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Abstract
Data collection and annotation have proven to be a
bottleneck for computer vision applications. When
faced with the task of data creation, alternative
methods to traditional data collection should be
considered, as time and cost may be reduced signif-
icantly. We introduce three novel datasets for multi-
label classification purposes on LEGO bricks: a
traditionally collected dataset, a rendered dataset,
and a dataset with pasted cutouts of LEGO bricks.
We investigate the accuracy of a ResNet classi-
fier tested on real data, but trained on the different
datasets. This research seeks to provide both in-
sight into future dataset creation of LEGO bricks,
as well as act as an advisor for general multi-label
dataset creation. Our findings indicate that the tra-
ditionally collected dataset is prone to overfitting
due to speedups used during collection, with 90%
accuracy during training but 19% during testing.
Furthermore, synthetic data techniques are appli-
cable to multi-label LEGO classification but need
improvement, with accuracy ranging from 34% to
45%.

1 Introduction
Data collection and annotation are a bottleneck for computer
vision applications. With computer vision applications be-
coming more commonplace and also more complex, there
is also an increased need for annotated datasets however.
Hence, data collection is an active research topic [1, 2]. Re-
searchers are looking for ways to produce datasets that are
more diverse [3], faster [4], and cheaper [5]. According to
a 2018 survey [6], in case there is not enough quality data
readily available, the only means to collect data is through
generation. The two main methods of data generation pre-
sented in this survey are data generation through traditional
methods, and synthetic data generation.

Traditional data is collected and annotated manually, and
although this produces realistic data, creating a dataset by
hand is a task of great proportion [6]. Crowdsourcing is often
used to divide manual labour more effectively, but this pro-
duces its own challenges. Uncertainty can arise from work-
ers incorrectly following instruction, costs are often high as

(a) Real data (b) Rendered data (c) Cut&paste data

Figure 1: We introduce three novel multi-label datasets of LEGO
bricks. (a) was collected ’traditionally’ by manually shooting pic-
tures of LEGO bricks against various backgrounds. (b) was gener-
ated through rendering software. (c) used cut out images of LEGO
bricks and posted them against random backgrounds. While data in
(a) is realistic, it is also most costly to produce.

workers need to be compensated, and latency is significant as
human workers tend to work much slower than machines [7].
To limit costs, data collection can also be partially automated.
One study used a car to collect data of traffic situations by
driving with camera equipment on board [1]. However, this
data still had to be annotated manually.

Synthetic data generation, wherein artificial images are
created, is considerably faster and cheaper than traditional
data collection, but can have trouble bridging the gap to real-
ity. This gap is referred to as the domain shift. There are tech-
niques in place that can reduce the effects of this domain shift.
Recent works have had success by training with rendered im-
ages through domain randomization, wherein textures, light-
ing, and backgrounds were randomized [4]. Other advances
have been made by generating semi-synthetic data, wherein
images of real objects were cut and paste onto random back-
grounds to increase training diversity [5]. Both of these meth-
ods allowed for cheap and fast collection and annotation, and
produced results deemed competitive. Alternatively, real data
can be sampled for synthetic data generation [8]. Generative
Adversarial Nets were able to generate diverse synthetic im-
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ages by learning features of small real-life datasets [9].
To our knowledge, a dataset of multi-label images of

LEGO bricks is missing; although some have trained using
synthetic images of single bricks [10], well labelled pictures
of multiple real LEGO bricks do not exist. A dataset of such
format is the first step in obtaining networks that can find a
specific LEGO brick in a large pile of bricks, or immediately
tell the composition of a pile of bricks. Data collection and
annotation can be a time consuming task however. For novel
applications, such as in the case of creating a dataset of im-
ages of LEGO bricks, it is often unclear if synthetic data gen-
eration techniques translate well. A preliminary investigation
into the effectiveness of synthetic datasets can thus have great
payoff when those datasets are deemed competitive with tra-
ditional data. Particularly, two different approaches to syn-
thetic data generation are investigated, and their effectiveness
is compared to a traditional dataset. Since our approach aims
to replicate or surpass traditional dataset generation, an image
classification network is trained on different types of datasets,
but finally tested on a traditional dataset. Specifically, our
main contributions can be summarized as follows:

• We present three novel datasets of multi-label images
LEGO bricks, to be used for computer vision purposes,
of which example images are seen in Figure 1. These
datasets consist of:

1. a ’real’ dataset consisting of manually collected
pictures of LEGO bricks in various scenes

2. a synthetic dataset of rendered images using struc-
tured domain randomization

3. a synthetic dataset of images generated through cut-
and-paste strategies

• We evaluate the domain shift between the three datasets
by using a classifying network as a baseline comparator.
Performance is measured in F1 scores, a metric whose
output ranges from 0 to 1 and which combines precision
and recall.

• We explore possible speedups for generating the real
dataset.

We find that for multi-label classification on images with 1-
13 bricks and 85 different classes, F1 scores of up to 0.955
may be achieved when a network trained on synthetic data
is tested on synthetic data. This F1 score drops significantly
when these networks are then used to classify real images:
0.406 for rendered data and 0.447 for cut-and-paste data in
the best case. The traditionally collected ’real data’ appears
to be too unbalanced; while each image is different, similar-
ities in labels and background cause the classifier to achieve
high scores during training, but low scores on a selected test
set, where an F1 accuracy of 0.192 is achieved. In the fol-
lowing sections we showcase our findings in detail. Section 2
shows related works and provides background information to
common methods to create multi-label datasets. Section 3 de-
tails the methods used to create data. Section 4 showcases the
experimental setup, section 5 discusses the results, followed
by section 6 in which we discuss possible fallacies and ethi-
cal implications of our research. In section 7, a conclusion is
drawn.

2 Related Works
2.1 Existing LEGO datasets
There are other works that have looked at creating a dataset
of pictures of LEGO bricks. In particular, software engineer
Daniel West created a LEGO sorter along with a dataset of
100,000 images of individual LEGO bricks [11]. During his
project, West trained an image classifier using rendered im-
ages of LEGO bricks, randomizing textures, lighting, and
noise. Afterwards the sorter was able to correctly identify
single bricks as they were fed to it, including bricks the clas-
sifier had never seen. The sorter photographed bricks as they
passed through the machine, creating a dataset of labelled im-
ages of single bricks. This dataset does not contain varied
backgrounds or multiple LEGO bricks per image however,
making it unable to serve as a training dataset for multi-label
classification networks or object detection. So while it is suit-
able for sorting, for purposes such as finding a certain type of
brick in a large pile of bricks or seeing if a brick is present in
a pile of bricks, this dataset falls short.

A 2018 study [12] also created a LEGO sorter, only this
time available data from an online LEGO retail store was
used, in which users upload pictures of single bricks they
aim to sell. While this data offers large variation in back-
grounds, lighting, and picture quality, there are significant
caveats. For one, for most bricks few images are available,
giving low class representations for most bricks. Second, im-
ages of multiple bricks are uncommon as most pictures con-
tain 1 or 2 bricks. As a result, this sorter performed worse on
images containing multiple bricks, and hence this data is also
unsuitable for multi-label classification. Other online image
databases containing LEGO bricks such as Shutterstock [13]
more often contain completed sets or LEGO art, and can-
not be effectively filtered to contain pictures of only piles: a
dataset created from such a site would have to be handpicked,
as well as annotated manually. Additionally, bricks contained
within these images may be of many distinct classes, lead-
ing to a large classification domain and again low class rep-
resentation. To our knowledge, no labeled dataset exists of
multiple LEGO bricks.

2.2 Traditional data generation
The most common way of traditional data generation is
through the use of existing unlabelled databases, such as pic-
ture sharing sites. In such a process, ensuring quality, di-
versity, and accuracy in labelling of images is a costly and
time consuming endeavor [6]. If databases fail to meet these
requirements, they may be diversified further through data
augmentation, whose common techniques include applying
filters to, cropping, mirroring, and rotating existing images
[14, 15]. If this still produces insufficient data, data must
be created, which is a costly task. Although data collection
may be automated [1], annotations are mostly created manu-
ally. Our research presents a labelled sample dataset gener-
ated from scratch, without the use of crowdsourcing during
collection.

Data must meet specific requirements to accurately train
computer vision applications. First, to allow for preserva-
tion of physical properties that may be used in certain com-



puter vision applications [16], and to preserve images in high
quality as low quality images may reduce performance [17],
past research has created datasets using DSLR cameras [18].
Other Large databases, such as the VOC2007 database, have
variation in object size, orientation, pose, illumination, po-
sition and occlusion [19]. In the case that data is not avail-
able through existing databases, it is necessary to simulate
these factors. Failure to do so can result in under representa-
tive datasets, such as in the case a research where video data
of traffic scenes in Germany did not translate well to traf-
fic scenes from other countries [1]. In summary, variation
in backgrounds, camera angle, camera zoom (size), illumina-
tion, occlusion, orientation of bricks and position are factors
to look out for when collecting LEGO images. All images are
shot using a DSLR camera.

2.3 Cut-and-paste dataset generation

Cut-and-paste strategies are a state-of-the-art method for syn-
thesizing datasets [5] , greatly reducing production costs as
images are not collected or annotated manually. Compared
to rendered images, cut-and-paste images instinctively suf-
fer less from physical limitations as they are more ’real’, but
may suffer from lack of 3D orientation coverage as well as
accurate lighting and shadows. A quick summary of the cut-
and-paste method follows below:

1. Images of objects to be pasted are collected.

2. Images of scenes are collected.

3. Objects are isolated from their backgrounds.

4. Objects are pasted into the background, making use of
both blending and data augmentation

Region-based features play a significant role in computer vi-
sion [20], and this is a double edged sword. For one, it allows
us to ignore physical limitations of brick placement in real
life, for example, a brick may be pasted on the side of a cup-
board without significantly increasing error rates. Second,
blending must be used to remove boundary artifacts that arise
from pasting images, as seen in Figure 2. The two modes of
blending proposed are Gaussian blur and Poisson blending,
with best results achieved by applying to each configured im-
age both types of blending and no blending separately. This
means for each configuration of pasted objects, 3 images are
created. Data augmentation is used to further make images
robust. Random 2D rotations of pasted objects, as well as
using multiple pictures of the same object from different an-
gles throughout the dataset, ensuring angle coverage. Further
augmentations are partially overlapping objects in a process
called occlusion, and objects placed partially out of bounds,
called truncation. Finally, non-classified ’distractor’ objects
are also pasted into the scene. While our research aims to
replicate this method of data generation, no distractor objects
are added as these are not present in the traditionally collected
data. Additionally, given the size of the dataset, brick config-
urations across images are not repeated with aim to increase
data diversity. Lastly, to further reduce boundary artifacts an
alpha channel is added instead of an object mask.

Figure 2: Two similar cut-and-paste images with varying levels of
Gaussian blur. Blur removes the boundary artifact present in the first
image, but may reduce artifact overall appearance

2.4 Rendered data generation
Rendered images pose a viable solution to both the high cost
and latency of traditional data creation [2, 4], yet other prob-
lems arise for such databases. Although variation in control-
lable factors can be synthesized, the gap to reality is large.
Besides the obvious difference in realism of a rendered image
as compared to a real image, unforeseen factors and distrac-
tors in real data often derail networks trained on synthesized
data. Domain randomization [4] must be applied to overcome
these factors. In short, domain randomization includes ran-
domly placing distractor objects in rendered scenes, as well as
strongly randomizing lighting, camera angles, camera zoom,
and textures. Structured domain randomization limits the ran-
domness of these factors, by placing strong emphasis on real-
istic random factors. For example, instead of randomly plac-
ing distractor objects in scenes, high probability is given to
contextually sound locations. See Figure 3. Our research im-
plements structured domain randomization instead of domain
randomization as LEGO bricks may be distinct only on tex-
ture, hence full randomization may make some classes indis-
tinguishable. As no distractor objects are present in the tradi-
tionally collected data, the rendered data will also not contain
any distractor objects.

2.5 Classification network
Image classification is a common application for image
datasets, and both single label classification and multi-label
classification [21] are common research topics. Since LEGO
bricks are often found together, the data collected is geared
towards multi-label classification. A popular class of image
clasifier is the residual network classifier, or ResNet in short.
It is similar to a Convolutional Neural Network with up to
one thousand layers and may be used a standard comparator
for new networks [22]. Alternatives to ResNet may include
classification networks such as ResNext [23] and WideRes-
Net [24]. We implement a ResNet-50 network and apply
thresholding to turn it into a multi-label classifier [25].

On a more general note, all types of classification networks
benefit greatly from balanced classes [26], as well as large
amounts of class representation. ImageNet, a commonly used



(a) Domain Randomization. Img source: [4]

(b) Structured Domain Randomization. Img source: [2]

Figure 3: Two differently rendered images. Note the difference in
realism of car placement, textures, and distractor objects

database for computer vision applications, has around 650
images per class, as per June, 2020 [27]. While the amount
of data is often targeted as most important metric, as a lack
of data often leads to reduced accuracy and increased error
rates, aspects such as class type and amount of features of ob-
jects should not be overlooked. For similar objects that rely
on many features for distinction classification accuracy may
decrease drastically [28]. LEGO bricks may be prone to er-
rors of this type, as bricks may vary only on one relatively
small detail, such as color, amount of eyes, or small changes
in shape. Lastly, the asymmetric shape of some bricks may
lead to a large amount of possible 2D representations, which
could also lead to reduced classification rates.

3 Methodology
To compare several data generation techniques, we generate
3 different datasets. These are: a traditional ’real’ dataset that
acts as a baseline comparator, a cut-and-paste dataset, and a
rendered dataset. Subsection 3.1, 3.2 and 3.3 describe the
generation methods for these datasets.

3.1 Realdata
A dataset is created by shooting around 3000 images of
LEGO bricks, with the main focus on class balance. There
are 85 different classes of bricks1, each picture contains a
random selection of 1-13 LEGO bricks. Combinations of

1a selection is made out of the LEGO Classic set 110002

more bricks are not generated due to annotation costs [29].
To speed up the collection process, several speedups are in-
troduced. For one, all labels for pictures are produced ran-
domly before collection, so that no time is wasted recording
labels manually. Second, each combination of LEGO bricks
is photographed three times, rearranging the bricks in a ran-
dom manner in between pictures, and varying camera angle
and zoom. Both occlusion and truncation occur naturally dur-
ing this random rearrangement and are not prevented. Third,
a random brick is taken away or added to the combination to
create a new combination, and this is repeated every 3 pic-
tures for up to 10 times. This depends on if a boundary for
the amount of bricks per image is reached beforehand, so ei-
ther 1 or 13 bricks. Lastly, to maintain class balance with
these speedups, the lowest represented classes may be given
priority when creating random combinations. Figure 4 show-
cases the class balance of the real dataset. It is noted that such
speedups may cause imbalances as classes of bricks may ap-
pear together relatively frequently, as well as combinations of
bricks and backgrounds. This is not a certainty however, as
this relation decreases relative with size.

Figure 4: Class balance of the traditionally collected data and of a
uniform randomly drawn dataset, which acts as comparator. While
the rendered and cut-and-paste data are also uniform randomly
drawn, the real data is actively balanced due to speedups in data
collection.

Bricks are photographed from different camera angles, as
well as shuffled around in between pictures to ensure that
bricks can be recognized from a variety of viewpoints. Fur-
thermore, backgrounds and lighting are varied every around
70 pictures to prevent the model from over-fitting on one type
of background or lighting. Figure 5 shows the difference be-
tween various pictures. The images are saved in a HQ RAW
format, which are unfiltered images that preserve physical
qualities which are important in physics-based computer vi-
sion systems [16].

3.2 Cut-and-paste data
Similar to the baseline dataset, the cut-and-paste dataset con-
tains a random 1-13 bricks per image. A full overview of
the cut-and-paste data creation process can be found in Fig-
ure 6. Original images for each class of brick were pho-
tographed from 4 different angles, ensuring that all sides are
photographed at least once. They are shot against a dis-
tinct color background to allow for facilitated edge detection.
To create photoshopped cutouts for each brick, backgrounds



(a) Parquet floor, natural
lighting

(b) Wooden desk, artificial
light

Figure 5: Two examples of variations between traditionally collected
pictures. Lighting, background, camera angle, camera zoom, and
brick orientation may be varied between pictures.

were manually removed using photoshop, and an alpha chan-
nel was added to help smooth out any pasting discrepancies.
Images were resized to tightly fit the brick. This image size
also acts as a bounding box for annotation.

(a) Cut out brick
(b) Randomly select
background (c) Paste into scene

(d) Label brick

Figure 6: 4 step process for creating a cut-and-paste image

Each background from the baseline dataset is pho-
tographed without bricks. This gives 124 different pictures
that can be used as background. To further diversify the back-
ground, they are randomly mirrored or flipped. Pasted bricks
have a 50% chance of being mirrored, and have a random ro-
tation of 0-359 degrees. To prevent boundary artifacts created
by pasting [20], each image is blended in by using random
varying radii of Gaussian blur of 0-1. No further blur was ap-
plied some research suggests that a blur greater than 2 might
significantly reduce accuracy [17].

3.3 Rendered data
We synthesize 5000 images of 1-13 LEGO bricks per picture,
classes remain the same. 3D models of bricks are downloaded
from the Rebrickable [30]. All bricks are fitted with a tight
bounding box relative to the camera angle, as seen in Figure
7.

We apply structured domain randomization [2] on the
following factors: to increase robustness to varying back-
grounds, the floor of the rendered model is fitted with one
of the 124 backgrounds from the baseline dataset. To ensure
varying camera angles and to increase robustness to relative
brick size, both angle and zoom are randomized for each im-
age. A single light source is also randomly placed within the

Figure 7: An annotated rendered image produced through struc-
tured domain randomization. Camera angle and zoom, backgrounds,
lighting and brick combinations are varied between pictures. A
physics simulation ’drops’ bricks to produce random brick orien-
tation.

scene at varying brightness levels. Lastly, to accurately por-
tray varying brick orientation, a physics simulation ’drops’
bricks onto the surface, after which the render is captured and
data augmentation is applied; to ensure that downsampling
images to training size does not compromise recognizability
of bricks in pictures that are zoomed out, pictures are cropped
to annotation [25].

4 Experimental Setup
An F1 score calculation is used to compare classification rates
across datasets [31]. As F1 scores are a combination of the
precision and recall, they give insight into false positive and
false negative rates simultaneously. We implement two meth-
ods of calculating F1 scores: micro-averaged and macro-
averaged. Micro-averaging takes the average over all labels,
whereas macro-averaging calculates scores per instance, and
then takes the average over all instances. All formulas are
given in (1-4).

micro-average precision =

∑
c∈C TPc∑

c∈C TPc +
∑

c∈C FPc
(1)

micra-average precision =
∑
c∈C

TPc

TPc + FPc
(2)

micro-average recall =
∑

c∈C TPc∑
c∈C TPc +

∑
c∈C FNc

(3)

macro-average recall =
∑
c∈C

TPc

TPc + FNc
(4)

To calculate the F1 score, the harmonic mean is taken of
the precision and recall. See (5). This will give scores of
between 0 up to 1. Both the micro and macro scores may be
used in the results depending on the applicability2, and tables
and figures will indicate which metric is being used.

F1 = 2 ∗ precision ∗ recall
precision+ recall

(5)

In overview, each dataset is sampled for 3000 images, and
then split up into a training, validation, and test set. Then, a

2Micro-average scores are insightful to overall performance
while macro-average scores are useful for measuring performance
per instance



classification network is trained seperately for each dataset,
and scores are determined on their respective test set. For
the rendered and cut-and-paste datasets, scores are also deter-
mined on the test set of the real dataset. Next, 5000 images of
the synthetic datasets are taken and split again into training,
validation, and test sets. Again networks are trained sepa-
rately and scores are calculated on their respective test sets
and on the test set of the real dataset. Lastly, 10,000 images
cut-and-paste images will be used to train a final network. As
a baseline comparator, a score for a random label predictor is
also given.

To further enhance understanding of dataset fallacies, F1
scores are also calculated per brick class, color, or shape. For
example, while an average F1 score on all images may give
an overview of the overall performance, average F1 scores
for each brick shape may reveal that 2 by 4 bricks are most
often misclassified. Additionaly, we present F1 scores that
are ’relaxed’ on shape or color. A classifier that is ”relaxed
on shape” may output a brick of the right color but of the
wrong shape, but it will still be counted as a true positive.
Similarly, ”relaxed on color” means a wrong color but a right
shape will result in a true positive.

We use PyTorch’s implementation of ResNet-50 as it is
most popular and using a BCEWithLogitsLoss [32] and a
threshold, we convert it to multi-label classification. We shuf-
fle each dataset and subdivide them into a test (10%), val-
idation (10%) and training (80%) set. For the real dataset,
a second test (Real3000s) is run wherein both the validation
and test set were selected to contain unseen combinations or
backgrounds. Each dataset is trained for 100 epochs using
ResNet-50, with a learning rate of 0.1, batch size 16. Images
are also resized to 384*256 to speed up training. A thresh-
old of 0.5 is used for classification. Full details can be found
at [25]. The networks are tested on their respective training
types and additionally tested on 3000 real test images. Note
that the rendered data contains only 83 possible classes due
to 2 3D models not being available, hence the real test set for
these networks do not contain any instances of these classes.
The F1 accuracy is calculated according to formulas (1-5).
The results can be seen in Table 1.

5 Results

Dataset type Test Real Test Rel. on shape Rel. on color
Real3000 896 N/A 901 898
Real3000s 192 N/A 297 275

Rendered3000 804 340 468 453
Rendered5000 905 406 512 484

CP3000 851 374 486 480
CP5000 926 447 550 558
CP10k 955 440 555 551

Table 1: F1 scores for all datasets, scaled by 103

The results show that for the synthetic data trained net-
works are able to sufficiently learn their respective dataset.
However, the Real3000s dataset which contains selected val-
idation and test sets does not seem to approach the same F1
accuracy as the other networks. Further inspection of the loss

and accuracy during training of both real datasets can be seen
in Figure 8. When fully trained on synthetic data, Resnet-50
classification networks have an F1 accuracy of around 0.4 for
both renderend and cut-and-paste data. Further details of the
results of running the real test set on each classifier can be
found in appendix A, Figures 13-16. The most notable re-
sults are summarized here: for one, both the cut-and-paste
and rendered trained networks were able to recognise cer-
tain classes, colors, and shapes of the real data at near per-
fect rates, while others were not recognised at all. Second,
all classifiers seemed to be more color sensitive than shape
sensitive, as average ’relaxed on shape’ scores were always
higher than ’relaxed on color’ scores. Lastly, Figure 16 indi-
cates that for these datasets, F1 accuracy does not decrease
when more bricks are present in an image.

(a) Real3000

(b) Real3000s

Figure 8: The training loss and macro-average F1 accuracy of the
real dataset compared with random test and validation set and se-
lected test and validation set, which contain unseen background and
combinations.

5.1 How do speedups in traditional data collection
affect performance?

Table 1 indicates that when trained on Real3000 F1 accuracy
is around 0.9, but this accuracy is skewed: a handpicked test-
set that contains pictures with completely new combinations
and backgrounds performs worse. Moreover, the loss and
accuracy rates during training in Figure 8 indicates that the
classifier is not able to learn features of a handpicked val-
idation set, but can learn features of a randomized valida-
tion set. A possible explanation for this phenomenon is as
follows. The speedups that were used to create the dataset
causes some bricks to appear together frequently. A combi-
nation of bricks appears together three times, and while the
camera angle changes and the bricks are shuffled around, the
background remains the same. This may cause the classifier
to associate backgrounds with certain combinations of bricks,
and thus overfit. Furthermore, since a combination of bricks
is turned into another combination by simply removing or



adding a brick, and this may be done up to 10 times, again
certain bricks appear together more frequently. This further
causes the model to overfit on brick combinations. These
two types of imbalances in the dataset could explain why the
model performs relatively well on a random validation and
test set; the classification problem is reduced to recognizing
the combination and background used, after which a predic-
tion of this combination will yield an F1 score comparable to
training data. See Figure 9.

Figure 9: While both images contain different arrangements of
bricks from different angles, the combination remains the same.
This could explain why a network is able to recognize a random-
ized test set, but not one containing unseen combinations.

When tested on combinations and backgrounds it has never
seen before, the model cannot identify most bricks. Figure 10
shows that in this test set, few classes receive F1 scores be-
tween 0.6 and 0.8, but many rates are much lower than that.
This could be an indication that the model only needs to iden-
tify a few bricks in a picture to predict a combination.

Figure 10: Micro average F1 score per class: Real3000s. While
some classes are recognized at training rates, most classes are not
recognized at all.

5.2 How do the different methods of data
generation compare in domain?

The networks trained on rendered data achieve F1 rates of be-
tween 0.8 and 0.9 on test set, comparable to training rates.
When looking at Figure 13 it appears classes in the real
dataset are recognized at varying F1 rates, from 0 to 0.9 or
even 0.95. This indicates that the domain is greater for some
bricks than others. Compared to cut-and-paste data, a larger
portion of classes do not get recognised at all and the over-
all macro-average F1 score is lower, namely 0.29 compared
to 0.42 for 5000 images, as shown in Figure 11. This trend
upholds in for colors and shapes in Figure 14 and Figure 15,
though in the latter the difference is smaller.

(a) Rendered5000

(b) CP5000

Figure 11: Micro average F1 score per class. Note how rendered
data is misclassifies a larger portion of classes than cut-and-paste
data, possibly indicating a larger domain shift.

Cut-and-paste data exhibits similar behaviour to rendered
data, in that by Figure 13, there are varying F1 rates for dif-
ferent classes, indicating that the domain shift affects some
bricks more than others. Furthermore, Figure 14 indicates
that certain colors such as grey and beige are recognized at
low rates across all cut-and-paste datasets, whereas dark pink
and dark purple are consistently in the top 3 most recognized
classes, possibly indicating that standout colors are recog-
nized easier. This trend is also present in shapes as per Figure
15. Lastly, it appears that for this problem, 10k images do
not translate to better recognition of real data, as no improve-
ments were made in any regard.

6 Discussion
Results indicate that although synthetic data can be used to
train real data classifiers, more adjustments to the data will
have to be made before rates approach rates of tests on syn-
thetic data. Some classes are more sensitive to this domain
shift than others, and further investigation into why this is
might prove useful in further understanding of classification
networks. Lastly, with all datasets, it appears that the number
of bricks per image does not affect F1 scores. It remains to
be investigated whether this trend upholds with significantly
more bricks per image as increased truncation and occlusion
might increase error rates.

6.1 Fallacies
We suspect the real data collection method suffers primarily
from a lack of diverse data. Although performance is known



to suffer under multi-label classification [21], results from Ta-
ble 1 indicate that at least for synthetically generated data, F1
scores of up to 0.955 can be attained. If this translates to real
data, we suspect that this decrease in performance is caused
by lack of diversity in the data. Speedups used to collect this
data reduce the variation in background and appearance of
different combinations of bricks. To combat this, more im-
ages would need to be created so that networks better learn to
categorize individual bricks in different surroundings, or no
speedups should be implemented to make data more diverse.
A lack of data is a common problem for most computer vi-
sion applications as data creation and annotation are massive
and costly undertakings [6]. For practical applications, such
as checking if a LEGO brick is present in a pile of bricks,
we suspect traditional dataset collection methods may not be
sufficient. Although collecting data for such large piles would
not be much harder than for 1-13 bricks, due to the amount of
occlusions, truncation, and sheer number of different LEGO
bricks, annotation would be prone to error, not to mention
costly and time consuming. For testing for such purposes we
recommend using a synthetic dataset.

Synthetic datasets are known to suffer from bridging the
gap to reality, and techniques such as domain randomiza-
tion [4] and structured domain randomization [2] are aimed
especially at solving this. Although some domain randomiza-
tion is applied to the rendered dataset, more variation in light-
ing intensity and color might produce better results, as not all
colors were recognized at equal rates per Figure 13. The re-
sults show that shapes are also recognized at varying rates,
possibly indicating that some 3D models were not accurate
representations of their real life counterparts an example of
which is shown in Figure 12. It should be noted that the nature
of the LEGO classifying problem might hinder domain ran-
domization, as domain randomization depends on random-
izing textures and thus brick colors, an essential feature for
distinguishing bricks. The cut-and-paste dataset suffers least

Figure 12: A faulty 3D brick model. Connective parts on the bot-
tom are missing and the texture is slightly off, possibly hindering a
domain shift.

from a lack of data and instinctively less of the domain shift
than rendered data, however, other fallacies arise. A lack
of 3D-orientation coverage of bricks may cause the network
to overfit on certain viewpoints, and pasted images may not
blend seamlessly into scenes. To better these results, a more
diverse 3D coverage should be made and Poisson blending
must be applied. Furthermore, edge detection using neural
networks could further improve both 3D coverage as well as

blending, for it increases the efficiency by which new images
can be photoshopped into scenes. Lastly, a drawback as seen
in Figure 6d is that rotation causes bounding boxes to not
tightly fit. This could be removed by switching from an alpha
channel to a layer mask, though this would increase bound-
ary artifacts. Alternatively, oriented bounding box annotation
could be used [33].

6.2 Ethics and Reproducibility

Besides the annotation of the real data which was done
through crowdsourcing [29], there are no large ethical con-
cerns as no human interaction was needed for the completion
of the data collection.

In light of a ongoing reproducibility crisis in the scientific
community [34], we will shortly discuss the reproducibility
of this research. All synthetic data creation protocols, as
well as the ResNet-50 classifier are available for use on Git-
lab [35–37]. All created datasets are available on TU Delft’s
WebDrive. In case the real dataset is to be replicated, it
should be noted that any pictures taken may produce some-
what different results than the current datasets: while light-
ing, background, camera angle, camera zoom, and brick ori-
entation were randomized, they were not controlled. These
factors may differ slightly between datasets. The cut-and-
paste data suffers from these same random factors: different
backgrounds and different brick orientations in cut-outs may
produce different dataset characteristics. The rendered data
may differ in textures used for backgrounds and different 3D
models. Lastly, all classification scores present in section 6
and appendix A are taken from a single test run and may dif-
fer from run to run.

7 Conclusion and Future Work

We presented 3 novel datasets for computer vision purposes
on multi-label images of LEGO bricks. After, we investi-
gated the domain shift between these datasets by comparing
F1 scores of a ResNet-50 classifier. Lastly, we investigated
the use of speedups in traditional data collection. We find
that networks trained on synthetic data are able to achieve
F1 scores of 0.804 to 0.955, but these scores drop to 0.340
to 0.447 depending on the type and amount of synthetic data
used. The use of speedups during traditional data collection
appears to make real data prone to overfitting.

For future works, we do not consider improvements to net-
works as this is not the focus of the research, rather we recom-
mend to further remove fallacies in data creation protocols.
To further improve rendered data generation, we recommend
using improved domain randomization. Using more detailed
3D models and textures, as well as varying lighting conditions
more and randomly placing distractor objects could improve
the domain shift. For cut-and-paste data, we suspect improv-
ing bounding boxes as well as 3D orientation coverage would
increase scores the most. Finally, to prevent overfitting in the
real dataset, additional data should be made with more em-
phasis variation of backgrounds and brick combinations in
pictures.
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A Results

(a) Real3000s (b) Rendered3000

(c) Rendered5000 (d) CP3000

(e) CP5000 (f) CP10k

Figure 13: Micro average F1 score per class



(a) Real3000s (b) Rendered3000

(c) Rendered5000 (d) CP3000

(e) CP5000 (f) CP10k

Figure 14: Micro average F1 score per color



(a) Real3000s (b) Rendered3000

(c) Rendered5000 (d) CP3000

(e) CP5000 (f) CP10k

Figure 15: Micro average F1 score per shape



(a) Real3000s (b) Rendered3000

(c) Rendered5000 (d) CP3000

(e) CP5000 (f) CP10k

Figure 16: Micro average F1 score sorted on bricks per image
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