
TinyML-Empowered Indoor Positioning with Light
A Study on the Impact of LED Aging and Failure

Joey Wenyi Li1

Supervisor(s): Qing Wang1, Ran Zhu1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Joey Wenyi Li
Final project course: CSE3000 Research Project
Thesis committee: Qing Wang, Ran Zhu, Ranga Rao Venkatesha Prasad

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
Visible light positioning (VLP) enables accurate
indoor localization by leveraging a dense deploy-
ment of LEDs in future lighting infrastructure, but
its widespread adoption is hindered by two key
challenges: the need for densely sampled finger-
print datasets and performance degradation due
to LED aging or failure. In this work, we pro-
pose a VLP framework that reduces reliance on
dense fingerprinting and remains robust over time
without requiring manual re-fingerprinting. Us-
ing a dataset acquired from the DenseVLC testbed,
we evaluate preprocessing techniques that enhance
positioning accuracy under noisy received signal
strength (RSS) measurements. To address long-
term reliability, we introduce a simulation frame-
work that models LED degradation and sudden fail-
ures. Most importantly, we present an online learn-
ing approach that dynamically adapts the position-
ing model in response to environmental and infras-
tructure changes. In our simulations, this approach
maintains the original level of accuracy despite ag-
ing effects. In some cases, it yields up to a 95% im-
provement when evaluated over longer timespans.
Furthermore, our preprocessing contributions have
led to a 30% improvement to baseline performance
without aging. Our results demonstrate a path to-
ward scalable, self-sustaining VLP systems suit-
able for real-world deployment.

1 Introduction
Accurate indoor positioning is a critical enabler for a wide
range of modern applications, from smart homes and factories
to augmented reality and robotics. While outdoor systems
like Global Positioning System (GPS) and BeiDou (BDS)
provide global coverage, they fail to deliver the precision and
reliability required in indoor environments. Visible light po-
sitioning (VLP) systems have emerged as a viable alternative
due to their high accuracy and low power consumption, while
also being affordable.

VLP encompasses a range of techniques, with state-of-the-
art methods including time-difference-of-arrival (TDOA) [4]
and received signal strength (RSS) [10]. However, these tech-
niques often rely on densely sampled fingerprint datasets,
which are collections of signal measurements taken at many
known locations throughout an area. Creating such datasets is
labor-intensive and expensive, hindering large-scale deploy-
ment. Recent research such as the work by Zhu et al. [11] par-
tially remedies this by using data preprocessing techniques to
enable sparse fingerprint learning, but the reliance on signal
measurements remains. Moreover, VLP systems can degrade
over time due to LED aging or failures, necessitating regular
recalibration to maintain performance.

To address these limitations, our research investigates how
to reduce the dependency on dense data collection while im-
proving the long-term robustness of VLP systems. Specifi-
cally, we explore data preprocessing techniques that can con-
struct accurate and reliable fingerprints from noisy input data.

(a) Schematic (b) Testbed

Figure 1: DenseVLC system setup [1].

We also aim to simulate and mitigate the impact of degraded
or malfunctioning LEDs on positioning accuracy, an essential
step toward scalable, robust and long-lasting indoor localiza-
tion solutions.

In this work, we make three primary contributions. First,
we conduct a comparative evaluation of data preprocess-
ing strategies aimed at improving positioning accuracy with
noisy fingerprint datasets. Second, we introduce an online
learning approach that dynamically adapts the positioning
model in response to infrastructure degradation, reducing the
need for manual recalibration and supporting robust, long-
term deployment. Third, we develop a simulation framework
to model the effects of LED aging and sudden failures, en-
abling systematic testing of system resilience.

The rest of the paper is structured as follows: Section 2
discusses related work and the dataset. Section 3 presents our
data cleaning and augmentation pipeline, the aforementioned
online learning approach and the LED aging simulation. Sec-
tion 4 briefly describes the experimental setup, while Sec-
tion 5 goes over the results and their analysis. Section 6 goes
over TinyML deployment, where we demonstrate that our ap-
proach performs effectively in resource-constrained environ-
ments. Section 7 addresses ethical considerations and repro-
ducibility, while Sections 8 and 9 go over the discussion and
conclusion respectively.

2 Background
There have been significant advancements in the field of vis-
ible light positioning (VLP) in recent years. Several compre-
hensive surveys, such as those by Zhu et al. [12], Zhuang
et al. [13], Do and Yoo [3], and Luo et al. [9], have docu-
mented these developments. Our research builds on the work
of Zhu et al. [11], who used the DenseVLC [1] testbed to
collect a high-resolution RSS fingerprint dataset for position
prediction. We extend their approach by introducing several
enhancements to the RSS-based positioning method and eval-
uating its performance under more realistic conditions. The
following subsections provide a detailed overview of the most
relevant prior work.

2.1 DenseVLC Dataset
The DenseVLC [1] dataset is a high-resolution indoor posi-
tioning dataset collected in a controlled environment using
the DenseVLC testbed. A mobile receiver samples received
signal strength (RSS) values from 36 ceiling-mounted LED

1

transmitters arranged in a grid layout. The covered area mea-
sures 3 m× 3 m, with LEDs positioned on a height adjustable
ceiling and spaced at 0.5 m intervals. Figure 1 presents both
a schematic and a photograph of the experimental setup.

Each data point in the dataset consists of RSS values from
all 36 LED transmitters, paired with ground-truth position
information. The data was collected using four mobile re-
ceivers, each covering an area of approximately 1.2 m by
1.2 m. Measurements were taken at 1 cm intervals along both
the x and y axes, resulting in 121×121 points sampled per re-
ceiver. For each position, three measurements were recorded
at two different heights relative to the LEDs: 176 cm and
192 cm. In total, the dataset comprises 121 · 121 · 4 · 3 · 2 =
351,384 samples.

In our work, we utilize this dataset to simulate sparse data
conditions by subsampling the original grid and evaluate how
well different preprocessing and learning strategies can re-
cover accurate position estimates. Additionally, we use the
complete dataset as a baseline for comparison and as a refer-
ence for modeling LED degradation scenarios.

2.2 Data Cleaning and Augmentation
The work of Zhu et al. [11] represents a significant step for-
ward in visible light positioning (VLP) by demonstrating that
accurate indoor localization is achievable even with sparse
RSS fingerprint data. Their approach differs from traditional
methods that rely on densely sampled fingerprints, propos-
ing instead to use data cleaning and augmentation in order to
augment sparsely sampled data into a dense dataset.

Using the DenseVLC dataset as a foundation, Zhu et al.
first start by cleaning this data. This is done by calculating the
continuity at a local point for every sample using Equation 1.

∆Ix,y =

∥∥∥∥∥Ix,y − 1

|IS|
∑
I∈IS

I

∥∥∥∥∥ (1)

Here, Ix,y denotes the RSS at location (x, y), and IS is
the set of neighboring RSS values. Samples with excessively
high continuity scores, indicating inconsistency, are removed.

These removed values are then reconstructed using nearby
clean points and the Lambertian diffuse model, a physical
model that approximates how light intensity varies with an-
gle and distance. The model is given by the Equation 2.

Ir =

{
ItA(d) cosm(ϕ) cos(ψ), 0 ≤ ψ ≤ Ψc

0, otherwise
(2)

The final reconstructed RSS value is obtained by averaging
the estimates computed from multiple nearby points.

Next, the researchers proposed a method to increase the
density of a dataset. This augmentation process works analo-
gously to the cleaning process, where we interpolate missing
values using the Lambertian model, as described in Equation
2. This can, for example, interpolate values from a 16 cm
interval dataset to a 1 cm interval.

We adopt their method as a baseline in our research, both to
evaluate our proposed preprocessing strategies and to bench-
mark performance under simulated LED degradation. Fur-
thermore, we use their augmentation in our online learning
approach in order to deploy on TinyML hardware.

3 Methodology
In the previous section, we have seen that prior work has had
promising results in the field of VLP. However, there has not
been much work in regard to the effects of LED degradation
during real-world deployment. In the following subsections,
we will first discuss some changes made to the data prepro-
cessing pipeline. Second, we design a resource-efficient neu-
ral network that reduces model size while improving position-
ing accuracy. Third, we propose an online learning frame-
work that enables the model to adapt to LED aging and fail-
ures. Finally, we develop a simulation to replicate realistic
LED degradation and flickering for long-term testing. To-
gether, these advances create a robust, adaptive VLP system
fit for real-world, long-term use on constrained hardware.

3.1 Improved LED Position
Previous pipelines generally assume precise knowledge of
LED positions. However, these positions may be subject to
errors or uncertainties in real-world settings. By leveraging
the radial decay of LED illumination, we fit circles to a band
of RSS data values within a defined threshold range to in-
fer light source locations directly from raw signal strength
measurements. These estimates can be made from raw data,
improving interpolation in later stages of the pipeline.

We propose the usage of a simple RANSAC algorithm [5],
as described in Algorithm 1, due to its robust nature against
outliers.

Algorithm 1: Basic RANSAC Algorithm for Circle
Fitting using Three-Point Sampling

Input: Array P of 2D points, threshold δ, number of trials
m

Output: Best fitting circle center (x0, y0) and radius r
1 (xbest, ybest)← (0, 0);
2 rbest, sbest ← 0;
3 for i← 1 to m do
4 Select 3 random, non-collinear points from P :

(p1, p2, p3);
5 Compute circle (x, y, r) passing through (p1, p2, p3);
6 s← 0;
7 foreach p ∈ P do
8 if |∥p− (x0, y0)∥ − r| < δ then
9 s← s+ 1;

10 if s > sbest then
11 (xbest, ybest)← (x, y);
12 rbest, sbest ← r, s;

13 return (xbest, ybest, rbest);

An example of how this algorithm is used to calculate LED
positions compared to classical statistical methods, such as
the Kåsa method [8], is illustrated in Figure 2. The RANSAC-
based approach demonstrates superior robustness in the pres-
ence of noise, enabling accurate LED position estimation
even prior to data cleaning.

3.2 Improved Data Cleaning
To enhance data quality and improve model performance
under noisy fingerprinting conditions, we propose a modi-

2

0 50 100 150 200 250
x-axis (cm)

0

50

100

150

200

250

y-
ax

is
(c

m
)

LED 29 - Circle Fit Comparison
Points used to fit circle
R3Fit (Ours)
Kasa (Old)
Original TX Position

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2: Comparison of circle fitting results for LED 29 using the
RANSAC-based method and the Kåsa method [8].

fied scoring function that accounts for small local illumina-
tion variations. We then interpolate missing values using a
Lambertian-based model.

Given the illumination intensity Ix,y at position (x, y) and
a neighborhood IN centered around it, our baseline scoring
metric is defined as:

Sx,y =

∥∥∥∥∥Ix,y − 1

|IN |
∑
I∈IN

I

∥∥∥∥∥ (3)

To better normalize this score with respect to the local con-
text, we propose an improved variant:

S′
x,y =

Ix,y − 1
|IN |

∑
I∈IN

I[
1

|IN |
∑

I∈IN
I
]ν (4)

Here, ν is a tunable bias hyperparameter that adjusts the
influence of the surrounding illumination. This formulation
improves the ability to differentiate signal anomalies whose
absolute difference is small.

Additionally, we apply inverse distance weighted (IDW)
interpolation to further smooth and reconstruct signal patterns
in low-density areas, replacing the baseline approach which
relies on simple mean-based interpolation.

Figure 3 illustrates the visual impact of our cleaning meth-
ods on LEDs 18 and 7, demonstrating the progression from
raw data to the cleaned versions using both the old and im-
proved approaches. For LEDs with relatively low noise, such
as LED 18, the differences are minimal. However, in cases
with a low signal-to-noise ratio like LED 7, our improved
methods clearly make a significant difference.

3.3 Improved Data Augmentation
Our data augmentation strategy follows the approach of Zhu
et al. [11], with a single modification: we use the LED po-
sitions estimated in Section 3.1 instead of assuming known
ground-truth positions.

3.4 Improved Model
To reduce computational overhead and enable efficient on-
device inference, we design a lightweight neural network ar-
chitecture inspired by the building blocks of MobileNetV3

[7]. The model replaces the baseline MLP with a residual
MLP architecture composed of two bottleneck blocks. Each
bottleneck consists of a projection layer that compresses the
input by approximately 90%, followed by a non-linear ac-
tivation (H-Swish), and an expansion layer that restores the
original dimension. This is followed by a residual connection
adding the original input, and a final H-Swish activation. The
network takes a 36-dimensional input, which is first normal-
ized to have unit L2 norm, i.e., ∥x∥2 = 1. The normalized
input is then projected into a 256-dimensional latent space,
followed by a ReLU activation and the two bottleneck blocks.
A final linear layer maps the output to a 2D coordinate pre-
diction. This design significantly reduces parameter count
while maintaining accuracy, making it suitable for real-time
deployment on constrained devices such as the Raspberry Pi
Pico.

3.5 Online Degradation Scalar Learning
In order to keep our solution robust against the effects of LED
degradation, we propose an online learning framework. The
modular design of this framework enables easy integration
with any existing VLP model that uses RSS, making imple-
mentation straightforward and flexible. Algorithm 2 shows
the pseudo algorithm, explaining the basic details.

Algorithm 2: Online Scalar Adaptation for LED
Degradation

Input: Incoming RSS sample Xt ∈ R36, prediction
modelM, window size n

Output: Updated scaling vector α ∈ R36

1 Initialize scaling vector α← 136;
2 Initialize prediction buffer B ← [];
3 Initialize reference buffer R← [];
4 while new RSS sample Xt arrives do
5 Scale input: X ′

t ← α⊙Xt;
6 Predict position: Ŷt ←M(X ′

t);
7 Append (Xt, Ŷt) to B;
8 if length of B ≥ n then
9 Obtain reference positions Yt−n+1:t for

Xt−n+1:t;
10 for i = 1 to 36 do
11 Fit a line: Y ≈ a′i · Ŷi;
12 Update scalar: αi ← αi · a′i;
13 Clear buffers B ← [], R← [];

The algorithm begins by initializing a scaling vector that
contains one scalar value per LED transmitter. Each incom-
ing RSS sample is first scaled using this vector and then
passed through the base positioning model to generate a pre-
dicted location. These predictions, along with the corre-
sponding raw RSS inputs, are temporarily stored in a buffer.
Once a predefined number of samples n have been collected,
the algorithm retrieves the corresponding ground-truth posi-
tions and fits a separate linear model for each of the 36 LED
channels. An example fit for this can be seen in Figure 4.

3

0 50 100 150 200 250
x-axis (cm)

0

50

100

150

200

250

y-
ax

is
(c

m
)

0.0

0.2

0.4

0.6

0.8

1.0

(a) Raw LED 18

0 50 100 150 200 250
x-axis (cm)

0

50

100

150

200

250

y-
ax

is
(c

m
)

0.0

0.2

0.4

0.6

0.8

1.0

(b) Baseline clean LED 18

0 50 100 150 200 250
x-axis (cm)

0

50

100

150

200

250

y-
ax

is
(c

m
)

0.0

0.2

0.4

0.6

0.8

1.0

(c) Improved clean LED 18

0 50 100 150 200 250
x-axis (cm)

0

50

100

150

200

250

y-
ax

is
(c

m
)

0.0

0.2

0.4

0.6

0.8

1.0

(d) Raw LED 7

0 50 100 150 200 250
x-axis (cm)

0

50

100

150

200

250

y-
ax

is
(c

m
)

0.0

0.2

0.4

0.6

0.8

1.0

(e) Baseline clean LED 7

0 50 100 150 200 250
x-axis (cm)

0

50

100

150

200

250

y-
ax

is
(c

m
)

0.0

0.2

0.4

0.6

0.8

1.0

(f) Improved clean LED 7

Figure 3: Comparison of data cleaning results for two example LEDs (LED 18 and LED 7). Subfigures (a) and (d) show the raw input data,
(b) and (e) show the results of the baseline cleaning method as described by Zhu et al. [11], and (c) and (f) show the results using the proposed
improved cleaning method.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
LED 0

0.0

0.2

0.4

0.6

0.8

Re
fe

re
nc

e
Va

lu
e

RANSAC Fit
LED 0
Outliers
RANSAC Fit

Figure 4: Example line fit for LED 0

Each linear model captures the coefficient between the raw
RSS values and the expected signal under normal conditions.
This is exactly the inverse of the factor by which the LEDs
are degraded. The slope of each fitted line is then used to up-
date the associated scalar in the scaling vector. This process
enables the system to continuously adapt to changes in LED
output, such as gradual dimming or sudden shifts, without re-
quiring manual recalibration or retraining of the base model.

The choice to use a RANSAC line-fitting algorithm has
been made based on experimental results. When compar-
ing RANSAC to, for example, MSE line-fitting we can see
RANSAC is more stable and less prone to outliers.

3.6 LED Aging Simulation
To evaluate the effectiveness of our online adaptation method
in realistic conditions, we simulate LED aging and degrada-
tion effects directly on the input data. Since our dataset lacks
long-term data points capturing natural LED wear, we intro-
duce a synthetic degradation layer that mimics how LEDs
lose brightness over time.

Our simulation operates by applying per-LED degradation
factors to the raw RSS values in the dataset. For each LED
i, we first define a degradation constant ki ∈ (0,∞). The
degradation at time t is computed using the exponential de-
cay model shown in Equation 5, as introduced in the TM-21
standard [6].

Li(t) = e−kit (5)

At any given time t, we scale the original RSS value from
LED i, denoted asXoriginal

i ∈ R36, by Li(t). This gives us the
simulated degraded signal.

Xdegraded
i (t) = Li(t) ·Xoriginal

i (6)

In order to further promote robustness, the simulation also
introduces two additional noise components: random flick-
ering and additive Gaussian noise. This means that the de-
graded RSS function can be rewritten as a random variable.

Xdegraded
i (t) = Li(t) · ξi(t) ·Xoriginal

i + εi(t) (7)

where ξi(t) ∼ Bernoulli(p) models random LED flickering
with flicker probability q = 1 − p, and εi(t) ∼ N (0, σ2)
represents additive Gaussian noise with standard deviation σ.

4

At each timestep t, we sample m points. These points are
then degraded using Equation 7, forming the set of points σt.
This set is then fed into the model to simulate the continu-
ous data flow typical of a regularly used VLP system. After
processing the sample set, we test the accuracy of the model
using a test set. This approach allows us to realistically sim-
ulate and measure the model’s performance over any future
time period.

4 Experimental Setup
The following provides a brief overview of the experimental
setup and the rationale behind the choices. Additional de-
tails and parameters for reproduction can be found in the Ap-
pendix. The complete code base, including the experimental
setup and models, is made publicly available1.

4.1 Dataset and Environment
All experiments are conducted using the DenseVLC dataset
[1]. For further information about this dataset, please see Sec-
tion 2.1. We split the dataset into 80% for training, 10% for
validation, and 10% for testing. The training set is used to
optimize model parameters, the validation set is used for tun-
ing hyperparameters and monitoring for overfitting, and the
test set is held out entirely for final performance evaluation to
ensure unbiased assessment.

Our experiments are run on a workstation with Ryzen 7
8845HS and an RTX 4070, using PyTorch 2.7.0, and all mod-
els are trained and evaluated using the same computational
environment to ensure consistency.

4.2 Baseline Model Setup
As our primary model baseline, we adopt the multilayer per-
ceptron (MLP) architecture defined by Zhu et al. [11], which
consists of five hidden layers with 256, 512, 1024, 512, and
256 units respectively, using ReLU activations. The model
is trained using the Adam optimizer with a learning rate of
1× 10−4, a batch size of 64, and for 25 epochs.

4.3 Data Preprocessing and Parameter Settings
To evaluate the contribution of our data cleaning and augmen-
tation methods, we first apply the preprocessing pipeline, as
described by Zhu et al., on the original dataset without degra-
dation. We then apply our modified preprocessing pipeline to
the same original dataset and compare the resulting model
performance to that achieved using the baseline approach.
This allows us to isolate the effect of preprocessing from
other factors such as LED aging.

As described in Section 3.2, we use a scoring-based outlier
removal step with a fixed bias of ν = 0.25, selected based on
empirical performance on the validation set.

4.4 Improved Model
In order to evaluate our improved model, as introduced in
Section 3.4, we train it under the same conditions as the
baseline MLP. This includes using the same training and test

1The full source code, along with instructions, is available at:
https://github.com/einstein8612/VLP

0 20000 40000 60000 80000 100000
Time in hours passed

0.5

0.6

0.7

0.8

0.9

1.0

Av
er

ag
e

De
ca

y
Sc

al
ar

Average Decay Scalar vs. Time
Average Decay
Min/Max Decay

Figure 5: This plot shows the average decay over time, with a shaded
region for the observed min and max values.

splits, optimizer settings, batch size, and number of epochs to
ensure a fair comparison. The dataset consists of the prepro-
cessed data obtained using the best-performing method iden-
tified in Section 5.1.

4.5 Degradation Simulation
To simulate realistic long-term LED aging, we use the simu-
lation model as described in Section 3.6. The decay constants
ki are randomly generated, such that the LEDs retain approx-
imately 90% of their original brightness over a period ranging
from 10,000 to 50,000 hours. These values reflect real-world
LED performance, with the LEDs in our dataset reportedly
reaching this threshold at approximately 33,000 hours. This
behavior is illustrated in Figure 5. We set the probability to
flicker to q = 0.001.

4.6 Reproducibility and Multiple Runs
To ensure the robustness and reliability of our results, all ex-
periments are repeated across five independent runs using dif-
ferent random seeds. For each configuration, we report the
mean and standard deviation of the positioning error. This
procedure helps mitigate the impact of randomness in initial-
ization and training, providing a more stable and representa-
tive performance estimate.

4.7 Evaluation Metrics
We report positioning accuracy using the mean Euclidean dis-
tance between predicted and ground-truth coordinates. For
time-dependent evaluations, especially under simulated LED
degradation, we plot results as a function of time t to capture
performance trends over the system’s lifespan.

5 Results
This section presents the experimental results in three parts:
first, a comparison of preprocessing strategies; second, an
evaluation of our positioning model against the baseline; and
third, an assessment of our method’s performance under LED
degradation scenarios compared to the baseline.

5

https://github.com/einstein8612/VLP

5.1 Improved Data Cleaning
As outlined in the methodology section, we introduced three
improvements to the data cleaning pipeline: first, estimat-
ing LED positions earlier in the process; second, modify-
ing the scoring function to better distinguish small, non-
continuous signal variations; and third, replacing the mean
with inverse distance weighted interpolation for reconstruct-
ing signals based on the Lambertian model. Table 1 presents
the impact of both their individual contributions and combi-
nations on model accuracy. The results show the mean Eu-
clidean error along with the standard deviation over 5 inde-
pendent runs.

Table 1: Impact of Preprocessing Improvements on Model Accuracy

Preprocessing Step Error (mm) Std (mm)

Baseline (Zhu et al.) [11] 17.77 2.33
Early LED Position 13.49 1.64
Modified Scoring 18.56 3.97
IDW 15.98 3.63

Early LED Position + Scoring 31.68 20.63
Early LED Position + IDW 12.13 2.31
Scoring + IDW 17.25 2.12
All Three Combined 17.88 4.16

From the results, we observe that using both early LED
position estimation and inverse distance weighted interpola-
tion improve model accuracy by over 30%. In contrast, the
modified scoring function appears to negatively impact per-
formance. This likely stems from the fact that low-intensity,
outer signals contribute less to positioning accuracy, while the
modified scoring function disproportionately penalizes high-
intensity regions that are more critical for precise localization.

5.2 Improved Model
Table 2 summarizes the positioning error results for the base-
line MLP model by Zhu et al. [11], compared our improved
residual MLP model. The results show the mean Euclidean
error along with the standard deviation over 5 independent
runs.

Table 2: Positioning error comparison of different models evaluated
on the cleaned dataset described in Section 4.4.

Model Error (mm) Std (mm) Params

Baseline (Zhu et al.) [11] 12.13 2.31 1323010
Residual MLP (Ours) 11.28 1.59 36148

The improved residual MLP model achieves a small reduc-
tion in mean positioning error compared to the baseline, high-
lighting the effectiveness of our architectural redesign. In ad-
dition, the model size is reduced by approximately 97%, mak-
ing it highly suitable for deployment on resource-constrained
edge devices.

5.3 Online Degradation Scalar Learning
As introduced in Section 3.5, we propose an online learn-
ing framework to adaptively compensate for LED degrada-

0 20000 40000 60000 80000 100000
Time (Hours)

0

25

50

75

100

125

150

175

200

Po
sit

io
ni

ng
 E

rro
r (

cm
)

Model Positioning Error Over Time
Baseline
Baseline + Online Learning
Residual MLP
Residual MLP + Online Learning

Figure 6: Positioning error over time for the baseline and the pro-
posed model, each evaluated with and without online learning. In
both cases, the error remains stable over time when our online learn-
ing method is applied.

tion during deployment. This approach continuously updates
a scaling vector per LED based on incoming RSS samples and
corresponding position predictions, using a robust RANSAC
line fitting technique to estimate degradation factors without
manual recalibration.

Figure 6 shows how online learning scores against both the
baseline and the model proposed in Section 3.4. The normal-
ization layer in the proposed model initially helps with ro-
bustness against minor degradation, but we can clearly see
that it is not sustainable. In contrast, the online learning
method maintains a stable error throughout the entire simu-
lated period for both models, indicating that its effectiveness
is consistent and not dependent on the underlying model ar-
chitecture.

In Table 3, we present some key statistics at relevant times-
tamps. The baseline model, without any adaptation, starts
with a relatively low initial error of 9.97 mm. However,
this error rapidly starts deteriorating and eventually reaches
194.53 mm by t = 100,000. The online learning models ex-
hibit slightly higher initial errors compared to their respective
foundational models. This is due to the fact that before eval-
uation, the model undergoes a warm-up phase with 50 ran-
domly selected samples, during which it updates its parame-
ters. This early adaptation occasionally leads to slight over-
compensation, causing a minor initial accuracy drop. Nev-
ertheless, by the end of the simulation, both online learning
models achieve an error below 10% of the baseline’s, demon-
strating that this small initial increase is justified by substan-
tial long-term performance gains.

Online Learning Hyperparameter Tuning and Trade-Off
Analysis
In the previous section, we demonstrated that the proposed
online learning method significantly outperforms the base-
line once the LEDs have degraded sufficiently. However, this
method depends on several hyperparameters, which we tuned
by evaluating their performance within our simulation. The
results reveal key insights, especially for scenarios where fac-
tors beyond accuracy are important.

A summary of the hyperparameter tuning results can be

6

Table 3: Different model accuracy over time. “Mean” is the average positioning error across time. “Std” is the standard deviation. “CV” is
the coefficient of variation (std/mean), indicating performance stability. Lower is better for all metrics.

Error (mm) and % improvement vs Baseline Statistics

Model t=0 t=25000 t=50000 t=75000 t=100000 Mean Std CV

Baseline (Zhu et al.) [11] 9.97 48.78 98.60 145.16 194.53 98.86 55.01 0.56
Residual MLP (Ours) 7.43 (-25.5%) 16.88 (-65.4%) 32.72 (-66.8%) 47.78 (-67.1%) 64.22 (-67.0%) 33.35 17.48 0.52
Baseline + Online Learning 11.71 (+17.5%) 13.23 (-72.9%) 14.66 (-85.1%) 12.99 (-91.1%) 14.87 (-92.4%) 13.94 1.06 0.08
Residual MLP + Online Learning 8.45 (-15.3%) 10.59 (-78.3%) 9.96 (-89.9%) 9.10 (-93.7%) 8.12 (-95.8%) 9.23 0.86 0.09

found in Table 4, showing the impact of varying samples per
timestep, timestep size, and the number of samples used for
line fitting on model performance and stability.

Table 4: Effect of online learning hyperparameters on performance.
We define a balanced setting as one that achieves ≥90% of the best
observed accuracy.

Parameter Range Best Accuracy Balance

Samples/timestep 10–100 100 30
Timestep size (h) 100–10000 100 1500
Line fit samples 10–50 50 10

From these experiments, several important insights
emerge. First, we can enable deployment on low-memory
hardware by reducing the number of samples per timestep,
as even a small sample count can yield acceptable accuracy.
Second, the timestep size must remain relatively small. If too
large, LED degradation between updates becomes too severe
to compensate effectively. Finally, only a few samples are
needed to fit the degradation scalar accurately. Since this step
scales linearly with memory usage, using fewer line fit sam-
ples allows us to allocate more memory to timestep samples
instead, improving overall stability.

While the optimal parameters for maximum accuracy are
logical, this analysis provides the necessary guidance for
achieving a balance between performance and resource ef-
ficiency.

6 Deployment on a Microcontroller

Figure 7: Raspberry Pi Pico

To evaluate the real-world feasibility of our system, we de-
ployed the trained model onto a Raspberry Pi Pico microcon-

troller using the TensorFlow Lite Micro framework [2]. This
platform provides a streamlined inference pipeline for quan-
tized neural networks optimized for resource-constrained en-
vironments.

6.1 Quantization and Memory Optimization
Our improved model that we discussed in Section 3.4 has a
size of 147 KB pre-quantization. This allows us to directly
quantize and deploy it on TinyML hardware, such as the
Raspberry Pi Pico. As we were well below the required size,
however, we made some slight changes to the model to allow
it to quantize better. Specifically, we adjusted the bottleneck
compression ratio from 90% to 75%, and replaced H-Swish
activations with standard ReLU functions. These changes
slightly increase computational cost, but improve quantiza-
tion performance by preserving more information per layer,
resulting in higher accuracy in the quantized case. The final
size of this altered model was 304 KB pre-quantization.

This model, trained in 32-bit floating point precision, was
quantized to 8-bit integers using post-training quantization
through TensorFlow. This reduced the size of the model from
304 KB to 103 KB. The quantized model maintained compa-
rable inference accuracy, with the full-precision model hav-
ing an accuracy of around 9 mm while the quantized model
achieves an accuracy of around 12 mm. When comparing the
quantized model to our full-precision model meant for de-
ployment and our best model as described in Section 3.4, we
observe a precision loss of approximately 3 mm and 5 mm,
respectively.

In order to leverage our online learning framework, we
used a compact data representation strategy based on the ex-
isting data augmentation pipeline, as discussed in Section 2.2.
Specifically, the original fingerprint data was downsampled
by a factor of 4 along both axes, reducing the total size from
21.3 MB to just 1.06 MB. Only the downsampled data is
stored in the binary, and during inference, the required sam-
ples are augmented on-demand. This not only enables the
full framework to run entirely on-edge, but also supports our
objective of reducing the complexity and overhead of the fin-
gerprinting process.

6.2 Inference Performance
Inference using the quantized model executes in approxi-
mately 8.3 ms per sample on the Pico, including input pre-
processing and postprocessing steps. This is well within the
constraints of real-time indoor positioning applications. For
reference, without online learning our model inference takes
6.4 ms per sample. This means adding our online learning

7

has basically no extra cost associated with it when it comes
to speed. The accuracy over time can be seen in Figure 8.

0 20000 40000 60000 80000 100000
Time (Hours)

0

10

20

30

40

50

60

70

Po
sit

io
ni

ng
 E

rro
r (

cm
)

Model Positioning Error Over Time
Residual MLP (Pico)
Residual MLP + Online Learning (Pico)

Figure 8: Positioning error over time on the Raspberry Pi Pico, com-
paring the baseline model with the model using online learning.
Note that the error remains stable over time when online learning
is applied.

6.3 Conclusion on Feasibility
The successful deployment of our quantized model on a
resource-constrained microcontroller demonstrates the feasi-
bility of running adaptive VLP systems entirely on-device.
Performing online learning and localization at the edge en-
ables scalable, low-cost, and robust indoor deployments.
However, quantization significantly impacts the ability of
the online learning to correctly adapt, making the trade-off
worthwhile only for longer deployment durations.

7 Responsible Research
This research was conducted with a strong emphasis on trans-
parency, ethical use of tools, and environmental sustainabil-
ity. The following subsections detail our efforts to ensure
reproducibility, responsible use of language models, and the
ecological impact of our work.

7.1 Reproducibility
All experiments, models, and datasets used in this research
are fully documented and made publicly available to ensure
transparency and reproducibility. We provide detailed in-
structions and code repositories to allow others to replicate
our results and build upon our work. As mentioned in the ex-
perimental setup, the code base is made publicly available2.

7.2 Usage of LLMs
Large language models (LLMs) were used solely to assist
with rewriting and improving the clarity of the manuscript,
with all content being carefully reviewed. All technical con-
tent, experimental design, and analysis were developed inde-
pendently to maintain the integrity of the research.

2The full source code, along with instructions, is available at:
https://github.com/einstein8612/VLP

7.3 Environmental Responsibility
Our research promotes environmental sustainability by focus-
ing on extending the lifespan of LED-based positioning sys-
tems through adaptive online learning. By enabling longer-
term use and reducing the need for frequent hardware replace-
ment, we contribute to minimizing electronic waste.

8 Discussion
In the following subsections, we briefly discuss our results
and their broader significance. We highlight how each com-
ponent, including data preprocessing, model design, and on-
line learning, contributes to building systems for Visible
Light Positioning that are scalable, accurate, and efficient.

8.1 Data Preprocessing
The results demonstrate the effectiveness of our proposed im-
provements across various aspects of the system. The en-
hanced data cleaning steps, particularly early LED position
estimation combined with inverse distance weighted interpo-
lation, significantly reduce positioning errors by over 30%,
underscoring the critical role of robust preprocessing for re-
liable Visible Light Positioning (VLP). Conversely, the mod-
ified scoring function proved less effective, suggesting that
careful tuning or alternative methods may be required to
avoid degrading model performance.

8.2 Model Changes
Our lightweight residual MLP model achieves comparable
accuracy to the baseline while drastically reducing the num-
ber of parameters by over 97%. This reduction was achieved
while still having a lower mean error than the baseline, in
some runs as low as 7.33 mm. These results indicate the po-
tential for even smaller models to maintain or improve po-
sitioning accuracy, opening avenues for further model com-
pression and optimization tailored for resource-constrained
deployments.

8.3 Online Learning
Finally, the online learning framework exhibits remarkable
resilience to LED degradation over time, maintaining near-
constant positioning accuracy despite significant hardware
aging. While introducing some initial warm-up overhead, it
ultimately delivers a sustained improvement of above 90%
in accuracy compared to the non-adaptive baselines. Hy-
perparameter tuning further reveals how to balance accuracy,
stability, and memory constraints for edge deployment. To-
gether, these results suggest that adaptive VLP systems can
offer robust, long-term localization without frequent manual
recalibration or hardware replacement, reducing e-waste and
maintenance costs.

Looking ahead, the increasing availability of TinyML hard-
ware with floating-point support (e.g., float16/float32) may
also help relax current quantization constraints. This could
enable more accurate online adaptation at the edge without
the degradation introduced by 8-bit quantization.

8

https://github.com/einstein8612/VLP

9 Conclusions and Future Work
In this research paper, we proposed an improved preprocess-
ing pipeline, including a method for estimating LED posi-
tions from noisy data. These improvements, along with our
improved model, have enabled us to gain an average reduc-
tion of more than 35% in positioning error. Furthermore, our
online learning approach to data degradation has provided
us with a constant error rate regardless of LED degradation.
This corresponds to an error reduction of more than 90% af-
ter sufficient LED degradation. Lastly, we have shown that
this method is able to be deployed on TinyML, without much
trouble. There is some performance degradation, but the gen-
eral trend still stays the same even with quantization and ac-
cess to augmented reference data rather than real reference
data.

While our approach has demonstrated strong performance
and robustness in the face of LED degradation, there remain
several promising directions for future research. These in-
clude developing predictive models to estimate when LED
degradation begins to impact positioning accuracy, enabling
timely recalibration instead of continuous adaptation. While
this adds some targeted fingerprinting, it could improve long-
term reliability when online learning alone is insufficient.
Another direction is adding uncertainty estimation into the
positioning pipeline using techniques such as Bayesian net-
works or Monte Carlo dropout, allowing the system to pri-
oritize high-confidence samples. Collaborative learning is
also a promising direction, where multiple edge devices adapt
locally and periodically share updates, improving robust-
ness and adaptation quality, especially when combined with
uncertainty-based sample selection. Finally, although this
work focused on a dense LED layout, future research should
further explore alternative configurations to better understand
their effect on accuracy and robustness under degradation.

9

A Experiment Reproduction Parameters
This appendix presents comprehensive tables outlining the re-
producibility parameters for each individual experiment dis-
cussed in Section 5. For clarity and consistency, each ta-
ble details the relevant settings, model architectures, training
configurations, and simulation parameters used.

Table 5: Reproducibility Parameters for Baseline

Parameter Value
Task MLP-TINY
Data Source LAMBERTIAN-IDW
Simulation Parameters
Standard Deviation 0.005
Total Time 100000.0
Samples per Timestep 100
Timestep Duration 1000
Flickering Probability 0.001
Device cuda
Seed 42

Model MLP
dim in 36
dim out 2
hidden layers [256, 512, 1024, 512, 256]
lr 0.001
loss mse
optimizer adam
batch size 64
epochs 25
n timesteps 100

Table 6: Reproducibility Parameters for Residual MLP

Parameter Value
Task MLP-PICO
Data Source LAMBERTIAN-IDW
Simulation Parameters
Standard Deviation 0.005
Total Time 100000.0
Samples per Timestep 100
Timestep Duration 1000
Flickering Probability 0.001
Device cuda
Seed 42

Model MLPPico
dim in 36
dim out 2
hidden layers [256, 25, 256, 25, 256]
lr 0.001
loss mse
optimizer adam
batch size 64
epochs 25
n timesteps 100

Table 7: Reproducibility Parameters for Residual MLP (Pico)

Parameter Value
Task MLP-TINY
Data Source LAMBERTIAN-IDW
Simulation Parameters
Standard Deviation 0.005
Total Time 100000.0
Samples per Timestep 100
Timestep Duration 1000
Flickering Probability 0.001
Device cuda
Seed 42

Model MLP
dim in 36
dim out 2
hidden layers [256, 64, 256, 64, 256]
lr 0.001
loss mse
optimizer adam
batch size 64
epochs 25
n timesteps 100

B Full model specifications
This section provides a detailed layer-wise breakdown of the
MLPResNet architectures used in our experiments. For each
model variant, the tables show the input dimensions, layer op-
erations, output feature sizes, and nonlinear activation func-
tions employed.

Table 8: Layer-wise Architecture of MLPResNet. NL denotes the
type of nonlinearity used. HS means h-swish.

Input Size Operator #out NL
(batch, 36) NormalizeInput 36 -
(batch, 36) Linear 256 ReLU
(batch, 256) Linear 64 -
(batch, 64) HS 64 HS
(batch, 64) Linear 256 -
(batch, 256) Add (Residual + HS) 256 HS
(batch, 256) Linear 64 -
(batch, 64) ReLU 64 HS
(batch, 64) Linear 256 -
(batch, 256) Add (Residual + HS) 256 HS
(batch, 256) Linear 2 -

10

Table 9: Layer-wise Architecture of MLPResNet (Pico). NL de-
notes the type of nonlinearity used. HS means h-swish.

Input Size Operator #out NL
(batch, 36) NormalizeInput 36 -
(batch, 36) Linear 256 ReLU

(batch, 256) Linear 64 -
(batch, 64) ReLU 64 ReLU
(batch, 64) Linear 256 -

(batch, 256) Add (Residual + ReLU) 256 ReLU
(batch, 256) Linear 64 -
(batch, 64) ReLU 64 ReLU
(batch, 64) Linear 256 -

(batch, 256) Add (Residual + ReLU) 256 ReLU
(batch, 256) Linear 2 -

11

References
[1] Jona Beysens, Ander Galisteo, Qing Wang, Diego Juara,

Domenico Giustiniano, and Sofie Pollin. Densevlc: a
cell-free massive mimo system with distributed leds. In
Proceedings of the 14th International Conference on
Emerging Networking EXperiments and Technologies,
CoNEXT ’18, page 320–332, New York, NY, USA,
2018. Association for Computing Machinery.

[2] Robert David, Jared Duke, Advait Jain, Vijay Janapa
Reddi, Nat Jeffries, Jian Li, Nick Kreeger, Ian Nappier,
Meghna Natraj, Shlomi Regev, Rocky Rhodes, Tiezhen
Wang, and Pete Warden. Tensorflow lite micro: Embed-
ded machine learning on tinyml systems, 2021.

[3] Trong-Hop Do and Myungsik Yoo. An in-depth survey
of visible light communication based positioning sys-
tems. Sensors, 16(5), 2016.

[4] Pengfei Du, Sheng Zhang, Chen Chen, Arokiaswami
Alphones, and Wen-De Zhong. Demonstration of a low-
complexity indoor visible light positioning system us-
ing an enhanced tdoa scheme. IEEE Photonics Journal,
10(4):1–10, 2018.

[5] Martin A. Fischler and Robert C. Bolles. Random sam-
ple consensus: a paradigm for model fitting with ap-
plications to image analysis and automated cartography.
Commun. ACM, 24(6):381–395, June 1981.

[6] TM-21 Working Group et al. Projecting long term lu-
men maintenance of led light sources (ies tm-21-11).
New York, NY, USA: Illuminating Engineering Society
of Norh America (IESNA), 2008.

[7] Andrew Howard, Mark Sandler, Grace Chu, Liang-
Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang,
Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V.
Le, and Hartwig Adam. Searching for mobilenetv3,
2019.

[8] I. Kåsa. A circle fitting procedure and its error anal-
ysis. IEEE Transactions on Instrumentation and Mea-
surement, IM-25(1):8–14, 1976.

[9] Junhai Luo, Liying Fan, and Husheng Li. Indoor posi-
tioning systems based on visible light communication:
State of the art. IEEE Communications Surveys and Tu-
torials, 19(4):2871–2893, 2017.

[10] Sheng Zhang, Pengfei Du, Chen Chen, and Wen-De
Zhong. 3d indoor visible light positioning system us-
ing rss ratio with neural network. In 2018 23rd Opto-
Electronics and Communications Conference (OECC),
pages 1–2. IEEE, 2018.

[11] Ran Zhu, Maxim Van den Abeele, Jona Beysens, Jie
Yang, and Qing Wang. Centimeter-level indoor visi-
ble light positioning. IEEE Communications Magazine,
62(3):48–53, 2024.

[12] Zhiyu Zhu, Yang Yang, Mingzhe Chen, Caili Guo, Ju-
lian Cheng, and Shuguang Cui. A survey on indoor vis-
ible light positioning systems: Fundamentals, applica-
tions, and challenges. IEEE Communications Surveys
and Tutorials, pages 1–1, 2024.

[13] Yuan Zhuang, Luchi Hua, Longning Qi, Jun Yang, Pan
Cao, Yue Cao, Yongpeng Wu, John Thompson, and Har-
ald Haas. A survey of positioning systems using visible
led lights. IEEE Communications Surveys and Tutori-
als, 20(3):1963–1988, 2018.

12

	Introduction
	Background
	DenseVLC Dataset
	Data Cleaning and Augmentation

	Methodology
	Improved LED Position
	Improved Data Cleaning
	Improved Data Augmentation
	Improved Model
	Online Degradation Scalar Learning
	LED Aging Simulation

	Experimental Setup
	Dataset and Environment
	Baseline Model Setup
	Data Preprocessing and Parameter Settings
	Improved Model
	Degradation Simulation
	Reproducibility and Multiple Runs
	Evaluation Metrics

	Results
	Improved Data Cleaning
	Improved Model
	Online Degradation Scalar Learning
	Online Learning Hyperparameter Tuning and Trade-Off Analysis

	Deployment on a Microcontroller
	Quantization and Memory Optimization
	Inference Performance
	Conclusion on Feasibility

	Responsible Research
	Reproducibility
	Usage of LLMs
	Environmental Responsibility

	Discussion
	Data Preprocessing
	Model Changes
	Online Learning

	Conclusions and Future Work
	Experiment Reproduction Parameters
	Full model specifications

