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Summary

The rise of intelligent transportation, autonomous driving and 3D virtual cities de-
mands highly accurate and regularly updated 2D and 3D maps. However, traditional
surveying and mapping techniques are inadequate as they are labor intensive and cost
inefficient. Mobile Laser Scanning (MLS) systems, which combine Light Detection and
Ranging (LiDAR) with navigation techniques, are able to acquire highly accurate 3D
measurements of road environments.

MLS is used more and more for a wide range of applications in recent years, from
road surface inspection to roadside object recognition and 3D digital city construction.
MLS is able to efficiently collect highly accurate 3D point cloud data of road environ-
ments, for example one million points per second at centimeter level accuracy. The
collected 3D point cloud data consist of geometric and intensity information and is
huge in size, i.e. 500 GB of data is easily acquired during two hours of scanning. In
addition, the often high complexity and variation of road environments makes the ex-
traction of information from such 3D point cloud data challenging, notably at an oper-
ational level.

In this thesis, first a brief introduction to the principle of laser scanning and ex-
isting mobile laser scanning systems is provided. Consecutively, an overview of the
major data processing challenges of MLS point cloud is given. Next, efficient spatial
data structures for organizing 3D point clouds are introduced, notably kd-trees, voxels
and octrees. Their application on spatial partitioning and neighbourhood searching
for 3D point clouds are provided as well. Geometric information of mountain road
and urban road environments, such as terrain volume, water flow directions, locations
and shape of individual trees, lamp poles and traffic signs, were studied and analyzed.
Next, algorithms to extract geometric information from MLS point cloud data of road
environments are designed and presented.

In mountain road environments, in case of road widening and road maintenance
after hazards, excessive material needs to be removed. An algorithm to estimate such
excavation volume is presented based on MLS scanned point clouds. A 2.5D grid based
method involving gradients and normals is presented to estimate water flow to indicate
the most likely location of damage caused by rainfall.

In urban scenarios, road side objects such as trees and road furniture are consid-
ered. Firstly, the huge point clouds collected by MLS systems are organized by either
3D voxels or octrees. Voxels enable efficient processing compared to using individ-
ual discrete points. To identify individual road side trees, a 3D voxel adjacency based
method, named VoxTree, is proposed. For road side furniture, a work-flow consisting of
re-tiling, filtering, voxelization and clustering is presented. To identify objects of inter-
est, a 3D feature descriptor, named SigVox, is designed to operate at object level. Point
clusters of training objects are selected and the SigVox descriptors of those objects are
constructed as template. Then, recognition is performed by evaluating the distance
between the template object descriptors and descriptors of candidate point clusters.
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10 Summary

Testing results are given to evaluate the reliability of the proposed methodology.
Overall, the work in this thesis contributes considerably to the automatic process-

ing of large mobile mapping data sets, by designing, implementing and validating new
algorithms that are notably able to extract geometric information at a near-operational
level.



Samenvatting

Nauwkeurige en recente digitale 2D- en 3D-kaartinformatie is steeds meer nodig door
bijvoorbeeld de opkomst van intelligente transport systemen zoals zelfrijdende auto’s
en het toenemende gebruik van virtuele 3D informatie door bedrijven en overheden.
Echter, traditionele technieken uit het landmeten en cartografie voor het vergaren van
zulke informatie voldoen niet langer, omdat ze arbeidsintensief en mede daarom duur
zijn. Mobiele Laser Scan (MLS) systemen, die, bijvoorbeeld vanuit een auto, LIDAR af-
standsmetingen combineren met navigatie- en positionerings-technieken, maken het
sinds een paar jaar mogelijk om in korte tijd veel en nauwkeurige 3D data punten te
verkrijgen. Tezamen geven de vele 3D data punten een gedetailleerd beeld van de 3D
omgeving van een weg.

MLS data wordt meer en meer gebruikt voor een breed scala van toepassingen, van
inspectie van de staat van het wegdek en het identificeren van objecten rond de weg
tot een volledige 3D virtuele stadsreconstructie. MLS is zeer efficiënt in het verzame-
len van zogenaamde 3D puntenwolken, een miljoen punten kan bijvoorbeeld in een
seconde worden ingemeten met een nauwkeurigheid in de order van centimeters. Be-
halve 3D informatie bevatten de puntenwolken voor elk punt vaak ook een intensiteits-
waarde, een maat voor de sterkte van het ontvangen signaal, en vaak ook kleurinforma-
tie, die wordt verkregen door foto’s over de puntenwolk heen te leggen. De efficiëntie
waarmee al deze data verkregen wordt, resulteert wel in zeer grote data sets, bijvoor-
beeld 2 uur scannen kan zo 500 GB aan data opleveren. Daarnaast is de 3D omgeving
van wegen vaak geometrisch zeer complex. Deze complexiteit in combinatie met de
grote data volumes maakt het inwinnen van bruikbare informatie uit 3D puntenwol-
ken zeer uitdagend, zeker op operationeel niveau.

Dit proefschrift geeft eerst een inleiding waarin het principe van laser scanning
wordt uitgelegd, en waarin een overzicht wordt gegeven van de verschillende com-
ponenten van een Mobiel Laser Scansysteem. Vervolgend wordt een overzicht ge-
geven van de belangrijkste uitdagingen bij het verwerken van MLS puntenwolken en
van data structuren die gebruikt kunnen worden voor het efficiënt organiseren van 3D
puntenwolken op een computer, zoals zogenaamde kd-trees, voxels en octrees. Met
name wordt uitgelegd hoe zulke structuren gebruikt kunnen worden om puntenwol-
ken ruimtelijk op te delen en om punten dicht bij een gegeven punt snel te kunnen
identificeren.

In bergachtige gebieden moet vaak overtollig materiaal worden afgevoerd als een
weg wordt verbreedt of getroffen door een aardverschuiving. Gegeven een puntenwolk
van zo’n weg en de directe omgeving presenteer ik een algoritme dat de hoeveelheid
te verwijderen materiaal schat. Water dat in grote hoeveelheden op zo’n weg terecht
komt, kan de weg beschadigen. Daarom presenteer ik ook een methode die schat waar
water precies de weg op stroomt door de helling en hellingsrichting systematische te
evalueren aan de hand van een 2D raster van de hoogte van de weg en zijn directe
omgeving.
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12 Samenvatting

In meer stedelijke omgevingen beschouw ik verschillende soorten objecten die di-
rect naast wegen voor komen, zoals bomen, lantaarnpalen en verkeersborden. Eerst
wordt de grote MLS puntenwolk georganiseerd door middel van voxels of een octree.
Het is in principe veel efficiënter en vaak voldoende om een klein aantal voxels te ver-
werken dan de vele individuele punten in een puntenwolk. Om elke boom langs de
weg te identificeren, introduceer ik een methode, VoxTree genoemd, die voxels op een
systematische manier afloopt en toekent aan een bepaalde boom, door na te gaan aan
welke bomen eerder bezochte voxels in de directe omgeving zijn toegekend.

Voor het identificeren en analyseren van straatmeubilair presenteer ik een stappen-
plan, bestaande uit achtereenvolgens opdelen in stukken weg, scheiden van punten op
en boven het terrein, verdelen van punten boven het terrein over voxels, en groeperen
van voxels in samenhangende clusters. Om vervolgens objecten ook daadwerkelijk te
kunnen identificeren, heb ik een zogenaamde 3D object beschrijver ontworpen, die ik
SigVox heb genoemd, en die toegepast kan worden om volledige objecten zoals lan-
taarnpalen en verkeersborden te beschrijven. Eerst wordt de SigVox beschrijver van
trainingsobjecten bepaald en vervolgens wordt nagegaan of clusters een soortgelijke
beschrijver hebben. Toepassing van deze methode op een MLS puntenwolk van de TU
Delft campus laat zien dat deze methode meer dan 90

Over het geheel genomen draagt het werk in dit proefschrift aanzienlijk bij aan de
mogelijkheden voor het automatisch verwerken van grote MLS puntenwolken, door
het ontwerpen, implementeren en valideren van verschillende nieuwe algoritmes die
met name geometrische informatie kunnen extraheren op een bijna operationeel ni-
veau.



1
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1.1. Laser scanning
Complete and up to date city and urban spatial inventories, containing road geom-
etry, buildings, roadside trees, street lamp poles and traffic signs, are essential to so-
ciety in economic and practical aspects. Conventionally, the 3D coordinates of fea-
tures and objects are surveyed by theodolites, total stations and leveling (Anonymous,
1957). However, those traditional surveying techniques either need to have direct ac-
cess to the objects of interest or have limited measuring distance. Since the 1970s, the
availability of Global Positioning Systems (GPS) made it possible to acquire 3D coor-
dinates of objects more efficiently (McNeff, 2002). However, GPS has several limita-
tions, such as low accuracy under circumstances and unstable signal. Especially the
3D point acquisition is approximately one point per second, thus its is less suitable
for dense surveying in city and urban scenarios. At the same time, in recent years,
high precision urban maps are extensively required for various applications, such as
smart cities (Nebiker et al., 2010; Batty et al., 2012), autonomous driving (Li et al., 2004;
Schreiber et al., 2013) and intelligent transportation systems (Bishop, 2000; Agamen-
noni et al., 2011; Ivan et al., 2015). Efficient and frequent updating of urban inventories
are crucial to ensure the overall technical and social function of a community. How-
ever, the traditional approaches of spatial data acquisition are too labor intensive and
too inefficient to meet the increasing demand of high precision and short temporal
surveying.

In the last two decades, advances in the fields of solid-state electronics, photonics
and computer science have made it possible to construct reliable, high resolution and
accurate laser scanning systems (Vosselman and Maas, 2010). Laser scanning applies
the Light Detection And Ranging (LiDAR) technique. In 1977, the National Aeronautics
and Space Administration (NASA) developed a four-wavelength airborne oceanogra-
phy LiDAR system. By modeling the laser energy that was transmitted from the laser
emitter and reflected back to the detector, the quantification of chlorophyll concentra-
tion and other biological and chemical substances in algae was estimated (Browell and
Center., 1977). Then by combining the range with Global Navigation Satellite Systems
(GNSS) and orientation from Inertial Navigation System (INS), the 3D coordinates of
the objects’ surface illuminated by the laser light are derived (Vosselman and Maas,
2010). The first modern instruments were built in the early 1990s. In 1993, the first
prototype of a commercial airborne laser scanning dedicated to topographic mapping
was available (Bufton, 1989; Flood and Guteliue, 1997). Laser scanning technique has
benefited from the progress of GNSS and INS for precise position and orientation mea-
surements (King, 1998).

A typical laser scanning system consists of (i) a laser ranging unit, (ii) an opto-me-
chanical scanner, (iii) a position and orientation measuring unit, and (iv) a control,
processing and recording unit (Wehr and Lohr, 1999). The laser ranging unit consists
typically of a transmitter, a receiver and the optics for both. The basic principle of
LiDAR is to use a laser to illuminate an object and then a photodiode to record the
back-scattered radiation (Schawlow and Townes, 1958; Wehr and Lohr, 1999). The
range is then determined by making use of the fact that speed of light can assumed
to be constant. The receiver optics collects the back-scattered laser light and focuses it
onto a photodiode detector, which converts the incident power of photons to electrical
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pulses. The position of the laser ranging unit is determined by the observations from
GNSS. The orientation of the unit is calculated from the pitch, roll and heading angles
around the three axis of the navigation frame, and are measured by an on-board Initial
Measurement Unit (IMU) (Baltsavias, 1999). The output of the laser scanner is then
a geo-referenced three-dimensional point cloud of LiDAR measurement, representing
the geometry of targets, complemented with reflected intensity and possibly waveform
information of the returned light (Wehr and Lohr, 1999; Hyyppä et al., 2008).

Laser scanning systems sample up to millions of highly accurate points per sec-
ond. This makes the acquisition of highly accurate 3D coordinates very efficient (Nel-
son et al., 1984; Scheier et al., 1985). Profiling LiDAR was widely used for bathymetry,
forestry and other applications in the 1970s and 1980s, which established the basic
principles of using laser for remote sensing purposes (Clarke et al., 1970; Menenti and
Ritchie, 1994; Winker et al., 1996; Liebowitz, 2002; Xiaoli et al., 2013). Within a period
of only two decades, LS has been applied to mapping topography, modeling infrastruc-
ture, and other areas or objects of interests (Kraus and Pfeifer, 1998; Garvin et al., 1998;
Maas and Vosselman, 1999; Hyyppä et al., 2001; Vosselman and Maas, 2010).

1.2. Laser scanning systems
By considering the platform on which the LiDAR system is mounted, laser scanning
systems are categorized into four main classes, which are Satellite-borne Laser Scan-
ning (SLS), Airborne laser scanning (ALS), Mobile Laser scanning (MLS) and Terrestrial
Laser Scanning (TLS). Since these systems have different measurement principles and
different scanning orientations towards objects, the data sets are also differs dramati-
cally. Figure 1.1 shows the aforementioned four types of LiDAR systems and examples
of corresponding acquired data sets.

Figure 1.1a shows the ICESat system and a sample point cloud of the globe. As can
be seen, SLS has sparse point density, which is 170 meters along track direction but in
the order of tens of kilometers across track (Zwally et al., 2002). SLS point clouds have
been applied in large scale investigations but are too sparse for urban environment
monitoring and mapping.

Point clouds obtained from ALS, as shown in Figure 1.1b, have higher density and
provide highly accurate 3D coordinates. Operative ALS data typically provide point
densities of 0.5-10 pt s/m2 and beam footprint sizes of a few decimeters and larger
(typically 0.3-10 mr ad). Using this technique, ground topography and building roofs
can be captured. Numerous studies have been carried out on different applications
and a variety of achievements are obtained. Examples are generating Digital Eleva-
tion Models (DEM) and Digital Terrain Models (DTM) (Vosselman, 2000; Pfeifer, 2001;
Briese et al., 2002), 3D building reconstruction (Maas and Vosselman, 1999; Vosselman
and Dijkman, 2001; Rutzinger et al., 2009; Xiong et al., 2014), forest inventory and pa-
rameter estimation (Hyyppä et al., 2001; Persson et al., 2002; Gorte and Pfeifer, 2004;
Morsdorf et al., 2006), land cover classification (Rutzinger et al., 2008; Guo et al., 2011;
Mallet et al., 2011) and so on. However, the illuminating direction of airborne laser
pulses makes it less likely to obtain detailed facades of buildings, road surface of nar-
row streets and trunks of trees. This will introduce errors when generating full 3D ur-
ban maps. Furthermore, only a few points can be obtained for street infrastructure like
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(a) (b)

(c) (d)

Figure 1.1: Different LiDAR systems and related sample point cloud data sets. (a) GLAS SLS and a global point
cloud. (b) An ALS system and sample ALS point cloud data of TU Delft library. (c) Leica C10 TLS scanner and
a sample TLS point cloud. (d) Fugro Drive-Map MLS system and sample urban MLS point cloud data.

street lamp poles, traffic signs and traffic lights. This makes it difficult to identify and
monitor those elements using ALS point clouds.

TLS systems, however, obtain detailed 3D point clouds of object of interest from a
stationary tripod, as illustrated in Figure 1.1c. Stationary TLS sensors have a narrow
beam width, wide field of view (FOV) and more precise ranging. The most prominent
advantage of TLS is its high point density, which can be as high as tens of thousands of
points per square meter. Since TLS sensors are able to scan at a close distance from ob-
jects, high density point clouds of the scanned objects can be acquired. This enables to
reveal the details of objects (Idrees and Pradhan, 2016). TLS point clouds have been ex-
tensively used for documentation of cultural heritage (Fröhlich and Mettenleiter, 2004;
Haddad, 2011; Fregonese et al., 2013), change detection (Monserrat and Crosetto, 2008;
Zogg and Ingensand, 2008; Abellán et al., 2010; Hohenthal et al., 2011), tunnel inspec-
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tion (Van Gosliga et al., 2006), 3D reconstruction (Pu and Vosselman, 2006, 2009; Li
et al., 2010b) and modeling (Aschoff et al., 2004; Henning and Radtke, 2006; Brenner,
2005; Liang and Hyyppä, 2013). Despite of those various achievements, TLS systems
scan objects from a fixed tripod and have a limited scanning range. Thus TLS systems
are less agile and less efficient for large area data acquisition.

The emergency of MLS systems overcomes the gap between the low point density
of SLS and ALS systems and the low agility of TLS systems. MLS produce point clouds
that have similar point density as TLS but of much larger areas. As illustrated in Fig-
ure 1.1d, a LiDAR system is mounted on a vehicle and is continuously profiling the road
environment across the driving direction. With on-board highly accurate Positioning
and Orientation Systems (POS), a MLS system provides a huge improvement in effec-
tive spatial coverage compared to a TLS system and obtains high precision point cloud
data Zhao and Shibasaki (2003). Furthermore, objects invisible to ALS, such as build-
ing facades and tree trunks, can be scanned by a MLS system. Those properties make
MLS especially attractive for road environment scenarios where high resolution surface
data is required (Barber et al., 2008; Puente et al., 2013a). In recent years, various MLS
systems have been developed. A detailed review of these systems is found in (Puente
et al., 2013a). Taking the advantages of MLS point clouds, versatile geometric informa-
tion of road environment can be extracted, i.e. road surface geometry, roadside trees,
lamp poles, traffic signs and traffic lights. So far, MLS point clouds have been applied
for extracting urban road surface geometry (Jaakkola et al., 2008; Brenner, 2009; Guan
et al., 2015), inventory of road infrastructures (Lehtomäki et al., 2010b; Pu et al., 2011;
Yang et al., 2013), road markings extraction (Kumar et al., 2014; Guan et al., 2014), road
furniture extraction (Lehtomäki et al., 2010a; Cabo et al., 2014; Yang et al., 2015) and
roadside tree extraction and monitoring (Rahman et al., 2009; Rutzinger et al., 2010; Li
et al., 2012; Vega et al., 2014).

1.3. Problem statement and processing challenges
Despite of the aforementioned achievements, a problem among many existing meth-
ods is that they either extract only a specific type of objects, or perform only on case
study level. Nevertheless, there is a large variety of city and urban road furniture that
are of crucial interest for inventory, monitoring and management. Meanwhile, the vol-
ume of acquired MLS point clouds of urban road environment grows dramatically and
most of the existing methods are not scalable which makes the processing unfeasible
regarding computational efforts and output quality. Thus, there is a strong need to
develop a scalable methodology to extract more detailed geometric information effi-
ciently from huge MLS point clouds.

To effectively extract geometric road environment information, approaches based
on MLS systems and the acquired point clouds can profit from the resulting large and
highly accurate point clouds. Nevertheless, there are several problems in the applica-
tion of MLS and the acquired point clouds for road environment assessment:

1. The road environment is highly complex.

The urban road itself consists of three major parts, i.e. road structure, road sur-
face and roadside furniture (Turner, 2007). As illustrated in Figure 1.2a and Fig-
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ure 1.2b, there are many types of components for each part of urban roads. These
factors contribute to the overall complexity of the geometry of the road environ-
ment and make the extraction of geometric information on the road environ-
ment complicated.

In mountain road environments, excavation is inevitable in engineering works
related to road widening and maintenance, compare Figure 1.2c. The terrain
complexity makes the estimation of excavation volume difficult. Furthermore,
erosion due to water flow is a major cause for road damage, as illustrated in Fig-
ure 1.2d. MLS and the consecutive point cloud processing could provide an ef-
ficient method for damage assessment and road work preparation in mountain
road engineering.

(a)

(b)

(c)

(d)

Figure 1.2: Road environment is highly complex. (a) Cross section of a urban road. The road environment
consists of many road elements, like road surface, pedestrians, vehicles, lamp poles, traffic signs and road-
side trees. (b) Different types of roadside lamp poles. (c) Mountain road excavation is inevitable in case of
widening or maintenance after landslide. (d) Road damage caused by rain water erosion.
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2. The acquired data sets are huge.

Figure 1.3a shows a point cloud of a stretch of a 100 meter long road. It consists
of 2,421,748 points and file size in LAS format is 102.8 MB. When considering
roads at city level, the size of the acquired data sets will be huge. Figure 1.3b for
example shows the complete road network of Delft city, the Netherlands. The
total length of urban road in Delft reachable for a MLS system is 397,544.66 m.
The estimated corresponding number of points is almost 10 billion and the size
of the point cloud in LAS format is approximately 400GB. In addition, video and
panorama images are collected as well. This is too large for a normal computer
to store, operate and process in a reasonable time.

(a) (b)

Figure 1.3: An example of MLS point clouds and the urban road network of Delft city, the Netherlands. (a) A
MLS point cloud sampling a urban scenario. (b) A top view of urban road network of Delft city.

3. Point clouds have large variations.

Because of the scanning mechanism of MLS systems and the complexity of the
road environment, the obtained MLS point clouds have varying quality in terms
of point density, noise level, data gaps and outliers. The gaps in the point cloud
data in Figure 1.3a are caused by occlusions and reflections, as indicated by the
red circles and yellow rectangles, respectively. Due to the scanning geometry and
the principle of the MLS system, the point density varies with respect to the ob-
jects’ distance. The higher the point density on an object, the more details of the
object is captured. Also, the noise level of the points is influenced by the laser
incidence angle, scanning range and different reflecting materials. The more
skewed the incoming ray is compared to the objects surface normal, the weaker
the signal level (Soudarissanane et al., 2011). In addition, the further the objects
are from the scanner, the lower of the accuracy of the obtained points (Vosselman
and Maas, 2010; Puente et al., 2013a).

4. Lack of scalable methods for object identification.
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There are methods available for object recognition in MLS point clouds (Cabo
et al., 2014; Yang et al., 2015; Guan et al., 2015; Teo and Chiu, 2015). However,
those methods are unable to identify specific objects of interest in the road envi-
ronment but only roughly classify objects, for example pole-like objects are cat-
egorized as one class. Furthermore, those methods are in general not scalable
which means that users cannot easily make a balance between computational
efforts and the quality of output.

1.4. Research objectives
The main research question of this thesis reads:

How to efficiently extract geometric information on the road environment from
huge MLS point clouds?

Based on the main research question, the following sub-questions are derived:

1. What is the current status of MLS systems and the data processing work-flow?

2. How to efficiently organize huge MLS point clouds?

3. How to estimate water flow directions and excavation volume on mountain roads
from MLS point clouds?

4. How to individualize roadside trees from MLS point clouds?

5. How to automatically identify objects in the urban road environment in MLS
point clouds?

1.5. Scope and limitations
To narrow down the research scope, some aspects concerning MLS systems and the ac-
quired point clouds will not be considered. First, the calibration, including bore-sight
alignment and intensity calibration, will not be considered. Second, the procedure of
direct geo-referencing is not considered in this study. Third, the accuracy of the ac-
quired point clouds will not be validated with regard to ground truth.

1.6. Organization of the thesis
This chapter briefly reviewed the background of the study, the problems and the re-
search objectives of this study. The main research question is formulated and subse-
quently divided into five sub-questions. The sub-questions will be tackled in the next
five chapters.

Chapter 2 provides an overview of MLS systems and their components, which is re-
lated to the first sub-question. Then a typical workflow for MLS point cloud processing
is reviewed as well as current MLS applications.

Chapter 3 introduces two data structures that are used in this study for re-sampling
high density MLS point clouds, which are voxels and octrees. The contents consists
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of neighborhood searching strategies and their applications respectively. This chapter
considers the second sub-question.

Chapter 4 to 6 are written based on manuscripts that have been published in or
submitted to scientific journals.

Chapter 4 is linked to sub-question 3 and introduced the application of MLS scanned
point clouds from mountain road engineering, here applied on excavation volume es-
timation and water flow direction determination.

Chapter 5 focuses on contiguous roadside tree individualization, which corresponds
to sub-question 4.

Chapter 6 is related to sub-question 5 and introduces a 3D feature descriptor that
enables robust recognition of roadside objects.

Conclusions and recommendations for future research are given in Chapter 7.
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This chapter first introduces the main components of a typical MLS system. Then,
some MLS systems that operate in different environment are discussed. The last part
reviews the state-of-the-art of data processing of point clouds acquired by MLS systems
and the subsequent applications.

2.1. Mobile laser scanning system
MLS is the most recently developed type of laser scanning system, which uses similar
theories and instruments as ALS and TLS. MLS is defined as the technique that deploys
LiDAR systems on road, rail or marine vehicles to efficiently acquire 3D geo-referenced
point clouds. The basic components of a MLS system are a laser scanner, a Position
and Orientation System (POS) and a platform. The laser scanner records coordinates
for points on the surfaces of surrounding objects. These coordinates are in an arbitrary
system relative to the scanner itself. The POS consists of a GNSS and an INS, which
provides position in a global and body system respectively. Data from those three in-
struments are integrated and result in a globally geo-referenced point clouds.

2.1.1. Laser scanner
The laser scanner, or LiDAR instrument, is the piece of equipment that is actually imag-
ing the surrounding environment. As mentioned in Chapter 1, data points from object
surfaces are obtained in the scanner’s local coordinate system. These points are mea-
sured using a range and angle from the scanner’s origin. The scanning instrument uses
a laser to measure distance to an object.

There are two typical approaches that a laser ranger uses to determine distance: (i)
time-of-flight (ToF) and continuous-wave (CW). A ToF is a pulsed instrument deter-
mining the precise time for a short pulse of emitted electromagnetic radiation (EMR)
to travel from the scanner to an object and scatter back to the scanner. As shown in Fig-
ure 2.1, the laser pulse transmitter emits a laser pulse and the pulse is scattered back to
the receiver. The total time of travel is recorded to determine the range between object
and scanner.

Figure 2.1: Principle of a time-of-flight laser ranger

From the calculated time, a range is determined by Equation 2.1.

R = ct

2
(2.1)
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Here c = 299,792,458 m/s is the known speed of light in vacuum and t is the total travel
time of the laser pulse.

A CW, or phase-based, instrument emits a continuous EM wave of precisely known
amplitude and determines the precise phase difference between the emitted and re-
turned pulse. These instruments are often more accurate than ToF instruments but
have shorter ranging capability. This category of instrument will not be reviewed fur-
ther, as it was not used in this research.

2.1.2. Positioning and Orientation System
The POS provides the position and orientation information needed to reference the
moving platform to a local and global coordinate system. The POS consists of GNSS
and IMU, the GNSS determines the location of the MLS system using satellite posi-
tioning while the IMU determines its orientation.

An IMU contains inertial sensors called gyroscope and accelerometers. Gyroscopes
measure the rate of angular change of a system with respect to inertial space. Ac-
celerometers record the specific force applied to a system (Crassidis, 2006). As the
mapping platform moves, it is subject to rotational and specific forces from platform
motion. The IMU provides orientation in roll (ω), pitch (ϕ), and heading (κ) using the
gyroscopes and accelerometers. The orientation, or attitude, values are the rotations
about the x−, y−, and z− axes of the mapping platform. Figure 2.2 is a MLS system
from Fugro and Figure 2.3 is a close up view of the sensors. There are two laser profil-
ers mounted on the two sides of the system respectively. The points obtained can also
be colored by images collected by panoramic cameras.

Figure 2.2: A mobile laser scanning system (Image source: Fugro GeoServices B.V.).

2.1.3. Other MLS systems
Besides of mounting on a vehicle, the system can also be mounted on a boat, as illus-
trated in Figure 2.4. The same system as in Figure 2.2 is mounted on a boat in Fig-
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Figure 2.3: Components of a mobile laser scanner.

ure 2.4a and Figure 2.4b is a sample point cloud data collected by the system.

(a) (b)

Figure 2.4: Boat-Map of Fugro and sampled point cloud. (a) The Boat-Map MLS system mounted on a boat.
(b) Point cloud data collected by Boat-Map.

Also, the system can be mounted on a train to scan the environment of a railway.
Figure 2.5 shows a MLS system mounted on a train and Figure 2.5b is the collected
point cloud data.

In 2012, Kukko et al. developed a Backpack MLS system to enable the access to
places where vehicles cannot, such as wetland and dense forest (Kukko et al., 2012).
Figure 2.6a is the Backpack MLS system in operation. Figure 2.6b is a sampled point
cloud and the scanning trajectory respectively.

2.2. Data processing work flow
This section describes a typical work-flow of processing a point cloud obtained by laser
scanning, which often consists of filtering, segmentation, and some particular applica-
tion.

2.2.1. Filtering
Filtering is the procedure of extracting ground points from the original LiDAR point
cloud (Sithole and Vosselman, 2004). Figure 2.7 shows a point cloud sampling an urban
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(a) (b)

Figure 2.5: Rail-Map and the obtained point cloud data. (a) A MLS system mounted on a train. (b) Point
cloud data collected by Rail-Map. (Image source: Fugro GeoServices B.V.)

(a) (b)

Figure 2.6: Backpack MLS system, and a sample point cloud and scanning trajectory (Kukko et al., 2012).
(a) Operating of the Backpack MLS system. (b) Obtained point clouds of the Backpack MLS system and the
scanning trajectory (purple line). (Image source: (Kukko et al., 2012))

scenario. Figure 2.7a is the original point cloud and after filtering, the ground points
and non-ground points are separated in Figure 2.7b.

Several types of filtering methods have been proposed. Based on the filter strategy
applied, these algorithms can be grouped into two major categories (Hu et al., 2014;
Li, 2013; Meng et al., 2010): (i) interpolation based methods (Kraus and Pfeifer, 1998;
Axelsson, 2000; Evans and Hudak, 2007; Mongus and Zalik, 2012; Chen et al., 2007). (ii)
morphological based methods (Zhang et al., 2003; Chen et al., 2007).

Interpolation based filters
For the interpolation-based filters, initial ground points are selected and used to iter-
atively create a provisional surface that gradually approaches the final approximated
ground surface (Hu et al., 2014). Kraus and Pfeifer proposed a method to approxi-
mate ground iteratively by using weighted linear least squares interpolation (Kraus and
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(a) (b)

Figure 2.7: Filtering of LiDAR point cloud data. (a) Original point cloud data (before filtering). (b) Ground
and non-ground points are segmented after filtering.

Pfeifer, 1998). In this method, ground points usually have negative residuals while non-
ground points have positive residuals. This is used to assign high weight to the points
with negative residuals. Pfeifer further extended the algorithm by hierarchical interpo-
lation to improve both on the filter results and on the computational efficiency (Pfeifer,
2001). Continuing the previous work, Lee and Younan used a normalized least squares
method to replace the least squares method. This implementation did further improve
the filtering results (Lee and Younan, 2003). However, a disadvantage of the method is
that a user has to set three thresholds. Axelsson proposed a ground-breaking filtering
method for ALS point clouds based on refining the weight assignment using a Triangu-
lated Irregular Network (TIN) Axelsson (2000). Also, an interpolation method based on
a Thin Plate Spline (TPS) was presented to filter ALS point clouds (Evans and Hudak,
2007). The method uses a regularly gridded DEM rather than a TIN. Furthermore, a
TPS interpolation-based parameter-free filter was developed (Mongus and Zalik, 2012).
This method first builds several point clouds of different resolution levels from the con-
sidered point clouds and then a surface is interpolated iteratively from the coarse level
to the finest level.

Morphological based filters

The concept of morphological filtering is to approximate ground points using mor-
phological operations, notably by opening (Zhang et al., 2003; Chen et al., 2007). When
there are adequate laser pulses that reach the ground, by using morphological open-
ing with a small window, ground points can be identified. However, when there are
not many pulses illuminating the ground, the window size for morphological opening
has to be tuned according to the size of the objects (Li et al., 2013; Mongus et al., 2014).
The morphological filtering methods are easy to implement, however, big window sizes
will produce a surface with more protruded ground features (Sithole, 2001; Chen et al.,
2007).
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2.2.2. Segmentation
Point cloud segmentation refers to the procedure of partitioning a 3D point cloud into
subsets that satisfy certain pre-defined criteria (Woo et al., 2002; Biosca and Lerma,
2008; Vosselman and Maas, 2010). Figure 2.8 illustrates the segmentation of a TLS point
cloud based on planarity. Figure 2.8a and Figure 2.8b show a point cloud before and
after segmentation respectively.

(a) (b)

Figure 2.8: Segmentation of LiDAR point cloud data. (a) Original point cloud data (before segmentation). (b)
Point cloud after segmentation (based on different planes).

Segmentation methods can be roughly categorized into model fitting based meth-
ods (Vosselman and Dijkman, 2001; Schnabel et al., 2007), and region growing based
methods (Tovari and Pfeifer, 2005; Vieira and Shimada, 2005; Vo et al., 2015).

Model fitting based methods
Model fitting based segmentation approaches are mainly conducted by fitting geomet-
ric models to the point cloud (Vosselman and Maas, 2010). Two widely known meth-
ods for estimating model parameters are Hough Transform (HT) (Ballard, 1981) and
random sample consensus (RANSAC) (Fischler and Bolles, 1981). The HT is used to
detect geometric primitives, such as lines, planes and spheres in both 2D and 3D (Vos-
selman et al., 2004; Tarsha-Kurdi et al., 2007; Rabbani and Heuvel, 2005). The RANSAC
paradigm is applied to extract primitive shapes by randomly selecting minimal point
sets to evaluate many candidate shape primitives. The method has been applied to seg-
ment 3D point clouds, e.g. for building facade segmentation Boulaassal et al. (2007),
planes (Schnabel et al., 2007).

Region growing based methods
Region growing based point cloud segmentation mainly consists of two steps. First, a
seed point or initial point segment needs to be selected. Next, the refinement of the
segment grows iteratively (Vosselman and Maas, 2010). Triangle segments from a TIN
are selected as seed surface and the angle and distance between the neighboring trian-
gles for the region growing strategy (Gorte, 2002). Based on local planar fit as a criterion
for selecting the seed region, an octree was employed to search neighboring points of
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those points that are within a threshold are merged to the corresponding point seg-
ments. (Wang and Tseng, 2004; Douillard et al., 2011; Vo et al., 2015) presented an algo-
rithm that first organizes a point cloud in an octree data structure. Then the voxels that
belong to the same local plane are selected as seed voxels, before neighboring voxels
are merged recursively to the seed clusters.

2.2.3. Applications
Since the emergence of the MLS systems, the technique has been applied in a variety of
scenarios. This section reviews different applications of point clouds acquired by MLS.

Road elements inspection and inventory
In the road environment, there are lots of elements that need to be monitored and
documented automatically for security and management purposes, such as roadside
trees, lamp poles, traffic signs, road markings and curbstones. Such elements are tra-
ditionally measured and mapped manually. However, the point clouds obtained by
MLS systems are sufficiently dense and accurate to extract the above urban road ele-
ments automatically and efficiently. In the remainder of this section, applications of
MLS point clouds on the extraction of road markings and curbstones are given. A de-
tailed review of roadside trees is given in Chapter 5, lamp poles and traffic signs will be
discussed in Chapter 6.

• Road and curbstone extraction
Roads play a crucial role in transportation and delivering services. Efficient road
inspection and monitoring are necessary for safety purposes. In the past decade,
methods have been developed for road segmentation and curbstone extraction
from MLS scanned point clouds. In (Jaakkola et al., 2008), a method for auto-
matic classifying road surface and curbstone points was presented and the test-
ing results showed that 92.3% and 79.7% of the road points and curbstones were
correctly identified. In (Boyko and Funkhouser, 2011), a method for segment-
ing road points from large scale unorganized 3D point clouds was presented.
The method first fits a 2D active contour to an attractor function to predict the
locations of curbs. Points lying within the active contour are labeled as road.
Test results show that the method provides 86% correctness and 94% complete-
ness. Luo et al. presented an algorithm to segment road road points using a
patch-based framework. The method first build a 3D patch0based match graph
structure from 3D point patches. Then, the errors occurred during transferring
point patch labels to road surface are rectified using contextual information from
Markov random fields (Luo et al., 2016). In (Miraliakbari et al., 2015), road sur-
face was automatically extracted from geo-referenced mobile laser scanning data
with region growing. The basic hypothesis of the method is that road surface is
a continuous smooth and bounded by curbstones. Comparison to ground truth
showed that the completeness and correctness of the method were 92% and 95%
respectively.

• Road markings extraction
The markings painted on road surfaces, for guidance of drivers, are highly im-
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portant for the road safety. In recent years, the development of MLS and data
processing techniques enabled the automatic extraction and recognition of road
markings. In (Zhou and Vosselman, 2012), a three-step method for mapping
curbstones was proposed, consisting of coarse curbstone detection, midpoint
determination and connecting collinear line segments. The results illustrated
that the completeness of road marking detection varies ranging from 54% and
83%. In (Kumar et al., 2014), an automated algorithm for road marking extrac-
tion from MLS data was proposed. The method employed a range dependent
threshold function and was applied to the intensity of points. Then, binary mor-
phological operations were applied to complete the shape of the road markings.
The results showed that 80 out of 88 road markings were successfully extracted.
In (Yang et al., 2012c; Guan et al., 2015), a method for automatic road mark-
ing extraction from MLS point clouds and images was presented. The three-
step method first generates a geo-referenced feature image from the point cloud.
Then, point density dependent thresholds were used to locate potential areas
of road markings in the image. Finally, morphological operations were applied
to extract road markings. The feasibility of the method was also verified. Yan
et al. presented a scan line based method to extract road markings from point
clouds (Yan et al., 2016). The method consists of three steps, i.e. pre-processing,
road points extraction and road markings extraction and refinement. The eval-
uation results of the proposed method showed that the completeness and cor-
rectness were 0.96 and 0.93 respectively. Zhang et al. presented a robust algo-
rithm for road pavement markings inspection from MLS point clouds (Zhang
et al., 2016). The algorithm consists of three steps, i.e. pre-processing, extraction
and classification. The testing results demonstrated that the proposed method
can achieve 0.93 and 0.95 in completeness and correctness. These obtained road
markings and lane information can then be documented for other purposes,
such as digital city and autonomous driving (Levinson et al., 2011).

Railway monitoring
Railway maintenance requires regular inspection of railway environments, including
railway tracks, overhead wires, signal poles and switches (Salvini et al., 2013; Rhayma
et al., 2013). MLS systems sample the railway corridor and acquire high density point
cloud data. Thus the elements of the railway environment can be automatically in-
spected and monitored (Hung et al., 2015). In (Elberink and Khoshelham, 2015), a
method for extracting railway centerlines was presented. The method first generates
center points in a data-driven manner by projecting rail track points to the parallel
track and the midpoint initial center points. Consecutively, a piecewise linear func-
tion is fitted through the center points to obtain center points at a regular interval.
Then, piecewise 3D track models are fitted to the rail track points. The results were
compared with reference data and the accuracy of the position of the centerlines is 2-3
cm. In (Yang and Fang, 2014), an automatic method for railway track extraction from
mobile point clouds was introduced. The method uses both geometric and intensity
information of laser scanned point clouds to extract track points. Then, 3D track mod-
els are fitted to the obtained track points. Comparison with ground truth data shows
that the method is able to identify railway tracks with an overall accuracy of 95%.
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Highway and tunnel monitoring
The application of laser scanning for highway monitoring mainly focuses on the extrac-
tion of geometric information (Hatger and Brenner, 2003). During highway construc-
tion, the MLS scanned high density point clouds can be used to survey and investigate
the construction progress (Gräfe, 2008). In the highway maintenance phase, the geo-
metric information of highway roads is determined from MLS point clouds to monitor
the roughness and damage of road surface and inspect the safety of the highway (Kim
et al., 2008).

Stimulated by the highway construction, a large number of tunnels are drilled. Point
clouds are applied in surveying and inspecting of those tunnels. Yoon et al. (Yoon
et al., 2009) developed a laser-based scanning system for automatic tunnel inspection.
Meanwhile, an algorithm for extraction damaged parts of the tunnel using geomet-
ric and radiometric features of the scanning data. In (Fekete et al., 2010), In (Boavida
et al., 2012), a 25 km tunnel was scanned by a MLS system to validate the possibility of
applying MLS point clouds for deformation inspection. The results showed that MLS
shortens 15 times of on-site surveying time compared to TLS corresponding to a cost
reduction of approximately 80%.

Environmental applications
Using the types of MLS systems mentioned in Section 2.1.3, other environmental ap-
plications are conducted as well. Bitenc et al. assessed the state of Dutch sandy coast
using a land-based MLS system (Bitenc et al., 2011). The proposed method acquired
a high quality DTM and concluded that the relative precision was 3 mm. Vaaja et al.
mapped topography changes on a 58 km-long river using a MLS system mounted on
a boat (Vaaja et al., 2011; Alho et al., 2011). The results showed the standard deviation
of change mapping was 3.4 cm and mean square error (RMSE) of the generated DEM
was 7.6 cm. Liang et al. demonstrated the Backpack MLS system’s feasibility in esti-
mating diameter at breast height (DBH) of forest trees with a RMS 14.63% (Liang et al.,
2014). In (Ryding et al., 2015), point clouds obtained by a MLS system are applied to in-
vestigate forest trees, and DBH and stem positions were estimated. Change detection
was conducted based on point clouds acquired by MLS point clouds both on urban
street and forest area (Qin and Gruen, 2014; Xiao et al., 2015; Yu et al., 2004). Also, au-
tomatic urban accessibility diagnosis is conducted based on the point clouds obtained
by MLS systems. For example in (Serna and Marcotegui, 2013), an automatic approach
for urban accessibility analysis was presented. The method consists of two phases, i.e.
urban object segmentation and curb detection. The test results showed that individual
completeness were 82%.

2.3. Conclusions
In this chapter, the following research question was investigated and answered:

What is the current status of MLS systems and the data processing work-flow?
This chapter first introduced the MLS system and its components, which mainly

consists of laser scanners, cameras, and position and orientation systems. The role of
each component is discussed. Afterwards, four types of MLS systems are investigated
and their data sets are also shown. Next a typical overall data processing work-flow of
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MLS point clouds is discussed. The work-flow for different applications can be differ-
ent, however, filtering and segmentation are common to most applications. Thus, the
methods for conducting those two steps are reviewed. Finally, some potential applica-
tions of MLS point clouds are discussed. Despite of the available methods and applica-
tions for MLS data sets, there is not yet a standard work-flow for processing huge MLS
point clouds. There are various types of objects on roadsides, moreover, these objects
have complicated shapes and are always imperfectly sampled by MLS systems. Algo-
rithms for effectively identifying those objects are highly demanded. What’s more, the
high efficiency of the data collection makes the MLS point clouds huge, thus, clever
strategies and algorithms for storing and processing those data sets are needed.
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The point clouds acquired by MLS systems consist of a huge number of discrete and
apparent unorganized points. These huge number of points contain versatile informa-
tion, i.e. 3D coordinates, intensity and colors. The size of the collected data set makes it
hardly to store, inefficient to query and impossible to manipulate and operate on a nor-
mal computer. Therefore, efficient and agile spatial data structures are required. This
chapter first reviews the state-of-the-art of widely used spatial data structures in point
cloud processing. Then, two extensively used data structures in this thesis, i.e. voxels
and octrees are introduced by discussing their components, spatial partitioning, neigh-
borhood searching and their applications.

3.1. Introduction
As mentioned in Section 1.3, MLS systems collect point clouds of streets and surround-
ing objects at a speed of approximately 1 million points per second. Therefore, an ac-
quisition of e.g. 1 hour, typically results in a point cloud of about 3.5 billion discrete
points. It is difficult to load the entire resulting point clouds on a normal computer at
one time. What’s more, point cloud processing, i.e. visualization, classification, seg-
mentation, feature extraction and data management, rely extensively on point query-
ing, neighborhood searching and spatial sub-setting (Mitra et al., 2004; Vosselman and
Maas, 2010; Holzer et al., 2012; Elseberg et al., 2013; Otepka et al., 2013). It is expen-
sive to conduct those operations on huge unorganized discrete points. Thus, efficient
spatial data structures and a scalable processing strategy are essential for successful
processing huge MLS point clouds. A scalable processing strategy is achieved by either
down-sampling the entire data or by subdividing the 3D spatial data in more manage-
able chunks. In the next sections, an overview of data structures used in point cloud
processing is given. Several spatial data structures, i.e. Triangulated Irregular Networks
(TIN), KD-trees and quadtrees, are introduced and their applications are reviewed. The
complexity of those data structures is discussed with respect to construction, storage
and point querying. A general overview of using complexity as a way to evaluate the
efficiency of algorithms can be found in (Samet, 2006).

3.2. Spatial data structures
Spatial data sets consist of spatial objects composed of points, lines, surfaces, volumes,
all containing geo-referenced coordinates, and sometimes even including temporal
information (Frank, 1992; Samet, 1995). Spatial data sets represent roads, buildings,
mountains, rivers, trees, etc. Moreover, the properties of the elements are also part of
the spatial data sets. Spatial data structures enable efficient storage and manipulation
of those spatial data sets (Papadias and Theodoridis, 1997; Anselin et al., 2006). Gen-
erally, spatial data sets are stored by explicitly defining a type of data structure that
contains all the properties (Samet, 2006).

The point clouds collected by MLS systems can also be stored in the aforemen-
tioned common way. However, point clouds not only have huge numbers of points, but
also the properties of each point are meaningful for processing. Moreover, the strategy
of point organization is crucial for the efficiency of massive point manipulating opera-
tions (Lalonde et al., 2007; Wand et al., 2008; Elseberg et al., 2011; Beserra Gomes et al.,
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2013; Richter and Döllner, 2014). Nevertheless, data structures also need to be mem-
ory efficient for practical purposes (Elseberg et al., 2013). During the last decade, many
existing data structures have been used in point cloud processing. Hash tables (Wand
et al., 2007; Nahangi et al., 2016; Yoshimura et al., 2016) and hierarchical grids (Börcs
et al., 2015) were used to store feature points, B-trees were used for out-of-core point
cloud storage and efficient indexing (Wu et al., 2010; Cura et al., 2015; Chrószcz et al.,
2016), 3D R-trees were used for efficient management of large point clouds (Wang et al.,
2009; Gong et al., 2012; Yang and Huang, 2014), TINs were used for segmentation and
mesh generation (Zhang and Lin, 2013; Kang et al., 2014). However, those data struc-
tures were feasible for specific applications only and are not applicable for efficient
point querying and scalable spatial subdivision. In general, the most widely used spa-
tial data structure for point querying in large point clouds is the KD-tree and its mod-
ifications (Mount and Arya, 2010; Muja, 2011; Nuechter et al., 2016; Muja and Lowe,
2014). For scalable spatial partition and subdivision, quadtrees and octrees are used
for 2D and 3D partitioning respectively. In the next sections, a more detailed review of
the KD-tree, quadtree and octree data structures and their applications is given.

3.2.1. Triangulated irregular network
A Triangle Irregular Network (TIN) is a vector-based representation of surfaces, con-
sists of irregularly distributed 3D nodes and lines that are arranged in a network of
non-overlapping triangles (Peucker et al., 1978; Floriani and Magillo, 2009; Chen et al.,
2011). In 3D point cloud processing, TINs are widely used for meshing geographic
surfaces, such as DEM and DTM representation (Kraus and Pfeifer, 2001; Remondino,
2003; Ma, 2005; Xiaoye Liu, 2008) and geometric model reconstruction (Vosselman and
Dijkman, 2001; Kwon et al., 2004; Teo et al., 2006; Abo-Akel et al., 2009; Ummenhofer
and Brox, 2013). The most common way of TIN generation from 3D point clouds is via
a 2D Delaunay triangulation of the 2D locations of the 3D points (Paul Chew, 1989; Tse
et al., 2007; Wu et al., 2011; Chao et al., 2015).

In a Delaunay triangulation of a set of 2D points, the triangles are generated by the
triples of points that contain no other point in their circumcircle (Okabe et al., 2009).
Optimal algorithms for constructing a Delaunay triangulation of n points in the plane
requires O(n logn) running time. A detailed definition of Delaunay triangulation is
given in (Delaunay, 1934). Figure 3.1a is an example of Delaunay triangulation. Fig-
ure 3.1b is a TIN presentation of a mountain road generated from the point clouds
acquired by a MLS system.

Notably, TINs are generated based on the 2D points obtained by the vertically pro-
jected 3D points. Thus, points that are far away in 3D may appear very close in the
corresponding 2D Delaunay triangulation (Vosselman and Maas, 2010). It is possible
to perform point querying using TINs, however, this is not straightforward as close by
points are not simply searched with regard to Cartesian directions (Devllers2002 et al.,
2002).

3.2.2. KD-tree and neighborhood searching
Currently, the so-called KD-tree, i.e. K-Dimensional tree, is the most widely used hi-
erarchical data structure for nearest neighbor searching in 3D point cloud data (Bent-
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(a)

(b)

Figure 3.1: Delaunay triangles and a generated 3D TIN. (a) A Delaunay triangulation in the plane with cir-
cumcircles. (b) A 3D TIN generated from MLS point clouds.

(a)

(b)

Figure 3.2: KD-tree spatial splitting of six 2D points, i.e. A(40,45), B(15,70), C(70,20), D(69,50), E(66,85),
F(85,90), and the resulted tree data structure (Shaffer, 1998). (a) An example of 2D spatial splitting by a KD-
tree. (b) The resulting binary tree data structure of the splitting.

ley, 1975; Samet, 2006; Sankaranarayanan et al., 2007; Vosselman and Maas, 2010). A
KD-tree is a binary tree data structure in which every node represents a k-dimensional
point. Every non-leaf node refers to a splitting hyperplane that separates space into
two half-spaces. The points in the left half-space and in the right half-space are repre-
sented by the left and right sub-tree respectively. In Figure 3.2a, six points in 2D space,
i.e. A(40,45), B(15,70), C (70,20), D(69,50), E(66,85), F (85,90), are organized by a KD-
tree. In the figure, point A is the starting point and the space is vertically split into
two half-spaces. The point whose x coordinate value is bigger than that of point A, is
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then assigned to the right sub-tree. As the x value of point B is smaller, it is assigned
to the left sub-tree. Then, the resulting two half-spaces are horizontally split and sub-
sequently four half-spaces are generated. For example, the right sub-tree of point A in
Figure 3.2b is split with regard to point C . Points whose y value are smaller than that of
point C , i.e. point D , E and F , are assigned to the right sub-tree. The same procedure
is conducted recursively over x and y until all points are traversed. In 3D, the KD-tree
is built by a similar splitting procedure as in 2D, however, the splitting hyperplane is
conducted recursively on the x, y and z coordinates.

Neighbor searching is one of the oldest problem in computer science (Chen and
Lu, 2008). The nearest neighbor (NN) of a query point q is defined by Equation 3.1.

N N (q) = {
p|p ∈ P,∀o ∈ P, (o 6= p), |qp| < |qo|} (3.1)

Here, P is a set of n points in a d-dimensional space Rd , o, p and q are points in Rd . In
geo-referenced point clouds, Rd usually refers to a 3D Euclidean space, and |qp|, |qo|
are the Euclidean distance between points p and q , and points q and o respectively.

KD-trees have been used for neighborhood querying in huge point cloud data sets
because of their efficiency. For a balanced KD-tree, its average query complexity for
a set of n points is O(n log(n)) and the worst-case complexity is O(kn log(n)) with k
the space dimension (Bentley, 1990; Wald and Havran, 2007; Brown, 2014). A few open
libraries that implemented nearest neighbor searching are given in Table 3.1.

Library Version Core structure kNN search Radius search
3DTK (Nuechter et al., 2016) 3.0 KD-tree/Octree X ×
ANN (Mount and Arya, 2010) 1.1.2 KD-tree X X

CGAL (Alliez et al., 1997) 4.9 KD-tree × X
FLANN (Muja, 2011) 1.8.0 KD-tree X X

nanoFLANN Muja and Lowe (2014) 1.2.2 KD-tre X X

Table 3.1: Open libraries for NNS and their properties.

3.2.3. Quadtree and 2D spatial partitioning
Spatial partitioning is the procedure to divide a space into two or more non-overlapping
regions (Samet, 2006). Discrete points obtained by a MLS system are apparently dis-
tributed randomly in 3D Euclidean space. Spatial partitioning is usually conducted to
efficiently organize such data sets. This section reviews the utility of a quadtree and its
advantage in point cloud processing and management.

A quadtree is a tree data structure of which each internal node has exactly four
branches. Based on what data the quadtree represents and if the structure of the tree is
independent on the sequence in which the data is accessed, quadtrees are categorized
as point quadtrees or trie-based quadtrees (Samet, 2006). A trie-based quadtree is able
to decompose a space in 2D by dividing a region into four equal sub-quadrants, with
each leaf node containing points corresponding to a sub-quadrant. Figure 3.3 is an ex-
ample of spatial partitioning using a trie-based quadtree and its hierarchical tree data
structure representation. Each branch of the quadtree either has four children or is a
leaf. A uniform trie-based quadtree of depth n consists of 2n ×2n sub-quadrants.
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(a) (b)

Figure 3.3: An example of spatial partitioning using a trie-based quadtree and the corresponding tree data
structure. (a) Spatial subdivision of a trie-based quadtree. (b) The hierarchical data structure of a quadtree.
Internal and leaf nodes are in green and empty nodes are in light green.

Trie-based quadtrees, i.e. region quadtrees, are widely employed to organize point
clouds acquired by airborne LiDAR systems (Bi et al., 2014; Zhu and Hyyppa, 2014;
Richter et al., 2015; Palha et al., 2017). Notably, as a quadtree is a 2D data structure,
the organization of 3D point clouds using quadtrees typically starts by projecting 3D
points to a 2D plane. IF the quadtree principle is extended to 3D, we obtains octree.
The octree data structure is discussed in detail in Section 3.2.4.

3.2.4. Voxels and Octrees
This section introduces the basic concepts of voxels and octrees data structures respec-
tively by giving their definitions and explaining how they can be used in point cloud
re-sampling and neighborhood searching. Next, a detailed implementation of the oc-
tree data structure used in this thesis in the C++ programming language is discussed.
Finally, existing applications of octrees in point cloud organization and processing are
presented.

Voxel
As a pixel is a 2D representation, a voxel is a cube with predefined edge lengths in 3D
Euclidean space. Normally, the edge lengths in the three directions are the same. In
this thesis, the lengths in the three coordinate directions can be different to make algo-
rithms more flexible. Figure 3.4 is an illustration of a voxel in 3D Euclidean space. Note
that the coordinate system used here is right-handed Cartesian.

In this thesis, the data structure of a voxel cell is designed in C++ as below, i.e. struct
VoxelCell:

Algorithm 3.1: Definition of a VoxelCell data structure.

struct VoxelCell
{
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Figure 3.4: Voxel cell in a 3D Euclidean space. Pmax is the upper right back point and Pmi n is the lower
left front point of the voxel cell. Wx , Wy and Wz are the lengths of the edge in the three axis directions
respectively.

long x ;
long y ;
long z ;
l i s t <int > PointId ;
Point3D Centroid ;

}

Here, x, y , and z are the 3D indices of each voxel, and Poi nt I d is a container which
stores the indices of the points inside each voxel cell. Centr oi d stores the centroid of
all the points inside each voxel cell.

Voxels are extensively used to re-sample point clouds acquired by MLS systems.
Figure 3.5 illustrates the re-sampling, i.e. voxelization, of point clouds collected by MLS
systems. Firstly the lower left front point and upper right back point are obtained from
the axes parallel bounding box of the input point cloud data, i.e. Point P mi n and Point
P max in Figure 3.5. With predefined voxel cell sizes in the three axis directions, the
bounding box of the point cloud is divided into cubic cells and the number of bins in
the three directions are then calculated respectively. Consecutively the 3D voxel indices
of each point are computed by comparing its coordinates with the lower front left point
P mi n in the three directions using Equation 3.2.

ni =
Pi −P mi n

i

si zei
(3.2)

Here i denotes the x, y, z direction respectively, and ni is the cell index to which point
Pi belongs to. The voxel cells which have no points inside are defined as Z er o cells,
while the cells which have points are defined as Posi t i ve cells. In Figure 3.5, the
Posi t i ve cells are colored light green and Z er o cells are blank. Here, the minimal
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Figure 3.5: Point cloud re-sampling using voxel cells in 3D Euclidean space. Blue dots are points inside each
voxel cells and the size of the edges can be different.

voxel size needs to consider the average point density. Normally the minimal voxel size
needs to be bigger than the average distance between points. However, the optimal
voxel size depends on requirements on the amount of detail and computation time.

Neighbors of a 3D voxel cell are categorized in three classes by considering the type
of adjacency to the query cell. Figure 3.6, the 26 neighbor cells in 3D of a voxel cell
are categorized as 6 face-adjacent neighbors, 12 edge-adjacent neighbors and 8 vertex-
adjacent neighbors. The three categories of neighbors are displayed in green, blue and
orange respectively.

After the voxelization of a point cloud using voxels, each voxel cell has an address
ID, i.e. x, y and z in Algorithm 3.1. Voxelization using voxels is a procedure of re-
sampling a point cloud using 3D voxel cells of uniform dimensions. Thus, the voxel
space is interpreted as a 3D array and neighborhood searching in voxel cells is straight-
forward.

Although neighborhood searching in voxel space is easy and efficient, there exists
a lot of memory redundancy when re-sampling using voxels. Thus, a more memory ef-
ficient data structure such as octrees is preferred when dealing with huge point clouds.
The next section will describe the octree data structure.

Octree
An octree is a tree data structure of which each node is either a leaf or has exactly eight
children (Samet, 2006). It is a 3D extension of the quadtree in 2D (Payeur, 2006). The
octree data structure is mostly used in spatial partition of a 3D Euclidean space by re-
cursively subdividing a root node into eight identical octants. In general, building an
octree requires O(n logn) and searching in an octree typically requires O(logn) running
time, here n is the number of points (Samet, 2006).

Figure 3.7 illustrates an octree based spatial partition and its hierarchical tree data
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(a) (b) (c)

(d) (e) (f)

Figure 3.6: Voxel cell and its 26 neighbors in 3D Euclidean space and the red cell is the query cell. (a) Face-
adjacent neighbors. (b), (c) and (d) are edge-adjacent neighbors. (e) and (f) Vertex-adjacent neighbors.

structure. In this thesis, the implemented addressing scheme for each octant of an oc-
tree is employed from (Major et al., 1989). As indicated in Figure 3.7a, the partition
starts with a root node, which is labeled by digit 0. The procedure goes on by subdivid-
ing the root node into eight identical octants. If the octant is not empty, the subdivision
continues until the pre-defined stop criteria are reached. Octants of the same subdi-
vision level have the same number of digits. For example, the octants in light green
and in light orange, which are labeled by 055 and 053, belong to level 3 and thus the
number of digits is 3. Figure 3.7b illustrates the hierarchical tree data structure of an
octree, in which the internal nodes are in gray. Each node corresponds to an octant in
the subdivision in Figure 3.7a as their addressing digits indicate.

The data structure of an octree node in this thesis is defined as OctreeNode below:

Algorithm 3.2: Definition of octree node data structure.

struct OctreeNode
{

bool Leaf ;
long PointNumber ;
OctreeBound BoundingBox ;
Point3D* Points ;
OctreeNode* Child [ 8 ] ;
vector <int > Path ;

}

Here, Leaf indicates whether the current octant is a leaf node, which has no sub-branches.
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(a) (b)

Figure 3.7: Octree based space partition and its hierarchical data structure. (a) Octree based Cartesian space
subdivision and voxel indexing. (b) Octree hierarchical data structure. The octant numbered 055 in the top
left of (a) indicates where in the hierarchy in (b) this voxel can be found.

BoundingBox defines the 3D bounding box of each octant and Points stores the points
inside of the octant. Child[8] is an array of 8 same OctreeNode, which are the eight
branches of an internal node. Child[8] is an array of pointers to the 8 children OctreeN-
ode which are either leaves or octree node of one level deeper. Unlike in voxel space,
octrees organize the octants in a hierarchical tree structure and thus neighborhood
searching using octrees is not straightforward. However, as in voxel space, the num-
ber of possible adjacency directions in 3D is 26 for a uniform resolution octree. As
shown in Figure 3.8, corresponding to neighbors of the three categories given in Fig-
ure 3.6, the possible directions are given and labeled by an index number as indicated.
There are a few octree implementations as illustrated in Table 3.2. However, there is no
kNN searching, neigher in octant space nor in point space, implemented in those open
source libraries. Thus, neighborhood searching in octant space based on the octree
data structure is implemented from scratch in this thesis.

Name version Open source kNN search
PCL (Nuechter et al., 2013) 1.7.1 X ×

PoTree (Sch"utz, 2016) 1.3 X ×
CloudCompare (Girardeau-Montaut, 2003) 2.9 X ×

OctoMap (Hornung et al., 2013) 1.8.1 X ×

Table 3.2: Open source libraries of octree implementation.

To efficiently search neighbor octants in an octree hierarchical structure, lookup
tables for the possible directions are given in Table 3.3, Table 3.4 and Table 3.5 for face-
adjacent, edge-adjacent and vertex-adjacent neighbor cells respectively.

For example, the octree cell labeled 033 in Figure 3.7a is a Front-Down (FD) edge-
adjacent neighbor octant of the cell labeled 036. Assuming the query octree cell is 036,
its edge neighbor octants are searched. Firstly, the right-most digit of its Path is 6 and
the F D direction is encoded as direction 12. Next, in Table 3.4 the digit in column
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(a) (b) (c)

Figure 3.8: Neighbors of an octree octant and the possible adjacency directions. (a) Possible directions for
face-adjacent neighbors. (b) Possible directions for edge-adjacent neighbors. FU indicates Front-Up direc-
tion. (c) Possible directions for vertex-adjacent directions. FUL indicates Front-Up-Left direction.

Query
direction

Up Down Right Left Front Back
0 1 2 3 4 5

Orignal
Path
Digit

0 4 4+Down 2 2+Left 1 1+Back
1 5 5+Down 3 3+Left 0+Front 0
2 6 6+Down 0+Right 0 3 3+Back
3 7 7+Down 1+Right 1 2+Front 2
4 0 + Up 0 6 6+Left 5 5+Back
5 1 + Up 1 7 7+Left 4+Front 4
6 2 + Up 2 4+Right 4 7 7+Back
7 3 + Up 3 5+Right 5 6+Front 6

Table 3.3: Lookup table for face-adjacent neighbor octant searching in an octree structure.

Query
Direction

UL UR DL DR FU BU FD BS FR FL BR BL
6 7 8 9 10 11 12 13 14 15 16 17

Original
Path
Digit

0 6+L 6 6+DL 6+D 5 5+B 5+D 5+BD 3 3+L 3+B 3+BL
1 7+L 7 7+DL 7+D 4+F 4 4+FD 4+D 2+F 2+FL 2 2+L
2 4 4+R 4+D 4+DR 7 7+B 7+D 7+BD 1+R 1 1+BR 1+B
3 5 5+R 5+D 5+DR 6+F 6 6+FD 6+D 0+FR 0+F 0+R 0
4 2+UL 2+U 2+R 2 1+U 1+BU 1 1+B 7 7+L 7+B 7+BL
5 3+UL 3+U 3+R 3 0+FU 0+U 0+F 0 6+F 6+FL 6 6+L
6 0+U 0+UR 0 0+R 3+U 3+BU 3 3+B 5+R 5 5+BR 5+B
7 1+U 1+UR 1 1+R 2+FU 2+U 2+F 2 4+FR 4+F 4+R 4

Table 3.4: Lookup table for edge-adjacent neighbor octant searching in an octree structure.

Query
direction

FUR FUL FDR FDL BUR BUL BDR BDL
18 19 20 21 22 23 24 25

Original
Path
Digit

0 7 7+L 7+D 7+DL 7+B 7+BL 7+BD 7+BDL
1 6+F 6+FL 6+FD 6+FDL 6 6+L 6+D 6+DL
2 5+R 5 5+DR 5+D 5+BR 5+B 5+BDL 5+BD
3 4+FR 4+F 4+FDR 4+FD 4+R 4 4+DL 4+D
4 3+U 3+UL 3 3+L 3+BU 3+BUL 3+B 3+BL
5 2+FU 2+FUL 2+F 2+FL 2+U 2+UL 2 2+L
6 1+UR 1+U 1+R 1 1+BUR 1+BU 1+BL 1+B
7 0+FUR 0+FU 0+FR 0+F 0+UR 0+U 0+L 0

Table 3.5: Lookup table for vertex-adjacent neighbor octant searching in an octree structure.

(6,FD), i.e. 3, is found. Then, the right-most digit 6 is replaced by 3. Thus, the Front-
Down edge-adjacent neighbor octant of 036 is the octant labeled by 033. Similarly,
neighbors of all the 26 directions in 3D can be queried using the three lookup tables.
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The octree data structure has been widely used in computer science. Octrees are
used to generate models of different levels of details Luebke et al. (2003); Döllner and
Buchholz (2005), ray tracing (Meagher, 1982; Lastra and Revelles, 2000; Barboza and
Clua, 2011; Mcguire and Mara, 2014), geometric modeling (Losasso et al., 2004; Lee H.,
2009; Zia et al., 2013). In robotics and game design, octrees are used for collision detec-
tion (Jung and Gupta, 1997; Chengming and Zhiyong, 2009; Tang et al., 2010; Hornung
et al., 2013; Xu and Barbič, 2014), mesh generation (Sampath and Biros, 2010), and real-
time mapping (Thrun et al., 2000).

In recent years, octrees are used in point cloud processing, such as point cloud
compression (Schnabel and Klein, 2006), out-of-core massive simplification (Lindstrom,
2000; Scheiblauer and Wimmer, 2011; Elseberg et al., 2013), skeletonization (Bucksch
and Lindenbergh, 2008), point cloud segmentation (Woo et al., 2002; Vo et al., 2015; Su
et al., 2016).

3.3. Conclusions
In this chapter, the following research question was investigated and answered:

How to efficiently organize huge MLS point clouds?
For manipulation, processing and storage of the huge point clouds acquired by

MLS systems, it is fundamental to have proper organization for efficient point access,
querying and storage. Vector data structures, i.e. TINs and R-Trees, are do not com-
bine efficient space organization with querying. KD-trees and quadtrees are the two
data structures that are efficient in querying and spatial partitioning in 2D. Next, vox-
els and octrees are spatial data structures that generalized and efficiently perform the
above mentioned operations in 3D. Their capability of organizing huge point clouds
are emphasized by analyzing the procedure of voxelization and neighborhood search-
ing strategies.

Throughout this thesis voxels and octrees will be used to organize point clouds.
Moreover, their data structures will be exploited in the design of different algorithms.
In Chapter 4, voxels are used to generate 2D grids for estimation of water-flow direction
in mountain road environment. Chapter 5 uses voxels to re-sample tree points, then
a voxel adjacency based algorithm for tree individualization is developed. In Chap-
ter 6, MLS scanned point clouds are organized by octrees and an algorithm for object
recognition is presented.
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Mountain roads are prone to natural hazards, such as land slides and rain water
draining. When mountain roads are widened, the engineering work is expensive and
needs to be well planned. This chapter concentrates on the application of MLS point
cloud data in a mountain road environment. First, an algorithm for automatic esti-
mation of excavation volume of mountain road from MLS data is presented. Consecu-
tively, an algorithm for water flow direction forcasting is proposed.

4.1. Introduction
For mountainous rural areas, roads are lifelines to the people and the safety of the road
and its environment is an important concern. The safety and condition of the roads
need regular inspection and monitoring for security reasons. Traditionally, the road
and roadside geometry are measured by surveyors on a point-by-point basis using To-
tal Station or GNSS. Unlike these methods, MLS does not measure the 3D positions
of well-defined points in the terrain. Rather, it acquires many random 3D points are
acquired by sampling the whole road surface and the surface of the roadside, visible
by the MLS system. The quality of the individual 3D MLS points is worse than the
quality provided by Total Station or GNSS, but an MLS is able to provide full coverage
instead of acquiring only single points. In addition, the acquisition is fast and auto-
matic, and there is no need for surveyors to leave the car. These latter advantages also
distinguish MLS from static Terrestrial Laser Scanning, in which a point cloud is ob-
tained from a panoramic scanner mounted on a tripod (Vosselman and Maas, 2010;
Gikas, 2012). Such panoramic scans need to be combined with GNSS positioning data
in post-processing to acquire a geo-referenced point cloud. To conclude, the MLS is
currently the fastest ground based method for acquiring 3D surface information in
large areas and to get a large point cloud of a long object like a road. It has already
been applied for high way surveying (Bitenc et al., 2011; Zhou and Vosselman, 2012),
sandy coast morphology and riverine erosion measurements (Kukko et al., 2009; Vaaja
et al., 2011), railway monitoring and rail geometry extraction (Kukko et al., 2009; Gikas
and Stratakos, 2012), road environment management (Vaaja et al., 2011; Tao, 2000; Pu
et al., 2011; Jeong et al., 2007), and highway documentation (Foy et al., 2007; Mancini
et al., 2012; Sérgio et al., 2005; Nuechter et al., 2013; Jaakkola et al., 2008). Road manage-
ment starts with the planning phase and ends with the rehabilitation or maintenance
phase (Kukko et al., 2009). When the road has been constructed, road information is
needed for an increasing number of other applications, such as noise modeling, road
safety, road maintenance, location-based services and navigation (Foy et al., 2007).
Road documentation and management mainly consist of recording the road geome-
try and monitoring the road environment (Mancini et al., 2012; Gikas and Daskalakis,
2008). Road geometry refers to parameters used for the design of a road, such as de-
sign speed, stop sign distance, line of sight, number of lines, line width, longitudinal
and transverse slope, road pavement materials and so on. Road environment refers
to the surroundings of the road on both sides, including buildings, trees, vegetation,
traffic signs, traffic light poles and other objects.

The information discussed above plays an important role in the ongoing mainte-
nance of the road, especially for mountain roads where there is a risk for rock and stone
fall. Additionally, the geometric features observed on a mountainous road could be
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helpful for monitoring the flow of rainwater in the case of heavy rain and may be used
to assist natural disaster prevention (Tarolli et al., 2013). Moreover, steep and unstable
road sides may cause landslides, resulting in further road damage (Razak et al., 2011).

The MLS point cloud data contains information that can serve as input for flood
hazard and landslide prediction. In Poppenga et al. (2010), a Digital Elevation Model
(DEM) is constructed from point cloud data to model surface flow, and was applied to
flood inundation and erosion estimation. Also in Kazuhiro et al. (2005); White et al.
(2010); Ziegler and Giambelluca (1997) high-resolution DEM data is generated to pre-
dict surface erosion and to estimate the amount of sediment drained by streams. Espe-
cially for mountainous roads, rocks on roadside hills could fall down and cause risks.
Also, water flow may cause erosion at the side of the road, eventually resulting in road
damage. Moreover, steep and unstable roadsides may cause landslides resulting in fur-
ther road damage.

This chapter first presents an approach for automatically estimating the roadside
material volume to be excavated for road widening. Firstly, MLS point cloud data in
a mountainous area are down sampled and the outliers and noisy points are removed.
Based on the data, normal vectors, and 2D slopes are estimated at every point. Then, an
automatic iterative floating window approach, taking advantage of point height, nor-
mal vector and slope, is used to filter and segment the road points. After that, a local
neighborhood feature is defined based on the vectors between a query point and its
neighboring points to obtain the outline and skeleton of the road. These steps finally
allow us to compute the volume of the roadside material that would have to be moved
to widen the road, in our study, by 4 m. In addition, an analysis of the quality of the re-
sults is presented notably by comparing results from different data sets both sampling
the region of interest. Finally, conclusions and future work are discussed.

For water flow direction forecast, this chapter computes the roadside environment
catchments and estimates where and how water would flow over the surface if it rains.
To some extent, stone fall is expected to follow the water flow direction as well. After
that, the D8 algorithm is used to estimate the water flow direction on the road surface
and roadside terrain. Based on these directions, the road environment is divided in
runoff sections.

4.2. Methodology
This section firstly explains the procedure for estimating the amount of roadside mate-
rial that has to be removed for road widening. Secondly, the methodology for estima-
tion of runoff from MLS point cloud data is presented.

1. Methodology for excavation volume estimation, as shown in Figure 4.1.

(a) Point cloud data pre-processing; the original point cloud data have a very
high point density and need to be down-sampled before processing. Addi-
tionally, outliers are removed, and a Digital Surface Model (DSM) is gener-
ated;

(b) Surface normal estimation;

(c) Slope and aspect estimation;
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Figure 4.1: Overall methodology of mountain road excavation volume
estimation.

(d) Road detection and segmentation; taking the normal and slopes as esti-
mated in steps (b) and (c) as input, an automatic iterative filtering approach
is used to segment the road points from the down-sampled point cloud
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data;

(e) Volume computation; the material volume that needs to be moved to widen
the road is computed based on step (d).

2. Methodology for estimating water runoff, as shown in Figure 4.2

(a) Point cloud pre-processing. The original point cloud data have very high
density and is down-sampled before processing. Outliers are also removed
as well;

(b) Local surface normal and 2D slope estimation;

(c) Road delineation, which allows to decompose the point cloud into road and
roadside points;

(d) Estimation of flow direction (in case of rain).

4.2.1. Pre-processing
Raw point cloud data have a very high point density, so for quick and efficient process-
ing, down-sampling is a necessity. The approach followed here is to represent the point
cloud data by voxels (Slattery et al., 2012; Gorte and Pfeifer, 2004; de la Puente et al.,
2008). In this chapter, a uniform-sized voxel filtering approach was used, as imple-
mented in the Point Cloud Library (PCL) (Gorte and Pfeifer, 2004). The main concept
of the approach is to create a 3D voxel using a given voxel size. All points in a voxel are
represented by their centroid (Foy et al., 2007).

The outliers of the down-sampled point cloud data have to be removed before es-
timating geometric features from the point cloud data. In this procedure, the query
point neighborhood concept is introduced, as shown in Figure 4.3. Here, P represents
the set of points within radius Rquer y of query point pquer y , so P is defined in Equa-
tion 4.1.

P = {
pi |

∥∥pi −pquer y
∥∥≤ Rquer y

}
(4.1)

Here, pi represents the individual points from the point cloud.
Outliers are the measurements located at edges or discontinuous boundaries where

there should be no points (Petitjean, 2002). There is abundant literature on the ap-
proaches used to remove outliers (May et al., 2008; Rusu et al., 2008; Rusu, 2010). The
approach used in this chapter is based on a statistical analysis of each point’s neigh-
borhood (Li et al., 2010a; Castillo, 2013). For each point pquer y ∈ P , the mean distance

d to its closest k neighbors is calculated. After that, for each point in the point cloud,
the mean distance and standard deviation of the distances to their k nearest neighbors
are determined. The main objective is to retain only those points whose mean distance
to the closest neighbors is similar to the mean distance. As this is a measure of the un-
derlying point cloud density surrounding a point, the criterion for keeping a point is
simply formulated as Equation 4.2.

P∗ =
{

pq ∈ P |(µk −ασk ≤ d ≤ (µk +ασk )
}

(4.2)
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Figure 4.2: Method for estimation of flow direction (in case of rain) from
MLS point cloud data

Here, α is a desired density restrictiveness factor, while µk and σk are the mean and
standard deviation of the distance from a query point to its neighbors respectively, and
P∗ is the set of remaining points.

4.2.2. Local surface normal estimation
The surface normal at a discrete point is a vector perpendicular to the tangential plane
of the local surface at that point. Various methods exist to estimate a normal at a certain
point in 3D point cloud data (Castillo, 2013; Dey et al., 2005; Thürmer and Wüthrich,
1997; Klasing et al., 2009; Puente et al., 2013a). The simplest is based on 3D plane fit-
ting. With this method, the problem of determining the normal of a point becomes
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Figure 4.3: Neighborhood of a query point within a certain radius.

a least-square 3D plane estimation problem for a suitable spatial neighborhood. Fig-
ure 4.4 depicts the concept of normal estimation in discrete 3D point cloud data.

Figure 4.4: Normal estimation at a query point using a local plane fitting approach.

When estimating a local normal using least-squares, the goal is to approximate the
tangent plane at a point of interest and take that plane’s normal. The best fitting plane
is obtained by determining those planar parameters that minimize the squared dis-
tances between suitable neighboring points and the plane to be estimated. Suppose
we have a point of interest with Euclidean coordinates (x, y, z)T and a set of k neigh-
boring points. The least-squares method yields a normal vector ~n = (nx ,ny ,nz )T , for
which the error defined in Equation 4.3 is minimized.

er r or =
k∑

i=1
(pT

i ~n −d)2 (4.3)

Additionally, |~n| = 1where pi = [xi , yi , zi ]T is a neighborhood point and k is the prede-
fined number of considered neighborhood points.
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The solution of Equation 4.3 for ~n is in general given by the smallest eigenvector of
the matrix M in Equation 4.4.

er r or = 1

k

k∑
i=1

(pi −p)(pi −p)T (4.4)

Here, p = 1
k

∑k
i=1 pi .

4.2.3. Local slope computation
The 2D slope, also known as the 2D gradient, is the vector field of a surface. The vec-
tor direction points in the direction of the greatest change in height, and the vector’s
magnitude is equal to the rate of change. Based on the previously generated gridded
DSM, the height at every grid point is interpolated from neighboring points by inverse
distance interpolation with power 2. If the grid size is dg r i d , then the slope Si in the
direction of each of the eight neighboring grid cells is given by Equation 4.5.

Si =
Hi −hquer y

di
(4.5)

Here, Hi is the elevation of the i-th neighbor of the query point, and hquer y is the
elevation of the query point itself. The variable di is the distance between the i-th
neighbor and the query point. Note that di is the square root of the grid size in diagonal
direction.

4.2.4. Road detection
Based on the normal vectors and slopes that were computed at each point in the pre-
vious steps, an automatic iterative point cloud data filtering approach is used to detect
road surface points from the point cloud data. The main steps are:

1. Input an initial grid and window size;

2. Generate a virtual reference 3D gridded layer. The elevation of each grid point is
interpolated from its neighboring points, and also the grid point’s normal as unit
vector and its direction to zenith. Based on this layer, a window of predefined
size is created to move over the grid and point cloud;

3. In the current moving window, compare for each grid point the 3D layer grid
elevation and the normal vector direction with that of the point cloud; Calculate
the height and angle differences between the 3D layer and the point cloud to
verify if the differences are beyond the threshold;

4. If the difference is less than the distance and direction threshold, then the point
is accepted as a road point, else the point is regarded as off-road point;

5. Go to step 2 and generate a new virtual layer using a smaller grid size, then itera-
tively process the point cloud again;

6. The loop ends when the grid size reaches a pre-defined smallest size.
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4.2.5. Calculation of excavation volume
In this step, based on the obtained road points from step 4, the outlines of road are de-
termined. First, a local feature descriptor is defined based on the neighborhood con-
cept.

As shown in Figure 4.5, if P = p1, p2, ..., pk is the set of neighbors of Pquer y within
radius Rquer y . The local vector ~ri at query point Pquer y is defined as ~ri = P k

i −Pquer y .
The edge descriptor is defined as the sum of these local vectors in Equation 4.6.

Figure 4.5: Illustration of local neighbourhood feature descriptor.

Edes =
k∑

i=1
~ri (4.6)

In case the query point is indeed an edge point, the value Edes is greater than that
of a non-edge point in the road point cloud and the direction of the descriptor toward
the inner body of the road.

After the road outline is determined, the road central line is estimated based on the
location of the road edges. Now suppose the road needs to be widened to four lanes.
As a consequence, a certain volume of the road has to be removed or added to extend
the flat road surface.

As shown in Figure 4.6, roadsides were divided into slices. For each slice, the vol-
ume is computed. Summing all of the sliced volumes together gives the total volume
that needs to be excavated or filled. Note that the sign of a sliced volume indicates
whether material needs to be removed (positive sign) or added (negative sign). Based
on the road central line and edge lines, as well as the expanded width of the road, the
expanded edge points are found.
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Figure 4.6: Computation of excavation volume.

To minimize the interpolation error, the resolution for both the road parallel and
the road perpendicular direction is defined based on the point cloud data resolution,
as shown in Figure 4.7.

Suppose V L
T and V L

T denote the total volume on the southern and northern side
respectively, such that ∆vL

i and ∆vR
i represent the volume of the i-th slice on southern

and northern side. NL and NR denote the number of slices. Thus, the total volume to
be moved on each side of the road is determined by Equation 4.7.

V L
T =

NL∑
i=1
∆vL

i ,

V R
T =

NR∑
i=1
∆vR

i

(4.7)

If for example V L
T > V R

T , we could choose to extend the road on the right side to save
time and expenses.

4.2.6. D8 algorithm
The D8 algorithm introduced by O’Callaghan and Mark (1984), is a grid based algo-
rithm and is widely used due to its simplicity. For a given query grid point, the D8
algorithm approximates the primary flow direction by choosing the direction to the
neighbor with maximal 2D gradient, as illustrated in Figure 4.8a.
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Figure 4.7: Slice volume computational geometry.

(a) (b)

Figure 4.8: Concepts of D8 algorithm. (a) D8 algorithm flow directions.
(b) Upstream catchment area of grid cells.

For example, the flow direction from the central pixel, with value 16, is downward,
because the gradient towards the pixel directly below, with value 11, is maximal among
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the eight neighbors of the central pixel. In the next step of the D8 algorithm, the flow is
followed. In Figure 4.8a, all flow eventually terminates at the pixels in the bottom row.

Applying this method on all the roadside pixels results in a decomposition of the
sampled roadside into different catchments. Large catchments correspond to a large
local water inflow, as shown in Figure 4.8b, and the area is defined as upstream catch-
ment area. The flow direction is determined for each pixel and pixels that are flowing
towards the same bottom pixel, the sink, are assigned in the same randomly allocated
color.

In this work, the original down-sampled point cloud data is organized in a uniform
grid, and the height assigned to a grid cell is the mean height of all points belonging
to the grid cell. Each grid cell is potentially surrounded by eight neighboring grid cells.
The gradient for each of these eight directions is obtained using Equation 4.8. Then the
D8 algorithm is applied to the gridded point cloud to compute the local flow directions
and, by accumulating flow to consecutively compute catchments and sinks.

Si =
Hi −hq

di
(4.8)

where Hi is the elevation of the i − th neighbor of the query point, and hq is the eleva-
tion of the query point itself, while di is the horizontal distance from the query point
to the i − th neighbor. Note that di is

p
2w in diagonal direction.

4.3. Implementation and testing of the method
4.3.1. Software implementation
The methodology described above is implemented on an ordinary Dell desktop com-
puter, which has an Intel Xeon 3.6 GHz CPU on board and 16 GB random memory. The
implementation of the software is in the C++ language. Also, the Point Cloud Library
(PCL) statistical outliers filtering tool is used in the processing. The whole processing
took 23.184 seconds for the tested data set containing 13,169,989 points.

4.3.2. Data description
The point cloud data studied in this chapter was acquired by the University of Vigo,
Spain. The approximate location of the studied road is shown in Figure 4.9.

The entire study area is shown in Figure 4.10. The study area contains a road in a
mountainous region. A top view of the data set is shown in Figure 4.10a. The mobile
LiDAR system selected for this work was the Lynx Mobile Mapper from OPTECH. The
Lynx uses two LiDAR sensors to collect survey-grade LiDAR data at 500,000 measure-
ments per second with a 360° FOV (per scanner) (Puente et al., 2013a,b).

The system incorporates the POS LV 520 unit produced by Applanix, which inte-
grates an Inertial Navigation System with two GNSS antennas, providing an accuracy
of 0.015° in heading, 0.005° in roll and pitch, 0.02 m in the X, Y dimension and 0.05 m
in the Z axis. All those data are determined by differential GPS post-processing after
data collection using GPS base station data. The coordinate system used for this work
is UTM-WGS84. The original point cloud data set contains 5,838,794 points and has
an average point density of 2084 points per square meter. It covers a 132-m stretch of
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Figure 4.9: Approximate location of the studied road.

road. In Figure 4.10c, we can see that the road was constructed in a mountainous area
and has steep embankments on southern and northern side as shown in Figure 4.10a.

4.3.3. Geometric computations
Slope computation
As depicted in Figure 4.11, the slope in this area varies from 0 to 88.1 degrees. The figure
is color coded with red indicating a large slope and blue indicating a small slope. Points
with small slopes are mainly road points. The points of the road sides have larger slope
values corresponding to the steepness of the road side terrain. The dots on the road
encircled in red have larger slope value than other road points; these are in fact traffic
cones that can also be seen in Figure 4.10d. There is a known landslide site located
within the light green circle, which has smaller slope values that stands in contrast to
the steep roadside of its neighboring points.

Road detection and segmentation
Road points were identified according to the method outlined in Section 4.2. The min-
imum virtual grid size was set to 0.1 m, because there is a very high point density in the
original point cloud dataset. Additionally, the height threshold was set to 0.3 m and the
angle threshold was set to 15 degrees. In this processing, a total of 42,717 road points
was abstracted and segmented, as shown in Figure 4.12.

Volume computation
First, based on the segmented road points, the road outline was determined following
the method of Section 4.2.5. In this chapter, the local descriptor threshold was set at
1.5, which means that all points with an edge descriptor value greater than 1.5 were
regarded as road outline points.
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(a) (b)

(c) (d)

Figure 4.10: Original point cloud data set of the study area. (a) Original MLS point cloud data in 3D view. (b)
Original MLS point cloud data in 3D side view. (c) Study area in Google Street View. (d) Data collection with
MLS.

The abstraction results are shown in Figure 4.13. In total, 429 outline points were
identified. Figure 4.13 (a) depicts the abstracted road central line, and Figure 4.13 (b)
illustrates in addition the road lines of a projected road expansion by 4 m on each side.

After the extraction of the points above the possible location of the widened road
(i.e., 4 m southern and northern of the current road), the vertical distances between
points representing the current surface and the expanded road planes were determined,
and the excavation volume was estimated. Figure 4.14 shows two profiles of the current
surface height at a distance of 4 m southern and northern from the current roadsides.
The horizontal axis follows the road starting from its lowest point. In this chapter, the
resolution in the road parallel direction was set to 1 m and in the road perpendicular
direction to 0.5 m. Figure 4.14 shows the overall height increase of the surface profiles
in the road parallel direction.

Figure 4.15 shows the volumes of the slices which were computed as described in
Figure 4.7. Because of some low water drain elements on the road side, there are values
that are below 0, which means that if the road is widened by 4 m, some of the volume
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Figure 4.11: 2D slope at each point of the studied road.

Figure 4.12: Segmented road surface from the original point cloud data
set.

should be moved to those locations to match the road surface height. The arrow points
to a location that has a greater surface height resulting in a slice with a larger volume.

Figure 4.16 shows the cumulative volume in the road parallel direction. At the
southern side of the road, 542.22 m3 needs to be excavated compared to 462.35 m3
on the northern side of the road. Because the studied road is not straight, the road
parallel direction distances for the two road sides differ. The northern side is 137.2
m long, whereas the southern side is 124.1 m long. At the location indicated by the
arrow in both Figures 4.15 and Figure 4.16, there is one slice with a particularly large
volume which causes a steep rise in the cumulative volume. As shown in the cumula-
tive volume estimation results, the material volume that needs to be excavated on the
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Figure 4.13: Road outline, central line and expanded road outline. (a)
Road central line and road outline. (b) Additional expanded road outline.

Figure 4.14: Profiled height on the expanded roadside. The light blue and
light brown correspond to the northern and southern road side.

southern side is 8% greater than on the northern side. When applied in real applica-
tions, such results may help engineers to optimize road widening design to minimize
the time and costs of the project.

Roadside points segmentation
Following the methods described in Section 4.2, the point cloud was filtered and vox-
elized using a uniform width of 0.1 meter. Then the point cloud was segmented and
decomposed into three parts: road points, northern roadside and southern roadside
points. This is illustrated in Figure 4.17. The points in blue are road points, while the
points in red and green are the northern and the southern roadside points respectively.

4.3.4. Catchments estimation results
Before the application of the D8 method to obtain the catchments from the roadside
slopes, a uniformed size grid was generated from the point cloud data. In this work,
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Figure 4.15: Slice volume computed from the expanded road outlines on
both sides.

Figure 4.16: Cumulative volume on the extended roadside.

the grid size was preset to 2.0 m. The on-road water flow directions are estimated, as
shown in Figure 4.18. In the figure, the flow directions are denoted by arrows. Using
the D8 method, the road is divided in catchments, which are indicated in Figure 4.18
by different colors. Dark cell have no outflow.

After the flow directions on the road were determined, the flow directions for off-
road point cloud data are also estimated, as shown in Figure 4.19.

In this figure, the sinks are in gray and all cells eventually flowing to the same sink
are colorized by the same color. Each sink is labeled by a digit. The number of grid cells
having runoff to each labeled sink in Figure 4.19 is given in Figure 4.20. There are 25
sinks on the southern roadside and 29 on the northern roadside respectively.

The results shows for example that the sink labeled as No. 15 on the north roadside,
has 44 contributing cells, which indicates that this sink has a lot of potential water in-
flow. Comparison to the original terrain model in Figure 4.10b shows that this sink is
actually located directly below the landslide area also shown in Figure 4.10c. The loca-
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Figure 4.17: Roadside points segmentation result.

Figure 4.18: Road water flow directions on each grid cells.

tion of this sink is indicated in Figure 4.10a by a green ellipse. The shape of the terrain
at this location is indeed such that more water is expected to accumulate. On the other
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Figure 4.19: Labelled roadside catchment area.

Figure 4.20: Count of catchment area cells for both roadsides.

hand, the sink labeled as 26 has only 5 contributing grid cells. And indeed, at this lo-
cation, the roadside is very steep and water flows directly on the road. In Figure 4.21,
the amount of saturation of the grid cells corresponds to the flow accumulation. That
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Figure 4.21: Accumulated inflow of each grid cell.

is, a cell with a high color saturation collects water from many cells. This also denotes
water flow direction.

4.4. Quality discussion and validation
There is no data available from other sensors that can be used to verify the computed
results. Instead the quality of the results is analyzed by considering the quality of the
input data in combination with an analysis of how this quality propagates into the final
volume computations. In addition, the excavation volumes were determined from a
second MLS data set, acquired in a second run by the same system on the same day.
Moreover, a possible measurement plan for further validation of the results is sketched.

4.4.1. Discussion on the quality of the results
Since the total volume is computed by summing up slices, the squared total error equals
the squared sum of the errors in the determination of each sliced volume. The random
error in the computation of a sliced volume consists of a variance component caused
by random measurement errors in the original point cloud. This component is denoted
asσPT S . Another variance component corresponds to the surface roughness and is de-
noted σR . Using the law of error propagation, the relationship between these errors is
given by Equation 4.9.

σ2
Tot al =

k∑
i=1

σ2
i =

k∑
i=1

(σ2
i ,pt s +σ2

i ,r ) (4.9)

Here σTot al is the total error of the volume computation, σi is the random error in the
estimation of the volume of the i-th slice, while σi ,pt s and σi ,r denote the point cloud
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measuring error and roughness of slice i respectively, k is the number of the slices
volumes, here equal to 132.

Thus, the error of the volume of a single slide is studied first. According to the spec-
ifications of the Lynx MLS and previous error studies (Puente et al., 2013b), the range
precision and range accuracy is 8 mm and ±10 mm, respectively.

As can be seen in Figure 4.22, such single slide is divided into 1-m by 0.5-m blocks
in the road parallel and the road perpendicular direction, respectively. In each block,
the mean and standard deviation of the points in that block are computed. A slice from
the north side slope of the road was randomly selected to compute mean and standard
deviation of points in each block of the slice. A side view of both the original and the
down sampled point cloud is shown in Figure 4.23.

Figure 4.22: Single slice volume computation error analysis.

The resulting standard deviation (std.dev.) values for the eight blocks that together
form the slice depicted in Figure 4.10 are given in Table 4.1. The average number of
points per block is reduced from 488 to 36. This table also clearly demonstrates the
purpose of the down-sampling strategy: close to the road, point density is very high
and therefore the reduction in the number of points is high as well. Further from the
road, the point density drops and a much larger fraction of the original point is main-
tained. On top of that, the geometry of the terrain with regard to the lasers on the car
has a strong influence on the point density.

To summarize the results from Table 4.1, we determine the differences between the
means per block from the original data and the reduced data. The mean of the absolute
differences equals 0.18 m. Further validation is needed to verify which means are actu-
ally better: the means from the original data are computed based on more points, but
some parts of the surface may also be overrepresented in the original point cloud due
to local variations in scanning geometry induced by local relief variations. For both the
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Figure 4.23: Side view of randomly selected road side slice. (a) Road side
points from original data. (b) Road side slope points from down sampled

data.

Dataset block 1 block 2 block 3 block 4 block 5 block 6 block 7 block 8

Original points
number 839 1070 571 284 200 175 354 415

mean 972.84 974.94 977.57 979.20 981.26 982.70 984.62 987.02
std.dev. 0.53 0.71 0.50 0.38 0.40 0.46 0.62 0.69

Down sampled
points

number 45 33 33 38 35 40 36 31
mean 972.43 975.03 977.24 979.19 981.31 982.76 984.54 986.60

std.dev. 0.51 0.59 0.59 0.57 0.48 0.56 0.65 0.75

Table 4.1: Mean and standard deviation of points per block in meters. First three rows: original point cloud;
Last three rows: down-sampled point cloud.

original and the reduced blocks, the std.dev. values are comparable, between 0.5 and
0.6 m. These std.dev. values are larger than the absolute differences between full and
reduced data, and also much larger than the quality of the individual points. Therefore,
it is concluded that these values are dominated by surface relief which is also clear from
Figure 4.23.

Assuming a std.dev. value per block of 0.55 m, the std.dev. per slice equals 1.56m.
Assuming 132 slices, this results in a std.dev. for the total volume on one road side
of 17.9 m. This std.dev. value corresponds to an error below 4%, when compared to
a value of 500 m3 of total excavation volume. As the current error is dominated by
surface relief, a reduction in the error could be obtained by decreasing the block size.

4.4.2. Validation using data from a second run
For validating the results shown in Section 4.3, in this paragraph the same method will
be applied to a second data set obtained using the same LMMS on the same day. The
differences in outcome will be compared to as discussed in Section 4.4.1.
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Description of the point cloud obtained in the second run
For the second run, the same system was used but the position of the car on the road
was different, as will be shown below. As for the first data set, the data of the second
run consists of a geo-referenced point cloud and of a data set giving the trajectory of the
LMMS car during data acquisition. The point cloud of the second run cropped to the
same piece of road consists of 6,374,830 points, and has a point density of 2,000 points
per square meter. A side view of the second run point cloud is shown in Figure 4.24.

Figure 4.24: Side view of point cloud data from the second run.

Computation results
Following the same methodology as described in Section 4.2, the data of the second
run was processed, and the excavation volumes for both road sides were computed.
The results are shown in Figure 4.25.

A comparison of the results from both data sets is given in Table 4.2. The results
show that the difference in excavation volumes for both sides of the road are within
the error budget as derived in Section 4.4.1, which was determined as 4% of the total
excavation volume.

Comparison analysis
As can be seen from Table 4.2, there are some differences in the excavation volumes
as computed from the original point cloud data and the data from the second run.
Recall that volumes are determined from 1 m slices that are further divided in eight
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Figure 4.25: Cumulative volume of a roadside extension determined from
point cloud data of the second run.

Southern roadside Northern roadside
Original data (m3) 542.2 462.3

Data from second run (m3) 556.3 478.2
Difference (%) 2.53 3.32

Table 4.2: Comparison of excavation volumes determined from original data and data from second run.

blocks, comparing Figure 4.22. To obtain insight in the differences between the out-
comes from the first and the second run, Figure 4.26 shows differences in height per
block of 1.0 meter in road parallel direction and 0.5 meter in road perpendicular direc-
tion. The dotted red line is the abstracted center line of the studied road. The purple
and chocolate line in Figure 4.26 depict the trajectories of the LMMS while collecting
the original and the second run point cloud data, respectively.

As shown in Figure 4.26, most of the blocks have approximately the same height,
which demonstrates that the two data sets are consistent. Only the purple circles indi-
cate locations where local height differences in the order of 1–2 m occur. Examining the
two point clouds in detail indicates that at those locations hardly any points were sam-
pled in one of the two runs. This local under sampling is probably caused by limited
visibility of the roadside from the location of the LMMS acquisition.

This effect is illustrated in Figure 4.27, which shows a schematized cross section
roadside geometry. For the trajectory 1, the purple area is invisible from the LMMS and
is therefore not sampled. However, the area can be scanned from trajectory 2. A good
solution would be to combine data from both runs such that the two point clouds data
can supplement each other in such situations.
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Figure 4.26: Height difference per block between original and second run
point cloud data (meter).

Figure 4.27: Geometry relation between LMMS and steep roadside
terrain.

4.4.3. Proposal for further validation
There are several options to further validate the results of the methodology proposed
in this chapter in a field experiment. A general idea is to locally use other, preferably
superior measuring methods to sample the geometry of a piece of the road and road
side considered, and repeat the computations with these superior data. A traditional
method would be to use a total station or RTK-GPS to measure some profiles of 3D
road surface points in a local geo-referenced datum, and import the obtained data into
modeling software such as AutoCAD or 3ds Max, to construct a local road model and
compute the volume. This method should give accurate results, but is labor intensive.
A total different approach would be to actually perform measurements directly before
a planned road extension. In this way, the real volume of the material that is excavated
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can be measured and compared to the results of the analysis of the corresponding MLS
data.

4.5. Conclusions
This chapter answered the following research question:

How to estimate water flow directions and excavation volume on mountain roads
from MLS point clouds?

In this chapter, a method is proposed for the estimation of the excavation volume
of a planned road widening from a MLS point cloud. Starting with a MLS point cloud
data sampling a mountainous road, we used a uniform-size voxel to down-sample the
point cloud data and remove outliers. Then, local normals and 2D slopes were esti-
mated at each resulting grid point to separate road from off-road points. Finally, the
volume needed to excavate the road by 4 m on both sides was computed. It was shown
on MLS data representing a mountain road in Spain that the volume to be excavated on
the southern side differs by 8% to that on the northern side. A more detailed analysis
of one slice of data indicates that the error in the estimated excavation volume is be-
low 4%. The results were partly validated by a comparison to results from analyzing a
second point cloud obtained by the same system on the same day, but from a different
trajectory. The resulting excavation volumes as estimated from both data sets differed
by 2.5%–3.5%.

A further step would be to use the proposed method for determining the widening
of the road of, e.g., 4 m by x meters on the northern and (4−x) meters on the southern
side, with 0 ≤ x ≤ 4, that minimizes the moved volume over a stretch of, say, 100 m of
road. Further research is also needed to determine an optimal block size: In this chap-
ter, blocks of size 0.5 meter by 1 meter are used; reducing the block size will decrease
the effect of surface relief on the error, but will increase the effect of measurement noise
and varying point densities.

Since mountainous roads have complicated morphological environments and face
threat from landslides and rock fall, there is a need for road and road environment
safety inspection and monitoring. To meet this obligation, detailed and continuous
road environment surface flow modeling has to be acquired. MLS can acquire point
clouds in an efficient way, both from a time and costs perspective. For this reason
we have presented a method to estimate roadside properties, which are the gradient
and slope, and then the catchments on the roadside slope are computed with the D8
algorithm. The number of cells in each catchments is a measure for the amount of
water flow into the corresponding road surface location.

In this thesis, the cell size was set to 2 meters only for the feasibility demonstration
of the D8 method in the catchments and runoff estimation. But for practical and high
quality purpose, the resolution could be much higher, e.g. up to 25 cm, as long as the
point cloud density in the original data is high enough. Also, to validate the catchment
estimation results, other data sets could be introduced, like airborne laser scanning
data, total station surveying or GNSS profiling of the terrain.

To evaluate the results, other Geography Information System (GIS) software could
be used to evaluate the flow direction and compare the results. A future work would
be the monitoring of the sink locations, and to inspect if local road erosion is corre-
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lated with the size of the inflowing roadside catchment. Note that the D8 method as
presented here, requires a non-trivial slope. That is, if the surface off or on the road
is locally flat, the method would be stuck. A possible solution is to take the expected
speed and direction of water flow into account.
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Roadside trees in urban areas are an important component of a community and
are efficiently sampled by MLS systems. For monitoring and inventory purposes, the
trees need to be individualized. This chapter presents an adjacency analysis based
algorithm for roadside and urban tree individualization using voxels from MLS point
clouds. First the problems is further specified in the introduction and existing methods
are discussed. Then, the newly developed methodology is described in detail. Next, the
methods is tested and validation of the results is given.

5.1. Introduction
Trees play an indispensable role in the urban environment and tree management is of
great interest for biomass estimation and monitoring environmental changes (Cottone
and Ettl, 2001; Zheng et al., 2007; Van Deusen, 2010; Moskal and Zheng, 2012). Tra-
ditionally, trees are manually measured in situ, which is time-consuming, costly and
susceptible to subjective errors. Besides, adverse site conditions can make access dif-
ficult (Hopkinson et al., 2004).

LiDAR has become a well established surveying technique for the acquisition of
geo-spatial information (Vosselman and Maas, 2010). Laser scanning uses powerful
highly collimated laser light as a probe (Cifuentes et al., 2014). The laser pulse interacts
with the measured object and is partly back-scattered to the detector which enables it
to acquire the distance between the sensor and illuminated spot (Dassot et al., 2011).
Laser scanning obtains dense 3D point clouds, which provide a comprehensive geo-
metrical description of object. Taking advantage of the high scanning speed of LiDAR,
dense raw point cloud data of a whole area can be collected in a short time. Com-
bined with automatic point cloud processing techniques, this in principle enables the
efficient extraction of geometric tree parameters. In recent years, many studies have
investigated the application of LiDAR implemented in airborne laser scanning (ALS),
mobile laser scanning (MLS) and terrestrial laser scanning (TLS), for tree and forest
applications. A typical processing flow consists of three steps: (i) separate tree points
from non-tree points; (ii) identify individual trees among all tree points; and (iii) esti-
mate parameters describing individual tree geometry.

Nowadays, large scale urban tree inventories call for flexible and efficient meth-
ods to segment tree points from raw point clouds. Identifying tree points in raw point
clouds is a fundamental step in tree modeling using laser scanning. Many algorithms
have been developed for detecting and classifying trees from point clouds captured by
different sensors. A conventional method is first to segment non-terrain points and
then extract all tree points based on the height distribution of the points (Vosselman,
2000; Axelsson, 2000; Sithole and Vosselman, 2004; Kraus and Pfeifer, 1998; McDaniel
et al., 2012). This methodology is robust and digital elevation models (DEM) and digital
surface models (DSM) can be generated in parallel. Other approaches are region grow-
ing (Pauling et al., 2009; Aijazi et al., 2013), feature based tree classification (Lin et al.,
2014; Strom et al., 2010; Rutzinger et al., 2010; Yang and Dong, 2013) and canopy model
fitting method (Lahivaara et al., 2014). With the availability of small-footprint full-
waveform LiDAR systems, algorithms like (Guo et al., 2011; Vaughn et al., 2012; Lind-
berg et al., 2014) are proposed to exploit the waveform features of the back-scattered
waveform to classify tree points. Since more sensors can be integrated on the same
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platform, like in (Guo et al., 2011; Vaughn et al., 2012; Karolina et al., 2013), hyper-
spectral and multi-spectral images are integrated in the classification and extraction of
trees (Puttonen et al., 2011). There are also numerous methods available to extract tree
points from MLS and TLS point clouds (Belton and Lichti, 2006; Rutzinger et al., 2011;
Yang et al., 2012b; Zhong et al., 2013; Sirmacek and Lindenbergh, 2015; Wang et al.,
2015).

Individual tree delineation, the second step in the processing chain, aims at sep-
arating single trees from the segmented tree points. Since this is the primary focus of
this work, existing methods will be discussed in Section 5.2.

Tree modeling has been studied in fields like computer graphics, forestry and re-
mote sensing, for various purposes. Tree parameters have been extracted and models
of trees are reconstructed from ALS point clouds (Vosselman et al., 2004). Based on
TLS point clouds, forest geometry has been reconstructed for canopy radiative transfer
models (Bremer et al., 2015). Also, an automated workflow has been presented to ex-
tract 3D tree models from MLS point clouds (Rutzinger et al., 2011). An octree-based
space division procedure was introduced to extract tree skeletons (Bucksch and Lin-
denbergh, 2008). In 2013, Tang et al. proposed an algorithm to reconstruct 3D surface
of tree canopy from LiDAR point cloud (Tang et al., 2013). The method first obtains
a stack of separated slices corresponding to different height levels. Next the acquired
boundaries were combined to form canopies of individual trees. However, those meth-
ods are either not scalable and computationally expensive, or consider point clouds
obtained from one type of sensors only. The algorithm we propose can deal with dif-
ferent situations and is demonstrated in several case studies involving data from ALS,
MLS and TLS systems including challenging scenarios, like separation of trees on steep
terrain and trees partly occluded by a wall.

This paper is structured as follows. Section 5.2 discusses existing methods of tree
separation in ALS, MLS and TLS point clouds. Section 5.3 presents the newly proposed
VoxTree algorithm for individual tree delineation. Then the results and evaluation of
the algorithm are presented in Section 5.4. Section 5.5 gives concluding remarks and
recommendations.

5.2. Related work and proposed innovations
Existing methods used for individual tree delineation are categorized into two classes,
point based approaches and voxel based approaches. The first class deals with all tree
points while the latter consider voxel cells containing points. A detailed review of the
two approaches is given below.

5.2.1. Point based approaches
Many available algorithms already proved their feasibility to individualize single trees
and estimate their parameters from ALS, MLS and TLS point cloud data. In 2006, Sol-
berg et al. presented a method that first generates a canopy surface model from an ALS
point cloud. Then based on the surface model single trees were segmented and charac-
terized (Solberg et al., 2006). Based on the vertical distribution of the ALS point clouds,
shapes of spruce and pine trees were constructed to individualize and discriminate
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these two kinds of trees. Also tree position, height and crown diameter of the individu-
alized trees were estimated (Persson et al., 2002; Holmgren and Persson, 2004). In 2001,
Hyyppä et al. proposed to build a terrain model and a canopy model and then generate
a 3D tree height model. Based on this tree height model, individual trees were extracted
and also parameters, such as tree height, area projected on ground and stem diameter
can be derived (Hyyppä et al., 2001). Gorte et al. identified 2D local maxima in 2D
point densities to distinguish tree canopies from surrounding objects in 2009. Next,
trees were delineated based on the obtained maxima (Rahman et al., 2009). Rutzinger
et al. introduced an alpha shape approach for point cloud reduction and tree models
are generated consisting of tree crown and a realistic trunk (Rutzinger et al., 2010). Al-
pha shape is a generalization of convex hull and is able to describe the shape of point
entities, however, it also needs to tune the radius (Kirkpatrick and Seidel, 1983). Con-
secutively in a MLS scanned point cloud, trees are detected and their parameters are
estimated by the method in (Weber and Penn, 1995). The accuracy of tree detection
was 85% (Rutzinger et al., 2010). In their work the tree trunk and tree crown branch
structure were considered. Although this method reduced the volume of the point
cloud data and partly preserved the geometry of trees, this method introduced an ex-
tra step to determine the alpha shape which also affects its computational efficiency.
In 2012, Li et al. presented a new region growing method to segment individual trees
from ALS point clouds by taking advantage of the relative spacing between trees (Li
et al., 2012). The method segmented 94% of the trees correctly. However, this method
was only tested on sparse discrete ALS point clouds. In 2014, Vega et al. proposed an
algorithm to segment single trees by obtaining the local maximal point in k nearest
neighbor points in the 3D space. Points are processed from the highest to the low-
est height value and points are assigned to corresponding tree segments (Vega et al.,
2014). This algorithm was tested on three different forest types and 82% of the trees
were successfully detected. In 2014, Duncanson et al. presented a method to delineate
multi-layered crown for mapping individual tree structure by using a watershed-based
canopy height model (Duncanson et al., 2014). The method could identify 70% of dom-
inant trees. The method was able to determine tree parameters, such as tree height,
crown radius and crown area. In 2014, Lu et al. developed a bottom-up approach to
segment individual deciduous trees with leaf-off LiDAR point cloud data based on the
intensity and 3D structure (Lu et al., 2014). The approach was tested on a forest and the
results implied that 84% of trees were detected and 97% of the segmented trees were
correct.

5.2.2. Voxel approaches
One way to speed up point cloud processing is to consider voxels rather than individ-
ual points. In 2008, Wang et al. presented a voxel based procedure to analyze vertical
canopy structure of trees and to obtain 3D models of single trees sampled by ALS (Wang
et al., 2008). The algorithm first re-samples the input point cloud to voxels and a series
of horizontal 2D projected images at different height are generated in the voxel space.
Then the main tree canopy layer and the height ranges of the layers are detected ac-
cording to a statistical analysis of the height distribution of the normalized raw point
clouds. Compared to point based methods, this approach improved on efficiency, but
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does not consider the relationship between voxel cells. Bienert et al. introduced a voxel
based method to analyze wind field models of a TLS scanned forest scenario (Bienert
et al., 2010). The stems of trees are automatically detected before the 3D point cloud
is translated into a voxel structure representing the forest. Then voxels are clustered
based on a region growing concept and finally individual trees are interpreted.

Several algorithms were also designed to process point clouds using voxels, that did
not consider trees so far. In 2013, Papon et al. presented a region growing algorithm
to perform segmentation for point clouds (Papon et al., 2013). In their study, 3D over-
segmentation of point clouds was conducted using the relationship between voxels
and the results were then merged to ensure consistency with the spatial geometry of
the scene. However, the algorithm was only tested on indoor objects scanned by a TLS.
Aijazi et al. presented a method to classify 3D urban MLS point clouds based on voxels,
but trees were not studied (Aijazi et al., 2013). Cabo et al. detected pole-like objects
from MLS point clouds using voxel based methods (Cabo et al., 2014). The method first
simplified the imported huge high density MLS point cloud by a regular voxelization.
Then by assessing the local morphology of the voxel cells, trees could be classified and
individualized. Nevertheless, the street trees are mainly of the same size and do not
overlap much. Moreover, ALS and TLS point clouds were not tested yet. Babahajiani
et al. presented an automated method to classify urban environments based on super-
voxels (Babahajiani et al., 2015b). In this study buildings, roads, trees and cars were
successfully classified. However, delineation of overlapping trees was not studied.

In 2013, Wu et al. presented a voxel based tree detection method to detect street
trees from MLS point clouds (Wu et al., 2013). This method is computationally efficient
and is able to extract single trees in a street scenario. However, this method focuses
on MLS scanned point cloud data, separating trees from ALS and TLS scanned point
clouds is not yet considered. Their method searches for trees starting from the bot-
tom layer of a 3D grid, therefore it is unable to detect multiple-stemmed trees or trees
that have their trunk occluded. Notably, this method shows its feasibility in separat-
ing street trees of similar size, which are along a road and connect mainly in the road
direction. Urban trees which vary in size and are closely connected in different direc-
tions are not yet evaluated. Their method employed an incremental competing region
growing algorithm proposed in (Liu et al., 2006) to separate touching tree crowns. The
strategy takes the relative distance to tree centers into consideration rather than the
actual connections between voxel cells. This introduces separating errors in case a big-
ger tree touches a smaller tree, as points of the bigger tree will be wrongly assigned to
the smaller tree.

5.2.3. Proposed innovations
Our proposed voxel-based individual tree delineation algorithm is different from the
previous methods with respect to the following points:

1. The attribution of the voxel cells to individual trees is based on a novel adjacency
analysis, which makes the separation of connected trees more accurate. Notably
in the case of connected trees that vary in size.

2. In the voxelization step, the size of the voxel cell is different in the three Cartesian



5

80 5. Urban and Roadside Tree Individualization

coordinate axes directions, which makes the algorithm more flexible in compli-
cated scenarios.

3. A 3D clustering step clusters non-empty voxels and immediately separates non-
connected components. This allows the algorithm to work efficiently on large
data sets.

4. The individual tree delineation is performed both in a bottom-to-top and top-to-
bottom scheme, which not only can separate trees that are occluded by a high
wall and do not have their trunks scanned by the LMMS, but also verifies the
results in two directions and makes the algorithm more reliable.

5.3. Methodology
The methodology presented in this chapter consists of six steps, as illustrated in Fig-
ure 5.1. The first step is pre-processing, which classifies tree points from the raw point
cloud. Then the segmented tree points will be imported as input for the next steps.
The second step is voxelization, which re-samples the imported tree points to voxel
cells corresponding to preset voxel cell sizes. In the third step, connected voxel cells
are clustered in 3D space. The fourth step is seed selection over all the clustered cells.
Then clusters are individualized in the fifth step. The final step is to evaluate the overall
individual tree delineation quality. In the next sub-sections the details of the proposed
algorithm are given.

5.3.1. Pre-processing
In this step, tree points are classified and segmented from the original raw imported
point cloud. Since this part is not the main focus of this work, this step is done with ex-
isting methods. The tree points can either be obtained by automatic filtering methods
or with manual segmentation.

In this work the tree points are extracted in two steps. First, the imported orig-
inal raw point cloud is classified as ground and non-ground points by using the al-
gorithm presented by Kraus and Pfeifer (Kraus and Pfeifer, 1998). Then based on the
non-ground points, the tree points are extracted by the algorithm presented in (Sirma-
cek and Lindenbergh, 2015).

5.3.2. Voxelization
Voxelization of a point cloud means to re-sample its points by voxel cells. The voxel
cell designed for the proposed algorithm is a cuboid rather than a cube, which enables
voxel cell to have different edge lengths in the three coordinate directions. The voxel
cell sizes in the three directions are denoted by Wx , Wy and Wz respectively. The vox-
elization is performed as described in Section 3.2.4.

5.3.3. Cluster 3D connected cells
To save computation time and deal with trees that have big height differences, the con-
nected cells are clustered after point cloud voxelization. In this study, a 3D seed filling
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Figure 5.1: Overall methodology of the proposed VoxTree individual tree delineation method.

algorithm from (Yu et al., 2010) is employed to perform the clustering on all the Pos-
itive, as shown in Figure 3.5, cells before individual tree delineation. First all Positive
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cells are labeled as non-visited. Then for the current cell, its neighbor cells among its 26
3D neighbors are obtained. All positive neighbors, that are non-visited, are pushed on a
cluster stack. This step is recursively performed until all the positive cells are traversed.
The output of this step are the connected cells, which are represented as clusters. In
this step, all the cells are traversed only once. Thus the computation complexity of this
step is linear, which is O(N ) in asymptotic notation (Cormen et al., 2001), if there are N
cells.

5.3.4. Select seed cells
The separation of the clustered tree cells into individual trees starts with seed cell iden-
tification. A seed will potentially result in one individual tree after separation. Since
the procedure of separation from the bottom layer upwards is similar to the separation
from the top layer downwards, this section will only describe the methodology from
the top layer downwards in detail.

Firstly, a cell is defined as a top cell if and only if this cell has a bottom-face neigh-
bor but has no top-face neighbor cell. Here, bottom-face neighbor of a cell is the cell
that connects with the bottom face of the query cell. For example in Figure 3.5, cell B
is the bottom-face neighbor of cell C . While C is the top-face neighbor of cell B . Fig-
ure 5.2 depicts a scenario with two clusters that contain two connected trees and one
individual tree. The colored cells are the initially identified seed cells of the two clusters
respectively.

Next connected seed cells are clustered, resulting in the seeds S1, S2, S3 and S4 in
Figure 5.2. Note that at this stage, one seed typically consists of a number of connected
cells. The location of a seed is defined as the center of gravity of all the points inside
the seed cells.

Figure 5.2: Connected cells are clustered as potential seeds of individual trees from the top layer downwards.
S1, S2 and S3 are potential seeds of Cluster 1 and S4 of Cluster 2.
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5.3.5. Tree separation
The tree separation procedure starts with the identified potential seeds in Section 5.3.4.
The strategy described in this section is to separate trees starting from the potential
seeds in the top layer of the cluster downwards to the bottom layer.

Detect multiple component clusters
This section categorizes the clusters as generated in Section 5.3.3 into multiple and
single component clusters. A multiple component cluster is expected to have more
than one tree. A cluster is considered as having multiple components if and only if this
cluster meets the following conditions.

1. The cluster has at least two identified potential seeds.

2. The minimum distances between any two potential seeds are larger than the pre-
set minimum tree canopy diameter.

If a cluster does not meet the conditions, it will be considered as a single compo-
nent cluster and it is recognized as an individual tree. A detected multiple component
cluster will be forwarded to the tree separation step, as illustrated in Figure 5.1.

Seeds inheritance
Merging close by seeds avoids separating one tree with several high branches into more
trees. After the potential seed cells are identified, the separation of multiple compo-
nent clusters starts with merging close by seeds. Figure 5.3 shows a side view of the
scenario from Figure 5.2, which has two connected trees.

As the figure illustrates, the voxelization resulted in 7 vertical layers. The identified
potential seed cells are firstly clustered and labeled as S1, S2 and S3. Points P1, P2

and P3 are the centers of gravity of the points in each of the seed clusters respectively.
The horizontal distances between the centers of gravity of all the potential seeds are
computed. As shown in Figure 5.3, the horizontal distances between the three selected
seed cells are D12, D23 and D13, as computed between points P1, P2 and P3. Close
by seeds are merged in an iterative way. First the distances are sorted in ascending
order and for the pair of closest seeds it is evaluated whether the horizontal distance
is smaller than the preset minimum tree canopy diameter. In Figure 5.3, horizontal
distance D23 is smaller than the preset minimum tree canopy diameter DT , thus seed
S2 and S3 are merged as one seed and labeled as S2 as illustrated in Figure 5.4. Next
distances between seed pairs are recomputed and the distance evaluation is repeated
until no distance between seed cells is below the tree canopy diameter threshold.

After merging the close by seeds, their bottom-face neighbors are obtained that
inherit the cluster index from their top-face neighbors. As illustrated in Figure 5.4, the
bottom-face neighbors of seeds S1 and S2 in layer 7 are identified, which are colored
in light cyan and orange respectively. Those cells inherit the cluster index and form
the new seeds of layer 6. The same operation is conducted when traversing to the next
layer downwards.

Similar operations are performed when traversing from the bottom layer upwards.
As shown in Figure 5.3, the red cells are seed cells, and the same distance evaluation
is conducted on the centers of gravity denoted by points P4 and P5. Then similar
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Figure 5.3: Seed cells identification and merging. The distance D23 is smaller than the preset minimum tree
canopy diameter DT , thus potential seed S2 ans S3 are merged together as one bigger seed.

seed merging and index inheritance operations are performed until the procedure has
reached the top layer of the voxel cells.

Assign cells to individual trees
The objective of this step is to assign cells to individual trees. After seed identifica-
tion and merging, seed indices are inherited by bottom-face neighbor cells and sepa-
ration continues at the next layer of voxel cells. If at a given layer, cells are connected
to only one seed cell, then the cells are assigned to the corresponding tree. However,
the situation becomes more complicated when traversing to a layer where all cells are
connected and have more seed indices inherited from the top layer seeds. As shown
in Figure 5.4, layer 5 will have two inherited tree label indices from layer 6. To sepa-
rate cells for those kind of layers, an adjacency analysis based cell assigning strategy is
presented in this study.

Rather than simply considering the distances, connectivity based separation takes
the neighborhood of the cells into account. Figure 5.5 is a top view of layer 5 as illus-
trated in Figure 5.4. The cells in cyan and orange have indices inherited from top-face
neighbor seeds S1 and S2 respectively, as depicted in Figure 5.4. The striped orange
and cyan filled cells are boundary cells of the two trees in layer 5 and are identified
first. Boundary cells of seeds are defined as seed cells that have at least one unassigned
cell among their 8 2D neighbors.
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Figure 5.4: Inherit label of trees from top layer. Tree label of the lower layer cells, S
′
1 and S

′
2 are inherited from

their top-face neighbor seeds, which are S1 and S2 respectively.

Unassigned cells will be assigned to a tree according to a connectivity coefficient.
First, the connectivity coefficient is set to 1 for all boundary cells. Then the coefficient
is propagated to its unassigned neighbor cells. The Connectivity coefficients are com-
puted by Equation 5.1.

c(t , s) =C (t , s)×R(k) (5.1)

Here c(t , s) is the connectivity coefficient of a t ar g et cell with regard to a sour ce
cell. C (t , s) is the neighbor type of the t ar g et cell with respect to the sour ce cell and is
determined by Equation 5.2.

C (t , s) =
{

0.50, t is face-neighbor of s
0.25, t is edge-neighbor of s

(5.2)

A cell t is defined as a face neighbor of source cell t , if either t is sharing a face with s,
or when all cells on the straight line connecting t with s are face neighbors of s as well.
If a cell is not a face neighbor of a source cell, it is an edge neighbor of a source cell. For
example in Figure 5.5, cell d , e, g , m, p and l are face-connected neighbor cells, while
f , n, h and o are edge-connected neighbor cells of boundary cell A respectively.

R(k) denotes the attenuation of the influence from the source cell to its unassigned
neighbor cells and is defined as R(k) = 1

k , with k the order of the cell with regard to
the sour ce cell. The order of a cell with regard to a source cell is defined as the length
in number of voxels of the shortest path connecting source and target. For example in
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Figure 5.5: Connectivity based cells separation. Boundary cells of seed S1 and S2 are obtained will used to
compute the adjacent coefficient to all unassigned cells in the same layer, such as d , e, f and g etc..

Figure 5.5, unassigned cells d , e, f and g are directly connected to cell A, so they are
1-st order cells of A, so k = 1. Similarly cells m, n, h and l are 2-nd order cells and k = 2.

All the boundary cells propagate their connectivity coefficient to the connected
unassigned neighbor cells of different orders until there is no connected unassigned
cell in the same layer. For example in Figure 5.5, cell B has cell u and v as its first order
neighbors and cell s as its second order cell. After propagating its connectivity coeffi-
cient first to cell u and v , and consecutively to cell s, cell B has finished its connectivity
propagation procedure. Cell C has no unassigned connected cells, so no connectiv-
ity coefficient with respect to C needs to be computed. After all the trees in one layer
propagate their connectivity through their boundary cells to the unassigned cells in the
same layer, the unassigned cells then have their accumulated connectivity coefficients
corresponding to each tree. The unassigned cells are then assigned to the tree that has
the largest accumulated connectivity value. After all the cells are assigned to an indi-
vidual tree segment, then the points inside all the voxels are exported as individual tree
points directively.

Example of connectivity coefficients determination
Figure 5.6 is a zoomed in display of the red rectangle area in Figure 5.5, which shows the
accumulated connectivity coefficient values of each cell with respect to the boundary
cells of the two trees S1 and S2. In Figure 5.6, the value in the upper right corner of each
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cell is the accumulated connectivity coefficient value of tree S2 while the value in the
lower left corner corresponds to that of tree S1.

Figure 5.6: Computed adjacent coefficient of the unassigned cells. An unassigned cell will be assigned to a
tree that has the biggest adjacent coefficient, such as cell f will be assigned to S1.

The accumulated connectivity coefficient value of an unassigned cell to a tree in
the same layer is computed by Equation 5.3. Note that in Figure 5.6 those values are
only computed based on the boundary cells in the rectangle for demonstration.

c(t ,S j ) =
n∑

i=1
ci =

n∑
i=1

C (t , si )×Ri (5.3)

Here c(t ,S j ) is the accumulated connectivity coefficient of an unassigned cell prop-
agated from all boundary cells of tree S j , n is the number of the boundary cells of the
tree, ci is the connectivity coefficient value of the i − th boundary cell, C (t , si ) and Ri

are the neighbor type and the inverse order of the unassigned cell with respect to the
i − th boundary cell si . For example, the connectivity values of cell f in the red rectan-
gle in Figure 5.6 to tree S1 are computed as follows:

c1 = {ca1 + ca2 + ca3 + ca4 + ca5 + ca6}

= 0.25

3
+ 0.5

3
+ 0.5

2
+ 0.25

2
+ 0.25

1
+ 0.25

3
= 0.96

(5.4)

Here ca1, ca2, ca3, ca4, ca5 and ca6 are the connectivity coefficients for boundary
cells a1, a2, a3, a4, a5 and a6 respectively. Take ca1 for example: cell f is an edge-
connected, third order neighbor of boundary cell a1. The influence from cell a1 is de-
termined as 1

3 . Therefore the connectivity coefficient of cell a1 with regard to f will be
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Figure 5.7: Assigning results of the cells. All unassigned cells are assigned to a particular tree as their color
indicated.

0.25
3 according Equation 5.1. Similarly, the connectivity values to tree S2 are computed

as follows:

c2 = {cb1 + cb2 + cb3 + cb4 + cb5 + cb6}

= 0.25

3
+ 0.5

1
+ 0.25

2
+ 0.5

2
+ 0.25

2
+ 0.25

3
= 0.92

(5.5)

Since c1 > c2 for cell f , it is assigned to tree S1. The resulting cell assignments are
illustrated in Figure 5.7. It can be seen that cell o, p, m, n, h, q , r and f in light blue are
assigned to tree S1, and cell d , e, g and l in light orange are assigned to tree S2.

Full connected tree separation algorithm

The full procedure for separating connected trees is summarized in Algorithm 1.

In the algorithm, function DETERMINEBOUNDARY() is used to obtain the boundary
cells of a 2D seed cluster. The function SEARCHNEIGHBORCELLS() is implemented to
perform 2D neighborhood searching and function MAXTREECOEFFICIENT() acquires
the index of the tree that has the largest connectivity coefficient for the considered cell.
Suppose there are N cells in this cluster of connected trees, first all the cells are at least
traversed once, then the unassigned cells are assigned to a correspondent tree.

After a cell is assigned to a tree, the cell is labeled as a component of the tree. After
all the cells in the current layer are assigned to the corresponding trees, the indices of
the cells are inherited by the bottom-face neighbor cells in the next layer downwards.
This operation continues until the bottom layer of the voxel cell is reached.
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Algorithm 1 Cell assignment in multiple seeds layer

Input: Tree seeds s and unassigned voxel cell w in the same layer
Output: Cells assigned to the correct tree

1: function ASSIGNCELLS

2: for each tree seed si do
3: boundary cells bi ← DETERMINEBOUNDARY();
4: for each cell v j of Boundary bi do
5: neighbor cells n←SEARCHNEIGHBORCELLS();
6: while n 6= empty do
7: for each neighbor cell nk do
8: ci +=C (t , si )×Rk

9: end for
10: end while
11: end for
12: end for
13: for each unassigned cell wm do
14: i d←MAXTREECOEFFICIENT(c );
15: assign cell wm to tree si d ;
16: end for
17: end function

5.3.6. Overall quality analysis
This section describes the strategies that evaluate the individual tree delineation qual-
ity and the parameters estimation quality in this study. During the tree separation
process, whether from top layer downwards or from bottom layer upwards, each in-
dividualized tree has a quality flag assigned to it according to the size of the tree. If the
individualized tree canopy diameter is bigger or smaller than a preset threshold, the
flag is set to 0; else the flag is set to 1. For those trees that were labeled as 0, another
separation is conducted in the opposite direction. If this results in a valid separation
result (i.e., with flag value 1), this result is then chosen as the final tree separation re-
sult. If both traversal directions result in a quality flag of 0, this result is given as output.
Such negative results could be an indication for a human operator that further inspec-
tion is needed. However, for validation of the separation results, different strategies for
different scenarios are given in Section 5.4.

5.3.7. Expected computation efforts
The computational effort of the proposed method depends on the size of the voxel cell
and the complexity of the algorithm. Suppose the 3D bounding box of the tree points
is D and the voxel cell size is d , then the number of cells is N = ( D

d )3. Since the cells will
be traversed at least once, a lower bound for the computational efforts is Ω(N ). Also
the complexity of clustering connected cells in Section 5.3.3 is O(N ). However, it is
difficult to estimate accurately the complexity of tree separation since the connectivity
coefficients determination depends on the number of boundary cells, which deviates
in different scenarios. In this study an empirical computation time analysis will be



5

90 5. Urban and Roadside Tree Individualization

given in Section 5.4.2.

5.4. Results evaluation
To verify the flexibility and reliability of the proposed algorithm, five tests are per-
formed: (i) separating the same trees sampled by different sensor systems; (ii) sepa-
rating the same trees sampled by the same sensor, but with different voxel sizes; (iii)
separating trees with occluded trunks; (iv) separating trees on steep terrain; and (v)
separating trees connected in different directions. Finally the VoxTree method is val-
idated and compared against manually processed ground truth data and an existing
method (Wu et al., 2013) using a patch of 11 trees scanned by TLS. The results of these
tests are discussed below.

5.4.1. Same scenario from different sensors
In this section, the flexibility of the VoxTree method is evaluated on a group of three
trees, which were scanned consecutively by ALS, MLS and TLS. Those data sets sample
two connected trees and one isolated tree. The details of the data sets are given in
Table 5.1.

ALS MLS TLS
Scanner Unknown(van der Sande et al., 2010) Fugro DriveMap Leica-C10
Number of Points 3,640 112,957 2,346,740
Scanning Date Before 2011.11.30 2013.11.23 2015.07.23

Table 5.1: Details of the three test data sets

Figure 5.8 shows three sets of point cloud of the same trees. Because of differences
in scanning mechanism and acquisition geometry, point distribution and density are
dramatically different. Compared to MLS and TLS, as illustrated by the small picture
in Figure 5.8 (b) and Figure 5.8 (c) respectively, the ALS point cloud, as shown by the
small picture in Figure 5.8 (a), consists of much less points. Note that the left two trees
are connected and the right one is isolated.

The delineation results of the ALS, MLS and TLS point clouds are illustrated in Fig-
ure 5.8. In this test, the voxel cell size selected was 1.0, 1.0 and 2.5 meters in x, y and z
direction respectively. The minimum tree canopy diameter was 7.5 meters and maxi-
mum tree bounding box size was set to 5 times of the minimum canopy diameter. The
same voxel size was used for all three point clouds. The processing time for ALS, MLS
and TLS data sets was 0.241, 0.428 and 0.626 seconds respectively. Note that although
the number of points in the TLS point cloud is 644 times larger than that of the ALS
data set, the processing time is only 3 times as much. As can be distinguished from the
zoomed in areas in Figure 5.8, the two connected trees are well separated for all three
data sets.

5.4.2. Same scenario, same sensor, different voxel sizes
To test the scalability in computation time with respect to the voxel size of the proposed
VoxTree method, the algorithm is tested on the MLS point cloud with different voxel
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(a)

(b)

(c)

Figure 5.8: Original point clouds sampled by three different sensors and delineation results of the connected
trees. (a) ALS point cloud. (b) MLS point cloud. (c) TLS point cloud

sizes. The tree separation results are illustrated in Figure 5.9. As can be noticed in the
figure, there are four different voxel sizes used to individualize tree T1 and T2. From
sub-figures (a) and (b), the horizontal resolution changed from 2 meters to 1 meter



5

92 5. Urban and Roadside Tree Individualization

Figure 5.9: Tree separation results with different voxel cell sizes for point cloud sampled by MLS.

while the vertical cell size was kept the same. In this test, the minimum tree canopy
diameter was set to 7.5m for all the four cases. Sub-figures (c) and (d) are individual
tree delineation results with voxel cell sizes of 0.5 meter and 0.1 meter respectively.

Figures 5.9 (a) and (b) show that reducing the horizontal voxel size from 2.0 to 1.0
meter results in a finer point assignment in the area where the two trees appear to
connect. Figure 5.10 indicates how the computation time increases with decreasing
voxel sizes for scenarios (a), (b), (c) and (d).

In Figure 5.10, the horizontal axis refers to the number of cells for each of the four
tests in Figure 5.9. The vertical axis denotes the processing time in milliseconds. The
red line plots Li near complexity results while the blue line is the actual processing
time of the four tests. Although there are only four different cell sizes, the trend still
verifies that the computation effort is largely in accordance with the theoretical analy-
sis in Section 5.3.7.
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Figure 5.10: Computation time of the four tests.

In order to further validate the capability of separating trees in different layers, six
closely connected trees, which also consist of four tall trees and two understorey trees,
were scanned by a TLS scanner to acquire a point cloud. In this test, the same pro-
cessing steps were conducted and the voxel cell sizes in the three axis directions were
all set to 0.5 m, while the minimum tree diameter was set to 3.5 m. The separation of
those trees was conducted from bottom layer upwards and the results are illustrated
in Figure 5.11. Figure 5.11a and Figure 5.11b give a top and a side view of the scenario
respectively. As illustrated in Figure 5.11, all the six individual trees, including the two
understorey trees, can be delineated successfully.

5.4.3. Trees having no trunk points
The proposed VoxTree method is also able to separate trees from both the top layer
downwards and from the bottom layer upwards. This enables to individualize trees
that are occluded by cars or a wall and therefore do not have their trunks scanned.
Figure 5.12 demonstrates a scenario that has four MLS scanned connected trees.

Figure 5.12 (a) is a front view of the original point cloud from the MLS. The figure
depicts a scenario consisting of a wall and four connected trees. The trees are occluded
by the wall and thus do not have their trunks scanned.

In this situation, the proposed algorithm first traverses from the bottom layer up-
wards which results in one big tree but also the quality flag of the separation is 0 as the
size of the bounding vox is above the preset maximum tree diameter of 27.5m. There-
fore for this cluster the algorithm starts separating from the top layer downwards and
finally separate the trees with a quality flag 1. The results of this delineation is given in
Figure 5.12 (b). All the four trees are separated in a qualitative sense and visualized in
four random colors. The voxel size used in this test is 40cm in the three directions and
the minimum tree canopy diameter is set to 5.5m.
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(a) (b)

Figure 5.11: Individual tree delineation results from a group of six trees of different height layers. (a) Separa-
tion results from a top view. (b) Separation results from a side view.

(a) (b)

Figure 5.12: Individual tree delineation results of the four occluded trees that have no trunk points. (a) Orig-
inal MLS scanned point cloud of four trees occluded by a wall. (b) Individual tree delineation results of the
patch of four connected trees.

5.4.4. Trees on steep terrain
This section demonstrates the capability of the proposed algorithm to individualize
trees on steep terrain. Figure 5.13a shows steep terrain at Obergurgl in Austria. There
are several spruce trees on the steep slope and some of them are connected. This area
was scanned on July 7th 2015, with a Riegl VZ-400 TLS scanner. The area in the red
rectangle is selected for testing. The original point cloud of this area has 121,039 points
and 30,732 tree points remain after segmentation. In Figure 5.13b, terrain points are
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dark red while tree points are colorized by height from red to blue.

(a) (b)

(c) (d)

Figure 5.13: Individual tree delineation on a steep terrain at Obergurgl in Austria from TLS point cloud.
(a) A picture of the testing area. (b) Original segmented tree points and ground points. (c) Individual tree
delineation results of trees on this steep terrain area. (d) Tree separation results of Wu’s method.

After segmenting the tree points from the original point cloud, the proposed Vox-
Tree algorithm is applied. Figure 5.13c is the individualized trees in this area while Fig-
ure 5.13d gives the results from Wu’s method (Wu et al., 2013). Ground points are dark
red and individualized trees are in random colors. There are 36 individualized trees in
total. As can be observed from the zoomed in area in the orange rectangle, the con-
nected trees are correctly individualized. As Figure 5.13d shows, the existing method is
unable to separate the trees of which have the same bottom height.
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5.4.5. Trees connected in different directions
Another test is performed on a ALS point cloud data set, sampling trees connected in
different directions. What’s more, the size of the trees are different. The point cloud is
a part of the AHN2 project of the Netherlands (van der Sande et al., 2010). The original

Figure 5.14: Original ALS point cloud and individual tree delineation results. (a) Original ALS point cloud
from a top view. (b) Original ALS point cloud from a side view. (c) Results of individual tree delineation from
a top view. (d) Bounding boxes of all individualized trees. (e) Picture of the tree in green circle in (b). (f)
Resulted points of the tree in green circle. (g) Top view of the bounding box of the tree in green circle.

tree points are shown in Figure 5.14, (a) and (b). There are 36,005 points in total and
the average point density in 3D is 5 pt s/m3. Manual in situ counting showed there are
63 trees in total. Because the point cloud is scanned from above, there are less points
on the tree trunks than on the canopy.

The cell sizes used in the algorithm were 20cm in horizontal direction and 40cm in
vertical direction. The minimum tree canopy diameter was set at 6.5m. The separation
of the trees runs smoothly and the delineation results are given in Figure 5.14 (c), as
a top view of the trees. 66 trees are identified by the VoxTree algorithm. Compared to
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the real number of trees, 3 trees too many are identified. The sub-figures on the left
are magnifications corresponding to the area indicated by the green ellipse in the main
figures. This is one of the scenarios where the VoxTree algorithm splits one tree into
two parts. The reason is that this tree has two big branches which are well-sampled
by the ALS data, while at the same time its trunk is only sampled by one points. When
either separating from the bottom layer upwards or from the top layer downwards, the
two quality flags of the separation are both 1and therefore results in two trees.

Figure 5.14 (d) is a visualization of the individualized trees with their bounding
boxes. The bottom left sub-figure is a magnification of the area in the green ellipse in
Figure 5.14 (b) and (c). The lower left image is a top view of the 3D bounding boxes two
touching trees. The red rectangle indicates the overlapping area of the two bounding
boxes. A bigger overlapping area implies the two separated trees have large connected
area. Since the errors in the delineation of connected trees mainly occurs in trees of
highly overlapping occasions. This analysis suggests that non-optimal separation re-
sults can be found by considering the intersecting boundary boxes before a detailed
inspection.

5.4.6. Cross validation with ground truth
To evaluate the accuracy of the proposed method for individual tree delineation, a
patch of 11 connected trees was scanned with a Leica C10 TLS scanner. The points
of those trees were manually separated and used as ground truth for the accuracy eval-
uation. The original point cloud and the segmented ground truth are shown in Fig-
ure 5.15.

(a) (b)

Figure 5.15: Original TLS point cloud and manually separated ground truth of a patch of 11 connected trees.
(a) A top view of the original TLS point cloud and the manually separated ground truth. (b) A side view of the
original TLS point cloud and the ground truth separation.

The top right small images in Figure 5.15 (a) and (b) are the original point cloud
from a top and a side view, The main images of Figure 5.15 (a) and (b) are the manually
separated trees from two different view perspectives. Note that each of the 11 trees is
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labeled.

In this test, the method proposed by (Wu et al., 2013) was implemented for compar-
ison. For both methods, Wu’s and VoxTree, the same voxel cell size of 30cm was used.
The individual tree delineation results of the two methods are shown in Figure 5.16.

(a) (b)

Figure 5.16: A top view of the individual tree delineation results of the two methods from TLS point cloud. (a)
A top view of the separation results of Wu’s method. (b) A top view of the separation results of the proposed
VoxTree method.

In the figure, (a) is a top view of the separation results from Wu’s method and (b) is
the results of the proposed VoxTree method. It can be seen that the method proposed
in (Wu et al., 2013) works very well and most of the points were correctly assigned to
a particular tree. The VoxTree method is good at separating connected parts of trees
and generates therefore better results. To quantify the delineation accuracy of the two
methods, the manually separated ground truth of the trees was used as reference and
the separation Cohen’s Kappa (Cohen, 1960) of the two methods are computed. For
this purpose each of the 11 trees was considered as a classification class. Using the ref-
erence data, a 11×11 confusion matrix was determined shown in Table 5.2. From this
confusion matrix Cohen’s κ was determined for both Wu’s method and VoxTree. The κ
of Wu’s method is 89% and the resulting κ value of VoxTree is 94% for this specific patch
of trees. Table 5.2 gives the tree separation details of the proposed VoxTree method.

Figure 5.17 illustrates a scenario where the VoxTree method outperforms Wu’s method (Wu
et al., 2013). The Figure displays two connected trees of different height. Figure 5.17 (a)
shows the results from Wu’s method. A big proportion of points from the bigger tree
were assigned to the smaller tree. However as shown in Figure 5.17 (b), even though
points from a branch of the bigger tree were wrongly assigned to the smaller tree, the
VoxTree method shows big improvement with respect to Wu’s method. As can be seen
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Individual tree
delineation

Trees (manually separated ground truth) Row total
(Num. of Pts.)1 2 3 4 5 6 7 8 9 10 11

Trees
(separation

results
of

VoxTree)

1 84265 7651 6618 153 98687
2 43318 743 90 44151
3 52683 2163 26 54872
4 1388 108 59105 554 922 62077
5 9 38985 269 39263
6 101 49730 1243 51074
7 390 240 54208 47 283 55168
8 1197 60048 5 61250
9 3044 105 86840 89989

10 2697 1851 1684 11739 508 18479
11 1605 699 115 120593 123012

Column total
(Num. of Pts.)

85653 50969 60161 61811 42220 53067 60658 61716 88524 11854 121389 698022

Table 5.2: Details of the tree separation results of the VoxTree method.

(a) (b)

Figure 5.17: Tree separation details of the existing method and the proposed VoxTree method from TLS point
cloud. (a) Separation results of Wu’s method. (b) Separation results of the proposed VoxTree method.

in Table 5.2, the VoxTree method wrongly assigned 115 points from tree 10 to tree 11,
and 508 point s from tree 11 to tree 10. For Wu’s method these numbers are 196 and
86236 respectively. The subsequent benefit is significant when estimating the canopy
area based on the individual tree delineation results of the two methods. Figure 5.18
shows the estimation results of the canopy projected area on ground by using the re-
sulted points of Tree 10 and Tree 11 in Figure 5.15. The areas of the two trees from
the two resulted points were approximated by alpha shape with same radius of 0.8 m.
Figure 5.18a and Figure 5.18b are the estimated canopy area from the two results re-
spectively. As can be seen the estimated area of Tree 10 are 61.90 and 33.01 m2 and
Tree 11 are 77.38 m2 from the two results respectively.
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(a) (b)

Figure 5.18: Canopy area estimation from the resulted points of Tree 10 and Tree 11. (a) Canopy area esti-
mated by the resulted points from Wu’s method. (b) Canopy area estimated by using the resulted points from
the proposed method.

5.5. Conclusions and Recommendations
This chapter answered the following research question:

How to individualize roadside trees from MLS point clouds?

In this chapter a voxel based scalable individual tree delineation method is pro-
posed. The method first clusters cells based on connectivity, then a novel cell adjacency
analysis approach is introduced to separate connected trees. It is scalable in the sense
that it can operate at different levels of detail. A series of tests have been conducted to
verify the flexibility and reliability of the proposed VoxTree method in different scenar-
ios.

First a scenario is presented consisting of three point clouds from different sensors,
which are ALS, MLS and TLS respectively, sampling the same three adjoining trees. This
test confirms that the VoxTree algorithm is capable of dealing with point clouds from
different platforms and different point densities. To validate the performance of the
algorithm for different voxel scales, the same MLS point cloud is processed at different
scales. Four different scales are used and the three individual trees were delineated to
different levels of detail. Consecutively two challenging scenarios were tested to verify
the capability of the proposed method dealing with trees that have no trunks points
and trees on steep terrain. Then a patch of 63 trees connecting in different directions
was analyzed and 66 trees were found. By examining erroneous cases manually, the
errors were mainly caused by local under-sampling of the trunks in the point clouds.
Finally another 11 trees were scanned using a TLS scanner and the proposed VoxTree
algorithm was compared to an existing method and manually separated ground truth.
The results shows that VoxTree outperformed the existing method and improved the
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separation accuracy κ from 89% to 94%.
Although the presented tests have illustrated the advantages and reliability of the

proposed VoxTree algorithm, still some weaknesses were noticed as well. First, the in-
put of this algorithm is tree points only, thus the tree points need to be segmented from
the original point clouds. Second, this algorithm also needs preset parameters, which
are voxel sizes and minimum tree canopy diameter. The maximum tree size was set au-
tomatically as 5 times the minimum tree canopy diameter. The voxel sizes in the three
Cartesian directions affect the level of detail of individual tree delineation results and
computation time. The minimum tree canopy diameter will influence the seed merg-
ing step. The method works better for trees that have similar canopy diameters. Over-
or under-individualization may occur when tree sizes are strongly varying. In addition,
the application of the proposed algorithm in forest scenarios and in situations where
trees are also connected with understorey vegetation is not yet validated.

A recommendation is to tile input tree points according to approximate tree size.
This is expected to generate more reliable delineation results. Also, the proposed method
is based on voxels, which correspond to uniform 3D grids. Since most of the space is
not occupied by tree points, uniform 3D re-sampling to voxels introduces memory re-
dundancy in the processing. Therefore an additional recommendation is to organize
the cells using octrees rather than voxels as a next step work.
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Roadside furniture, such as lamp poles, traffic signs and traffic lights, are key el-
ements of the road environment. Inventory and monitoring of those objects is cru-
cial for ensuring the normal function of roads. MLS systems sample the road environ-
ment efficiently, still, until now, it was hardly possible to automatically identify road-
side objects from the shape information available in these point clouds. This chapter
therefore presents an automatic algorithm for roadside object identification. The pro-
posed methods notably exploits a newly introduced 3D shape descriptor, SigVox, that
has been especially designed for this purpose, but it is expected to have many other
applications. This chapter first introduces the problem properly before discussing re-
lated work. Next, the proposed method is explained in detail. Finally, it is evaluated on
two times 4km of MLS data sampling the TU Delft campus.

6.1. Introduction
Urban roads are of crucial importance in modern society by reducing the distance be-
tween people and services, and produce economic and social benefits (Vanier, 2006).
The condition of the urban road furniture, i.e. street lamps, traffic lights, traffic signs,
bus station signs and billboards, needs to be inspected and documented regularly to
avoid potential risks caused by wear, vandalism or accidents (Halfawy, 2008). Further-
more, high precision urban maps are extensively demanded in various fields, such as
smart cities (Nebiker et al., 2010; Batty et al., 2012), autonomous driving (Li et al., 2004;
Schreiber et al., 2013) and intelligent transportation systems (Bishop, 2000; Agamen-
noni et al., 2011; Ivan et al., 2015), etc. Efficient and frequent updating of the urban
road inventory is essential to ensure the overall technical and social function of a city.
Currently, safety inspections on roadside furniture are conducted by manual in situ ex-
amination or semi-automatic interpretation of collected imagery and video data (Pu
et al., 2011). These methods are valid and practical in identifying defect roadside fur-
niture. However, the methods are labor intensive and expensive. Therefore, the meth-
ods are not optimal for striking a balance between maintaining safety and reducing
expenses.

In the last decades new techniques based on photogrammetry and remote sensing
have been developed for obtaining accurate 3D urban measurements (Haala and Bren-
ner, 1999; Ellum and El-Sheimy, 2002; Frueh and Zakhor, 2003; Over et al., 2010; Mc El-
hinney et al., 2010; Puente et al., 2013a). Among the developed techniques, Mobile
Laser Scanning (MLS) systems, which combine Light Detection And Ranging (LiDAR),
Global Navigation Satellite Systems (GNSS) and an Inertial Navigation System (INS),
are able to obtain dense and highly accurate point measurements (Vosselman and
Maas, 2010). A MLS system continuously samples the road environment and the geom-
etry of objects is captured in form of point clouds with versatile information, i.e. pre-
cise coordinates, intensity of laser pulse and RGB color. In recent years, the collected
point cloud data have been used in various applications, such as 3D tree detection and
modeling (Rutzinger et al., 2010; Zhong et al., 2013; Wu et al., 2013; Lindenbergh et al.,
2015), road surface extraction (Jaakkola et al., 2008; Mc Elhinney et al., 2010; Pu et al.,
2011; Wang et al., 2013; Guan et al., 2014), curbstone identification (Zhou and Vossel-
man, 2012; Yang et al., 2012a, 2013; Kumar et al., 2014), road corridor objects classifica-
tion (Pu and Zhan, 2009; Puttonen et al., 2011), change detection (Qin and Gruen, 2014)
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and mountain road monitoring (Wang et al., 2014; Díaz-Vilarino et al., 2016). Particu-
larly, the obtained high density point clouds enable the detection and identification of
objects along road corridors. Pole-like objects, such as tree trunks, lamp poles and traf-
fic light poles can be identified and extracted (Brenner, 2009; Golovinskiy et al., 2009;
Lehtomäki et al., 2010b; Pu et al., 2011; Yang et al., 2012b; Cabo et al., 2014; Yang et al.,
2015). However, still lacking are methods for recognition, identification and grouping
specific types of roadside object from MLS point clouds.

In this chapter, an automatic urban roadside object recognition method is pre-
sented for MLS point cloud data. The proposed method starts with raw point cloud
data obtained by a MLS system. First, the point cloud is tiled along the road direc-
tion following the trajectory of the MLS system. Next, the point cloud tiles are divided
in ground and non-ground points. The non-ground points are organized in an octree
data structure and connected voxels are clustered. Consecutively, a newly proposed
3D SigVox shape descriptor of the objects of interest, such as different types of street
lamps and traffic signs, is constructed. Finally, objects in the clustered point clouds are
recognized by SigVox descriptor enabled template matching.

The contribution of this work to the state of the art is as follows: (i) It introduces a
novel 3D multi-scale shape descriptor, that is easy to compute and powerful for shape
detection; (ii) It gives a work-flow to use this shape descriptor to identify different types
of lamp poles and traffic signs; and (iii) In doing so, it shows how to efficiently handle
large MLS point clouds, e.g. by using a suitable tiling strategy. What we consider as
a notable innovation is that this method, for the first time, use shape descriptors of
complete objects to match repetitive objects in large point clouds.

The remainder of the article is organized as follows. Section 6.2 presents related
work in object recognition, followed by a detailed description of the proposed method
in Section 6.3. In Section 6.4 the proposed method is demonstrated and validated on a
MLS point cloud sampling 4km of road environment. Finally, conclusions are given in
Section 6.5.2.

6.2. Related work
MLS systems efficiently sample the surface of objects along a road and record the mea-
surements as dense and accurate point clouds (Puente et al., 2013a; Barber et al., 2008;
Haala et al., 2008; Cahalane et al., 2010). The acquired measurements, which typically
consist of 3D coordinates, intensity of laser pulse and RGB color information, enable
the recognition of roadside objects. A variety of methods has been presented on this
topic. The available methods for object recognition can roughly be classified into three
categories: (i) model fitting based (Pu et al., 2011; Rutzinger et al., 2010; Lehtomäki
et al., 2010b; Brenner, 2009; Cabo et al., 2014; Xiao et al., 2016); (ii) semantic based (Fan
et al., 2014; Yang et al., 2015; Babahajiani et al., 2015a); and (iii) shape based (Golovin-
skiy et al., 2009; El-Halawany and Lichti, 2011; Velizhev et al., 2012; Bremer et al., 2013;
Yang and Dong, 2013; Li, 2013; Rodríguez-Cuenca et al., 2015). This section first reviews
the related work corresponding to the aforementioned methods on object recognition
in Section 6.2.1, Section 6.2.2 and Section 6.2.3 respectively. Finally, a comparison of
some related methods is given in a table.
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6.2.1. Model fitting methods
A model fitting based object recognition method in general starts with segmenting and
clustering the point cloud, followed by fitting the point segments to known geometric
models, such as cylinders and planes. Brenner developed an algorithm for pole extrac-
tion from MLS scanned point clouds. The method first assumes that the basic charac-
teristic of a pole is that it is upright. There is a kernel region where laser scanned points
are present and an outside region where no points are present (Brenner, 2009). Point
segments are analyzed in cylindrical stacks and when a certain minimum number of
stacks is detected, the segment is considered as a pole. The final step is to estimate the
exact position of the pole.

In 2010, Lehtomäki et al. presented an algorithm to detect pole-like objects in a
road environment using MLS point clouds. The algorithm first segment scan lines and
then remaining point groups are clustered. Consecutively adjacent clusters that are
closely connected or overlapping in horizontal profiles are merged. Based on these
merged point clusters, cylinder fitting is performed to detect poles along the road di-
rection. The method was able to find 77% of the poles if compared to a manual data
analysis with a correctness of 81% (Lehtomäki et al., 2010b).

In 2011, Pu et al. presented a method to recognize basic structures from MLS point
clouds for road inventory. The method first roughly classified tiled raw point clouds
into ground and non-ground objects. Then geometric attributes, i.e. size, position, ori-
entation, RGB color and material of objects’ surface were characterized and organized
per segment. Consecutively objects with planar features were approximated by planar
models, such as rectangles, circles and triangles. Pole-like objects were sliced vertically
and for each slice a 2D enclosing rectangle was derived. Next the differences of those
rectangles, i.e. position and size differences, between neighboring slices were checked,
and if they were within a defined threshold then similar slices were accumulated. Fi-
nally, if the number exceeded a maximum length, a point segment was considered a
pole-like object (Pu et al., 2011). This method was capable of recognizing building walls
and pole-like objects such as lamp poles and tree trunks. The final results showed that
86% and 64% of poles and trees respectively were correctly recognized.

In 2014, Cabo et al. introduced an algorithm that automatically detects pole-like
street furniture objects from MLS point clouds. Rather than directly considering each
point as the aforementioned methods did, this algorithm first simplified the point cloud
into voxels. Then each 2D vertical layer of the constructed 3D regular voxels was an-
alyzed and potential elements were selected by an isolation criterion. The isolation
criterion was evaluated based on fitting two 2D rings of different radii. If a candidate
voxel cluster is enclosed between the inner and outer ring, then it is considered as a po-
tential pole object. The algorithm was tested on point clouds of four test sites and was
able to recognize all the target pole-like objects except of severely occluded ones (Cabo
et al., 2014).

In 2016, Xiao et al. did not consider pole-like objects but introduced a method to
detect street-side vehicles with a deformable vehicle model using MLS point clouds (Xiao
et al., 2016). This method first classified raw point clouds into ground, buildings and
street objects. Then geometric features were extracted from obtained street objects.
Next, these features were fit to an explicit model. The vehicle recognition accuracy
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could reach up to 95%.

6.2.2. Semantic methods
Semantic methods for object recognition usually define a set of rules based on prior
knowledge of the objects. Then based on these rules, objects are extracted and recog-
nized. In 2014, Fan et al. introduced an algorithm for identifying man-made objects
along urban road corridors from MLS point clouds (Fan et al., 2014). The method as-
sumes that, firstly, man-made objects have a regular geometry whereas vegetation has
a complex geometry; secondly, different urban man-made objects are characterized by
the point extension and the height above the ground level. With the above rules, the
method divides a MLS point cloud into three layers with respect to vertical height. In
each layer, seeds of man-made object are indicated by a line filter in the foot prints
of off-ground objects. Further classification is performed on those seeds by checking
in which layers the seed points of an object are found. Finally, points belonging to
respective objects are retrieved based on the classified seed points. The capability of
extracting man-made objects was found to have a detection rate of 83%.

In 2014, Teo et al. proposed a similar method as Cabo et al. in (Cabo et al., 2014) to
detect pole-like object from MLS point clouds (Teo and Chiu, 2015). After removal of
building facade points, the point cloud was re-sampled by voxels which were used to
obtain a coarse segmentation. Next, fine-segmentation is conducted based on point to
point distances which enables the separation of overlapping objects. Based on a series
of predefined rules, pole-like objects were detected in a hierarchical way. The method
was tested on two point clouds and the results showed that the correctness of the pole-
like detection were 97.8% and 96.3% respectively for those test data sets. However, the
method cannot classify different types of pole-like objects.

In 2015, Babahajiani et al. presented a method to recognize objects in 3D point
clouds of urban street environments (Babahajiani et al., 2015a). The method starts
with automatically extracting ground points. Building facades are detected using bi-
nary range images. Then the remaining points are voxelized and transformed to super
voxels. Consecutively, boosted decision trees are employed to train and classify the ex-
tracted local 3D features of the voxel cells. The output of the classification is labeled
with semantic classes. This method is evaluated on a challenging fixed-position TLS
point cloud and a MLS point cloud. The global accuracy and per-class accuracy were
about 94% and 87% respectively.

Yang et al. proposed an automatic algorithm for hierarchical extraction of urban
objects from MLS point clouds (Yang et al., 2015). The method segments MLS points
into ground and non-ground points. Based on the non-ground points, multi-scale su-
pervoxels are generated. For each supervoxel, its geometric nature is determined by
PCA. Then the multi-scale supervoxels are segmented with regard to their geometric
type. In addition, the saliency of the segments is also calculated. Furthermore, seven
semantic rules are defined corresponding to seven types of object, i.e. building, utility
poles, traffic signs, trees, streetlamps, enclosures and cars. The method was validated
on two MLS point clouds and the results demonstrate that the object extraction and
classification accuracy of the proposed method was better than 91%.
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6.2.3. Shape based methods
Shape based methods consider the explicit or implicit shapes of point clusters or seg-
ments. Then shape features are calculated to classify and identify objects from MLS
point clouds. In 2009, Golovinskiy et al. presented a shape-based recognition method
for analyzing 3D MLS point clouds of urban environments (Golovinskiy et al., 2009).
The method first determines the location of each potential object, then those objects
are segmented from the original point cloud. Features are extracted from these object
segments. Classification of those segments is performed based on the extracted fea-
tures. The evaluation demonstrated that this method is able to recognize 65% of the
objects.

In 2011, El-Halawany et al. proposed a pipeline for roadside pole detection from
MLS point clouds (El-Halawany and Lichti, 2011). The algorithm first calculates the
eigenvalues of the covariance matrix of a local neighborhood using a KD tree. Then
eigenvalue-based segmentation is conducted and linear objects are extracted by re-
gion growing. The final recognition results are evaluated by cylinder fitting and an
eigen-radius relation. Velizhev et al. proposed an implicit shape model based auto-
matic method for object localization and recognition in 3D outdoor scenes from MLS
point clouds (Velizhev et al., 2012). The method consists of two steps. First a list of hy-
potheses on objects is determined by connected component extraction. Then objects
are recognized using local descriptors and a voting-based localization method. The
method was validated on a MLS point cloud and the recognition precision was 68%
and 72% for cars and light poles respectively.

In 2013, Bremer et al. presented a method based on eigenvalues and graphs to
extract objects from MLS point clouds (Bremer et al., 2013). First the method calculates
a 3×3 covariance matrix for each point from a local neighborhood and eigenvalues and
eigenvectors are derived. Then those eigenvalues are characterized and classified. By
connected component segmentation and clustering, ground and building facades are
separated. Finally pole objects including trees are separated using a Dijkstra region
growing approach.

In 2015, Yu et al. proposed a street light pole extraction algorithm for MLS point
clouds based on pairwise 3D shape context (Yu et al., 2015). The method first detects
road curbstones based on a series of profiles perpendicular to the road direction. Curb-
lines are extracted to divide a point cloud into road and non-road points. Ground
points are further segmented from non-road points using a voxel based height filter.
Next, non-ground points are clustered as separated object segments. Finally a point
based 3D shape context, i.e. the fast point feature histogram (FPFH) proposed in (Rusu
et al., 2009), was used to match the objects of interest. The method was tested on a MLS
point cloud and street poles were robustly extracted with a completeness over 99% and
a correctness of 97%.

Rodríguez-Cuenca et al. presented an automatic pole-like object detection and
classification method from MLS and TLS point clouds based on an anomaly detection
algorithm. The method first extracts ground points and then based on an anomaly
detection algorithm, vertical objects are detected as point clusters. Then the detected
vertical objects are classified as either man-made poles or trees. The testing results
demonstrated that the detection rate was 96% and the classification rate was 95%.
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Method Shape descriptor Identified objects Used input Voxel

Yang et al. no
buildings,traffic signs,

trees, street lamps,
cars,enclosures

(x,y,z,Intensity,r,g,b) no

Yu et al. point based
bus stations, light poles

traffic poles
(x,y,z) no

Cabo et al. no poles (x,y,z) yes
Teo et al. no pole-like objects (x,y,z) yes

SigVox object based
different lamp poles

and road signs
(x,y,z) yes

Table 6.1: A comparision of four existing methods with the proposed method.

Table 6.1 summarizes some key methods and compares their approach to the pro-
posed SigVox method. So far, only (Yu et al., 2015) also matches different instances of
the same type of furniture. Our proposed method has the same goal, but we propose
the use a shape descriptor that operates at object scale.

6.3. Methodology
As illustrated in Figure 6.1, the proposed algorithm for automatic urban roadside object
recognition consists of four consecutive steps:

1. Pre-processing. First the input raw point cloud is tiled with regard to the scan-
ning trajectory. Next, the tiled point cloud is divided in non-ground and ground
points.

2. Voxelization and building SigVox descriptors. Non-ground points are voxelized
using an octree and connected voxels are clustered. Examples of objects of inter-
est are manually selected for training and SigVox descriptors are constructed to
form a template list.

3. Similarity Matching. Each of the clusters is automatically examined if it is a can-
didate for the selected objects of interests. If yes, then its SigVox descriptor is
built and its similarity to the different training objects is computed. The cluster
is then assigned to the best matched training object.

4. Validation. The recognition results are analyzed with regard to ground truth data
and their accuracy is determined.

6.3.1. Pre-processing
The pre-processing in this work consists of two parts, i.e. tiling of the raw point cloud,
and separation of ground and non-ground points, as indicated in Figure 6.1. One scan
of a MLS point cloud data set usually is too large to process on a normal desktop com-
puter. Thus the raw point cloud is divided into tiles of suitable size. Furthermore, the
focus of this work is on the non-ground objects rather than the ground points. There-
fore, the tiles of the point cloud are further segmented into ground and non-ground
points.
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Figure 6.1: Overall methodology of the proposed algorithm. The method starts with a MLS point cloud and
results in a list of roadside objects.

In this work, the scanning trajectory of the MLS system is used to partition the orig-
inal MLS point cloud. Trajectory data is obtained by the Position and Orientation Sys-
tem (POS) of the MLS system, which consists of a series of 3D positions recorded at
high frequency. The original MLS point cloud is tiled along the scanning trajectory.

Figure 6.2 shows an example tiling of a raw point cloud acquired by a MLS sys-
tem. The red line is a segment of the so-called Smoothed Best Estimation of Trajectory
(SBET) of the MLS system and the purple arrow indicates the scanning direction. In
this example, three tiles are generated and overlapping areas are indicated. During
tiling, the 3D trajectory is projected on the horizontal plane. For each tile, the length
along trajectory, i.e. the distance between Starting point and Endpoint along SBET in
Figure 6.2, and the width across trajectory are flexible. Figure 6.3 is a magnification
of the 2D polygon in Figure 6.3. Points P1, P2 and P3 are points of SBET and d is the
width of the polygon in the across trajectory direction. The 2D boundary of each tile
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Figure 6.2: Tiling of original MLS point cloud data along the road corridor direction. Different colors indicate
different tiles.

Figure 6.3: Geometry of a tile polygon along the scanning trajectory. The Pi denote given trajectory points.
The Li and Ri are computed tile boundary points and are defined on the basis of a width parameter d .

is obtained by accumulating polygons of the defined resolution k. In the first polygon
L1R1R2L2, edge L2R2 is perpendicular to line segment P1P2. Consecutively, edge L3R3

of the second polygon L2R2R3L3 is obtained. All those concatenated 2D polygons form
the boundary of Tile 1. Finally, all points that project within the boundary of the tile are
output as belonging to that tile.
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The next step of pre-processing is to identify the non-ground points in the tiled
point clouds. In this study, the algorithm proposed by Pfeifer (Pfeifer, 2001) is used.
The non-ground points will be forwarded to the next step. Meanwhile, points from
objects of interest, such as street lamp poles and traffic signs, are selected and stored
separately for training purposes.

6.3.2. Voxelization
The voxelization is performed on the non-ground points only. In this step, non-ground
points are re-sampled to voxels organized by an octree data structure. Next connected
voxels are clustered.

The octree data structure is extended to 3D from the 2D quadtree as introduced
by Klinger (Allen, 1971). The octree data structure connects each branch of the tree
node with a 3D Cartesian node, which is also defined as a voxel. This tree node can
be subdivided recursively into 8 branches, i.e. octants. Figure 3.7 demonstrates an oc-
tree based Cartesian spatial subdivision and its hierarchical data structure. This data
structure enables efficient neighborhood searching by building up a series of look up
tables. In this work, the neighborhood searching strategy proposed by Payeur is imple-
mented (Payeur, 2006).

6.3.3. Clustering and Selecting Candidate Clusters
For the voxelization of the non-ground points, the bounding box of a tile of non-ground
points is considered as the root node of the octree structure. The root node is sub-
divided recursively until the preset subdivision criteria are met. Consecutively, con-
nected voxels are clustered based on a 3D seed filling algorithm proposed by Yu et
al. (Yu et al., 2010). Then the points inside each voxel cluster are stored as point clusters.
The subsequent point clusters are denoted by C i , i = 1,2, ...,k. Here k is the number of
obtained point clusters. It is expected that many of these point clusters correspond to
a roadside object like a street pole or traffic sign.

Next the 3D bounding box, i.e. B(C i ), of each point cluster C i , is obtained and
compared with the 3D bounding boxes of the selected training objects T j , j = 1,2, ...,h.
Here h is the number of training objects of interest. If the relative difference between
the 3D bounding box of the j-th point cluster and the 3D bounding box of a training
object is small, the point cluster is considered as a candidate of the j-th object. The
relative difference Di , j between two 3D bounding boxes is computed by Equation 6.1.

Di , j =
√√√√∥∥B(C i )−B(T j )

∥∥∥∥B(T j )
∥∥ (i = 1,2, ...,k; j = 1,2, ...,h)

=
√√√√ [B(C i )x −B(T j )x ]2 + [B(C i )y −B(T j )y ]2 + [B(C i )z −B(T j )z ]2

[B(T j )x ]2 + [B(T j )y ]2 + [B(T j )z ]2

(6.1)

Here, B(C i ) and B(T j ) are the 3D bounding boxes of a candidate cluster and a training
object respectively. Suppose there are k candidate clusters and h training clusters. Bx ,
By and Bz are the sizes of the bounding box in the three coordinate directions. When
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Di , j is smaller than a preset threshold, then a point cluster is regarded as a candidate
of the j-th training object C (T j ). Due to possible variations in the orientation of the
roadside object, the orientation of bounding box will vary as well. Thus, the threshold
used here for candidate object selection needs to be big enough to avoid omission.

6.3.4. SigVox descriptor construction
In this section, the approach for determining the dimensionality of a voxel is given.
Consecutively, the concept of the 3D SigVox descriptor and the methodology to con-
struct SigVox descriptors is presented.

Dimensionality Analysis
Non-ground objects were clustered as voxel clusters in Section 6.3.2. Consecutively the
dimensionality of each voxel in these clusters is determined by PCA. The dimension of
a voxel is determined as follows: Suppose pi = (xi yi zi )T are the coordinates of a
point pi inside the voxel cell, then the center of gravity p of all the points pi inside the
voxel is determined by Equation 6.2.

p = 1

n

n∑
i=1

pi (6.2)

Here n is the number of points inside the voxel. The 3D structure tensor M of the points
is defined by Equation 6.3.

M = 1

n
QT Q (6.3)

Here Q = (p1 −p, p2 −p, ..., pn −p)T . M is a symmetric matrix and can be decomposed
as M = RI RT . Here R is a rotation matrix and I a diagonal positive definite matrix. The
elements of I are the eigenvalues of matrix M . The three eigenvalues are positive, are
denoted by λ1,λ2,λ3, and are sorted such that λ1>λ2>λ3. The corresponding eigen-
vectors are v1, v2, v3 respectively.

In this chapter, voxel cells are categorized into three types: linear, planar and scat-
ter. The three cases are defined as follows: (i) If for the eigenvalues of a voxel it holds
that λ1>>λ2, then this voxel is defined as a linear, or 1D voxel cell. For a linear voxel
cell, eigenvector v1, which corresponds to eigenvalue λ1, is the significant eigenvector
and indicates the significant direction of the points inside the voxel cell. (ii) If λ2>>λ3,
then the voxel cell is defined as a planar, or 2D cell. In this case eigenvector v3, the nor-
mal vector of the plane, is the significant eigenvector. (iii) If λ1 ≈λ2 ≈λ3, then this cell
is defined as a scatter cell, or 3D cell. A scatter cell does not have a significant direc-
tion and will not be considered. Here >> means much larger and is implemented by a
preset threshold. In this chapter, the linearity is examined first and then planarity. The
thresholds for linearity and planarity are denoted by Tl and Tp respectively. After this
procedure, all voxel cells in a cluster have a geometric flag denoting its dimensionality
and if applicable, a significant eigenvalue and eigenvector as its properties.

EGI Descriptor
In this section, the approach to construct the proposed SigVox 3D descriptor for both
training objects and candidate voxel clusters is demonstrated. The SigVox descriptor
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is inspired by the existing EGI descriptor, proposed by Horn (Horn, 1984). The EGI
descriptor is approximated by an icosahedron. Rather than computing local normals
from a query point with a radius as in (Horn, 1984), the significant eigenvectors ob-
tained in Section 6.3.4 are used to construct a 3D EGI descriptor (Wang et al., 2016).
An approximated sphere, i.e. an icosahedron in this work, is used to assign significant
eigenvectors to its surface and is also defined as the Eigen-Sphere of a voxel cluster.

The full sphere is approximated by an icosahedron. As illustrated in Figure 6.4,
the relative position of the icosahedron with regard to the Cartesian coordinate axes is
given by its standard position in this work. In Figure 6.4, point O is the origin of the

Figure 6.4: A uniform icosahedron used to construct the EGI descriptor. Such icosahedron provides a coarse
sphere approximation.

coordinate system and the geometric center of the icosahedron. The X axis intersects
one icosahedron edge at point Pm and the Y axis penetrates through one triangle patch
at point Qm , while the Z axis passes through vertex u. This is an uniform icosahedron,
as the distances of its 12 vertices to the origin O are equal to 1.

The next procedure is to assign the obtained significant eigenvectors of all voxels in
a cluster to the triangles on the boundary of the icosahedron. In Figure 6.5, triangle uae

is one of the 20 boundary triangles of the icosahedron in Figure 6.4. Vector
→
v intersects

triangle uae at point P . Suppose the three vertices correspond to vectors
→
vn ,

→
va ,

→
ve

respectively, then the coefficients kn ,ka ,ke in the linear combination in Equation 6.4
must be all positive (Preparata and Shamos, 1985). This is used to assign significant
eigenvectors to the correct triangle.

→
v= kn

→
vu +ka

→
va +ke

→
ve (6.4)
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Figure 6.5: Assign a significant eigenvector
→
v to a triangle aeu on the boundary of the icosahedron.

Indeed, to determine the coefficients in Equation 6.4, the function can be decomposed
and rewritten to Equation 6.5. kn

ka

ke

=
( →

vu
→
va

→
ve

)−1 ·
 vx

vy

vz

 (6.5)

Here
→
vn= (xn , yn , zn)T are the coordinates of vertex vn and vx , vy , vz are the coordinates

of vector
→
v .

The 3D EGI descriptor of the candidate cluster is constructed by assigning the sig-
nificant eigenvectors of all voxels in the cluster to its Eigen-Sphere by determining for
each eigenvector which triangle of the icosahedron it intersects using Equation 6.5.
This means that only the voxel eigenvector corresponding to the biggest eigenvalue is
assigned for a linear voxel, while for a planar voxel, only its normal vector is assigned.

Note that the eigenvectors obtained by PCA are not direction definite, e.g. vector
→
v and

its antipodal vector -
→
v are both applicable. In this work, for the purpose of symmetrical

concern, both a vector and its antipodal vector are assigned to the Eigen-Sphere.
For each significant eigenvector assigned to a particular triangle, a weight value W k

is stored, indicating the percentage of points it contains of the cluster it is from. That
is, the weight W k of a significant voxel contributing to the i-th triangle, is computed by
Equation 6.6.

W k = Nk

N
(6.6)
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Here Nk is the number of points in the considered voxel while N is the total number of
points in the cluster.

The aim of the weights is to avoid ambiguity in dimensionality determination in
Section 6.3.4. Division of the point cluster of an object using an octree will separate
different parts of the object in a somewhat arbitrary way, depending on the particular
orientation of the object. For example, a voxel that contains only one border of a plane
will appear linear. Such voxels will lead to ambiguity in the dimensionality as a whole.
The weight will take the number of points in the voxels into consideration. This weight
is therefore designed to reduce the sketched ambiguity.

SigVox Descriptor
In this work, a significant eigenvector based shape descriptor using multiple levels of
voxel is proposed, which is denoted by SigVox. SigVox is constructed based on the re-
cursive subdivision of each candidate point cluster using the octree. At each level of
subdivision, the geometric dimensionality feature of each voxel cell is computed as de-
scribed in Section 6.3.4 and their significant eigenvectors are obtained.

(a) (b)

Figure 6.6: A street lamp pole and its point cloud. (a) A typical street lamp. (b) Point cloud of the lamp pole
and its original octree octant.

Figure 6.6a shows a typical type of street lamp in this study. Figure 6.6b is the cor-
responding point cloud of the pole and its original octree octant, which is also the root
node of the octree.

Figure 6.7 demonstrates the recursive subdivision of the street lamp pole by an oc-
tree at four levels and the corresponding Eigen-Spheres. In each sub-figure, the left
figure denotes the subdivision of the point cluster while the right figure is the corre-
sponding EGI descriptor represented by an Eigen-Sphere. In the sub-figures, linear,
planar and scatter voxels are denoted in red, green and blue respectively. The triangles
of the icosahedron at each subdivision level are colored according to the number of
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(a) (b)

(c) (d)

Figure 6.7: Recursively subdividing a lamp pole at four levels by an octree and the corresponding Eigen-
Shpere. (a) Subdivision at level 1. (b) Subdivision at level 2. (c) Subdivision at level 3. (d) Subdivision at
level 4. In the different subdivisions, red, green and blue octants indicate linear, planar and scatter voxels
respectively.

collected significant eigenvectors. The number of voxels at the four subdivision lev-
els are 6, 10, 18 and 36 respectively. The number of significant voxels is 5, 8, 16 and
33 respectively. For example, in Figure 6.7b the subdivision is at level 2 and there are
10 voxels. The two blue voxels are scatter voxels. Thus there are 10−2 = 8 significant
voxels and their eigenvectors are assigned to the three red and green triangles of the
icosahedron.

For each candidate point cluster, their SigVox is defined as an ordered series of
significant eigenvector based EGI at different levels of subdivision, as given by For-
mula 6.7.

Si gV ox = {E1,E2, ...,En} (6.7)

Here, E1, E2, En are the corresponding EGI descriptors at level 1, 2 and n.

In this work, the similarity between each candidate point segment and its corre-
sponding template segment will be determined by comparing the distance between
their SigVox descriptors for a preset number of levels.

6.3.5. Descriptor Matching
This section will first introduce the distance between a pair of SigVox descriptors of two
point clusters. The second part describes the transformation method that is used to
evaluate the similarity between two EGI descriptors, i.e. the similarity at a fixed scale.
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Distance between SigVox descriptors
The distance between the SigVox descriptors of candidate point clusters and template
clusters is determined by accumulating the difference between the assigned vectors
and their weights for each EGI triangle at each recursive subdivision level. An icosahe-
dron has a total of 60 symmetry transformations (Conway et al., 2008). Since both the
significant vector and their antipodal vector are assigned to the icosahedron surface,
only 30 symmetries have to be considered in practice.

Suppose Pc and Pt denote a candidate point cluster and a template cluster respec-
tively. Let E l

c and E t
s denote their EGI descriptor at level l respectively. Their similarity

at level l is defined by Equation 6.8

Sc,t
l = mi n

{
Ŝc,t

l

}
j

( j = 1,2, ...,30)

= mi n

{
20∑

i=1
(N i ,l

vec,c ∗W i ,l
c −N i ,l

vec,t ∗W i ,l
t )2

}
j

(6.8)

Here, Sc,t
l denotes the similarity between point cluster Pc and template cluster Pt at

level l . This final similarity is the best match among a total of 30 comparisons. That
is, each Ŝc,t

l gives the similarity for one among a total of 30 similarity transformations

of the icosahedron. N i ,l
vec,c and N i ,l

vec,t are the number of eigenvectors that intersect

the i-th triangle of the EGI from Pc and Pt at level l respectively. W i ,l
c and W i ,l

t are the
weights of the i-th triangle from Pc and Pc at level l . Here j denotes the j-th symmetry
of the icosahedron. The similarity is defined by the minimum distance of the similarity
among all 30 icosahedron similarities.

The multiple scale distance between a pair consisting of a point cluster Pc and tem-
plate cluster Pt is simply the sum of the similarities at all subdivision levels, as denoted
by Formula 6.9.

Sc,t =
n∑

l=1
Sc,t

l (6.9)

Here Sc,t is the distance between the SigVox descriptors of point cluster Pc and tem-
plate cluster Pt . The preset maximum subdivision level is denoted by n.

Transformation of Eigen-Spheres
While determining the similarity between two Eigen-Spheres descriptors of the same
level, i.e. the Ŝc,t

l in Formula 6.8 in section 6.3.5, the Eigen-Sphere of a candidate is
transformed 30 times corresponding to the 30 symmetries of the icosahedron up to
antipodal identification. The transformation is performed as described in Algorithm 2.

In Algorithm 2, the input is a pair of Eigen-Spheres, i.e. E c
l and E t

l respectively. In
this step, the Eigen-Sphere of template cluster, denoted by E t

l , is kept stationary and
only E c

l , which is the EGI of the candidate point cluster is transformed. The algo-
rithm first puts the two Eigen-Spheres in standard position as given in Figure 6.4. Note
that Vertex u is at the positive direction of Z axis when the Eigen-Sphere is in standard
position. Then the E c

l is rotated consecutively for five times around Z axis by 2π
5 rad

to compute the first 5 Ŝc,t
l . The direction of rotation is performed in a right-handed
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Algorithm 2 Algorithm for relatively transform the two Eigen-Spheres to determine
similarity at subdivision level l .

Input: A pair of Eigen-Spheres, i.e. E c
l and E t

l .

Output: Similarity value at level l , i.e. Ŝc,t
l .

function COMPUTESIMILARITY

Place E c
l and E t

l in the standard position;
for m = 0 → 5 do

for n = 0 → 4 do
Determine the (m*5+n)-th Ŝc,t

l
Rotate E c

l about Z axis with 2π
5 rad;

end for
m = m + 1;
Determine spherical coordinates of the m-th vertex of E c

l , (1,θm ,ϕm);
Rotate the E c

l about axis Z with 90−θm degree;
Rotate the E c

l about axis X with ϕ degree;
end for
Return the minimum one among the obtained 30 Ŝc,t

l ;
end function

manner as demonstrated in Figure 6.8. This five values correspond to the five symme-
tries when Vertex u is at the north pole. The next step is to compute the five similarity
values when the next vertex is at north pole position. To transform an arbitrary vertex
to the north pole, for example Vertex b. First the spherical coordinates are computed,
i.e. (1,θb ,φb), as shown in Figure 6.8. Next the E c

l is first rotated around axis Z by

θ
′
b = 90−θb degree and then rotated around X axis by φb degree. Subsequently Vertex

b is transformed to the positive Z axis. When the next vertex is transformed to the posi-
tive Z axis, the 5 similarity values are computed. The algorithm runs until all the 30 Ŝc,t

l
corresponding to the 30 symmetries are all determined. Then the minimum one is ob-
tained and returned as the similarity value of the pair of EGI descriptors and returned.

Many objects have a dominant geometric dimensionality. For example, poles are
dominantly linear. For such objects, a local coordinate frame could be acquired by
PCA, by aligning the object along the first eigenvector. In this way, the number of sym-
metries to be considered in the similarity determination can be significantly reduced.
Note that in case that object has no dominant dimensionality, this possible refinement
is not applied.

Object Recognition
This section describes the strategy of assigning the obtained candidate point clusters{
C i

}
, i = 1,2, ...,k to a specific kind of target object, which is represented by

{
T j

}
, j =

1,2, ...,h.
For a specific object of interest, i.e.

{
T j

}
, its candidate point clusters are first ob-

tained as described in Section 6.3.2. Then the obtained candidate point clusters, i.e.{
C i

}
, are subdivided by an octree into several levels. The SigVox descriptors corre-
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Figure 6.8: Relative transformation of the Ec
l with regard to E t

l . This figure indicates how a candidate cluster
is rotated to match a training object.

sponding to those levels is constructed. Next the similarity between the MS-EGI de-
scriptors of an object of interest and candidate point clusters are determined.

To determine whether a candidate point cluster should be assigned to a specific
object of interest, a preset similarity threshold is used. If the determined similarity
between two SigVox descriptors, which is denoted be Sc,t in Equation 6.9, is below
the threshold and this similarity is minimal among different training objects, then the
point cluster is assigned to the object of interest. Finally all those point clusters are
exported separately.

6.3.6. Evaluation of the similarity
The quality of the object recognition method proposed in this work is evaluated in two
ways. First, a similarity score will be determined by the similarity matching of each
pair of SigVox descriptors. The similarity score denotes how confident a recognition is.
The second way to evaluate the quality of object recognition is in-situ inspection of the
results. Finally the results are summarized in a confusion matrix where identification
results are compared to ground truth.

The similarity score is computed after the similarity of the SigVox descriptors be-
tween all the candidate point clusters and a training cluster are determined. In this
procedure, a confidence value will be computed that expresses the quality of the ob-
ject recognition.

Suppose there are n levels of subdivision for a pair of SigVox descriptors. Then there
are n preset thresholds. If among all those n levels of similarity, i.e. n pairs of Eigen-
Spheres, there are m pairs within the threshold, then this candidate point cluster will
have a similarity score F = m

n . For example, suppose a point cluster is subdivided by
an octree into 4 levels, then its SigVox descriptor consists of four EGI descriptors, one
for each scale. When comparing the SigVox descriptors of the point cluster and its tem-
plate point cluster, if 3 of them are within the thresholds, then its matching score is
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0.75.

6.4. Results and Evaluation
In this section, the proposed method is tested and validated on two MLS point clouds
sampling a stretch of 4 km of urban road. First, a brief introduction of the used MLS
system and a description of the used point cloud data is given. Then, the results on one
of the test runs from each processing step, including pre-processing, voxelization and
clustering, and object recognition, are presented and discussed. Next, the results from
processing the second test run are presented. This second run samples the same road
environment, but the data was acquired in opposite driving direction. This second run
data was processed using the same settings. The recognition results from the two point
clouds were compared and analyzed. Finally, the recognition accuracy of the proposed
method was evaluated against manual in-situ inspection results.

6.4.1. Data Description
The point clouds tested in this work are acquired on March 22, 2016, by the Fugro
Drive-Map MLS system, which is shown in Figure 6.9. Figure 6.9a shows the MLS sys-
tem as a whole while Figure 6.9b is a close up view of the sensors. The specifications of

(a) (b)

Figure 6.9: Drive-Map MLS system from Fugro. (a) A side view of the MLS system. (b) A view of the sensor
configuration. This system was used to acquire the point clouds used in this work

the MLS system are given in Table 6.2.

Laser Pulse Rate 1,333,000 p/s
Ranging Accuracy <2 cm
Maximum Range 100 m
Scanner Riegl VQ 250
Swath Angle 360 degrees
Panoramic Camera Ladybug 3

Table 6.2: Specification of the Drive-Map mobile laser scanning system.

The point clouds acquired by the MLS system obtained in two opposite directions
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have an average point density of 1,500 points per square meter. The point clouds cover
a stretch of approximately 4 km of urban road. The number of points are 72,165,310
and 68,228,118 respectively. The MLS trajectory and the first point cloud are illustrated
in Figure 6.10. In Figure 6.10a, the red line indicates the trajectory of the MLS system
during the first acquisition. Figure 6.10b denotes the original point cloud of the first
acquisition colored by height.

(a)

(b)

Figure 6.10: Overview of the scanning trajectory and point cloud. (a) Top view of the scanning trajectory of
4km long. (b) Original point cloud colorized by relative height.

The parameters and thresholds used in the tests are given in Table 6.3. Note that
there are three parameters in the Tiling step. The width indicates the distance across
trajectory boundary of the tiles, length indicates the distance along trajectory and over-
lap is the size of the buffer area between two consecutive tiles. The Voxelization level
gives the maximum subdivision level of the octree. Dimensionality consists of linearity
and planarity, which have dominant direction as described in Section 6.3.4. The SigVox
3D descriptor has two parameters: level indicates the number of scales, while similarity
gives the threshold distance used to accept a candidate object as matching a training
object.

6.4.2. Pre-Processing of the Point Cloud
As the original point clouds are too large to process on a normal desktop PC and points
further away from the scanning trajectory are less interesting in this study, the original
point clouds are divided into smaller tiles. In the re-tiling step, points that are further
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Parameter Value

Tiling
width 20 (m)

length 200(m)
overlap 5 (m)

Voxelization level 9

Dimensionality
linearity (Tl ) 10

planarity (Tp ) 20
Bounding box (Di , j ) 5.0(%)

SigVox
level 4

similarity (Sc,t ) 3.0

Table 6.3: Parameters and thresholds used in the processing of the two point clouds.

than 20 meter from the trajectory are removed. The length along the trajectory is 200
meters for each tile with an overlap of 5 meters between consecutive tiles. After re-
tiling, ground and non-ground points are separated. The results of the re-tiling and
separation of ground and non-ground points are given in Figure 6.11.

Figure 6.11a shows the bounding box of each of the 20 newly generated smaller
tiles. As shown in this figure, each tile is labeled by a unique tile index. Figure 6.11b
shows the separation results of the 20 tiles, in which the blue and red points denote the
separated ground and non-ground points respectively. Table 6.4 gives the number of
points corresponding to each pre-processing step for both data sets. As can be noticed
33,339,127 points are left after re-tiling the first point cloud. Consecutive segmentation
results in 18,562,951 ground and 14,776,176 non-ground points respectively.

Point cloud Original After retiling Ground Points Non-Ground Points
1st Run 72,165,310 33,339,127 18,562,951 14,776,176
2nd Run 68,228,118 31,060,145 16,288,775 14,771,370

Table 6.4: Number of points after each pre-processing step.

After the pre-processing of the original point clouds, non-ground points are used
as input for the next step, i.e. voxelization and connected component clustering.

6.4.3. Voxelization and Clustering of Non-Ground Points
The non-ground points of each tile are organized in an octree data structure. This sec-
tion describes the results of the voxelization and clustering of the non-ground points.

The voxelization of the non-ground points is conducted recursively in each tile, as
described in Section 6.3.2. In this work, the criterion to stop subdivision is the mini-
mum voxel size. The recursive subdivision of the octants in the octree is terminated
whenever the voxel size is smaller than 10cm. After voxelization, connected voxels are
clustered. Consecutively, the points inside the voxels of a cluster are extracted to form
a point cluster. Next, for each obtained point cluster, its 3D bounding box is obtained.

Figure 6.12 shows the results of voxelization and clustering of the non-ground points
from tile 3 in Figure 6.11a. Figure 6.12a shows the non-ground points colorized by
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(a) (b)

Figure 6.11: Re-tiling and non-ground point separation results of the first point cloud. (a) The point cloud
was divided in 20 tiles and one tile contains approximately 4 million points. (b) Separation results: ground
points are plotted in blue, and non-ground points in red. During the tiling points further than 20m from the
trajectory are removed.

height. Figure 6.12b demonstrates an octree subdivision at level 9 corresponding to
voxels of 39.4 cm. Figure 6.12c illustrates the results of clustering connected voxels.
The clusters are colorized by random colors. Also, the points inside the voxels of each
cluster are extracted to form corresponding point clusters. The 3D bounding boxes
of those extracted point clusters are given in Figure 6.12d. Those 3D bounding boxes
will be used to select candidate point clusters from a selected object of interest, as de-
scribed in Section 6.3.2.

6.4.4. Object Recognition
Results of object recognition are presented in this section. In this chapter, 6 different
street lamp poles and 4 different traffic signs were selected as objects of interest. Points
corresponding to example objects were manually extracted as template point clusters
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(a) (b)

(c) (d)

Figure 6.12: Results of voxelization and clustering of a tile of non-ground points. (a) Original non-ground
points of tile 3. (b) Voxelization results of the non-ground points. (c) The connected voxels are clustered. (d)
3D bounding boxes of the considered point clusters. The resulting clusters are compared with the training
objects, provided their bounding boxes do not deviate too much.

and object recognition was conducted on the rest of the point cloud. Figure 6.13 illus-
trates the selected objects. In the figure, the top row are photos of the selected street
lamp poles and their sampled point clusters, while the bottom row shows the consid-
ered road signs and their corresponding point clusters.

Note that in the current research, one example object of interest was used to gen-
erate a training template. So far, the choice of this particular example has not been
evaluated. For this there are some options. Firstly, select a few samples of the same
type of object, then register the point clouds of those samples to form an average point
cloud of the object. Consecutively, the SigVox feature template is generated based on
the average point cloud. Secondly, select several samples of the same type of object and
compute the point to point distance between those sample point clouds. The point
cloud that has the smallest average point to point distance to the other samples is se-
lected to generate the template for object recognition.

After importing the point clusters of the selected objects of interest, their 3D bound-
ing boxes are obtained, as given in Table 6.5. Then, for candidate object selection, the
3D bounding box of each object of interest is compared with that of the voxel clusters
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Figure 6.13: Images and point clouds of the selected objects of interest. (a), (b), (c), (d), (e) and (f) are photos
and points of six lamp poles, while (g), (h), (i) and (j) are the considered traffic signs and their corresponding
point clusters. The image shows that not all objects are sampled equally well by the MLS.

Object
Bounding box (m)

length width height
Pole 1 1.6 0.4 8.7
Pole 2 1.2 0.8 7.7
Pole 3 3.5 0.5 7.5
Pole 4 1.9 0.5 9.6
Pole 5 0.7 0.3 3.4
Pole 6 3.4 0.4 9.7
Sign 1 0.9 0.1 2.9
Sign 2 0.4 0.2 1.2
Sign 3 0.6 0.2 2.5
Sign 4 0.7 0.2 3.1

Table 6.5: Dimensions of the 3D bounding boxes of the objects of interest.These dimensions are used to
select candidate objects which speeds up processing.

obtained in Section 6.4.3. In this work, the threshold for the similarity of 3D bounding
boxes (Di , j ) is set to 5.0%. Take Pole 2 and Pole 4 in Figure 6.13 for example, the dis-
tance of their bounding boxes calculated from Equation 6.1 is 4.4%. Thus, not only the
poles of type Pole 2 in the test data will be selected as candidates, but also the poles
of type Pole 4. In point cloud of the first run, there are 37 and 5 poles of type Pole 2
and Pole 4 are obtained as candidates of Pole 2.

In the next step, the SigVox 3D descriptors of Pole 2 and all the 42 selected candidate



6.4. Results and Evaluation

6

127

(a) (b) (c) (d)

(e)
(f) (g) (h)

Figure 6.14: The voxel subdivision and the correspondent SigVox 3D feature descriptor of Pole 2 and Pole 4of
the four levels. (a), (b), (c) and (d) are the voxel subdivision and SigVox feature descriptor of pole 2 at level 1,
2, 3 and 4. (e), (f), (g) and (h) are the voxel subdivision and SigVox feature descriptor of Pole 4 at level 1, 2,
3 and 4. The red, green and blue voxel indicate the linearity, planarity and scatter of the points inside each
voxel.

point clusters will be compared. Figure 6.14 shows the subdivision at 4 levels of Pole 2
and Pole 4 and the corresponding SigVox descriptors. Next, the similarity distances of
between SigVox descriptors of the training point cluster of Pole 2 and the obtained 42
candidates are determined. The resulting similarity distances for each of the 4 subdivi-
sion levels are shown in Figure 6.15. The histograms show that there is a clear difference
between the similarity distance Pole 2 and Pole 4. In this work, the similarity distance
threshold is set to 3.0. Thus only candidates that have a similarity distance below 3.0
will be assigned to type Pole 2. In the point cloud of the first run, 37 poles of type Pole 2
are correctly identified. This procedure is performed for all selected objects of interest.

For better visualization, the object recognition results are presented in two figures:
Figure 6.16 and Figure 6.17. The object recognition results of the north part of the study
area from the first point cloud are given in Figure 6.16. In Figure 6.16a, the green icons
denote the correctly recognized objects. The red icons depict items that are not cor-
rectly identified. In Figure 6.16b, ground points are colored light blue and non-ground
points gray. The successfully recognized objects are colored in correspondence to Fig-
ure 6.13. Figure 6.16b shows a scenario that has three lamp poles of type Pole 1 in Fig-
ure 6.13. The proposed method identified two of them. The pole in black was missed
because it is close to a bus stop. Therefore its points were in a cluster together with the
bus stop points. As a result, the bounding box of this cluster was too far away from the
bounding boxes of the training objects. Two road signs, of type Sign 3 and Sign 4 in Fig-
ure 6.13, which are highlighted by rectangles, are correctly recognized in Figure 6.16b.
Figure 6.16c shows a scenario where seven lamp poles of type Pole 1 and four road signs
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Figure 6.15: Similarity distances of the SigVox descriptor between template Pole 2 to the obtained 42 can-
didates at 4 levels of subdivision. The red dash line in each subfigure denotes the threshold of similarity
distance.

of type Sign 3 and Sign 4 were correctly recognized. In Figure 6.16d, there are actually
four lamp poles of type Pole 4. However, one lamp pole, the black one, was not recog-
nized because it is connected with the overhead roadside tree and was therefore not
selected as candidate. In Figure 6.16e, four street lamps of type Pole 4 and 5 road signs
of type Sign 2 and Sign 3 were all correctly recognized.

Figure 6.17 shows the recognition results from the south part of the study area. Fig-
ure 6.17a is a top view of the area. Figure 6.17b is a zoom in of Zone E in Figure 6.17a.
Three poles of type Pole 4 and Pole 5 were successfully recognized. Also, two road signs
of type Sign 1 and one road sign of type Sign 3 were correctly identified. However, one
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(a)

(b) (c)

(d) (e)

Figure 6.16: Street object recognition results from the north part of the study area. Different icons indicate
different lamp pole and traffic sign types. Successfully identified objects are indicated in green, missed ob-
jects are colored red. (a) Overall results of the recognition. (b) Zoomed in view of area A. (c) Zoomed in view
of area B. (c) Zoomed in view of area C. (d) Zoomed in view of area D. Each object type is colored in a different
color.



6

130 6. Automatic Roadside Furniture Recognition

(a)

(b) (c)

Figure 6.17: Street object recognition results from the south part of the study area. (a) Overall results of the
recognition in the south part of the study area. (b) Zoomed in view of area E. (c) Zoomed in view of area F.
The red ellipse indicates a street sign that was not detected by the workflow.
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road sign of type Sign 1 was not identified. This is because as a result of occlusion,
only part of its shape is represented by the available points. In Figure 6.17c two lamp
poles of type Pole 3 and Pole 4 were successfully identified. Four road signs of type Sign
3 were correctly recognized. Also one sign of type Sign 1 and one of type Sign 2 were
identified successfully.

6.4.5. Evaluation of Object Recognition Results
To validate the reliability and accuracy of the proposed road object recognition method,
a second point cloud of the same area was collected, but from an opposite driving di-
rection. This point cloud was processed by the same work flow. The ground truth of
the street lamp poles and road signs was also collected by visual in situ inspection. The
recognition results of the second point cloud and ground truth of the road objects are
given in Table 6.6.

Object Pole 1 1st Point Cloud 2nd Point Cloud Ground Truth
Ground Truth

Total

Street Lamp Pole

Pole 1 56 56 58

130

Pole 2 37 39 41
Pole 3 12 12 12
Pole 4 5 5 5
Pole 5 9 9 9
Pole 6 4 4 4

Road Sign

Sign 1 6 5 7

51
Sign 2 10 9 10
Sign 3 15 16 16
Sign 4 16 18 18

Object Total 170 173 181 181

Table 6.6: Results of road object recognition from the two point clouds and in situ inspected ground truth.

As illustrated in Table 6.6, 123 and 125 from a total of 130 street lamp poles are
correctly recognized in the two point clouds. Thus the accuracy of street lamp poles
recognition rates are 94% and 96% for the first and the second point cloud. There are
47 and 48 road signs correctly recognized from a total of 51 road signs. Therefore the
accuracy of road sign recognition for the two point clouds is 92% and 94%. The overall
accuracy of the road structure recognition are 94% and 96% for the two point clouds.

There are a few cases where poles are correctly identified in the point cloud of the
first run, but missed in the second run. These inconsistencies are caused either by oc-
clusions, or by a too large distance of an object to the scanning trajectory. These factors
result in incomplete sampling of the objects and resulting in deviating 3D bounding
box sized. As a result their clusters were not selected as a candidate object. An example
is the road sign of type Sign 1in Figure 6.17b. However, if the full shape of an object is
sampled, still the object can be successfully identified even if there exists a big differ-
ence in point density. Notably, the proposed method is able to identify poles sampled
at different point density. Figure 6.18a shows the lamp pole denoted by the red arrow
in Figure 6.16a. As the distances of the pole to the scanning trajectory are different, the
sampled point density is different as well. Figure 6.18b and Figure 6.18c are the point
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(a) (b) (c)

Figure 6.18: A lamp pole of type Pole 4 represented in two point clouds obtained from opposite driving direc-
tions. (a) A photo of the pole. (b) Points from the first point cloud. (c) Points from the second point cloud. In
the second run, the pole was sampled by 273 points compared to 954 points in the first run, which strongly
affects the local point density as visible in the area marked by the ellipse.

clouds of the pole sampled from two opposite driving directions, consisting of 954 and
273 points respectively. There is a big difference in point density at the top of the pole
as indicated in the figures. Still, the pole was correctly recognized in both point clouds.

Recognition may fail if an object is too close to another object. For example, Fig-
ure 6.19 shows a scenario where a lamp pole is connected to a road side tree. As a
consequence the lamp pole is not separated in the clustering step. Subsequently it was
not considered in the candidate selection step and finally not recognized. Further work
should consider the separation of apparent connected objects.

6.5. Discussion and Conclusions
6.5.1. Discussion
In this section, the sensitivity analysis of the used parameters is firstly given. Then,
future work on some aspects of the proposed method are discussed.

Sensitivity analysis
The parameters used in this work are given in Table 6.3. This section gives a short
analysis of the influence of the parameters to the results.

1. Voxelization level. The level of voxelization corresponds to the size of the vox-
els, the deeper the level, the smaller the voxel size. The parameter should be
set considering the minimum distance between objects of interest and the sur-
roundings, as well as the average point density.

2. Dimensionality. The linearity and planarity thresholds will define the dimen-
sionality of a voxel using PCA. The smaller the thresholds, the more significant



6.5. Discussion and Conclusions

6

133

(a) (b)

Figure 6.19: A scenario where a lamp pole was not identified. Because the tree and the pole are too close,
they are clustered together, which negatively effects the shape encoding. (a) A lamp pole connected to a road
side tree. (b) Point cloud of the lamp pole and the tree.

voxels will contribute their eigenvectors to the SigVox descriptor. The optimal
thresholds should also consider the noise level of the point clouds.

3. Bounding box. This parameter is used to remove point clusters that have a de-
viating 3D bounding box compared to those of the training objects at an early
stage. This avoids considering all the obtained point clusters and speeds up the
processing. However, a too small bounding box buffer will cause omissions.

4. SigVox. The number of required levels of the SigVox descriptor depends on the
complexity of the geometric shape of the selected objects of interest. A too small
number of levels will result in robustness issues. The similarity distance thresh-
old depends on the similarity of the considered objects. Smaller thresholds may
leads to omissions in the recognition results.

Future work
Still some aspects of the presented method should either be further considered or im-
proved.

1. Object separation. As the results in Section 6.4.4 shows, objects were unsuccess-
fully recognized because of their proximity to other objects. To enhance perfor-
mance, separation of objects of interest needs to be further improved.

2. Candidate selection. In this work, candidate point clusters are selected by com-
paring their 3D bounding boxes with the 3D bounding boxes of the example ob-
jects of interest. However, there may be situations in which poles are inclined.
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Such cases are notably interesting for street inventory management. Probably
the method proposed in this work will not identify inclined street poles, because
of the initial bounding box selection step.

3. Approximation of EGI. The EGI descriptor is approximated by an icosahedron,
which has 20 boundary triangles. If the shape of an object is extremely com-
plicated, the icosahedron may not be sufficient for representing the shape of
the object. However, the icosahedron can be further tessellated by incremen-
tally subdividing one triangle into four smaller triangles until the approximation
meets the requirement.

4. Threshold selection. The used parameters are mainly set with regard to the ex-
perimental results in this work. A next work should consider automatic threshold
selection.

6.5.2. Conclusions
In this chapter, the following research question is answered:

How to automatically identify objects in the urban road environment in MLS
point clouds?

Firstly, an automatic method for roadside object identification is proposed and
validated. The method consists of four steps, i.e. pre-processing, voxelization and
SigVox descriptor construction, template matching, and result validation. The pro-
posed method was tested on two point clouds sampling the same stretch of 4 km of
urban road obtained by a MLS system driving in opposite direction. In this study, 6
different types of street lamp poles and 4 types of road signs were selected as objects
of interest and the SigVox descriptor of those objects were constructed as template ob-
jects. The recognition was performed by computing the distance between the SigVox
descriptors of template objects and candidate point clusters. The recognition results of
the two point clouds were compared to ground truth data of the street objects obtained
by in situ visual inspection. The comparison results show that the overall accuracy of
road structure recognition is 94% and 96% for the two point clouds. To the best of our
knowledge, this is the first time that a shape descriptor, describing complete objects is
used to efficiently extract repetitive objects in large point cloud scenes.
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This chapter first summaries the conclusions of this thesis addressing the research
question as proposed in Chapter 1. Answers to the sub-questions are provided. Next,
recommendations for future work related to the methodology presented in this thesis
are given.

7.1. Conclusions
As introduced in Chapter 1, the main research question of this thesis is:

How to extract efficiently geometric information on the road environment from
huge MLS point clouds?

Five sub-questions were proposed to answer the main question. In summary, huge
point cloud data sets collected by MLS systems are organized by scalable and efficient
data structures, voxels and octrees. Rather than manipulating the data sets point by
point, data processing and analysis were performed on 2D raster grids, and 3D voxels
at a variety of scales. The 2D grids were used to estimate surface direction. Adjacency
in clustered 3D voxels combined to shape analysis at voxel level turned out to be a
powerful way to extract, separate and even identify objects in 3D space. Each proposed
method was evaluated by tests and the feasibility, i.e. reasonable computation time,
number of parameters and output quality, was validated as well. Detailed answers to
the five sub-questions are given below:

1. What is the current status of MLS systems and the data processing work-flow?

This question is answered in Chapter 2. First, the components of a typical MLS system
were introduced and their roles were discussed. Then, an overall review of state-of-the-
art of the data processing work-flow of MLS point clouds was provided. In summary,
the typical MLS system hardware consists of laser scanners, cameras and positioning
and orientation systems. The laser scanners provide distance measurements. The po-
sitioning and orientation systems determine the location and orientation of each emit-
ted laser pulse. By combining the measurements of the components, the 3D coordi-
nates of sampled objects are acquired. Next, a review on the processing of point cloud
data sets collected by a MLS system is provided. In general, the work-flow starts with
filtering and segmentation of the raw point clouds. In the filtering step, the ground
and non-ground points, as well as noise and outliers are removed. In the segmentation
step, points representing different sampled objects are separated. The last stage is ap-
plications. The obtained point clusters and segments are used for different purposes,
such as extraction of road geometry, curbstone and road markings, railway, highway
and tunnel monitoring and different environmental applications.

2. How to organize efficiently the huge MLS point clouds?

MLS systems are efficient in data acquisition. Typically, the systems are able to col-
lect 3D points at a speed of approximately 1 million points per second. What’s more,
besides the 3D points, the scanning trajectory, images and videos are also acquired.
Thus, the collected data sets at a city level is huge. It is a challenge to handle 3D data
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sets of such large volume, whether in storage and loading or to manipulate, i.e. point
querying and modeling. An intuitive approach is first to subset the huge data sets into
smaller tiles. In some commercial software, like micro-station of TerraSolid, re-tiling is
performed by cropping point clouds with regard to geo-referenced grids. Although the
size of those grids can be set by users, division is somehow arbitrary and the scanning
geometry is not easy to incorporate. This results in many tiles having few points and
several tiles having a large number of points. In this work, a re-tiling strategy based on
the scanning trajectory was introduced. Since point clouds are obtained along a scan-
ning trajectory, point density is varying from high to low with increasing distance from
the trajectory. The dimensions of the tiles, i.e. length and width along and across tra-
jectory respectively, are pre-set by the user based on the application considered. Points
of each tile are organized with different data structures for specific applications. Even if
the number of points in a tile is much smaller than that in the original point cloud, the
number of points is still often too large to manipulate efficiently. In this thesis, voxels
and octrees were used to re-sample the re-tiled points. Their properties, such as agility
in dimensions and efficiency in neighborhood querying, are exploited in the design of
algorithms for different applications in this work.

3. How to estimate the excavation volume on mountain roads and water flow direction
from MLS point clouds?

This question is answered in Chapter 4. Mountainous roads are lifelines of rural ar-
eas but they are prone to natural hazards, such as landslides, rock fall and water ero-
sion. Because of the complicated morphological environment, it is expensive to mon-
itor the status of those roads. Also, engineering work on mountainous roads, i.e. road
widening, needs data to estimate the excavation volume that has to be removed. MLS
systems are able to efficiently acquire dense and accurate point clouds of the road en-
vironment. In Chapter 4, a strategy for automatic estimation of excavation volume
and water-flow directions was presented. The method starts by down-sampling the
original point clouds using a uniform-size voxel. Then, local normals and 2D slopes
were estimated at each resulting point to separate road and non-road points. For ex-
cavation volume estimation, a digital surface model was generated using the obtained
terrain points. Next, the road was sliced along the scanning direction and the excava-
tion volume of each slice was accumulated. The estimation is obtained by adding the
accumulated volumes on the two roadsides. To estimate water flow directions, the ob-
tained terrain points were used firstly to generate 2.5D grids. Next, a gradient analysis
was employed to determine water flow direction. Finally, by accumulating the num-
ber of in-flow grid cells, the locations were estimated where erosion is more likely. The
feasibility of the presented strategy was verified on a stretch of mountainous road. The
proposed strategies on excavation volume and water flow estimation are generally ap-
plicable in aspects that both the methods follow the common data processing workflow
as presented in Chapter 2 and only has several parameters that related to computation
time and estimation quality.

4. How to individualize roadside trees from MLS point clouds?

One answer to this question is given in Chapter 5. Monitoring and documenting pa-
rameters such as height, diameter at breast height and canopy diameter of roadside
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trees are non-trivial tasks. Not only the number of trees is large, but also trees are
growing and thus have to be measured regularly. Furthermore, roadside trees are of-
ten almost touching each other which makes the surveying of the parameters harder.
The method takes tree points as input, starts with re-sampling the tree points by vox-
els, followed by clustering based on voxel adjacency. Consecutively, a vertical transect
starting from suitable seed voxels in combination with a novel adjacency analysis is
used to assign voxels of the same tree into one class. Finally, points within those vox-
els are identified and thus the trees are individualized. The method is scalable as the
voxel sizes in the three coordinate axis directions are changeable depending on the re-
quirements on quality and computation time. The method was verified by a series of
tests.

5. How to automatically identify objects in the urban road environment in MLS point
clouds?

In Chapter 6, the answer to this question is given. To automatically identify roadside
objects from the 3D MLS point clouds is challenging. The possible difficulties lie in the
variety of objects, the complex shape of objects and imperfections in the data. In this
thesis, an automatic method for identifying objects sampled by MLS point clouds is
presented. The method takes raw MLS point clouds and trajectory files as input. Re-
tiling is performed before ground points are removed and voxelization is performed
on the non-ground points using an octree. Consecutively, connected voxels are clus-
tered together to represent potential individual objects. Then, a 3D significant eigen-
vector based shape descriptor using voxels (SigVox) is introduced. Notably, the SigVox
is scalable and based on the entire shape of objects. Similarity matching of SigVox is
performed between training objects and the candidate individual point clusters. The
proposed method was validated on point clouds of 4km of urban road around the TU
Delft campus and 10 types of objects of the road were identified with promising accu-
racy.

The main research question of this study was addressed by answering the five sub-
questions consecutively. In this study, the huge point clouds collected by MLS sys-
tems were firstly organized by either voxels or octrees. This enables efficient process-
ing and storage based on voxels instead of individual discrete points. Both urban and
mountain road environments, which consists of road surface, roadside terrain, road-
side trees and furniture, were considered in this study. Geometric information of those
road environments, such as terrain volume, water flow directions, location or shape
of individual trees, lamp poles and traffic signs, were studied and analyzed. Differ-
ent strategies were proposed and presented in 2.5D and 3D respectively for efficient
extraction of the aforementioned geometric information. Gradient and normal based
methodologies were introduced to estimate terrain volume and water flow direction
in 2.5D. Algorithms based on 3D adjacency and intrinsic shape analysis at object level
were presented to extract geometric information in 3D. The tests verified the general
applicability and performance of the corresponding presented algorithms.

In general, the proposed methods can be directly further extended to point clouds
obtained by other mobile laser scanners, such as backpack systems, compare Figure 2.6,
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as well as TLS and ALS systems. Often, the presented methodology can be used seam-
lessly. For example, the excavation volume estimation algorithm, Chapter 4, can be
used to estimate landslide volumes from ALS point clouds. Note that this has not been
tested. The algorithm for tree individualization from MLS point clouds, Chapter 5, can
also be applied to separate forest trees sampled by TLS systems as already shown in
Chapter 5. The presented method for object recognition is able to conduct registration
of TLS point clouds as well (Wang et al., 2016). Thus, the application scenarios of the
proposed methods are not restricted to road environments.

7.2. Recommendations
On several aspects the methods presented in this thesis can be further investigated and
probably improved.

Self-adaptive parameter setting

In this work, the proposed methods are all automatic, i.e. excavation volume and
water-flow direction estimation, voxel based tree individualization and 3D SigVox based
feature matching for object identification. There are parameters that needs to be spec-
ified by the user as they define the quality of outputs. For example, voxel size is a key
parameter that influences the processing time and quality of results in water-flow di-
rection estimation, tree separation and clustering in object identification. However,
other parameters, such as the mean tree diameter in tree individualization and thresh-
olds for feature similarity in object identification, could probably be determined au-
tomatically during processing. Those parameters can be self-adaptively determined
either by machine learning strategies or statistical analysis.

Switch from voxels to octrees

In this work, some processing is performed based on voxels. Voxels have their advan-
tages, such as the possibility of having agile voxel sizes in three axis directions, the ease
to construct them and to use them in neighborhood searching. However, using voxels
often introduces memory redundancy. During a voxelization step, the total number of
voxels is determined by the bounding box of the entire input point clouds and pre-set
voxel sizes. Gaps in the point cloud still occupy memory. Therefore, efficient use of
voxels requires either an additional tiling step, or the use of relatively big voxels. An
octree is a hierarchical data structure that determines and incorporates spatial occu-
pation during voxelization. Furthermore, neighborhood searching can be performed
by looking up the addresses of the neighboring nodes. Replacing voxels in tree indi-
vidualization for example will allow to input larger point cloud tiles and have smaller
voxel sizes if required.

Assess properties of the identified objects

In Chapter 6, the presented 3D SigVox feature matching method is able to identify
objects on the roadside. However, the application of the SigVox feature descriptor
and the identified objects can be further extended. Figure 7.1a shows an example of
coarse point cloud registration in voxel space based on the correspondences obtained
by SigVox feature matching. Road furniture documentation, such as furniture location,
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(a)

(b) (c)

Figure 7.1: Further applications of the SigVox feature descriptor and the identified objects.

orientation and functionality and monitoring the state of individual furniture can be
conducted based on the identified objects. Figure 7.1b illustrates three identified lamp
poles of the same type. However, height and orientations of the poles are different due
to inaccurate installation, traffic accidents or wind. Determining the vertical angles of
the poles may give an indication of poles that need maintenance. Figure 7.1c shows an
example of a similar scenario for road signs.

High performance computing

So far, all the processing and testing of the algorithms proposed in this thesis were
performed on a desktop PC. The work-flows were not yet parallelized. For work at in-
dustry level, point clouds to be processed may sample complete cities and will be huge.
Processing of those kind of data sets may require longer computation time and larger
storage space. High performance computing will speed up the processing either by
running the algorithms on a super-computer or parallelizing the work-flow. The paral-
lelization can be carried out by first re-tiling the point clouds, then assigning a number
of tiles to a core for processing and finally merging the results from the tiles. Also, as
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the points in tiles are organized by an octree, parallelization can also be conducted
by distributing points in each sub-octant of an octree to cores and finally merging the
results.
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