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Abstract

Heat pumps represent an effective technology to convert electrical energy to thermal energy through
the expansion and compression of a refrigerant. Heat pumps are becoming increasingly more efficient
which decreases energy consumption. However as heat pumps are getting increasingly more efficient,
complexity is also increasing which leads to failures.

GEA is one of Europe’s largest providers of industrial heat pumps, delivering a variety of different
industrial heat pumps for food production, breweries, waste heat recovery, and thermal power plants.
As industrial heat pump systems are becoming increasingly complex, so is the task of detecting faults
in the systems. Whenever a heat pump breaks down it is challenging to see what the reason for the
failure is without visual inspection. A typical service engineer will have data from over 20 sensors, each
with over two and a half million measurement intervals, to inspect and look for the cause of failure.
Visual inspection of the heat pump systems can only be done by experienced engineers who knows
exactly what to look for and where to look for it.

As heat pumps have been developing so has the sensor technology and computational resources avail-
able in modern computers. Over the last decades the price of sensors has decreased rapidly while the
capability and reliability of sensors has improved. The computational power of modern computers has
increased significantly while the price for these resources has decreased.

Several other industries have, with the development in sensor technology and computational power,
investigated the possibilities of implementing Fault Detection & Diagnosis (FDD) programs to automat-
ically analyze sensor data in order to detect failures and diagnose the failure cause. FDD programs
were previously limited to critical processes, for example power plants, aerospace, or national defence.
They were expensive programs due to the sensor requirements, the computational resource require-
ments and the development costs. However, as the price of sensors and computational resources has
been decreasing, FDD is becoming increasingly more popular for less critical equipment. For the past
two decades FDD programs have been developed for different Heating, Ventilation, Air-Conditioning
and Refrigeration (HVAC&R) equipment with a special focus to refrigeration (Katipamula and Brambley,
2005a).

This project aims to develop a FDD program for GEAs industrial heat pump systems. Following a
literature study it was concluded that thus far, FDD programs have not been utilized for heat pump
systems of this complexity. It was seen that most FDD programs use a quantitative, qualitative or pro-
cess history based approach to detect faults. Quantitative FDD programs aim to design a digital twin
of the system at hand based on physical relations, and compare measured values to defined values for
faulty or fault-free operation. Qualitative FDD programs aim to mimick the behaviour of system experts
and base decisions on previously seen failures and cases. Process history based FDD programs aim
to learn how systems should ideally behave through an abundance of operational data, and compare
systems to sampled data (Venkatasubramanian et al., 2002b).

The FDD program for GEA uses a qualitative approaches for all faults where expert knowledge is
available. For faults not seen before, a process history based approach classifies operation as faulty or
fault-free. The complexity of the faults and the system do not allow for a quantitative FDD program.
A predefined list of in total 23 faults was agreed upon, the FDD program further aims to detect all 23
failures and diagnose the failure cause.

The project is meant as a proof of concept for GEA. By proving that an off-line FDD program is possi-
ble, GEA can ultimately implement the algorithms used in this off-line FDD program in to the control
system of the heat pumps to increase the reliability of their heat pumps and detect faults as they are
occurring.
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1
Introduction

Heat pumps are an effective technology that efficiently drives the transfer of heat. Industrial heat
pumps are becoming increasingly popular because several industries have large heating requirements
at relatively low temperatures, which can be achieved by heat pumps in an efficient way. Heat pumps
use the heat available in stable heat sources at relatively low temperatures. This heat source evaporates
a refrigerant with a low boiling point in an evaporator. The now gaseous refrigerant is compressed in a
compressor driven by an electric motor which increases the temperature and pressure and adds energy
to the refrigerant. After the refrigerant is compressed it goes through a Heat Exchanger (HEX) called
the condenser. Afterwards, it transfers its latent and sensible heat to a secondary fluid which exploits
this heat at a higher temperature than the heat source. The refrigerant then goes through a thermal
expansion valve where the pressure is decreased, before the refrigerant again enters a HEX where it is
evaporated, taking heat from the stable heat source. This process is illustrated in Fig. 1.1. Industrial

Figure 1.1: Simplified schematic of a standard heat pump setup. This illustrates the scope of the heat pumps considered for
this project. The refrigerant loop, the incoming and outgoing flow of the heat source and heat sink, and to some extent the

electric motor driving the compressor and the shaft coupling them.

heat pumps are relatively complex systems, thus whenever a fault is imposed on an industrial heat
pump it is time demanding and costly to repair it. Faults may require shutdown for several days, and
expert engineers analyzing the heat pump to diagnose faults. Sensors in heat pump systems are as
of today mostly used for limit checking to ensure safe operation through control systems. Heat pumps
are monitored and shut down if certain values exceed the design specification, but the reason for the
values reaching beyond defined limits cannot be diagnosed properly. For example a control system
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can detect that the discharge pressure in the compressor of a heat pump is too high, and shut down
the heat pump, but the control system is not able to diagnose why the pressure was too high.

Fault Detection and Diagnosis (FDD) programs aim to automate the detection and more so the di-
agnosis of faults in different systems through data analysis programs. FDD programs connect the
sensor data being logged to the actual physical fault. However, as of today FDD methods are mostly
applied to critical and costly equipment to increase safety and decrease the costs associated with not
operating (underachieving equipment). But with the decreasing cost of sensors and the decreasing
cost of computational resources it is becoming increasingly more viable to perform FDD for less critical
and costly equipment.

1.1. Project Description and Problem Boundary
The aim of this project is to design a FDD program for GEAs industrial heat pumps to lessen the time
and effort required to perform maintenance. Fig. 1.1 shows the boundary of the heat pump systems
considered. The refrigerant loop is considered as a whole, while the flow of the heat sink and source
is only considered by an input and output. Lastly, the electric motor driving the compressor and the
shaft coupling the two are considered to some extent, however the analysis is limited by the variables
measured.

Figure 1.2: One of GEAs industrial heat pumps, functioning as a water cooled heat pump.

1.1.1. Heat Pump Systems Considered
The industrial heat pumps from GEA are mostly used in production plants and food processing plants.
The heat pumps are usually a part of a larger more complex production scheme where cooling and
heating are required. Due to this the heat source and the heat sink of the heat pump system is usually
connected or coming from another process. GEA also produces refrigeration plants to provide cooling
for processes, they can use their heat pumps as an add-on technology to their own refrigeration plants.
By doing that, GEA can deliver a system that can support heating at temperatures up to 120 ∘C and
cooling at temperatures down to -20 ∘C. The heat pump will use the heat from the refrigeration plant
as a heat source, making the heat pump dependent on the operation of the refrigeration plant.

Three different types of heat pump systems are considered for this project. A heat pump as an add-on
to refrigeration plants with an open and a closed configuration of the HEX between the heat pump
and the refrigeration plant, and a water cooled heat pump. These heat pumps are all powered by two
different piston compressors. Fig. 1.2 is an example of a water cooled heat pump. The add-on heat
pump systems apply heat from the refrigeration plant in an evaporator, where one side has a refrig-
erant evaporating (the heat pump side) and the other side has a refrigerant condensing (refrigeration
plant side). Furthermore the evaporator could either be an open or closed HEX for the add-on heat
pump where an open configuration is illustrated in Fig. 1.3. The closed configuration keeps the two
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streams separated as later illustrated in Fig. 5.7. For the scope of this project it was decided to focus
on the heat pump systems and not look into the refrigeration plant.

Typical applications of GEAs industrial heat pumps are breweries, dairy plants, food processing and

Figure 1.3: Simplified schematic of a heat pump functioning as an add-on to a refrigeration plant, with an open type HEX
mixing the refrigerant from the refrigeration plant and the heat pump system.

waste heat recovery. An example of the add-on heat pump is Snow World in Zoetermeer in the
Netherlands. Here GEA has a refrigeration plant creating the necessary conditions for an indoor skiing
hill, while using the heat from the refrigeration plant to provide hot water for showers and cleaning.

Measured Variables
There are in total 23 variables that have to be measured to detect all the faults later introduced in
section 4, 5, and 6.

The electric motor has a frequency converter between the motor and the electricity grid that con-
verts the grid frequency of the current and the voltage to that of the electric motor. This frequency
converter also measures certain values. The motor current is measured as an input to the motor in the
frequency converter. The rotational speed of the motor is measured as the requested rotational speed
from the control system of the motor, i.e. not the actual rotational speed. The torque measured is
the theoretical torque of the shaft based on the current consumed by the motor. The motor power is
measured in the frequency converter as the power going into the motor not considering its efficiency
or the friction losses in the shaft connecting the motor to the compressor.

All pressures and temperatures are measured through temperature and pressure transmitters and
sensors in the heat pump system. The pressure measurements are accurate without any time de-
lay. The measured temperatures are prone to the thermal mass of the system and the sensor. For
the temperature sensor to pick up on changing temperatures, the sensor needs to reach the same
temperature as the fluid volume surrounding it. Temperatures are not uniformly distributed, thus the
temperature experienced by the sensor might not be the same as in the rest of the system due to the
heat transfer abilities of the medium. The issues with the thermal mass of the fluid volume result in an
observed time delay in the temperature measurements. The measured temperature will often be the
temperature experienced in the heat pump system several seconds earlier. However, the pressures
are uniformly distributed and the sensor picks up on changes as they occur.

1.1.2. Prediction Tools
GEA has developed models that can predict the performance parameters of the compressor based
on regression models from process history data in a compressor tool. The models are derived from
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laboratory measurements of different heat pumps and compressors. The prediction tools can be used
to compare measured data to predicted data of different measured variables in the heat pump. The
models deviate from the measured data due to the general fit of the regression models, and due to
noise and sensor uncertainty. The models are based on a black-box approach, which will be further
discussed in section 2.

The prediction tool requires the design characteristics of the compressor and the running conditions of
it. The outputs from the model include among other values the power lost to friction in the shaft, the
refrigerant mass flow, the required power to drive the shaft, the delivered condenser heat, and the oil
crankcase temperature.

1.1.3. Objective of FDD Program
The heat pump systems of interest are relatively complex systems which are prone to a number of
different failure modes. Some failure modes are almost impossible to detect upon visual inspection.
An example of a heat pump plant from GEA is shown in Fig. 1.4. Some faults can be present in the
heat pump system without the heat pump operator noticing a different behaviour. The complexity of
the systems do not allow for manually analyzing the performance data, as the data files logged from
operation record over 20 variables usually every second of operation. At the instance a heat pump op-
erator notices unusual behaviour, the fault could have been propagating over the past month. Hence
the heat pump operator would have to analyze data containing approximately 20 variables for almost 3
million time steps to look for irregularities. If none of the known and defined faults are apparent in the
heat pump system, there could still be a previously unknown failure present in the heat pump system.

The objective of this master thesis is to design a FDD program which can automatically detect and

Figure 1.4: An industrial heat pump system delivered by GEA used as a water cooled heat pump planned to be operated for
waste heat recovery of heat from the London underground.

diagnose faults in GEAs industrial heat pumps based on the data measured by sensors in the heat
pump. It is intended that the FDD program will analyze the data from heat pump systems and com-
pare it to a database of known fault trends, and draw conclusions based on the similarity between
the database trends and the recorded data. The specific requirements of the FDD program imposed
by GEA can be seen in the following subsection where the problem and the problem boundaries are
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defined.

Most faults previously seen in the heat pump occur on a system level, i.e. inside the refrigerant
loop of the heat pump. A list of 23 faults was agreed upon as the scope of this project, these were the
23 most commonly occurring faults, where the fault symptom was well known. A detailed description
of the faults, the data available from those faults, the fault symptoms, the fault recognition algorithm,
and the results of the FDD program for the individual fault will follow in section 4, 5, and 6.

1.2. Desired FDD characteristics
FDD programs are usually evaluated on the ten different parameters in Table 1.1 (Venkatasubramanian
et al., 2002b). FDD programs can be constructed in multiple ways, thus it is vital for clarity to have
a set of parameters that the program can be evaluated against. Each parameter in Table 1.1 is rated
with ”+”, ”++” or ”0” to define how important it is for GEAs FDD program. ”++” means it is absolutely
demanded of the program. ”+” symbolizes that it would be a nice asset to the program, but it is not
demanded. ”0” symbolizes it is not relevant for GEAs FDD program.

Table 1.1: Common factors to evaluate FDD programs on. The column furthest to the right shows how important each factor is
for GEA.

Quick detection
and diagnosis

The FDD program should be able to quickly detect and diagnose faults before any serious
damage is imposed +

Isolability The FDD program should be able to tell different faults apart and isolate the imposed fault +

Robustness
The FDD program should be able to block out noise and uncertainties from measurements, so
that it does not give false alarms or misses faults. 0

Novelty
identifiability

The FDD program should be able to classify faulty and fault-free operation, and when faulty
it should be able to classify if it is a known fault or not. +

Classification
error estimate The FDD program needs to be designed so that the operator is confident in its findings. 0

Adaptability
The FDD program should be able to adapt to physical system changes and to different
systems without needing much re-programing. ++

Explanation
facility

The FDD program should provide an explanation on how the fault developed and propagated
into its current state. ++

Modeling
requirements

The FDD program should not require too much modeling efforts if a quick deployment is
desired. 0

Storage and
computational
requirements

The FDD program should not require a large computational effort as it will make it slower
and more costly, but models which are less computationally demanding often require a
higher storage capacity.

0

Multiple fault
identifiability

The FDD program should be able to diagnose multiple faults occurring at the same time, which
might prove difficult due to their interacting nature 0

Regarding the first point in Table 1.1, ”Quick detection and diagnosis”, it is only denoted with a single
”+” as it is not important at this point for GEA. However it is worth noting that GEAs ultimate goal is to
have a FDD program integrated in the control system of the heat pump that can analyze the system
on-line and detect faults as they occur, this will be further explained in subsection 2.2. For the scope
of this thesis however, the constructed FDD program will analyze previous data explicitly.

The ”Adaptability” is especially important as this FDD program is meant for three different heat pump
systems that can all be fitted with two different compressors. They are all industrial systems with
different applications, thus within these three types no systems are alike. The ”Explanation facility” is
meant to provide the heat pump operator with an explanation on how the fault developed and what
the cause was rendering it more important than other factors.

1.2.1. Requirements of the measurements
For the FDD program to detect all the defined failures in the heat pump system it is dependent on
having accurate measurements of 23 variables. The faults occurring during the compressor or heat
pump startup, require a measurement interval of 1 second as indicated by Table 1.2, as the failure
trend is apparent for a few seconds only. It is important to have a clear picture of which variables
are needed for the detection of each fault. Table 1.2 shows which variables are needed for particular
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faults. Table 1.2 also indicates the required measurement interval for each fault and it is assumed that
the FDD analysis tool will follow this measurement interval. In the same table it is indicated for which
heat pump system and which compressor type the fault is occurring. The different compressor types
will be further explained in section 3 and section 4.

Table 1.2: All variables needed for a complete FDD program to detect the faults outlined in section 4, 5, and 6. The ”Y” marks
that the certain fault requires the certain variable, the faults are labeled by their respective subsection. The required time step
interval for Fault 4.7 will be further discussed in subsection 4.7, it is due to variations in the rotational speed of the motor. The
period of occurrence marks when the fault can be detected where ’SU’, ’SD’, ’SS’ and ’O’ stands for startup, shutdown, standstill
and operation of the heat pump compressor respectively.

Variable/Fault 4.1 4.2 4.3 4.4 4.5 4.6 4.7 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 6.1 6.2 6.3 6.4 6.5
Compressor
Prediction Tool
Dependent

Y Y Y Y Y Y Y Y

Compressor
type All All 5HP All All All All All All All All 5HP All All All All All All All All All All 5HP

Heat pump
system All All All All All All All All

Open type
add-on Add-on All All All All All All All All All All All All All

Required
measurement
interval [s]

1 1 10 30 1 1 0.02∗ 1 30 1 1 5 1 1 30 30 1 1 1 1 30 60 1

Period of
occurrence∗

SU and
SD SU O O

SU
and O SD O

SU and
SS O O O SS O

SU
and O O O SU O SD SU O SS

SU
and O

𝐼፦፨፭፨፫ Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 Y Y Y Y Y
𝑁ፑፏፌ Y Y Y Y Y Y
Δ𝑝፨።፥ Y Y Y
𝑇ፏፑ,፝።፬ Y Y
𝑇 ።፬ Y Y Y Y Y Y Y Y Y Y Y Y Y Y
𝑇 ።፬,፬ፚ፭ Y Y Y Y Y
𝑝፝።፬ Y Y Y Y Y Y Y Y Y
𝑝፝።፬,፬፲፬፭፞፦ Y Y
𝑃 Y Y Y Y Y Y
𝑃ፏፑ,፞ Y Y Y Y
𝑇፬፮፜ Y Y Y Y Y
𝑇፬፮፜,፬ፚ፭ Y Y Y Y
𝑝፬፮፜ Y Y Y Y Y Y Y Y Y Y
𝑝፬፮፜,፬፲፬፭፞፦ Y Y
𝑇፰ፚ፭፞፫,፜፨፧፝,።፧ Y Y
𝑇፰ፚ፭፞፫,፜፨፧፝,፨፮፭ Y Y
𝑇ፚ፦፛።፞፧፭ Y
𝐿𝐿፞፯ፚ፩ Y Y
𝑇፜፨፧፝,፨፮፭ Y Y Y
𝑇 ፯ፚ፩,ፑፏ,።፧ Y
𝑇 ፯ፚ፩,ፑፏ,፨፮፭ Y
𝜏፬፡ፚ፟፭ Y Y

It it apparent from Table 1.2 that the motor current, 𝐼፦፨፭፨፫ and 𝑇 ።፬ are the variables needed in
most faults. However, 𝐼፦፨፭፨፫ is mostly used to verify whether or not the compressor is operating, thus
it has low requirements for accuracy. 𝑇 ።፬ is used to predict the startup time until the system reaches
steady state which will be discussed in further detail in subsection 3.3.1.

Sensor accuracy
The frequency converter logs the motor current, motor power, and the shaft torque before applying a
filter to the measured data. The accuracy of the sensors measuring the variables are not considered
in detail. Some variables are taken as what the control system requests from the heat pump system
(𝑁ፑፏፌ and 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦), while others are measured. Some measured variables work as an input to
the prediction tool predicting the heat pump system performance. Enthalpies are calculated based on
measured variables in the heat pump system, and thus depend on the sensor accuracy.

Due to this complexity it is further assumed that all sensors are accurate and the sensor measure-
ment uncertainty is negligible in comparison to the measured values.

1.2.2. Multiple fault identifiability and Isolability
The intertwining nature of different faults and how they are connected and depend on each other is
illustrated by Fig. 1.5. It also shows the different symptoms of the faults later mentioned in section
4, 5, and 6, and how some symptoms can lead to detection of several faults. As several faults share
failure symptoms it is important for the detection of these faults that they have several symptoms to
isolate the them.

As is mentioned later for the individual faults, not all faults can be isolated, however as seen in
Table 1.1 this is not the most important metric for GEAs FDD program.

In Fig. 1.5 the discharge temperature, 𝑇 ።፬, can affect many faults. For the calculations of the
condenser heat, �̇�፜፨፧፝, the enthalpy at the discharge is required, discussed later in section 3. From
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Figure 1.5: Schematic showing the relation between some specific fault symptoms (purple boxes) and how they are detectable
for several faults (green boxes).

�̇�፜፨፧፝, all mass flows can be derived, making several faults indirectly dependent on the accuracy of
𝑇 ።፬.

1.3. Approach
The project is approached in several steps. The steps required to solve the described problem are
outlined in this subsection of the report.

1.3.1. Step 1 - Literature Study
The literature study can be further divided into three different steps.

• In section 1 the problem definition, an overview of the problem, and the boundary of the problem
which this thesis sets out to solve is given.

• Existing literature is examined in order to establish the different approaches for FDD program cre-
ation. An overview is provided outlining all relevant types of FDD methods which have previously
been applied in similar industries. This will follow in section 2.

• The literature study lastly outlines the different available options for the programming language
in which the FDD will be constructed. This will follow in subsection 2.3.

1.3.2. Step 2 - Fault Discovery
Once a clear overview of the FDD methods is established, the next step is to outline the most typical
faults observed in the heat pumps under investigation. Data or knowledge about the typical faults
occurring is gathered. In total 23 faults were defined as the scope of the FDD program, they are
outlined in section 4, 5, and 6.

1.3.3. Step 3 - Choice of Appropriate Approach
The third step once all the faults are known is to choose the appropriate FDD approach from the
literature study which is the most suitable to the defined faults to design the FDD program. This
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includes both an evaluation of which programming option to use and a choice of the FDD method(s)
for the individual fault. Thus this is the combination of step 1 and step 2. The FDD approach for the
individual faults are explained through flowcharts in section 4, 5, and 6.

1.3.4. Step 4 & 5 - Development and Validation of Model
Once the methodology for the FDD program is decided along with the software in which the FDD
program will be constructed, the FDD program itself can then be developed. This will be the most
demanding step in terms of time and effort and will be divided into a set of smaller steps. The program
will be constructed in an iterative manner based on the available fault data, thus the validation and
model construction will overlap each other. Each fault will be classified based on data available from
said fault and the design will be based on the data available from the fault.



2
Methods of FDD

FDD programs aim to construct a model of the system at hand which is compared to the monitored
data from the system. By comparing the estimated data to the measured data, a fault can be detected
when certain parameters are outside their expected range for given operating conditions. As seen in
the previous section the compressor has a model already developed by GEA; this could help to further
simplify the FDD program design and increase its accuracy given that the model is accurate.

The modeling and the comparison can be done in numerous different ways. FDD is generally seen
to have three different approaches to diagnose faults; quantitative, qualitative and process history
based. These three methods overlap in several ways, what generally separates them is how each fault
diagnosis is generated. Although the construction of the models could be similar in many ways or
overlap each other the generation of the fault diagnostic can generally be classified in three different
methods as seen below (Katipamula and Brambley, 2005a).

Quantitative models are based on a physical model of the system and they are depending on having
analytical redundancy or hardware redundancy. Quantitative models are limited by the sensor avail-
ability (the hardware redundancy) and the computational power available (the analytical redundancy).
Analytical redundancy is explained as overly complicated models that can calculate all states of the
system and connect all sensors mathematically, while hardware redundancy is explained as having a
redundant amount of actual sensors to guarantee no faulty measurements.

Physical models compute the expected values for components in the heat pump based on known
physical relations and laws. These calculated values are furthermore compared to the monitored val-
ues, mostly by investigating the residuals in some manner i.e. the Sensitivity Ratio Method (SRM) or
Bayesian Belief Network (BBN). These models tend to be very specific for each setup, and to make it
interchangeable requires an analytical redundancy. Only quantitative models can model the behavior
during dynamical operation i.e. start-up and shut-down and they are able to classify faulty operation
without sampling data from faulty operation. Quantitative models are time-demanding to develop and
they require a hardware redundancy, hence for larger systems they are often limited to simple linear
relationships to decrease the computational effort and unsuitable for on-line models (Venkatasubra-
manian et al., 2002b). It has been seen that quantitative models are especially suitable for situations
with a lack of logged data (Katipamula and Brambley, 2005a). In (Gordon and Ng, 1995) an universal
model for all existing chiller models at the time was designed, hence quantitative models should be
able to overcome the adaptability issue.

Qualitative models use a knowledge basis to draw conclusions about a system, they are well suited
for data rich environments. It requires a high level of a priori knowledge about the system at hand,
however it does not require any physical or analytical knowledge about the system. It is developed
from extensive experience with each component of the system and typical fault symptoms. By creating
a large tree or map of if-then-else rules the program runs through the tree for every data-point and
sees if the operation can be labeled faulty or fault-free, the program aims to mimic the behavior of

9
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an expert of the system. The expert experience is typically revolved around seeing what the mea-
sured sensor values have represented earlier, thus if a new fault is introduced, the system will often
not detect it. Some models map or group the parameters so that the trajectory or the propagation
of each parameter from fault-free operation to the faulty values is apparent, which makes predictive
maintenance possible as well (Venkatasubramanian et al., 2002a). Qualitative models score well on
the explanation facility factor; the propagation from fault-free operation to faulty.

Process history based relies on an extensive amount of logged data. A program is constructed
based on previous data from faulty and fault-free operation, models are less demanding to develop for
all types of systems, but might not be as accurate. The process history based approach is not able to
diagnose multiple faults occurring at the same time or new faults. Process history based models ex-
tract and present data from the system as a priori knowledge, in a process called feature extrapolation.
Feature extrapolation can be achieved in two manners; qualitative (black-box models) or quantitative
(gray-box models). The process history based approach is a way of machine learning where a pro-
gram is trained based on data from previous operation, both fault-free and faulty. Often programs are
trying to detect the dependencies between the measured variables, combine these variables to make
less variables. The process history based approach is the most applied in industry, mainly due to low
requirements of priori knowledge and modeling effort (Venkatasubramanian et al., 2002c).

These are the three different approaches to generate fault diagnostics. When comparing the mod-
els with the measured data there are several different methods as well, dependent on availability of
data etc. They all produce residuals in the case of a fault between expected values and measured
values. How to evaluate those residuals and connect them to certain faults can be done in several
ways as well as it is seen below.

2.1. Description of existing FDD technologies and an overview
Below is a classification of different and popularly used FDD methods from several applications. It is
not in any way a full overview of all techniques, but rather the more popular methods. In Fig. 2.1
below the classification of the relevant methods is presented.

Quantitative

• Sensitivity Ratio Method (SRM) uses measurements and predictions of temperatures or other
parameters to construct ratios which are uniquely sensitive to individual faults. A residual between
estimated values and measured values for a parameter insensitive to a certain fault is divided by
a residual sensitive to the same fault to create a ratio, furthermore this ratio is evaluated with a
threshold. (Chen and Braun, 2000).

• Bayesian Belief Network (BBN) is a way of mapping all available sensors and expected faults with
certain probabilities. A BBN investigates which sensors are activated and then subsequently it
gives a probability for each preprogrammed fault in the system. BBN allows for a robust consider-
ation of all uncertainties available in sensors and other parameters. For complicated systems with
several possible faults it can however be quite an extensive network where complex probability
models must be applied (Mehranbod et al., 2005).

Qualitative

• Bond graphs are domain independent graphical representations of physical systems based on
energy exchange between different components through directional power connections. FDD is
achieved through generation of adaptive thresholds which are robust when experiencing para-
metric uncertainties (Jha et al., 2017, Broenink, 1999).

• Physics-based models enable conclusions about a process without exact expressions governing
the process and precise numerical inputs through a detailed algorithm (Katipamula and Brambley,
2005a, Venkatasubramanian et al., 2002a).
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Figure 2.1: Classification scheme for FDD methods relevant for GEAs industrial heat pumps.

• Case-based reasoning utilizes the gained knowledge from previously experienced concrete prob-
lem situations. A case is a problem description accompanied by a solution to the problem, thus
problems encountered are diagnosed by navigating through a database of old cases (Dexter and
Pakanen, 2001).

• Rule-based systems aim to mimic the behavior of human experts on the system, by using a priori
knowledge to derive a set of if-then-else rules and an inference mechanism that searches through
the rule-space to draw conclusions (Katipamula and Brambley, 2005a). Faults are detected by
observing deviations in the residuals between measured and predicted variables (Schein and
Bushby, 2005, Delgoshaei et al., 2017).

– Expert systems mimic the cognitive behavior of a human expert in a knowledge bank and
an inference engine that searches through the knowledge bank to derive conclusions from
given facts in a particular domain (Schagen et al., 2016).

– First principle methods navigate through a threshold decision tree structure derived from
physical relations in a knowledge base to conclude on the operational mode based on the
measured data (Katipamula and Brambley, 2005a).

– Simple Rule-Based methods evaluate raw data, and find combinations of parameters that
are insensitive to operating conditions and sensitive only to one fault which reduces the
required computational effort (Chen and Braun, 2000).

– Limit checking defines simple thresholds independently of operating conditions for relevant
variables to define an operating range (Vecchio, 2014). GEAs heat pumps already have this
in built in to ensure safe operation.

Process history based
• Gray-Box models use a combination of physical known relations to the process with coefficients
estimated from process history data (Katipamula and Brambley, 2005a).
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– Linear regression of process history data from equipment manufacturers, laboratory tests or
field monitoring of operations estimate the coefficients necessary to construct the relations
between the process components (Katipamula and Brambley, 2005a). A typical gray-box re-
gression example is given in (Gordon and Ng, 2001) and repeated below in Equation 2.1, it is
used to estimate a chiller COP, based on three input parameters; 𝑇 ፯ፚ፩,፰ፚ፭፞፫,።፧,𝑇፜፨፧፝,፰ፚ፭፞፫,።፧
and �̇�፜፡.

( 1
𝐶𝑂𝑃 + 1)

𝑇 ፯ፚ፩,፰ፚ፭፞፫,።፧
𝑇፜፨፧፝,፰ፚ፭፞፫,።፧

− 1 = 𝑑ኻ
𝑇 ፯ፚ፩,፰ፚ፭፞፫,።፧
𝑇፜፨፧፝,፰ፚ፭፞፫,።፧

+

𝑑ኼ
𝑇፜፨፧፝,፰ፚ፭፞፫,።፧ − 𝑇 ፯ፚ፩,፰ፚ፭፞፫,።፧

𝑇፜፨፧፝,፰ፚ፭፞፫,።፧�̇�፜፡
+ 𝑑ኽ

(1/𝐶𝑂𝑃 + 1)�̇�፜፡
𝑇፜፨፧፝,፰ፚ፭፞፫,።፧

(2.1)

The variables 𝑑ኻ, 𝑑ኼ and 𝑑ኽ all have a physical meaning and in this case they represent the
irreversible entropy losses, the rate of heat loss (�̇�፥፞ፚ፤) and the total HEX thermal resistance
respectively.

– Multiple linear regression is the standard technique for modeling linear relationships between
two or more independent input variables and one dependent response variable. It includes
techniques like ordinary least squares and quantile regression (Frank et al., 2016).

– Parameter Identification and Clustering finds a relation between all measured parameters
that influence each other in a system through a least squares approach in a square matrix.
Dependent on which matrix value is deviating and in which range the value is found a fault
can be diagnosed if present (Zogg et al., 2005).

– Vector Clustering is similar to parameter clustering, except it maps the trajectory a parameter
undergoes when going from a fault free mode to a faulty mode with a vector, thus providing
an explanation (Zogg et al., 2005).

• Black-Box models deviate from gray-box models in how the input/output relations are estimated.
For black-box modeling these model parameters have no physical meaning, they are purely based
on empirical process history data in a statistical or non-statistical (pattern recognition) manner
(Li and Braun, 2002, Katipamula and Brambley, 2005a).

– Artificial Neural Networks (ANN) are a non-statistical method that performs well when in-
terpolating data, but not when extrapolating data. Input received is weighted and com-
bined based on previously seen process history data in a hidden layer, and combinations of
weighted inputs can give outputs which correspond to faults (Rebouças and Leite, 2012).

– Principle Component Analysis (PCA) is a statistical method that reduces the dimensions of the
data sets analyzed by connecting correlated parameters and combining those parameters
into a set of new and uncorrelated parameters. These parameters are evaluated compared
to a fault-free PCA, and a threshold decides whether the operation is faulty or not (Villegas
et al., 2010).

– Linear/Multiple linear/Polynomial regression are statistical methods that in a similar fashion
to gray-box modeling regression can connect input predictors to outputs, except now none
of the parameters estimating the input/output relation has a physical meaning. An example
of typical black-box modeling can be seen in (Rossi and Braun, 1997), where the output
states, 𝑧።, of a simple packaged air conditioner are estimated through only three different
input parameters; 𝑇፰፛, 𝑇፫ፚ and 𝑇ፚ፦፛።፞፧፭ as seen in Equation 2.2 below.

𝑧። = 𝑑ኻ + 𝑑ኼ𝑇፰፛ + 𝑑ኽ𝑇፫ፚ + 𝑑ኾ𝑇፰፛ + 𝑑኿𝑇ኼ፰፛ + 𝑑ዀ𝑇ኼ፫ፚ + 𝑑዁𝑇ኼፚ፦፛።፞፧፭ + 𝑑ዂ𝑇፰፛𝑇፫ፚ + ... (2.2)

What separates black-box regression from gray-box regression is that 𝑑ኻ, 𝑑ኼ, 𝑑ኽ, 𝑑ኾ, 𝑑኿ etc
have no physical meaning.

– Partial Least Squares (PLS) constructs the minimum amount of predictor variables from an
originally large amount of predictor variables creating a higher stability than most other
models even when little data is available (Höskuldsson, 1988).
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– Logistic Regression is a statistical method that aims to predict an outcome variable measured
by a dichotomous or binary variable based on one or more independent input variables
(Brownlee, 2016).

• Fuzzy Logic labels residuals between predicted and measured values in a human way according
to thresholds dependent on how strongly each residual is connected to a fault to reduce the
ambiguity (Kulkarni et al., 2009, Mechefske et al., 1996).

2.1.1. Conclusions on literature
Deciding which model approach to apply depends on several factors, but mostly on the available data
from operation (both faulty and fault-free) and the criteria imposed in Table 1.1. Models for the com-
pressor have been developed and validated, hence it could prove advantageous to use them rather
than spending time and effort developing models that might not prove as accurate.

In (Katipamula and Brambley, 2005b) the FDD methods applied in the Heating, Ventilation, Air- Con-
ditioning and Refrigeration (HVAC&R) industry are outlined. It can be seen that for chillers, air-
conditioners, heat pumps and refrigerators process-history based methods are the most applied meth-
ods. These are applications with the same underlying working principles as the industrial heat pump of
interest. Nevertheless there are several examples of quantitative and qualitative FDD methods for the
HVAC&R industry as well. The process-history based methods seen in HVAC&R were all model specific
and lacked the adaptability desired by GEA, however FDD can be deployed with databases to cover more
equipment model lines. In (Katipamula and Brambley, 2005b) the need for hand-crafted systems was
recognized as one of the major issues for process-history based FDD, and some ways to avoid this issue
has been suggested. They were all seen to have issues with the diagnostics of multiple occurring faults.

Although the methods above differ, several systems have used a combination of the methods for their
FDD programs. The FDD program is constructed by seeing which approach is the most suitable for each
individual fault. These are the so-called hybrid methods (Venkatasubramanian et al., 2002c). It has
been suggested that to make the most suitable program for each industrial system a hybrid system is
the only truly feasible option, as single systems will often prove insufficient for large systems. A hybrid
system can deploy different techniques for each component or different techniques for the detection
and diagnosis. It has also been suggested that if the system is extensively instrumented, which GEAs
system is, then classical limit checks and simplified empirical models are sufficient for detection while
rule-based or knowledge-based is often required for the diagnosis (Katipamula and Brambley, 2005a).

Several of the later seen faults apply a process history based fuzzy logic approach which was a combi-
nation of simple limit checking of residuals between predicted and measured values.

For the general FDD program for GEAs heat pumps a combination between qualitatively rule-based
and case-based reasoning shall be used where expert knowledge from previous faults exist. For the
faults where expert knowledge does not exist a process history based approach will be used with the
compressor model developed by GEA.

2.2. On-line and off-line detection
An important aspect of the FDD program to be made is its ability to detect the faults while the heat
pump system is operating before the faults impose any danger to the system. This is known as the
”Quick detection and diagnosis” from Table 1.1. For many systems it is important to detect and diag-
nose the fault before it is able to damage the system, this goes especially for more critical systems. It
is desirable for GEAs heat pumps to have quick detection and diagnosis.

That implies that most faults should have an approach where it is possible to detect the failure the
moment the failure symptom occurs in the data. As it will be apparent in the analysis for some partic-
ular faults, this is not necessarily possible. However the algorithms seen later that construct the FDD
program are all made in order to detect the fault as it is developing when it is possible. By having
a FDD program that is able to perform on-line FDD the FDD program can eventually be programmed
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into the control system of the heat pump system, which is the ultimate goal of this project for GEA. By
having a FDD program in the control system the control system will be able to control the heat pump
system to avoid the failures when they are occurring before they create damage.

However, for the scope of this project the FDD program constructed is off-line and it is not able to
detect faults on-line. The goal of this project is to make a data processing tool, the ultimate goal for
GEA is to have it integrated into the control system of the the heat pump system. To accommodate
for the ultimate goal of GEA each fault is programmed in a manner where the transition to an on-line
system does not require any adjustments, where it is possible. Some failure symptoms do not allow
for on-line detection, this will be mentioned in the individual failure description.

2.3. Overview of Relevant Programming Options
The modeling effort can be done in several programs and there are several options for language pref-
erences as well. there are several different software options, thus only the major and most commercial
softwares have been evaluated in ascending order below.

• Matlab; Matlab is an applicable and powerful language that have all the required functions. It can
also be linked to Simulink which is an add-on to Matlab that can easily construct a simulated model
of systems. There are several examples in literature of Matlab being used for FDD (Kulkarni et al.,
2009, Vecchio, 2014, Villegas et al., 2010, Dexter and Pakanen, 2001). Matlab is most applicable
for quantitative and qualitative models.

• Python; Python is a free software similar to Matlab. Python has its own programing language,
thus Python has several different Integrated Development Environments (IDE) that can be very
similar to R (introduced later in this section) or Matlab for the actual programing effort, implying
that Python is compatible with most FDD methods. GEAs control systems expert have advised
to use Python for the FDD program due to its compatibility, there are some examples of Python
used for FDD (Wissink et al., 2011, Rosvold, 2017).

• WinMOD; Software which is used in order to validate control systems to avoid actually testing
systems without sufficient control. It can be used to construct an analytical model which can be
compared to the measured data, hence WinMOD is applicable for the quantitative methods.

• R, R is popularly used for big data analytics to perform different regressions and neural networks,
where the ultimate problem is the size and the noise of the dataset, R is more suitable for process-
history based FDD.

• Modelica; Modelica can model dynamical systems based on physical equations, an intuitive
Graphical User Interface (GUI) illustrates the process by connecting building blocks with equa-
tions (Fritzson, 2004). There exist some examples of Modelica used for model construction for
quantitative FDD (Delgoshaei et al., 2017).

• HUGIN; a program developed especially to construct probabilistic Bayesian Belief Networks
(BBN) (Andersen et al., 1989, Madsen et al., 2003).

• Excel; Excel is a powerful tool based on a spreadsheet design that allows quite heavy calculations
and is especially suitable for medium sized data. However it often proves insufficient when more
complicated programs are required. Excel has its own programing language called Visual Basic
for Applications (VBA).

• Stata, Stata is a software intended for handling of large datasets. Its concepts are similar to R in
many ways, but it is less powerful in reducing noise. Stata does however come with some simple
matrix programing functions, as with R it will be most useful for process-history based methods.

The choice of the appropriate software or programing language depends on several factors. Some of
the approaches listed above are limited only to certain approaches. The software seen to fit best with
the desired FDD characteristics imposed by GEA in subsection 1.2 was Python.
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Compressor prediction tool and

initial analysis

GEA has a program available that can predict some of the measured variables in their heat pump sys-
tems based on the running conditions of the compressor. This program is designed using a black- box
approach further outlined in subsection 2.1, where variables are predicted with nonphysical polynomial
regression models. The FDD program will use this prediction tool to predict certain values based on
the running conditions, these predicted values can be compared to the actual values for the FDD algo-
rithms. This allows the FDD program to do a feature extrapolation of prior knowledge in a quantitative
(gray-box) manner, where the values are coming from a process-history based black-box model (the
compressor prediction tool), but compared in a quantitative manner.

The FDD program will be linked with the compressor prediction tool. Every time step the FDD program
will use the compressor prediction tool to calculate the outputs. This is done based on the inputs to
the tool at that exact time step.

The running conditions together with the outputs of the compressor prediction tool are listed in
Table 3.1. Where 𝑇፬፡ and 𝑇፬፜ are defined as the total superheat and total subcooling in the heat pump
system by equation 3.1 and equation 3.2 respectively. The tool can predict other variables, which are
the variables needed to detect the faults later introduced in section 4, 5, and 6.

𝑇፬፡ = 𝑇፬፮፜ − 𝑇፬፮፜,፬ፚ፭ (3.1)

𝑇፬፜ = 𝑇 ።፬,፬ፚ፭ − 𝑇፜፨፧፝,፨፮፭ (3.2)

Where 𝑇፜፨፧፝,፨፮፭ is the temperature of the refrigerant exiting the condenser. The prediction tool is able
to predict these values for every time-step based on the running conditions at that time step. The
accuracy of the compressor prediction tool is of interest to discover its field of application for FDD
analysis. The deviations between the measured and predicted variables should remain at a minimum
for the tool to maintain its relevance.

The following subsections will discover and evaluate the compressor prediction tools performance for
FDD analysis.

3.1. Field of application
The compressor prediction tool has an operating range that must be precisely defined in order to have
an accurate prediction tool. This operating range is defined based on the operating conditions needed
as inputs in Table 3.1. The only difference between the operating range for the two different types of
compressors is the capacity, which is different for the ”5HP-compressor” and the ”V-compressor” being
100 % and 20 % respectively. The prediction tool requires a certain time period from startup of the
compressor until the predictions become sufficiently accurate due to the thermal mass of the system
during startup for some of the variables. This period is discussed in subsection 3.3.1, 3.3.2, and 3.3.3
for each relevant variable.

15
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Table 3.1: The inputs to the compressor prediction tool, their corresponding limitations and the outputs from the compressor
prediction tool. For the ”5HP-compressor” the capacity must be 100%, while for the ”V-compressor” the capacity has to be at
least 20%.

Parameters Symbol Limitations
Input parameters to tool
Saturated suction temperature 𝑇፬፮፜,፬ፚ፭ -65∘C<𝑇፬፮፜,፬ፚ፭<90 ∘C
Saturated discharge temperature 𝑇 ።፬,፬ፚ፭ -65∘C<𝑇 ።፬,፬ፚ፭<90 ∘C
Rotational speed of motor 𝑁፫፩፦ Must be above 350 rpm
Total superheat 𝑇፬፡ 0 K<𝑇፬፡<100 K
Total subcooling 𝑇፬፜ 0 K<𝑇፬፜<50 K
Compressor operating capacity 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 Must be 100% or 20 %
Environmental temperature 𝑇ፚ፦፛።፞፧፭ -20∘C<𝑇ፚ፦፛።፞፧፭<45∘C
Output parameters from tool
dis temperature 𝑇ፏፑ,፝።፬
Compressor driving power 𝑃ፏፑ,፞
Power lost to friction in shaft 𝑃 ፫።፜
Condenser heat �̇�ፏፑ,፜፨፧፝

3.2. Validation of compressor prediction tool
The deviations between the measured and predicted variables are of importance for the compressor
prediction tool and the deviations will be further outlined in this section for each variable of importance.

The heat pump systems can be equipped with two different compressors; the ”V-compressor” and
the ”5HP-compressor”. The ”V-compressor” is relatively new, thus there are limited amounts of data
available as there are only two of the kind in operation. The validation of the compressor prediction
tool is mostly done for the ”5HP-compressor” as it has an abundance of data available for validation.
The limited data from the ”V-compressor” is sampled, and assumed for further FDD analysis, however
no major conclusions can be drawn from these data.

3.2.1. Discharge temperature
The compressor prediction tool assumes that the compressor has been running at the given running
conditions for a longer period. This implies that the compressor prediction tool assumes steady state
at the given running conditions, while during startup of the compressor the heat pump system will
need some time to heat up. Due to this the starting difference between the measured and predicted
discharge temperature will be quite high.

After the deviations converge to a stable value and the system is heated up, the predicted discharge
temperature is still seen to be higher than the measured temperature. Now by a constant value as
illustrated by Fig. 3.1.

Table 3.2 shows the results from analyzing the difference between 𝑇ፏፑ,፝።፬ and 𝑇 ።፬ during steady state
operation for both compressor types. The results have compared the measured and predicted dis-
charge temperatures in fault-free heat pump systems fitted with both types of compressors. Some

Table 3.2: The experienced differences between ፓᑇᑉ,ᑕᑚᑤ and ፓᑕᑚᑤ for heat pump systems with a ”5HP-compressor” and ”V-
compressor” during steady state operation.

Evaluation
parameters

”V-compressor”
heat pump systems

”5HP-compressor”
heat pump system

Number of
sampled compressors 2 27

𝑇ፏፑ,፝።፬ − 𝑇 ።፬ 5.38 K 3.30 K
𝜎ፓᑇᑉ,ᑕᑚᑤዅፓᑕᑚᑤ 0.33 K 0.88K
𝜎ፓᑇᑉ,ᑕᑚᑤዅፓᑕᑚᑤ 1.79 K 0.95 K

deviance is expected due to the thermal mass of the system and the time delay of the sensors. The
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running conditions entered to the compressor prediction tool give a direct value of what 𝑇 ።፬ would
apply when running at these conditions during steady state for a longer time period. The heat pump
system will take some time to cool down or heat up when the running conditions of the compressor
prediction tool are changed, thus there will not be a direct response in the measured output, in this
case 𝑇 ።፬. Hence if the compressor prediction tool predicts a certain value for 𝑇 ።፬, the sensors will
measure this value with a certain time delay.

For further FDD analysis 𝑇ፏፑ,፝።፬ will be adjusted to the findings from Table 3.2 for the ”5HP-compressor”
and ”V-compressor” with an uncertainty, 𝑇 ።፬,፮፧፜፞፫፭ፚ።፧፭፲, of ± 0.95 K and ± 1.79 K respectively. The
comparison of the two temperatures for the ”V-compressor” later in Fig. 3.4 are adjusted to the findings
from Table 3.2, and so are the temperatures in Fig. 3.1 for the ”5HP-compressor”.

Figure 3.1: Three plots showing from top to bottom the development of the predicted and measured discharge temperature,
motor power and condenser heat for the ”5HP-compressor” respectively. It is apparent that the discharge temperature and the
condenser heat takes some time before the deviations converge to a constant value after a startup. There is a time delay
between the ፓᑕᑚᑤ and ፓᑇᑉ,ᑕᑚᑤ, as ፓᑇᑉ,ᑕᑚᑤ is more sensitive to changes in the operating conditions than ፓᑕᑚᑤ due to issues of

thermal mass.

3.2.2. Compressor driving power
Not all heat pump systems are measuring the driving power of the compressor. When the driving power
is not measured it can be calculated through an estimation. For the heat pump systems where the
driving power is measured, the measurements are of the power drawn from the grid, 𝑃 ,፦፞ፚ፬፮፫፞፝. For
some clarity of the different power later discussed see the Sankey diagram in Fig. 3.2. The predicted
power from the compressor prediction tool, 𝑃ፏፑ,፞, is the power required to drive the shaft from the
motor.

Heat pump systems without power measurements
The compressor driving power can be estimated through equation 3.3 for a three-phase electric motor
based on the variables measured in the heat pump system.

𝑃 = √3𝑁፫፩፦ ∗ 𝐼፦፨፭፨፫ ∗ 𝑉፠፫።፝
𝐶 ∗ 60 (3.3)

Where 𝐶 is a constant defined by the heat pump system itself, 𝑁፫፩፦, 𝐼፦፨፭፨፫ and 𝑉፠፫።፝ are the rotational
speed in rotations per minute, the motor current measured in Ampere and the supplied grid voltage
taken to be 400 Volt. Equation 3.3 is an empirical equation, where 𝐶 is a nonphysical constant.

Between the electricity grid and the electric motor driving the compressor there is a frequency con-
verter that converts the frequency of the current and the the voltage to that of the motor. The current
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Figure 3.2: A Sankey diagram explaining the losses in the power going to drive the compressor. ፏᑝᑠᑤᑤᑖᑤ,ᑗᑣᑢ, ፏᑝᑠᑤᑤᑖᑤ,ᑞᑠᑥᑠᑣ and
ፏᑗᑣᑚᑔ are the power lost in the frequency drive, in the electrical motor driving the compressor and to friction lost in the shaft

coupling the motor and the compressor.

is measured in the frequency converter, therefore this is not the current drawn from the grid. The
voltage is not measured, the grid voltage is assumed for the calculations. However the voltage after
the frequency converter is fluctuating. Hence 𝐶 will differ for the two different compressors. The
fluctuating voltage is proportional to the rotational speed of the motor. Thus the empirical equation
3.3 uses the constant voltage supplied by the grid and the rotational input speed to the compressor to
account for the fluctuating voltage, the 𝐶 is then in the units minutes per rotation. 𝐶 accounts for the
efficiency of the frequency converter, the efficiency of the motor and the power factor resulting from
the phase shift between the current and the voltage.

𝐶 from equation 3.3 was sampled from 11 heat pump systems with a ”5HP-compressor”, all con-
taining two compressors, i.e. 22 different 𝐶 values. The mean was found to be 48.03, and the average
standard deviation was seen to be 0.87, introducing an uncertainty of ± 1.8%. An uncertainty of ±
1.8% in 𝐶 amounts to an uncertainty of ± 3.9% in 𝑃ፏፑ,፞. In addition to this the standard deviation of
𝐶 in each data set sampled was never seen to be above 1.02, implying that equation 3.3 is a suffi-
cient estimator for the driving power. 1.02 is a reasonable number as the efficiencies of the electrical
motor and the frequency converter change with the operating conditions, illustrated in Fig. 3.3. The
relationship between the predicted and actual motor power can be assumed to follow equation 3.4 for
the ”5HP-compressor” where 𝑃 is not directly measured.

𝑃 = 𝑃ፏፑ,፞ ± 0.039𝑃ፏፑ,፞ (3.4)

Heat pump systems with power measurements
In some heat pump systems the driving power, 𝑃 ,፦፞ፚ፬፮፫፞፝, is measured. The measured driving power
is the power drawn from the electrical grid. The frequency converter measuring the power is located
in the connection between the electricity grid and the motor. The power predicted by the compressor
prediction tool, 𝑃ፏፑ,፞, is the shaft power required to drive the shaft that runs the compressor.

Thus the predicted and measured power will not be the same, both the frequency converter and
the electrical motor have losses, 𝑃፥፨፬፬፞፬,፟፫፪ and 𝑃፥፨፬፬፞፬,፦፨፭፨፫ respectively. The electrical motor producer
has limited data on their efficiency during operation, the information known are the three crosses in
Fig. 3.3. A second degree polynomial regression model was made to cover the areas not given by
the producer, from a running capacity of 50 % and up. The frequency converter has no given data
describing its efficiency as it is usually 98% with limited variations.

Hence one can assume that 2% of the power drawn from the grid is lost in the frequency converter as
𝑃፥፨፬፬፞፬,፟፫፪. The power loss in the electrical motor, 𝑃፥፨፬፬፞፬,፦፨፭፨፫, is given by the curve from 3.3. There
are only two heat pump systems with the motor power measured, where one has a ”V-compressor”
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Figure 3.3: Data from the producer of the electrical motor driving the heat pump compressor. The producer only has the three
points indicated by green crosses, where the electrical motor efficiency is 92.5%, 93.6% and 93.8% for a capacity of 50%, 75%

and 100% respectively. A polynomial fit is assumed to cover the area between the crosses.

and the other one has a ”5HP-compressor”. The deviance between the measured and predicted motor
power at the maximum capacity sampled from these two heat pump systems is shown in Table 3.3.
From Table 3.3 it can be seen that especially for the ”5HP-compressor” the deviance is higher than

Table 3.3: Table showing how the measurements of the compressor driving power deviates from the predictions made by the
compressor prediction tool.

Evaluation
parameters

”V-compressor”
system

”5HP-compressor”
system

Sampling points 15507 7512

( ፏᑇᑉ,ᑖ
ፏᑖ,ᑞᑖᑒᑤᑦᑣᑖᑕ

) 0.91 0.59

𝜎
( ᑇᑇᑉ,ᑖ
ᑇᑖ,ᑞᑖᑒᑤᑦᑣᑖᑕ

)
0.014 0.021

expected. This data is from a heat pump system where the control system was wrongly adjusted
causing the compressor to shut down every 15 minutes and damaged bearings were detected, thus
the data collected is corrupt. The sampled heat pump proved to be faulty, as it will be discussed
later for Fault 4.3, where a possible symptom was an increase of the driving power to run the com-
pressor. The deviance is due to either a faulty sensor measuring the power, the motor power being
higher than expected due to Fault 4.3 or the compressor prediction tool not being able to capture the
actual power. The data of the measured power sampled from the ”5HP-compressor” cannot be utilized.

For the ”V-compressor” the results in Table 3.3 show the expected results where the predicted power
is 91 % of the measured power with an uncertainty of ± 1.4 %.

The predicted motor power, 𝑃ፏፑ,፞, is expected to be 93.8%-2%=91.8% of the measured power,
𝑃 ,፦፞ፚ፬፮፫፞፝. 93.8 % is the efficiency of the electric motor at maximum capacity and 2 % is the ex-
pected power loss in the frequency converter.

Thus for the FDD analysis of the ”V-compressor” the motor power measured, 𝑃 ,፦፞ፚ፬፮፫፞፝, will be
altered to be the power required to drive the shaft, 𝑃 , given by equation 3.5.

𝑃 = 𝑃 ,፦፞ፚ፬፮፫፞፝ ∗ 0.918 ± 0.01397 (3.5)

Where the theoretical efficiency of 91.8 % is assumed, should other heat pump systems yield other
deviations than what was seen for this specific system.
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3.2.3. Condenser heat
The condenser heat is predicted by the compressor prediction tool, however the tool does not take
into account if there are two or three compressors acting in parallel or one acting alone, nor does it
account for heat losses. The compressor prediction tool uses the running conditions of the compressor
to calculate what a heat pump system with one compressor could deliver under these conditions.

The actual condenser heat is not measured, but it can however be estimated through equation 3.6
below based on measured variables.

�̇�፜፨፧፝ = �̇�፫(Δℎ፯ፚ፩,፫ + Δℎ፬፜,፫ + Δℎ፝።፬,፫) (3.6)

Where Δℎ፯ፚ፩,፫, Δℎ፝።፬,፫ and Δℎ፬፜,፫ are the latent heat of vaporization of the refrigerant at the discharge
pressure, the enthalpy difference between the saturated and measured discharge conditions and the
enthalpy difference created by the subcooling of the refrigerant, all measured in kJ/kg, respectively.
The mass flow of the refrigerant, �̇�፫, is estimated through equation 3.7 below.

�̇�፫ =
𝑃፜፨፦፩
Δℎ፜፨፦፩,፫

(3.7)

Where Δℎ፜፨፦፩ is the enthalpy difference of the compressor, measured between the suction and dis-
charge conditions in kJ/kg. As Δℎ፜፨፦፩ is based on the data measured at the suction and discharge of
the compressor, this will account for the isentropic efficiency of the compressor.

The enthalpies from equation 3.6 and 3.7 are taken at the point specified by the temperature and
pressure measured. This implies that the condenser heat is dependent on the accuracy of the discharge
temperature and also on other measurements. The FDD program is linked with the program CoolProp
which can calculate refrigerant properties based on the pressure and temperature at that point. Thus
the program will for every measurement interval, send the necessary temperatures and pressures to
CoolProp and retrieve the enthalpy at the specified point.

𝑃፜፨፦፩ from equation 3.7 is the actual thermodynamical work done by the compressor per second,
while 𝑃ፏፑ,፞ and 𝑃 are both the power required to drive the shaft. Therefore the calculated �̇�፫ must
be calculated using 𝑃 subtracted with the power lost through friction in the shaft to acquire 𝑃፜፨፦፩.
The compressor prediction tool can also predict the power lost to friction in the shaft, 𝑃 ፫።፜. Assuming
that these predictions are correct, the mass flow required to calculate �̇�፜፨፧፝ can be calculated through
equation 3.8.

�̇�፫ =
𝑃 − 𝑃 ፫።፜
Δℎ፜፨፦፩,፫

(3.8)

𝑃፜፨፦፩ is the driving power of one compressor, making the calculation of the condenser heat in equation
3.6 for a heat pump system with one compressor.

Table 3.4 shows the results comparing the predicted condenser heat, �̇�ፏፑ,፜፨፧፝, to �̇�፜፨፧፝ for heat pump
systems fitted with both types of compressors.

Table 3.4: Comparison of ፐ̇ᑔᑠᑟᑕ and ፐ̇ᑇᑉ,ᑔᑠᑟᑕ. The data from the heat pump systems with the ”V-compressor” are taken when
the power was measured, while the data from the heat pump systems with the ”5HP-compressor” are taken when the power
was not measured.

Evaluation
parameters

”V-compressor”
systems

”5HP-compressor”
systems

Amount of heat pump
systems sampled from 1 5

( ፐ̇ᑇᑉ,ᑔᑠᑟᑕፐ̇ᑔᑠᑟᑕ
) 0.88 1.01

𝜎
( ᑈ̇ᑇᑉ,ᑔᑠᑟᑕᑈ̇ᑔᑠᑟᑕ

)
- 0.025

𝜎ᑈ̇ᑇᑉ,ᑔᑠᑟᑕ
ᑈ̇ᑔᑠᑟᑕ

0.030 0.019

After sampling five different heat pump systems fitted with a ”5HP-compressor” it was seen that
�̇�ፏፑ,፜፨፧፝ was almost identical to �̇�፜፨፧፝. After sampling the one heat pump systemwith a ”V-compressor”
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it was seen that �̇�ፏፑ,፜፨፧፝ was approximately 88% of �̇�፜፨፧፝. The deviance is likely to originate from the
compressor prediction tool as 𝑇ፏፑ,፝።፬ is also relatively inaccurate for the ”V-compressor”.

It was concluded that the compressor prediction tool is inaccurate when predicting �̇�ፏፑ,፜፨፧፝ for the
”V-compressor”, however it is assumed for future FDD that this inaccuarcy will be constant. It is fur-
ther assumed that for the ”5HP-compressor”, �̇�ፏፑ,፜፨፧፝ can be directly predicted with an uncertainty of
2.5 %.

3.2.4. Coefficient of Performance predictions
The Coefficient of Performance (COP) is an important parameter quantifying the efficiency of the sys-
tem. The COP can be calculated through equation 3.9, and it is considered as the real COP of the
system. The COP predictions are especially considered for Fault 5.9.

𝐶𝑂𝑃 = �̇�፜፨፧፝
𝑃 − 𝑃 ፫።፜

(3.9)

The COP is not predicted directly through the compressor prediction tool, but it can be calculated
through 𝑃ፏፑ,፞ and �̇�ፏፑ,፜፨፧፝ from the compressor prediction tool with equation 3.10.

𝐶𝑂𝑃ፏፑ =
�̇�ፏፑ,፜፨፧፝

𝑃ፏፑ,፞ − 𝑃 ፫።፜
± 𝐶𝑂𝑃፮፧፜፞፫፭ፚ።፧፭፲ (3.10)

Where 𝑃 ፫።፜ is the power lost to friction predicted by the compressor prediction tool.
The uncertainty of the COP, 𝐶𝑂𝑃፮፧፜፞፫፭ፚ።፧፭፲, will be relatively high as it is directly dependent on

𝑃ፏፑ,፞ and �̇�ፏፑ,፜፨፧፝ and their respective uncertainties. The uncertainties of the 𝐶𝑂𝑃 for the different
compressor types are given in Table 3.5 using the findings from the previous 2 subsections. Table

Table 3.5: Table showing the given uncertainty when calculating the ፂፎፏ for the heat pump systems with the different com-
pressors.

Parameters
”5HP-compressor”
without measured power

”V-compressor”
with measured power

𝑃 uncertainty 3.90 % 1.40 %
�̇�፜፨፧፝ uncertainty 2.50 % 3.00 %
𝐶𝑂𝑃፮፧፜፞፫፭ፚ።፧፭፲ 6.41 % 4.40 %

3.5 shows that the COP can be predicted with a higher accuracy for the heat pump systems with a
”V-compressor” than for the heat pump systems with a ”5HP-compressor”. However, this conclusion is
on the basis of one heat pump system where �̇�ፏፑ,፜፨፧፝ was seen to be 88 % of �̇�፜፨፧፝. Hence there is
not sufficient data to conclude that this goes for other heat pump systems with a ”V-compressor”.

Thus the uncertanty of 6.41 % form the ”5HP-compressor” is assumed for all heat pump systems.

3.3. Initiation time until predictions are accurate
During the initiation or startup of the compressor in the heat pump system not all predictions done by
the compressor prediction tool will be accurate. The inputs to the compressor prediction tool, defined
in Table 3.1, are all either saturated temperatures, running conditions of the compressor (𝑁ፑፏፌ and
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦) or factors that have a relatively small impact on the predictions.

When starting up a compressor after a longer period of standstill, temperatures are low. During
startup the pressures, thus also the saturated temperatures, will increase to its operating conditions at
a faster rate than the temperature illustrated by Fig. 3.4.

The compressor prediction tool only sees the saturated temperature inputs, and assumes that the
temperatures are already warm. Due to this there will be a period after each standstill, during the
startup, where the compressor prediction tool will be inaccurate until the temperature reaches its ex-
pected operating conditions. This is illustrated by Fig. 3.4.
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Figure 3.4: The development of ፓᑕᑚᑤ, ፓᑕᑚᑤ,ᑤᑒᑥ and ፓᑇᑉ,ᑕᑚᑤ over time after the startup. ፓᑇᑉ,ᑕᑚᑤ is only using the saturated values
as input. ፓᑕᑚᑤ,ᑤᑒᑥ, and hence also ፓᑇᑉ,ᑕᑚᑤ, reaches its operating conditions long before ፓᑕᑚᑤ. The top graph shows two startups

that illustrates the issue, while the bottom graph is an enhanced version of the first of the two.

3.3.1. Discharge temperature initiation time
The compressor prediction tool needs a certain time after the compressor starts before it can provide
accurate predictions of the discharge temperature. This time and how to predict it will be discussed in
this subsection. From Fig. 3.5 it is apparent that the deviations between the measured and predicted
discharge temperature, Δ𝑇ፏፑዅ፦፞ፚ፬፮፫፞፝, have an exponential decrease over time following the form
described in equation 3.11.

Δ𝑇ፏፑዅ፦፞ፚ፬፮፫፞፝ = 𝑎 ∗ 𝑒ዅ፛፭ + 𝑐 (3.11)

Where 𝑎, 𝑏 and 𝑐 are empirical constants of the graph, 𝑡 is the time and Δ𝑇ፏፑዅ፦፞ፚ፬፮፫፞፝ is the temper-
ature difference between the predicted and measured discharge temperature of the compressor. This
implies that the deviations will converge to an acceptable constant value with time. The acceptable
deviations are defined by equation 3.12.

Δ𝑇ፏፑዅ፦፞ፚ፬፮፫፞፝[𝑡] − Δ𝑇ፏፑዅ፦፞ፚ፬፮፫፞፝[𝑡 − 1] < 0.002 (3.12)

The time step where this occurs, further referred to as 𝑡፜፨፧፯, is marked with yellow dots in Fig. 3.5.
From Fig. 3.5 it is apparent that the time it takes for the deviations to converge is directly connected
to the starting Δ𝑇ፏፑዅ፦፞ፚ፬፮፫፞፝, which is directly linked to the discharge temperature before startup.
Startups like the ones in Fig. 3.5 were sampled from several heat pump systems. Furthermore the
time until the deviations converged according to equation 3.12 was plotted in relation to the discharge
temperature before the startup in Fig. 3.6. From Fig. 3.6 it is apparent that the discharge tempera-
ture before the startup directly influences the time it takes before the Δ𝑇ፏፑዅ፦፞ፚ፬፮፫፞፝ converge to an
acceptable level. The data from Fig. 3.5 is sampled from 69 different startups where 65 of those had
the exponential shape, i.e. 94.2%. These 65 startups were plotted in Fig. 3.6 and based on that two
different linear regression models were made. Equation 3.13 dictates the shape of the linear regression
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Figure 3.5: The development of the deviation between the ፓᑇᑉ,ᑕᑚᑤ and ፓᑕᑚᑤ over time after the startup. The red lines are an
exponential regression of the deviation with respect to time, while the black lines are the aforementioned deviation.

Figure 3.6: The green dots show the relationship between the time it takes for the deviations between ፓᑇᑉ,ᑕᑚᑤ and ፓᑕᑚᑤ to
converge to an acceptable level after a compressor startup defined by equation 3.12. On the x axis is the initial difference

between ፓᑇᑉ,ᑕᑚᑤ and ፓᑕᑚᑤ at startup, and ፭ᑔᑠᑟᑧ in seconds is on the y-axis. The black and red line are the linear regression for
the measured data and the shifted result derived in equation 3.14 respectively.

models.
𝑡፜፨፧፯,፥።፧ = 𝐴 + 𝐵 ∗ 𝑇 ።፬,።፧።፭።ፚ፥ (3.13)

Where 𝑡፜፨፧፯,፥።፧ is the convergence time in seconds, 𝑇 ።፬,።፧።፭።ፚ፥ is the discharge temperature before the
startup, while 𝐴 and 𝐵 are constants of the slope. The linear regression model fitted to the data in Fig.
3.6 (black line) had an R squared value of 12.8%.

Shifting the linear regression slope upwards parallel to the original slope can be done by changing
the intersection point, 𝐴, of the original linear regression model. If the intersection point is increased
by 100 seconds, then 92.3% of the measured data will be within the shifted linear regression model,
illustrated by the red line in Fig. 3.6.

Thus the shifted linear regression model will prove as the predictor model for 𝑡፜፨፧፯,፥።፧. The final
values used to predict the convergence time can be seen below in equation 3.14.

𝑡፜፨፧፯,፥።፧ = 921.583 − 1.9287 ∗ 𝑇 ።፬,።፧።፭።ፚ፥ (3.14)
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For further FDD analyses 𝑡፜፨፧፯,፥።፧ from equation 3.14 will be used to predict when the system has
reached steady state oepration.

Predictions of exponential regression model
The deviations between 𝑇ፏፑ,፝።፬ and 𝑇 ።፬ had an exponential decrease with respect to time depending
on the initial difference between 𝑇 ።፬ and 𝑇ፏፑ,፝።፬. This dependency can be quantified and predicted by
looking further at 𝑎, 𝑏 and 𝑐 from equation 3.11 and their relation with the initial deviation between
𝑇 ።፬ and 𝑇ፏፑ,፝።፬. From Fig. 3.7 it is apparent that 𝑎, 𝑏 and 𝑐 can accurately be predicted based on the
initial deviation between 𝑇 ።፬ and 𝑇ፏፑ,፝።፬. Predicting the exponential model through 𝑎, 𝑏 and 𝑐 will lead
to a more precise prediction of the startup sequence.

Figure 3.7: ፚ, ፛ and ፜ from equation 3.11 (y-axis) sampled from 98 different startups in relation to ፓᑇᑉ,ᑕᑚᑤ ዅ ፓᑕᑚᑤ before the
compressor prediction tool is initiated (x-axis). The left hand side shows the entire raw data set, while the right hand side

shows ፚ, ፛ and ፜ within a defined range where ፚ, ፛ and ፜ can be predicted sufficiently accurate.

On the left side of Fig. 3.7 are all the data points of 𝑎, 𝑏 and 𝑐 sampled from 98 different startups.
The x-axis on Fig. 3.7 is the starting temperature difference between the predicted and measured
discharge temperature when the prediction tool is initiated. When this is approaching zero, 𝑏 becomes
fluctuating as seen in the middle graph on the left hand side of Fig. 3.7. However, if the operating
range of the initial Δ𝑇ፏፑዅ፦፞ፚ፬፮፫፞፝ is defined from 5 K and upwards, as it is on the right side of Fig. 3.7,
then 𝑎, 𝑏 and 𝑐 from equation 3.11 can accurately be predicted.

When the initial Δ𝑇ፏፑዅ፦፞ፚ፬፮፫፞፝ is below 5 K it indicates that the startup happens at already warm
conditions. At these conditions the compressor prediction tool should not need a time difference to
predict the discharge temperature accurately.

Fig. 3.8 shows the implementation of the exponential model with the linear regressions from Fig.
3.7. The model generally fits well, however 𝑡፜፨፧፯ predicted by 𝑎, 𝑏 and 𝑐, further called by 𝑡፜፨፧፯,፞፱፩, is
not sufficiently accurate as marked by the brown dots in Fig. 3.8. The shifted linear regression model
from equation 3.14 gives a sufficiently accurate picture of the convergence time between the predicted
and measured discharge temperature as marked by the purple dots in Fig. 3.8 due to its safety margin.

During startups 𝑎, 𝑏 and 𝑐 given by the linear regression models from Fig. 3.7 can be used to predict
the startup sequence in combination with 𝑡፜፨፧፯,፥።፧. 𝑎, 𝑏 and 𝑐 can be estimated linearly as seen in Fig.
3.7 by equation 3.15, 3.16 and 3.17 respectively.

𝑎 = 3.188 + 0.866 ∗ (𝑇ፏፑ,፝።፬,።፧።፭።ፚ፥ − 𝑇 ።፬,።፧።፭።ፚ፥) (3.15)

𝑏 = 0.0001107 + 0.00546 ∗ (𝑇ፏፑ,፝።፬,።፧።፭።ፚ፥ − 𝑇 ።፬,።፧።፭።ፚ፥) (3.16)
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Figure 3.8: 6 sampled startups, the blue line uses the predictions of ፚ, ፛ and ፜ from the linear regressions in Fig. 3.7. The
purple dots are the predicted convergence times from the linear regression model in equation 3.14, ፭ᑔᑠᑟᑧ. The red dots are the
actual convergence time from the exponential regression fit for each individual startup, ፭ᑔᑠᑟᑧ. Lastly the brown dots are the

convergence time predicted from the exponential regression fit,፭ᑔᑠᑟᑧ,ᑖᑩᑡ.

𝑐 = 3.075 + 0.0400 ∗ (𝑇ፏፑ,፝።፬,።፧።፭።ፚ፥ − 𝑇 ።፬,።፧።፭።ፚ፥) (3.17)

Analyzing equation 3.15, 3.16 and 3.17 in Fig. 3.8 it is apparent that the first term of equation 3.11,
𝑎𝑒ዅ፛፭, will have the exponential decrease desired. At the first time step 𝑒ዅ፛፭ will be approximately one,
and 𝑎 + 𝑐 dictates the starting value of Δ𝑇ፏፑዅ፦፞ፚ፬፮፫፞፝, hence 𝑎 is approximately itself inverted. As 𝑡
increases the term 𝑎𝑒ዅ፛፭ will decrease to zero, and the value left will be 𝑐. What is apparent from Fig.
3.7 is that 𝑐 is relatively constant ranging from 3 K to 4.5 K. At the end of the startup Δ𝑇ፏፑዅ፦፞ፚ፬፮፫፞፝
should be constant at 3.3 K as it is a ”5HP-compressor”. The shape and time of the exponential de-
crease is dictated by 𝑏.

Equation 3.15, 3.16 and 3.17 can be used to predict the exponential curve dictating the tempera-
ture difference between the predicted and measured 𝑇 ።፬. It is apparent from Fig. 3.8 that 𝑡፜፨፧፯,
indicated by the red dots, is different from 𝑡፜፨፧፯,፞፱፩, indicated by the brown dots for most startups.
In fact 𝑡፜፨፧፯,፞፱፩ is relatively constant in all startups. Table 3.6 shows the results after analyzing 37

Table 3.6: Table showing the results from 37 startups.

Measured differences Average Standard Deviation
𝑡፜፨፧፯ − 𝑡፜፨፧፯,፞፱፩ 83.97 s 158.6 s
𝑡፜፨፧፯ − 𝑡፜፨፧፯,፥።፧ 102.3 s 267.9 s
Δ𝑇ፏፑዅ፦፞ፚ፬፮፫፞፝ − Δ𝑇ፏፑዅ፦፞ፚ፬፮፫፞፝,፞፱፩ -0.389 K 0.810 K
𝜎(ጂፓᑇᑉᎽᑞᑖᑒᑤᑦᑣᑖᑕዅጂፓᑇᑉᎽᑞᑖᑒᑤᑦᑣᑖᑕ,ᑖᑩᑡ) 0.903 K 0.435 K

compressor startups. Where Δ𝑇ፏፑዅ፦፞ፚ፬፮፫፞፝ − Δ𝑇ፏፑዅ፦፞ፚ፬፮፫፞፝,፞፱፩ is the average difference between
the exponential regression fit of the recorded data and the exponential regression model predicted
through equation 3.15, 3.16 and 3.17 for each startup. 𝜎(ጂፓᑇᑉᎽᑞᑖᑒᑤᑦᑣᑖᑕዅጂፓᑇᑉᎽᑞᑖᑒᑤᑦᑣᑖᑕ,ᑖᑩᑡ) is the standard
deviation between the two models during each startup. They both give an idea of how well the expo-
nential regression model predicted from equation 3.15, 3.16 and 3.17 fits to the measured data.

It is apparent from Fig. 3.9 and Table 3.6 that neither 𝑡፜፨፧፯,፞፱፩ indicated by orange dots nor 𝑡፜፨፧፯,፥።፧
indicated by blue dots are giving a prediction that can capture the trend in the data. The actual con-
vergence time for each individual startup is indicated by a green cross and has no apparent trend.

Liquid in the discharge line is common during startup and it is not necessarily damaging. Liquid
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Figure 3.9: Sampled data from 37 startups where ፭ᑔᑠᑟᑧ from equation 3.12 for each individual startup is given by green
crosses, the orange dots are ፭ᑔᑠᑟᑧ,ᑖᑩᑡ predicted from equation 3.15, 3.16, and 3.17 and the blue dots are ፭ᑔᑠᑟᑧ,ᑝᑚᑟ predicted
through equation 3.14. Instances where ፓᑕᑚᑤ was lower than ፓᑕᑚᑤ,ᑤᑒᑥ during startup are marked by black stars. The red

triangles marks the total sum of ፓᑕᑚᑤ,ᑤᑒᑥ minus ፓᑕᑚᑤ before and during the startup

Figure 3.10: The result of analyzing 37 different startups and investigating the difference between the model predicted by
equation 3.15, 3.16, and 3.17 and the exponential regression model fitted to the actual data. The black stars marks the

startups where condensation was detected in the discharge.

formation will occur when 𝑇 ።፬ is lower than 𝑇 ።፬,፬ፚ፭ as in Fig. 3.11. The total sum whenever 𝑇 ።፬
is lower than 𝑇 ።፬,፬ፚ፭ of 𝑇 ።፬,፬ፚ፭ minus 𝑇 ።፬ before and during startup is indicated in Fig. 3.9 by red
triangles. The difference occurs as pressures (thus also saturated temperatures) build up immediately
after a startup, while temperatures have a slower build up.

The temperature will increase at a slower rate when there is liquid in the discharge line due to
the different heat transfer abilities of gas and liquid. In Fig. 3.11 condensation in the discharge occurs
during a startup. This results in 𝑇 ።፬ dipping and 𝑇 ።፬ needs more time to reach its operating condi-
tions. There were only 14 cases where condensation was detected in the discharge line, which is not
sufficient to build a model or draw any conclusions. The black stars in Fig. 3.9 marks 𝑡፜፨፧፯ when there
was liquid formation in the discharge during startup.

In Fig. 3.10 the orange crosses represents Δ𝑇ፏፑዅ፦፞ፚ፬፮፫፞፝ − Δ𝑇ፏፑዅ፦፞ፚ፬፮፫፞፝,፞፱፩, which is the aver-
age difference between the exponential regression model predicted by equation 3.15, 3.16 and 3.17,
and the exponential regression model fitted to the actual data. Whenever this is above zero it is an in-
dication that the startup is happening slower than predicted, as in Fig. 3.12. Two of the startups where
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Figure 3.11: The left side shows a graph of condensation happening in the discharge line of a compressor during startup due
to ፓᑕᑚᑤ,ᑤᑒᑥ beeing higher than ፓᑕᑚᑤ. The right side shows a simplified schematic of a heat pump system, where the discharge is

indicated.

Δ𝑇ፏፑዅ፦፞ፚ፬፮፫፞፝ − Δ𝑇ፏፑዅ፦፞ፚ፬፮፫፞፝,፞፱፩ is particularly high, are further examined in Fig. 3.12. What is ap-
parent is that the green line (Δ𝑇ፏፑዅ፦፞ፚ፬፮፫፞፝), is clearly higher than the blue line (Δ𝑇ፏፑዅ፦፞ፚ፬፮፫፞፝,፞፱፩).
Based on the initial 𝑇ፏፑ,፝።፬,።፧።፭።ፚ፥ − 𝑇 ።፬,።፧።፭።ፚ፥ the data is expected to follow the blue line.

For the FDD analyses the linear predictions of 𝑡፜፨፧፯,፥።፧ will be used to predict the startup time of the

Figure 3.12: Two startups from the same ”5HP-compressor” where the startup time was longer than expected. The graph to
the right had condensation detected in the discharge. ፭ᑔᑠᑟᑧ is higher than ፭ᑔᑠᑟᑧ,ᑝᑚᑟ and ፭ᑔᑠᑟᑧ,ᑖᑩᑡ, and ጂፓᑇᑉᎽᑞᑖᑒᑤᑦᑣᑖᑕ is
clearly higher than ጂፓᑇᑉᎽᑞᑖᑒᑤᑦᑣᑖᑕ,ᑖᑩᑡ. These startups are marked by the green and red crosses in Fig. 3.10. They will be

further discussed for Fault 5.7 as a symptom of liquid carry-over causing a delayed increase of ፓᑕᑚᑤ during startup.

compressor. The findings are assumed to be valid for both compressor types as there is not enough
data available from the ”V-compressor” to draw any conclusions.

The results from the one heat pump system operating with a ”V-compressor” in Fig. 3.13, shows
on the right side 𝑎, 𝑏 and 𝑐, 𝑏 varying more than for the ”5HP-compressor”. The left side of Fig. 3.13
shows 𝑡፜፨፧፯ in relation to the starting 𝑇 ።፬, where there is no apparent trend.

The only thing that can be concluded about the ”V-compressor” is that the startup time could be
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Figure 3.13: The analysis of the startup time for the ”V-compressor” sampled from 9 compressor startups of the
”V-compressor”. The left hand side shows ፭ᑔᑠᑟᑧ based on ፓᑕᑚᑤ,ᑚᑟᑚᑥᑚᑒᑝ, the right hand side shows ፚ, ፛ and ፜ from equation 3.11

and the best fit of a linear regression model for ፚ, ፛ and ፜, based on the initial ፓᑇᑉ,ᑕᑚᑤ ዅ ፓᑕᑚᑤ.

longer for the ”V-compressor”. This is based on the left hand side of Fig. 3.13. The conclusion is that
most dots on the left side of Fig. 3.13 are higher than what was seen in the same plot in Fig. 3.6 for
the ”5HP-compressor”. Hence the startup is expected to last longer for the ”V-compressor”.

3.3.2. Compressor driving power initiation time
The compressor driving power is not dependent on the rate at which 𝑇 ።፬ increases during a startup. 𝑃
is however dependent on the capacity steps the compressor does during startup where the operating
capacity of the compressor is increased in steps. These steps are done as the compressor activates
one cylinder at a time.

Heat pump systems without power measurements
The calculated power is dependent on 𝑁ፑፏፌ and 𝐼፦፨፭፨፫. During a startup there is a direct dependency
between 𝐼፦፨፭፨፫ and the running capacity of the compressor. This direct dependency is captured by
equation 3.3, making the calculations of the driving power accurate at all running capacities, the ac-
curacy during a startup was seen in Fig. 3.1.

The compressor prediction tool requires a running capacity of 100 % for the ”5HP-compressor”. This
avoids the startup issues for the power of the ”5HP-compressor”.

Figure 3.14: Startup of a ”V-compressor” showing the predicted driving power, ፏᑇᑉ,ᑖ, and the measured power required to
drive the shaft ፏᑖ.
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Heat pump systems with power measurements
When the compressor does its capacity steps during startup, the predicted compressor driving power
is not able to capture the measurements correctly during the first capacity step. For the heat pump
systems where the power is measured, one is dependent on comparing the motor powers after the
first capacity step. For the ”V-compressor” the compressor prediction tool can predict 𝑃ፏፑ,፞ after first
capacity step, and it is accurate from the second capacity step illustrated in Fig. 3.14.

3.3.3. Condenser heat and COP initiation time
The compressor prediction tool required the time previously discussed as 𝑡፜፨፧፯,፥።፧ after the compressor
starts up to have a constant deviation between �̇�፜፨፧፝ and �̇�ፏፑ,፜፨፧፝. This time is marked by red dots in
Fig. 3.15. In Fig. 3.15 the difference between the estimated and predicted condenser heat capacity

Figure 3.15: 3 sampled startup sequences from a ”5HP-compressor”. The difference between ፐ̇ᑇᑉ,ᑔᑠᑟᑕ and ፐ̇ᑔᑠᑟᑕ is shown by
the green line, the difference between ፓᑇᑉ,ᑕᑚᑤ and ፓᑕᑚᑤ is shown by the blue line. The red dots mark the convergence time

using the linear relationship from equation 3.14, ፭ᑔᑠᑟᑧ,ᑝᑚᑟ.

is recorded during 3 different startups in a ”5HP-compressor”. It was concluded that the predictions
of the startup time of the discharge temperature from subsection 3.3.1 are valid for �̇�፜፨፧፝. Because
�̇�፜፨፧፝ is directly depending on the enthalpy at the discharge of the compressor, which again is taken
from the measurements of 𝑇 ።፬ and 𝑝፝።፬.

Both 𝑃ፏፑ,፞ and �̇�ፏፑ,፜፨፧፝ are estimated through the compressor prediction tool, meaning that 𝐶𝑂𝑃ፏፑ
is dependent on the startup time of both. The COP will be dependent on the same startup time as
�̇�፜፨፧፝ because 𝑃 does not have a startup time, this is apparent in Fig. 3.16.

The startup time that was found valid for 𝑇 ።፬ is assumed to be valid for �̇�፜፨፧፝ and the COP, as they
are both dependent on 𝑇 ።፬.

3.4. Initial data analysis
Different faults have different demands of variables and measurement interval and some faults are
exclusive to certain compressors or heat pump systems. Therefore an initial analysis is done for each
data set to identify the heat pump system and what lies within the system, to see which faults can be
analyzed and not. This initial analysis is shown in Fig. 3.17. It is assumed for the analyses to follow
in section 4, 5, and 6 that the measuring time step is the same as what is indicated in Table 1.2. It is
also assumed for the FDD algorithms to follow that the necessary variables are measured.
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Figure 3.16: The development of the predicted COP and the measured COP during two startups of a ”5HP-compressor”. The
graph contains two startups where it is visible that the predictions need a certain time to become stable.

Figure 3.17: The initial analysis of the data required prior to the FDD analysis to identify the system.



4
Compressor Related Faults

Compressor related faults are failures in the heat pump system where the compressor or a component
within the compressor is the failure cause. The heat pump systems of relevance are equipped with two
different compressor types in Fig. 4.1, referred to as the ”V-compressor” and the ”5HP-compressor”.
Both are prone to failures, the ”5HP-compressor” is the older of the two. There are two differences
between the compressors that affects the FDD approach; the ”5HP-compressor” has an oil pump
mounted on the same shaft circulating oil in the compressor, while the ”V-compressor” has an external
oil pump. The second difference is that the ”V-compressor” is proven to resist all back flows, which
in principle gives the ”V-compressor” two non-return valves. The ”5HP-compressor” has a slight leak
when introduced to a back flow. These differences will become apparent in Fault 4.3, Fault 5.5, Fault
6.1 and Fault 6.5.

Figure 4.1: The two different types of piston compressors considered. On the left side is the ”5HP-compressor” and on the left
side is the ”V-compressor”. They can all be fitted with a variable amount of cylinders.

All faults classified as compressor faults are independent of what type of heat pump system the
compressor is mounted on. There are seven individual faults classified as compressor faults where the
failure is directly related to the compressor or a part within the compressor, which are all listed in the
following subsections.

4.1. Broken bypass valve of the compressor
The bypass valve is the yellow motor driven valve in the schematic of Fig. 4.2. It can be faulty for
both the ”5HP-compressor” and the ”V-compressor”. To detect it, a measuring interval of 1 second is
required, however a closed bypass valve during shutdown is only detectable for the ”5HP-compressor”.
During startup of the compressor the bypass valve is opened for a small time period to allow for

31
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bypassing the gaseous refrigerant. This is done to have an unloaded start of the compressor to reduce
the strain on the shaft. During shutdown of the compressor the bypass valve is opened again to equalize
the pressures of the compressor, to lower the pressure of the discharge line. Both these behaviors in
their ideal case can be observed in Fig. 4.3.

Figure 4.2: The bypass valve that allows for the gaseous refrigerant to bypass the compressor.

Figure 4.3: The ideal behavior of the bypass valve during startup and shut down of the compressor. The graph to the left
shows the desired minimum 10 second lag between the increase of ጂ፩ᑠᑚᑝ (orange line) and the increase of ጂ፩ᑔᑠᑞᑡ (blue line).
The graph to the right show the ጂ፩ᑔᑠᑞᑡ (orange line) equalizing immediately after the capacity (blue line) reaches zero, while

ጂ፩ᑠᑚᑝ (green line) stays at operating conditions slightly longer.

4.1.1. Fault Description and Symptoms
The bypass valves are subject to temperatures above their prescribed limits, making them prone to
damage.

1. The bypass valve remains closed during startup. If the bypass valve does not open during startup
the pressure difference over the compressor increases simultaneously as the heat pump is started.
Ideally there would be the 10-15 second lag as in Fig. 4.3.

2. The bypass valve remains closed during shutdown. The closed valve is noticeable by the time
it takes for the compressor differential pressure to equalize, this should ideally be less than
10 seconds. In Fig. 4.3 it is less than three seconds. This fault only applies for the ”5HP-
compressor”, as the bypass valve for the ”V-compressor” has relatively small opening, which
causes the compressor differential pressure to take up to five minutes to equalize.

3. After a startup of the compressor the bypass valve never closes and the pressure difference
over the compressor never increases. The compressor shuts down eventually due to limit alarms
because the compressor differential pressure never reaches the minimum operating conditions.

4.1.2. Failure Detection Approach
The first failure mode is detected by isolating the startup periods of each compressor. During this period
the time difference between the startup of the compressor and the compressor differential pressure
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starting to increase is recorded. This time difference should be ten seconds or more according to the
control system, hence whenever it is less than 10 seconds the fault is detected. The approach is illus-
trated in Fig. 4.4.

The second fault is detected by the time step where the compressor shuts down, known as the

Figure 4.4: The FDD approach to detect a closed bypass valve during a compressor startup. ጂ፩ᑔᑠᑞᑡ is said to be within
operating conditions for this fault at 10 bar. The program checks that ጂ፩ᑔᑠᑞᑡ is increasing every 2 seconds and detects the
fault if the time difference from when the compressor capacity is initiated and when ጂ፩ᑔᑠᑞᑡ begins to increase is less than 10

seconds or more than 60 seconds.

time step when the capacity reaches zero. The time difference between the known shutdown and the
compressor differential pressure equalizing is recorded, in addition to the time step where the compres-
sor differential pressure begins to decrease. The fault is detected if either the compressor differential
pressure decrease to less than 10 bar does not begin by 45 seconds, or if the compressor differential
pressure decrease lasts for more than 10 seconds as in Fig. 4.5.

The third bypass valve fault is detected by isolating the startup period of the compressor. If the
compressor is started, but the compressor differential pressure never reaches above 3 bar after more
than 20 seconds of operation. The compressor eventually shuts off and the fault is detected. A warning
is issued if the compressor differential pressure takes longer than 25 seconds to reach its operating
conditions. This approach is illustrated in Fig. 4.6.

The three failures of the bypass valve are all detected in a qualitative manner using a case-based rea-
soning approach. The failure is detected by storing the knowledge learned by experts in a database,
and seeing how the measured data compares to the trends in the database.

4.1.3. Results
The closed bypass valve during startup and the closed bypass valve during shutdown, the first and
second failure mode could be detected in the given manner. Fig. 4.7 shows the first and second failure
mode being detected in a heat pump system on the left and right side respectively. The closed bypass
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Figure 4.5: The FDD approach to detect a closed bypass valve during shutdown. The FDD algorithm counts every time step the
pressure decreases until it is less than 3 bar, which is defined as pressure equalization in this case. ፫ counts how long the

decrease lasts, ፣ counts the time passed since the capacity reached zero. If ፫ is higher than 10 seconds or if ፣ is higher than
45 seconds then the fault is detected.

Figure 4.6: The approach to of the FDD program to detect an open bypass valve during startup.

valve during startup is detected repeatedly during every startup, where the recorded time difference is
less than three seconds. The closed bypass valve during shutdown is detected once during a shutdown,
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the right side of Fig. 4.7. It became apparent that a leaking non-return valve, later introduced as Fault
6.1, had an identical failure symptom to the bypass valve being closed during shutdown, making them
impossible to differentiate for the ”5HP-compressor”.

The bypass valve remaining opened during startup, the third failure mode, could not be differenti-
ated from a broken suction valve in the compressor and a problematic startup of the heat sink flow,
later introduced as Fault 4.5 and Fault 5.10 respectively. This was due to the three failure modes having
identical failure symptoms.

Figure 4.7: A defect bypass valve detected in a heat pump system. The left side shows the bypass valve remaining closed
during startup where the time difference between ጂ፩ᑔᑠᑞᑡ (orange line) and ጂ፩ᑠᑚᑝ (blue line) beginning to increase is less than
3 seconds. The right side shows the bypass valve remaining closed shutdown, the capacity (green line) reaches zero, however
ጂ፩ᑔᑠᑞᑡ (orange line) was equalized before. Upon inspection this is however an example of a leaking non-return valve, later

described in Fault 6.1.

4.2. Defect capacity valve mechanism
During a startup of the compressor the cylinders of the compressor are activated one by one. The
running capacity of the compressor is defined as the amount of activated cylinders. There is a direct
dependency between the current consumed by the motor and the running capacity of the compressor.
Whenever a capacity step is done the motor current should increase accordingly through the capacity
solenoid valves as in Fig. 4.8. This is a fault that can occur in both the ”5HP-compressor” and the
”V-compressor” and it requires a measuring interval of one second.

Figure 4.8: Graph from a fault-free startup in one of GEAs heat pumps, the capacity (orange line) is increasing in steps, and
the motor current (blue line) is following accordingly.

4.2.1. Failure Description
The physical fault could be due to a number of reasons; incorrect mounting of the valve, broken push
handle or a defect capacity solenoid valve.
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4.2.2. Failure Symptom
The fault has only one symptom that characterizes it as seen below. The symptom gives an indication
that something is not working as intended with the capacity valve mechanism, however it does not
indicate what the fault is.

• During startup of the compressor the motor current is directly related to the running capacity of
the compressor. At each different capacity step, the motor current deviations remain relatively
insignificant compared to its original value and the motor current seems constant as in Fig. 4.8.
However, if the fault is present, the motor current will remain unchanged over the capacity step
or decrease as in Fig. 4.10.

4.2.3. Failure Detection Approach
The program will detect this fault by analyzing each startup individually. At each startup the average
current at each capacity step is recorded. The fault is identified if the difference between the average
motor current at two different capacity steps during a startup is less than the standard deviation, 𝜎ፌ,፤,
of the motor current in the first of the two capacity steps as explained in Equation 4.1.

𝜎ፌ,፤ =
√∑(𝑀፤,። −𝑀፤)ኼ

𝑁፤
(4.1)

Where 𝑀፤ is the matrix containing all the recorded motor currents at capacity step 𝑘, 𝑖 is the index in
that matrix and 𝑁፤ is the amount of samples, at the given capacity step 𝑘. The approach is illustrated
in Fig. 4.9, where 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦፦፨፭፨፫ is the compressor running capacity. Assuming the compressor has a
maximum of six different capacity steps during start up indicated as 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦፤.

Figure 4.9: The FDD approach of the FDD program to detect the faulty capacity valve mechanism, where ᎟ᑄ,ᑜ is given by
Equation 4.1

.

The failure of the capacity valve mechanism is detected in a qualitative manner using a case-based
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reasoning approach. The failure is detected by storing the knowledge learned by experts in a database,
and seeing how the measured data compares to the trends in the database.

4.2.4. Results

Figure 4.10: Data from a heat pump with faulty capacity valve mechanism occurring. The algorithm recognizes the fault
repeatedly at every startup.

The algorithm was able to detect the fault in the example of the fault occurring during all startups
of the compressor. The faulty capacity valve mechanism was apparent in the step from the second
compressor running capacity to the third in Fig. 4.10. It is however apparent from Fig. 4.8 and Fig.
4.10 that the motor current at the lowest running capacity is fluctuating more than the motor current at
the other running capacities. At the lowest running capacity (0%) the shaft has no resistance and the
current is more fluctuating. The standard deviation of the motor current at the lowest running capacity
will be higher than for the other steps, this leads to a less robust FDD for this particular compressor
capacity. The concept of a robust FDD algorithm is explained in Table 1.1.

4.3. Bearing damage due to liquid refrigerant mixed with the oil
This is a problem which is specific to the ”5HP-compressor” and it requires a measurement interval of 10
seconds. The 5HP-compressor is lubricated with an oil that has a specific viscosity which is prescribed
for the compressor of the heat pump. The 5HP-compressor has an oil pump mounted on its shaft that
circulates oil throughout the system.

4.3.1. Failure Description
Liquid refrigerant mixing with the oil decreases the viscosity and lubrication abilities of the oil, a decrease
in the lubrication abilities would over time decrease the lifetime expectancy of the compressor and lead
to frequent starts and stops of the heat pump. This could originate from a sudden decrease in the
suction pressure which lowers the boiling point of the refrigerant causing it to condensate or refrigerant
mixing with the oil or other reasons.

4.3.2. Failure Symptoms
This fault has three different symptoms seen below.

1. The compressor driving power is higher than predicted by compressor prediction tool.

2. The temperature of the oil increases slightly, this is however dependent on the sensor positioning.
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3. At low rotational speed the differential oil pressure is too low. The oil pump of the ”5HP-
compressor” is running at the same shaft speed as the compressor. If the differential oil pressure
is too dependent on the rotational speed this fault can be identified as in Fig. 4.11.

Figure 4.11: Graph of bearing damage detected through the relationship between ጂ፩ᑠᑚᑝ and ፍᑉᑇᑄ. Whenever the rotational
speed (dotted blue line) drops then the differential oil pressure (red line) follows and drops too low.

4.3.3. Failure Detection Approach
The high compressor driving power and the oil temperature increase are not visible enough in the data
to actually identify a fault. This is proven for the power in Fig. 4.13.

The relationship between Δ𝑝፨።፥ and 𝑁ፑፏፌ is used to detect the fault in the data. The program
records the linear relation between the rotational speed of the motor and the differential oil pressure
in the form given by equation 4.2.

Δ𝑝፨።፥ = Δ𝑝፨።፥,።፧።፭።ፚ፥ + 𝑁፫፩፦(
Δ𝑝፨።፥
𝑁፫፩፦

)፬ፚ፦፩፥፞፝ (4.2)

Where Δ𝑝፨።፥, 𝑁፫፩፦ and ( ጂ፩ᑠᑚᑝፍᑣᑡᑞ
)፬ፚ፦፩፥፞፝ are the differential oil pressure in bar, the rotational speed of

the motor in rotations per minute and the sampled linear relation between the two respectively. Fur-
thermore the data from when the rotational speed is zero and running at its maximum is neglected,
because the oil differential pressure is varying at the end points. The slope of the linear relation is
sampled for 27 different fault-free compressors. The mean of these samples are used as a reference.
The FDD program compares the measured slope coefficient to the sampled in Fig. 4.12.

The FDD approach utilizes a process history based gray-box linear regression model to detect the
fault combined with qualitative case-based reasoning based on previously seen faults.

4.3.4. Results
( ጂ፩ᑠᑚᑝፍᑣᑡᑞ

)፬ፚ፦፩፥፞፝ was 6.2445 ∗ 10ዅኾ with a standard deviation from the 27 compressors of 6.7086 ∗ 10ዅ኿,
or approximately 10 % of the mean.

In the data containing the fault from Fig. 4.11 it was seen that ( ጂ፩ᑠᑚᑝፍᑣᑡᑞ
) was approximately 70 %

higher than ( ጂ፩ᑠᑚᑝፍᑣᑡᑞ
)፬ፚ፦፩፥፞፝, thus the fault threshold used was 60 % to detect the fault, due the the

standard deviation of ( ጂ፩ᑠᑚᑝፍᑣᑡᑞ
)፬ፚ፦፩፥፞፝.
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Figure 4.12: The approach of the FDD program to detect bearing damage. The approach is built up in two steps; first ጂ፩ᑠᑚᑝ
and ፍᑣᑡᑞ are recorded in the desirable range. Then the program performs a linear regression of ጂ፩ᑠᑚᑝ and ፍᑣᑡᑞ and

compares the slope coefficient, ( ᏺᑡᑠᑚᑝᑅᑣᑡᑞ
), to the sampled slope coefficient, ( ᏺᑡᑠᑚᑝᑅᑣᑡᑞ

)ᑤᑒᑞᑡᑝᑖᑕ.

The FDD program was able to detect the fault in one of GEAs compressors, where the operator was un-

aware of the fault. Fig. 4.13 shows ( ጂ፩ᑠᑚᑝፍᑣᑡᑞ
)፬ፚ፦፩፥፞፝ and (

ጂ፩ᑠᑚᑝ
ፍᑣᑡᑞ

) for the faulty heat pump, where ( ጂ፩ᑠᑚᑝፍᑣᑡᑞ
)

was seen to be 1.780 ∗ 10ዅኽ, which is 64.9% steeper than expected. Hence the fault was detected on
the third symptom.

For the first symptom, the fault was not detected, on the right side of Fig. 4.13, the power re-
quired to drive the shaft from measurements, 𝑃 , was 1.4 times higher than the power predicted, 𝑃ፏፑ,፞.
However the data from the right side of Fig. 4.13 is the only data from heat pump system with a
”5HP-compressor” where 𝑃 is measured. Hence the efficiency losses in the electrical motor and the
frequency converter for the heat pump system with a ”5HP-compressor” is unknown. However the
power calculated (through equation 3.3), 𝑃 , is identical to 𝑃ፏፑ,፞.

It cannot be concluded if bearing damage is detected on symptom one, if the calculations of the
driving power are incorrect, or if the power losses prior to the shaft are larger for the ”5HP-compressor”
than for the ”V-compressor”.

The FDD approach to detect bearing damage was able to detect the failure in these two instances,
however it is dependent on analyzing all the data first. Hence with this approach the FDD algorithm
will only detect the fault after it has happened. Thus FDD algorithm to detect bearing damage is not
performing well on the quick detection and diagnosis criteria from Table 1.1.

4.4. Defect discharge valve
Each cylinder in both compressors have a discharge valve, shown in Fig. 4.14. The valve ensures that
there is no back flow from the discharge line when sucking the refrigerant before compressing. To
detect this fault a measurement interval of 30 seconds is required.

4.4.1. Failure Description
Should the discharge valve be broken then the piston is sucking gas from the discharge line and re-
compressing this gas, due to the leaking valve.
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Figure 4.13: A result from the FDD algorithm for bearing damage. The image on the left side is the fault detected through the

third symptom; the orange line is showing ( ᏺᑡᑠᑚᑝᑅᑣᑡᑞ
), while the green line is showing ( ᏺᑡᑠᑚᑝᑅᑣᑡᑞ

)ᑤᑒᑞᑡᑝᑖᑕ. The fault has been
detected as the orange line is 64.9 % steeper than the green line. The graph on the right hand side shows the predicted motor
driving power, ፏᑇᑉ,ᑖ, and the driving power calculated through equation 3.3, ፏᑖ, and the unaltered measured power drawn

from the grid, ፏᑖ,ᑞᑖᑒᑤᑦᑣᑖᑕ, in the same heat pump.

4.4.2. Failure Symptom
The fault is recognizable through the symptom below.

• The discharge temperature of the compressor with the faulty discharge valve is higher than
expected.

4.4.3. Failure Detection Approach
The periods of steady state operation at maximum capacity are isolated using the linear prediction
of the startup time. The discharge temperature is recorded and compared to the discharge temper-
ature predicted by the compressor prediction tool. The uncertainty between 𝑇ፏፑ,፝።፬ and 𝑇 ።፬ from
the compressor prediction tool, 𝑇 ።፬,፮፧፜፞፫፭ፚ።፧፭፲, was sampled to be ± 0.95 K and ± 1.79 K for the
”5HP-compressor” and the ”V-compressor” respectively.

𝑇 ።፬ > 𝑇ፏፑ,፝።፬ + 3 + 𝑇 ።፬,፮፧፜፞፫፭ፚ።፧፭፲ (4.3)

The fault threshold is taken to be 3 K in addition to the uncertainty. The fault is detected when the
threshold in equation 4.3 is exceeded for more than 5 % of the steady state operation period.

The FDD program utilizes a process history based fuzzy logic approach where the residual between
the predicted and measured 𝑇 ።፬ is weighted by how often the fault threshold is exceeded.

4.4.4. Results
A defect discharge valve has never been recorded in a heat pump system, thus the fault threshold is
not proven. The algorithm was tested for data from 27 different ”5HP-compressors”. The fault was
never detected, making the FDD algorithm robust in the sense that it never falsely detects the fault.
However, it cannot be known whether or not the FDD algorithm would detect the fault if it is occurring.

4.5. Defect suction valve
Each cylinder in both the ”5HP-compressor” and the ”V-compressor” have a suction valve, illustrated
in Fig. 4.14, to ensure no back flow to the suction line when compressing the refrigerant.
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Figure 4.14: Internal piston compressor illustration showing the internal suction and discharge valves in the piston compressor.

Figure 4.15: The approach of the FDD program to detect a defect discharge valve, the failure threshold is shown as
ፓᑕᑚᑤ,ᑦᑟᑔᑖᑣᑥᑒᑚᑟᑥᑪ+3 K.

4.5.1. Failure Description
When the piston compresses the refrigerant, the refrigerant leaks through the suction valve, and the
piston has no resistance from the gas. If the wrong valve ring is fitted, the suction valve can leak.

4.5.2. Failure Symptoms
A defect suction valve is detectable by the two symptoms listed below.

1. The power consumption of the compressor will be approximately ኻ
ፍᑔᑪᑝᑚᑟᑕᑖᑣᑤ

∗ 100 % lower than

expected for each cylinder with a broken valve. 𝑁፜፲፥።፧፝፞፫፬ is the amount of cylinders in the
compressor.

2. The compressor differential pressure never builds up to the operating conditions as shown in Fig.
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4.16. Note that this is the same symptom as for the bypass valve never closing during a startup
(item 3 of Fault 4.1).

Figure 4.16: Example of a defect suction valve leading to slow build up of ጂ፩ᑔᑠᑞᑡ. ፓᑕᑚᑤ,ᑤᑒᑥ (red line) remains at approximately
the same value as ፓᑤᑦᑔ,ᑤᑒᑥ (light blue line) during operation when ጂ፩ᑠᑚᑝ (black line) has a non-zero value. Assuming that only

one cylinder has this problem the short peak of ፓᑕᑚᑤ,ᑤᑒᑥ is most likely due to the other cylinders operating normally.

To detect the first symptom a measurement interval of 30 seconds is required, while a measurement
interval of 1 second is required for the second symptom.

4.5.3. Failure Detection Approach
The first symptom can be detected by isolating the steady state operating conditions when the com-
pressor is running at maximum capacity. Here the predictions from the compressor prediction tool are
identical to the measurements. The program can detect the fault if the measured compressor driving
power is lower than the driving power predicted by the compressor prediction tool. The residual be-
tween the two should be more than the collected uncertainty added with 12.5 % for more than 5%
of the steady state operation period to detect the fault. A comparison between the measured and
predicted driving power of the compressor can be seen in Fig. 3.1 and Fig. 4.13.

The ”V-compressor” has the most cylinders, being eight, thus ኻ
ዂ ∗ 100 %=12.5% is the failure thresh-

old. The uncertainty of the motor power calculations and predictions of ±3.9% and 1.4% for the
”5HP-compressor” and the ”V-compressor”respectively is added to the threshold, making the fault
threshold 16.4% and 13.9% respectively.

The approach of the FDD algorithm is illustrated in Fig. 4.17, where 𝑃 ,። and 𝑃ፏፑ,፞,። are the calcu-
lated or measured compressor motor power and the predicted compressor motor power in kW at time
step 𝑖 respectively. While 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦። and 𝐼፦፨፭፨፫,። are the running capacity of the compressor in % and
the motor current in Ampere respectively.

A delayed increase of Δ𝑝፜፨፦፩ is detected in the same way as a defect bypass valve remaining open
during startup (item 3 of Fault 4.1). It is worth noting that this symptom alone is not enough to detect
a defect suction valve. If this symptom occurs individually it could be either a defect suction valve, a
bypass valve remaining open during startup or a defect butterfly valve allowing a too high mass flow of
cold water to the condenser during startup (the second symptom of the later introduced Fault 5.10).

The FDD program utilizes a process history based fuzzy logic approach where the residual between
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Figure 4.17: Approach to detect a defect suction valve through a low compressor driving power. ፏᑖ,ᑦᑟᑔᑖᑣᑥᑒᑚᑟᑥᑪ is the
uncertainty between ፏᑖ and ፏᑇᑉ,ᑖ which is 0.039 when the power is not measured, and 0.01397 when the power is measured.

the predicted and measured 𝑃 is weighted by how often the fault threshold is exceeded for the first
failure mode.

The second failure mode is detected in a qualitative manner using a case-based reasoning approach.
The failure is detected by seeing how the measured data compares to the trends in the database storing
the knowledge learned by experts.

4.5.4. Results
There is only one example with visual data available of the differential pressure in the compressor never
building up in Fig. 4.16. The fault threshold of 12.5% + 3.9% = 16.4 % was never confirmed. Only
when both symptoms are detected a defect suction valve can be isolated. The second symptom can
be other faults.

4.6. Leaking overflow valve
The discharge and suction lines have an overflow or relief valve between them to regulate the pressure
difference in the compressor. The overflow valve is used whenever the pressures in the compressor
are getting too high to reduce pressures. A leaking overflow valve is a problem in both the ”5HP-
compressor” and the ”V-compressor”, where a measurement interval of 1 second is required to detect
the fault.

4.6.1. Failure Description
A leaking overflow valve results in the compressor compressing and sucking the same volume of re-
frigerant during each reciprocation, where the volume of the refrigerant overheats. An overheated
refrigerant could for example lead to damaging the bypass valve (Fault 4.1).

4.6.2. Failure Symptom
A leaking overflow valve is detectable through one symptom as seen below.

• The suction temperature will increase above its expected values during constant operating con-
ditions as in Fig. 4.18 up until the heat pump is shut off, where the suction superheat will be at
least above 5 K.
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Figure 4.18: Example of a leaking overflow valve in a ”V-compressor”, during non-changing operating conditions the suction
and discharge temperatures (light blue line and light red line respectively) are increasing until the compressor reaches a

shut-off limit.

4.6.3. Failure Detection Approach
The program isolates the shutdown, then goes backwards and checks if the suction temperature was
increasing every two seconds for more than the last 120 seconds before the shutdown. In addition the
temperature difference between the saturated suction temperature and the measured suction temper-
ature, i.e. the suction superheat of the compressor, around the shutdown should be above 5 K, the
FDD approach is illustrated in Fig. 4.19.

The failure is detected in a qualitative manner using a case-based reasoning approach. The failure
is detected by seeing how the measured data compares to the trends in the database storing the
knowledge learned by experts.

4.6.4. Results
There are no data containing a leaking overflow vale, therefore one cannot know for certain that the
algorithm will work. However from the graph in Fig. 4.18, the suction temperature is seen to be
increasing for the last four minutes before the shutdown, while having a suction superheat at shut
down of approximately 70 K. The weakness of this algorithm is the time frame, in the example of the
fault the increase is lasting for four minutes.

A false fault was created in a data set to simulate the behavior seen in Fig. 4.6, where the suction
temperature was continuously increasing until the heat pump was switched off. The FDD program
recognized both symptoms in Fig. 4.20. The program recognizes that the suction temperature is
increasing for the last 139 seconds and at shutdown the suction superheat is above 5 K when the
compressor shuts down.

4.7. Operating with a fluctuating torque in the coupling shaft
The torque of the shaft coupling the electric motor and the compressor can be seen to have high fluc-
tuations. The high fluctuations will only occur during certain low rotational speeds of the motor. It is
further not known why it is occurring. However there is reason to believe that it is either a frequency
converter not suited to operate at these frequencies or the shaft is operating at its natural frequency.

Both the ”5HP-compressor” and the ”V-compressor” can have this problem, the required measure-
ment interval will be further discussed in this subsection.
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Figure 4.19: Approach of the FDD program to detecta leaking overflow valve by counting backward from a known shut down
and investigating the suction temperature.

Figure 4.20: Example of how a broken overflow valve would look like being recognized by the program in a data set modified
to contain leaking overflow valve.

4.7.1. Failure Description
The control system of the heat pump system will request a certain 𝑁ፑፏፌ which is the recorded 𝑁ፑፏፌ.
If this corresponds to the natural frequency of the shaft, then the experienced 𝑁ፑፏፌ, 𝜏፬፡ፚ፟፭ and 𝑃 will
be fluctuating in an undesirable manner due to resonance.

Should the motor be operated with a fluctuating torque this can be damaging for the shaft, and its
lifetime expectancy. Operating with a fluctuating torque is seen to introduce vibrations that again can
cause damage to the shaft, the compressor and the motor.
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4.7.2. Failure Symptom
High fluctuations in the torque of the shaft can be recognized by the symptom below for the heat pump
system where the torque in the coupling shaft is measured.

• If the requested rotational speed of the motor remains constant while the torque is fluctuating
this is a symptom that the motor is operated at the natural frequency of the shaft or the frequency
drive is not suited for the operational frequency.

The rotational speed measured is the speed requested by the control system, while the recorded torque
is however the experienced torque on the shaft. Fig. 4.21 shows a heat pump system where high fluc-

Figure 4.21: An example of a heat pump system with a fluctuating torque. A constant ፍᑉᑇᑄ leads to relatively large variations
in Ꭱᑤᑙᑒᑗᑥ for no apparent reason. The left side illustrates the difference between ideal and faulty behaviour, time step 700 to
800 shows ideal behaviour, where a constant ፍᑉᑇᑄ leads to a relatively constant Ꭱᑤᑙᑒᑗᑥ. However after time step 800, ፍᑉᑇᑄ
remains constant while Ꭱᑤᑙᑒᑗᑥ is fluctuating from 40 % to 90 % of its maximum value. The right hand side show a time interval
where the experienced ፍᑉᑇᑄ was fluctuating, causing the undesirable fluctuations in Ꭱᑤᑙᑒᑗᑥ. It is worth noting that the data

measured every second (green and black dots) in the bottom right graph have a sinusoidal curve. This happens if the
measuring frequency is at least half of the original signal frequency.

tuations in the torque was experienced. This is from a heat pump system where after a longer period
of unstable operation the service engineer suspected that the torque had high variations due to vi-
brations. To further examine the heat pump, the system was fitted with special sensors that measure
every 0.1 seconds. In addition extra sensors where fitted to examine the experienced 𝑁ፑፏፌ and not
only the 𝑁ፑፏፌ requested by the control system.

The fault became apparent, the requested 𝑁ፑፏፌ remained constant, and the measured 𝜏፬፡ፚ፟፭ was
seen to have high fluctuations. The left side of Fig. 4.21 illustrates the issue well; the requested 𝑁ፑፏፌ
remains constant, and from time step 650 to time step 810 𝜏፬፡ፚ፟፭ behaves as expected during ideal
operation. After that 𝜏፬፡ፚ፟፭ is seen to have high variations.

The black and green dots in Fig. 4.21 are measuring the value every second. In a normal heat
pump system only the information from the black and green dots would be available and some of the
fluctuations might not be visible in the black and green dots. However it is worth noting that the fluc-
tuations in the bottom right graph are stable enough for the black and green dots to follow a sinusoidal
wave. It is also worth noting that 𝑃 remains constant, this is the power calculated, which is based on
𝑁ፑፏፌ and 𝐼፦፨፭፨፫ and constants. This is also a confirmation that the problem is occurring as 𝑃 is seen
to be relatively constant while 𝑃 ,፦፞ፚ፬፮፫፞፝ is seen to be fluctuating.

4.7.3. Failure Detection Approach
When operating at a fluctuating 𝑁ፑፏፌ it can be difficult to detect that 𝜏፬፡ፚ፟፭ is fluctuating. The typical
values of 𝑁ፑፏፌ ranges between 500 and 1500 rpm, which translates to 8.33 to 25 rotations per second,
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which translates to a frequency of 0.12 to 0.04 Hz. If the motor is operated at the natural frequency
then once or more per rotation the shaft will get an increased amplitude and an increase of 𝜏፬፡ፚ፟፭. To
be able to detect small changes in 𝜏፬፡ፚ፟፭ at least once per rotation a higher measuring accuracy would
be required. Measuring twice per rotation would be the minimum, i.e. measuring every 0.02 seconds.
However, by only looking at the dots in Fig. 4.21 the fault can still be recognized.
If the original signal is a sinusoidal wave with constant fluctuations, then the sinusoidal wave will still be
recorded with the same amplitude, but a different period, as seen in the bottom right graph of Fig. 4.21.

The FDD program must isolate the periods of a constant 𝑁ፑፏፌ, during these periods the FDD program

Figure 4.22: The approach of the FDD algorithm to detect a fluctuating torque. To avoid the variations in Ꭱᑤᑙᑒᑗᑥ during the
capacity steps during startup the algorithm ensures that the compressor has been running at 100 % capacity for the last

minute. This is under the assumption that the measuring time step interval is 1 second.

will isolate the last 7 measured values for 𝜏፬፡ፚ፟፭ and check that 𝑁ፑፏፌ was constant for the last 7 time
steps.

The fault is detected in two manners. If the difference between the minimum and maximum of the
last seven measured 𝜏፬፡ፚ፟፭ is higher than 25 % of the average 𝜏፬፡ፚ፟፭ from the same period, the fault
is detected.

If the standard deviation of the 7 last values of 𝜏፬፡ፚ፟፭ is higher than 25 % of the average of the 7
last values of 𝜏፬፡ፚ፟፭ then the fault is detected.

The approach of the FDD program can also be seen in Fig. 4.22. The FDD program utilizes a qualitative
limit checking and case-based reasoning where the program looks for a specific trend whenever a limit
or threshold defined from priori knowledge is exceeded.

4.7.4. Results
For the data set from Fig. 4.21 the FDD program was able to detect the fault when only analyzing the
data given by the dots measuring every second in Fig. 4.21. In the results Fig. 4.23, the right hand
side shows the entire original data set with a time step interval of 0.1 second, while the left hand side
shows the data set when modified to only analyzing the values every tenth time step.

At this point the true origin of the fault is not known, as the problem have recently been discov-



48 4. Compressor Related Faults

Figure 4.23: Results from analyzing a heat pump system known to contain a fluctuating torque. The right hand side shows the
original data with a measurement time interval of 0.1 second, while the left side shows the FDD analysis of the same data

measured every tenth time step. Whenever ፍᑉᑇᑄ remains constant for more than 7 seconds the FDD program analyses Ꭱᑤᑙᑒᑗᑥ
for the past 7 seconds and compares it to the fault thresholds. The blue crosses on the left hand side marks whenever the fault

was detected.

ered for the first time in a heat pump system. The service engineers of this heat pump have several
different hypotheses, but none have been confirmed or denied. For the sake of the FDD program the
fault is detected as a fluctuating torque.

Conclusions about the required measurement interval to detect a fluctuating torque
The conclusion for the fluctuating torque was that fluctuations in 𝜏፬፡ፚ፟፭ can be detected with a measur-
ing interval of 1 second. However the FDD algorithm would be stronger with a measurement interval of
0.02 seconds. When measuring every second the FDD program is dependent on the fluctuating 𝜏፬፡ፚ፟፭
to fluctuate for a longer time period.



5
Operational Faults

Operational faults are faults typically occurring during operation of the heat pump system. Operational
failures are not the failure of a component or part of the heat pump being broken, but rather operation
of the heat pump system in an unintended manner which can lead to damage and other failures.
There are 11 faults classified as operational faults, where some faults are specific for specific heat
pump system setups or compressors.

5.1. Condensation of the refrigerant inside the crankcase
This is a fault that can occur for all heat pump systems and compressors, detection of the fault requires
a measurement interval of 1 second. During stand still of the compressor the crankcase heater heats
the oil in the compressor to maintain the refrigerant in an evaporated state in the crankcase of the
compressor, by maintaining a superheat in the suction line of at least 5 K.

5.1.1. Fault Description
The refrigerant can condensate if the crankcase heater is not operated correctly. Due to density dif-
ferences the refrigerant will accumulate as a liquid layer on top of the oil. The oil temperature is
monitored, however the heat is not dispersed evenly from the internal heater as shown in Fig. 5.1
due to a low heat conductivity of the oil. The temperature transmitter, located close to the internal
heater, will read temperatures above the evaporating temperature of the refrigerant at the crankcase
pressure. However there will be a time delay before these temperatures reach the refrigerant. The
problem arises when starting the compressor with liquid refrigerant in the oil, the oil mix has a different
viscosity and does not lubricate well, this can ultimately lead to bearing damage (Fault 4.3).

Figure 5.1: Simplified schematic of compressor crankcase illustrating the issue of condensing refrigerant

5.1.2. Failure Symptoms
The fault is detectable through the symptoms shown below.

1. During startup the saturated suction temperature will be higher than the actual suction temper-
ature illustrated in Fig. 5.2.

49
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2. If the saturated discharge temperature is higher than the measured discharge temperature during
startup and the compressor never runs at the maximum capacity this could mean that some liquid
could be left in the cylinder heads as in Fig. 5.2.

Figure 5.2: Condensation in the crankcase during startup of a compressor. For a short time period after startup ፓᑤᑦᑔ,ᑤᑒᑥ
(orange line) is higher than ፓᑤᑦᑔ (red line), allowing for condensation in the suction line of the compressor. ፓᑕᑚᑤ,ᑤᑒᑥ (dotted blue
line) is also higher than ፓᑕᑚᑤ (light blue line) during startup and afterwards the capacity (black line) never reaches its maximum

(100 %).

3. If the saturated suction or the saturated discharge temperatures are higher than the measured
suction or the measured discharge temperature during standstill when the discharge and suction
is equalized as explained by equation 5.1.

2 + (𝑇፬፮፜,፬ፚ፭ 𝑜𝑟 𝑇 ።፬,፬ፚ፭) > 𝑇፬፮፜ 𝑜𝑟 𝑇 ።፬ (5.1)

4. The ambient engine room temperature, 𝑇ፚ፦፛።፞፧፭ , is too far away from the saturated suction
temperature during standstill as seen in equation 5.2.

𝑇፬፮፜,፬ፚ፭ − 𝑇ፚ፦፛።፞፧፭ > 10𝐾 (5.2)

5. If the oil temperature is decreasing too quick upon startup.

5.1.3. Failure Detection Approach
To detect the fault during startup with condensation in the discharge or the suction line the FDD
program identifies the startups and looks for the two first symptoms as illustrated in Fig. 5.3. For both
symptoms the program identifies how long the fault thresholds was exceeded.

To detect condensation during standstill the FDD program will record perform a simple limit check.
If equation 5.1 or equation 5.2 are true during standstill then the fault is detected and the FDD program
will record the time step and the fault proving temperature difference. The fifth symptom is not suffi-
cient on its own to detect the fault, as a decreasing oil temperature during startup does not necessarily
indicate a fault.

All symptoms are detected through a qualitative simple-rule based reasoning looking for a specific
residual between two parameters, where priori knowledge defines the residual as faulty or fault-free.

5.1.4. Results
The program is able to detect the fault through the first four symptoms, the last symptom proved in-
sufficient. There was only data available from the first and second symptom for validation, the example
from Fig. 5.2.
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Figure 5.3: The FDD approach to detect condensation in the crankcase during startup.

5.2. Air in the condenser due to leakage in refrigeration plant
A leakage in the refrigeration plant is only a problem for the heat pump configured as an add-on to a
refrigeration plant in an open type configuration as seen in Fig. 1.3. The pressures experienced in the
refrigeration plant can be below atmospheric pressures, a leak will introduce air into the piping. Due
to the open type heat exchanger the air is ultimately introduced in to the heat pump system. To detect
the fault a measurement interval of 30 seconds is required.

5.2.1. Failure Description
The air ultimately accumulates in the condenser as a non-condensible adding more mass transfer
resistance for the refrigerant. This is further increasing the pressure of the refrigerant due to Dalton’s
law seen in equation 5.3 stating that the total pressure, 𝑝፭፨፭ፚ፥ is equal to the individual pressures of
the ideal gasses present added up.

𝑝፭፨፭ፚ፥ = 𝑝ፚ።፫ + 𝑝፫ (5.3)

Where 𝑝ፚ።፫ and 𝑝፫ is the partial pressure of the air and the refrigerant present in the condenser in bar
respectively.

5.2.2. Failure Symptom
Air in the condenser is detectable by the symptom below.

• The temperature difference between the water exiting the condenser and the condensing tem-
perature of the refrigerant is too high as illustrated in Fig. 5.4.

This symptom is occurring during steady state operation. During the compressor startup, the discharge
pressure and hence also the saturated discharge temperature will build up slowly and 𝑇 ።፬,፬ፚ፭ will not
be as stable as seen in Fig. 5.4. Therefore the startup time prediction from equation 3.14 in subsection
3.3.1 is used for the FDD approach in Fig. 5.5.

5.2.3. Failure Detection Approach
The expected temperature difference between the water exiting the condenser and the condensing
temperature of the refrigerant, Δ𝑇 ።፬,፜፨፧፝,፰ፚ፭፞፫,፝፞፬።፠፧ is taken as a design input. This temperature dif-
ference will differ per heat pump system.

The fault detection threshold is given by equation 5.4. For the fault to be detected the measured
difference, Δ𝑇 ።፬,፜፨፧፝,፰ፚ፭፞፫, should be larger than Δ𝑇 ።፬,፜፨፧፝,፰ፚ፭፞፫,፝፞፬።፠፧.
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Figure 5.4: Example of air in the condenser, it can be seen that the temperature difference between the outlet of the water
stream (orange line) and the condensing temperature (blue line) is approximately 9 K, ideally it should be approximately 1.4 K

for this heat pump system as explained later.

The temperature difference between the two should be more than the maximum standard deviation
in any of the measured data sets, 𝜎ጂፓ,፬ፚ፦፩፥፞፝, plus the average standard deviation of all the measured
heat pumps, 𝜎ጂፓ,፬ፚ፦፩፥፞፝.

When equation 5.4 is true for more than 25 % of the steady state period the fault is detected.

Δ𝑇 ።፬,፜፨፧፝,፰ፚ፭፞፫,። > Δ𝑇 ።፬,፜፨፧፝,፰ፚ፭፞፫,፝፞፬።፠፧ + 𝜎ጂፓ,፬ፚ፦፩፥፞፝ +𝑚𝑎𝑥(𝜎ጂፓ)፬ፚ፦፩፥፞፝ =
Δ𝑇 ።፬,፜፨፧፝,፰ፚ፭፞፫,፝፞፬።፠፧ + 2.25

(5.4)

Where Δ𝑇 ።፬,፜፨፧፝,፰ፚ፭፞፫,። is the temperature difference between the saturated discharge temperature
and the water exiting the condenser at time step 𝑖. The approach of the FDD program is illustrated in
Fig. 5.5.

Figure 5.5: FDD approach to detect air in the condenser. The detection of the fault is dependent on two analyses.

It is worth noting that 𝜎ጂፓ and 𝑚𝑎𝑥(𝜎ጂፓ)፬ፚ፦፩፥፞፝ are both relatively high compared to the expected
differences, i.e. there is a high uncertainty in the measurement of Δ𝑇 ።፬,፜፨፧፝,፰ፚ፭፞፫. Therefore 𝜎ጂፓ and
𝑚𝑎𝑥(𝜎ጂፓ)፬ፚ፦፩፥፞፝ were added, and the threshold has to be exceeded for 25 % of the operating period
or more. The 25 % is to be certain that the fault is apparent and re-occurring, and not only happening
for a few seconds due to uncertainties in measurements.
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The fault is detected through a qualitative simple-rule based reasoning looking for a specific residual
between two parameters, where priori knowledge defines the residual as faulty or fault-free.

5.2.4. Results
A heat pump system was analyzed where the fault was known, there was data available from before
and after the fault was detected. After the fault was detected, the condenser was emptied of air, and
the data from after the cleaning of the condenser showed that Δ𝑇 ።፬,፜፨፧፝,፰ፚ፭፞፫ after operation was
1.38 K, which will be assumed as Δ𝑇 ።፬,፜፨፧፝,፰ፚ፭፞፫,፝፞፬።፠፧ for this heat pump system. This totals to a fault
threshold of 3.63 K.

The data from before the fault was detected were analyzed. Whenever Δ𝑇 ።፬,፜፨፧፝,፰ፚ፭፞፫ is above the
3.63 K for more than 25% of the operational time the fault is detected. In Fig. 5.6 air in the condenser
was detected, the threshold is exceeded for 100% of the operational time. In the graph both the
expected 𝑇፰ፚ፭፞፫,፨፮፭,፜፨፧፝ based on the measured 𝑇 ።፬,፬ፚ፭ and the threshold of 3.63 K, and the threshold
for when the fault is detected are shown as the orange and purple line respectively.

Figure 5.6: Example from air in the condenser being detected by the FDD program. The expected ፓᑨᑒᑥᑖᑣ,ᑠᑦᑥ,ᑔᑠᑟᑕᑖᑟᑤᑖᑣ is
shown as the orange line calculated as ፓᑕᑚᑤ,ᑤᑒᑥ ዅ ኻ.ኽዂ. The fault threshold is the minimum allowed value of ፓᑨᑒᑥᑖᑣ,ᑠᑦᑥ,ᑔᑠᑟᑕ,

shown as the purple line being ፓᑕᑚᑤ,ᑤᑒᑥ ዅ ኽ.ዀኽ.

5.3. Fluctuations in the incoming heat source flow
For the heat pump functioning as an add on to a refrigeration plant the flow of the refrigerant in the
refrigeration plant is often used to defrost the evaporators of the refrigeration plant. Part of the refrig-
erant is rerouted to the evaporators for defrosting purposes, giving away its heat to the evaporators.
A simplified scheme showing the refrigerant being used for defrosting is illustrated in Fig. 5.7.

A decreased flow of the heat source affects the evaporating properties of the refrigerant, which again
is directly linked with the suction line of the compressor. This fault can occur for a water cooled heat
pump as well, if there are too many variations in the water entering the evaporator. The fault is
independent of the compressor type and requires a measurement interval of 1 second to be detected.

5.3.1. Failure Description
The mass flow of the heat source is lower than expected because it is being used to defrost air-coolers
or the temperature of the heat source flow has too high fluctuations. This lowers the suction pressure
of the heat pump compressor. The sudden pressure decrease also lowers the boiling point of the
refrigerant, which can lead to problems with the refrigerant dissolved in the oil, and potential bearing
damage (Fault 4.3). If this happens frequently it can ultimately shorten the lifetime expectancy of the
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Figure 5.7: A detailed schematic of the heat pump used for as an add-on for refrigeration plants. The discharge gas of the
compressor in the refrigeration plant is used to defrost the air coolers, reducing the flow of refrigerant to the inter cooler which

can result in fluctuations of the incoming heat source flow.

heat pump and more so the compressor.

5.3.2. Failure Symptoms
High fluctuations in the incoming heat source flow is an issue for heat pumps working as an add on
to a refrigeration plant. The heat source is then dependent on the refrigeration plant operation, which
also has several possible failure modes. The fault can be detected by the symptoms below.

1. The entering heat source temperature, 𝑇 ፯ፚ፩,ፑፏ,።፧, is varying more than its design specification
of 2 K per minute on average.

2. The mass flow of the refrigerant in the refrigeration plant, �̇�፫,ፑፏ, is too low as it is being used
for defrosting. The allowed flow is 50-110% of the design flow.

3. The mass flow of the refrigerant is varying more than its design specification of 10 % per minute.

4. The saturated suction temperature of the heat pump compressor, 𝑇፬፮፜,፬ፚ፭,ፇፏ, drops accordingly
to the entering heat source temperature, but with a time delay, as seen in Fig. 5.8. 𝑇፬፮፜,፬ፚ፭,ፇፏ
has design specifications dictating that it should not vary more than 2 K per minute.

Figure 5.8: The saturated suction temperature in the heat pump (red line) drops by 8 K in 40 seconds due to the discharge
pressure of the refrigeration plant (blue line) dropping in a system with a closed type HEX. For a heat pump system with an

open type HEX the two values would have been identical.
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5.3.3. Failure Detection Approach
The mass flow of the refrigerant in the refrigeration plant is not directly measured, but it can be
estimated through equation 5.5 for a system with an open type HEX.

�̇�፫,ፑፏ =
�̇�፜፨፧፝ − 𝑃፜፨፦፩

Δℎ፝።፬,፫,ፑፏ + Δℎ፯ፚ፩,፫,ፑፏ
(5.5)

Where Δℎ፝።፬,፫,ፑፏ is the enthalpy difference between the actual discharge and the saturated discharge
of the refrigeration plant. The enthalpy at the discharge is collected using the recorded temperature
of the incoming heat source flow, 𝑇 ፯ፚ፩,ፑፏ,።፧, and the suction pressure recorded in the heat pump sys-
tem. Δℎ፯ፚ፩,፫,ፑፏ is the latent heat of vaporization taken at the outlet temperature of the refrigeration
plant refrigerant exiting the evaporator, 𝑇 ፯ፚ፩,ፑፏ,፨፮፭. Equation 5.5 is under the assumption that the
subcooling of the refrigerant in the refrigeration plant is negligible. In addition equation 5.5 can only
be used for a heat pump system working as an add-on to a refrigeration plant with an open type HEX,
thus the second and third symptom can only be detected for this type of heat pump system.

For the actual calculations of the mass flow from equation 5.5 the startup time predictions of the
condenser heat has to be considered. Although the mass flow going through the condenser will be
constant itself during the startup period, the calculation of it will fluctuate until after the startup time.

To detect fluctuations in the mass flow or temperature of the entering heat sink or the saturated
suction temperature, the FDD program takes the mean of each variable every 60 seconds. This is done
over past 60 seconds, which effectively changes the time step to one minute. The FDD program further
checks that the temperatures do not vary more than 2 K per time step and the mass flow does not
vary more than 10 % of its own value per time step.

A mass flow too far away from the design flow is detected with a limit check of the mass flow of
the heat source. Checking that the mass flow is within 50-110 % of the design flow.

Since the fault has 4 highly intertwined symptoms the FDD algorithm scores higher on the isolability
from Table 1.1 if all are detected. Especially the fluctuations in the mass flow and temperature of the
entering heat sink and the saturated suction temperature are directly intertwined.

The fault is detected in qualitative rule based limit checking to predefined thresholds.

5.3.4. Results
The calculations of the mass flow of the heat source entering the evaporator is directly dependent on
several other variables that can be faulty. The mass flow calculations are dependent on two different
enthalpies at the suction of the heat pump compressor and �̇�፜፨፧፝ and 𝑃፜፨፦፩ which are dependent on
5 different enthalpies. Which makes the mass flow calculations dependent on 7 different enthalpies in
total. Due to this �̇�፫,ፑፏ can be seen to be varying if any number of other faults are occurring.

Due to the uncertainties derived for 𝑃 and �̇�፜፨፧፝, the mass flow of the heat source will have a total
uncertainty of 3.90 % and 3.00 % for the ”5HP-compressor” and the ”V-compressor” respectively.

There was one example where the saturated suction temperature was fluctuating in Fig. 5.10, where
𝑇፬፮፜,፬ፚ፭ makes a sudden jump of 3.08 K over one minute. This is the same example as later seen for
Fault 6.3.

However there were no data available of an add-on heat pump with an open type HEX where the tem-
perature of the entering refrigerant from the refrigeration plant was measured. The later introduced
Fault 5.6 is a similar fault dictating the allowable fluctuations in the secondary flow of the condenser.
The results from Fault 5.6 can be assumed to be applicable for the fluctuations in the incoming heat
sink flow as well.
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Figure 5.9: The approach to detect too high fluctuations in the heat sink flow, note that the algorithm investigates all
symptoms simultaneously.

5.4. Constantly running on the limitations of the field of appli-
cation

Both the ”5HP-compressor” and the ”V-compressor” have a maximum allowable discharge pressure
where safe operation and the given lifetime expectancy can be assured. The control system of the
heat pump controls 𝑁፫፩፦ in order to ensure that 𝑝፝።፬ is within its limits. This fault is independent of
the heat pump system configuration.
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Figure 5.10: An example of high variations of the ፓᑤᑦᑔ,ᑤᑒᑥ in a heat pump system. The black stars marks where the fault was
identified, the black stars is the average ፓᑤᑦᑔ,ᑤᑒᑥ over the last 60 time steps up until that point. As expected ፓᑤᑦᑔ,ᑤᑒᑥ has high

fluctuations in the startup, however the FDD algorithm only analyzes the time after a compressor startup.

Figure 5.11: The figure shows an example of a compressor running on the limitation of operation. ጂ፩ᑔᑠᑞᑡ (blue line) is
varying right below the maximum pressure lgimit and ፍᑉᑇᑄ (red line) is limited and decreased frequently to control ጂ፩ᑔᑠᑞᑡ.

5.4.1. Failure Description
Operating on the limits of the compressor leads to a decrease in the lifetime expectancy of the com-
pressor due to a higher strain on various components. The control system shuts off the compressor
if the discharge pressure reaches a certain limit, which differs per compressor. At 0.5 bar below that
limit the rotational speed is limited to the current rotational speed and at 0.3 bar below the limit the
rotational speed is lowered to decrease the discharge pressure. If this fault occurs often it will lead to
frequent starting and stopping of the compressor, which further lowers the lifetime expectancy. The
discharge pressure rising too high could be due to sudden increases in the water temperature entering
the condenser, too warm water entering the condenser or wrong settings in the control system of the
heat pump system.

5.4.2. Failure Symptoms
The fault is recognized by the symptom below.

• Each compressor has a prescribed maximum discharge pressure, 𝑝፝።፬,፝፞፬።፠፧. If the measured
discharge pressure is within 0.5 bar of that relatively often, then the control system of the com-
pressor will limit the rotational speed to control the pressure difference, as shown in Fig. 5.11.
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5.4.3. Failure Detection Approach
The FDD program is able to detect this fault by isolating the periods of steady state operation defined
when the discharge pressure is at operating conditions.

To detect the symptom, the program will make a linear regression model of 𝑁ፑፏፌ from the time
step where 𝑝፝።፬ has a local maximum within 0.8 bar of 𝑝፝።፬,፝፞፬።፠፧ and for the next 120 seconds. If
𝑁፫፩፦ is seen to be decreasing in the linear regression model by 1.5 rpm or more per second the fault
is detected. This approach is further outlined in Fig. 5.12. 0.8 bar is chosen as the failure threshold to
account for uncertainties in the sensor measurements.

Figure 5.12: FDD algorithm to detect operating at the limits of ፩ᑕᑚᑤ note that ፍᑉᑇᑄ has to be limited due to a high ፩ᑕᑚᑤ five
times for the fault to be detected. The fault is detected during the steady state operation period.

After investigation it became apparent that it generally took no more than 10 seconds from the high
𝑝፝።፬ was detected for the first time until 𝑁ፑፏፌ was lowered. Therefore the linear regression is made
from 10 seconds after 𝑝፝።፬ is registered above the threshold for the first time.

The FDD program utilizes a combination of a process history based black-box linear regression and
a qualitative limit checking and case-based reasoning. The program looks for a specific linear regres-
sion trend whenever a limit or threshold is exceeded.

5.4.4. Results
The fault was detected in one example in Fig. 5.13, the compressor was shut off twice due to high
discharge pressures, and 𝑁ፑፏፌ was lowered 16 times. On the right side of Fig. 5.13 𝑝፝።፬ is steadily
increasing over time until it reaches its limits. This is most likely due to the incoming water to the
condenser being too warm, and the refrigerant is not able to cool down sufficiently in the condenser.
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Figure 5.13: Two examples, shown on the left and right side where the top is ፍᑉᑇᑄ and the bottom is ፏᑕᑚᑤ, of a compressor
operating on its limits being detected in a heat pump system. In the example on the right side the pressure steadily increases
over time until it reaches a certain limit where the control system begins to decrease ፍᑉᑇᑄ to decrease ፩ᑕᑚᑤ. The orange stars
mark wherever the FDD algorithm detected that the control system of the heat pump has lowered ፍᑉᑇᑄ to maintain ፏᑕᑚᑤ

within its limits. The green stars mark wherever the control system has shut off the compressor due to high ፏᑕᑚᑤ.

5.5. Compressor not lubricated after periods of longer standstill
The ”5HP-compressor” has an oil pump connected to the same shaft as the compressor. After periods
of longer standstill the compressor must be lubricated with oil before startup to ensure safe operation.
This is a problem only occurring for the ”5HP-comrpessor” as the ”V-compressor” has an external oil
pump that frequently lubricates the system when the compressor is not operating. The fault requires
continuously measured data from the last month with a measurement interval of 5 seconds.

5.5.1. Failure Description
If the compressor is not lubricated with oil through an external oil pump prior to operation of the
compressor it may lead to dry operation of the heat pump that ultimately damages the compressor
bearings (Fault 4.3).

5.5.2. Failure Symptom
This fault is detected by the symptom below.

• Pre-lubrication is detected by monitoring the differential oil pressure during stand-still of one
compressor. If the differential oil pressure has a value in the proximity of its normal operating
value during stand-still pre-lubrication is being performed.

5.5.3. Failure Detection Approach
The program would require continuous data logged from the periods of stand-still, the standstill should
be at least a month. During these longer periods the program will look for a non-zero value in the
differential oil pressure. If the differential oil pressure remains below a threshold of 1.2 bar for the
entire standstill up until a startup the fault can be identified. The approach is a typical example of a
qualitative limit checking FDD approach.

5.5.4. Results
There was no available data containing continuously logged data with a measurement interval of 5
seconds from one month or more. This would require over half a million measuring points, hence the
algorithm could not be validated.

However for the future on-line FDD program in the control system the FDD program should compare
how long the standstill period has been. If there was a case of Δ𝑝፨።፥ having a value around 1.2 bar,



60 5. Operational Faults

and the data does not have to be continuously stored.

5.6. Fluctuations in the incoming heat sink flow
The secondary flow in the condenser has certain maximum allowable fluctuations. Several of the GEA
heat pump systems are connected to a larger industrial system where the incoming heat sink flow is
coming from another process. Therefore, all heat pumps have maximum allowable fluctuations in the
secondary flows. This is a fault that can occur independent of all compressor types and independent
of the heat source. It is more common for systems where the heat sink flow is coming from another
process.

5.6.1. Failure Description
If the temperature or the mass flow of the entering heat sink fluctuates too much, the heating capacity
becomes unstable. This can affect the efficiency or delivered heat of the heat pump system, or it can
lead to unstable subcooling (Fault 5.11). Sudden increases of the water temperature could lead to a
high discharge pressure on the limitations of operation (Fault 5.4). The maximum fluctuations allowed
in the secondary streams are dictated in the documentation of each heat pump system. They are all
dependent on the design specifications of the system.

5.6.2. Failure Symptoms
1. The incoming heat sink temperature, 𝑇፰ፚ፭፞፫,፜፨፧፝,።፧, is fluctuating more than its maximum allowed
temperature fluctuations of 2 K per minute.

2. The mass flow of the water entering the condenser, �̇�፰ፚ፭፞፫,፜፨፧፝, should not vary more than 10%
per minute.

3. The mass flow of the water should be 50-110% of the design flow.

The mass flow of the water through the condenser, �̇�፰ፚ፭፞፫,፜፨፧፝, is not directly measured, but as the
condenser heat is known, the mass flow can be calculated through equation 5.6.

�̇�፰ፚ፭፞፫,፜፨፧፝ =
�̇�፜፨፧፝

Δ𝑇፰ፚ፭፞፫,፜፨፧፝𝑐፩,፰ፚ፭፞፫
(5.6)

Where Δ𝑇፰ፚ፭፞፫,፜፨፧፝ is the temperature difference between the water entering and exiting the condenser
measured in K. The specific heat capacity of the water, 𝑐፩,፰ፚ፭፞፫, is taken at atmospheric pressure and
at the temperature of the water entering the condenser. The pressure of the water flow through the
condenser is not measured. Therefore atmospheric pressure is assumed as it will have a relatively
small effect on �̇�፰ፚ፭፞፫,፜፨፧፝.

5.6.3. Failure Detection Approach
The fault is detected with the same approach as for the fault of too high fluctuations in the heat source
flow and temperature (Fault 5.3). However recording different variables.

The FDD program takes the mean of the temperature and the mass flow of the entering heat sink
every 60 seconds over the past 60 seconds in blocks. This effectively changes the time step to one
minute. The FDD program further checks that the temperatures do not vary more than 2 K per minute
and the mass flow does not vary more than 10 % of its own value per minute.

The FDD program can only start analyzing after the startup time linearly predicted (as mentioned
later in Fault 5.10 the startup of the water flow in the condenser can have highly varying both flow and
temperature during startup).

The flowchart explaining how the algorithm detects the fault is the same as in Fig. 5.9. The fault
is detected in qualitative rule based limit checking to predefined thresholds.
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5.6.4. Results
�̇�፜፨፧፝ has its derived uncertainties, to detect the mass flow deviating too far away from the design flow
this uncertainty must be added to the fault threshold of 50-110 %. The derived uncertainty of �̇�፜፨፧፝
is 2.51 % and 3.00 % for the ”5HP-compressor” and the ”V-compressor” respectively. Using these
uncertainties gives the new fault threshold as 47.49-112.51% and 47-113% for the ”5HP-compressor”
and the ”V-compressor” respectively.

Too high variations in 𝑇፰ፚ፭፞፫,፜፨፧፝,።፧ was detected twice in a heat pump system, illustrated in Fig. 5.14.
The fault was detected by high variations in 𝑇፰ፚ፭፞፫,፜፨፧፝,።፧, while �̇�፰ፚ፭፞፫,፜፨፧፝ was not faulty. This is vis-
ible in the top four graphs of Fig. 5.14, where black stars marks the detected fault. �̇�፰ፚ፭፞፫,፜፨፧፝ is only

Figure 5.14: Two examples of fluctuations in ፓᑨᑒᑥᑖᑣ,ᑔᑠᑟᑕ,ᑚᑟ. In the two graphs in the middle ፦̇ᑨᑒᑥᑖᑣ,ᑔᑠᑟᑕ is increasing due to a
decreasing ፓᑨᑒᑥᑖᑣ,ᑔᑠᑟᑕ,ᑚᑟ. In the two bottom graphs ፐ̇ᑔᑠᑟᑕ has an increase due to the decreasing ፓᑨᑒᑥᑖᑣ,ᑔᑠᑟᑕ,ᑚᑟ, and it can be

concluded that the actual ፦̇ᑨᑒᑥᑖᑣ,ᑔᑠᑟᑕ is probably constant, but it is varying due to its dependency with ፓᑨᑒᑥᑖᑣ,ᑔᑠᑟᑕ,ᑚᑟ.

fluctuating due to the fluctuations in 𝑇፰ፚ፭፞፫,፜፨፧፝,።፧, which directly affects the calculated �̇�፰ፚ፭፞፫,፜፨፧፝
through equation 5.6. This is reflected in the top four graphs of Fig. 5.14.

The moment the fault is detected �̇�፜፨፧፝ and �̇�ፏፑ,፜፨፧፝ are deviating from each other more than usual,
visible in the bottom two graphs of Fig. 5.14. This is an indication of undesirable operation being
present as �̇�፜፨፧፝ and �̇�ፏፑ,፜፨፧፝ have different response times to sudden changes of variables.

5.7. Liquid carry-over during operation
During operation of the compressor liquids could carry-over from the evaporator to the compressor.
Liquids in the suction line of the compressor can be damaging for the compressor.

Liquid carry-over is occurring during steady state operation (the later introduced Fault 6.4 is liquid
transferring away from the evaporator during shutdown). Liquid carry-over during operation is a prob-
lem independent of the heat pump system setup and compressor type that requires a measurement
interval of 1 second.

5.7.1. Failure Description
Liquid carry-over occurs during operation when the liquid in the evaporator travels away from the
evaporator to the compressor. Liquids in the compressor suction line can cause direct damage to the
internal parts of the compressor and it is undesirable.

5.7.2. Failure Symptoms
The fault can be detected through the two symptoms below.
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1. During startup the discharge temperature takes longer to reach its operating conditions. This is
a symptom of liquid carry-over occurring during the previous operation period leading to liquids
remaining in the suction of the compressor.

2. When the compressor reaches its operating conditions both the superheat and the compressor
discharge temperature will be lower than expected.

5.7.3. Failure Detection Approach
A slow increase of 𝑇 ።፬ during startup can be detected in two ways. Either by looking at the ex-
pected time for the discharge temperature to reach its operating conditions, 𝑡፜፨፧፯. Or by looking
at how well the expected exponential model predicting Δ𝑇ፏፑዅ፦፞ፚ፬፮፫፞፝,፞፱፩ fits to the data measured,
by Δ𝑇ፏፑዅ፦፞ፚ፬፮፫፞፝ − Δ𝑇ፏፑዅ፦፞ፚ፬፮፫፞፝,፞፱፩. Two models were designed to predict the compressor startup
based on the compressor prediction tool. Based on the initial 𝑇 ።፬ and 𝑇ፏፑ,፝።፬, an exponential and a
linear model can predict the startup sequence the first 2000 seconds (subsection 3.3.1).

The linear model can predict the time it takes for the residual between 𝑇 ።፬ and 𝑇ፏፑ,፝።፬, Δ𝑇ፏፑዅ፦፞ፚ፬፮፫፞፝,
to converge to an acceptable level, 𝑡፜፨፧፯,፥።፧. The exponential model can predict Δ𝑇ፏፑዅ፦፞ፚ፬፮፫፞፝ for the
first 2000 seconds after a startup. With a relatively high uncertainty it can predict the time it takes for
Δ𝑇ፏፑዅ፦፞ፚ፬፮፫፞፝ to converge to an acceptable level, 𝑡፜፨፧፯,፞፱፩.

The actual convergence time, 𝑡፜፨፧፯, was in 92.3 % of the startups sampled less than the linearly
predicted 𝑡፜፨፧፯,፥።፧.

The exponential model could accurately predict Δ𝑇ፏፑዅ፦፞ፚ፬፮፫፞፝ for each time step after startup,
where the average difference between the measured and predicted Δ𝑇ፏፑዅ፦፞ፚ፬፮፫፞፝ was 0.4 K.

Therefore the linear model will be used to detect the fault based on 𝑡፜፨፧፯ and 𝑡፜፨፧፯,፥።፧, while the
exponential model will be used to detect the fault based on Δ𝑇ፏፑዅ፦፞ፚ፬፮፫፞፝ − Δ𝑇ፏፑዅ፦፞ፚ፬፮፫፞፝,፞፱፩.

Thus for a startup liquid carry-over can be detected whenever equation 5.7, equation 5.8 and equation
5.9 are true.

𝑡፜፨፧፯ > 𝑡፜፨፧፯,፥።፧ − 102.3 + 139.98 = 𝑡፜፨፧፯,፥።፧ + 42.28 (5.7)

𝑡፜፨፧፯ > 𝑡፜፨፧፯,፞፱፩ + 83.97 + 158.6 = 𝑡፜፨፧፯,፞፱፩ + 242.57 (5.8)

Δ𝑇ፏፑዅ፦፞ፚ፬፮፫፞፝ − Δ𝑇ፏፑዅ፦፞ፚ፬፮፫፞፝,፞፱፩ >
Δ𝑇ፏፑዅ፦፞ፚ፬፮፫፞፝ − Δ𝑇ፏፑዅ፦፞ፚ፬፮፫፞፝,፞፱፩፬ፚ፦፩፥፞፝+

𝜎ጂፓᑇᑉᎽᑞᑖᑒᑤᑦᑣᑖᑕዅጂፓᑇᑉᎽᑞᑖᑒᑤᑦᑣᑖᑕ,ᑖᑩᑡ = 0.514
(5.9)

The approach to detect the slow build up of 𝑇 ።፬ during startup through equation 5.7, equation 5.8 and
equation 5.9 is illustrated in Fig. 5.15.

The fault can also be detected through a low discharge temperature during steady state operation
in a similar manner as for the broken discharge valve (Fault 4.4) using the same threshold of 3 K added
with the uncertainty of 𝑇ፏፑ,፝።፬ − 𝑇 ።፬, 𝑇 ።፬,፮፧፜፞፫፭ፚ።፧፭፲.

The FDD approach for liquid carry-over utilizes a process history black-box approach through a re-
gression model working on predefined thresholds from process-history based sampling.

5.7.4. Results
There were no known examples of either symptoms of liquid carry-over from the evaporator. There
was however one example in Fig. 5.16 where the startup time, 𝑡፜፨፧፯, was detected as faulty. However
this was due to condensation in the discharge line during startup. Fig. 5.16 shows two startups that
were particularly slower than expected, the results from the FDD program on these two startups are
shown in Table 5.1. The fault was only detected for the startup on the right side of Fig. 5.16.
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Figure 5.15: The approach to detect liquid carry-over through a slow build up of ፓᑕᑚᑤ during startup. It is worth noting that
when the exponential models are created the FDD algorithms performs 3 analyses in parallel. ፲ᑣᑖᑘ is the exponential

regression fitted to the measured data of each individual startup.

Table 5.1: Results from the two slow startups shown in Fig. 5.16

Parameter
Fault
thresholds

Result from the left
side of Fig. 5.16

Result from the right
side of Fig. 5.16

𝑡፜፨፧፯,፥።፧ − 𝑡፜፨፧፯ <-42.28 s 3.76 s -19.49 s
𝑡፜፨፧፯,፞፱፩ − 𝑡፜፨፧፯ <-242.57 s -178 s -240 s
Δ𝑇ፏፑዅ፦፞ፚ፬፮፫፞፝ − Δ𝑇ፏፑዅ፦፞ፚ፬፮፫፞፝,፞፱፩ >0.514 K 0.441 K 0.882 K

Neither of the startups in Fig. 5.16 are detected through 𝑡፜፨፧፯. It is clear from the graph on the
right side of Fig. 5.16 that Δ𝑇ፏፑዅ፦፞ፚ፬፮፫፞፝ is higher than Δ𝑇ፏፑዅ፦፞ፚ፬፮፫፞፝,፞፱፩ for most of the startup time
by a significant amount. 𝑡፜፨፧፯ is however very close to being detected. It is not known if the heat
pump system had a problem with liquid carry-over during operation or not, the discharge temperature
was not lower than expected during steady state operation.

Condensation in the discharge was discussed in subsection 3.3.1, and its effect on 𝑡፜፨፧፯ is not precisely
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Figure 5.16: Two startups from the same ”5HP-compressor” where the startup time was longer than expected. The graph to
the right had condensation detected in the discharge, a total of 8.6 K over 4 seconds. All possible indications are saying the
startup to the right is slower than predicted, ፭ᑔᑠᑟᑧ is higher than ፭ᑔᑠᑟᑧ,ᑝᑚᑟ and ፭ᑔᑠᑟᑧ,ᑖᑩᑡ and ጂፓᑇᑉᎽᑞᑖᑒᑤᑦᑣᑖᑕ is clearly higher
than ጂፓᑇᑉᎽᑞᑖᑒᑤᑦᑣᑖᑕ,ᑖᑩᑡ, meaning that the predictions were indicating that the startup should have been faster than what is

recorded. The results from the FDD algorithm on these two startups are shown in Table 5.1.

known, however it can be assumed that it would increase 𝑡፜፨፧፯ noticeably. The FDD program will, if
a slow build up of 𝑇 ።፬ during starup is detected, also say how much, if any, condensation was in the
discharge line and provide the graph from Fig. 5.16 for every startup.

5.8. Low condenser heat
Each individual heat pump system is expected to deliver a certain amount of heat while running at
certain operating conditions. There should be a direct relationship between the running conditions and
the condenser heat. Low condenser heat is a typical result of other faults and can occur independently
of the compressor type and the heat pump setup. To detect the fault, a measurement interval of 30
seconds is required.

5.8.1. Failure Description
Should the heat pump deliver less heat than expected over longer periods of time, it is not a direct
failure of a component, but rather a system not performing to its specifications. If the heat pump does
not deliver the expected amount of heat, then GEA is not delivering as promised.

This lack of performance could be a result of any number of failures previously discussed. In fact
most of the faults described in section 4, section 5 and section 6 will result in a low condenser heat
or a low COP as it will be explained later (Fault 5.9). For example air in the condenser (Fault 5.2), a
broken suction valve (Fault 4.5) or fouling in the evaporator or condenser will lead to a low condenser
heat.

5.8.2. Failure Symptom
• The condenser heat delivered by the heat pump system is lower than the condenser heat predicted
by the compressor prediction tool.

5.8.3. Failure Detection Approach
The condenser heat predicted by the compressor prediction tool, �̇�ፏፑ,፜፨፧፝, tends to be identical to the
condenser heat calculated, �̇�፜፨፧፝, for the ”5HP-compressor”. For the ”V-compressor” �̇�ፏፑ,፜፨፧፝, tends to
be 88.16 % of �̇�፜፨፧፝. The condenser heat calculated is dependent on 10 different measured variables,
introducing a relatively high uncertainty.
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To detect the fault the FDD program isolates the linearly defined steady state operating period of
the compressor. If equation 5.10 is true for more than 60 % of this period the fault is detected.

�̇�፜፨፧፝ < �̇�ፏፑ,፜፨፧፝ − �̇�ፏፑ,፜፨፧፝,፮፧፜፞፫፭ፚ።፧፭፲ (5.10)

Where �̇�ፏፑ,፜፨፧፝,፮፧፜፞፫፭ፚ።፧፭፲ is the uncertainty between �̇�፜፨፧፝ and �̇�ፏፑ,፜፨፧፝ being 2.5% and 3.0% of
�̇�ፏፑ,፜፨፧፝ for the ”5HP-compressor” and ”V-compressor” respectively. The approach to detect a faulty
low condenser heat is in principle the same approach as to detect a broken discharge valve (Fault
4.4). By seeing how often a simple limit check is exceeded. The algorithm approach to detect a defect
discharge valve through a limit check is illustrated in Fig. 4.15. It can be applied to detect a low
condenser heat.

The FDD approach utilizes process history based gray-box or fuzzy logic approach to differentiate a
faulty from fault free residual between �̇�፜፨፧፝ and �̇�ፏፑ,፜፨፧፝.

5.8.4. Results
Low condenser heat can be a result of several different faults. Air in the condenser (Fault 5.2) should
be detected through a low condenser heat, as it affects the temperature difference of the heat sink
flow. The heat sink flow does not absorb the expected amount of heat due to this decrease in the
temperature difference. Investigating the heat pump system where air in the condenser was detected
it became apparent that the threshold that defines �̇�፜፨፧፝ (equation 5.10) as faulty was exceeded 14.11
% of the steady state period. The fault was not detected. In Fig. 5.17 �̇�፜፨፧፝ is noticeably less than
�̇�ፏፑ,፜፨፧፝, however it is varying so much that a faulty low condenser heat cannot be detected. Further

Figure 5.17: An example of a ”5HP-compressor” with air in the condenser (Fault 5.2) where a low ፐ̇ᑔᑠᑟᑕ is expected, but not
present. The green line, ፐ̇ᑇᑉ,ᑔᑠᑟᑕ, is the predicted condenser heat, the orange line, ፐ̇ᑔᑠᑟᑕ, is the calculated condenser heat

and the red line is the fault threshold defined by equation 5.10. The example is from a ”5HP-compressor”, thus
ፐ̇ᑇᑉ,ᑔᑠᑟᑕ,ᑦᑟᑔᑖᑣᑥᑒᑚᑟᑥᑪ is 0.025ፐ̇ᑇᑉ,ᑔᑠᑟᑕ. The fault is detected whenever ፐ̇ᑔᑠᑟᑕ is below the fault threshold, which is marked by a
blue dot at that point, for more than 60% of the operating time. Note that after a startup the fault detection only begins when

the residual between ፓᑇᑉ,ᑕᑚᑤ and ፓᑕᑚᑤ converged.

the FDD program must consider two things; how much is the condenser heat affected by air in the
condenser and is the fault threshold precise enough.

Air in the condenser will create a mass transfer resistance, and the water outlet temperature from
the condenser will be lower than expected, air in the condenser is detected if the difference between
𝑇 ።፬,፬ፚ፭ and 𝑇፰ፚ፭፞፫,፜፨፧፝,፨፮፭ is too high. Assuming a constant mass flow of water, a lower temperature
of the outlet water from the condenser lowers the condenser heat through equation 5.11.

�̇�፜፨፧፝ = Δ𝑇፰ፚ፭፞፫,፜፨፧፝�̇�፰ፚ፭፞፫,፜፨፧፝𝑐፩,፰ፚ፭፞፫ (5.11)

Following this analogy the condenser heat should be noticeably less as Δ𝑇፰ፚ፭፞፫,፜፨፧፝ is 3 times lower
than expected in the heat pump that had air in the condenser. The effect air has on the condenser
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heat and also the COP is discussed further in subsection 5.9.3.

The fault threshold was chosen as the recorded standard deviation of �̇�፜፨፧፝ and 60 % of the steady
state operational time. 60 % was chosen as a relatively high number. There will be a time delay
between �̇�ፏፑ,፜፨፧፝ and �̇�፜፨፧፝ arising from the direct response of the compressor prediction tool and
the delayed response of the heat pump system to changes in the running conditions. This time delay
causes the fault threshold to be exceeded often, Fig. 5.18 illustrates this for a fault free situation. It

Figure 5.18: Due to the time time delay between ፐ̇ᑇᑉ,ᑔᑠᑟᑕ (green line) and ፐ̇ᑔᑠᑟᑕ (orange line) that causes the fault threshold
from equation to be exceeded often when the fault is not necessarily present. The graph is from a heat pump system with a

”5HP-compressor” where the fault threshold from was exceeded 14.11%.

was concluded that it is preferable to have a FDD program that remains robust and is able to adapt
quickly to changes in the system as mentioned in Table 1.1. Therefore the fault threshold was taken as
the measurement uncertainty being exceeded for 60 % or more of the steady state operation period
to detect when �̇�፜፨፧፝ is noticeably lower for longer time periods.

5.9. Low efficiency
The heat pump systems delivered by GEA are expected to deliver a certain amount of heat per amount
of energy consumed. This efficiency or performance of the heat pump can be quantified through the
COP. The COP is also given by the compressor prediction tool. The calculation method and accuracy of
the COP and the COP predicted by the compressor prediction tool are discussed in subsection 3.2.4. A
low COP is typically a result of other faults and can occur independent of the compressor type and the
heat pump setup. To detect the fault, a measurement interval of 30 seconds is required.

5.9.1. Failure Description and Symptom
The fault is occurring if the heat pump is delivering a COP lower than promised. This implies that the
heat pump is consuming too much energy, however if �̇�፜፨፧፝ is too low (Fault 5.8) it implies that the
heat pump is not delivering enough heat. Due to the interacting nature of �̇�፜፨፧፝ and the COP it is
important to analyze and see how they affect each other. Both a too low �̇�፜፨፧፝ and a too low COP are
usually a result of other seen faults, the link between the previously seen faults, and these issues will
be further discussed in the following subsections.

5.9.2. Failure Detection Approach
The COP is directly dependent on the uncertainty of the motor power and the uncertainty of the
condenser heat estimated.

In total the uncertainty in the COP calculations, 𝐶𝑂𝑃ፏፑ,፮፧፜፞፫፭ፚ።፧፭፲, adds up to 6.41 % and 4.40 %
for the ”5HP-compressor” and the ”V-compressor” respectively derived in Table 3.5 in subsection 3.2.4.
The FDD approach for detecting a low COP will be done in the same manner as for detecting a low
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�̇�፜፨፧፝, which again is the same approach as for detecting a defect discharge valve (Fault 4.4), with a
simple limit check. During steady state the fault threshold is dictated by equation 5.12.

𝐶𝑂𝑃 < 𝐶𝑂𝑃ፏፑ − 𝐶𝑂𝑃ፏፑ,፮፧፜፞፫፭ፚ።፧፭፲ (5.12)

The low COP is detected as a fault when the fault threshold is exceeded for 60 % of the steady state
operation period, the same threshold which is used to detect a faulty low �̇�፜፨፧፝.

The FDD approach utilizes process history based gray-box or fuzzy logic approach to differentiate a
faulty from fault free residual between the measured and predicted COP.

5.9.3. Results
Fig. 5.19 shows the 𝐶𝑂𝑃 and 𝐶𝑂𝑃ፏፑ together with the fault threshold in a heat pump system where the
fault was not detected. In Fig. 5.19 the fault threshold was exceeded for 0.299 % of the steady state
opeartion period. The fault threshold is exceeded some time steps, but this is due to the time delay
arising from the delayed response of the heat pump system and the direct response of the variables
predicted by the compressor prediction tool.

Figure 5.19: Data from the same heat pump system with a ”5HP-compressor” as in Fig. 5.18, where a faulty COP was not
detected. Due to the direct and delayed response of the compressor prediction tool and the heat pump system the fault

threshold (equation 5.12) will be exceeded when the ፂፎፏ is clearly within the threshold. Therefore the fault threshold has to
be exceeded 60 % of the time for the ፂፎፏ to be clearly below the threshold most of the time and a faulty low COP detected.

Analyzing the heat pump system where air in the condenser was detected (Fault 5.2), it is apparent
from Fig. 5.20 that air in the condenser has a bigger impact on the condenser heat, on the right side,
than the COP, on the left side. The results from the analysis of �̇�፜፨፧፝ and the COP in the heat pump
system known to have air in the condenser are shown in Table 5.2. It is apparent from Table 5.2 that

Table 5.2: The results after analyzing a heat pump system known to contain air in the condenser, the bottom two rows should
be above 60 % for either ፐ̇ᑔᑠᑟᑕ or the COP to be recognized as faulty. The column to the right shows the fault threshold that
must be exceeded for the fault to be detected.

Results
”5HP-compressor”
1

”5HP-compressor”
2

Fault Threshold
(For a ”5HP-compressor”)

ፂፎፏ
ፂፎፏᑇᑉ

98.16 % 96.16 % <93.593 %
ፐ̇ᑔᑠᑟᑕ
ፐ̇ᑇᑉ,ᑔᑠᑟᑕ

99.42 % 98.89 % <97.493 %
Frequency of
𝐶𝑂𝑃 < 𝐶𝑂𝑃ፏፑ − 𝐶𝑂𝑃ፏፑ,፮፧፜፞፫፭ፚ።፧፭፲ 0 % 0.299 % >60 %
Frequency of
�̇�፜፨፧፝ < �̇�ፏፑ,፜፨፧፝ − �̇�ፏፑ,፜፨፧፝,፮፧፜፞፫፭ፚ።፧፭፲ 0.3369 % 14.11% >60 %

the FDD program was not able to detect a faulty low �̇�፜፨፧፝ or a faulty low COP.
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Figure 5.20: Data from the two ”5HP-compressors” in the heat pump system known to contain air in the condenser. The top
and bottom photo shows the COP and ፐ̇ᑔᑠᑟᑕ for ”K111” and ”K112” respectively. The fault thresholds for the COP and ፐ̇ᑔᑠᑟᑕ
are illustrated by a red line. The COP is shown on the left side and ፐ̇ᑔᑠᑟᑕ on the right side, it is apparent that air in the

condenser is more visible in ፐ̇ᑔᑠᑟᑕ (Fault 5.8). The calculated COP on the top and bottom left side proved to be 94.9% and
92.9 % respectively of the COP predicted on average, while the top and bottom right graphs proved that ፐ̇ᑔᑠᑟᑕ was 96.1 %

and 95.4 % respectively of ፐ̇ᑇᑉ,ᑔᑠᑟᑕ on average.

Conclusions about the effect of air in the condenser on �̇�፜፨፧፝ and the COP
It can be concluded that air in the condenser (Fault 5.2) is more visible in �̇�፜፨፧፝ than in the COP as a
fault. This is mainly due to the uncertainty and hence the fault threshold which are higher for �̇�፜፨፧፝
than for the COP. It is worth noting that should there be air in the condenser it would result in a lower
condenser heat (as explained in Fault 5.8). However, it will also result in a higher motor power as the
compressor will have to overcome the increased condensing pressure due to Dalton’s law. Hence the
COP should be more affected by air in the condenser than �̇�፜፨፧፝, but the uncertainty of the COP does
not allow for FDD. This is confirmed by Table 5.2 where the 𝐶𝑂𝑃 is further away from 𝐶𝑂𝑃ፏፑ than what
�̇�፜፨፧፝ is from �̇�ፏፑ,፜፨፧፝.

However, neither �̇�፜፨፧፝ nor the COP are detected as faults in the heat pump system known to have air
in the condenser. In fact they are seen to be well within the expected values. A possible explanation
could be that the air in the condenser affects the inputs to the compressor prediction tool and hence
also 𝐶𝑂𝑃ፏፑ. Air in the condenser would affect the saturated discharge temperature, as the measured
pressure would be the combined pressure of the air and the refrigerant, 𝑝፭፨፭ፚ፥, in the condenser. The
saturated discharge temperature is however dependent on the the pressure of the refrigerant in the
condenser alone.

Thus the conclusion is: in a heat pump system containing air in the condenser, the FDD program
should detect a faulty low �̇�፜፨፧፝ and COP. However if �̇�፜፨፧፝ and the COP are not detected as faults it
does not necessarily mean that there is no air in the condenser present, as many other factors come
to play.

5.10. Problematic startup of the heat sink flow
The heat sink flow has one butterfly valve to control it in Fig. 5.21. The butterfly valve is fully closed
during standstill of the heat pump system. The butterfly valve is controlled from the control system of
the heat pump system, while the heat sink pump is controlled individually by the heat pump user.

During startup of the heat pump system the heat sink flow has two failure modes. During ideal
behaviour the centrifugal heat sink pump should start up a few minutes before the compressor, while
the butterfly valve is closed to build up the temperature of the water. The butterfly valve is further
meant to throttle the flow after it is opened This is a problem independent of the compressor type and
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the heat pump system type which requires a measurement interval of 1 second.

5.10.1. Failure Description
The first failure mode occurs during standstill when the butterfly valve is closed by the control system.
The failure occurs if the heat pump user is running the centrifugal water pump in Fig. 5.21, during
standstill. The water pump builds up a high discharge pressure and hence also temperature. When
the heat pump is started, the butterfly valve is opened and the warm water is introduced in to the
condenser. Should the water be too warm it will start boiling the refrigerant. Hence the refrigerant
pressure will increase until it triggers a safety valve which will start releasing the refrigerant to the
environment to lower the pressure.

During startup the water can also be too cold if the heat pump operator did not start the water pump.
The butterfly is meant to throttle the water flow to decrease the mass flow to. This is done to en-
sure that the refrigerant gives away sufficient heat for the compressor to build up a differential pressure.

The second failure mode occurs when the butterfly valve is broken. It will result in a heat sink flow
being too cold and too high which again will lower the discharge pressure of the compressor. This
ultimately leads to a delayed or never occurring build up of the discharge pressure of the compressor.

Figure 5.21: Schematic showing a potentially problem in the condenser water flow.

5.10.2. Failure Symptoms
The water temperature sensor is placed after the butterfly valve this sensor will not record high tem-
peratures until the valve is actually opened and it is too late. A problematic startup of the heat sink
flow is detectable by the symptoms below.

1. A short, sudden and delayed increase of the water temperature entering the condenser and a
sudden increase in the discharge pressure of the compressor during standstill.

2. The compressor differential pressure never builds up to the minimum limit of operation after
a startup while temperature of the water entering the condenser is colder than during normal
operation.

5.10.3. Failure Detection Approach
A delayed increase of the compressor differential pressure could be due to other failures than the prob-
lematic heat sink startup. The bypass valve remaining open during startup (item 3 of Fault 4.1) or
a defect suction valve (Fault 4.5) are also detected through a delayed build up of Δ𝑝፜፨፦፩. However,
together with the entering heat sink temperature the fault can be isolated. The threshold that defines
the water to be too cold was taken to be whenever it is lower than the saturated suction temperature.

The failure is detected in a qualitative manner using a case-based reasoning approach. The failure
is detected by storing the knowledge learned by experts in a database, and seeing how the measured
data compares to the trends in the database.
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5.10.4. Results
To detect the first failure mode the sensor placement should be on the other side of the butterfly valve
to be able to detect the fault for on-line FDD. With the current sensor placement a FDD program can
only detect the fault after it has occurred, when the butterfly valve is opened. At this point the fault
is inevitable. This is the only fault that causes the safety valve to go off, thus if it happens the failure
cause is known. Hence a FDD algorithm for the first failure mode was not made. An off-line FDD
algorithm that can detect the fault when it is too late would not capture the goal of this project, to
construct a FDD program for future on-line failure detection.

There were no existing data from a delayed build up of Δ𝑝፜፨፦፩ due to cold water in the condenser.
However several heat pump systems had a delayed build up of Δ𝑝፜፨፦፩ due to other faults. If a delayed
build up of Δ𝑝፜፨፦፩ is the only recorded failure symptom, it cannot be concluded which failure it is.
However, if a delayed build up of Δ𝑝፜፨፦፩ is occurring when 𝑇፜፨፧፝,፰ፚ፭፞፫,።፧ is lower than 𝑇፬፮፜,፬ፚ፭, then
the reason is isolated as a problematic cold water startup.

5.11. Unstable subcooling
Certain heat pump setups have three heat exchangers performing the task of one condenser. Three
separate heat exchangers act as a de-superheater, a condenser and a subcooler shown in Fig. 5.22.
This heat pump setup is prone to failures arising from variations in the incoming heat sink flow or
temperature. The fault is independent of the compressor type and the heat pump system, however
it is more often seen in heat pump systems as the one in Fig. 5.22. Detecting the fault requires a
measurement interval of 1 second.

Figure 5.22: The heat pump system with 3 HEXs in series for condensing.

5.11.1. Failure Description
If the subcooling of the condenser, 𝑇፬፜, becomes unstable this could be due to a number of reasons.
Typically it is the water flow in the condenser having too high fluctuations (Fault 5.6), a defect butterfly
valve controlling the flow to the condenser (Fig. 5.21) or the control of the motor controlled valve
working as an expansion valve (Fault 6.2).

Unstable subcooling leads to a difficulty maintaining the de-superheating, the condensing and the
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subcooling separated in individual heat exchangers. The exiting water temperature will vary which
again makes the heat load varying and unstable, which is undesirable and may lead to other faults.

5.11.2. Failure Symptoms
The fault can be detected through the one symptom listed below.

• The subcooling in the refrigerant becomes very unstable. Monitored by the temperature difference
between the saturated discharge temperature and the temperature of the refrigerant exiting the
condenser.

There are no known examples of unstable subcooling occurring in a heat pump system, thus it is not
known what qualifies as faulty unstable subcooling a fault-free unstable subcooling.

5.11.3. Failure Detection Approach
Unstable subcooling is detected in the same manner as too high fluctuations in the heat source or sink
flow or temperature (Fault 5.3 and Fault 5.6). There were no known examples of unstable subcooling
when using the same threshold of 2 K per minute for 𝑇፬፜. The approach of the FDD algorithm to detect
unstable subcooling is the same as in Fig. 5.9. The FDD program compares the average 𝑇፬፜ over the
last minute to the average 𝑇፬፜ over the next minute with the fault threshold of 2 K.

The fault is detected in a qualitative rule based limit checking manner, where 𝑇፬፜ is compared to a
predefined threshold.

5.11.4. Results
After analyzing different heat pump systems with the FDD algorithm for detecting unstable subcooling,
the fault was not detected. There is a link with between the high variations in the incoming water flow
to the condenser (Fault 5.6) and unstable subcooling. In Fig. 5.23 the flow to the condenser had high
fluctuations, but the rate of change of 𝑇፜፨፧፝,፰ፚ፭፞፫,።፧ was too slow. 𝑇፬፜ remained unaffected as both
𝑇 ።፬,፬ፚ፭,፬፲፬፭፞፦ and 𝑇፜፨፧፝,፨፮፭ responded directly to the change of 𝑇፜፨፧፝,፰ፚ፭፞፫,።፧. This illustrates why the
fault is more frequent for heat pump systems with three heat exchangers in series, as Fig. 5.23 only
had one HEX.

For a heat pump system with three heat exchangers in series, a drop in 𝑇፜፨፧፝,፰ፚ፭፞፫,።፧ would mean
that the refrigerant gas going into the de-superheater would have too much heat removed. The re-
frigerant could start condensing in the de-superheater. This would lead to liquid being the input to the
condenser, a HEX designed for gaseous refrigerant as an input. This would probably affect the heat
transferring abilities of the condenser poorly, and it will ultimately lead to changes in 𝑇፬፜. A time delay
is expected as 𝑇 ።፬,፬ፚ፭,፬፲፬፭፞፦ will change immediately after 𝑇፜፨፧፝,፰ፚ፭፞፫,።፧ changes while 𝑇፜፨፧፝,፨፮፭ will
have a time delay before it changes.

In Fig. 5.23 𝑇፬፜ is varying by more than 2 K per minute from time step 34000 when 𝑇፰ፚ፭፞፫,፜፨፧፝,።፧
was relatively constant, however the fault is not detected. The FDD algorithm averages 𝑇፬፜ for the 60
previous time steps, and investigates for fluctuations of more than 2 K per minute. The fluctuations in
Fig. 5.23 follows a sinusoidal wave with a period of approximately 60 seconds, thus the average every
60 seconds will remain relatively constant. These fluctuations are due to the time delay between the
measurements of 𝑇 ።፬,፬ፚ፭,፬፲፬፭፞፦ and 𝑇፜፨፧፝,፨፮፭ and should not be detected as a faulty unstable subcool-
ing.
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Figure 5.23: High variations in ፓᑤᑔ (bottom graph) where faulty unstable subcooling was not detected. ፓᑤᑔ is ፓᑕᑚᑤ,ᑤᑒᑥ,ᑤᑪᑤ (green
line) minus ፓᑔᑠᑟᑕ,ᑠᑦᑥ (orange line) from the top graph. It is apparent that ፓᑤᑔ is subject to a time delay, as the green and
orange peaks occur at slightly different times. In addition ፓᑔᑠᑟᑕ,ᑠᑦᑥ is varying at a much higher pace than ፓᑕᑚᑤ,ᑤᑒᑥ,ᑤᑪᑤᑥᑖᑞ and

ፓᑨᑒᑥᑖᑣ,ᑔᑠᑟᑕ,ᑚᑟ has a small affect on ፓᑤᑔ.



6
Heat Pump Component Failures

The heat pump systems consist of several components prone to damage and unrelated to the compres-
sor. The failure of these components can however lead to damage in the compressor, or unsatisfactory
operation. There are five different failure modes classified as heat pump component failures. These
are classified as the faults involving all components in the heat pump except the compressor. The
heat pump component faults can occur for all heat pump systems and compressors. Except Fault 6.5
introduced in subsection 6.5 which can only happen in systems with the ”5HP-compressor”.

6.1. Defect non-return valve in the compressor discharge line
In the heat pump systems with two compressors in parallel both compressors will have a non-return
valve in the discharge line as in Fig. 6.1. Whenever one compressor is operating and the other
compressor is not the non-return valve in the discharge line ensures no back flow in the non-operating
compressor. The fault is identified by the non-return valve leaking, introducing a back flow through
the discharge in to the compressor. The fault can occur in both compressors, it is however detected
slightly differently for the two compressors, the FDD program is dependent on a measurement interval
of 1 second to detect the fault.

Figure 6.1: Schematic of problematic parallel setup of compressors.

6.1.1. Failure Description
If the non-return valve in Fig. 6.1 is leaking then the discharge pressure (and the saturated discharge
temperature) of the non-operating compressor will increase. It will increase to that of the operating
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compressor as in Fig. 6.2.
The compressors are not insulated for these high pressure conditions during standstill. The non-

operating compressor discharge line will have a heat loss to the environment. The crankcase heater
cannot maintain the refrigerant in a gaseous state (as it now has to maintain a higher saturation
temperature than previously). The enthalpy will decrease at constant pressure, causing the refrigerant
to condensate inside the compressor cylinder heads as in Fig. 6.2.

6.1.2. Failure Symptom
This failure is recognizable through the following three symptoms.

1. The discharge pressure of the non-operating compressor remains at operating conditions after
shutdown for a longer period as seen in both graphs of Fig. 6.2.

Figure 6.2: The illustration on the left side shows an example of a leaking non-return valve in a ”5HP-compressor”, the black
vertical line represents a shut-down of one compressor. The discharge pressure (red line) remains at operating conditions up to
two hours after shut-down. The discharge temperature (pink line) decreases fast until it reaches the saturation temperature
where the temperature remains relatively constant for a longer time periodand the refrigerant condenses. The right hand side
shows an example of a leaking non-return valve in a ”5HP-compressor”. After the rotational speed (light blue line), ፍᑉᑇᑄ,
reaches zero the suction pressure (dark blue line), ፩ᑤᑦᑔ,ᑅᑆ, increases to almost twice as high. The discharge pressure (red

line), ፩ᑕᑚᑤ,ᑅᑆ, remains at operating conditions for more than 2 hours.

2. A sudden temperature decrease in the discharge temperature during startup of the previously
non-operating compressor due to liquid in the compressor.

3. The suction pressure in the ”5HP-compressor” increases above its expected values. 𝑝፬፮፜ can
reach higher than its imposed pressure limit (26 bar) as it did on the right side of Fig. 6.2.

6.1.3. Failure Detection Approach
The fault is detected differently for the different compressors. The ”V-compressor” discharge valve
never leaks backward, thus the high pressure never reaches the suction line. The ”5HP-compressor”
discharge valve is not protected for a back flow and will leak to the suction line which can damage the
suction line.

The FDD program investigates the shutdown of the non-operating compressor to detect the fault
through the pressures, the detailed approach of the FDD is explained in Fig. 6.3. The FDD approach to
detect a leaking non-return valve is based on limit checks. These limit checks compare the discharge
pressure and suction pressure of the operating and non-operating compressor. The dip in 𝑇 ።፬ during
startup only occurs in the ”V-compressor”, but it can occur without the fault being present. Hence the
FDD program is not detecting the fault through this symptom.

All symptoms are detected through a qualitative simple-rule based reasoning looking for a specific
residual between two parameters, where priori knowledge defines the residual as faulty or fault-free.
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Figure 6.3: Approach of the FDD program to detect a leaking non-return valve through the presures at shutdown. The fault is
detected if the pressure difference over the non-return valve is less than 10 bar 30 seconds after shutdown, ideally this should
be 25 bar or more after 10 seconds. For the ”5HP-compressor” the fault can also be detected through ፩ᑤᑦᑔ. If ፩ᑤᑦᑔ,ᑅᑆ is above
20 bar or if ፩ᑕᑚᑤ,ᑤᑪᑤᑥᑖᑞ ዅ ፩ᑤᑦᑔ,ᑅᑆ is below 12 bar 5 minutes after a shutdown the fault is detected. Ideally ፩ᑤᑦᑔ,ᑅᑆ is below 15

bar and ፩ᑕᑚᑤ,ᑤᑪᑤᑥᑖᑞ ዅ ፩ᑤᑦᑔ,ᑅᑆ is above 22 bar 10 seconds after the shutdown.

6.1.4. Results

Figure 6.4: Example from a leaking non-return valve, after ጂ፩ᑠᑚᑝ,Ꮄ (purple line) reaches zero ፩ᑤᑦᑔ,Ꮄ (blue line) increases to
almost twice as high. ፩ᑤᑦᑔ,Ꮄ approaches the upper limit for the suction line and the system discharge pressure, ፩ᑕᑚᑤ,Ꮃ (red
line), which is the third fault symptom. It can also be seen that the non-operating discharge pressure, ፩ᑕᑚᑤ,Ꮄ (green line), is

equal to the operating discharge pressure ፩ᑕᑚᑤ,Ꮃ long after shutdown, which is the first fault symptom.

The FDD program was able to detect two examples of a leaking non-return valve, in heat pump
systems with both a ”5HP-compressor” and a ”V-compressor”. The first and third symptom are de-
pending on investigating the shutoff of a heat pump. Thus if the fault would occur after a longer period
of non-operation the program would not detect until next shutoff.

Fig. 6.4 shows a leaking non-return valve occurring in a ”5HP-compressor”. After the first shutdown,
marked by Δ𝑝፨።፥ (purple line) reaching zero, 𝑝፬፮፜ increases to more than twice its value original value.
It reached the limits of the pressure sensor in the suction line, set at 30 bar, thus the actual pressure
is probably the same as 𝑝፝።፬,፬፲፬፭፞፦ (green line).

Fig. 6.5 shows a leaking non-return valve occurring in a ”V-compressor” with only one compressor
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Figure 6.5: Example from a leaking non-return valve detected during two shutdowns, after ፂፚ፩ፚ፜።፭፲ (red line) reaches zero
፩ᑕᑚᑤ and ፩ᑕᑚᑤ,ᑤᑪᑤᑥᑖᑞ remain equal. Ideally ፩ᑕᑚᑤ (green dots) should equal to ፩ᑤᑦᑔ (brown line) immediately after the shutdown,
i.e. ጂ፩ᑔᑠᑞᑡ should go to zero immediately after a shutdown as it was seen in Fig. 4.3, instead it takes 300-400 seconds to

equalize.

operating. During shutdown Δ𝑝፜፨፦፩ does not equalize immediately and 𝑝፝።፬ is equal to 𝑝፝።፬,፬፲፬፭፞፦
when 𝑝፝።፬,፬፲፬፭፞፦ has its delayed decrease, due to the system cooling down.

In Fig. 6.5 there is a link between the previously seen closed bypass during shutdown (item 2 of
Fault 4.1) and the leaking non-return valve.

The FDD program detected both faults, but upon inspection it is reason to believe that Fig. 6.5 is
an example of a leaking non-return valve and not a closed bypass valve. The delayed decrease of
Δ𝑝፜፨፦፩ is the known symptom of both faults, however 𝑝፝።፬,፬፲፬፭፞፦ and 𝑝፝።፬ remain equal after the
shutdown. This would imply that there is no closed valve separating the two flows. They would have
a different development should there be a closed valve between the two. Ideally 𝑝፝።፬ is expected to
drop down to 𝑝፬፮፜ immediately after shut down and Δ𝑝፜፨፦፩ would also drop to zero immediately after
a shut down (illustrated in Fig. 4.3). In Fig. 6.5 𝑝፝።፬,፬፲፬፭፞፦ has the expected development after a shut
down of a heat pump system with only one compressor operating.

Conclusions about link between a leaking non-return valve and a broken bypass valve
The closed bypass valve during shutdown of a compressor is linked with the leaking non-return valve
through Δ𝑝፜፨፦፩ remaining too high for too long after a compressor shutdown. Their intertwined nature
made it impossible to differentiate between the two in the FDD algorithm. Upon investigation there is
bigger reason to believe that the example in Fig. 6.5 is an example of Fault 6.1. But there is no way
of knowing for certain without visual inspection, which fault is apparent. The FDD algorithm for these
two faults has a low score on the metrics ’Isolability’ and ’Multiple fault identifiability’ from Table 1.1.

6.2. The motor driven control valves
There are three different motor driven control valves in most heat pump systems. A thermal expansion
valve, a valve controlling the heat source and a valve controlling the suction line of the compressor,
the four red valves in Fig. 6.6. They have similar failure symptoms where the time rate is what
differentiates them. The valves and hence also the faults can be in all heat pump systems independent
of the compressor type. A measurement interval of 1 second is required to detect the fault in Fig. 6.7.
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Figure 6.6: Simplified heat pump schematic, with the four different motor driven control valves in red.

6.2.1. Failure Description and Symptoms
When one of the three motor driven control valves are defect, they tend remain closed when they should
instead be open. This results in a decreasing suction pressure due to having a finite and decreasing
volume of gaseous refrigerant which the compressor can suck. The failure mode of the three different
valves are described below.

1. The motor driven control valve in the compressor suction line remains closed, Fig. 6.7 is an
example of this. The pressure in the suction line decreases rapidly until it the compressor shuts
down on limit checks in the control system.

Figure 6.7: A broken motor driven control valve functioning in the suction line causes the heat pump to shutdown
immedetiately after startup repeatedly. The blue dots represents each startup, after startup number 4, 5, 6 and 7 the suction

pressure (purple line) decreases until the compressor shuts off, recognized by the ፍᑉᑇᑄ reaching zero.

2. The motor driven control valve for the heat source flow is closed resulting in a stand-still of the
heat source flow. The compressor slowly extracts all gas in the evaporator and suction line,
lowering the pressure in the suction line. The suction pressure is decreasing until the control
system shuts down the compressor, but at a slower pace than for the suction line valve.

3. The thermal expansion motor driven control valve is closed. The same fault occurs as previously
seen, but at an even slower rate.

6.2.2. Failure Detection Approach
The FDD program will detect these symptoms by isolating the startup sequences. The fault is detected
if the suction pressure decreases every four seconds after startup until the motor is turned off. In
addition the suction pressure at shutoff is lower than the minimum recorded discharge pressure. The
FDD approach for detecting defect motor driven control valves is illustrated in Fig. 6.8.

The FDD program will output a graph with the rotational speed and the suction pressure after
startup.
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Figure 6.8: FDD approach to detect all symptoms of the defect motor driven control valves

All symptoms are detected through a qualitative simple-rule based reasoning looking for a combination
of two trends, where priori knowledge defines the combination as faulty or fault-free.

6.2.3. Results
The FDD program checks the suction pressure of the compressor every four seconds to ensure that
the program will detect the fault occurring at slower rates. The lowest recorded 𝑝፝።፬ should be from a
standstill period where the pressures are equalized. Therefore 𝑝፬፮፜ during the faulty shutdown should
be lower than the lowest recorded 𝑝፝።፬ as a fault threshold.

The example in Fig. 6.7 is the only example of this fault occurring, thus the time rate for the three
different symptoms is not known. In addition the example in Fig. 6.7 has a measurement interval of 30
seconds, a measurement interval of 1 second is required to detect faulty motor driven control valves.
In one time step the motor is started and in the next time step the suction pressure is too low and the
motor is already turned off.

6.3. Liquid level in the evaporator
The liquid level in the evaporator is monitored and controlled by a sensor in order to ensure optimal
heat transferring abilities in the HEX. A changing liquid level in the evaporator is typically a result of
too sudden changes in the heat source flow or temperature (Fault 5.3). The fault can occur in all heat
pump systems independent of the compressor type. However it is expected to occur more frequent
in heat pump systems functioning as an add-on to refrigeration plants. The FDD program needs a
measurement interval of 30 seconds to detect the fault.

6.3.1. Failure Description
The failure occurs when the transmitter or sensor of the liquid level indicator is broken, there is a
refrigerant undercharge or the refrigerant is leaking. During steady state operation of the heat pump
system with a steady supply of heat the liquid level should remain constant.

6.3.2. Failure Symptom
A broken liquid level indicator is detectable by the one symptom listed below. An example of this
occurring in a heat pump system is illustrated in Fig. 6.9.

• The liquid level in the evaporator is changing during steady state operating conditions.

6.3.3. Failure Detection Approach
The FDD program is able to detect a broken liquid level indicator, a leaking evaporator or a refrigerant
undercharge through the liquid level indicator in the evaporator. It can be detected by isolating the
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Figure 6.9: Example of a broken liquid level indicator in the evaporator, the liquid level is changing, but it does not affect the
suction temperature noticeably.

periods of steady state operation of all compressors. The liquid level in the evaporator, 𝐿𝐿፞፯ፚ፩, and
the system suction pressure 𝑝፬፮፜,፬፲፬፭፞፦ are recorded in this period.

𝑦 =
𝐿𝐿፞፯ፚ፩

𝑝፬፮፜,፬፲፬፭፞፦
(6.1)

A linear regression model of the quotient, 𝑦, seen in equation 6.1 with respect to time is made for the
previous 900 time steps (15 minutes). If the regression model gives a total change higher than 0.3 or
lower than -0.3 for the quotient over the 900 seconds the fault is detected.

Figure 6.10: Approach to detect a faulty liquid level in the evaporator during operation occurring in a heat pump. Do note that
the FDD algorithm requires two analyses, making the FDD algorithm unsuitable for on-line detection.

The fault is detected utilizing a quantitative sensitivity ratio method, where the combination of two
parameters should be uniquely sensitive to this fault.

6.3.4. Results
In Fig. 6.9 the quotient between the evaporator liquid level and system suction pressure changes with
approximately 0.5 over 19 hours. Thus the fault threshold might be, if anything, too low, however
after validation the fault was not detected falsely in any cases. The faulty liquid level in the evaporator
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was detected in one case, in Fig. 6.11, here the quotient decreases by 0.6 over 2.7 hours.

However, the problem was that the suction pressure increased by 1 bar in less than 30 seconds.
This is equivalent to an increase of the saturated suction temperature of approximately 3.08 K over
two minutes. This is a result of too high variations in the temperature or flow of the incoming heat
source (Fault 5.3) occurring. An increase of the suction pressure decreases the amount of liquid, as
more of the liquid will be evaporated to a gaseous state. The suction pressure should remain relatively
constant as in Fig. 6.9, this is a shortcoming of the algorithm and it gives the FDD algorithm a low
score on the ”Isolability” metric from Table 1.1.

Figure 6.11: A faulty liquid level in the evaporator. The quotient is decreasing 0.579 over 2.7 hours, the fault threshold was
chosen as 0.3. Hence the detected quotient decrease was almost twice as much as the fault threshold. This an example of too
high fluctuations in the heat source (Fault 5.3), which again results in a faulty liquid level in the evaporator. The system suction

pressure in the top graph should ideally remain constant for the entire period of operation.

6.4. Liquid refrigerant transferring away during standstill
After shutdown of the heat pump system the liquid level of the evaporator would ideally remain quite
constant. For the heat pump functioning as an add-on, the liquid level is prone to changes if the
refrigeration plant is operated and the heat sink or source is changing as in Fig. 6.12. The problem
can however occur for all heat pump systems independent of the compressor type, a measurement
interval of 1 minute is required to detect the fault.

Figure 6.12: Example of changes in the evaporator liquid level (top left graph, black line) during standstill of a water cooled
”5HP-compressor”. Changes in both the incoming heat source and sink (top right image) affects the evaporator liquid level
which is decreasing over 5 days. This leads to changes in both the discharge and suction pressure which could lead to

condensation (bottom graphs).
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6.4.1. Failure Description and Symptom
The problem occurs when the liquid refrigerant transfers away to the condenser from the evaporator
during standstill, this is is recognizable by the symptom below.

• The liquid level in the evaporator is decreasing during standstill, while it should remain constant
as observed in Fig. 6.12.

Changes in the liquid level during standstill can change the saturation points in the heat pump system,
as in Fig. 6.12, which could lead to undesirable condensation in the heat pump system.

6.4.2. Failure Detection Approach
The liquid level is recorded 60 seconds after a known shutdown of all compressors until 60 seconds
before the startup of one or more compressors. During this period the program makes a linear regres-
sion model of the liquid level in the evaporator every time step for the next 15 minutes. If the linearly
regressed model predicts a liquid level decrease of 5 % or more during the next 15 minutes the fault
is detected.

Figure 6.13: The FDD approach to detect liquid transferring away from the evaproator during standstill.

The fault is detected in a qualitative rule-based manner where the development trend of one vari-
able is compared to the expected trend from priori knowledge.

6.4.3. Results
Liquid refrigerant transferring away during standstill was detected in Fig 6.12. It was not concluded why
the liquid was transferring away. It was detected in a water cooled heat pump, the water temperatures
have a slight change. However, not high enough to cause the observed change in the liquid level.

6.5. Oil pump
For the ”5HP-compressor” the oil pump circulating the oil in the system is connected on the same shaft
as the compressor, i.e. its operation is dependent on the compressors. This fault is occurring for all
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heat pump systems fitted with a ”5HP-compressor”. It requires a measurement interval of 1 second to
be detected.

After a compressor startup the differential oil pressure should build up to operating conditions after no
more than five seconds. During operation the differential oil pressure should be quite constant.

6.5.1. Failure Description
In some instances the oil pump is not able to build up sufficient differential oil pressure in the com-
pressor. The compressor is shut down before the actual operation can commence due to the lack of
Δ𝑝፨።፥. The pump could also generally not be performing as intended during operation.

6.5.2. Failure Symptom
A defect or malfunctioning oil pump is recognized through the symptom below.

• After the compressor initiated, indicated by the motor current having a non-zero value, the dif-
ferential oil pressure takes more than 5 seconds to increase to its running conditions.

• The differential oil pressure steadily decreases during constant operating conditions

The first symptom is furthermore divided into two categories; where one is considered a potential fault
and the other is considered an actual fault. If the time delay between the compressor startup and the
increase of the differential oil pressure is between 5 and 30 seconds it is considered a potential fault.
If it is more than 30 seconds or if it never increases an actual fault can be diagnosed.

6.5.3. Failure Detection Approach
The lack of Δ𝑝፨።፥ can be detected by isolating the startups and recording the motor current and differ-
ential oil pressure in the first minute after the startup. If the differential oil pressure remains below the
threshold of 1.2 bar, half of the normal operating differential oil pressure, after the first five seconds
then the fault is detected. The FDD program furthermore detects how long it takes to build up the
differential pressure, if it is less than 30 seconds it gives a warning, if it is more than 30 seconds or if
it never happens the fault is detected. This is illustrated in Fig. 6.14.

The second failure symptom is detected by making a linear regression model for the differential oil
pressure the last 5 minutes during the steady state operation period. If the regressed difference over
the total 5 minutes is more than 0.5 bar then the fault is detected as illustrated in Fig. 6.15.

The first symptom is detected in a qualitative rule-based manner where the development trend of
one variable is compared to the expected trend from priori knowledge.

The FDD analysis for the second symptom utilizes a process history based approach with a black
box linear regression model to predict the expected trend in Δ𝑝፨።፥.

6.5.4. Results
There was only data available from the first symptom occurring in Fig. 6.16. Here the FDD program
was able to detect the fault by detecting the increase of the motor current. However, it never detects
the increase of the differential oil pressure.

The second symptom was recognized in a heat pump, and the FDD program detected the fault. Fig.
6.17 shows the result of the FDD program for a decreasing Δ𝑝፨።፥, where the fault threshold proved
vital. By changing the the threshold to 0.6 bar the fault is not detected at all, while if it is changed to
0.4 bar the fault was detected over 200 times at different times. The threshold of 0.5 bar is vaguely
defined and could need a clearer definition.
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Figure 6.14: Detection approach to detect the lack of ጂ፩ᑠᑚᑝ during startup of a ”5HP-compressor”.

Figure 6.15: Detection approach to detect the decreasing ጂ፩ᑠᑚᑝ, the algorithm makes a new linear regression every time step.
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Figure 6.16: A lack of ጂ፩ᑠᑚᑝ during startup causing the heat pump to shut down. The FDD program has detected the current
increase, but it never detects the desired increase of the differential oil pressure.

Figure 6.17: The FDD program has detected that the linear regression model has a total decrease for at least 0.5 bar over 5
minutes or 300 seconds. Every time the fault is detected, the linear regression that detected the fault is drawn in the graph.

For this scenario the fault was detected 40 times, and 40 lines are drawn in the graph.



7
Discussion

In this chapter the results from the FDD program made specifically for the 23 faults in section 4, 5
and 6 will be discussed. Furthermore, The FDD programs ability to fulfill GEA Groups requirements,
outlined in the beginning of the report in Table 1.1, will be discussed in this section.

7.1. The general FDD program
The goal and scope of the project was to develop a FDD program that can be implemented in the con-
trol system of the heat pumps in order to perform on-line FDD analysis of faults. The FDD algorithms
were designed in a manner that ensured the program could detect the fault as it first occurs. This falls
under the category ”Explanation facility” and ”Quick detection and diagnosis”. In other words, to be
able to detect the fault as it is developing, to be able to say how it developed, and to report the fault
before any serious damage to the plant occurs.

The FDD program utilizes a combination of a qualitative and process history based approach for
all faults except Fault 6.3. A quantitative approach would prove more accurate, but for GEAs heat
pump systems it would be difficult. Developing a digital physical twin of the system to compare with
the actual system would prove demanding due to the complexity of the systems and was beyond the
scope of this project. A qualitative approach was chosen for the faults where the fault trend was well
known through extensive previous knowledge. A process history based approach was taken for the
faults where the exact trends were not known. The FDD program is not able to recognize new faults
as it is using a qualitative approach that mimics expert behaviour for previously seen faults. However
it will be able to differentiate faulty from fault-free operation through the 𝐶𝑂𝑃, 𝑇 ።፬ and �̇�፜፨፧፝ in a
process history based approach.

The FDD program employs a qualitative case-based reasoning system and includes a stored database
of several different types of FDD algorithms and trends from previously seen faults. Based on a set
of if-then-else rules the FDD program searches through the heat pump data looking for these given
trends. Fault trends are constructed individually and are not necessarily qualitative. The resulting FDD
algorithms can be seen for the individual faults in section 4, section 5 and section 6.

A process history based fuzzy logic approach was employed in order to detect certain faults. Here,
residuals between predicted and measured variables where weighted either based on their relation to
the fault or based on how often the residuals exceeded a certain threshold. However several of the
variables analyzed with this fuzzy logic approach had large fluctuations on the micro time scale. To
filter out the noise in the measurements, a larger threshold could be used, this would not capture all
faults however. The data could also be filtered by using a running average over the 10 previous time
steps for each measurement. This would however remove some of the fluctuations that are important
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to detect other faults.
Most algorithms developed can be fitted into the control system for on-line FDD, however some

might require more adaptation.

7.1.1. Developing / Sudden faults
It was desirable to have a FDD program that could detect and diagnose faults early, preferably the
moment they occur for the first time. For some faults this proved challenging due to the very nature of
the fault. Several of the previously discussed faults were so called sudden faults. Sudden faults occur
without any signs or warnings and they are detectable from the moment they first occur.

Developing faults are defined when the heat pump system is being operated in an undesired manner
and faults are slowly developing. These faults can often be more challenging to detect in an on-line
manner as the fault threshold has a vague definition. The true difference between faulty and fault-free
operation is difficult to define as there is no damage but rather a decrease of performance. Fouling
and air in the condenser are typical examples of this, they will lead to a decrease of the 𝐶𝑂𝑃 and �̇�፜፨፧፝
over time. At some point in time they will be detected by the fault thresholds. However, at the time of
detection, they could have developed over several months slowly decreasing the performance. Thus
the fault threshold plays an important part to detect the developing faults and a fuzzy logic approach
helped quantify this. The fault threshold is a representation of how much of a decrease of performance
is tolerable for GEA.

Bearing damage
Damage to the bearings of the compressor (Fault 4.3), was detected using a combination of a process
history based gray-box linear regression model and a qualitative case-based reasoning approach. In
one heat pump system bearing damage was detected, and later it was seen that Δ𝑝፨።፥ was too de-
pendent on 𝑁ፑፏፌ. From that heat pump system, the first failure symptom arose. However, it was not
certain whether bearing damage could be detected in the same way in other systems as this had only
occurred once.

The FDD algorithm was tested on a heat pump system where there was a suspicion that something
was wrong due to frequent starting and stopping of the compressor. In this heat pump system the
FDD algorithm detected that Δ𝑝፨።፥ was too dependent on 𝑁ፑፏፌ beyond the threshold defined. Upon
inspection of the heat pump system, the bearings appeared to be slightly damaged. This is typical
of a developing fault. The symptom is detected due to poor lubrication between the shaft and the
compressor which ultimately leads to severe damage to the bearings if not detected. Fig. 7.1 shows
the bearings which are slightly damaged. This is a confirmation that the first symptom of Fault 4.3 is
a re-occurring symptom and a way to detect bearing damage. The differential oil pressure will be too
dependent on 𝑁ፑፏፌ as the clearance between the bearing housing and shaft is too small. Rubbing
occurs between the bearing and shaft walls creating an increasing flow resistance that the oil pump
has to overcome. Thus the moment this fault occurs the symptom will be detectable. It is only after
operating with this symptom for a longer period that the bearings will be damaged.

This also illustrates one of the issues with the FDD program, the expert knowledge is not always
infallible. Other faults also had fault trends that were only seen once or twice before. Faults could
occur in unforeseen ways, or the trends previously seen could be a one time occurrence.

7.1.2. Adaptability of the FDD program
One of the most important aspects of the FDD program was its ”Adaptability”, referenced in Table 1.1,
which was defined as the FDD programs ability to adapt to physical changes of the heat pump system.
As the heat pump systems from GEA differ in many ways due to the application and the compressor
types, it was of great importance to have a FDD program that was applicable across a range of systems
and compressors.

Based on design inputs specified by the compressor type and the type of heat pump system, the
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Figure 7.1: Slight bearing damage detected in a compressor bearing by the FDD program. This a typical example of early stage
development of Fault 4.3, bearing damage, where the heat pump system was inspected early enough to avoid any serious

damage.

FDD program will run different algorithms for the different faults that require dedicated unique algo-
rithms. This is made to fit every current system configuration, however there are two problems which
should be addressed for ”Adaptability”.

Firstly, there are dedicated algorithms made for the current different setups where it is required.
However future adaptations to the system have not been considered. The algorithms will probably not
work directly on new systems with different setups.

Secondly, the FDD program was adapted to detect and diagnose faults in the ”V-compressor”.
However there was only one working example of this compressor available. The sampled data for
validation of the compressor prediction tool used for the process history based faults might not be
accurate for other ”V-compressors” in the future. The ”V-compressor” was also newly developed, due
to this there was a limited amount of expert knowledge available for the qualitative faults, it was mostly
assumed that the faults would not differ from faults of the ”5HP-compressor”.

7.1.3. Intertwining nature of faults
Several faults and their respective symptoms are mixed. The expected link between different symptoms
and faults was a good way to test the FDD algorithm for the faults that were never detected before.
Air in the condenser (Fault 5.2) and its influence on �̇�፜፨፧፝ and the COP was investigated in detail.
Some abnormalities were detected as it was expected that air in the condenser would influence the
COP and �̇�፜፨፧፝ noticeably. However, in the example where air in the condenser was known to be an
issue neither �̇�፜፨፧፝ nor the COP was seen to be faulty. The logical conclusion was that the inputs of the
black-box model used in the compressor prediction tool calculating �̇�ፏፑ,፜፨፧፝ and 𝑃ፏፑ,፞ were influenced
by air in the condenser. This is a possible downside of using a black-box model for the compressor
prediction tool where the calculation methods are not based on physical principles.

A suggestive map was drawn in Fig. 1.5, where symptoms were mapped with the corresponding
fault detections. These are the known and obvious links, other unforeseen links will also occur that
are not as obvious. In the beginning in Table 1.1 it was decided that the two metrics ”Isolability”
and ”Multiple fault identifiability” were not of great importance for this project. Therefore, the linking
between the faults was not investigated further. It was decided that it was of greater importance to
have an FDD program with ”Novelty identifiability” that could distinguish between faulty and fault-free
operation.
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7.2. Compressor Prediction Tool
The FDD program is linked with the compressor prediction to predict 𝑇ፏፑ,፝።፬, 𝑃ፏፑ,፞ and �̇�ፏፑ,፜፨፧፝ based
on the running conditions for the process history based black-box FDD algorithms. Some faults are
highly dependent on the calculation methods from the compressor prediction tool, which is a black-box
model with unknown details. The black-box model has been validated for several heat pump systems
with the ”5HP-compressor”. However it has not been sufficiently validated for the heat pump systems
with the ”V-compressor”. Further validation is required on the compressor prediction tool with heat
pump systems with a ”V-compressor”, as this type of compressor is currently being introduced.

7.3. Startup and shutdown
The startups and shutdowns of the heat pump system were seen to be specifically prone to dam-
age and failures. In addition to this both analyzed compressors were seen to have different and very
specific startup procedures. It was intended that the FDD program would have a gray-box feature
extrapolation of failure trends, where the program was mainly looking to recognize faulty trends previ-
ously experienced. Startups can still be faulty in ways not seen before, this was typical for the newer
”V-compressor” where there is only data from 9 startups in total, which are all fault free.

It would benefit the FDD program to have a dynamical model that can predict how the ideal startup
and shutdown should look like. By comparing the actual shutdown or startup to the predicted shutdown
or startup the program can better detect faults not seen before. In this way, the program classifies
shutdowns and startups as faulty or fault free rather than looking for specific trends. This is important
as 𝑇ፏፑ,፝።፬ and �̇�ፏፑ,፜፨፧፝ are not accurately predicted during startup.

7.4. Faults not included in the FDD program
Several faults were not included in this FDD program due to either their simplicity, complexity, or their
relevance to the desired FDD program. Some of the faults that were outside the scope of this report
are listed below with a simple explanation.

• Sudden pressure changes can result in the refrigerant dissolved in the oil to boil out, rapidly
changing the properties of the lubricating oil.

• The oil return system that circulates the lubrication oil can have any number of faults. It is often
seen that it does not return sufficient oil, or if the operating periods are too short it not does
return oil at all to the compressor.

• Both the condenser and the evaporator are prone to fouling. It was decided that this will be
picked up by the two faults looking at the delivered heat and the COP (Fault 5.8 and Fault 5.9).

• If there is not sufficient liquid in the evaporator, it will change the heat transferring abilities in the
evaporator, each evaporator has a minimum allowable limit.

• The control system not being operated with the correct settings. This often leads to frequent
starting and stopping of the heat pump which is damaging for the lifetime expectancy of the
system.

The first two faults in the list above were not included due to their complexity. The first fault in particu-
lar needs a pressure-temperature diagram for solubility of oil and the refrigerant. The first fault is also
a result of other faults included in the scope of the project. The oil return system has a complicated
control procedure that would have been challenging to implement in to the FDD program.

The last two faults are system specific, i.e. they depend on values that are unique for each system.
They would require too much design input, and hence it would give the FDD program a low score on
the ”Adaptability” metric from Table 1.1.
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The fourth fault should however be picked up when there is liquid carry-over during operation, when
the liquid level in the evaporator is transferring away during standstill, or when the liquid level is faulty
(Fault 5.7, Fault 6.3 and Fault 6.4).

The fifth fault would depend on having extensive knowledge about how that exact control system,
which differs per heat pump system, should operate to be able to detect the wrong settings.





8
Conclusions and Recommendations

There are several improvements that could be made to the FDD program before or during implemen-
tation in to the control system. Some suggestions are listed below.

• Considering sensor accuracy, it would be pragmatic to look into the contribution of sensor uncer-
tainty to the FDD uncertainty. This would effect the fault thresholds.

• The sensor that measures the incoming heat sink temperature to the condenser should be moved
to the other side of the butterfly valve controlling the ehat sink. Then the sensor would capture
the problematic startup of the heat sink flow (the first symptom of Fault 5.10).

• The flow of the heat sink going into the condenser should be measured. This would improve the
accuracy of several FDD analyses; the high fluctuations in the secondary flow of the evaporator
and the condenser (Fault 5.3 and Fault 5.6), the low �̇�፜፨፧፝ (Fault 5.8) and the low COP (Fault
5.9). When a fluctuating heat sink flow is detected in the condenser (Fault 5.6), it is not directly
known what caused it. It could be that the mass flow is fluctuating or the calculated mass flow is
fluctuating due to variations in the temperatures used for the calculations. However, if the flow
of the heat sink is measured this would not be an issue.

• The fault threshold for the decreasing differential oil pressure in the ”5HP-compressor” (Fault 6.5)
of 0.5 bar over 5 minutes could be wrong. In the example, the fault was detected 40 times using
0.5 bar as the threshold. It was not detected at all using 0.6 bar, and was detected over 200
times using 0.4 bar. This should be further investigated to create a better FDD analysis. One idea
would be to develop a strength relationship or a fuzzy logic approach where the total decrease
of Δ𝑝፨።፥ is paired with the amount of times the fault is detected.

• For the compressor prediction tool it is not known how it actually calculates 𝑇ፏፑ,፝።፬, 𝑃ፏፑ,፞ and
�̇�ፏፑ,፜፨፧፝. It is a black-box model using a nonphysical approach. Another student is doing a
master thesis with the topic of building his own compressor prediction tool in a quantitative
manner based on physical relations for GEA. Implementing this model into the FDD program
would prove advantageous as it could better extrapolate for previously unseen faults. However,
it could also prove too computationally demanding for the desired on-line analysis.

• It is advisable to continually develop the FDD program as the new ”V-compressor” is being in-
troduced and data is being logged from it. Implementing a machine learning scheme may be
beneficial for the FDD program to allow it to predict the failure thresholds, the uncertainties,
or simply to increase the accuracy between the predicted and measured values. The compres-
sor prediction tool uncertainties are too large for the ”V-compressor”. There is only one heat
pump system sampled. It is not known if the one system sampled is faulty, or if the compressor
prediction tool cannot properly capture the values in the heat pump system.

• Some faults have no data or examples available, and the failure thresholds are quite ambiguous.
A possible solution could be to simulate the faults in actual heat pumps and see how the values
react for the faults that are not causing direct damage (for example Fault 6.2).
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• Utilization of the qualitative case-based or rule-based reasoning to detect certain faults relies on
expert knowledge. This expert knowledge is mostly based on previously seen faults, and the data
trends seen in those faults. However, some of these data trends are only observed once or twice.
Other trends are based on what service engineers have seen once, without an actual example
of the data trend. As the FDD program is being implemented the expert knowledge should be
revised, stored and included in the FDD program.

• The two faults which label the general operation as faulty or fault free through �̇�፜፨፧፝ and the
𝐶𝑂𝑃 (Fault 5.8 and Fault 5.9) should be changed. �̇�፜፨፧፝ and the 𝐶𝑂𝑃 should not be compared to
values from the compressor prediction tool, but rather design conditions of the individual system.
All heat pumps delivered have a promised �̇�፜፨፧፝ and 𝐶𝑂𝑃 during steady state operation. The
compressor prediction tool inputs were affected by faults occurring, and did not pick up on a
faulty �̇�፜፨፧፝ or 𝐶𝑂𝑃 due to this.

• For the capacity valve mechanism (Fault 4.2), another approach could be to compare the mea-
sured power to the power predicted by the compressor prediction tool for the ”V-compressor”.
The compressor prediction tool can be used from the first capacity step for the ”V-compressor”,
and the predictions were accurate. The power follows the same capacity steps as the current
during a startup (Fig. 3.14), hence this approach could be more accurate.

As a final comment for the FDD program the implementation period will be of high importance. During
the implementation there will likely be some troubleshooting and changing of FDD approaches or
thresholds. Therefore, it is important to have an implementation period where the performance of the
control system with the FDD program is closely monitored.
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