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A Method for Constructing Self-Dual Codes with an
Automorphism of Order2

Stefka Bouyuklieva

Abstract—In this paper, we investigate binary self-dual codes
with an automorphism of order 2 with cycles and fixed points.
A method for constructing such codes using self-orthogonal
codes of length and self-dual codes of length is presented.
We apply this method to construct extremal self-dual codes of
lengths40 42 44 52 54 and 58. Some of them have weight
enumerators for which self-dual codes were previously not known
to exist. We prove that there do not exist self-dual[50 25 10]
and [96 48 20] codes with an automorphism of order2 with
fixed points for 0 in their automorphism groups.

Index Terms—Automorphisms, self-dual codes, weight enumer-
ators.

I. INTRODUCTION

A BINARY linear code is a -dimensional subspace
of where is the -dimensional vector space over

the binary field . The number of nonzero coordinates of a
vector in is called its weight. An code is an
linear code with minimum nonzero weight. An automorphism
of the code is a permutation of the coordinates ofwhich
preserves .

Let

for be the inner
product in . Then if is an code over ,

for all

If , is termed self-orthogonal and if ,
is self-dual. A binary self-dual code in which all weights

are divisible by four is termed doubly-even. If not all weights
are divisible by four the code is singly-even. Self-dual codes
with the largest minimum weight for a given length are called
extremal. A list of possible weight enumerators of extremal
self-dual codes of length up to was given by Conway and
Sloane in [6]. This list was extended for length up to by
Dougherty, Gulliver, and Harada in [7]. However, the existence
of some extremal self-dual codes is still unknown.
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A method for constructing binary self-dual codes via an auto-
morphism of odd prime order is given by Huffman and Yorgov
[10], [18], [19]. Some properties of the binary self-dual codes
with an automorphism of orderwithout fixed points are proved
in [3]. Two methods for constructing such codes are presented
in the same work. These constructions are generalized in [5].
In this work we consider binary self-dual codes with an au-
tomorphism of order with -cycles and fixed points for

, . We investigate a construction tech-
nique for such codes.

In the next section we give some results about binary self-
dual codes having an automorphism of order. In Section III
we present a method for constructing a binary self-dual code of
length using self-orthogonal codes of lengthand
a self-dual code of length. In Section IV we obtain self-dual

and codes using the new method. We prove that
there do not exist self-dual and codes
with an automorphism of order with fixed points for

. For , there do not exist binary self-dual
codes of length and minimum distance with an
automorphism of order with fixed points.

For the known codes, we use the notations from [6].

II. DEFINITIONS AND GENERAL RESULTS

Let be an self-dual code. Fix and
so that . Let , respectively, , be the largest
subcode of whose support is contained entirely in the left

, respectively, right , coordinates. Supposeand have
dimensions and , respectively. Let . Then
there exists a generator matrix forin the form

(1)

where is a matrix with , is a
matrix with , is the appropriate

size-zero matrix, and is a matrix. Let be the
code of length generated by , the code of length
generated by the rows of and , the code of length
generated by , and the code of length generated by the
rows of and . The following result is found in [13].

Lemma 1: With the notation of the previous paragraph

(i) ,
(ii) , and
(iii) and .
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Let be a binary self-dual code and

be an automorphism of . Let

Obviously, iff and
for . Let us denote

and . Let

Obviously, . Then there exists a generator matrix for
in the form (1) where is a matrix with

, is a matrix with , and
is a matrix. Let be the code of length

generated by , the code of length generated by the rows
of and , the code of length generated by , and
the code of length generated by the rows of and . From
Lemma 1 we have

Theorem 1: Let be the map defined by

for . Then is a homomorphism,
, is a self-orthogonal code and

, where is the map defined by
for

Proof: Clearly is linear and hence is a homomor-
phism. Thus is a code for some. To show it is self-or-
thogonal, let and be
codewords in . Then

as .
Since iff for

, we have .
Let

Then

for all . Hence for all
and .

Now let

and

Then

for all and so . Since the last
coordinates of are zeros and we have .

Therefore, . Hence . So
we proved that .

Corollary 1.1: and .

Corollary 1.2: .
Proof: If

we have

for any vector

Hence .
Obviously, and so

We have

Therefore, .

Corollary 1.3: iff , where .

Theorem 2: Let be the map defined
by for .
Then is a homomorphism, , is a self-dual

code, and .
Proof: Let

and

Then
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Hence is a self-orthogonal code of length. Let be
the restriction of on . Obviously, . So we
have

Hence is a self-dual code.
Obviously, and . From Lemma 1

we have .

Corollary 2.1: If , the code contains the all-one
vector.

Proof: Obviously, and so is a subcode of
. If then

Hence .

Corollary 2.2: When the minimum distance of the
code is at most .

Corollary 2.3: There exists a generator matrix of the code
in the form

where is a matrix with ,
is a matrix with , and is a

matrix.

Corollary 2.4: There exists a generator matrix of the code
in the form

where

and .
Proof: Obviously,

is a generator matrix of . As the rows of the matrices
and are linearly independent so are the rows of. Since

is a subcode of the self-dual codeit follows that is

a subcode of . and, therefore, the rows of
are in . As the number of rows of is

we have that is a generator matrix of the code .

Theorem 3: Let be the map defined by
for . Then is a homo-

morphism, , and is a self-dual
code with an automorphism .

Proof: Let

and

Then

Obviously, is a self-orthogonal code,
and so is a self-orthogonal code of length. Let be the
restriction of on . Obviously, . Therefore,

Since is the code and is a monomorphism
on , we have

It follows that is a self-dual code.

III. CONSTRUCTIONMETHOD

Let be a self-orthogonal code and be its dual
code. Let be a subcode of , and be

its dual code. Obviously, . Using the code and
the method from [5] we can construct a binary self-dual code

of length with an automorphism
.

Theorem 4 [5]: Let be a self-orthogonal code,
be its dual code, and be the map defined by

for
Let

be a set of pairs of different coordinates of the code ,
, and be the map defined by
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for ,
where for , and

for . Then is a self-dual
code and is an auto-

morphism of .

We can take a generator matrix of in the form

where , and are matrices with, respectively, ,
and rows, as generates the code generates
the code and generates the code .

Let be a self-dual code of length, , and
be an subcode of with . Let

be a generator matrix of . We can take a generator matrix
for the code in the form .

Theorem 5: The code with a generator matrix

is a self-orthogonal code. If
is the map defined by

for then and
.

Proof: From the construction of the code we
have . Let and

. Then

Therefore,

Hence and so . Since

Therefore, .

We can take a generator matrix of in the form

where .

Remark: The code corresponds to from the pre-
vious section.

Corollary 5.1: The matrix generates the code
.

Proof: Obviously, the code with a generator matrix
is a subcode of . Besides,

Hence .

Theorem 6: Let be the rows of , and
be the rows of . If is the code with

a generator matrix , we can take vectors ,
, such that the vectors
are orthogonal to each

other. Hence the matrix

(2)

where is the matrix with rows , generates a
self-dual code .

Proof: Since and then and so all
vectors in have even weight. Hence any choice ofgives
us a vector of even weight. Let be a
basis of and .
We have to solve a linear system of equations

. It follows that

This system has equations and
variables. Its rank is and, therefore,
the solutions depend on parameters.
Obviously, the constructed codeis a self-dual code with min-
imum distance .

Corollary 6.1: .

Corollary 6.2: is an automor-
phism of the code .

Proof: Let be a vector from . Then

Therefore, the vector

belongs to . Hence

is a vector in .

IV. RESULTS

In this section we obtain extremal self-dual codes using the
method from Section III. We investigate extremal self-dual
codes with an automorphism of orderwith fixed points for
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. Since , we have . The
code has to be a self-orthogonal
code, and has to be a code.

Some of the constructed codes have weight enumerators pre-
viously not known to exist.

A. Codes

Any extremal singly-even code has weight enu-
merator of the form

where is an integer, . Codes with and
are given in [5], [6], and [9].

From the codes and where is
the extended Hamming code, and some subcodes of

we obtain self-dual codes with weight enumeratorwith
.

In the case and we construct self-dual
codes with weight enumerators with .

If , and we
obtain self-dual codes with weight enumerators with

.
In all cases, we construct doubly-even self-dual

codes.

B. Codes

The possible weight enumerators of putative or known ex-
tremal self-dual codes are

and

There exist self-dual codes with a weight enumerator for
and with a

weight enumerator (see [3] and [7]).
Let and . Using sub-

codes of of dimension we obtain extremal
self-dual codes of length with weight enumerators for

and . The codes and
have weight enumerators for and .

These codes are the first known self-dual codes with these
weight enumerators. They have generator matrices of type (2) as

is a generator matrix of , and the
rows of are
and for the three codes. For the other matrices
we have

(the rows of the matrices are broken into blocks

of length , each of which is represented by a

hexadecimal symbol) –

C. Codes

The possible weight enumerators for length 44 are

and

There exist self-dual codes with a weight enumerator
for and with a

weight enumerator for
(see [7]).

From the codes and , and some
subcodes of we obtain self-dual codes with weight enu-
merator with and , and codes
with weight enumerator for and

Let and . The code with a
generator matrix

is a subcode of . Using the subcode of
with a generator matrix

and the set

we construct a self-dual code with weight enumeratorswith
. The matrix is a generator matrix of this code as

shown at the top of the following page.
Similarly, we obtain a self-dual code with a weight

enumerator with .
If , , and we con-

struct self-dual codes with weight enumerator with
. Let be the self-dual code for

which is the matrix with rows (in hexadecimal)
,
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, the rows of are
the rows of , , and of

. This code has a
weight enumerator with and it is the first known
code with this weight enumerator.

The codes
, and have weight enumerators with

and , respectively. Codes
with these weight enumerators were previously not known to
exist. In Table I we give the matrices , and

for these codes.

D. Codes

We have and . Since is a
code and we have

where denotes the largest value offor which
there exists an binary code. But for

[2]. Therefore, . For and
we have and hence has to be a self-dual

code. The extremal self-dual codes of lengths
and have a minimum distance. So and .

For and we have and hence
has to be a self-orthogonal code. Such

codes do not exist (see [12]) and, therefore, and .
In the case we have . The extremal

self-dual codes of length have minimum distance and so

. Let be a self-orthogonal code with a
dual distance at least. Then

for some and with . The code
is a self-dual code. Since such a code

does not exist we have . So we proved the following.

Theorem 7: If is a binary self-dual code and
is an automorphism of of order then has no fixed points.
Self-dual codes with an automorphism of order
without fixed points are constructed in [4].

E. Codes

Any extremal self-dual code of length has a weight enu-
merator of the form

It has been shown that codes exist for [4],
[6]–[8], [11], [16].

We have and . Since
is a and we have

. Similarly to the previous subsection, we prove
that .

Let . In this case, . We can obtain a
self-orthogonal code with a dual distance from
the code by deleting the last coordinate of the vectors having



502 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 2, MARCH 2000

TABLE I
SELF-DUAL CODES OFLENGTH 44

on it. If and is a subcode of we
obtain self-dual codes with weight enumerators
for and .

F. Codes

There are two possibilities for the weight enumerator of an
extremal self-dual code:

and

There exist self-dual codes with weight enumer-
ator for ([1], [5], [6], [9]) and for

([1], [14], [16]).
We obtain extremal self-dual codes for this length with weight

enumerators for using the self-dual
code , the self-dual code , and

some subcodes of .

G. Codes

For binary self-dual codes, two possible weight
enumerators are given in [6]

and

For , a code exists with (cf. [15]).
For , codes exist with and ,

(cf. [1], [5], [6], [9], [17]), and
, (cf. [1]), and and
, (cf.

[5], [17]). There is a mistake in the information about known
self-dual codes in [7].

We construct extremal self-dual codes of this length with a
weight enumerator with and

and , and
and , and and

and
The codes with weight enumerators with and

, and and and
and and are the first known codes
with these weight enumerators.

Since we have . Therefore,
and

for

The dual code of the self-orthogonal code has to be
a code. So we have .

Let and where is the extended Golay
code. Then , , and so
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TABLE II
SELF-DUAL CODES OFLENGTH 58

. Let , and be the subcode of
with a generator matrix

From these codes we construct the self-dual code
. The weight enumerator of this code is with

and . Similarly we obtain self-dual codes
with weight enumerator with and

and . In
Table II we give the matrices and of
codes , and of weight enumerators

with and and respectively.
Let be the “odd” Golay code . From
and different subcodes of we obtain self-dual

codes with weight enumerators with
and , , and , , and with

, . The codes , of weight
enumerators with and , , and ,

, and , respectively, are the first known codes with
these weight enumerators.

Let us consider the case and (see [6]).
Then and hence

. Using these two codes and different subcodes
of , we obtain binary self-dual codes

with weight enumerator for and

and , and and
and . In Table II we present the codes

, and with weight enumerators for and
and

H. Codes

In this case, we have and .
According to Brouwer’s Table [2], for
Only the possibility remains. Since
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the code has to be a self-dual code. But the
extremal self-dual code of length has a minimum distance.
So we proved the following theorem.

Theorem 8: If is a binary self-dual code and
is an automorphism of of order then has no fixed points.

I. Some Codes with Minimum Distance

Theorem 9: If is a binary self-dual code of lengthand
minimum distance for , and is an automorphism
of of order then has no fixed points.

To prove the theorem, we need the following propositions:

Proposition 10: If a self-orthogonal code with a
dual distance at leastdoes not exist then there does not exist a
self-orthogonal code with a dual distance at least

Proof: Let be a self-orthogonal code and
let its dual code have a minimum distance at least. There exists
a vector of even weight such that . Hence the
code is a self-orthogonal code.
Since its dual code is a subcode of the dual distance of
is at least . Such a code does not exist, and so there does not
exist a self-orthogonal code with a dual distance
at least .

Proposition 11: If a self-dual code does not exist
then there does not exist a self-orthogonal
code with a dual distance at least.

Proof: Let be a self-orthogonal
code and let its dual code have a minimum distance at least.
Obviously, . Then

is a self-dual code of length and minimum distance at least
. But such a code does not exist. It follows that there does not

exist a self-orthogonal code with a dual
distance at least.

If is a self-dual code of minimum distance and is
an automorphism of of order with cycles and fixed
points, , then is a self-orthogonal code
and its dual code is a code. According to
Brouwer’s Table [2], for . There
do not exist self-dual , , ,

, and codes. It follows that there do not
exist self-orthogonal , , ,
and codes with a dual distance at least. From
Proposition 10, there do not exist self-orthogonal codes of
lengths minimum distance

, and dual distance at least. It follows that . In this
case and so .

V. FURTHER DIRECTIONS

It would be interesting to find extremal codes for any of the
putative weight enumerators given in [7].

Particularly, there may exist a doubly-even code
with an automorphism of order with cycles and fixed
points for and for . If is a doubly-even

code with an automorphism of orderwith 24 cy-
cles and 24 fixed points , has to be a self-dual code
of length , and .
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