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A Method for Constructing Self-Dual Codes with an
Automorphism of Order

Stefka Bouyuklieva

Abstract—in this paper, we investigate binary self-dual codes A method for constructing binary self-dual codes via an auto-
with an automorphism of Qrder 2 with ¢ cycles _andf fixed points. morphism of odd prime order is given by Huffman and Yorgov
A method for constructing such codes using self-orthogonal [10], [18], [19]. Some properties of the binary self-dual codes
codes of lengthe and self-dual codes of lengthf is presented. . . . - .

We apply this method to construct extremal self-dual codes of W'th an automorphism oford@r\mthoutﬂxed points are proved
lengths 40, 42, 44, 52, 54, and 58. Some of them have weight iN [3]. Two methods for constructing such codes are presented
enumerators for which self-dual codes were previously not known in the same work. These constructions are generalized in [5].
to exist. We prove that there do not exist self-dua[50, 25, 10] |n this work we consider binary self-dual codes with an au-
?i‘)':g d[?)?)inétlss%ofof] ‘;"%ei?]‘;‘;:Eehira;uij“raoor?;’r:f’s%sgﬂ;srderz with f tomorphism of ordee with ¢ 2-cycles andf fixed points for

' 0 < f < n,n=2c+ f. We investigate a construction tech-

Index Terms—Automorphisms, self-dual codes, weight enumer- njque for such codes.

ators. In the next section we give some results about binary self-
dual codes having an automorphism of ordetn Section IlI
l. INTRODUCTION we present a method for constructing a binary self-dual code of
lengthn = 2¢ + f using self-orthogonal codes of lengttand
a self-dual code of lengtlfi. In Section IV we obtain self-dual
40, 20, 8], [42, 21, 8], [44, 22, 8], [52, 16, 10], [54, 27, 10],

nd [58, 29, 10] codes using the new method. We prove that
there do not exist self-du@0, 25, 10] and[96, 48, 20] codes
with an automorphism of orde? with f fixed points for
f > 0. For n < 108, there do not exist binary self-dual

BINARY linear [n, k] codeC is ak-dimensional subspace

of £ where F} is then-dimensional vector space ove
the binary field£;. The number of nonzero coordinates of
vector in£} is called its weight. Afin, k, d] code is arjn, k]
linear code with minimum nonzero weigiitAn automorphism
of the codeC is a permutation of the coordinates ©fwhich

prisetzrvesﬁ. codes of lengthn and minimum distancel8 with an
€ automorphism of ordez with fixed points.
n For the known codes, we use the notations from [6].
u~v:2u7¢vi e Fy
=1 [I. DEFINITIONS AND GENERAL RESULTS
foru = (w1, -+, un), v = (v1, -+, v,) € F3 betheinner Let C be an[n, k& = n/2] self-dual code. Fix1; andns
product in£%. Then ifC is an[n, k] code overFs, so thatn; + no = n. Let B, respectively,D, be the largest
subcode ofC whose support is contained entirely in the left
Ct={ueF}:u-v=0 forallveC}. ny, respectively, righte, coordinates. Suppoge¢and?D have

dimensiong:; andk,, respectively. Leks = & — k1 — k>. Then
If C C C*, Cis termed self-orthogonal and & = C*, there exists a generator matrix f6rin the form
C is self-dual. A binary self-dual code in which all weights

are divisible by four is termed doubly-even. If not all weights B O
are divisible by four the code is singly-even. Self-dual codes gen(C)=| O D 1)
with the largest minimum weight for a given length are called E F

extremal. A list of possible weight enumerators of extremal
self-dual codes of length up t&2 was given by Conway and WhereB is ak; x n; matrix withgen (B) = [B O], Disa
Sloane in [6]. This list was extended for length upl@by %2 X n2 matrix withgen (D) = [0 D], O is the appropriate
Dougherty, Gulliver, and Harada in [7]. However, the existencdze-zero matrix, anfy  F]is aks x n matrix. Let3* be the
of some extremal self-dual codes is still unknown. code of lengthn; generated byB, Bg the code of lengthn;
generated by the rows d# and F, D* the code of lengttn,
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Let C be a binary self-dudh, n /2] code and Now let
o=(1,2)3,4)---(2¢ -1, 2¢) w= (B, -, B) € (C)*
be an automorphism af. Let and

/_ . v v ow
Co- — {U cC:vo = U}. w = ([317 [317 [327 [327 ) [3c7 [3c7 07 ? 0)

Obviously,s = (1, fs, -, fn) € G, iff v e Candpy_y = 1O .
Pa; fori =1, ---, c. Let us denote vow = Z(O‘?i—l + a2)Bi = d(v) - w =0
B={v={(ai, -, 0an) €Ciagey1 ==, =0} i=1
_ forallv = (a1, ---, ) € C and sow’ € C. Since the last
andB, = BN Co. Let f coordinates ofy’ are zeros and’ € C, we havew’ € B,.
D={veC:ay=- =09 =0} Thereforew = n(w') € 7(B,). Hence(C)t c =(B,). So
L
Obviously,D < C,. Then there exists a generator matrix for'® proved tha(C”)= = m(By). ¢

C in the form (1) whereB is ak; x 2¢ matrix with gen () = Corollary 1.1: dim (C,,) = k — s anddim (B,) = ¢ — s.
[B O], Dis aky x f matrix withgen (D) = [0 D], and . N

[E F]is aks x n matrix. Let B* be the code of lengtBc Corollar'y 1.2: ¢p(B)~ = n(Co).

generated by, B the code of lengtBc generated by the rows Proof. If

of B andE, D" the code of lengtlf generated byD, andDy w= (01, B1,, Be, Bey Bact1, 5 On) € Co

the code of lengtlf generated by the rows dp and F'. From
Lemma 1 we have

k‘g:k+/€1—2020+(1/2)f+/€1—202(1/2)f+/€1—c.

we have
m(w) - p(v)=Prar+az)+-+fe(aze—1+az.) =w - v=0

for any vector
Theorem 1:Let ¢: C' — F¥ be the map defined by

v="(a1, -, a2, 0, -+, 0) € B.
(/)(U) = (Oél +ag, -, o1+ OéQc) Hencew(Co) C (/)(B)J‘
for v = (ay,---,a,) € C. Then¢ is a homomorphism, Obviously,Kern = D and so
Ker¢p = C,, C'" = Im¢ is a self-orthogonalc, s] code and dim (r(C,)) = dim (C,,) — dim (D)
7(B,) = (C")t, wherer :C, — Fs is the map defined by _ 1
W(U):(ﬁlv"'vﬁc) for N _5;)2 ( / )
=c+(1/2)f —s—(1/2)f — k1 +¢
U:(ﬁlvﬁlv"'vﬁcv /3(27 /32(3-1-17 "'7/3ﬂ/)€Ker¢' =2c—s—k; 1
Proof. Clearly ¢ is linear and hence is a homomor- We have
phism. Thug” is a[c, s] code for some. To show it is self-or- ] L ]
thogonal, letv = (ay, -, a,) andw = (B, -+, Ba) be dim (H(B)7) = ¢ — dim (¢(B))
codewords inC. Then = ¢ —dim (B) + dim (5,)
< =c—kit+ec—s
d)(v) ' (/)(w) - Z (a%_l * a%)(ﬁ%_l * ﬁQi) =2c—s—k =dim (W(C ))
=1 o))
¢ Thereforeg(B)+ = #(C,). %
= Z (a2i—1P2i—1 + a2if2)

Corollary 1.3: s = 0iff C = i§®&D*, wherei, = {00, 11}.

=1
- Theorem 2:Let+:C — Ff (f > 0) be the map defined
Yoi__ 3 i ) 13 i— 2
+;(a2 152; + o Boi—1) by ¥(0) = (oesrs s ) fOr v = (a1, -+ ) € C.

Thent is a homomorphismiker ¢» = B, ¢(C,) is a self-dual
[£, (1/2)f] code, and)(D) = ((O))™.

=v-wt+v-we=0

aswo € C. _ Proof: Let
Since(ay, o, -+, o) € Ker g iff ao;—1 = ag; for 1 <
7 < e we haVQI(erd) = Co-. v = (061, a1, 2, g,y ey Qey H2e41, ", an) S C{r
Let and
w:(ﬁlvﬁlv "'7[3& Bc; 07 70)6[30- w:(ﬁl?ﬁb "'7/367 /367 /326-1-17 7/371)600'
Then Then
P(v) - m(w) = Z(@%—l +ay)bi=v-w=0 vew= Z(aiﬁi +aiffi) + Z aiff;
i=1 1=1 1=2c+1
forallv = (ai, -+, a,) € C. Hencer(w) € (C")* for all - Z i = p() - Pp(w) = 0.

w € B, andn(B,) C (C")*1. i=2c+1
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Hencey(C,) is a self-orthogonal code of lenggh Let+)|, be a subcode ofC, + B)*. D* = D+ and, therefore, the rows of
the restriction ofy on C,.. Obviously,Ker¢|c, = B,. Sowe [0 F,]arein(C, + B)*. As the number of rows off is
have

dim (¢(C,)) = dim(C, ) — dim B,
=k—s—c+s
=k—c=c+1/2)f —c=(1/2)].

Hencey(C,,) is a self-dual code.
Obviously,y(C) = Dy andy(D) = D*. From Lemma 1  Theorem 3:Letr:C — F3° be the map defined by(v) =
we haveD* = Df. & (o, oo, ) forv = (ay, -+, @,) € C. Thent is a homo-

morphismKer 7 = D, andC; = 7(C,) + 7(B) is a self-dual
code with an automorphism= (1, 2)(3, 4) - -- (2¢ — 1, 2¢).

ki +(/2)f+ks=k — ko +(1/2)f
=n—k—ky+(1/2)f
=n—{(1/2)f — ki =n —dim(C, + B)

we have tha#{ is a generator matrix of the cod€, + B)*.$

Corollary 2.1: If f > 0, the codeD* contains the all-one

vector.
Proof: Let
Proof: Obviously,D C C, and soD* is a subcode of
P(Cs). Ifv = (a1, -+, o) € Cthen v= (01, a1, 2, Qea, -, Q, O, Qe 1, " 5 O ) € Co
c n and
vror =2 (oo b aseno) + D, o W= (B, B+ s fer oy ) € G
=1 1=2c+1
i Then
1=2c+1 c
T(v) - 7(w) = Z(azﬁz +o;3;)=0.

Hencel € D+ = D*. o i=1

CoroI_Iary 2.2: When f > 0 the minimum distance of the Obviously,8* is a self-orthogonal code(C,,) C Bg = (B*)*
codeC is at mostf. and soC; is a self-orthogonal code of lengh. Let 7|, be the

Corollary 2.3: There exists a generator matrix of the codgestriction ofr on C,. Obviously,Ker |c, = D. Therefore,

C, in the form dhnT(Co) = dim (Co) —dimD

B, O =k—s—ke

gen (Cs) = EOU 1?, =k—s—(k+k —2c)
=2c— ki — s.

whereB, is ac — s x 2¢ matrix withgen (5,) = [B, O], D . _ )

is aks x f matrix with gen (D) = [0 D], and[E, F,]isa Sincer(C,) N B* is the coder(5,) andr is a monomorphism

c — ki X n matrix. on 5,, we have
Corollary 2.4: There exists a generator matrix of the code dim €1 = dim7(Cy) + dim (B8%) — dim (7(C,) N B*)
(C, + B)t in the form =2 —k;—s+k —dimB,
B O =2c—s—c+s=c.
N O D It follows thatC; is a self-dual code. &
gen((C,+B)")=H=| O F,
B, O [ll. CONSTRUCTIONMETHOD
E I
where Let ¢’ be a self-orthogondlk, s] code andB’ be its dual
B O [c, ¢ — s] code. LetC” be a[e, s1] subcode of”’, andB” be
on (C) — O D its dual code. Obviously3” C B”. Using the codeZ” and
gen (C) = E, F, the method from [5] we can construct a binary self-dual code
E F C; of length 2¢ with an automorphisne = (1, 2)(3, 4) - --
2c¢ — 1, 2¢).
() = Eand () = F. ( )
" Proof: Obviously, Theorem 4 [5]: LetC” be a self-orthogonat, s;, d] code,
B" be its dual code, and : B — F2° be the map defined by
B 0O ' (v) = (o1, 01, -, e, ) for v = (aq, a0, -+, ) € B”.
O D Let
E, F,
M = {(jla j?)a (j3a j4)a Ty (j?r—la j?r)}

is a generator matrix af,, + . As the rows of the matrice(f)

and(ﬁ’i) are linearly independent so are the rowskhfSince be a set ofr pairs of different coordinates of the cod¢’,
C, + B is a subcode of the self-dual codit follows thatCis 0 < 2r < ¢, and¢':C” — F2¢ be the map defined by
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(/)/(U) (allv alllv ) a/c? a/c/) forv = (CY y et
where(a), o) = (o, 0) fori # j;, 1 =1,

1 ,CYC) e ',
2, ..., 2r,and

1 /

1
J2io1? aj27'7 j

a]z;)

= (aj2i—l T oy Oy Qg T+ Qs ajZi—l)
fori=1,2,---,r. ThenC, = ¢'(C")+ ='(B") is a self-dual
[2¢, ] code ands = (1, 2)(3,4)---(2¢ — 1, 2¢) is an auto-
morphism ofCy .

(a;'27.717 @

We can take a generator matrix@f in the form
B,

E,
By

gen(C)) =G =

whereB;, B,, andF, are matrices with, respectiveby,, c—s,
ands—s; rows, asB; generates the codé(C”’), B, generates
the coder’(B), and(gg) generates the codé(B").

Let D, be a self-dual code of length, f > 2(s — s1), and
D* be an[f, (1/2)f — s+ s1] subcode oD, with 1 € D*. Let
D be a generator matrix d@p*. We can take a generator matri
for the codeD,, in the form(F’?a) =D,.

Theorem 5: The codeC, with a generator matrix

O D
B, O
Gy = E, F,
B, O

is a self-orthogondh = 2¢+ f, ¢+
¢ F3 — Fy is the map defined by

—~

1/2)f — s+ s1] code. If

P(w) = (oq + o, a3 + o, -+
“y 1, () then ¢(Cy)

Ty 2e—1 + a?c)

for v (a1, ag, - C’ and
P(Cy) = C".
Proof: From the construction of the codé€

have p(Cs) = C". Letv = (ay, ---

we
, &) € (C2)t and

(B, -+, Be) € B'. Then
([317 [317 [327 [327 T [367 [367 07 ) 0) S CQ'
Therefore,

vew= (a1 +a)Br+(az+ay) e+ A (aze—1 +a2.) B =0.
Henceg(v) € (B')+ = C’ and sop(Cy) C C'. Since
dimn ($(C)) = dim (CF) - dim (Ker gl .. )
=n — dim (Cy) — dim (#'(B") & D,)
=2c+ f-c—(1/2)f

X
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Remark: The code’; corresponds t@’, + 1B from the pre-
vious section.

Corollary 5.1: The matrixD;
(D7)
Proof: Obviously, the cod®; with a generator matrix;
is a subcode of D*)*. Besides,

dimD; +dimD* = (1/2)f +s—s1+ (1/2)f —s+s1 = f.
HenceD; = (D*)*. &
Theorem 6:Let vy, v, ---, vs—s, be the rows off;, and
Y1, Y2, - Ys—s, D€ the rows ofF. If F, is the code with
a generator matrix’,,, we can take vectors; € y; + Fo,
we € y2+Fy, -+, Ws—s, € Ys—s, + Fo, SUCh that the vectors

(v1, wy), (va,wa), ---, (vs_s,, ws_s, ) are orthogonal to each
other. Hence the matrix

(2 ) @

whereF; is the matrix with rowsw, - - -, ws_s,, generates a

= ("%) generates the code

self-dual[2c + f, ¢+ (1/2)f] codeC.

Proof: Sincel € D* andl € B’ thenl € C5 and so all
vectors inCs- have even weight. Hence any choiceugfgives
us a vectofw;, w;) of even weight. Lety, x2, ---, z;_,, bea
basis ofF,, andw,; = y7+)\77 121 +)\7‘,72$2+' . '—‘1-)\7;75_51375_51.
We have to solve a linear system of equatiops v; = wy, -
wy, 1 <k <l <s— sy Itfollows that

s—51
Vg VU = <yk =+ Z )\k71xz> .
=1

5—51

5—81
Y+ Z At T
j=1

s5—3S1

=Yr-y+ Z Ak, iZi -yt + Z AL T Yk

i=1 j=1

This system ha§ s—s;)(s—s; —1)/2) equations an@s— s;)?
variables. Its rank i$(s — s1)(s — sy — 1)/2) and, therefore,
the solutions depend difs — s1)(s — s1 + 1)/2) parameters.
Obviously, the constructed codeis a self-dual code with min-
imum distance! < min{d(D*), 2d(5')}. &

Corollary 6.1: ¢(C) = C".

Corollary 6.2: ¢ = (1, 2)---(2¢ — 1, 2¢) is an automor-
phism of the codé&”.
Proof: Letv = (o, - -

¢(v) = (o + g, -+

Therefore, the vector

, &, ) be a vector fronC'. Then

y X2¢—1 + a2c) S O/ C B/-

Fs— s —(1/2)f —c+ st w= (a1 +oag, 01 +ag, -, @2em1+ 02, G201+ 02,0, -+, 0)
= s =dim(C"). belongs toC. Hence
Thereforep(Cy) = C'. o vtw=(ag,an a5, 0ge, e, Coeg, o, ) =00
We can take a generator matrix @) in the form is a vector inC. ¢
G 0 IV. RESULTS
EOl % In this section we obtain extremal self-dual codes using the

method from Section Ill. We investigate extremal self-dual

whererank (E1) = rank () = s — s1. codes with an automorphism of ordewith f fixed points for



500 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 2, MARCH 2000

f > 0. Sinced < min{d(D*), 2d(5’)}, we havef > d. The By — ed1e0366, elecafch, 09af faf6, 5¢39c9a3;

codeD* has to be &f, (1/2)f — s + s1, > d] self-orthogonal 7(E,) — 2800, 000, a020, 4088;
/ . > ? ? ? ]

code, and5’ has to be dc, ¢ — s, > (1/2)d] gode. F — 00, a00, bd0, 708;
Some of the constructed codes have weight enumerators pre-

Cyz,3—
By — 121c44d1, 9965195 f, 53059690, 6 fc51208;
7(E,) — 2800, a040, 020, S008;
Fy — c00, a00, b40, 708;
FE; — 78880000, 36200000, ¢e880000, 7¢82c000.

A. [40, 20, 8] Codes

Any extremal singly-eved0, 20, 8] code has weight enu-
merator of the form

W(y) =1+ (125 + 168)y° + (1664 — 643)y"° + - - -

wheref is an integerp < 5 < 10. Codes withd < 5 < 8 and
3 = 10 are given in [5], [6], and [9]. C. [44, 22, 8] Codes
From the code€’ = e¢g @ e¢s andD, = es Whereeg is

the extended Hamming code, and sdt 5] subcode” of The possible weight enumerators for length 44 are

C’ we obtain self-dual codes with weight enumeratidrwith Wi(y) =1+ (44 + 4/3)y8 + (976 — 8/3)y10 +--,
=08 10 < 8 < 122
In the case”’ = 2% andD, = dj, we construct self-dual
codes with weight enumerato¥g with 3 =0, ---, 7. and
If ¢ = dfy, Dy = es @ cs, ands; = 0,1,2, 3 we Waly) =1+ (44 +4p)y" + (1232 - 88)y™" + -+,
obtain self-dual codes with weight enumeratdig with 0<p3<154.

8 =0,1,2 4,6, 8, 10.
In all cases, we construct doubly-even self-d48l, 20, 8]
codes.

There exist self-dual codes with a weight enumerator
W, for g = 10, ---, 39, 42, 52, 62, 82, 122, and with a
weight enumeratobV, for 8 =0, 2, ---, 44, 46, 47, 48, 50,

B. [42, 21, 8] Codes 52, .-+, 56, 58, 62, 66, 72, 74, 82, 90, 101, 154 (see [7]).

The possible weight enumerators of putative or known ex- Fromtheﬂcode??’ = cses andDy = dj;, and_ som¢_16, 3]

tremal self-duaf42, 21, 8] codes are subcode” qf C’ we obtain self-dual codes with weight enu-
meratoriW; with g = 12, ---, 45, 47, 48, and54, and codes

Wi(y) =1+ (84 +83)y® + (1449 — 248)'° + - - - with weight enumeratdi, for 3 = 7, - - -, 38, 40, 41, 42, and

0<B<60 44.

Let ¢ = 2t andD, = eg @ eg. The codeD* with a

and .
generator matrix

Wa(y) =1+ 164y® + 69740 + - ..

1111111111111111

There exist self-dual codes with a weight enumeratar for 1111111100000000
B = 0,---,12, 14, 16, 18, 20, 24, 26, 32, 42, and with a 1111000011110000
weight enumeratobV, (see [3] and [7]). 1100110011001100
Lete = 16, f = 10, and D, = es & i. Using sub- 1010101010101010

codes ofC’ = ez @ eg of dimension4 we obtain extremal
self-dual codes of length2 with weight enumeratorg; for
[ = 13, 14,15, 16, 18, and22. The COde£4Q71, 04272, and

is a[16, 5, 8] subcode ofg @ es. Using the[14, 4] subcode of
¢t with a generator matrix

Ca42 3 have weight enumeratoid;, for 2 = 13, 15, and22. 11111110110100
These codes are the first known self-dual codes with these 11111110101010
weight enumerators. They have generator matrices of type (2) as 11111110000111
7(B,) is agenerator matrix afs®es, D = (11 --- 1), and the 00000001100110

rows of F, are(11110...0), (1100110000), (1100001100), and the set

and (1010101000) for the three codes. For the other matrices

C4 1 (the rows of the matrices are broken into blocks ~ We construct a self-dual code with weight enumeralswith
' B = 56. The matrixG4, 56 iS a generator matrix of this code as

of length4, each of which is represented by a shown at the top of the following page.

hexadecimal symbol) — Similarly, we obtain a self-du#4, 22, 8] code with a weight
By — db8e2Tbe, 35904b11, 9903619, 18db663c; enumeratoiV, with 3 = 56.
7(E,) — ¢880, c040, 2020, 6808; If |f=d dng’, é?o = h@s: a”: s = 6 we COE-
) struct self-dual codes with weight enumeratér, wit
F3 — 00, a00, 540, €98 B = 1,4,---,11. Let Cy , be the self-dual code for
E1 — 60cal000, 68480000, 0a600000, 64¢20000. which By is the 6 x 36 matrix with rows (in hexadecimal)

Cya,2— bed8b1 fa3, 009de7b84, e7bTeb55a, 5¢560556¢, ccdebl96f,
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1111111100000000000000000000
1111000011110000000000000000
1100110011001100000000000000
0000000000000011111111000000 o
0011110011000000111100110000
0011110011000011001100001100
0011110011000011110000000011

1111111111111111
1111111100000000
O 1111000011110000
1100110011001100

1010101010101010
Gy 56 =

1100000011000000000000000000 1111000000000000
1100000000110000000000000000 1010101000000000
1100000000001100000000000000 0110011000000000

0101011010100111010111101111
0101101001010100011101000111 o
0101100101101011111111100101
0000000011001101100000011000

1110100000101011000000000000 1100000011000000
0110000010100000110000000000 0000101010100000
1000001000101000111100000000 0001111010001000

0398b7d42, the rows of n(E,) are 42800, 21080, 08020, s # 10. Let C’ be a self-orthogondR0, 9, > 6] code with a

the rows of F, — aa, f0,cc, F1 — 0, a0, b4, and of dual distance at least Then

Ey — 56¢6a0000, 066920000, 3¢05¢0000. This code has a ;v . . .

weight enumeratof¥, with 8 = 1 and it is the first known B=CU(u+ )0+ ) U tun+d)

code with this weight enumerator. for somew; andw, with wt(v1) = 0(mod 2). The codeC” U
The codesCus 40, Cas a1, Caa a3, Cas a4, Cas a5, Cua 47, (v1 + ') is a self-dual20, 10, >6] code. Since such a code

Cysqs, and Cy 54 have weight enumerator$¥; with does not exist we hawe# 20. So we proved the following.

A = 40, 41, 43, 44, 45, 47, 48, and 54, respectively. Codes Theorem 7:1If C'is a binary self-dual>0, 25, 10] code and

\g(tizttTﬁsfangI?weegi\lj?ter::ﬂ;mig p;(zgo;l Sg ncl); kgcr)]\:jvn tOOiS an automorphism af' of order2 theno has no fixed points.
. 15 gy Loy 1

E. for these codes Self-dual[50, 25, 10] codes with an automorphism of order
! ' 2 without fixed points are constructed in [4].

E. [52, 26, 10] Codes
Any extremal self-dual code of lengti2 has a weight enu-

We havef > 10 andc = 25 — (1/2)f < 20. Since8’ isa Mmerator of the form
[c, c—s, d’ > 5] codeands < (1/2)cwe have1/2)c < c—s < W(y) =1+ (442 — 163)y*° + (6188 + 648)y* 2 + -+ -,
k(c, 5) wherek(n, d) denotes the largest value bfor which 0<p<2r
there exists afin, &, d] binary code. Buk(c, 5) < (1/2)c for - =
¢ < 16 [2]. Therefore,16 < ¢ < 20. Forc = 16 ande = 18 It has been shown that codes exist foe= 0, 1, ---, 5, 7 [4],
we havek(c, 5) = (1/2)c and henc&”’ has to be a self-dual [6]-[8], [11], [16].
[c, (1/2)c,> 5] code. The extremal self-dual codes of lengths We havef > 10 andc = 26 — (1/2)f < 21. Since
16 and18 have a minimum distance Soc # 16 andc £ 18. isajc,c — s, d > 5l ands < (1/2)c we have(1/2)c <
Forc = 17 ande = 19 we havek(e, 5) = (c+1/2) and hence ¢ — s < k(c, 5). Similarly to the previous subsection, we prove
C’ has to be a self-orthogon@l ((¢ —1)/2), > 5] code. Such thatc # 10, ---, 20.
codes do not exist (see [12]) and, therefaere, 17 andc # 19. Letc = 21. In this case]ll < 21 — s < 12. We can obtain a

In the case: = 20 we havel0 < 20 — s < 11. The extremal self-orthogona|21, 10, 6] codeC”’ with a dual distancé from
self-dual codes of lengtB0 have minimum distancé and so the codey,, by deleting the last coordinate of the vectors having

D. [50, 25, 10] Codes



502 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 2, MARCH 2000

TABLE |
SELF-DUAL CODES OFLENGTH 44

code c | s | s B 7(Eq) F, I3 Ey
€74269f0 | 2800,4080, | cfc,fcc,9a6, | 00,022,780, | c6a00000,6ca0a0a0,
Ca4,90 | 16 | 8 | 3 | 09afdbbe | 2040,2020, a66,96a 840,834 d882a0a0,500a0000,
bbb8e71b e008 44880000
e84e4d8d | a800,c080, | 596,03c,a66, | 65a,630,47c, | 1428aa00,a0a00000,
Caqq1 | 16 | 8 | 3 | 56030539 | 0040,8020, 692,926 €76,808 12882a00,22220000,
b7e2b72e a008 f6a0aall
09935af3 | a800,2080, | 5aa,566,f3c, | 300,0aa,b8c, | f60a2882,a600a0a0,
Cysa3 | 16 | 8 | 3 | 59339ac3 | e040,e020, 3fc,99a 410,2a2 1e880000,1e88a0a0,
e87e8edb 0008 b4888822
e7e8af9c | 8800,2080, | 30c,fcc,cOc, | 300,af0,880, | 72820000,6c0a0000,
Caqq4 | 16 | 8 | 3 | b2bdfac9 | 4040,8020, 626,10 720,2a2 9¢a00000,0000aa00,
bb84b474 2008 6600aa00
5596550f | 9000,c880, | £00,03¢,956, | fc0,9¢0,880, | aab6a8888,c02a8888,
Caaas | 16 | 8 | 3 | beTlcad5 | ¢840,8020, 30c,aaa 820,2a2 b8e28888,22e20000,
5630c950 8808 60a00000
b72153a3 | b000,a800, | 656,a5a,aaa, | 666,c9a,74c, | 22882882,aa00aall,
Cayqa7 | 16 | 8 | 3 | 0f03a0a3 | a0c0,0020, 962,956 186,bf4 48886a00,82288282,
0ab3ble? a088 02204282
5¢394b2e | eB800,8080, | 3c0,aaa,330, | ¢00,af0,b40, | 9c0a0000,a0a0a0a0,
Casas | 16 | 8 1| 3 | ebl40fab | e040,8020, 656,3fc 81c,708 14820000,0aa00000,
be415af0 2008 14280000
03f0aa03 | 9000,4000, | c30,66a,0f0, | 696,630,4b0, | €842c000,60600000,
Ciasa | 16 | 8 3 0f6a6ffa | 00c0,08a0, 6a6,3fc 40,252 ca604888,e8824888,
bdd79569 8008 60020000

Oonit. If D, = iy @ es andC” is a[21, 6] subcode of”’ we and
obtain self-dua[52, 26, 10] codes with weight enumeratovs Waly) =1+ (319 — 248 — 29)y'° + (3132 + 1528 + 27)y*2

for 4 = 0 and2. 4 (0 <y <159 —128).

F. [54, 27, 10]Codes _ )
[54, 27, 10] For W1, a code exists withy = 55 (cf. [15]).

There are two possibilities for the weight enumerator of an For W, codes exist with3 = 0 andvy = 2m, m = 0, 16,
extremal self-dual>4, 27, 10] code: 18, 20, 24, ---, 61 (cf. [1], [5], [6], [9], [17]), # = 1 and
v = 2m, m = 31, 32, 34, ---, 50 (cf. [1]), and3 = 2 and

= 2m, m = 22, 24, 26, 28, 30, 31, 32, 34, ---, 44 (cf.

Wi(y) =14 (351 — 88)y*° + (5031 + 2453)y*% + - - -, Y= : : ;
1(v) (35 Py (5 Py [5], [17]). There is a mistake in the information about known

0<f<43 self-dual[58, 29, 10] codes in [7].
and We construct extremal self-dual codes of this length with a
Wa(y) =1+ (351 — 83)y™ + (5543 + 248)y*? + - - -, weight enumeratol?’, with 3 = 0 andy = 46, 50, 52, 54, 56,

12< B<43 98 60,62 64, 66,68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88,

-~ 90, 94, and98, 3 = 1 and~ = 48, 56, 58, 60, 62, 64, 66, 68,

. . . 70, 72, 74,76, 78, 80, and 88, and3 = 2 andy = 32, 36,

There eX|stseIf—dua{54, 27, 10] codes with weight enumer- 40, 44,48, 52, 56, 60, 64, 68, 72, 76, 80, 84. 88, and 92.
ator W, for 5 = 0, 1, ---, 15 ([1], [S], [6], [9]) and W for codes with weight enumeratobg, with 2 = 0 and

5= 12, -, 20 (1], [14), 16, 6,3 = 1andy — 48, 56, 58, 60, and66, and3 — 2
Weobtalnextremalself dual codesforth|sIengthwnhwelgi;!‘tnol — 39 36.40. and 92 are the first known codes

enumerators¥, for 8 = 1, 2, ---, 9, 11 using the self-dual with these weight enumerators,

[22, 11, 6] codegas, the self dua[lO, 5,2] codees @iz, and g0y < d* < fwe havef > 10. Therefore,
some[22, 7] subcodes 0f-o. D* — {0, 1} and

G. [08, 29, 10] Codes dim (D*) — (1/2)f — s + s1 = 17 for f < 20

For binary self-dual58, 29, 10] codes, two possible weight

enumerators are given in [6] The dual codés’ of the self-orthogondk;, s] codeC” has to be

0 L2 ale, c— s, >5] code. Sowe havel < ¢ = 1/2(58 — f) < 24.
Wi(y) =1+ (165 — 2v)y" + (5078 +2v)y = + - - - Letc = 24 andC’ = g,, Wheregs, is the extended Golay
(0<~v<82) code. Thenf = 10, dim (D*) = (1/2)f — s+ s1 = 1, and so
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TABLE I
SELF-DuAL CODES OFLENGTH 58
code B] W(Eo») Fa F1 E1
0ffe77a9e09a,e11d15915541,
bd64c84bleed,e9d5ad5e507b, | ¢38000,c84000, 690,cc0, 620,390, ¢75228022000,2b1500a02000,
Css,1 | 075bacc6a077,51d483601e78, | 292000,dc1000 0£0,f0 1e0,2a8 632¢8a200000,1255aa800000
04ac9887c5fd,ba8f82bcb03c
0ffe77a9¢09a,e11d15915541,
bd64c84bleed,e9d5ad5e507b, | ¢38000,c84000, 690,cc0, 92a0,¢90, ¢75228022000,2b1500a02000,
Css,2 | 075bacc6a077,51d483601e78, | 292000,dc1000 0£0,ff0 780,b38 632¢8aa00000,12552a800000
04ae9887¢5fd,ba8f82bcb03c
b7cf8achedea,0b60151b6150,
0f0efcaba80b,0a07233b3c86, | 4c0000,584000, 550,00, 920,630, 99¢e08820000,bf6422020000,
Css,;s | 0594040e5534,584bfeba8b4, | 082000,b09000 220,960 ddo0,e98 af204a200000,912560aa0000
b796ebb5e5b7,b06a9fdb839f
b9d7df57ea9a,0e5484179db0,
€5328b217c5b,50b6a9e43107, | fc8000,5e4000, 5a0,¢30, 030,050, 35ca80880800,c7¢20a888000,
Css,4 096fe2fbc99e,b676e9e67917, 832000,8a1000 0,960 220,258 5b3722880000,b4a808800800
b00eb18alcc?,b01e2ed8200f
€74c815009¢5,be694c987c70,
) efe838ae3931,bd9caabfldec, | b78000,e24000, 3c0,a50, 650,930, 230d288a0000,202522a00000,
Csss | 018aad37c7f2,0ea5d3b17d99, | 573000,422800 550,5a0, 880,2a8 82¢82880000,8¢3e022a0000
030b940588£0,e0106607124f
579b2ebf5ach,53faaebb2ffa,
51131d851944,55034c844914, | bb8000,522000, 0£0,330, 3£0,£50, ¢82¢a8280000,538280282000,
Css.6 b810fe83d0a0,086f2eaffacl, ¢05000,d90800 00,240, 440,bc8 €7¢498002000,0be382880000
57ee65657dda,0d6b4030b815
579b2ebfbach,53faaebb2ffa,
51131d851944,55034c844914, | bb8000,522000, 0£0,330, 290,630, e82ca8280000,538280282000,
Css,7 b810fe83d0a0,08612eaffacl, ¢05000,d90800 £00,aa0, ddo,d58 ¢7¢498002000,0be382880000
57ee65657dda,0d6b4030b815
0212797¢60d,081fa9f07b9, £40000,820000, | 00cc,cd54, | 3000,ale0, 7e098828000,f8abaa22000,
Css,s ee01c49c024,b35b54595¢8, 880000,e18000, | 96¢c,ab2c, | ee00,4c98, £828282000,24818a20000,
€9efe496fb8 204000,a12000 | aa00,5b2c | 8160,81a0 9¢al00aa800,032320a0800
eb2ed5e7bb2,ea41884cef7, 2c0000,9a0000, | abe0,012¢, | 56¢c,6d98, 982a0a28000,918aa220a00,
Css,9 521¢a7250¢3,08446£18b74, ¢10000,888000, | 6678,66¢cc, | 7998,dbb4, 47620808800,48222020200,
b65af2f1597 304000,402000 | 5acc,3c78 16£8,81d8 bde200a0a00,c1620820000
0dd54119561,02116dd13ca, £40000,a80000, | 00cc,972¢, | ¢Occ,c72c, 0daaa200880,9a802a20200,
Css,10 571709066ce,bebbfaaaflc, d10000,b08000, | 3d2c,cc00, | 88cc,81b4, 420a0a20a80,d10e0080880,
16209374300 524000,e02000 6678,0198 €760,808¢ 77ae8200280,50200020280

s1 = 8. LetD, = eg G iz, andC” be the[24, 8] subcode of””
with a generator matrix

000000011010111101001111

010101010111110111111001
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[58, 29, 10] codes with weight enumeratof%, with 3 = 0

andvy = 46, 8 = 0, andy = 2m, m = 25, --

-, 45, and with

[3 =1,y =48, 56. The COdeﬁg)&;), 058,67 058,71 of WE|ght
enumerator$?, with 8 = 0 andy = 46, 8 = 1, andy = 48,

[ =1, andy = 56, respectively, are the first known codes with
these weight enumerators.

Let us consider the case = ¢»» andD,, = e%* (see [6]).
Thendim (D*) = (1/2)f — s+ s1 = s1 —4 = 1 and hence
s1 = 5. Using these two codes and differdd®, 5] subcodes
C" of g.2, we obtain binary self-dua[58, 29, 10] codes
with weight enumeratoi¥v, for 5 = 0 andy = 52, 54,
56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86,
88, 90, 94, and98, and3 = 1 andy = 58, 60, 62, 64, 66, 70,
74, 76, 78, and 88. In Table Il we present the code&sss s,
Css, 9, andCsg 19 With weight enumeratordV, for 5 = 1 and
v = 58, 60, and66.

100111100010101001010110
011101111101110111001010
001011101100001111001010
110101101000110001011010
001011011110101000110001
101110001001100010000000

From these codes we construct the self-d@aJ 29, 10] code
Cs,1. The weight enumerator of this codel#g, with 3 = 2
and~y = 32. Similarly we obtain self-dug)s8, 29, 10] codes
with weight enumeratoi?, with 8 = 2 and~y = 32, 36,
40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, and92. In
Table Il we give the matrice®,, n(E,), F,,, F1, and E; of
codesCsg, 1, Css 2, Css 3, and Csg_ 4 of weight enumerators
W, with 8 = 2 and~ = 32, 36, 40, and92, respectively. In this case, we havg > 20 andc = 48 — (1/2)f < 38.
Let ¢’ be the “odd” Golay codefz4. FromD, = es @& According to Brouwer’s Table [2F(¢, 10) < (1/2)cfor e < 37.
i and different[24, 8] subcodes off,, we obtain self-dual Only the possibilitye = 38 remains. Sincé:(38, 10) < 19

H. [96, 48, 20] Codes
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the codeC’ has to be a self-duaBsg, 19, >10] code. But the V. FURTHER DIRECTIONS
extremal self-dual code of leng88 has a minimum distance ) ) )
So we proved the following theorem. It would be interesting to find extremal codes for any of the

putative weight enumerators given in [7].

Theorem 8:1f C'is a binary self-dual96, 48, 20] code and  Pparticularly, there may exist a doubly-eviga, 36, 16] code
o is an automorphism df' of order2 theno has no fixed points. with an automorphism of orde with C cycles andf fixed
points forf = 0 and forc = f = 24. If C is a doubly-even
[72, 36, 16] code with an automorphism of ordemith 24 cy-

Theorem 9:If C'is a binary self-dual code of lengithand cles and 24 fixed point§’ = g.4, D,, has to be a self-dual code
minimum distance 8 for n < 108, ando is an automorphism of length24, andC” = D* = {0, 1}.
of C of order2 theno has no fixed points.

To prove the theorem, we need the following propositions:

I. Some Codes with Minimum Distantg

Proposition 10: If a self-orthogonaln, &, >d] code with a REFERENCES
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self-orthogonaln, k — 1, >d] code with a dual distance atleast ~ engthsid, 50, 54, and58,” IEEE Trans. Inform. Theoryol. 44, pp.
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