tags. The raw tags were then subjected to quality filtering, using the 
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Qiime (V1.7.0, http://qiime.org/scripts/split_libraries_fastq.html) 
quality control process (Bokulich et al., 2013; Caporaso et al., 2010). 
Any chimeric sequences present in the clean tags were identified and 
removed using the UCHIME algorithm and the “Gold reference data
base” (Edgar et al., 2011). From cleaned reads amplicon sequence var
iants (ASVs) were selected with Usearchv11 command -unoise3 (Edgar, 
2017). The data were padded with additional samples from each water 
treatment plant to improve ASV selection (data not shown). Taxonomic 
annotation was performed using QIIME2 with trained V3–V4 classifiers 
(Bolyen et al., 2019). 16S rRNA sequences were furthermore annotated 
with GTDB ssu rRNA (small subunit ribosomal RNA) sequences, Midas 
3.7 flASVs, and a SILVA NR99 (v138) pre-trained V3–V4 classifiers 
(Bokulich et al., 2018). 

2.7. Processing of whole metagenome sequencing raw data 

Raw reads were quality checked with FastQC v0.11.7 (https://www. 
bioinformatics.babraham.ac.uk/projects/fastqc/) and low-quality reads 
were trimmed using Trimmomatic v0.39 with the default settings for 
pair-end reads (Bolger et al., 2014). Subsequently, reads were assembled 
with metaSPAdes v3.14.0 using default settings (Nurk et al., 2017). 
Prodigal v2.6.3 was employed to identify open reading frames (ORFs) 
(Hyatt et al., 2010). DIAMOND v2.11 was used to align identified ORFs 
to GTDB r202, UniProtKB (release 2021/03), Swiss-Prot UniRef100, 

UniRef90, UniRef50, and NCBI RefSeq protein and RefSeq protein 
non-redundant release 205 (Buchfink et al., 2015), using parameters 
-fast -top 10 -e 0.001 (and otherwise default parameters). A contig-level 
taxonomic classification was furthermore achieved based on the ‘CAT’ 
approach, as published by von Meijenfeldt et al. (2019). Briefly, the 
taxonomy of each ORF was determined by lowest common ancestor 
analysis of the top Diamond hits followed by constructing a consensus 
lineage for each contig from the classified ORFs. Adjustments compared 
to the original CAT approach were made with the objective to maximize 
genus level annotations of the dominant taxonomies. The LCA param
eter selection was guided by the 16S rRNA amplicon sequencing data. A 
detailed description of the enhanced LCA approach can be found in the 
supplementary information material chapter 1 and SI Figs. 1–4. The 
developed Python codes for preprocessing GTDB sequences for the use 
with Diamond and for performing the ‘protein LCA’ are available via 
https://github.com/hbckleikamp/GTDB2DIAMOND. Python codes for 
reformatting sequences for the use with QIIME are available via: htt 
ps://github.com/hbckleikamp/GTDB2QIIME. The metagenome 
coverage was estimated using Bowtie 2 v2.3.5.1 and QualiMap 2 v2.2.2 
(Langmead and Salzberg, 2012; Okonechnikov et al., 2016) where the 
reads were first mapped to individual scaffolds using Bowtie and the 
obtained BAM file was analysed using QualiMap. The average depth of 
sequencing coverage was determined according to LN/G (L= length of 
read, N = number of reads and G = genome length) (Sims et al., 2014), 

Fig. 1. A. The graph outlines the multi-omics approach used to characterize the aerobic granular sludge microbiome of three wastewater treatment plants. The same 
uniform 2 mm granule material was subjected to (i) metaproteomics (shown in red), (ii) whole metagenome sequencing (shown in blue) and (iii) 16S rRNA amplicon 
sequencing (shown in green). In whole metagenome sequencing, the reads were assembled into contigs, and the identified ORFs were aligned to reference sequence 
databases for taxonomic classification. Shotgun metaproteomics data were analyzed using a database containing the identified ORFs from the metagenomics ex
periments. For 16S rRNA gene sequencing, the amplicon sequencing variants (ASVs) were determined and compared to small subunit ribosomal RNA sequence 
databases for taxonomic classification. Additionally, a range of different reference sequence databases were used for taxonomic classification. The obtained taxo
nomic profiles and nutrient-removal pathways were compared between the different approaches and wastewater treatment plants. Fig. 1B) The scheme outlines the 
contig-based taxonomic classification using various reference sequence database, illustrated for the genome taxonomy database (GTDB). Reference sequences 
(protein reps) were downloaded from https://gtdb.ecogenomic.org/downloads/, merged, and reformatted to be compatible with the sequence aligner Diamond. A 
consensus lineage was determined based on the lowest common ancestor (LCA). Finally, the contig-level lineage was determined by employing a modified version of 
the CAT tool algorithm. 
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which values were summed for the compositional analysis. 

2.8. Filtering of GTDB for species that contain full length 16S rRNA 
sequences 

The ‘normalised’ GTDB protein reference sequence database was 
constructed from organisms which are represented in the ‘GTDB ssu 
reps’ (small-subunit ribosomal RNA database) and that contained ‘full 

length’ 16S rRNA sequences (sequences with >1200 base pairs were 
considered as ‘full length’). The database normalization procedure is 
further outlined in SI-doc Sections 2 and 3. The developed python codes 
for formating the Genome Taxonomy Database for the use with Diamond 
and QIIME are available at: https://github.com/hbckleikamp/GTDB2D 
IAMOND | https://github.com/hbckleikamp/GTDB2QIIME. 

Fig. 2. (A) The Sankey flow diagrams show the impact of different reference sequence databases on taxonomic profiles obtained by metaproteomics, whole met
agenome sequencing, and 16S rRNA amplicon sequencing (from the left to right), using a range of different reference sequence databases for taxonomic classification. 
The Sankey flow diagrams and bar graphs were constructed by combining the annotations obtained from all wastewater treatment plants 1–3. Extended Sankey flow 
diagrams for metaproteomics detailing all main taxonomic ranks are shown in SI Fig. 11. Fig. 2B) The box plots show the genus fraction variation of the top 10 
taxonomies (across all the different reference sequence databases) for metaproteomics, metagenomics and 16S rRNA amplicon sequencing (from left to right). The 
taxonomic abundances shown in the figures was determined by summing the total number of peptide-to-spectrum matches for metaproteomics, the ‘summed average 
depths of sequencing’ for metagenomics, and by using the total ASV counts for 16S rRNA amplicon sequencing. 
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2.9. Taxonomic classification 

Differences in the taxonomic composition due to the use of different 
reference sequence databases were visualized by Sankey flow diagrams. 
Nomenclature differences between GTDB and NCBI, UniprotKB, SILVA 
or MiDAS were eliminated using the auxiliary conversion tables ob
tained from https://data.gtdb.ecogenomic.org/releases/latest/. For 
example, taxonomic names that matched at least 3 out of 4 times, were 
changed to the reported name in GTDB. Furthermore, ‘Candidatus’ 
prefixes and GTDB unique suffixes such as ‘Firmicutes_A’, ‘Firmicu
tes_B’, were removed. Gaps in the taxonomic lineage annotations were 
‘bridged’ using the name of the closest higher taxonomic rank with a 
name. The taxonomic abundance in the graphs was calculated from the 
total ASV counts for 16S amplicon sequencing, the depth of sequencing 
coverage of contigs for metagenomics, and the total number of peptide- 
to-spectrum matches for metaproteomics. The employed conversion 
tables (NCBI and SILVA to GTDB, and vice versa) can be found in the 
supplementary information (SI-Excel-1–3). However, the stringency of 
the original CAT algorithm may result in a lower number of genus-level 
annotations. The algorithm and the parameters were therefore adjusted 
to improve annotations of dominant taxa, while adhering to 16S 
amplicon sequencing experiments (SI-doc chapter 1, SI Figs. 1, 2). The 
taxonomic profiles of the major genera obtained by the original CAT 
approach and the enhanced CAT approach are shown SI Figs. 3, 4. 
Interactive Krona charts for the different wastewater treatment plants 
and the different omics approaches are available via: https://pabstm. 
github.io/Comparative_metaproteomics_kronas/. 

2.10. Shared biomass, diversity, richness and evenness 

The shared biomass (at the genus level) was selected from genera 
that were observed by at least two techniques (=non-unique taxa), and 
which taxa further were present at >3 % abundance (compared to total 
abundance of the non-unique taxa within one technique). Taxa which 
were found to express nutrient-removing genes were included into the 
evaluation regardless their abundance. Diversity, richness, evenness and 
shared biomass were determined after uniformly applying an abundance 
cut-off of 0.1 %. Richness was defined as the number of unique taxa. 
Simpson’s evenness and Shannon’s diversity were calculated using the 
Python functions ‘skbio.diversity.alpha.simpson_e(X)’ and ‘skbio.di
versity.alpha_diversity(’shannon’,X)’ which are part of the skbio Python 
package http://scikit-bio.org. Determination of the abundance of taxa 
was based on total ASV counts for 16S amplicon, summed depth of 
sequencing for metagenomics, and the total number of peptide-to- 
spectrum matches for metaproteomics. Principal coordinate analysis 
(PCoA) of the Bray–curtis dissimilarity matrix to demonstrate variation 
in obtained community composition between OMICs approaches and 
wastewater microbiomes, was performed in python using the function 
skbio.diversity.beta_diversity, and visualised with a scatter plot. The 
clustering was performed at different taxonomic levels using the Omics 
data classified with the filtered GTDB, for taxonomies above a threshold 
of 0.1 % abundance. 

2.11. Functional classification, abundance differences and COG term 
enrichment analysis 

The total abundance was renormalized to a subset of non-unique taxa 

Fig. 3. (A) The bar graphs show the top 10 most abundant genera (when using GTDB for taxonomic classification) obtained by metaproteomics (MP), whole 
metagenome sequencing (MG), and 16S rRNA amplicon sequencing (16S). The lower bar graphs show the same most abundant genera including other genera 
grouped as ‘other’. The Graphs (B) show shared genera between metaproteomics and the DNA-based approaches, represented as the number of shared taxa (upper 
Venn diagrams) or as a fraction of the total shared abundance (lower bar graphs). The graphs consider taxa that were observed by at least two techniques and that 
were present at >3 % abundance, or expressed central nutrient-removing genes. The fraction of genera that were uniformly observed by all three approaches was 
small compared to the total number of identified taxonomies (grey sections in the Venn diagrams). However, based on metaproteomics, those microbes cover the 
majority of the protein biomass (grey bars in the bar graphs, labeled with ’MP’). Graphs C) visualizes the microbial diversity indices, including (i) ’Richness,’ (ii) 
’Simpson’s Evenness,’ and (iii) ’Shannon diversity,’ for the different omics approaches. The data of the individual wastewater treatment plants were averaged. All 
taxonomic profiles in Fig. A, B, and C were obtained using the corrected GTDB (which contains only taxonomies with ’full-length’ 16S reps) for taxonomic 
classification. 
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that showed an abundance of >3 %, or that contained nutrient-removal 
genes. The between technique absolute abundance difference (x − y) and 
percent abundance difference (x − y)/(((x+y))/2) was then determined 
for every genus. Metabolic annotation with KEGG orthologies was per
formed using BlastKOALA (Kanehisa et al., 2016). Moreover, WEBMGA 
was used to annotate Clusters of Orthologous Groups (COGs) and protein 
families (PFAMs and the complementary TIGRFAM terms) (Wu et al., 
2011). DIAMOND v2.11 was used to annotate ORFs with UniprotKB 
genes (Buchfink et al., 2015). The functional analysis and classification 
was performed by integrating KEGG, COG, PFAM, TIGRFAM and Uni
protKB genes (for NXR). Two manually-curated sub-classifications were 
added to the COG system; ‘nitrogen metabolism’ (based on KEGG 
pathways) and ‘porin’ that includes beta-barrel proteins. Between 
method COG term enrichment was determined by comparing PSMs from 
metaproteomic experiments to read counts (‘summed sequencing 
depth’) from metagenomics experiments. 

3. Results 

3.1. A comparative metaomic study on the aerobic granular sludge 
microbiome 

Large-scale omics approaches, such as metaproteomics, meta
genomics or 16S rRNA amplicon sequencing, have been rapidly 
advancing over the past decade. Therefore, efforts have been made in 
comparing and standardizing procedures. For example, this resulted in 
the CAMI study for metagenomics (Sczyrba et al., 2017) and in the 
CAMPI study for metaproteomics (Van Den Bossche et al., 2021). 
Microbiome studies that integrate different types of approaches are 
increasingly employed, which also asks for more studies that systemat
ically investigate the complementary character of metaproteomics and 
DNA-based approaches are urgently needed (Herold et al., 2020; Kleiner 
et al., 2017; Narayanasamy et al., 2015). 

Therefore, we performed a systematic metaomic study on aerobic 
granular sludge from 3 different wastewater treatment plants. Thereby, 

Fig. 4. (A) The heat map shows (key) genera that are present in the aerobic granular sludge microbiome, and which are potentially involved in the central nutrient- 
removal processes that take place during the wastewater treatment. The taxonomic abundances observed in metaproteomics (MP), metagenomics (MG) and 16S 
rRNA amplicon sequencing (16S) are shown in separate columns (from left to the right). The abundances observed in the microbiomes obtained from the different 
treatment plants are shown as individual bars within one cell (top bar = plant 1, middle bar = plant 2 and lower bar = plant 3). Generally, the most dominant genera 
observed in metaproteomics are Ca. Accumulibacter followed by Ca. Competibacter. In metagenomics, the most abundant genera are Nitrospira, Ca. Accumulibacter 
and Azonexus. Nevertheless, for the genomic approaches, taxonomies were generally found more evenly distributed. (B) The heat map details expression levels of 
genes from selected nutrient-removal pathways as observed by metaproteomics. The genes are named on the top of the heat map (PPK = polyphosphate kinase, PPA 
= pyrophosphatase, bglX = beta-glucosidase-like, glg = glycogenin glucosyltransferase, hao = hydroxylamine oxidoreductase, amo = ammonia monooxygenase, nxr 
= nitrite oxidoreductase, nirK = copper-containing nitrite reductase (EC 2.4.1.186), nirS = cytochrome cd1-containing nitrite reductase, nor = nitric oxide reductase, 
nos = nitric oxide synthase, nar = respiratory nitrate reductase, nap = periplasmic nitrate reductase, nir = nitrite reductase genes (converting nitrite to nitric oxide), 
nrf = nitrite reductase (which converts nitrite to ammonium), hzs = hydrazine synthase, hdh = hydrazine dehydrogenase and cyc = cytochrome). The corresponding 
pathways or organisms are indicated below the heat map (PAO = phosphate accumulating organism, GAO = glycogen accumulating organism, AOB = ammonia- 
oxidizing bacteria, NOB = nitrite oxidizing bacteria) (C) The graph depicts the relative percentage differences of genera between metaproteomics and metagenomics, 
represented by bars with a vertical pattern, or between metaproteomics and 16S amplicon sequencing, represented by bars with a diagonal pattern. These differences 
were calculated by subtracting the normalized genus fraction (%) observed in metagenomics or 16S amplicon sequencing from the normalized genus fraction 
observed in metaproteomics (Δ = MP-MG or MP-16S). A positive difference (+Δ) indicates a higher relative fraction coverage of the respective genus in meta
proteomics experiments, compared to genomics-based approaches, while a negative difference (-Δ) suggests the opposite. The same data are shown as log2 fold 
fraction differences in SI Fig. 14. The graphs were generated using the normalized Genome Taxonomy Database (GTDB), which only includes taxonomies that are also 
represented by "full-length" 16S reps. 
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we performed whole metagenome sequencing, metaproteomics and 16S 
rRNA amplicon sequencing on granules with a uniform size of 2 mm. 
However, among the sources that significantly limit the comparability 
between studies and different omics approaches is the existence of 
different reference sequence databases. Content divergences as well as 
inaccurate taxonomies and nomenclatures can profoundly impact the 
taxonomic representation as well as comparability between studies and 
techniques. 

Therefore, we also performed a comparison of the taxonomic profiles 
and metabolic routes obtained from different reference sequence data
bases. Nevertheless, a more broadly applicable database with an accu
rate taxonomy not only allows to more accurately capture the microbial 
diversity, but it also improves the integration of results from different 
omics approaches (Godfray, 2002; Parks et al., 2018). Therefore, 
McDonald et al., established a reference tree that unifies genomic and 
16S rRNA databases into a consistent resource (McDonald et al., 2023). 
Furthermore, the genome taxonomy database (GTDB) uses a set of 
conserved proteins to normalize taxonomic ranks based on relative 
evolutionary divergence. This provides an objective, phylogenetically 
consistent classification of prokaryotes (Chaumeil et al., 2020; Parks 
et al., 2020, Parks et al., 2022, 2018). Advantageously, GTDB can also be 
employed to classify the 16S rRNA amplicon sequencing data because it 
contains small subunit ribosomal RNA sequences (ssu rRNA). Unfortu
nately, approx. 15 % of the representative taxa in GTDB contain 16S 
sequences that are shorter than 1200 base pairs and approximately 30 % 
completely lack corresponding 16S sequences (SI-doc, chapter 2, SI 
Figs. 5–7). 

In order to provide a more broadly applicable database for taxo
nomic classification of metagenomics, metaproteomics and 16S rRNA 
amplicon sequencing data, we established a ‘filtered’ GTDB (SI-doc 
chapter 2), which contained only organisms with full length 16S rRNA 
sequences. The Genome Taxonomy Database Toolkit (GTDB-Tk) allows 
to efficiently classify bacterial and archaeal draft genome assemblies 
(Chaumeil et al., 2020; Lin et al., 2021; Sedlar et al., 2017). However, in 
metagenomics, clustering and binning of contigs into genomes 
commonly results in large unbinned fractions (Chen et al., 2020; Olson 
et al., 2019). This can significantly bias the taxonomic representation 
towards the more abundant organisms in a community. In order to 
provide a more comprehensive sequence database for metaproteomics, 
we performed the taxonomic classification at the contigs-level. A 
consensus lineage for each contig was determined using a modified 
version of the contig annotation tool (CAT) (von Meijenfeldt et al., 
2019). The in house developed Python codes for formating the GTDB 
sequences for the use with DIAMOND and for determining the contig 
lineages are publicly available (see methods section for Github re
pository link). 

Albeit the filtering for species with full length 16S sequences reduced 
the number of organisms in the resulting database, the corrected data
base showed only approx. 5 % less classified reads/PSMs compared to 
the non-corrected database (SI-doc SI Figures S8–10). Therefore, the 
reduced database did not significantly impact the taxonomic coverage of 
the studied aerobic granular sludge microbiome. However, albeit the 
filtering did not impact the coverage in the present study, it may impact 
the coverage in other studies, depending on composition of the 

Fig. 5. (A) The bar graph shows the COG term enrichment analysis of the metaproteomics data. (B) The graphs compare the COG category distributions of abundant 
organisms between metagenomics (upper graph) and metaproteomics (lower graph). (C) The pie charts visualize the proportions of COG categories for selected 
organisms between metaproteomics (MP) and metagenomics (MG). The metagenomics data are represented as the sum of sequencing depths, while the meta
proteomics data are represented by the number of peptide-to-spectrum matches. Graphs A and B display average values from data obtained from the three wastewater 
treatment plants’ microbiomes, while Graph C shows data obtained from the individual treatment plants. 
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microbial community. Furthermore, 16S-based classification follows a 
principle which is also not comparable to the whole metagenome, 
contig-based classification (e.g., Bayesian classifiers are used compared 
to assembled reads and sequence alignment). 

3.2. The impact of reference sequence database divergences on the 
obtained taxonomic profiles 

First, we compared the taxonomic profiles after classifying with 
different reference sequence databases. For metaproteomics and meta
genomics we employed GTDB, RefSeqNR and UniprotKB, and for 16S 
rRNA we employed GTDB, MiDAS and SILVA. Because the different 
databases uses individual nomenclatures, the taxonomic names were 
mapped to GTDB taxonomy (see methods section and SI-DOC). SILVA is 
transitioning from the NCBI to the GTDB-based taxonomy, which 
therefore contains lineages from both in addition to unspecific dump 
taxa. MiDAS is specific to wastewater microbes and uses the AutoTax 
system (Dueholm 2020), which also contains many MiDAS-exclusive 
organisms which taxonomies were assigned based on the 16S rRNA 
genes. 

When investigating the obtained taxonomic profiles for meta
proteomics and metagenomics, GTDB and RefSeqNR provided the 
overall highest taxonomic coverage (Fig. 2A). Nevertheless, all three 
databases provided a comparable relative abundance profile of the main 
taxonomies. However, there was a decreased level of Competibacter 
when using UniprotKB. Furthermore, for every experiment there was a 
substantial fraction of sequences which did not obtain any taxonomic 
classification, and which therefore evades further interpretation. For 
metaproteomics using the GTDB this accounted for less than 5 % at the 
phylum level, and approx. 25 % at the genus level. Moreover, the NCBI- 
based taxonomies (UniprotKB and RefSeqNR) are not rank-normalized 
and hence lack certain taxonomic ranks. For example, both Accumu
libacter and Competibacter are considered as Candidatus taxa without a 
family or order name (Oren 2021, “gapped” entries). Moreover, the 
majority of TrEMBL sequences contain non-curated "dump taxa" of 
indeterminate taxonomic origin, such as unclassified prokaryotic taxa. 
Both accounted for a substantial fraction of the taxonomic profiles ob
tained by metaproteomics and metagenomics. 

For the 16S rRNA sequencing all three reference sequence databases, 
GTDB, MIDAS and SILVA provided nearly the same number of genera. A 
clear difference however was seen for the genus Tetrasphaera, a major 
phosphate accumulating genus. This microbe was abundant when using 
the SILVA and MiDAS database, but it was only poorly annotated when 
using GTDB. Sequence alignment of the Tetrasphaera ASVs to GTDB 
demonstrated that a range of other genera were annotated instead of 
Tetrasphaera (SI-doc, SI Fig. 12, and SI-EXCEL-4). Instead, the Tetra
sphaera sequences provided only unspecific annotations at the family- 
level (Dermatophilaceae). This miss-annotation of Tetrasphaera has 
been also reported previously (Nouioui et al., 2018; Otieno et al., 2022; 
Singleton et al., 2022). This demonstrates the limitations when only 
using V3-V4 16S primers for taxonomic classification. The same was 
observed for the metaproteomics and metagenomics taxonomic profiles, 
where Tetrasphaera annotations were nearly absent. 

Most interestingly, a comparable set of most abundant taxonomies 
was observed in metaproteomics and the DNA-based approaches 
(Fig. 2B). However, the relative fraction of these taxonomies within each 
omics approach was significantly different. The top 10 taxonomies 
accounted for nearly 50 % of the sequences in metaproteomics, but only 
for some 10–15 % in the DNA-based approaches. Furthermore, Com
petibacter showed a considerably large variation in metaproteomics, 
where on the other hand Ca. Competibacter, Azonexus, Rhodobacer and 
Rhodoferax showed large variations in metagenomics. 

3.3. Taxonomic profiles obtained by different omics approaches 

When comparing the taxonomic profiles obtained by the different 

omics approaches we observe differences already at the phylum level 
(Fig. 2A). For example, proteobacteria make the most abundant fraction 
in all the techniques, but their relative fraction is significantly higher in 
the whole metagenome sequencing data compared to the 16S rRNA 
data. Differences are even more pronounced at the genus level. For 
example, Ca. Competibacter, Ca. Accumulibacter and Ca. Nitrotoga are 
very abundant in the metaproteomics data, but are much less prominent 
in DNA-based data. On the other hand, the relative fraction of Nitrospira, 
Tetrasphaera and Rhodoferax is largest in the 16S rRNA sequencing data. 
Furthermore, the V3-V4 primers used in this study could not detect 
Brocadia and Chloroflexota, which are associated with sludge bulking 
(Jiang et al., 2021; Speirs et al., 2019). 

Nevertheless, regardless of these differences, the relative abundance 
profiles of the top 10 taxonomies could be considered surprisingly 
comparable between the different approaches. Also, the relative profile 
of these taxonomies was comparable between the 3 wastewater treat
ment plants (Fig. 3A, upper graph). Nonetheless, the fraction of se
quences that belonged to the top taxonomies (for GTDB) was only in 
metaproteomics close to 50 %, but was significantly lower for the DNA- 
based data (Fig. 3B, lower graph). A large number of low abundant 
taxonomic identification was also apparent by the moderate number of 
taxonomies that were consistently identified by all 3 techniques (Fig. 3B, 
Venn diagrams). On the other hand, the ‘total abundance fraction’ which 
the shared genera covered was comparatively large (Fig. 3B, grey bars, 
lower bar graphs). For example, the genera that were observed by all 
three approaches accounted in metaproteomics for approximately 80 % 
of the total protein abundance (or biomass). 

On the other hand, the fraction that the shared genera covered in 16S 
rRNA sequencing was significantly lower (approx. 30–60 %). Further
more, both metagenomics and 16S amplicon sequencing generally 
showed a larger taxonomic diversity, richness and evenness compared to 
metaproteomics (Fig. 3C). 16S amplicon sequencing, for example, 
identified the largest number of taxonomies at the genus level (approx. 
200). This was not unexpected, because the DNA-based approaches 
utilize amplification steps, and also amplify free genetic material, dead 
and dormant microbial cells. On the other hand, albeit metaproteomics 
appears to have a lower sensitivity and therefore identified the lowest 
number of genera, the shared taxonomies (considering the above 
mentioned thresholds) accounted for a large fraction of the measured 
protein biomass. 

Tables with the obtained abundances for the individual omics ap
proaches and reference sequence databases can be found in the sup
plementary information (SI-EXCEL-5–7). Moreover interactive Krona 
charts for all three approaches classified by GTDB (and individual 
wastewater treatment plants) are available via GitHub: https://pabstm. 
github.io/Comparative_metaproteomics_kronas/ and the supplemen
tary information as excel macro-enabled workbooks (SI-EXCEL-8–16). 
The impact of GTDB database normalization on taxonomic profiles for 
the different omics approaches is shown in SI Figs. 8–10. Extended 
taxonomic profiles obtained for metaproteomics for all ranks and 
additional reference sequence database (UniRef100, UniRef90, Uni
Ref50 and Swiss-Prot) are shown in SI Fig. 11. 

3.4. Expressed nutrient removal pathways across different wastewater 
treatment plants 

Two key processes of nutrient removal in wastewater treatment are 
the elimination of nitrogen and phosphorous. To assess genera involved 
in the conversion of these two core processes we integrated the func
tional annotations obtained from KEGG, COG terms, PFAM, TIGRFAM 
domains and UniprotKB genes (Fig. 4). Interestingly, the functional 
genes covering the nitrogen processes are currently fragmented across 
different databases. For example, Nxr annotation was annotated via 
UniprotKB, Nap by KEGG, and Nar using COG terms. Polyphosphate- 
accumulating organisms (PAO) remove phosphate from the waste
water by producing polyphosphate with the genes ppk (polyphosphate 
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kinase) and ppa (pyrophosphatase). 
Glycogen-accumulating organisms (GAO)–that compete with PAOs 

for short-chain fatty acids–synthesize glycogen using glg (glycogenin 
glucosyltransferase; EC 2.4.1.186) and likely therefore show also high 
expression of bglX (beta-glucosidase like enzymes). Nitrogen removal is 
achieved via subsequent nitrification and denitrification steps that is 
performed by hao (hydroxylamine oxidoreductase) and amo (ammonia 
monooxygenase) genes of ammonia-oxidizing bacteria (AOB) and nxr 
(nitrite oxidoreductase) of nitrite-oxidizing bacteria (NOB). Denitrifi
cation (DN) is encoded by the gene clusters nar (respiratory nitrate 
reductase) and nap (periplasmic nitrate reductase) to reduce nitrate and 
nirK (copper-containing nitrite reductase) and nirS (cytochrome cd1- 
containing nitrite reductase) to reduce nitrite, while the genes nor (ni
tric oxide reductase), nrf (nitrite reductase) turnover nitric oxide, and 
ultimately, nos (nitric oxide synthase) converts nitrous oxide to dini
trogen gas. Cyc (cytochrome C) is implicated in either the activity of nor 
or nrf. Interestingly, nor proteins were only detected at low levels, which 
supposedly is a consequence of membrane association or of poor data
base annotation accuracy. Furthermore, hzs (hydrazine synthase), hdh 
(hydrazine dehydrogenase) as well as hao (hydroxylamine oxidoreduc
tase) could be detected in one plant, which are part of the anammox 
process such as found in Ca. Brocadia. Interestingly, several of the key 
nutrient-removing genera appeared very low abundant in metagenomics 
and 16S amplicon sequencing data, which was in contrast to the meta
proteomics outcomes. These include genera such as Accumulibacter, 
Competibacter and Propionivibrio (PAO, GAO and DN, respectively), 
Nitrosomonas (AOB) and Nitrotoga (NOB and DN), and Zoogloea (DN). 
Conversely, several other genera, such as Azonexus (PAO and DN) and 
Nitrospira (NOB and DN) showed only a minor difference between the 
orthogonal methods. In addition to Sulfuritalea (PAO and DN), other 
genera were even more prominent in the DNA and rRNA-based ap
proaches. For Ca. Accumulibacter, this observation is in agreement with 
previous studies (Azizan et al., 2020; Barr et al., 2016; Welles et al., 
2017), but for Ca. Competibacter, however, the observed differences 
have not been reported before. Moreover, a recent large-scale genomic 
study showed the widespread presence of genes such as nosZ (nitro
us-oxide reductase) or ppk (polyphosphate kinase), which were detected 
in a large fraction of the MAGs (Singleton et al., 2021). However, ppk for 
example, could be actually observed by metaproteomics in only a few 
genera at significant levels. The search terms (used in this study) to 
extract functional information from the metaproteomics data, as well as 
a complete table detailing protein taxonomic and functional annotations 
for all treatment plants can be found in the supplementary information 
SI-EXCEL documents 17, 18. 

3.5. Classification of the observed metaproteome 

Proteins make up the bulk of most cells, and thus metaproteomics 
can be considered as an estimate of the protein biomass composition of 
microbial communities (Kleikamp et al., 2021; Kleiner et al., 2017). 
However, we sought to investigate whether the observed abundance 
differences of individual taxonomies were also affected by the increased 
detection of specific protein classes. Consequently, we classified the 
identified proteins by their cluster of orthologous groups (COG) and we 
included additional groups such as ’nitrogen metabolism’ and ’porins’. 
Furthermore, each COG-group frequency was then compared between 
proteomics (by considering the number of peptide spectrum matches 
assigned to this group) and metagenomics (by considering the 
sequencing coverage assigned to this group). The groups which were 
found strongly overrepresented in the metaproteomics could be associ
ated with nutrient removal processes (carbohydrate, nitrogen and amino 
acids), growth (translation) and porins. For example, in Accumulibacter 
and Azonexus, porins accounted for 30–40 % of peptide matches, while 
comprising only 5–10 % of the sequencing coverage. This also points to 
the further presence of outer membrane vesicles in these organisms (Lee 
et al., 2008). On the other hand, other membrane proteins had an 

equivalent share in both experiments. However, porins enable the pas
sive transport of a range of molecules, like fatty acids, coenzymes and 
other small inorganic molecules, therefore are expected to be more 
abundant in cell membranes. Furthermore, both Nitrospira and Nitro
toga displayed a strong expression of nitrite oxidoreductase (nxr). 
Competibacter had similar distributions in the metagenomic sequencing 
coverage and peptide spectrum matches, although it is known to have a 
large cell volume. Therefore, abundance differences may result from 
several factors, including over-expression, cell volume, and extraction 
methods (Albertsen et al., 2015; Pronk et al., 2017). 

4. Discussion 

Studies that investigate the complementary nature of meta
proteomics and the DNA-based approaches for complex environments, 
such as wastewater treatment plants, are urgently needed. This study 
presents the first comparative metaomic characterization of the aerobic 
granular sludge microbiome, sampled from three different wastewater 
treatment plants. Thereby, we employed (i) metaproteomics, (ii) whole 
metagenome sequencing, and (iii) 16S rRNA amplicon sequencing to 
uniform granule material (with a size of 2 mm). Additionally, we 
investigated the impact of using different reference sequence databases 
on the taxonomic and functional profiles. Generally, database discrep
ancies can impede a comparison between studies and different omics 
approaches. Therefore, we performed our comparison by focusing on the 
more widely applicable Genome Taxonomy Database (GTDB), which 
uses a phylogenetically consistent classification of prokaryotes and 
which contains small subunit ribosomal RNA sequences (ssu rRNA). 
Although the major taxonomies were consistently identified by all omics 
approaches, the relative fraction of these taxonomies differed 
significantly. 

For example, the relative fraction of Ca. Competibacter, Ca. Accu
mulibacter and Ca. Nitrotoga was very high in the metaproteomics data 
compared to the DNA based approaches. Recent studies already dis
cussed the underrepresentation of Ca. Accumulibacter in DNA-based 
experiments (Azizan et al., 2020; Barr et al., 2016; Kleikamp et al., 
2021; Stokholm-Bjerregaard et al., 2017; Welles et al., 2017). Further
more, DNA-based studies are often challenged with the functional pre
diction and resolution of strain-level divergences. On the other hand the 
relative fraction of Nitrospira, Tetrasphaera and Rhodoferax was high in 
the DNA based approaches. Tetrasphaera was exclusively detected in 
16S rRNA sequencing when using the more specific databases such as 
SILVA and MiDAS. This bias has been also described by others previ
ously (Nouioui et al., 2018; Otieno et al., 2022; Singleton et al., 2022). 

Furthermore, the main taxonomies covered around 50 % of all the 
sequences in metaproteomics, but only some 10–15 % in the DNA-based 
approaches. Metaproteomics has been described as a promising 
approach to estimate the protein biomass distribution (and metabolic 
capacity) of microbes in communities. Nevertheless, differences in 
expressed classes of proteins and the commonly employed shotgun ex
periments may further bias towards the more abundant taxonomies. 
This was also observed in our study, where metaproteomics detected the 
lowest number of taxonomies compared to the DNA-based approaches. 
Yet, compared to DNA-based experiments, metaproteomics uniquely 
provides insights into the expressed metabolic pathways and enzymes. 

Nevertheless, regardless of these differences, the relative abundance 
profiles of the top taxonomies were surprisingly conserved across the 
three different wastewater treatment plants. Although the current study 
aimed to remove biases introduced by the different reference sequence 
databases, other biases such as discrepancies in DNA and protein 
extraction procedures, as well as fundamental differences in the 
sequencing approaches or bioinformatic data processing pipelines were 
not evaluated in this study. The latter, however, were investigated in 
more recent lab comparison studies only recently (Sczyrba et al., 2017; 
Van Den Bossche et al., 2021). Furthermore, this study employed a 
contig-based taxonomic reference database to increase the 
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metaproteomic coverage. This focused our study on genus-level reso
lution, and functional variation of species from the same genus or 
functional guild were not resolved (Peces et al., 2022). Studies with a 
focus on functional processes should therefore also consider MAG-based 
reference sequence databases. Finally, this study aimed to investigate 
granules with a uniform size of 2 mm. Recent reports, though, have 
highlighted compositional differences based on the granule size, or 
flocks respectively (Ali et al., 2019). 

5. Conclusions 

In this work we provide the first systematic metaproteomic study on 
the aerobic granular sludge microbiome, which demonstrates the com
plementary nature of metaproteomics and DNA-based approaches. Our 
study moreover discusses the importance of generally applicable refer
ence sequence databases, such as GTDB. The application of only one 
omics approach may thus significantly bias the interpretation of nutrient 
removal processes. The systematic application of metaproteomics, 16 
rRNA sequencing and whole metagenome sequencing as well as the 
comparison of different reference sequence databases led to the 
following conclusions:  

• While GTDB and RefSeqNR provided the highest taxonomic coverage 
for metaproteomics and metagenomics, a substantial fraction of se
quences did not obtain any taxonomic or functional classifications  

• Reference genes for nitrogen processes are currently dispersed 
among different databases  

• Although the number of shared taxonomies was relatively low, the 
most abundant taxonomies were consistently identified by all omics 
approaches 

• The top 10 taxonomies accounted for approximately 50 % of se
quences in metaproteomics, while only 10–15 % in DNA-based 
approaches  

• Metaproteomics showed the lowest diversity, but the consistently 
identified taxonomies covered approximately 80 % of the measured 
protein biomass  

• The application of single omics approaches, as well as divergences in 
reference sequence database content and nomenclatures, may pro
foundly impact the taxonomic and functional interpretation. 

The established metaomic data provide a valuable resource for future 
studies on the metabolic processes in aerobic granular sludge. The omics 
raw data and Python codes for formating GTDB sequences and the 
contig-based taxonomic classification are freely accessible through 
public repositories. 

Data availability 

The mass spectrometry proteomics raw data have been deposited in 
the ProteomeXchange consortium database with the dataset identifier 
PXD030677. Whole metagenome sequencing raw data are available 
through the NCBI Sequence Read Archive (SRA) under accession 
numbers SRX13522658– SRX13522660, and the 16S rRNA amplicon 
sequencing data under the accession numbers 
SRX21486087–SRX21486101. The BioProject accession number is 
PRJNA792132. The developed python codes for formating GTDB for the 
use with Diamond and QIIME are available via https://github.com/hb 
ckleikamp/GTDB2DIAMOND and https://github.com/hbckleikamp/G 
TDB2QIIME. 
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