
Comparing Deep Reinforcement Learning Approaches
for Sparse Reward Settings with Discrete State-Action 

Spaces

Alp Şefik Çapanoğlu1∗

1TU Delft

June 27, 2021

Abstract

One of the most challenging types of environments for a Deep Reinforcement Learn-
ing agent to learn in are those with sparse reward functions. There exist algorithms
that are designed to perform well in settings with sparse rewards, but they are often
applied to continuous state-action spaces, since economically relevant problems like
robotic control and stock trading fall under this category. This means the continuous
version overshadows the discrete state-action version of the sparse reward problem.
Furthermore, research that focuses on sparse rewards is lacking in comparisons of algo-
rithms dedicated to performing in this type of setting with other state-of-the-art Deep
Reinforcement Learning algorithms. We devise an experimental setup to test a selec-
tion of algorithms from three state-of-the-art Deep Reinforcement Learning approaches;
Hindsight Experience Replay, Maximum Entropy Reinforcement Learning and Distri-
butional Reinforcement Learning. We show that as the cardinality of the state spaces in
sparse reward settings increase, Hindsight Experience Replay approaches are superior
in sample efficiency compared to the other two approaches studied.

1 Introduction
Deep Reinforcement Learning (DRL) is a field within Artificial Intelligence that excels at
the making of sequential decisions, formulated such that an agent picks an action given a
state. This is done through the non-linear approximation of a value function that takes
the state and the action and outputs a value for this tuple. The agent chooses the action
based on these assigned values. Deep Reinforcement Learning algorithms have been used
in solving sequential decision-making tasks in very complex and very large search spaces.
Examples to this include performing complex robotics tasks[1, 2] and beating humans in
"hard" games such as Go[3], Dota2[4] and StarCraft[5]. This formulation is the most simple
explanation of the function of a Deep Reinforcement Learning algorithm, and is precisely
how Deep Q-Networks operate[6].

∗Supervised by Greg Neustroev (g.neustroev@tudelft.nl) and Matthijs de Weerdt
(m.m.deweerdt@tudelft.nl).

1



In the years since their inception, advancements in Deep Reinforcement Learning have
taken the form of iterative improvements over their predecessors. There are also a number of
approaches that have emerged due to this process, such as Maximum Entropy Reinforcement
Learning and Distributional Reinforcement Learning.

There are multiple "open problems" in the field of Deep Reinforcement Learning, all of
which make it difficult for a DRL algorithm to solve a problem. Properties that can make
an environment—a formulation of a problem—difficult to learn for DRL agents include a
high degree of randomness (stochasticity) in the environment, multi-modal reward functions
(many local optima) and sparse reward functions (low information density). Naturally, a
considerable amount of research focuses on improving algorithms or approaches so they
perform well in these cases.

An example of an algorithm that is developed to address a difficult problem is Hindsight
Experience Replay (HER). Hindsight Experience Replay addresses sparse rewards. Its func-
tionality is discussed under Section 2. The paper introducing HER also introduces a problem
with discrete state-action space and sparse reward, called bit-flipping. However, most ap-
plications of HER are focused on robotics applications where the state-action spaces of the
problems are continuous. The only comparison done on bit-flipping in this paper is that of a
Deep Q-Network (DQN) versus a DQN that uses HER[2]. This class of problem—a sparse-
reward setting with a discrete state-action space—is understudied in terms of comparing
state-of-the-art algorithms’ performance on it.

One problem that can be formulated as a discrete state-action environment with sparse
rewards is that of Quantum Circuit Optimization. Quantum Computing is a promising field
of Computer Science, the use of which can provide up to exponential speedup to classical
computing[7]. Recently, Deep Reinforcement Learning approaches have been applied to a
number of Quantum Computing problems, such as Quantum Approximate Optimization
Algorithms[8], Circuit Searching[9], Automated Quantum Programming[10] and Quantum
Circuit Optimization[11].

Quantum Circuit Optimization (QCO) is an important problem as it allows the running
of quantum algorithms to require less qubits by shortening their critical path or reducing the
use of noisy operations. QCO can be formulated as a discrete state-action environment so
that it can be solved by DRL agents, with circuits as states and equivalent gate transitions
as actions[11]. Additionally, this formulation stands to benefit from a sparse binary reward.
This would be done by designating the optimal circuit as the goal—the only state with a
reward—and a starting state being created by taking actions away from the optimal circuit.
This hypothetical formulation is a motivating example of how the understanding of the best
performing algorithms in discrete state-action environments with sparse rewards stands to
be useful in real-world applications.

This paper aims to explore the application of state-of-the-art DRL algorithms to prob-
lems with sparse reward and discrete state-action spaces. The metric to evaluate the chosen
algorithms will be sample efficiency: the rate at which they learn with respect to training
time. With these parameters, a question is constructed: "What state-of-the-art Deep Re-
inforcement Learning algorithm is the most sample efficient in sparse reward environments
with discrete state-action spaces?".

2



The experimental process and reasoning around the chosen algorithms are detailed in
Section 2. The resulting findings and each stage of experimentation can be found in Section
3. The results and experimental setup are evaluated through the lens of responsible research
in Section 4. This is followed by the discussion of the conclusions and a lookout to future
research in Section 5.

2 Method
In accordance with the bit-flipping environment that was chosen, we formulate an experi-
mental setup to test different state-of-the-art DRL algorithms’ performances.

To achieve this, first the chosen environment is discussed in Subsection 2.1 to identify
the type of algorithms that should be chosen. Secondly, a set of algorithms are chosen based
on the criteria identified. The process and reasoning behind this selection is detailed in
Subsection 2.2. To conclude the Method Section, the the experimental setup is detailed in
Subsection 2.3, in the name of reproducibility .

2.1 Environment
The bit-flipping environment consists of the state space S = {0, 1}n (all binary strings of
length n) and the action space A = {0, 1, ..., n − 1}. In the action space, the index of the
action corresponds to the bit that is flipped[2]. This means that by arbitrarily choosing the
goal string and the starting string, random samples can be created. Training and validation
sets can be created by randomly sampling out of the 2n potential states.

This type of state space means that the available search space the agent has to explore
before reaching a reward grows at an exponential rate. For a binary bit-string of length n,
there are 2n possible combinations. Per the formulation, reaching only one out of 2n bit-
strings awards the agent a non-negative reward. In this way, reaching a target is encoded
into a maximization problem, and the global maximum in reward is achieved when the goal
state is reached.

2.2 Algorithm Selection
The environment on which the chosen set of algorithms will be tested has a discrete state-
action space, and a sparse reward function. Therefore a requirement is that the chosen
algorithms be applicable to discrete state-action spaces. Another limiting requirement to
address is that the chosen DRL algorithms should be available to the public under open-
source licenses, because the implementation of these advanced algorithms would be very
time consuming task and add a considerable potential for error.

The set of algorithms that are applicable to discrete state-action spaces is a small subset
of the set of all DRL algorithms. The set of algorithms that have properties that hypo-
thetically would make them perform well in a sparse-reward setting is even smaller. The
approaches chosen out of this smaller subset were Proximal Policy Optimization (PPO)[12],
Hindsight Experience Replay (HER)[2] and Quantile Regression Deep Q-Network (QR-
DQN)[13]. The usage and the reasoning behind the selection of these algorithms are dis-
cussed below in their respective sections.

3



2.2.1 Proximal Policy Optimization

Proximal Policy Optimization (PPO) is an on-policy, policy gradient approach. This means
that in addition to learning the value of a state-action tuple, it also applies and optimizes a
policy of how to pick from within those state-action tuples, instead of using a fixed policy like
following the maximum estimated reward. This approach, in general, makes for algorithms
that perform better than those that do not learn a policy (known as "off-policy algorithms").
Also, PPO includes novel changes to other algorithms within its class of policy gradient
DRL algorithms. These changes improve on the sample inefficiency and lack of robustness
other algorithms in that subclass. PPO takes a Maximal Entropy Reinforcement Learning
approach, meaning an entropy (exploration) term is added to its optimization goal[12]. Due
to its popularity and due to its entropy maximization term, it can be hypothesized that
PPO’s ability to optimize exploration will allow it to perform well in the sparse-reward
setting at hand.

Apart from being a state-of-the art algorithm with good performance and exploration, a
strong argument for choosing PPO can be made due to the fact that all papers mentioned
so far that apply DRL to Quantum Computing problems use PPO exclusively[8, 9, 10,
11]. Hence, comparing the performance of PPO with other DRL algorithms becomes more
relevant with regards to the motivation of applying this knowledge to the real world.

2.2.2 Hindsight Experience Replay

Hindsight Experience Replay (HER) is more of a behavioural change than an algorithm;
it is called an implicit curriculum by its designers[2]. This term is used to convey the
fact that HER needs to be used conjunction with some off-policy algorithm: it is not an
algorithm itself. For the purpose of this paper, the off-policy algorithm to be used alongside
HER needs to be applicable to discrete state-action spaces. This is, as mentioned before, a
critical limitation. Due to this limitation, Vanilla Deep Q-Networks (DQN)[6] were chosen.
DQN is the first formulation of a Deep Reinforcement Learning agent and is easy to reason
about due to its relative simplicity.

Put briefly, Hindsight Experience Replay (HER) is a way in which off-policy algorithms
can learn more from their training runs. It achieves this by creating virtual goals that are
exactly the destination reached by an unsuccessful training run by the algorithm, awarding
those training runs where the algorithm actually did not reach the end goal. A truncated
pseudocode representation of HER is given in Algorithm 1. Here, A refers to the off-policy
DRL algorithm that is using HER. R is the replay buffer, where the experiences of the agent
in training are stored to be used in optimizing the algorithm at the end of the episode. S
is the strategy used for sampling virtual goals. s is a state, a is an action and g is a goal. r
is the reward function, and takes a state, an action and a goal as input, providing a reward
as output.

Algorithm‘1 demonstrates how aside from training regularly and learning from the steps
it took in that training episode, the states visited by the off-policy agent are sampled from
and attributed rewards as if they were goals. The steps sampled are added to the replay
buffered and are potentially used from within the buffer when optimizing the algorithm.
This formulation allows the algorithm to still learn how to reach certain states that the
agent encounters, even if they aren’t an actual goal. This way it has rewards to move to

4



Algorithm 1: Hindsight Experience Replay
Initialize A, R

for episode = 1,...,N do
Sample a goal g and an initial state s0
Sample & execute actions for each timestep ∈ [1, T ] using A
for t = 1,...,T do

rewardt = r(st, at, g)
Store transition (st, g, rewardt, st+1) in R
G = S(episode)
foreach g’ in G do

reward’ = r(st, at, g′)
Store transition (st, g′, reward’, st+1) in R

end
end

for i = 1,...,M do
Sample minibatch B from R
Perform one step of optimization on A using B

end
end

when searching for the sparse rewards, and presumably escape local optima and search for
the final reward. This hypothesis of HER escaping local optima with help from virtual
rewards is a good avenue for future research and outside the scope of this paper.

2.2.3 Quantile Regression DQN

One of the newer fields of Reinforcement Learning is that of Distributional Reinforcement
Learning. In this paradigm, the learning of the reward function is approached differently.
Instead of the agent learning estimations for the state-action tuples, it learns to fit the value
function to a distribution using probabilistic techniques.

Quantile Regression is a method of splitting the distribution of the value function over n
quantiles. Quantile Regression Deep Q-Networks is an approach that builds on top of Deep
Q-Networks[6]. Instead of the the neural network in DQN learning estimated magnitudes
of the value function, the number of output nodes is changed to n to regress towards the
correct positions of each quantile. The quantiles are regressed to fit the surface of the value
function as optimally as possible given the n quantile resolution[13].

One additional emergent benefit of using Quantile Regression DQN (QR-DQN) is that
it is off-policy. The concern of learning a policy to act on estimated values of the value
functions is no longer needed since the whole distribution is being estimated. Due to the
lack of a constraint in terms of on-policy learning, Hindsight Experience Replay can be used
alongside QR-DQN to improve sample efficiency.

5



2.3 Testing Setup
All algorithms that were chosen are implemented as they are found in Stable Baselines
3 V1.0[14]. As of V1.0, which was used in this paper, QR-DQN is found in the contrib
repository released alongside V1.0. Unless the value for a parameter is explicitly mentioned,
the default parameters as implemented were used when executing the algorithms. Optuna
was used for performing sanity checks for some of the values chosen[15]. A potential future
avenue of research is applying exhaustive hyperparameter optimization to the algorithms.

For the environment, the implementation of the bit-flipping environment is used from
Stable Baselines 3[14]. The parameter continuous is set to False. Additionally, the "Mul-
tiInputPolicy" needs to be specified as the policy parameter for all agents so they work
with the bit-flipping environment, as it extends the Goal Environment (gym.GoalEnv) class
from OpenAI Gym[16]. The lack of environments that extend Goal Environment limited
the environments that could be tested for this study.

The main question to be answered is which algorithm would perform best in terms of
sample efficiency during training. For this reason training and validation sets were not
separated as only a training set was necessary; the gathered data were rewards achieved by
the agents during training. The training samples were created from within the state set of
the bit-flipping problem by randomly sampling a starting state and a goal state.

3 Results
The first experiments performed were in order to rank the five following approaches:

1. Proximal Policy Optimization

2. Deep Q-Network

3. Deep Q-Network with Hindsight Experience Replay

4. Quantile Regression Deep Q-Network

5. Quantile Regression Deep Q-Network with Hindsight Experience Replay

In running these algorithms as they were implemented in Stable Baselines, the following
graphs in Figure 1 were created. These graphs were plotted without implementing a moving
average, so the data exhibits the noisy performance of the DRL algorithms. This noise
hides the fine details of how fast the different algorithms learn, but with the exception of
Quantile Regression DQN without Hindsight Experience Replay, all of the algorithms seem
to perform well. Due to this result QR-DQN by itself was ruled out, but a further test was
performed on DQN with and without HER by increasing the bit-string length from 7 to 10.

As seen in Figure 2, increasing the bit-string length by 3 caused the DQN implementation
without HER to not learn anything meaningful. The reward it gathered never surpassed
−6.5, whereas the implementation that used HER showed the rapid jump from a low average
to a higher one, with maximums exceeding −2. This was enough evidence to disregard DQN
without HER. The remaining algorithms would be PPO, DQN and QR-DQN both with
HER.

6



Figure 1: Graphs of reward reached by the tested algorithms on the bit-flipping environment
with 7 bits, dependent on number of training epochs (on the x-axis). First row from left to
right: PPO, DQN, DQN with HER. Second row from left to right: QR-DQN, QR-DQN with HER.

Figure 2: Graphs of reward reached by Deep Q-Network on the bit-flipping environment
with 10 bits, with and without the use of Hindsight Experience Replay (in that order from
left to right), dependent on training epochs (on the x-axis).

At this point, the decision was made to use a moving window in order to observe the
average trends more meaningfully. The rapid cut-like jump observed in many of the graphs
in Figures 1 and 2 was unexpected, but the observed peak in the gradient is later revealed
to be caused by the noise.

Proceeding to increase the bit-string size further to 13, the results in Figure 3 were
reached. The algorithms’ epoch sizes in terms of steps were not tweaked, but all were
trained for 5× 104 steps with a learning rate α = 3× 10−4. The PPO implementation was
unable to learn anything in this time, whereas both DQN and Quantile Regression DQN
learned to consistently acquire a reward of −6 after about one fifth of the training. One
drawback is that even if better than PPO, both algorithms seem to converge for a long
time on the optimum with −6 reward. It could also be that the moving average influences
these numbers and that in reality a very noisy behaviour around an average of −6 is being
displayed.

7



Figure 3: Graphs of reward reached by DQN and QR-DQN (both with HER) and PPO (in
that order from left to right) on the bit-flipping environment with 13 bits, dependent on
training epochs (on the x-axis).

Seeing these results, the entropy coefficient (the multiplier of the entropy term in the
optimization target) was tested from the range [0.0005, 0.3] using Optuna for 10 and 13
bit-string sizes. For the 10-bit version, an entropy coefficient 0.07 performed best, but no
value for the entropy coefficient made PPO perform any better than a −13 to −12 range.

Similarly, QR-DQN’s parameter for number of quantiles were tested over the range [1, 50].
The upper limit was placed at 50 because the example implementation of QR-DQN in
Stable Baselines 3 documentation on the CartPole-v1 environment uses 50 quantiles[14]. No
significant change in performance was observed within this range of quntiles.

4 Responsible Research
The approach chosen of elimination by comparison makes the reproducibility of the results
ethically significant, since detailed analysis of the data is not provided. The decision was
made early on to not implement new environments for testing, even though it would have
diversified the results and strengthened the conclusions. This is because the scope of the
project would make it impractical to verify these environments in detail, and could hinder
replication studies either due to errors in implementation or due to unavailability.

To aid in the reproducibility of the findings, all code used was acquired from open source
repositories, and the versions used were shared in the Testing Setup section. Also, while
running the algorithms and the environment, their parameters were tweaked minimally in
order to avoid possible human error in the reporting or re-implementation. All the parameter
space searches were also reported, whether or not they produced any relevant results. With
these steps taken, the setup can be replicated exactly, and the same steps of discovery can
be recreated.

5 Discussion
During the experiments, the main question of which algorithms perform better in terms of
sample efficiency was answered, although it took multiple steps of experimentation. The
reason it became necessary for the secondary and tertiary rounds of experimentation was
because the results were not as anticipated; algorithms either performed very close to each
other or did not learn at all.

8



The conclusions reached after the experiments and the limitations of those conclusions
are discussed in Subsection 5.1, and a future outlook is presented in Subsection 5.3.

5.1 Conclusions
The original question of what algorithms perform best out of PPO, DQN with HER and
QR-DQN was reached by sequentially eliminating alternatives. QR-DQN did not perform
well by itself, as it has no mechanisms for maximising exploration, and the bit-flipping
environment’s reward function is too sparse to fit to a distribution. DQN by itself showed
similar performance to QR-DQN, although the question of why it performed better than
QR-DQN as seen in Figure 1 is unanswered.

In the third round of tests, increasing the bit-string length from 10 to 13 caused PPO to
learn nothing of significance within the allocated training time, meaning its sample efficiency
would functionally be zero. In short, this means for the research question as asked originally,
the answer is that out of the elected set HER is the best state-of-the art DRL approach for
discrete state-action spaces with sparse reward in terms of sample efficiency.

The fact that HER performed well in these tests was expected. What stands out more
is how PPO declines from being one of the best candidates in the first round of tests to
not learning anything in the third round. In Figure 1 PPO outperforms the rest of the
candidates by being the most sample efficient out of all the algorithms. The reason for this
is that the 7-bit version of the problem is small enough that PPO and DQN can explore the
space until they find the singular reward and converge to it. PPO does this faster than the
other algorithms, as it is explicitly maximising entropy, meaning it is exploring maximally
before finding the goal state. However as the state space grows exponentially with base 2,
the 13-bit version of the bit-flipping problem has 64 times more states to explore than the
7-bit version.

In both the 7-bit and the 13-bit versions PPO is exploring maximally but stochastically,
and with a fixed number of steps until a training episode ends. The maximum step count is
equal to the bit-string size, which grows linearly with bit-string length. This means that in
addition to exploring a much larger space, the exploration episodes that PPO is performing
become shorter in relation to the size of the search space as the bit-string length increases.
So, the state space grows 64 times, but the maximum steps that the agent can explore
grows approximately 1.85 times. In contrast, HER makes it so DQN and QR-DQN get
intermediate rewards that they can "move out to" from their starting position. This means
that even though they are demonstrably worst at exploring the space on their own, with
HER they can explore on a metaphorical expanding perimeter and outperform PPO when
the space gets larger.

Furthermore, the third round of experimentation reveals that DQN and QR-DQN (both
with HER) to perform almost identically. There are small differences: maximum reward
received by QR-DQN is higher and DQN is more sample efficient. The reason for the relative
inefficiency in QR-DQN may be that it is optimizing many quotients to fit the arbitrary
virtual rewards, which may be causing it to readjust and therefore converge slower. This is
an untested hypothesis and a good avenue for future exploration.

The main reason why QR-DQN’s advancements do not reflect to its performance how-

9



ever is that there is no meaningful reward function to fit a distribution over. Even if the
entire space ends up populated with virtual rewards because of HER, understanding the
distribution would not be advantageous. Even if there is information in this distribution, it
would be unrelated to the essence of the problem, and related to the HER formulation.

5.2 Evaluation
There were two main limiting factors in this paper that affected the scope and rigor of the
conclusions.

The first limiting factor was the time and resource constraint the tests were performed
under. This meant that hyper-parameter optimizations or exhaustive training (training until
PPO starts to learn in the 13-bit problem) were not feasible. Training over more episodes
and optimizing relevant hyper-parameters would very likely have resulted in better results.

The more limiting shortcoming however was the lack of environments available for Hind-
sight Experience Replay formulations. This limited the number of sparse reward environ-
ments to one, and other properties such as the multi-modality of rewards could not even
be explored. It is possible to formulate such environments, and one was attempted based
on the NChain-V0 environment from OpenAI Gym[16]. This proved too time consuming,
mostly due to the lack of documentation of the variety of environment development tools and
classes with the exception of in-line comments. It was abandoned due to these difficulties,
alongside the difficulty it would add to reproducing the findings associated with it.

The main drawback of the conclusions is the lack of quantitative metrics that are used
for comparison. The main reason for this was because new and different explorations were
prioritized over analysing metrics for the sake of developing a more complete understanding
of the behaviour causing the data, most of which provided no significant findings. This can
be improved upon in an analytic follow up study, where data that has been generated during
this study can be reanalyzed with more concrete metrics.

5.3 Future Outlook
There are multiple directions that can follow this study. The first one proposed is that the
findings reported are detailed and diversified. More algorithms from each segment of Max-
imal Entropy RL, Hindsight Experience Replay and Distributional RL could be analysed.
More and better quantified metrics can be established and compared, and more environ-
ments can be tested that have discrete state-action spaces and sparse rewards.

The second possible direction would be to expand on this study by adding approaches,
or algorithms that incorporate a number of these approaches, like Rainbow. Rainbow is an
algorithm that incorporates components like an entropy term (Kullback-Leibler loss) and
distribution fitting, benefiting both from the Maximum Entropy Reinforcement Learning and
Distributional Reinforcement Learning approaches[17]. In this study the approaches were
separated for the purpose of being able to reason about the individual approaches’ strengths
and shortcomings. Another noteworthy combination would be the joining of some discrete
variation of the Soft Actor Critic (SAC) algorithm with HER[19]. SAC is an off-policy
Maximum Entropy Reinforcement Learning Algorithm[18], meaning this combination would
both benefit from the sample efficiency that HER provides and from efficient exploration.
Testing combinations like this will expand on the findings of this paper, and has the potential

10



of providing superior algorithms for use in solving discrete state-action space and reward-
sparse environments.

Finally, the conclusions arrived may be taken directly to the motivating example. A study
may be undertaken by implementing the suggested alternative implementation of QCO with
sparse rewards inspired by Fösel, et al.’s formulation. PPO, Fösel, et al.’s choice[11], and
HER can then be compared on this environment. In this case, an intermediate or precursory
study of different HER offsprings such as Soft HER[20], or the combination of HER with
more advanced algorithms than DQN, such as Soft Actor Critic [19] is advisable to identify
the best candidate under the umbrella of HER to compare with PPO.

References
[1] Peters, Jan, Sethu Vijayakumar, and Stefan Schaal. "Reinforcement learning for hu-

manoid robotics." Proceedings of the third IEEE-RAS international conference on hu-
manoid robots. 2003.

[2] Andrychowicz, Marcin, et al. "Hindsight experience replay." arXiv preprint
arXiv:1707.01495 (2017).

[3] Silver, David, et al. "A general reinforcement learning algorithm that masters chess,
shogi, and Go through self-play." Science 362.6419 (2018): 1140-1144.

[4] Berner, Christopher, et al. "Dota 2 with large scale deep reinforcement learning." arXiv
preprint arXiv:1912.06680 (2019). arXiv:1908.08054 (2019).

[5] Vinyals, Oriol, et al. "Grandmaster level in StarCraft II using multi-agent reinforcement
learning." Nature 575.7782 (2019): 350-354.

[6] Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning."
nature 518.7540 (2015): 529-533.

[7] Shor, Peter W. "Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer." SIAM review 41.2 (1999): 303-332.

[8] Wauters, Matteo M., et al. "Reinforcement-learning-assisted quantum optimization."
Physical Review Research 2.3 (2020): 033446.

[9] Kuo, En-Jui, Yao-Lung L. Fang, and Samuel Yen-Chi Chen. "Quantum Architecture
Search via Deep Reinforcement Learning." arXiv preprint arXiv:2104.07715 (2021).

[10] McKiernan, Keri A., et al. "Automated quantum programming via reinforcement learn-
ing for combinatorial optimization." arXiv preprint arXiv:1908.08054 (2019).

[11] Fösel, Thomas, et al. "Quantum circuit optimization with deep reinforcement learning."
arXiv preprint arXiv:2103.07585 (2021).

[12] Schulman, John, et al. "Proximal policy optimization algorithms." arXiv preprint
arXiv:1707.06347 (2017).

[13] Dabney, Will, et al. "Distributional reinforcement learning with quantile regression."
Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 32. No. 1. 2018.

11



[14] Raffin, A., Hill, A., Ernestus, M., Gleave, A., Kanervisto, A., & Dormann, N.. (2019).
Stable Baselines3. https://github.com/DLR-RM/stable-baselines3.

[15] Akiba, Takuya, et al. "Optuna: A next-generation hyperparameter optimization frame-
work." Proceedings of the 25th ACM SIGKDD international conference on knowledge
discovery & data mining. 2019.

[16] Brockman, Greg, et al. "Openai gym." arXiv preprint arXiv:1606.01540 (2016).

[17] Hessel, Matteo, et al. "Rainbow: Combining improvements in deep reinforcement learn-
ing." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 32. No. 1. 2018.

[18] Haarnoja, Tuomas, et al. "Soft actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor." International Conference on Machine Learning.
PMLR, 2018.

[19] Prianto, Evan, et al. "Path Planning for Multi-Arm Manipulators Using Deep Rein-
forcement Learning: Soft Actor-Critic with Hindsight Experience Replay." Sensors 20.20
(2020): 5911.

[20] He, Qiwei, Liansheng Zhuang, and Houqiang Li. "Soft Hindsight Experience Replay."
arXiv preprint arXiv:2002.02089 (2020).

12


