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Abstract 
The variable nature of Renewable Energy Sources (RES) introduces substantial challenges to 

power system planning and operation. Different solutions are proposed to cope with the 

increasing RES penetration, such as taking advantage of smoothing due to expanding 

geographical distribution and large-scale integration of energy storage into power systems. 

At the international level, there is a trend towards network expansion by increasing 

interconnection capacity between neighboring countries. However, a highly integrated 

transmission grid requires high level of coordination between national system operators. It also 

requires a consistent regulatory regime that addresses the needs of all stakeholders. Large-scale 

integration of energy storage (ES), on the other hand, facilitates operation of the system by 

balancing generation and consumption and smoothing out the RES-induced variability in both 

power in-feed and prices. However, since the addition of ES will alter the power flows in the 

system, there is a need for investigating the impact of energy storage on grid development. 

This study presents a market-based optimization framework that solves the long-term 

transmission expansion problem under different levels of storage integrated with a meshed VSC-

HVDC grid for a postulated scenario of offshore wind development. This is in general a 

nonlinear non-convex large-scale optimization problem. The model seeks to maximize the social 

welfare of all interconnected regions minus the investment capital of transmission infrastructure 

subject to technical constraints, under two different levels of ES capacities: unlimited capacity 

(idealized case) and limited capacity (realistic case). The results are compared with the base-case 

where transmission capacities are optimized without any ES present. In this formulation, storage 

is modeled as a not-for-profit unit, with marginal bid of zero for both charging and discharging 

power. Furthermore, it is assumed that each storage system is coupled with an offshore wind 

power producer.  

A market structure, appropriate for operating a HVDC grid, can be derived based on accurate 

expressions of power flows over a meshed grid linking an arbitrary number of offshore and 

onshore regions. This results in a formulation that relates regional prices to congestion charges, 

not only by power-dependent terms but also by voltage-dependent terms. Making an 

approximation for the HVDC grid flows simplifies the pricing mechanism, resulting in a rule by 

which the amount of power to be exchanged is a function of only the electricity prices in 

different regions. It is also analytically proven that the optimization model sets the transmission 

capacities in a way that congestion shadow prices to be collected by the end of the economic life 

time of the project pay off the initial investment capital. 

The optimization framework is applied to a multi-region, multi-time period case study closely 

resembling a future offshore wind and onshore market development scenario for the North Sea 

countries. The network consists of ±500 kV, 2000 MW VSC-based bipolar HVDC cable 

connections. All simulations are implemented in MATLAB using the optimization toolbox.  

The results of the work can support transmission system planners as well as private investors in 

offshore infrastructure, as it determines the most economically efficient design they should 

invest in. The proposed market mechanism also provides economic insight into the operation of a 

multi-terminal HVDC offshore grid for regulators, transmission system operators and offshore 

wind and electricity storage project developers. 
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1. Introduction 
 

EU has the plan to reach the 2020 targets of 20% increase in the share of RES in the gross final 

energy consumption (grow it to 75% by 2050) and reducing carbon emission by 20% by 2020. 

This ambitious goal have resulted in large increase in share of Renewable Energy Sources (RES-

E) in the European power system. Meanwhile, a large share of conventional electricity producers 

should be replaced by RES producers. Among others, offshore wind electricity will have an 

important contribution in the future European energy mix [1], [2], [3] . 

However, large scale penetration of RES-E into the old power systems creates new challenges 

for system planners and operators. First, renewable energy sources are often located in remote 

locations far from the load centers. Hence, new transmission infrastructure is required to transfer 

power far distances to the onshore load centers. Second, power output of renewable sources 

depends on meteorological condition to a large extent and is, therefore, extremely volatile. The 

ultimate goal of system operator is to maintain security of supply by balancing the power supply 

and demand. Large scale integration of non-dispatchable source to existing markets challenges 

the security of supply to a large extent.  

In order to overcome the variability of RES-E and potential risk they introduce to security of 

supply, several solutions are proposed [4]. One possible solution to alleviate the impact of power 

output fluctuations is to extend the geographical distribution of power system so that power 

deficiency in one region would be compensated by power surplus in another. This can be 

achieved by expanding the electricity grid by building new connections between neighboring 

countries. Long term transmission planning (LTTP) is a complex multidimensional multi-time 

period problem. In general, transmission planning decisions can be made centrally or de-

centrally. Before the introduction of electricity market, this problem was addressed by 

centralized models that seek to minimize the cost of production in all networks [5]. 

Emergences of electricity markets have altered the situation as new market driven issues are 

becoming more important such as: congestion revenues, market structure, etc. Under the new 

scheme, the purpose is to find the most economically efficient design which is not essentially the 

least expensive grid design. Transmission plays an important role in providing a non-

discriminatory competitive environment for all parties. The main purpose of transmission 

planning is to maintain security of supply in the most economical way. In the new market based 

environment, there are new independent stakeholders that are involved in the decisions making 

with different desires. For instance, market operators and regulators seek to encourage 

competition among market participants and provide a non-discriminatory access for all 

consumers. The main concern of system planners is to maintain and improve security of supply 

[6] in the system by alleviating transmission congestions, improving network reliability and 

flexibility. Private investors are interested in less risky projects with higher rate of return [7]. 

Power suppliers are looking for new ways to reduce their cost of operation, maintenance and 

network charges. One can easily notice that different parties seek different desires.  

In order to better account for the desires of all parties involved, here we decided to form the 

transmission planning problem in such a way that it maximizes the social welfare of all regions. 

In this context social welfare is defined as benefit of consumption minus cost of generation. It is 

a suitable economic measure as it reflects aggregated benefits of all the society (including 
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producers and consumers) same as [8], [5], [9]. In a perfectly competitive environment, both 

these approaches deliver similar results.  

The second solution is to increase flexibility of the power system locally by large scale 

integration of energy storages into the system. Energy storage mitigates the power variations by 

storing energy when there is power surplus and dispatching it back when there is power deficit. 

In [10] the economic scheduling and operation of energy storage is studied. It is shown that 

energy storage smooth the variation in the wind power output as well as increasing the value of 

wind power in the electricity market.  

Authors in [11] studied the optimal operation and management of energy storages as a price 

taker in a deregulated market. They assume operation of energy storage does not influence the 

market prices. However, this assumption does not hold for large scale energy storage in a 

wholesale electricity market. In [12] authors propose an optimization framework for sizing 

energy storage based on its optimal management in a competitive market. It shows that under 

dynamic pricing mechanism energy storage provides significant value on the electricity cost. 

Energy storage is proposed as an alternative to transmission investment. In [13] the problem of 

long distance power delivery from the wind farms to the load centers is investigated, taking a 

purely economic approach. It proves locating energy storage together with the wind farm 

increases transmission utilization and decreases investment cost of transmission. However, it 

does not address the impact of energy storage on the market prices under large scale penetration 

of wind energy.  

Optimal allocation of energy storage is studied in [14]. It proposes co-locating energy storage 

and energy storage distribution for efficient utilization of transmission capacities and more wind 

power integration into the grid. However, their work is limited to optimal allocation and 

scheduling of energy storage when the grid is fixed.  
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Problem definition: By far, expanding the transmission system is considered as one solution for 

system planners and operators to face the challenges arises from large scale penetration of wind 

production. However, the role of energy storage in grid expansion has not been studied yet. 

Based on the stated problem, the objective of this research and the research question are 

introduced as follows: 

Research objective: Study the impact of different levels of energy storage integration on 

development of a VSC-HVDC based grid with multi-terminal connection 

Research question:  

What is the impact of energy storage on the problem of Long Term Transmission Planning 

(LTTP)? That is, the impact of energy storage on: 

1. Grid design, including grid topology and transmission capacities 

2. Pricing mechanism 

3. Social welfare distribution and remuneration of every entity 

4. Changes in nodal price variations of all units, direction of power flows, etc.  

Research approach: The main objective of this study is to examine the impact of incorporating 

different levels of energy storage on the optimal grid design of a VSC-HVDC based grid. We 

take a market based approach. We introduce an optimization framework that maximizes the 

aggregated incremental social welfare minus total investment cost of transmission infrastructure, 

considering physical constraints. It is a non-linear, non-convex, multi-time period optimization 

problem. The analytical solution to the optimization problem gives the pricing mechanism, 

which is a formulation that express the relation between nodal prices of different price zones, 

power flows over interconnectors and associated transmission and congestion revenues. 

Energy storage is mainly expected to contribute in improving social welfare of onshore regions 

by increasing the penetration of wind energy into the system. We model energy storage as a not-

for-profit entity. Hence, the investment cost and operating revenue of these units are not 

considered in the problem formulation. Finally, every energy storage is co-located with the 

respective offshore wind farm next to it with an infinite transmission capacity. 

To better analyse the impact of different level of energy storage integration into the grid, we 

introduce two energy storage capacity scenarios: Unlimited capacity Energy Storage (UES) – 

idealized case – to account for the maximum impact energy storage can have on the final results, 

and Limited capacity Energy Storage (LES): realistic case. The results of these two scenarios are 

compared with the base case of No Energy Storage (NES) scenario. 

We do the simulations for a limited time period of 48hours. To investigate the sensitivity of final 

results on the selection of input data, we compare the optimization results determined for two 

different study periods of 48hours, one based on wind speeds and the other based market price 

differences. 

Contribution: This work provides two major contributions: 

1. Scientific contribution: Introduction of a novel approach in modelling and integrating 

energy storage in classic LTTP problem. The analytical solution to the optimization 
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problem also gives the pricing mechanism, which is a relation between the nodal prices 

and the power flows over interconnectors and associated congestion shadow prices. 

2. Practical implications: The results of this work provide economic insight for transmission 

system operator and system planners into the operation of a multi-terminal HVDC based 

offshore grid in the North Sea. 

Outline of the report: 
This introduction stated the problem by reviewing the literature. It also formulated the research 

objectives and approach, and highlighted the scientific contribution and practical implications of 

this study. The rest of this work is structured as follows:  

Chapter 2 provides the background on the topics covered in this thesis, which are optimization 

problems, offshore infrastructure, electricity market, and energy storage. Chapter 3 describes the 

methodology for solving the problem of LTTP without energy storage. It is followed by 

explaining our approach to incorporate energy storages into the problem formulation. The 

analytical solution to the problem of LTTP for a grid with energy storage is then presented. 

Chapter 4 explains the simulation results under different energy storage scenarios and for two 

different input sets. Chapter 5 explains the main conclusions and gives recommendations for 

future works. 
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2. Background 
This chapter presents a brief review of most of different types of most common mathematical 

optimization (programming) problems. Here we have an overview on classify different types of 

optimization problems. 

2.1 Optimization problem 
A mathematical optimization looks for the search space for one or several optima (minimum or 

maximum points) of a function. In other words, optimization problem is the process of finding 

the best available value for a function by choosing the variables within the allowed domain. 

An optimization problem has three main elements:  

1. Objective function: the quantity or the function to be optimized (minimized or 

maximized) 

2. Decision variables (Controlling variables): the set of variables which values can be 

changed (varied) to find the optimal value of the objective function 

3. Constraints: mathematical statements that put a higher or lower cap on values of variables 

and derivative functions 

If there is no constraint on the variables, the optimization problem is named as unconstrained 

optimization. In Constraint optimization in contrary, the search space is restricted by constraints. 

Here the solver looks for the optimal value of the objective function by choosing the decision 

variables with respect to imposed constraints. In constrained optimization problem, a part of the 

domain of the variables is excluded from access.  

General formulation of a constrained optimization problem is as follows: 

   
 
 ( )   

   Subject to 
  ( )      
  ( )     

 

In which x is the vector of decision variables, f is the objective function,    is the vector of 

equality constraint and    is the vector of inequality constraint. All the functions (f : RR , g: 

R R and h: RR ) are by definition continuously differentiable functions. The feasible solution 

from the set of decision variables which optimizes the objective function is called optimal 

solution (optimal point) [15]. 

 

Classification of optimization problems:  
Optimization problems are classified with respect to the specific form of their objective function, 

variables and constraints. A class of optimization problems is referred to as Linear Programming 

(LP). It includes optimization problems with linear objective function, real values of decision 

variables and linear equality and inequality constraints. On contrary to linear programming, Non-

Linear programming (NLP) contains optimization problems which have real numbers for 

decision variables but its objective function and/or some of the constraints are non-linear 

functions [16]. 
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An optimization problem is called convex if it has a convex objective function. There are 

different definitions for a convex function. One of the definitions is as follows: “function f is 

convex on an interval, if for all a and b in the interval, the line segment joining (a,f(a)) and 

(b,f(b)) lies above the graph of f” A convex optimization has a unique optimal point: its local 

optimum is also its global optimum. However, for a non-convex optimization, which has a non-

convex objective function or constraints, a global optimum is not feasible to be found. It is due to 

the fact that, either a global optimum does not exist for such a problem, or the algorithm needs 

exponential computational time to find the optimum point (number of computational steps grow 

exponentially with the number of variables.) Non-convex optimization problem has several 

optimal points, or a set of optimal points called local optima.  

Optimization problem is referred to as non-smooth if it has a non-smooth objective function or 

constraint function. A function is smooth only if that has derivatives of all orders. If not, 

different orders of smoothness can be defined. For example, a first order function is 

differentiable, and the derivative is continuous. Optimization problem is categorized as smooth, 

if it has first order smoothness. Traditional gradient-based algorithms (which use Hessian matrix) 

are only applicable to for first and higher order smooth problems.  

 An optimization problem is continues if all the variables of the optimization problem are 

continuous real numbers. On the other hand, if the optimization variables have discontinuity the 

problem falls in the category of discrete optimization. In the specific case, if the variables are 

restricted to be integers the optimization is called Integer Programming (IP). The optimization is 

referred to as Mixed Integer Programing (MIP) if it comprises both integer and continues 

variables.   
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2.2 Offshore infra-structure 

Wind energy:  

Wind energy is the available energy of wind that can be converted into mechanical or other 

forms of energy. The process of converting kinetic energy of the wind to electrical energy 

through a wind turbine is referred to as wind power generation. A wind turbine consists of 

system of blades rotating horizontally or vertically to generate electrical power. The power 

extracted by a wind turbine is given by: 

  
 

 
     

      (     ) 

Where P is the power extracted from the wind farm [W],    is the power coefficient of the wind 

turbine [W.s
3
/kg],   is the air density [kg/m

3
], A is the area swept by the rotor blades [m

2
] and   

is the wind speed [m/s]. [17] 

As equation (     ) shows, power output of a wind turbine is a cubic function of wind speed. 

Therefore, its variations influence the power output of a wind turbine significantly. To smooth 

out the effect of wind speed variations on the power output also maximizing the energy 

production while minimizing the capital cost, wind turbines are connected to each other (called 

clustered) before get connection to the grid. A wind farm is a combination of several wind 

turbines located at a specific region.  

In this work, the power output of a wind farm is derived as total installed wind capacity times 

wind availability factor (WAF).  

                     
                                                       ( ) 

WAF is the ratio of the power output of a wind farm divided by maximum wind power available 

during the hour under study.  

Wind farms can be located onshore or offshore. Onshore wind energy faced an enormous growth 

in the last decade. However, there are encouraging reasons to move towards offshore wind 

production. Offshore wind has higher average wind speed with more flat profile comparing with 

onshore counterpart. Therefore, it provides higher power production and with fluctuations 

comparing with a wind farm of the same size onshore. In addition, there are environmental 

concerns that significantly challenge more integration of wind capacities, onshore and incentives 

shift to offshore locations. For instance, every wind farms impose visual and noise which, if 

located close to residential areas, creates public residence. Therefore it is becoming more 

difficult every day to obtain permission for building new onshore wind farms, especially in the 

vicinity of densely populated areas where load centres are. This negative impact can be 

overcome by constructing the wind farm in offshore locations far from residential areas where 

large number of wind farms can be constructed. These benefits come with higher cost to end user 

consumers and higher risk to the environment. Offshore wind farms are extremely expensive to 
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build. It becomes even more severe if one incorporates the higher cost of transmission 

infrastructure that is essential to reinforce/build to transfer the produced energy [18]. 

Europe is the world leader in the offshore wind power. The first large commercial offshore wind 

farm was constructed in 1991 in Denmark, with total capacity of 4.95 MW. By the end of 2010, 

2946MW offshore wind capacity was integrated into the European grid. This number grew to 

6040MW of total offshore wind capacity distributed in 10 countries in Europe by the end of June 

2013. [19] Europe is planning to install about 48GW offshore wind capacity by 2020 [20]. EU 

member states have to make huge investments to realize these ambitious targets. Therefore it is 

necessary to conduct an in-depth investigation on developments of offshore wind farms and 

transmission capacities to obtain an economically affordable efficient solution. 

Offshore grid 
 

Wind power variability and uncertainty are two major issues that come with large-scale 

integration of wind energy into power systems. Variability of wind power output is due to 

hourly, daily or seasonal fluctuations in the wind speed.  

Wind power uncertainty arises from errors in forecasting of wind pattern [21]. One way to 

reduce the effect of these factors on the power system is to expand geographical distribution of 

the power system. The reason is, power deficiency in one region will be compensated by power 

excess in another, which itself alleviates the impact of variation of wind power output on power 

system operation. It also increases the economic use of the offshore resources and infrastructure. 

Increasing the interconnections between the countries, increases the security of supply, enhances 

international power trade and facilitates the competition in the electricity markets. 

A rising issue regarding the offshore grid expansion is in long distance power transmission. 

Offshore wind farms are located far from each other and from onshore load centres. It is quite a 

challenge to find an optimal economic solution for transmitting offshore produced power over 

long distances, from offshore wind farms to onshore regions.  

One can easily note that large quantities of offshore power will be transmitted through subsea 

cables. Due to technical reasons (charging current), AC technology tends to be less appropriate 

for sub-sea connection with distances over 60 km. HVDC cables are preferred over ac cables for 

underground and submarine applications. In general, HVDC technology is more suitable for 

transferring power over long distances. HVDC cables have negligible power loss and economic 

advantageous compared to ac transmission cables. HVDC cables do not have limitation on 

transmission distance and they can deliver large bulks of power over long distances with 

remarkably small losses [22].  

Two types of convertors are used in HVDC transmission systems: Current Source Converter 

(CSC) and Voltage Source Converter (VSC). CSCs are referred to as line commutated 

convertors. Commutation is changing current direction (transferring the current from one phase 

to another). It requires a strong synchronous voltage source in CSCs. However, VSCs are self-

commutated convertors. They have the capability of rapid power control by reversing the 

polarity of the DC cable.  
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Bulk power delivery, dynamic voltage control, self-commutated, higher controllability over 

power flow and economic advantages of VSC based HVDC transmission technology, make this 

technology appropriate for offshore grid applications. In addition, voltage source converters 

enable multi-terminal connections, which is a great advantage among other alternatives. 

2.3 Technical characteristics of power system operation  
 

This section presents an overview of HVDC power flow, economic dispatch, and HVDC based 

optimal power flow and Long Term Transmission Planning (LTTP) problems.  

2.3.1 Power flow 

In this section we briefly review HVDC power flow. In context of this work all problems are 

formulated using – so called – approximated HVDC power flow [9]. Here we start with the non-

linear HVDC power flow, and derive the linear approximation and present the physical 

interpretation of the formulation. 

Consider a system with two nodes “i” and “j”, connected with interconnector “i-j” (Figure 1). In 

our simulation, every interconnector is assumed to be composed of number of Nij identical 

parallel cables, each with capacity of KMax and conductance of gij.  

Node i Node j

gij

Tij,s Tij,r

 

Figure 1 DC Power flow in a two-node system 

From the Ohm’s law, one determines the power flow of the interconnector when power flows 

from node i to node j (at the sending end (node (i))) as: 

   
          (  

     
    

 )  (     )   

In which   
  is the voltage of node i at time t.  

Equation (        ) can be written as:  

   
  

       

 
 (  

     
  )  

       

 
 (  

    
 )
 
   (     )   

The difference between the power injected into the interconnector at the sending end and the 

power withdrawn at the receiving end gives the power losses of the interconnector: 

     
       

          (  
     

  )     (     ) 
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Assuming power losses is distributed equally over the interconnector, power transmission at the 

middle point of the line reads as: 

             
          (  

    
 ) 
(  
    

 )

 
 
       

 
 (  

     
  )  (     )  

Substituting the left hand side of Equation       with Equation       and Equation     
  respectively, one can derive the power flow equation as: 

     
               

  
          
  

 
   (     ) 

Power losses normally account for 3% of total power injected into the interconnector. By 

neglecting power losses and replacing   
   with   

 , one determines the linearized approximation 

of the power flow: [9] 

     
       

     
  

       

 
 (  

    
 )     (     ) 

Depending on the direction of the power flow Tij can be positive or negative    
       

 . The net 

power injection from node i to the rest of the network is defined as follows: 

  
  ∑   

 

  

 

   (     ) 

The impact of node i at time t on the rest of the system is captured with its net power injection 

(  
 ). It is positive if the node is injecting power intro the rest of the system and the opposite 

otherwise. 

As outlined above, in our formulations power losses in transmission system is neglected. Hence, 

one can see that for each operating step, the aggregated injection of all nodes is zero, that is: 

  
    

       
   . Hence, using the approximated power flow, the power balance 

constraint is already accounted for and is not required to be included in explicit constraints.  

The important variable in the DC power flow is the voltage magnitude. In fact the optimization 

solver seeks to find nb voltage values for each time step to determine power flows. The power 

flow over each interconnector is determined by the voltage difference between the two nodes at 

both ends of an interconnector (     ). Hence the solution to the optimal power flow problem 

is a set of voltage values for every nodes from which one can obtain the optimal power flow. For 

the specific case of HVDC power flow, in contrary to linearized AC power flow, it is not 

possible to set a known (a reference bus) value to any of the nodes (the result of OPF (see section 

2.3.3) is affected by selection of reference voltage). Therefore, any distribution of voltage value 

difference that results in an identical power flow is a set of answer for the OPF problem. There 

are infinite numbers of voltage combinations that yield same power flow as the OPF. This is the 

reason the optimization problem is non-convex. This characteristic of our OPF for HVDC system 
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lies in inherent properties of HVDC power flow which makes the optimal solution non-unique 

but identical.  

2.3.2 Economic measures 

In our formulation contribution of each zone to the rest of the system is determined by its power 

injection into the rest of system (  
 ). The injection power nets out the effect of all the generation 

and consumption units in each node, and is calculated as: 

  
    

    
  

In which   
  is the power generation and   

  is the power demand of the region. We define the 

incremental social welfare of region i at time t (   
 ) as benefit of consumption ( (  

 )) minus 

cost of generation ( (  
 )). Social cost of every region, which equals the social welfare with 

opposite sign, can be expressed as a quadratic function of   
 as: 

Δ  
   (  

 )   (  
 )    

    
     

    
      (     ) 

In which   and   are cost curve coefficients associated with node i at time t.(Figure 2 ). 

 

Figure 2 Marginal cost curve as a function of power injection of node i 

For a net exporter zone, Pi and the social cost (= - social welfare) of the region is positive.  

The derivative of the cost curve of a zone with respect to power injection of that zone gives the 

marginal price of the zone (  
 ) as follows: 

   
 (  

 )

   
    

      
    

    
      (     ) 

2.3.3 Economic Dispatch (ED) and Optimal Power Flow (OPF) 
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Economic Dispatch (ED) is the problem of finding the economic operation of a power system. It 

is the process of determining the optimum power output of the scheduled generation units to 

meet the load, satisfying the operational constraints (i.e., operational constraints of generators 

(ramp rate, min/max up and down time) and transmission lines are neglected). It can be 

formulated as a non-convex optimization problem with the objective function of optimizing an 

economic indicator (operating cost minimization, social welfare maximization) [23].  

The Optimal Power Flow problem (OPF) is the problem of finding a power flow solution that 

minimizes or maximizes an objective function considering all technical constraints into account. 

The objective function of the optimization problem can be operation cost minimization or social 

welfare maximization. OPF is a non-convex optimization problem with the economic objective 

to optimize, satisfying the network physical constraints.  

The optimal power flow problem for a DC based system has the following components: 

- Objective function: maximizing the aggregated social welfare. 

- Decision variables: squared voltage values at each node at each hour (  
 ) and number of 

parallel lines (   ). 
- Inequality constraints: constraints on decision variables and network operating limits 

(line flows, power and voltage constraints, etc.) 

In a grid with specific load and generation capacity, solving the OPF gives the optimal voltage 

values and line capacities, while satisfying the technical constraints of the power system. Similar 

to ac power flow, the problem can be formulated in its general form using approximated HVDC 

load flow. 

The analytical solution of the optimization problem, results in a pricing mechanism. Pricing 

mechanism is a formulation that express the relation between nodal prices of different price 

zones (here nodes) and congestion rents associated with interconnections connecting the zones 

through power flows. An ideal pricing mechanism is one where the power flows are only a 

function of nodal prices and congestion revenues. 

OPF is used as a transmission expansion planning tool as described in literature [24]. The 

solution to the optimization problem gives the optimal grid topology and transmission capacities 

as well as the optimal power flow for each operating hour. 

2.4 Electricity market 

2.4.1 Electricity market: from monopolistic structure to perfect competition.  
 

Electricity market shows the pattern of economies of scale in different levels, from generation to 

transmission and distribution. Traditionally, there was a local power plant responsible for power 

supply [8]. At transmission level, one single entity had the right to build and operate the 

transmission infrastructure. Therefore, the electricity industry was a vertically integrated utility, 

containing generation, transmission and distribution, with the characteristics of a natural 

monopoly at each level.  
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Recent developments in the electricity generation and raise of the small or medium scale 

generation capacities into the power system, such as renewable energies, made a move towards 

competition and deregulation in electric industry.  

 

However, establishing a competitive market which allows generators and large scale consumers 

to trade electricity requires a coherent mechanism to control the coordination between the actors. 

The pricing mechanism of such a market should reflect the relation between power trades, power 

price and associated penalty charges, so that power always flows from less expensive region to 

more expensive one. 

2.4.2 Market arrangements:  
There are two ways electricity can be trade between producers and consumers.  

Over the counter contract (OTC): OTC is a bilateral contract between the buyers and sellers. 

Traders negotiate on some terms and conditions as the basis of the contract. The contract has the 

information about the price and amount of electricity to be traded, and the time at which the trade 

should occur. The system operator collects the contacts from the traders at a set time before the 

delivery (gate closure) and manages the dispatch time of each generator to meet the demand at 

each time.  

Power exchange (electricity pool):  Power exchange has a central organization that manages the 

organization of the pool and controls all the electricity transactions. The system operator 

coordinates generation and transmission Pool enhances competition in the market. In the pool 

concept, the focus is mainly on supply side than the demand side. Generators submit bids into the 

pool determining for every hour how much electricity they can provide at a given price.  

Power exchange usually runs in a day-ahead-market. The market operator receives the bids and 

sets the prices with Locational Marginal Pricing (or nodal pricing), which optimizes the use of 

the generation unit and the transmission grid.  

2.4.3 Types of market: Day-ahead market / intra-day market  
In a deregulated environment, electricity market is operated by an independent entity called the 

power exchange.  

In Day-ahead market (DA) market parties are allowed to submit their electricity bids to the 

power exchange for the following day (next 24hr) before market closure time. The term “Bid” 

refers to an offer to buy or sell electricity in the market. Market participants have to meet criteria 

to become eligible to make bids and participate in the market. If a bid is cleared in the market, it 

brings legal obligations to the bid owner. The owner will be subject to penalties if it cannot 

deliver the service as stated in the bid. Every bid express contain information about volume of 

power the owner is willing to buy/sell and the desired price, and the starting time and duration 

the offer is valid. Market closure time is set by the regulators and differs for every power 

exchange. In Europe, it is mostly set at 12:00 hr (midday) a day prior to delivery day, for every 

weekday. After market closure, the operator informs participants that are cleared in the DA 

market, usually 3 hours after the closure time (the exact duration is stated in the regulation). 

After closure of DA market, market operator will not accept new bid from participants. 
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The intraday market creates possibility for trading after market closure of a DA market, up until 

60-75 minutes prior to physical electricity delivery time. In real-time market prices are 

determined based on the actual operation of the grid and load conditions in 5 minutes intervals. 

2.4.4 Pricing mechanism in perfectly competitive electricity market: uniform 
pricing/ pay as bid 

Uniform pricing mechanism: In a day-ahead market, power exchange receives bids and offers 

from entities and clears the market in a way to meet the demand in the following day. After the 

bids are submitted, they are sorted in ascending (descending) order to form the aggregated 

supply (demand) curve for every hour. The intersection of supply and demand curve determines 

the market clearing price (MCP). Those suppliers (consumers) that have made bids with higher 

(lower) price than the MCP will be left out the market. The rest are cleared in the market and can 

trade according to the MCP and submitted bid. Hence suppliers provide power volume as stated 

in submitted bid, but they will be remunerated based on the MCP (which is always larger than or 

equal to their submitted bid). As the price is unique for all traders in the market, this pricing 

mechanism is referred to as “uniform pricing mechanism”. The MCP equals the cost of 

producing one extra MWh power by the most expensive supplier in the market at that specific 

hour. 

Pay-as-bid pricing: Pay-as-bid auction clears in the same way as to previous scheme. However, 

participants that are cleared in the market trade power based on their bid. So pay/receive money 

based on their initial bid. In contrast to the uniform pricing mechanism, in pay-as-bid auction 

market price is not set to the bid of the most expensive generation unit, but to the specific offer 

from each supplier. Therefore every supplier received the exact amount it asks for. Under this 

scheme, all participants will attempt to predict the MCP to be able to make their bids as close as 

possible its value. Therefore, markets that are operating under this scheme encounter price 

increase and higher risk.  

2.5 Overview on energy storage technologies 

2.5.1 Classification 
Energy storage systems can provide different applications for power systems. The large scale 

(utility scale) energy storage systems can be categorized by their application into two main 

groups: Power management, or Energy management. Power Management applications, such as 

power quality control or frequency regulation, deal with short duration discharge of the energy 

storage (ES), while Energy Management applications, such as load levelling or time shifting, 

deal with relatively long duration discharge.  

These two applications can be further divided into two sub groups, based on how frequent the ES 

is used: Frequent Discharge applications, like daily load levelling, and Infrequent Discharge 

applications, such as capacity applications. 

As mentioned above, energy management applications deal with “long-duration” storage, which 

means discharge duration of more than 4hours. For long-duration ES frequent discharge 

indicates daily use of ES during one year, and infrequent discharge indicates around 20 times 

discharge in one year (almost 2times per month).  
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Power management applications involve “short duration” discharge, from fraction of a second up 

to one hour. Generally frequent discharge in these types of applications implies hundreds to a 

thousand discharges during a year, and infrequent discharge implies 20 discharges in a year. It 

should be mentioned that given numbers are just an idea, and generally they depend on type of 

the application. In Table 1 a summary of the above mentioned classification and the possible 

technology for each application is presented.  

Table 1 Energy storage classification - based on the application 

Category 
Hours of 

Storage 
Use/Duty Cycle Technology 

Long duration- 

Frequent discharge 
4 - 8 

1cycle/day 

  250 days/year 

Lead-Acid/NaS/CAES 

Pumped hydro 

Long duration- 

Infrequent discharge 
4 - 8 20 times/year 

Lead-Acid/NaS/ ZnBr/ Li-

ion 

Short duration- 

Frequent discharge 
0.25 - 1 

4 15 mins/cycle 

  250 days/year 

Flywheels/ Super Caps/ 

Pb-Acid/ Li-ion 

Short duration- 

Infrequent discharge 
0.25 - 1 20times/year 

Flywheels/ Super Caps/ 

Pb-Acid/ Li-ion 

 

Figure 3 shows different possible storage technologies used in different application, Power 

Management- short discharge time- and Energy Management- higher discharge time. It shows 

that pumped hydro energy storage and compressed air energy storage with the maximum 

discharge duration and maximum available capacity, are suitable for long duration energy 

management applications. 
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Figure 3 Storage capacity vs. charge discharge of energy storage [25] 

 

2.5.2 Characterization 
In order to decide on the type of ES technology, some chemical and physical characteristics are 

ought to be identified. This chapter elaborates the essential storage criteria. 

Capacity 
Capacity of the Chemical ES, expressed in Ampere-hour (Ah), indicates the electric charge that 

can be withdrawn from a fully charged ES. This parameter is set for specific conditions, such as 

a fixed room temperature and discharge rate. Therefore, to be more precise nominal capacity 

(CN) can be used, which is the total available Ah when battery is discharged at a certain current. 

For instance, the nominal capacity C5 implies a discharge in exactly 5 hours at a rate of C/5.  

Lifetime 
The lifetime (or time of replacement) of a storage device is the time after which the device either 

ceases to function or its performance is degraded to such an extent that it no longer fulfills its 

function (or its operating costs no longer justify its use).  In more specific studies the difference 

between technological lifetime (LT) and lifetime in service (LS) should be mentioned. 

Technological lifetime (LL) includes ageing (also called technological ageing or intrinsic 

ageing), regardless of the usage of the storage. Lifetime in service (LS) incorporates the 
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deterioration of the components in time due to the use of the device. Lifetime in service is 

depended on the number of cycles that the ES is able to operate with its maximum capacity. 

 
Energy efficiency  
In general “efficiency” of ES technology can be defined in several ways, depending on the 

application process or the elements from the system taken into account. Three types of efficiency 

can be introduced as: 

-  The instantaneous efficiencies (related to the chemical reactions in the battery, 

charge/discharge efficiency, etc.) 

- The cyclic efficiencies (defined for a complete charge cycle, enforcement during charge 

and discharge, or averaged on a representative number of cycles) 

- The yearly efficiencies (based on an extensive energy balance). 

Among these types, the most common used in the literature is cyclic efficiency, the ratio of the 

energy delivered by a system during a discharge to the energy required to recharge the storage up 

to its initial state of charge (SOC). 

The specific energy and energy density  
The specific energy, also known as weight energy density, usually expressed in Wh/kg, or 

kWh/t, is the nominal energy per unit mass. Specific energy is a characteristic of energy storage, 

depending on the materials used in it. Energy density is defined as the nominal energy per 

volume (Wh/m3). These characteristics, usually considered as critical for on board applications, 

have a significantly lower importance in the case of stationary applications. Thus, they will only 

be presented by way of illustration. 

Cost 
Cost for the storage technologies used in power applications are preferably expressed in €/kW, 

while for technologies used for energy applications is expressed in €/kWh. Technologies with 

lower capital cost per unit of energy are more appropriate to be used in Energy Management 

applications, and those with lower cost per power are better for Power Management applications 

[26]. 

2.5.3 Energy storage technologies 
In this chapter a summary of various types of mature ES technologies will be presented. It 

includes a description of each technology, specifications, grid applications and advantages and 

disadvantages among other ES technologies [25]. 

Supercapacitors 
Supercapacitors are mostly used for Power Management applications. They can perform various 

functions in electric grids such as: transmission line stability, spinning reserve, phase correction, 

harmonics suppression, and area and frequency control. Their advantages over other forms of ES 

are their long cycle life, high charge/discharge rates, no overcharge, high cycle efficiency, low 

maintenance costs, reliability, and a rated voltage independent of the cell chemistry. 

Supercapacitors are in contrast quite sensitive to overcharging.  
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Flywheel 
Flywheel energy storage systems can store energy in the form of kinetic energy of a rotating 

rotor. Flywheels are used in electric mobility applications and in smaller distributed power 

systems e.g. in UPS systems. Flywheels can support ancillary services like frequency response, 

provide short time support for spinning reserves and standby reserves. Flywheels also have 

possibilities in peak shaving in electrical power systems and in power smoothing in renewable 

energy systems. 

Conventional batteries 
Conventional battery categories today include the most technologically and commercially mature 

technologies, i.e. Lead Acid batteries (PbA) and nickel based batteries, including Nickel 

Cadmium (NiCd) and Nickel Metal Hydride (NiMH) batteries. All conventional batteries are 

commercially available on the market. High recyclability improves usability. Rechargeable type 

conventional batteries, which could be used in smart grids, are PbA, NiMH and NiCd type 

batteries. They are already used widely in end-user systems and in other grid applications. 

Li-ion batteries   
Lithium-ion batteries are expected to contribute to the energy storage in grids due to fast 

charging, light weight, and high energy density in comparison to their counterparts. The cost and 

development must be adjusted according to technological demand (energy and power). Lithium-

ion batteries are widely utilized in the portable electronics and are becoming the energy storage 

of choice for future electric mobility applications. Foreseen prospects for Lithium-ion technology 

in larger applications are significantly growing with respect to other electrochemical storage 

systems and, particularly, in combination with more innovative integration of electricity grids 

within the transport sector. 

Non-conventional batteries 
These types of batteries can be categorized into two groups: 

1. High temperature batteries: NaS, Zebra batteries 

2. Flow batteries 

NaS batteries consist of sulphur at the positive electrode and sodium at the negative electrode as 

active materials, and a Beta alumina of sodium ion conductive ceramic, which separates both 

electrodes. NaS batteries work at temperatures around 300°C. Several MW systems can be easily 

constructed. The required area for NaS battery installation is approximately one third of that for a 

lead acid battery. Also, they have long-term durability: 15 years (approximately 10−20 years) 

and in operation they have no discharge of any pollutant gases, no vibration and operate at low 

noise levels. NaS battery systems provide solutions for energy management (peak shaving), 

reliability (outage) and power quality issues. These applications increase asset utilization, 

provide alternatives to meet peak demand and improve quality of service. 

Flow batteries are a particular type of electrochemical energy storage system in which one or 

both the electro-active materials are dissolved in the electrolytes. At the moment two main types 

of flow batteries continue to be developed, i.e. Zinc/Bromine (ZnBr) and vanadium-redox flow 

batteries. ZnBr batteries have operational capabilities that make them useful as a multi-purpose 

energy storage option and can be used in various applications related to smart grid management. 
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Redox flow batteries are particularly suitable for large-scale utility applications such as peak 

shaving, back-up systems and applications coupled with renewables, such as large-scale 

photovoltaic fields. Vanadium redox batteries also have a short response time and good power 

density that makes them suitable for Power Quality applications. 

Compressed Air Energy Storage (CAES) 

Compressed air energy storage (CAES) systems are a hybrid form of storage that is used for 

large-scale energy storage. The underlying principle of CAES is to rely on the elastic energy of 

air to store electricity for later expansion, which generates power via a natural gas turbine. The 

economic and technical performance of CAES plants is expected to continue to improve. The 

large size of CAES technologies (50-300 MW of energy) and their fast ramping rates (several 

minutes) make them suitable for system applications, such as load following, frequency 

regulation and voltage control. One feature of a new generation of proposed CAES plants is that 

they may be closely integrated with wind farms, representing a means of storing additional 

power generated off-peak. 

Hydropower 

Hydropower facilities with storage are the oldest and largest of all commercially available 

energy storage technologies, being used since the 1890s. The basic principle relies on gravity to 

store energy by use of a height difference between two reservoirs. Recent advances in PHS 

technology have been mainly related to two areas: a double stage regulated pump-turbine allows 

a very high head to be used for pumped storage, which provides higher energy and efficiency 

than previously and the use of a variable speed drive allows for additional grid support, e.g. 

through frequency regulation in pumping mode, and better efficiency, flexibility and reliability. 

The main applications for hydropower storage are wholesale arbitrage and peak power capacity, 

energy balancing, the provision of tertiary and secondary reserves, forecast hedging, 

transmission curtailment, time shifting, load following etc. They are more suitable for 

transmission than for distribution applications.  



26 

 

3. Methodology 
 

In this section first, we introduce the optimization framework employed to solve the problem of 

long term transmission planning (LTTP), with no energy storage integration. It is a market-based 

approach that maximizes the aggregated incremental social welfare minus the total investment of 

the transmission infrastructure subject to physical constraints. On the basis of this framework, we 

solve the problem of LTTP under the influence of two levels of energy storage integration. Here 

we neglect the cost of energy storage. At the end, we derive the analytical solution to all three 

optimization problems and explain the pricing mechanism under each scenario. 

3.1 Transmission planning – without energy storage 
In this section, we solve the transmission planning for a grid without energy storage. We explain 

the optimization framework and derive the analytical solution to the problem, from which one 

yields the pricing mechanism as explained further. 

3.1.1 Test system specifications 

Figure 4 shows a schematic of the system under study. The system originally consists of 3 

onshore price zones and 3 offshore wind farms. Each onshore zone is a country with both 

generation and consumption. From market perspective, each onshore zone is a perfectly 

competitive market and each offshore node comprises wind generators (and no load).  

 
Figure 4 Schematic of a meshed grid without energy storage 
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The model is given the freedom to consider any possible interconnection between the regions. In 

general, for a grid with n nodes, there are  (   )    possible numbers of interconnectors. The 

system of 6 nodes has 15 interconnector possibilities, which are represented with the dashed 

lines in Figure 4. 

3.1.2 Optimization framework 
 

As mentioned before, the proposed framework solves the LTTP and optimal power flow problem 

at the same time. We form an optimization framework to maximize the aggregated social welfare 

minus total investment cost of transmission infrastructure, subject to physical constraints. Here 

the impact of each node at each time on the rest of the system is captured by its power injection 

into the rest of the system (Equation(     )). The contribution of each node on the aggregated 

social welfare is determined using the incremental social cost curve of that region which is 

represented by a quadratic function of the power injection of the region (Equation(     )). 
This formulation yields a non-linear, non-convex optimization problem. The results of the 

optimization problem include optimal grid topology, transmission capacities and optimal power 

flows over every line (through optimal voltage values). 

Figure 5 presents the social cost curve of a wind farm. The maximum power a farm can produce 

is a function of wind farm’s total installed capacity and wind speed. Here     
  express the 

power output of every wind farm for every hour as a percentage of total installed capacity. 

    
  is determined as explained in [9]. As outlined above, there is no power consumer in the 

offshore wind zones. Therefore, the incremental cost of generating power is zero for these units 

(the red line in Figure 5). Equation (     ) gives the marginal price of offshore wind farms as 

zero. 

 

Figure 5 Cost curve of offshore wind farm as a function of its power injection 

Primary assumptions: 
We form the optimization problem considering a number of technical and economic assumptions 

as follow: 

1. Markets are perfectly competitive. That is: 
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a. The information is known for all market participants.  

b. There is no “strategic behavior”. The decisions of the market players do not depend 

on each other.   

c. No network externalities exist. 

2. Transmission losses are negligible. 

3. Fix per unit cost of building the grid  

Different objective functions are proposed to solve the OPF problem (see section 2.3.3). 

However, our goal is to determine the grid design in such a way that the congestion rents to be 

collected throughout the economic lifetime of the project pay off the investment capital of 

building the grid. To do so, we define the objective function of the problem as:  

maximizing the aggregated incremental social welfare minus total transmission investment cost.  

Subject to the following physical constraints: 

1. Power limits of each node 

2. Voltage constraints 

3. Line flow constraint 

The optimization decision variables are number of parallel lines connecting node i to node j, and 

voltage square of each node at each time.  

As will be discussed later, the optimization framework is formulated using an approximated 

HVDC power flow, which neglects power losses and implicitly account for power balance 

equality constraint. 

Problem Formulation 
For a system with    zones, the LTTP reads as follows: 
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is the total power injection of node i at time t. We define   
    

  in which   
  is the voltage per 

each pole. 
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     is investment cost of transmission line connecting node i to j 

     
(  )

 is maximum capacity of each parallel cable per each pole 

   
(  )

 is the distance between the connection points of region   &  . 

    is the number of parallel cables that form an interconnector     . Total capacity of the 

interconnector is          . 

  
   

 is the minimum power injection of each unit (lower band of injected power of each region 

and should be calculated for each region). 

  
   

 is the maximum power injection capacity of each unit (upper band of injected power of each 

region). 

  
    &   

   : lower and upper band of voltage square constraint 

This constrained optimization problem is solved analytically by formulating the Lagrangian as 

follows: 
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In which     
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  ,    and     are Lagrange multipliers associated with each constraint. 

The Karush–Kuhn–Tucker (KKT) optimality conditions states any set of variables that satisfy 

the following conditions is a local solution to the optimization problem: 

  (  
     )

   
                    (     ) 

  (  
     )

    
                     (     ) 

   
         

  (       
 
  

 
 (  

    
 ))                   (      ) 

  
        

 (  
      

 
)                      (      ) 

  
        

 
(  
    

   
)                    (      ) 

  
        

 (  
      

 )                      (      ) 

  
        

 (  
    

   )                    (      ) 
                                      (      ) 

Pricing mechanism 
From Equation (3.1-8) one determines the pricing mechanism as follows: 
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Equation (      ) shows the pricing mechanism for a HVDC grid. The first term in the 

equation represents total nodal payment of every zone, the second term represents congestion 

revenue of line i-j and the last term shows the transmission revenue of all lines at time t. The 

equality shows that at each t transmission revenues is equal to the congestion revenues over all 

lines.  

The nodal price of each zone at each time is equal to   
    

    
 . Where   

  is the marginal 

cost of generation of that zone and   
 and   

  are Lagrangian multipliers associated with 

Max/Min power injections, respectively. 

Transmission investment recovery 
From equation (     )one can show that: 
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The first term of equation (      ) shows the transmission revenue that would be collected by 

the end of the economic lifetime of the interconnector. The second term represents total 

transmission investment cost of building the interconnector    . Taking a summation over all   
and   results the equality below which indicates the equality of total investment cost associated 

with building all the interconnectors with transmission revenue to be collected for all lines 

throughout the economic life time of the project: 
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Taking summation over all t in equation (      ), one can simply derive the following 

equality obtains: 
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Equation (      ) ensures the recovery of investment cost through congestion revenues to be 

collected by the end of economic life time of the project. 

  



32 

 

3.2 Transmission planning – with energy storage 
 

In this section, the problem of transmission planning when energy storage is included in the 

system is explained. We introduce an optimization framework that results in optimal 

transmission and energy storage capacities.  

3.2.1 Location of energy storage  

The grid configuration mentioned above and illustrated in Figure 4 is referred to as the “base 

case” system. We integrated the energy storages into the base case system. An important 

consideration for a grid with energy storage is energy storage allocation.  

Energy storage can be located onshore or offshore, depending on its utilization purpose. In this 

work energy storage is used as an alternative for transmission infrastructure. That is, we focus on 

energy storage for improving transmission lines utilization and increasing wind power 

penetration into the grid. Moreover, as mentioned in [14] locating energy storage at onshore 

zones may cause violating transmission line constraint. Therefore, we place energy storage 

offshore. 

For efficiently utilizing the wind energy from all three offshore wind farms, we associate an 

energy storage unit to each offshore wind farm. Figure 6 illustrates the grid with energy storage 

integration. In the figure energy storage units are shown with red circles. Each energy storage 

unit is only connected to its associated offshore wind farm with a fixed interconnector, shown in 

the figure with the red lines.  

 

Figure 6 schematic of grid with energy storage 
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When energy storage is added to problem formulation, its capacity is introduced as the third 

design variable. There are two approaches for determining the capacity of energy storage: either 

to include energy storage capacity as an independent variable in the optimization framework, or 

to calculate it as a dependent variable from the independent variables.  

In this work, we do not introduce the capacity of energy storages as a new set of independent 

variable. It’s mainly because the focus of this work is to study the impact of energy storage on 

LTTP. We model energy storage as a not-for-profit unit which contributes to the social welfare 

increase of onshore regions through increasing utilization of the offshore wind farms. Therefore, 

we are not interested in finding the optimal capacity of storage based on its investment cost and 

operating revenue. Therefore, instead of introducing new independent variable for storage 

capacity, we define it as a dependent variable.  

We propose a general formulation for energy storage, regardless of specifications of each storage 

technology (i.e. ramp rate). We model storage as a “black box” with the potential to store the 

wind power during the high wind periods (or low consumption) and send it back to the system 

during low wind (or high demand) period.  

There are two approaches to model the operation of the storage with the grid: considering energy 

storage and offshore wind farm together as a single node, or modeling energy storage as an 

independent node. In the first approach, the impact of energy storage and wind farm on the grid 

is determined by defining one power injection. While, in the second approach storage has an 

independent power injection into the system. 

 

Figure 7 Placement of energy storage  with the offshore wind farm 

Throughout this research, we have explored both possible options for modeling the storage. We 

realized that formulating the problem considering energy storage and wind farm together as one 

node results in a simpler problem formulation. However, solving that problem is computationally 

intensive (if possible at all) as the problem becomes non-smooth. Therefore, we model energy 

storages as a separate zone which is connected with infinite capacity to the respective wind farm. 

The other formulation for the problem is stated in Appendix I. 

A cost curve has to be defined for energy storages to integrate optimization framework as 

discussed in 3.2.2. 

3.2.2 Cost curve of energy storage 
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As a separate node, a power flow is assigned to energy storage. To derive the cost curve of 

energy storage, first we define a new variable (Storage Energy Content) as follows: 

Storage Energy Content (SEC) 
As mentioned before, energy storage can be used in power management or energy management 

application. In power management applications, the main purpose of energy storage is to send 

instant power to the system to control the abrupt changes. On the other hand, in energy 

management application, which is the focus of this work, energy storage saves power over time 

to dispatch it later. This power accumulation over time represents the amount of energy stored in 

the energy storage. Energy storage model deals with accumulated energy during every hour 

rather than handling instant power injection to/from energy storage node.  

Energy flow of storage during time period t is defined as: 

  
      

       (     ) 

In which   
  is storage injection power and    is the duration of the time period. If power 

injection is positive, storage is in discharging mode and its energy level declines. In the case that 

hourly time steps, storage energy change is equal to its injection power: (  
     

     ). That 

is, the terms “energy” and “power” can be used interchangeably if the time period over which the 

power is exchanged is one hour. 

To model the power accumulation over time, we define Storage Energy Content as a variable of 

time (    
 
). It represents the amount of stored energy in the energy storage by the end of each 

operating step. Storage Energy Content of each storage unit at the end of each time period 

(    
 
) is calculated by taking summation of all charge/discharge energy since the first operating 

state until the beginning the period under study (t). It equals the energy flow to the unit during 

the period (  
 ) plus energy state of the storage in the end of the previous hour (    

   
), with 

the following formulation: 

    
      

      
      (     ) 

In which     
 
 is the energy content of storage i at time t, and     

   
 is the energy content at 

the end of the previous hour. The formulation can also be written as: 

    
  ∑   

 

 

   

 ∑    
 

 

   

        (     ) 

As the above formulation shows, storage energy content is a function of the variations of power 

(energy flows) from the storage into system during operating hour under study and all previous 

ones.  

Having SEC, we can explain the cost curve of the storage as follows, considering some 

assumptions: 
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We model energy storage as a not-for-profit entity. That is, it is not modeled in a way to sell the 

power to make revenue or to pay off its investment. Energy storage sells power with the same 

price it buys. As it is only connected to the wind farm, during the charging period it buys power 

from the wind farm with zero prices. It continues the power import until it reaches its maximum 

capacity. During the discharge period, storage exports power with zero prices, until it is fully 

discharged.  

Figure 8 presents the social cost curve of an energy storage (   
 ) as a function of power 

injection (  
 ). Positive injection power shows energy storage is discharging. The discharge limit 

is its energy content at the previous hour. Negative power injection means storage is charging. 

The charging limit is the storage capacity (  ). If storage capacity is unlimited, there is no limit 

for charging storage and    goes to minus infinity. 

 

Figure 8 Cost curve of energy storage as a function of its power injection 

It can be seen that storage and wind farm have similar marginal price. Storage buys and sells 

power at zero price. The only difference is that wind farm does not accept negative injections 

(power import), as there is no offshore load to consume the imported energy. 

3.2.3 Optimization framework 
 

The optimization frameworks for the two problems of LTTP with and without energy storage are 

generally the same. That is, the two problems have the same objective functions as follows: 

   ( )   ∑∑                ∑                            

  

   

  

   

 

   

 

The decision variables for the optimization framework are also the same as LTTP without 

storage: squared voltages and (  
  (  

 ) ) and number of parallel cables every interconnector 

composed of (   ). However, the number of nodes (i) in this problem is 9 (3onshores, 3offshores 

and 3 energy storages). 



36 

 

The simplifying assumptions introduced for the LTTP problem without storage are hold for this 

problem. In addition, we have to make new assumptions to model energy storage in the grid as a 

separate node in a market based framework, as follows: 

1. An infinitely large interconnection is considered between every wind farm and the 

storage next to it. Practically, there is no physical transmission line between energy 

storage and wind farm. The infinite line and storage power flow are required to be able to 

model operation of energy storage and incorporate it into the proposed – market based – 

optimization framework.  

2. The model is given freedom to charge/discharge storage at any power rating. 

3. Storage is modeled as a not-for-profit entity. Therefore its investment cost and revenue is 

not considered in the model. 

4. Specific operational characteristic of energy storage (i.e. charge/discharge efficiency or 

ramp rate) is not considered in the model. 

The optimization constraints are the same as general LTTP problem mentioned in (‎3.1): 

1. Voltage-square constraint           
         

2. Number of parallel lines        

3. Power injection constraint   
      

    
    

4. Maximum line flow constraint     
       

 

The upper and lower band of energy storage power injection is determined from its cost curve. 

The maximum positive power injection of every storage is the maximum energy charged in the 

device previously (i.e., SEC at the previous hour (   (   ))). The negative power injection of 

the storage (charging model) can reaches up to the installed storage capacity. Therefore, for 

energy storage the third inequality constraint is: 

         
                (     ) 

Using Equation (     ) one can rewrite the right side of the inequality (     ) as: 

     
                       ∑    

 

 

   

          (     ) 

If the capacity of storage is not limited (scenario UES – section 4.2), it is calculated as a 

function of SEC at the end of the optimization. In general, we define storage capacity (  ) as the 

maximum value SEC reaches over all time, as: 

       (   
   )     (     ) 

Under the especial scenario of the limited storage capacity (scenario LES – section 4.2),    will 

be set at a fixed value and an extra constraint is required to be satisfied. Then, storage energy 

content cannot surpass the maximum installed capacity of that storage. Therefore, the extra fifth 

constraint for the problem of limited energy storage capacity is: 
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             (     ) 

Equation (3.2 – 6) satisfies the capacity limit so that energy storage is not charged more than its 

available capacity. 

Analytical solution 

The analytical solution to the problem of LTTP storage can be derived with the same approach as 

section 3.1. Here we only present the resulted final pricing mechanism. 

Under the scenario of UES, where the storage capacity is not fixed, optimization constraints and 

associated Lagrangian multipliers are similar to Equations (3.1-1) to (3.1-5). In addition, 

Lagrangian formulation and KKT optimality conditions remain similar to Equations (3.1-8) to 

(31-15)). The Lagrangian for the constrained optimization problem is: 
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 (      

   

 
 (  

    
 ))

  

   

  

   

 

   

 ∑∑  
 (  

      
 )

  

   

 

   

 ∑∑  
 (  

    
   )

  

   

 

   

 ∑∑  
 (  

      
 )

  

   

 

   

 ∑∑  
 (  

    
   )

  

   

 

   

 ∑∑       

  

   

  

   

 

  
Knowing that  

  
 (  

      
 
)    

  ∑    
 

 

   

            (     ) 

One can rewrite the term associated with maximum power injection for offshore nodes as 

follows: 

∑∑  
 (  

      
 )

  

   

 

   

 ∑∑  
  ∑    

 

 

   

  

   

 

   

 ∑∑   
  ∑   

 

 

   

  

   

 

   

         (     ) 

Applying the KKT optimality condition, one obtains the defiant ion of nodal price for every 

offshore zone as follows: 

   
    

     
    

         (     ) 

In which,    
  is the nodal price of node i at time t and    

  is equal to   
  for non-storage nodes 

and ∑   
  

    for storage nodes. 
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From equation(     ), one notice that the electricity price of hour “t”, depends on the 

Lagrangian multipliers associated with maximum power injection at that hour, and the following 

hours. That is, power injection at each hour is affected by the nodal prices in the future. 

Therefore, nodal price of energy storage “i” at hour “t” depends on the future nodal price of 

storage which clearly shows non-causality of storage price in a competitive market. 

When storage capacity is limited, one extra constraint is included in the formulation (Equation 

(3.2 – 6). The KKT optimality condition, therefore, introduces a new Lagrangian multiplier 

associated with the new constraint. 

  
        

 
(      

 
)                       (      ) 

Equation (3.2 – 9) is the KKT optimality condition for the abovementioned constraint and   
 
 is 

the Lagrangian multiplier associated with the constraint.      is a function of power injections 

of storage. Therefore, following the same method as in Equation (3.2 – 8), one can rewrite 

Equation (3.2 – 10) and derive the pricing mechanism. Under the KKT conditions the nodal price 

of energy storage for a limited storage capacity is derived as: 

   
    

     
    

     
                    (      ) 

In which    
 
 is defined as  ∑   

  
   . Therefore, for the limited energy storage capacity nodal 

price depends on the penalty factor associated with reaching the maximum capacity and 

maximum injection capacity and the associated Lagrangian shadow prices in the future. 

This formulation for energy storage, regardless of being limited capacity or unlimited, results in 

the same analytical solution as the problem of LTTP without storage (considering the new 

definition for.    
  ,    

 
). It shows that, total congestion revenue equals total transmission revenue 

collected at the end of the economic lifetime of the project, and it equals total cost of building the 

transmission infrastructure. 

∑∑∑   
       

  

   

  

   

 

   

∑∑
                      

 

  

   

  

   

                             (      ) 
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3.3 Data Acquisition 
 

Proposed optimization framework, results in the optimal grid design for a mesh grid 

configuration, consist of three onshore regions and three offshore regions.  

In order to have a realistic results, we apply the proposed framework to solve the LTTP for the 

HVDC offshore grid in the North Sea.  

Amongst all countries involved in the North Sea -Belgium, Denmark, France, Germany, Ireland, 

Luxembourg, the Netherlands, Norway, Sweden, and the United Kingdom - we select three 

countries that will have most significant impact on development of the offshore grid. Here we 

select Germany and UK due to extremely large wind power capacities they will install in the near 

future. Among other countries, Norway has a unique characteristics and being treated as a special 

case, due to large hydro reservoir capacities the country has. In general, Norway has rather liquid 

market with low average price (at least in low consumption zones: NO2, NO3, NO4). Due to 

special characteristics of the country, it is nominated as the third country into our scope.  

Modifying “a” coefficient of the cost curve  
 

To have more realistic results, we apply our model to simulated wind speed and empirical market 

data from April 2011 to March 2012. The problem is, today only a share of power trades are 

settled through power exchanges, In order for the offshore grid to better address the whole 

society’s needs, one can assume load and generation as well as aggregated supply/demand curves 

are remain similar for the next 25 years. What changes is the share of power trades through 

exchange to total power trades. For simplicity, we assume that power will be settled through 

power exchange at the time we study. This is a reasonable assumption as there is strong trend 

towards realization of pan-European power market. Hence, the “a” cost curve coefficient in the 

quadratic cost curve has to be scaled down by      according to share of power exchange of 

each country in total power trades of that country: 

                 

The share of Germany, Norway and UK power exchange from the total power trades are 42%, 

73% and 10% respectively [27]. “    ” value is accordingly similar values just to scale down a 

coefficient to make future markets more stable and liquid. 
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4. Results 
 

In the previous chapters, we explained the problem of Long Term Transmission Planning under 

the presence of energy storage. We introduced an optimization framework to maximize the 

aggregated incremental social welfare of all interconnected regions at all times minus the 

investment cost of transmission infrastructure. 

In this section, we present the results of applying the proposed frame work to the North Sea Grid. 

In order to investigate the impact of integrating storage capacity on the grid, we solve the 

optimization problem for two different levels of energy storage capacity: unlimited capacity 

(idealized case) and limited capacity (realistic case). The results are then compared with the base 

case where transmission capacities are optimized without any energy storage is present. These 

three optimization problems are referred to as “scenarios” for the rest of this work. 

This chapter explains how the input data are selected and how the different scenarios are 

compared. It is followed by simulation numerical results and discussions.  

4.1 Input selection 

The available input data of the optimization model are hourly wind availability factor (WAFi
t
) 

and cost curve coefficients (  
  &   

 ) for one complete year (8760 time steps). As the number of 

time steps increases the number of optimization variables and the simulation time increases. For 

instance, a grid with three onshore and three offshore regions has 52’575 optimization variables 

if all 8760 time steps are considered (15 possible interconnections (Nij) and 6*8760 voltage 

variables (wi
t
)), which takes indefinite time to be solved. To keep the computation time feasible, 

the number of input variables has to be reduced.  

There are different feature selection techniques that are used to reduce the number of the original 

data and at the same time keep the correlation of the data. These techniques select subsets of the 

relevant and effective features to reflect the target of each representative subset, by extracting 

irrelevant and redundant data. The irrelevant data are those which do not provide useful 

information, and the redundant data are those which provide no more information.  

However, energy storage is a causal system and the sequence of phenomena affects its operation. 

The common feature selection techniques do not reflect the causal relation of the original data 

and the clustered data. They select features identically and independently, ignoring the hierarchy 

and time dependency of the data. Therefore, these techniques are not effective when the 

sequence of the data should be maintained.  

According to this argument, we are obliged to choose a limited period of consecutive hours to 

model energy storage. For the purpose of this study we select a time period of 48 hours. It should 

be mentioned that a set of 2 days data does not reflect all the variations and characteristic of 365 

days effectively. Wind speed and market data vary significantly depending on the time of the 

year (summer/winter) and time of the day (morning/night). However, this analysis leads us to 

study the influence of the input variables (    
   and   

  &   
  coefficients) on the optimization 

results. 
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We propose two sets of 48 consecutive hours. The (technical) results of the optimization are grid 

design and storage capacities. The factor forces the model towards increasing the transnational 

transmission capacities is the price differences between the regions. Energy storage becomes 

more influential if there is large amount of wind power with high variations.  

Following the above mentioned argument we introduce two methods for selecting the input 

variables: 1. Selection based on nodal price differences between the regions 2. Selection based 

on the level of wind speed (WAF). The remaining of this section explains the procedure of 

selecting two time frames. 

1. Selection based on price differences  

Here we are looking for a set of two days with high price difference between onshore regions. 

That is, we determine the period which has the highest potential for building transnational 

interconnection. Nodal price difference gives the incentive to instructing interconnections. The 

regions with higher price are motivated to buy electricity from the regions with lower price. We 

need to identify the time period in which nodal prices have the largest difference. 

Nodal price of onshore regions is determined as: 

                
    

    
    

    
    

In which ai
t
 and bi

t
 are the cost curve coefficients, and   

  and   
 are the Lagrange multipliers 

associated with the upper and lower power injection. Before building the grid, nodal price is 

equal to   
 . Therefore, to find the period with the largest nodal price difference, we investigate 

the distances between the   
  coefficients of every two regions at each time as:  

    
     

    
  

The period which has the largest     
  value is the selection. 

 

 
Figure 9 price differences of GE-NO, GE-UK and NO-UK for 8760 hrs 
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Figure 9 shows the nodal price differences of every two regions. The blue, red and black lines 

represent the price difference of Germany and Norway, Germany and the UK, and Norway and 

the UK, respectively. From this plot one can observe that nodal price of Germany and the UK is 

most often in the same range, while Norway’s nodal price differs significantly in the periods 

shown under the red circle. 

We first find a period with a large     
  value, and then we extract a shorter period of consecutive 

48 hours which has the largest    
 . Largest price difference is recognized during the period 

between hours 3750 and 4700 has the largest nodal price differences. Here, nodal price of 

Norway is extremely lower than the other two regions. The 48 hours between hours 4012 and 

4059 is selected with the most extreme nodal price differences. 
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2. Selection based on WAF: 

To illustrate the impact of WAF on energy storage operation and grid development, we select an 

extremely windy period. Wind speed at each location can be characterized based on its average 

value and standard deviation 

To see the impact of all the regions in one value, we use the weighted average of WAF (WAF 

weighted) for the three regions, calculated by multiplying the WAF of each region at each time by 

the wind farm capacity. 

           
  

     
             

             
       

                 
 

This value is the basis of further analysis in this section. The variation of WAF weighted over 

one year is shown in Figure 10. 

 

Figure 10Wieghted WAF for Germany, Norway and the UK for 8760 hours 

We introduce two indicators for each week: the average WAF over time and the standard 

deviation of WAF. Figure 11 shows 52 weeks of the year by these two indicators. The blue line 

shows the mean value of the WAF for each week, and the red line shows the WAF standard 

deviation in each week. High mean WAF implies a windy week and large standard deviation 

implies the week with highest variations in wind speed. 
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Figure 11 Mean value and standard deviation of the weighted WAF for 52 weeks 

A representative week is expected to have high mean value and high standard deviation. Week 

50 has the highest average WAF, and week number 42 has the highest standard deviation. 

However, we are looking for a week with the maximum value in both of these indicating factors, 

which is basically a week which has the least distance from the maximum of these two values. 

We define the Euclidean distance for every week as: 

 

         √(           (      ))  (           (      ))  

The week that has the shortest distance value is selected as the extreme representative week. 

In which        is the average wind availability factor of the week, and        is the standard 

deviation of the WAF of the week. The week which has the minimum distance value is the 

selected week. 

Week 44 is defined as the windiest week of the year. In a similar way, day 5 and 6 of the week 

44 are identified as the windiest days in the windiest week. 
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4.2 Scenarios  

To see the impact of different level of integrating energy storage to the grid, we introduced three 

scenarios: 

1. Grid design with no storage (NES) 

2. Grid design with unlimited capacity of storage (UES) 

3. Grid design with limited capacity of storage (LES) 

The impact of energy storage on the more efficient utilization of the wind farms can be seen 

when infinite capacity of energy storage is available. By defining the idealistic UES scenario, we 

investigate the maximum impact energy storage can impose on the grid design. However, UES 

results in extremely large unrealistic storage capacities. We define a more realistic scenario 

(LES) and define a limited of 1GWh for the energy capacity of storage. Comparing the results of 

these two scenarios with the base case NES scenario, we determine the influence of different 

levels of energy storage capacities on LTTP. 

The problem formulation of the first scenario is the reference case of transmission planning 

where no storage is considered. It is the original problem of LTTP, explained in (section 3.1). 

Under the second scenario (UES), we determine the optimal grid design when energy storage 

with unlimited capacity is integrated into the grid. The problem formulation for this problem is 

presented in section 3.2.  

The pricing mechanism for these three scenarios is explained in chapter 3. Under NES, the 

pricing mechanism reflects the power injection at each time step. Under UES, power injection at 

each hour affects the nodal prices in future. Therefore, the price of power at each hour has the 

penalty factor of the proceeding hours. Under LES, nodal prices depend not only on the power 

injection of the future hours, but also on the capacity of the energy storage.   
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4.3 Simulation results 

The optimization framework is applied to the test system explained in section 3, for input data 

elaborated in section 4.1 and scenarios of section 4.2. The network consists of ±500 kV, 2000 

MW VSC-based bipolar HVDC cable connections. All simulations are done in MATLAB 

R2011. The optimization solver is “fmincon”, which is built-in toolbox for solving nonlinear, 

constrained optimization problems. We employ interior-point algorithm which is the choice for 

solving large-scale optimization problems.  

Solver starts searching for a local optima from an initial point provided randomly by the user. 

The search procedure stops if the solver:  

1. finds a local optima (where KKT optimality criteria is met), 

2. gets stuck in a critical point which is not local optima (KKT does not hold but first order 

derivative is zero) 

3. meets stopping criteria before it arrives at one of the aforementioned criteria 

This is a non-convex optimization problem for which, rather than a “global optima”, local 

optimal points can be found. By increasing the number of initial points we cover large part of the 

search space. In fact, we observed that the success rate of finding a local optima is quite low 

unless the solver settings (i.e. tolerance on the constraints) is very small. However, running the 

simulations with very small tolerances (with the order of magnitude of 10
-60

) is an extremely 

time consuming procedure. Therefore, we apply the following iterative procedure. 

1. generate initial points  

2. solve the optimization problem for each and every initial point 

3. sort the results in descending order of the aggregated incremental social welfare 

4. select the initial point for which the highest social welfare is achieved  

5. solve the optimization problem once again for the point with the highest social welfare 

tighter constraints 

6. check the simulation result with the analytical solution (Investment cost = congestion 

revenue = transmission revenue) 

7. if the equality does not hold, go back to step 4 

8. if the optimal point is not reached after 10 trials move to the next largest social welfare 

(step 3) and moving to step 4 again 

It should be mentioned that, if optimality criteria was not met after trying the procedure for 20 

point (the first 20 points in step 3), we stop the procedure and accept the result with maximum 

5% divergence from the analytical solution. 

Here, we present the optimal grid designs for the two sets of representative days (section 4.1) and 

the three energy storage capacity scenarios (section 4.2). We compare the grid designs obtained 

for every two sets of representative days under each and every scenario.  
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4.3.1 Input set 1: Large price differences 

Figure 12 show the optimal grid designs for the first period (high price difference) under three 

scenarios of energy storage capacity:  NES, UES and LES.  

 
Figure 12 Optimal grid design under NES, UES and LES scenarios - Input set: High price difference 

General observations: 

In all three scenarios one can recognize a meshed grid design with three types of 

interconnections: radial connections from every onshore zones to its respective offshore wind 

farm, cross border interconnection between two offshore wind farms and a direct local 

connection (with infinite capacity) between each offshore wind farm and the respective offshore 
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energy storage. From comparing the three grid designs (under each energy storage scenario), the 

followings are observed: offshore wind farm of Germany and Norway are connected to each 

other and also to the other three onshore zones. Wind farm of the UK is only connected to UK 

onshore. Eventually, there is one shore to shore connection between Germany and Norway. The 

model managed to keep the level curtailments at zero for all grid designs under all operating 

states and storage scenarios.  

No energy storage scenario (NES): 

Due to the nodal price differences, Germany and the UK are net power importer and Norway is a 

net power exporter as the arrows show in Figure 12. Nodal price of Norway is extremely lower 

than of Germany and the UK (see Table 2). Therefore, there is a large incentive for Germany and 

UK to construct large transmission capacities and import relatively cheap power from Norway.  

Figure 12 shows large radial connection capacities for the three countries. Germany and the UK, 

as net power importers, build large radial connection to deliver the available cheap wind energy 

to onshore consumers. On the other hand, Norway as a net power exporter, supplies its onshore 

cheap energy through the radial connection to offshore node and then to the rest of the system.  

Aside from the radial connections, the grid has large cross-border interconnections. Nodal price 

differences between the onshore zones before the grid is built (Ex-Ante scenario) is the 

incentives towards building these interconnections. The first column of Table 2 compares high 

price of Germany and the UK against Norway. Germany imports power from Norway which has 

lower nodal price. UK imports power from the offshore wind farms of the other two countries. 

Therefore, the cross-border interconnections create opportunities for the net importer countries to 

benefit from the cheap power produced in Norway or offshore wind farms. 

Table 2 Nodal price of onfshore and offshore regions [€/MWh] of Germany, Norway and the UK - under Ex-Ante 

(before building the grid), No Energy Storage (NES),  Limited capacity Energy Storage (LES) and Unlimited capacity 

Energy Storage (LES) Input: High price difference 

Scenario 

            Region 
Ex-Ante NES LES UES 

Nodal Price of 

Onshore zones 

Germany 
(€/MWh) 

58.35 35.19 35.19 34.42 

Norway 
(€/MWh) 

3.50 31.55 31.56 30.88 

UK (€/MWh) 49.12 36.85 36.88 36.06 

Nodal Price of 

Offshore wind 

farms 

Germany 
(€/MWh) 

0 34.40 34.4159 33.5131 

Norway 
(€/MWh) 

0 32.76 32.8834 32.3881 

UK (€/MWh) 0 36.47 36.5010 35.7078 

In Table 3 presents social welfare distribution of the three onshore regions. Under NES scenario, 

incremental social welfare of Germany and UK are positive, which shows that these regions 

benefit from building the grid. This observation is consistent with average nodal price decrease 
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in Germany and UK (comparing Ex-Ante and NES in the table). For Norway, on the other hand, 

incremental social welfare is negative. It implies Norway, as a net power exporter, provides 

benefit for the rest of the system which in turn results in a large increase in the nodal price of the 

country (compare price of Norway under Ex-Ante with NES in Table 2). 

Table 3 Incremental Social Welfare Distribution of Each Onshore Region over 25 years in billion Euros (B €) – Under No 

Energy Storage (NES),  Limited capacity Energy Storage (LES) and Unlimited capacity Energy Storage (LES) scenarios – 

Input: High price difference 

         Scenario 

Country 
NES LES UES 

Germany (B €) 128.23 128.51 133.93 

Norway(B €) -31.74 -31.84 -33.94 

UK (B €) 199.04 199.76 205.47 

Unlimited capacity Energy Storage (UES) 

Under UES scenario grid topology and power flows directions remain the same as NES: Norway 

is net power exporter, Germany and UK are net power importers. However, transmission 

capacities are different under UES.  

Comparing NES and UES in Figure 12 one observes an increase in the capacity of the radial 

connections and a decrease in the cross-border connections. This observation can be explained 

by comparing the financial results of NES and UES. We are using a market-based approach in 

which model tends to take advantage of the cheap energy by maximizing the aggregated social 

welfare of all regions minus total cost of transmission infrastructure (3.2 – 12). The zero 

curtailment level obtained for both NES and UES scenarios shows that it is economically most 

efficient to dispatch all the available wind into the system. That is, the grid is planned to be 

expanded in such a way there will be a corridor to transfer the offshore produced energy to 

onshore consumers of one the two countries (i.e., Germany or the UK. No is a pure exporter and 

has no contribution in consuming offshore produced wind) to avoid wind curtailment.  

The model understands that the onshore region are in need for cheap offshore energy to that 

extent that economically it makes sense to build such large transmission capacities, regardless of 

the longer connection distances and the higher associated costs. 

In our simulations, offshore energy storages are connected with unlimited transmission capacity 

to their wind farms under UES and LES. They are modeled as not-for-profit units and participate 

in electricity market with zero marginal price (Figure 8). Hence, they make bids to buy and sell 

the power with zero marginal price. 

When there is a power surplus offshore, the electricity price of offshore wind farms is either zero 

or exactly equals the price of offshore wind farms it is connected to -when all interconnectors are 

congested. This price is equal to bid of storage for buying electricity. Hence, in the absence of 

any competitor, storage can easily buy and store the excessive power. When there is a power 

deficit, storage offers the stored energy again at zero price. The cheap storage price ensures that 

storage stays in the market when cleared and sells the power prior to more expensive 

conventional competitors. One may realize that utilizing the offshore wind farm with a storage 
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unit makes the operation of wind farms more flexible; on one hand they are in less need for 

sending power to far locations when there is a power excess, or when there is demand deficit in 

the local country. On other, they provide more power to offer when power is in deficit especially 

to the local onshore centers. 

As the investment cost of energy storage is neglected, the model takes the opportunity to increase 

the flexibility of offshore zones by constructing as large storage capacities as required. At the 

same time it decides to increase the capacity of short distance connections (i.e., radial 

connections) and decreases the capacity of long distanced ones (i.e., cross-border connections) to 

reduce the investment cost of building the grid. One can see, the outlined amendments increase 

the share of offshore wind energy in power consumption of onshore regions during the peak load 

hours, which in turn increase social welfare even further comparing with the NES scenario. 

Table 4 Incremental Social Welfare and Transmission Investment Cost over 25 years in billion Euros – under No Energy 

Storage (NES),  Limited capacity Energy Storage (LES) and Unlimited capacity Energy Storage (LES) scenarios – Input: 

High price difference 

 
NES LES UES 

Aggregated Social Welfare(B €)  295.53 296.42 305.47 

Total transmission Investment 

Cost (B €) 
17.49 17.47 17.28 

From Table 4 one can observe that for the net importer regions (Germany and the UK), 

incremental social welfare increases from NES to UES scenario, and vice versa for the net 

exporter (Norway) .This observation is in line with the nodal price variations of these regions. 

Under UES, nodal price of Germany and UK decreases, while nodal price of Norway increases 

(Table 2) 

Table 5 Standard deviation of nodal price under Ex-Ante (before building the grid), No Energy Storage (NES),  Limited 

capacity Energy Storage (LES) and Unlimited capacity Energy Storage (LES) scenarios – Input: High price difference 

 NES LES UES Ex-Ante  

Germany 9.69 9.42 7.78 12.43 

Norway 8.54 8.03 5.06 0.86 

UK 6.97 6.79 4.30 8.40 

Nodal price variation is another significant difference between NES and UES. As can be seen in 

Table 5 under UES nodal prices are less volatile and have lower fluctuations (so called 

smoothing effect). Figure 13 visualizes the influence of energy storage on price variations of 

nodal price in Germany.  

Nodal price variations of Germany under the three storage scenarios are shown in Figure 13. The 

blue, red and green line represent NES, LES and UES scenario, respectively. One can observe 

that under UES, nodal price has smoother variations. This trend can be explained by looking into 

the operation of the storage.  
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Figure 13 Nodal price variations of Germant under No Energy Storage (NES),  Limited capacity Energy Storage (LES) 

and Unlimited capacity Energy Storage (LES) scenarios – Input: High price difference 

Energy storage is charged when the price is high and discharged when it is low. Figure 14 shows 

the charge/discharge profile of energy storage of Germany under UES scenario. The red arrows 

show whether the storage is getting charged or discharged. The positive values show that energy 

storage is at charging mode. This power flow is assumed to remain constant during each hour, 

and so is represented by red dashed lines in the figure. The blue curve shows the level of stored 

energy in the storage (    
 ) at the end of each hour. The energy level of storage increases 

constantly during charging hours. As an example, if storage constantly charges 1MW for one 

hour, at the end of the period the energy level would increase by 1MWh. Finally, the green line 

shows maximum energy level reached by the storage which we set as the storage capacity. 
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Figure 14 Energy storage charge/discharge  profile under UES - Germany 

By comparing Figure 13 and Figure 14 one may observe that when energy storage is charging, 

nodal price under UES scenario goes higher than NES scenario. In other words, energy storage 

influences the nodal prices by increasing the price at charging mode and the opposite during 

discharging. The same discussion holds for the UK as the other power exporter country. The 

relevant figures for the UK are present in Appendix II. 

The Norwegian storage has a different charge/discharge profile. As Norway is a net power 

exporter, its energy storage does not provide power for the country. Therefore, charge/discharge 

profile of Norwegian storage does not follow the nodal price variations in the country. It rather 

tracks price variations in the two – importing- neighboring countries. 

Limited Capacity Energy Storage (LES) 
The optimization simulation for LES scenario results in similar observations as UES scenario. 

Transmission capacities, nodal prices and social welfare follow the same trend as moving from 

NES to UES scenario. However, as the capacity of energy storages are fixed at relatively small 

value, the influence of energy storage is not significant. Therefore, here we limit the explanations 

to the two extreme cases (i.e., NES, UES) which show the impact of energy storage more 

effectively. 

Remuneration of offshore Wind farms and energy storages  
Here we determine the remuneration of the offshore wind farms and energy storages. 

Remuneration is the compensation the region receives in exchange of the service it provides. It is 

the aggregated amount money it gains over a period by injecting power to the rest of the system 

and read as follows: 
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Where   
   is the power injection of zone “i” (either energy storage or offshore wind farm) and  

      
  is the nodal price of that zone. 

Table 6 presents the annualized remuneration for the offshore wind farms and energy storages, in 

million euros per year (M€/yr). Under UES scenario, wind farms remuneration slightly decreases 

(1.1% for Germany, 0.8% for Norway and 2.4% for the UK). That is due to the decrease in the 

nodal prices from NES to UES scenario. This change is negligible from NES to LES scenario 

due to small influence storages have on nodal prices under this scenario. 

Table 6 Annual Remuneration of Offshore Wind Farms and Energy Storages in  million Euros -- under No Energy 

Storage (NES),  Limited capacity Energy Storage (LES) and Unlimited capacity Energy Storage (LES) scenarios – Input: 

High price difference 

               Scenario 

 

Onshore zone 

No Energy Storage 

(NES) 

Limited Storage 

Capacity (LES) 

Unlimited Storage 

Capacity (UES) 

Wind Farm Storage 
Wind 

Farm 
Storage Wind Farm Storage 

Germany (M €) 2225.11 - 2225.67 12.75 2199.96 0 

Norway (M €) 591.28 - 593.30 8.32 586.66 0 

UK (M €) 4507.62 - 4509.40 9.22 4400.68 0 

 

Remuneration of energy storages  
In spite of the great impact they have, remuneration of energy storages is zero under UES 

scenario. This observation is in accordance with the way energy storage is modeled in our 

formulation: We incorporate energy storage as a non-for-profit entity that is only beneficial to 

the society. It can be seen in equation (chapter 3- pricing mechanism) that the total payment of 

the onshore regions pays for remuneration of the offshore entities and investment cost of the 

transmission infrastructures. Therefore, for a same grid design, lower remuneration of offshore 

entities imposes lower payments on onshore zones. It would be ideal for onshore regions to have 

social welfare increase for free. This is the case under UES where storage induces a large 

increase in social welfare. It is dispatched in such a way that the revenue from selling electricity 

at high price hours recovers the cost of buying the electricity at low price hours. 

As the capacity of energy storages is limited under the LES, it is not possible for them to store as 

much energy as it is required for later use. This affects the onshore market in two ways: 

1. Induce higher nodal price in onshore regions, as less power will be available during the 

peak hours 

2. Higher investment cost of building more expensive large distanced cross boarder 

interconnectors 
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The higher price implies higher nodal payment especially during the peak hours. The limited 

capacity of storage implies that storage does not have enough power to fulfill a complete power 

cycle, in similar way to UES. Hence a part of storage cost has to be recovered through the 

society in the form the nodal payments. It is important to note that considering the investment 

cost of building energy storages based on prices of today (20 €/kWh) [25], energy storages are 

not cost effective.  

One important issue regarding energy storage investment cost is that there is not a fixed value for 

energy storage investment cost. Current large scale energy storage technologies have not reached 

their maturity in the market, so any cost that we assume as the investment cost may change 

drastically in the coming years. Moreover, todays values for storage investment costs are so large 

that incorporating them into the objective function greatly affects the design and skew the 

results. 
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4.3.2 Input set 2: High Wind 

This section presents the optimal grid designs for the second set of two representative days 

(section 4.1) under the three energy storage capacity scenarios (section 4.2).  

Grid design 

Figure 15 shows the grid design for the first input set of the two windy days in January. The sub 

figures a, b and c are associated with the three energy storage scenarios: No Energy Storage 

(NES), Unlimited Energy Storage capacity (UES) and Limited Energy Storage capacity (LES).  

The very first observation from the figures is, for all storage scenarios, the optimization model 

opts for radial connections from offshore wind farms towards the respective onshore regions. 

Besides, as the arrows show, all three onshore regions are net power importers under all energy 

storage scenarios. 

 
Figure 15 Optimal grid design under NES, UES and LES - Input set: High wind 



56 

 

The radially connected grid topology implies that there is no incentive for the regions to build 

cross-national transmission capacities. The motivation towards cross-national power exchange 

comes from nodal price differences. As this set of input data is selected based on the wind 

abundance (so called wind availability factor (WAF)) and not the price differences, it is observed 

that for the selected period the price difference are small.  The best optimal design the model 

derive is the radial plotted in the figure above. 

No Energy Storage (NES) 
One may note that under NES, every radial interconnector has a capacity equal to the maximum 

power generation of the associated wind farm Therefore the wind farms are subjected to no 

power curtailment.  

Unlimited Capacity Energy Storage (UES) 
Similar to the first input set (4.1.1), the capacity of interconnectors increases in under UES 

scenario. The largest increase in the capacities is for Norway, with 447%, followed by of the UK 

with 64% increase, and Germany with 10%. Moreover, the model assigns extremely large 

capacities to energy storages under UES scenario as follow: 56GWh for Germany, 57.44GWh 

for Norway and 134.5 GWh for the UK.  

When energy storage with 57.44GWh capacity is connected to Norwegian offshore wind farm, 

the capacity of the associated connection is increased. It implies that onshore region of Norway 

imports more power compared to NES scenario. The same observation can be hold for the other 

two countries. It can be said that integrating energy storage into the grid encourages higher 

penetration of wind production in onshore zones. The large import under UES scenario induces 

an increase in incremental social welfare of all onshore zones (see Table 9) and a decrease in 

their average nodal price (Table 7) compared to NES.  

Limited Capacity Energy Storage (LES) 
Under LES scenario, capacity of radial interconnector in Norway increases by 37% comparing 

with the NES scenario. On the contrary, the capacity of radial interconnectors of Germany and 

the UK remain more or less intact.  It shows that there is no incentive for Germany and the UK 

to import more power from the offshore wind farms. Limited capacity of energy storage (1GWh) 

is not as influential as offshore wind capacities are in determining the final design of the grid.  

As Table 9 shows, incremental social welfare of Germany and the UK follow a similar trend as 

to those explained for high price difference period. That is, building the grid results in lower 

market price in onshore regions. Integrating offshore storages reduce the price slightly further.   

On the other hand, transmission capacity of Norway increases by 1GW from NES to LES 

scenario. This increase is exactly equal to the maximum power the respective energy storage 

provides (the power that the energy storage with 1GWh is able to provide by discharging its total 

capacity in one hour). As Norway’s offshore capacity is not very large (2GW), the country 

imports more offshore wind power with lower price to decrease its average price (see Table 7) 

and increase its social welfare (see Table 9). 
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Table 7 Nodal price of onfshore and offshore regions [€/MWh] of Germany, Norway and the UK - under Ex-Ante (before 

building the grid), No Energy Storage (NES),  Limited capacity Energy Storage (LES) and Unlimited capacity Energy 

Storage (LES) Input set: High wind 

Scenario 

            Region 
Ex-Ante NES LES UES 

Nodal Price of 

Onshore zones 

Germany 
(€/MWh) 

58.04 38.53 38.51 38.00 

Norway 
(€/MWh) 

50.08 42.50 42.87 43.62 

UK (€/MWh) 48.39 32.96 32.95 31.07 

Nodal Price of 

Offshore wind 

farms 

Germany 
(€/MWh) 

0 37.41 37.21 36.88 

Norway 
(€/MWh) 

0 41.18 45.04 42.30 

UK (€/MWh) 0 32.58 32.61 30.69 

 

By comparing the average Ex-Ante and NES price in Table 7, one observes decreasing trend in 

average nodal price of Germany and the UK against level of storage integration. When onshore 

region of Germany and the UK is connected to their respective offshore wind farm radially, large 

amount of wind power with low price is fed into the onshore region which causes a decrease in 

the nodal prices. However, the average nodal price of Norway does not change when the region 

is connected to the wind farm.  

Table 8 shows the standard deviation of the nodal prices for the three energy storage scenarios 

(NES, LES, and UES), as well as for the scenario when the grid is not built (Ex-Ante). 

Comparing NES scenario with Ex-Ante, one observes that in this period of time, building the 

grid with no storage, or with limited capacity of storage does not have a noticeable influence on 

the price fluctuations. However, when energy storage with unlimited capacity is integrated into 

the grid, there is a significant drop in the standard deviation of the nodal prices  

 
Table 8 Standard deviation of nodal price under No Energy Storage (NES),  Limited capacity Energy Storage (LES) and 

Unlimited capacity Energy Storage (LES) Input set: High wind 

 

 

 

 

 

 

 

  

              Scenario 

Region 
Ex-Ante  NES LES UES 

Nodal Price 

Standard 

Deviation 

Germany 
(€/MWh) 

10.70 10.87 10.14 4.77 

Norway 
(€/MWh) 

22.44 22.44 22.14 10.91 

UK (€/MWh) 14.12 13.11 12.79 2.45 
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Social welfare and transmission investment cost  
 

Table 9 shows that integrating more higher level of energy storage increase the aggregated 

incremental social welfare of all regions. In contrary to the previous case, here higher level of 

energy storage integration increases the investment cost of building the grid as well. The reason 

is, here we only have radial connections. Increasing the capacity of offshore radial connections, 

increase investment cost of building he grid. However, in this case there is no cross boarder 

capacity to be excluded or weakened, therefore the investment costs increase up to 100% 

Table 9 Incremental Social Welfare and Transmission Investment Cost over 25 years in billion Euros – Under No Energy 

Storage (NES),  Limited capacity Energy Storage (LES) and Unlimited capacity Energy Storage (LES) Input set: High 

wind 

         Scenario 

Country 
NES LES UES 

Aggregated Social Welfare 

(B €) 
257.5 263.1 290.9 

Total transmission 

Investment Cost (B €) 
0.289 0.274 0.456 

 

Table 10 presents the incremental social welfare distribution among the three onshore countries 

for the three storage integration scenarios. As outlined above, all countries are net power 

importers and so benefit from building the offshore grid. Once again, increasing the storage 

capacities reinforces the radial connections and increase the utilization of the radial connection to 

a large extent.  

 
Table 10 Incremental Social Welfare Distribution of Each Onshore Region over 25 years in billion Euros – Under No 

Energy Storage (NES),  Limited capacity Energy Storage (LES) and Unlimited capacity Energy Storage (LES) Input set: 

High wind 

         Scenario 

Country 
No Storage 

Limited Storage 

Capacity 

Unlimited Storage 

Capacity 

Germany (B €) 137.2 123.8 129.1 

Norway(B €) 0.00 18.4 28.6 

UK (B €) 120.3 120.9 133.2 

 

 

The importance of the time period selection can be well seen by comparing the results of the two 

representative input sets. One can recognize a large difference in the grid design: Under the high 

wind scenario the design is radial connection topology with large local transmission lines 

connecting each offshore wind farm to its associated onshore region. While, for the high price 

difference scenario the design is mesh grid topology, in which regions with higher price 

(Germany and UK) have more tendencies to import power from the region with lower nodal 

price (Norway).  
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Besides the overall grid configuration, capacities of the regional “onshore to wind farm” 

interconnector vary largely from one representative input data set to another. For the first set of 

input, two windy days in January, capacities of “onshore to wind farm” interconnectors are larger 

than for the second period, two days in September with lower average wind speed. The 

difference is more significant under the UES scenario. 
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5. Conclusion 
Variable and non-dispatchable nature of wind energy imposes substantial challenge for power 

system planning and operation. Depending on the economic potential and considerations, 

transmission reinforcements or energy storage integration are considered as viable solutions. An 

optimal solution is expected to create new capacities for conducting cross-national power 

exchange and exploit offshore wind energy as efficiently as possible, at the same time, contribute 

positively to social welfare of onshore price zones. 

In this work we take a market based approach to investigate the influence of large-scale 

integration of energy storage on long term transmission planning of VSC- HVDC based grid. We 

introduced a multi-time period static non-convex optimization framework considering physical 

constraints of the system. We model energy storage as a not-for-profit entity and neglect its 

investment and operational cost. To better illustrate the impact of storage on grid development, 

we compare three different scenarios for energy storage capacities: Unlimited capacity Energy 

Storage (UES) – idealized case – and Limited capacity Energy Storage (LES) – realistic case – 

and No Energy Storage scenario (NES) – base case.  

The optimization solver determines the optimal grid topology and transmission and energy 

storage capacities. It also solves the problem of optimal power flow and determines power 

dispatch of every price zones for every hour. One remarkable feature of the proposed approach is 

that it accounts for all operating states in one go. Therefore, it captures the impacts of the past 

and the future operating states on energy storage operation. 

The analytical solution to the optimization problem gives the pricing mechanism. It is a 

formulation that expresses the relation between nodal prices, power flows over interconnectors 

and associated congestion shadow prices. Formulating the problem as stated above, shows that 

for an optimal grid design transmission revenues will thoroughly recover investment cost of 

building the grid till the end of economic life time of the project. It also shows that under UES 

scenario, the nodal price of the storage at each hour is affected by the marginal prices of that unit 

in the future (proceeding hours). That is, charge/discharge cycle of the storage in the future hours 

influences its nodal price. Under LES, the nodal price of energy storage at every hour depends on 

the penalty charge associated with reaching the maximum storage capacity on Lagrangian 

multiplier associated with constraint regarding maximum capacity of energy storage as well as 

on the future nodal prices.  

The grid topology is observed to be highly sensitive to the input selection. The model determines 

a radial topology for the high wind period and a meshed grid for the high price-difference period. 

Transmission capacities, on the other hand, are mainly affected by level of storage capacity. The 

abundant wind, available during high wind period, results in the radial topology and makes the 

onshore zones net importer of energy. Increasing the storage capacity makes a small increase in 

social welfare and decrease in average nodal prices. It also results in an increase in the capacity 

of radial connections by about 447% (Norway, under UES scenario). 

For the meshed grid design determined from the high price difference period, however, we 

observe a trend towards constructing larger radial connections between each country and its 

respective offshore wind farm with the increase in the level of storage integration. The cross 

border connections, in an opposite way, are weakened. Therefore, integrating more storage 



61 

 

capacity results in less meshed and more radial grid design. It implies that countries would be 

less interdependent as more energy storage capacity would be integrated into their national 

power system. 

During this period, Norway is a net exporter and therefore significantly loses benefit. Even the 

large Norwegian storage capacity under UES scenario does not alter the situation. It rather 

contributes to help the country providing relatively cheap energy for Germany and the UK. 

These two countries, on the other hand, are pure importer of energy.  

Integrating energy storage in general results in higher social welfare and lower nodal prices in all 

regions, including offshore nodes. It also results in lower remuneration for the offshore wind 

farms. Moreover, it flattens the price profile of onshore regions, so make the nodal price more 

predictable.  

The discussion on investment capita of energy storage shows that it should be less costly to be 

cost effective. With current market prices, energy storage is not economically efficient to decide 

on future development plans of a grid, with regard to the contribution of energy storage systems 

on market operation. 

The proposed market mechanism provides an economic insight into the operation of a multi-

terminal HVDC offshore grid. The results support transmission system planners and private 

investors on their decisions regarding the size of transmission and storage infrastructures.  

In the future we would like to study the impact of integrating energy storages on operation of 

intraday and balancing markets. We would also like to investigate the impact of storage on social 

welfare increase of onshore zones for a given grid design. 

The proposed methodology is computationally costly. It is not applicable to real world problem 

unless the computation burden be kept low by reducing the size of the input set to the solver. It 

can be done through a clustering algorithm that determines the most representative operating 

states at the same time, maintain the temporal order of occurrence of events. 

Finally, it seems reasonable to derive a more accurate mathematical model of energy storage that 

reflects the technical difference between different storage technologies. Also, the model for 

energy storage can be improved by employing a more robust optimization approach that 

accounts for inter-temporal constraints on generations (e.g., ramp rate). 
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Appendix I 
 

Energy Storage and Wind Farm as a Single Node (Integrate ES into the offshore wind 
farm node) 
 

We incorporate energy storage to save the excess not-dispatched wind power during high wind 

hours, and use it during low wind hours. Energy storage charge and discharge depends on wind 

farm power generation and dispatch. The amount of energy used for storage charge/discharge is 

referred to as wind power surplus (  ( )) in our formulation. If wind power surplus is positive 

storage is charging, and if it is negative it is discharging. In each time step this wind power 

surplus is calculated depending on power generation and injection.   

For each time step, wind power surplus is a variable of the available wind at that time step 

(Pi(t)), injection power from the wind farm at that time step (PG(t)), and the maximum allowed 

wind curtailment (MAC). For each time step, the model has the freedom to curtail maximum 

amount of (1-MAC) * PG(t). During the high wind hours, after applying this curtail to the 

generated power, the extra wind power that is not dispatched during that time step will be sent to 

the storage.  

 

 which value is calculated as: 

  ( )    ( )  (     )    ( ) 

If the injection power is within the window of allowed curtailment, (1-MAC)PG<Pi<PG, wind 

power surplus which should be sent to energy storage gets zero value. Therefore, energy storage 

will be charge or discharge during that time step. 
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During low wind hours the value of injection power is more than the value of wind generated 

power. In those time steps, wind power surplus will get negative value and energy storage will be 

discharged with   ( )    . Value of   ( ) is calculated as: 

  ( )    ( )    ( ) 

 

Energy storage accumulate this power surplus over time. By the end of each time step energy 

level of the energy storage, referred to as storage energy content (SEC(t)) in this work, is 

calculated as: 

   ( )     (   )     ( ) 

In which SEC(t) reflects the current level of stored energy in the storage by the end of period t, 

and SEC(t-1) reflects level of stored energy in the energy storage at the beginning of period t.   
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Appendix II :Plots 

Nodal price variations for Norway and the UK, under NES, UES and LES, for input set1 
(high price difference) 
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Storage Energy content (SEC) for Unlimited Energy Storage scenario (UES) for input 
set1 (high price difference) 
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Storage Energy content (SEC) for Limited Energy Storage scenario (LES) for input set1 
(high price difference) 
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