
Illumination normalization for
Industry 4.0

Specular reflection removal
from non-dielectrics

Rick Dijksman

Bachelor Thesis

Illumination
normalization
for Industry 4.0

Specular reflection removal from
non-dielectrics

by

Rick Dijksman
to obtain the degree of Bachelor of Science

at the Delft University of Technology,
to be defended publicly on Friday February 11, 2022 at 03:00 PM.

Student number: 4912233
Project duration: November 10, 2021 – January 19, 2022
Thesis committee: Dr. O. Soloviev, TU Delft, supervisor

Dr. ir. C. Smith, TU Delft

This thesis is confidential and cannot be made public until February 11, 2022.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

With the introduction of machine learning algorithms in industry came a new improvement to excising pro-
duction line. Image recognisance can now be used to detect defects of the product made by these production
lines. However these kinds of flaw detection can be fooled by mirror-like specular light effect on these prod-
ucts, which can reduce the reliability of these detection methods. In this thesis two approaches are taken to
minimize these spurious specular light features. Here I look at images of welding spots taken from a car-door
production line of Fiat Chrysler Automotive Italy. First a median filter is used on multiple images of welding
spots, which each have a different illumination. Secondly the same images were fed into a modified algo-
rithm developed by Antonello et al,2018 , originally used to split fore-and background of videos, to remove
these spurious features. Then I tried to improve the output of this algorithm so that oversaturated pixels in
the output were replaced by a combination of pixel values of the input images that were not oversaturated.
Here is found that the median filter does not satisfy the desired goal of this thesis. The algorithm however
gives a good filtered output of the input images and therefore are suitable to possibly be used for computer
vision applications. The improvements made to the output of the algorithm do not correct the oversatu-
rated pixels the right way, however the method I propose here seems to have some promising results if some
improvement to this method are made, mainly concerning the normalisation of these pixels.

iii

Contents

1 Introduction 1

2 Theoretical Background 3
2.1 Diffuse versus specular reflected Light . 3
2.2 Construction of pixels in the image . 4
2.3 Existing Methods . 4

2.3.1 High-pass Filter . 4
2.3.2 Polarization based filtering. 4
2.3.3 Removal of Specular Reflections from Image Sequences using feature correspondences. . 5

2.4 Julia . 5

3 Experimental Method 7
3.1 Median filter . 7
3.2 Proximal gradient algorithm . 8

3.2.1 Webcam footage . 8
3.2.2 Welding spots . 9
3.2.3 multiplication modeling . 9
3.2.4 Saturated pixels . 11

4 Results and Discussion 15
4.1 Data sets . 15

4.1.1 FCA Italy . 15
4.1.2 DCSC . 16

4.2 Median Filter . 16
4.3 Proximal gradient algorithm for webcam footage . 19

4.3.1 Scheveningen . 19
4.3.2 Elburg . 20
4.3.3 George Washington Bridge . 20
4.3.4 Times Square . 20

4.4 Proximal gradient algorithm for removal of spurious illumination effect 21
4.4.1 Without logarithm . 21
4.4.2 With logarithm. 22
4.4.3 Saturated Pixels . 24

5 Conclusion 27

Bibliography 29

v

1
Introduction

For a production line to function properly, some form a quality control is needed to ensure the product is
good enough to be used or further processed. In this thesis I am considering the welding of car doors by FCA
Italy (Fiat). Currently, they do there quality control by letting a human check those welds on possible de-
fects. This limits the speed of the welding line. Preferably the quality control is done on-the-go. This can be
achieved by attaching a machine vision head on a robot arm which follows the door. The machine vision head
consists of a camera and illumination options. Machine learning algorithms can be used in combination with
this machine vision head to detect possible defects. However due to the difficult illumination conditions in
combination with the shiny metal, unwanted features like glints can appear in the machine learning classifi-
cation, which lessens the reliability of the defect detection.
The goal of this thesis is to minimize these unwanted illumination effects so that the reliability of these algo-
rithms is increased. Hereby I try to model the images as a combination of a diffuse-illuminated picture and
unwanted specular light features like glints. After that I try to remove the second part of the image to get a
illumination-invariant picture of the weld.
I feed multiple images of the same spot, but with different illuminations into a algorithm. This algorithm
then tries to remove any glints and maximizes the given information of the images into one picture. This
algorithm is a modified algorithm which is used to separate fore-and background in for example webcam
videos of streets. I also use a median filter to try to achieve the same goal.

1

2
Theoretical Background

2.1. Diffuse versus specular reflected Light
When light hits a surface coming from air, two things can happen. Either the light is directly reflected from
the surface, which is called specular reflection, or the light penetrates the surface. When the light penetrates
the surface, the light can be scattered by all the atoms inside the material it is entering. Eventually the light is
either transmitted trough the back of the material or reflected back to the front surface, which is called diffuse
reflection. The latter is further consider in this thesis, because we only look at the front of the material.
When the light is specular reflected, the direction of reflection is determined by the law of reflection, however
the actual direction can differ because of microscopical differences in the surface normal. With the diffuse
reflection, the light is first scattered randomly by the atoms in the material, so when it comes back to the
surface, we can assume that the direction has a diffused distribution. The difference of the kinds of reflections
are illustrated in figure 2.1.

Figure 2.1: Overview of possible reflections of light.It can be reflected specular directly or first be scattered by the particles and then
diffusely reflected. [3]

The difference between specular and diffuse reflection in real life can be easily seen if a picture is taken of
a metallic object with or without using a flashlight. In figure 2.2 (a) a bright spot in the middle of the rod can be
seen, this is the specular reflection caused by the flashlight of the camera. In figure 2.2 (b) no flashlight is used
and therefore almost no specular reflection is visible and thus almost all is reflection is diffuse. These picture
illustrates rather good why diffuse reflection is beneficial for flow detection, as you can see the scratches a lot
better in the second picture.

3

4 2. Theoretical Background

(a) Specular reflection (b) Diffuse reflection

Figure 2.2: Difference between diffuse and specular reflection on a metal rod.

2.2. Construction of pixels in the image
For this thesis a simple model for the construction of the pixels is assumed proposed in [2] . Hereby is as-
sumed that the light the falls on the nth pixel of a senor is a multiplication of the illumination of the scene
and the reflectance or transmission of the object into that pixel. Then I assume that the sensor linearly con-
vert the illumination into a voltage U [n]. So the output voltage of the sensor can be approximated by formula
2.1,

U [n] = b[n]s[n]+ v[n] (2.1)

, where U [n] is the output voltage, b[n] is proportional to the illumination of the empty scene, s[n] the
value of the transmission of reflectance of the object and v[n] is the noise produced by the camera. This
voltage value is then converted by a Analog to Digital Converter to a digital value between zero and one,
corresponding to the grayscale value.

2.3. Existing Methods
First we will look at some existing methods to remove specular features on images.

2.3.1. High-pass Filter
A high pass-filter can remove any DC or low frequencies component of the picture and keeps only the high
frequency features of interest[2]. Since the illumination is mostly consist of low frequency features, we can
remove them with a high-pass filter. This makes all edges clearly visible, but because all the low frequency
features are removed, the image does not really represent the view you will see in real life. As we are trying to
create a realistic image, this method is not suitable for this purpose.

2.3.2. Polarization based filtering
In this method the idea is used that diffuse reflections tend to be less polarized than specular reflection. This
can be explained by the nature of specular light. Because this light is reflected directly on the surface, so just
one time, compared to the diffuse reflections which are reflected many time. If the light is reflected, part of
the light is polarized parallel to the surface. If this happens one time (like with specular light) the resulting ray
is partly polarized. For diffuse light this happens many time with different surface orientations, so this light is
much less polarised then the specular light. Because of this the specular light intensity entering the camera
can be change by putting a polarization filter before the camera and changing its orientation. Therefore a
part of the specular light can be filtered away if the orientation of this polarization filter is right. This method
is described by Wolff et al [6]. I did not create my own images for this thesis and therefore did not have the
opportunity to use any polarization filter when creating the images. Also when using this approach, one only
removes a part of the specular light and also a part of the diffuse light.

2.4. Julia 5

2.3.3. Removal of Specular Reflections from Image Sequences using feature correspon-
dences

Syed et al [5] proposes a method based on the comparison of sequence of images of the same scene. They
compare the different images, where the object is spatially moved, by recognising feature point on those
images and then create a overlapping area where they have multiple images of the same area. Because the
object was moved the illumination of the overlapping area is different for each image. Because specular point
are characterized by high pixel values compared to diffuse pixels, the minimum value of this spot is taken to
obtain the value corresponding to the diffuse pixel.This does required at least one image with a diffuse pixel
on that spot, otherwise it will still be specular. This approach is based on moving the object of interest relative
to the camera, where in the situation of this thesis the object and camera are stationary relative to each other.
However the fact that for some of the images a certain spot contains only diffuse light is used in this thesis.

2.4. Julia
The images of the doors in this thesis are processed in a high-level programming language called Julia. Julia
is a fairly new language which was launched in 2012. Before I started this research I only had experience in
Python, but since syntax of Julia is quite similar to that of Python, it was able to familiarize this new language
quite fast. This language was recommended to me by Dr. Soloviev for two main reason. Firstly, the goal of the
thesis is to detect the defects in the door on a real time basis. This requires the whole detection sequence to
be fast. Julia is a lot faster then Python, because of the way it runs the code. Julia uses a just-in-time compiler
which optimizes the way a part of code is executed the first time you run this part of the code. This means
that if you run a particular part of the code for the first time, it takes some time to run. But when you then
run it the next time, it runs significantly faster. Because in this application only the input images change
and not the code, this way of working is very suitable for these kinds of uses. The second reason I used Julia
for this thesis is because of a powerful package called StructuredOptimization is written in Julia. This tool
plays a really important part in the processing of the images in this thesis and will be further explained in the
experimental method.

3
Experimental Method

To achieve to goal of this thesis, I make use of two ways of removing the spurious illumination features. For
the first method, a median is taken from a combination of different frames of the same weld. In the sec-
ond approach, a algorithm designed to split the foreground and background of a video is modified to fit the
purpose of the thesis. These methods and how I implemented this are discussed in this chapter.

3.1. Median filter
The median of a set is defined as the value that splits the higher half from the lower half of the set. If the set is
ordered for the lowest to the highest value, the median is the value in the middle of this set.

For this thesis I used a median over the different frames of the doors. The median of the values of each
pixel from every frame considered was taken to construct a new image with these median values. I used
this method because big outlier values do not influence the median as much as for example a mean of those
values. This is a good characteristic because for this case big outliers are mostly oversaturated pixels, which
do not contain any information and therefore it is desirable that they do not influence the output of the filter
that much. For the FCA data set we calculated the median over the 4 pictures of the same spot. For the DCSC
case we calculated the median with varying amounts of frames to see how many frames gave the best result.
The Julia code I used to accomplish this is shown below.

using Images, Statistics

imgpath="./preliminary_data/door941_jul20NOK/spot0"

img = load("$(imgpath)_1.tif") # load first frame
l = 4 # number of frames
n,m = size(img,1),size(img,2) # size of frames

Y = zeros(Float64,n,m,l) #initialize data

for f in 1:l
img = load("$(imgpath)_$(f).tif")
Y[:,:,f] .= convert(Array{Float64},Gray.(img)) #load frames in B&W

end

Y_med = median(Y, dims = 3)[:,:,1] #calculate median over all the frames

Gray.(Y_med) #view the resulting grayscale image

7

8 3. Experimental Method

3.2. Proximal gradient algorithm
For the second part of this thesis, I made use of a algorithm from a paper by Antonello et al [1]. In this paper a
new, open-source package implemented in Julia called StructuredOptimization is presented [4]. In this paper
an example is given how to use this modeling language to split the fore-and background of a grayscale video.
For this model a video can be viewed as a superposition of the background, which stays still, and a foreground
with moving object. The frames of the video of interest can been transformed to a matrix consisting of the
grayscale values of each pixel. The original video can then be put into a three-dimensional matrix Y, whereby
the first two dimensions represent the x and y axis and the third one the different frames. When splitting this
original video into a moving foreground and steady background, they call the moving foreground the matrix
S and the steady background L, both are also three dimensional matrices. In order to create the latter two
matrices, the creators of the algorithm used the following optimization problem given in equation 3.1. Before
they use this optimization, the matrices are first transformed so that Y, L, S ∈ Rnm×l , where n and m are the
height and width of the frame in pixels. The l-th column of these matrices represent the grayscale pixel values
of the vectorized l-th frame.

minimize
L,S

1

2
∥L+S−Y∥2 +λ∥vec(S)∥1 subject to rank(L) ≤ 1 (3.1)

This optimization problem consist of three parts. The first part makes sure that the L and S matrices added
together closely represent the original image Y. The second part can select how sparse the moving foreground
image should be. A sparse matrix is a matrix where most of the element are zero. This is an important feature
for the foreground, because we want it to only consist of the bits that are moving, which is a small part of
image. The sparsity of the matrix is approximated by the L1-norm, which adds the absolute values of all the
elements of the matrix. The sparsity of the matrix can be calculated by using the L0-norm, which counts all
the non-zero elements of the matrix. However L0 is non-convex, which can lead to a local minimum which
possibly is not equal to a global minimum. Usually it is not possible to check if there is another minimum in a
non convex problem that further minimizes the function. If we instead use approximate L0 with the L1-norm,
which is convex, we can find the global minimum. We can control the amount of sparsity by changing the
value of λ. When λ gets bigger, the sparsity of the S matrix becomes more important for the minimisation,
so S becomes sparser. The third part makes sure that the matrix L has rank 1 or 0. If the rank is 1, all the
columns of the matrix are linear dependent. This means that all the background frames only differ with a
scalar, which coincides with just a change in brightness of the image. So the rest of the image stays the same,
which is exactly what we want. If the rank of the matrix is zero, the only possibility a zero matrix. This means
that there is no background and can occur when a big part of the image is not constant so that a background
can not be established.

3.2.1. Webcam footage
Firstly, I fed some live webcam footage of different places in the world to this algorithm to see how it reacted
to videos it was made to deal with. I used 4 different webcams. They were stationed in Scheveningen (dis-
trict of The Hague next to the sea) on the boulevard, a street in the city centre of Elburg (small city in the
Netherlands), at times square in New York and the George Washington Bridge which connects Manhattan to
New Jersey. I cut the recorded webcam footage and cut it into separate frames. Then I fed the frames into the
Julia code that was provided as a sources in the paper of Antonello et al. This code used for the Scheveningen
footage can be seen below. For each video I used between 7 and 14 frames of the video in the algorithm.

using Images, Printf

imgpath="./own_test_data/scheveningen/pictures/"

img = load("$(imgpath)scene00001.png") # load first frame
Frames = 150 # number of frames in folder street
n,m = size(img,1),size(img,2) # size of frames
frames = collect(1:10:Frames) # select a slice of frames
l = length(frames) # number of selected frames

Y = zeros(Float64,n,m,l) #initialize data

3.2. Proximal gradient algorithm 9

for f in eachindex(frames)
a = @sprintf("%3.3i",frames[f])
img = load("$(imgpath)scene0$(a)1.png")
Y[:,:,f] .= convert(Array{Float64},Gray.(img)) #load frames in B&W

end

Y = reshape(Y,n*m,l); # Y contains the vectorized different frames in each of its coulmns

using StructuredOptimization

L = Variable(n*m,l) #define variables
S = Variable(n*m,l)

lambda = 3e-2

@minimize ls(L+S-Y)+lambda*norm(S,1) st rank(L) <= 1 with PANOC(tol = 1e-4);

L = ~L # extract vectors from variables
S = ~S

S[S .!= 0] .= S[S .!= 0] .+L[S .!= 0] # add background to foreground
changes in nonzero elements

S[S.== 0] .= 1.0 # put white in null pixels

Y = reshape(Y,n,m,l)
S = reshape(S,n,m,l)
L = reshape(L,n,m,l)

idx = idx = [1;5;15]
img = Gray.(vcat([[Y[:,:,i] S[:,:,i] L[:,:,i]] for i in idx]...)) #constructs a combined images of

#the original, moving and background frames
img1 = Gray.(L[:,:,1]) #shows the background image

3.2.2. Welding spots
After I fed it with the webcam footage, I wanted to use it to remove the unwanted illumination effect in the
data sets of the welding spots. The idea is that if the camera and door are stationary relative to each other,
only the light effect changes in the different frames. So the algorithm should put the changing light effect into
the ’foreground’ S matrix and the illumination invariant image of the spot into the ’background’ L matrix.
The algorithm produced a matrix L of the same image but with different brightness, so only multiplied with
a scalar compared to the other images. So I wrote a piece of code that would normalize the brightness of the
resulting ’background’ image, which I put under the reshaping of the matrices. This code can be seen below.
For the DCSC I also cut parts of the frame of so that only the area of interest with the welding spots is process.
I did this to reduce the computing time for the algorithm.

L_min , L_max = extrema(L[:,:,1]) #calculate the minimum and maximum
#value of the matrix

L_norm = (L[:,:,1] .- L_min) ./ (L_max-L_min) #converts the matrix into a matrix
#with a values from 0 to 1

3.2.3. multiplication modeling
As discussed in section 2.2 Construction of pixels in the image, a pixel is modeled as a multiplication of the
object and its illumination. The algorithm is based on a split of the fore and background which added together
return the input images. So I had to make sure that the object and the illumination were not a multiplication
but were added together before putting it into the optimization algorithm. This can be done by taking the
logarithm of the input matrix, as can be seen in equation 3.2.

10 3. Experimental Method

log (v[n]) = log (b[n]s[n]) = l og (b[n])+ log (s[n]) (3.2)

When taking the logarithm of the matrix, I had to consider two things. Firstly, the logarithm of zero is not
defined. This can be fixed by adding a small constant value to each element of the matrix prior to taking the
logarithm. I chose a value of 1·10−12. Secondly, the optimization algorithm only takes positive value. This can
solve by first calculating the minimum of the logarithm of the matrix and then subtracting this value from all
the elements. After this two operation, I fed the result into the algorithm and then added the minimum value
to the output, take the exponent of this and lastly subtract the small value. The code to do this can be seen
below.

using Images, LinearAlgebra, Statistics

imgpath="./preliminary_data/door941_jul20NOK/spot0"

img = load("$(imgpath)_1.tif") # load first frame
Frames = 4 # number of frames in folder street
n,m = size(img,1),size(img,2) # size of frames
frames = collect(Int64,1:4) # select a slice of frames
l = length(frames) # number of selected frames

Y = zeros(Float64,n,m,l) ; #initialize data

for f in 1:l
img = load("$(imgpath)_$(f).tif")
Y[:,:,f] .= convert(Array{Float64},Gray.(img)) #loaf frames in B&W

end

Y = reshape(Y,n*m,l); # Y contains the vectorized different frames in each of its coulmns
Y .+= 1.0e-12; #add small value to make sure all values are nonzero
Y = log.(Y); #takes elementwise logarithm
ymin = minimum(Y) #calculate minimum value and subtract this from the matrix
Y .+= -ymin;

using StructuredOptimization

L = Variable(n*m,l) #define variables
S = Variable(n*m,l)

lambda = 2e-1

@minimize ls(L+S-Y)+lambda*norm(S,1) st rank(L) <= 1 with PANOC(tol = 1e-4);

L = ~L # extract vectors from variables
S = ~S

S[S .!= 0] .= S[S .!= 0] .+L[S .!= 0] # add background to foreground
changes in nonzero elements

S[S.== 0] .= 1.0 # put white in null pixels

invlog(image) = exp.((image .+ ymin)) .- 1.0e-12 #reverse the operations done to the matrix
#prior to the optimization algorithm

Y = invlog(Y)

3.2. Proximal gradient algorithm 11

S = invlog(S)
L = invlog(L)

Y = reshape(Y,n,m,l);
S = reshape(S,n,m,l);
L = reshape(L,n,m,l);

L_min , L_max = extrema(L[:,:,1])
L_norm = (L[:,:,1] .- L_min) ./ (L_max-L_min)

3.2.4. Saturated pixels
After I used these methods to filter out the light effect on the pictures of the welding spots, I noticed that if
some parts of the welding spots were oversaturated in most of the frames, the algorithm made the filtered
picture on that part of the picture also oversaturated. A oversaturated pixel does not give any information
about that particular spot. Therefore I wanted to replace these pixels with some combination of the values
of that pixel which were not oversaturated. As the optimization algorithm is a non-linear filter I could not
consider the whole output image as some linear combination of the given input frames. However Dr. Soloviev
suggested that if a small group of pixels is taken, a linear approximation is justified. I therefore split up the
output image of the algorithm into small patches of 3x3 pixels. For each small patch I approximated the pixel
value output on spot [i,j] of the optimization algorithm as stated in equation 3.3.

L[i , j] =∑
l

wl Yl [i , j] (3.3)

Hereby is L[i , j] the output value , wl the weight factor of the l-th input frame and Yl [i , j] the value of
that pixel on the l-th frame. For each patch of 3x3 pixel I first calculated the corresponding weight factors by
means of the least squares solution given in equation 3.4.

ŵ = Y ⊤L (3.4)

Then I look for each pixel in the patch if some of corresponding Y values are 1, which means they are
oversaturated. If this is the case I calculate a new value for this pixel by only using the values of Y that are
not oversaturated with there corresponding weight factor. So if for instance only the first second and fourth
frame of that pixel are not oversaturated, a new value for the output is calculated as follows:

L[i , j] = N · (w1Y1[i , j]+w2Y2[i , j]+w4Y4[i , j]),

where N is some normalisation constant. If all Y values of this pixel are 1, I replace the output value
with 1, because the only information we then have of that pixel is that it is oversaturated. The normalisation
constant is needed because I excluded some weight values that as a complete set defined the output image.
To calculate this normalisation constant I took two approaches. The first one is based on the sum of the
weight factors. Hereby the normalisation factor is calculated by the sum of all the weight factors dividing by
the sum of all the weight factors that are not excluded for that particular pixel. The second approach is based
on the mean value of the patch. The normalisation value is then calculated by the mean value of the output
of the algorithm in that patch divide by the mean value of the Y values on the patches that are not excluded.

The code for this saturated pixel replacement is displayed below, Hereby the first normalisation constant
is used.

filter_size = 3 #patch size
n_pieces = Int(n/filter_size) #the amount of patches fitted on the x and y axis
m_pieces = Int(m/filter_size)

threshold = 1

Y = reshape(Y, (filter_size,n_pieces,filter_size,m_pieces, l)); #both Y and L are reshaped so that all the patches are underneath each other
Y = permutedims(Y, [1,3,2,4,5]);

12 3. Experimental Method

Y = reshape(Y,(:,l));

L_norm = reshape(L_norm, (filter_size,n_pieces,filter_size,m_pieces));
L_norm = permutedims(L_norm, [1,3,2,4]);
L_norm = reshape(L_norm,(:));

Y_shaped_3 = deepcopy(Y)
L_norm_shaped_3 = deepcopy(L_norm)

for i in range(1, n*m, step= filter_size^2) #loops trough each patch
W_local = Y[i:i+(filter_size^2-1),:] \ L_norm[i:i+(filter_size^2-1)] #t local weight

#factors are calculated
normal = sum(W_local)
for j in range(i, i+(filter_size^2-1), step=1) #loops trough each pixel of the patch

W_local_ov = deepcopy(W_local)
W_trace = ones(l) #traces the frames that are or are not included
for k in 1:l

if Y[j,k] >= 1
W_local_ov[k] = 0 #excludes the value of oversaturated pixels
W_trace[k] = 0

end
end
Y_local_nonzero = Y[j,:] .* W_trace
check if there are oversaturated pixel and if there is, change the value of the output
if W_trace != ones(l)

L_norm[j] = dot(Y[j,:] , W_local_ov) * normal/sum(W_local_ov)
elseif W_trace == zeros(l)

L_norm[j] = 1
end

end
end

Y = reshape(Y,(filter_size,filter_size ,n_pieces,m_pieces, l)); #reshapes both Y and L back
#to the form that they make a image

Y = permutedims(Y, [1,3,2,4, 5]);
Y = reshape(Y, (n,m,l));

L_norm = reshape(L_norm,(filter_size,filter_size ,n_pieces,m_pieces));
L_norm = permutedims(L_norm, [1,3,2,4]);
L_norm = reshape(L_norm, (n,m));

For the second way of calculating the normalisation constant the for loop above is changed to the follow-
ing.

for i in range(1, n*m, step= filter_size^2) #loops trough each patch
W_local = Y[i:i+(filter_size^2-1),:] \ L_norm[i:i+(filter_size^2-1)] #t local weight

#factors are calculated
L_mean = mean(L_norm[i:i+(filter_size^2-1)])
for j in range(i, i+(filter_size^2-1), step=1) #loops trough each pixel of the patch

W_local_ov = deepcopy(W_local)
W_trace = ones(l) #traces the frames that are or are not included

3.2. Proximal gradient algorithm 13

for k in 1:l
if Y[j,k] >= 1

W_local_ov[k] = 0 #excludes the value of oversaturated pixels
W_trace[k] = 0

end
end
Y_mean = W_trace .* mean(Y[i:i+(filter_size^2-1),:], dims=1)
check if there are oversaturated pixel and if there is, change the value of the output
if W_trace != ones(l)

L_norm[j] = dot(Y[j,:] , W_local_ov) * L_mean / mean(Y_mean[Y_mean .!= 0])
elseif W_trace == zeros(l)

L_norm[j] = 1
end

end
end

4
Results and Discussion

This chapter discusses the results of used filters. Firstly, I present the two data sets on which the filters are
used. Then the results of the median filter are presented and discussed. After that we take a look at the result
of the proximal gradient algorithm on the webcam footage. Then we look how the optimization problem
works on the two data sets of the welding spots. Lastly I will discuss the result of the modified code to take
care of the oversaturated pixels.

4.1. Data sets
In this thesis I use two different data sets of pictures of welts taken by both FCA Italy and researchers of the
Delft Center of System and Control (DCSC). Both are images of welts in car-doors produce at a welding line
of FCA Italy.

4.1.1. FCA Italy
FCA made a sets of grayscale pictures of welding spots from two different doors. From each spot four pictures
are taken whereby each picture has a different illumination. The set up consisted of a camera and two sets of
LED-strips. The LED-strips were attached on both sides of the camera. The different illumination was then
achieved by leaving the LED’s both off, turning the left or right one on or lighting them both at the same time.
The set-up for the pictures can be seen in figure 4.1 and the resulting pictures in figure 4.2

Figure 4.1: Set-up for the FCA data set

15

16 4. Results and Discussion

(a) LED-strips are both off (b) Only the left LED-strip is on (c) Only right LED-strip is on (d) Both LED-strip are on

Figure 4.2: An example of the different pictures of the same welding spot taken by FCA Italy

4.1.2. DCSC
The second data set is made by researchers of DCSC who visited the production line themselves in November
2021 to make there own images. The set consist of two videos cut in frames of a door with 3 welds on it.
During the video the camera and door remain stationary and a light source is moved by hand behind the
camera. The sets contain 124 and 126 frames of the same door with varying illumination. Some frames of the
second set of images can be seen in figure 4.3.

Figure 4.3: An example of 3 frames fro the data set made by the researchers of DCSC

4.2. Median Filter
I first tried to use this filter on the FCA Italy data. The result can be seen in figure 4.4. The upper 4 images are
the original input images and the bottom one is the output. It can be seen that the output image does not get
clearer. The whole image just gets vaguer than the originals and especially the border of the circular welding
spot is less clear to see.

4.2. Median Filter 17

Figure 4.4: The output image of the median filter on the FCA Italy filter with its input images above it.

Then I used this filter on the data collected by the DCSC team. Because I had more than 100 frames of the
same weld, I experimented by feeding different amount of frames into this filter. In figure 4.5 first some of the
input frames are showed followed by some resulting images with different amounts of frames.

In these images the circumference of the circle are enhanced, but like in the FCA Italy case, the pictures
also get vaguer. This is undesirable because the detection of things like scratches is much worse. If the num-
ber of frames the filter takes in is increased, the enhancement of the circles gets more present, but it also
becomes more like a sort of artificial circle instead of a representation of reality. The filter does however deal
quite well with the oversaturated pixels that can be seen at the bottom of the images. I therefore think this
filter might be useful to use for the detection of the welding spots, but not for flaw detection.

18 4. Results and Discussion

(a) Original video frame 1 (b) Original video frame 20

(c) Original video frame 58 (d) Original video frame 100

(e) Median filter over 7 frames (f) Median filter over 13 frames

(g) Median filter over 25 frames (h) Median filter over 62 frames

Figure 4.5: The output images for a median filter over the DCSC data taken over different amounts of frames and some of its input frames.

4.3. Proximal gradient algorithm for webcam footage 19

4.3. Proximal gradient algorithm for webcam footage
As said in the experimental method, I used 4 different webcam video to find out the characteristics of this
algorithm. In figure 4.6 you can see how the algorithm reacted to those videos. In each image you can see for
3 different frames: the original frame, the part of the image that was moving at that moment and the constant
background from left to right.

(a) Scheveningen (b) Elburg

(c) George Washington Bridge (d) Times Square

Figure 4.6: The splitting of webcam footage done by the algorithm. From left to right: original frame (Y), moving part (S), steady back-
ground (L). Three different frames of the video are depicted underneath each other.

4.3.1. Scheveningen
The algorithm preform really well on the footage of the boulevard of Scheveningen. In figure 4.7 can be seen
that the people that were in the shot were removed perfectly. Also because the waves and the clouds are
moving, the background image contains what seems to be a calmer sea and sky. In this particular footage not
a lot of the image is moving so the algorithm seems to have no problem with removing the moving parts.

(a) Original image (b) Background image

Figure 4.7: The result of filtering the background of the Scheveningen webcam footage by the algorithm.

20 4. Results and Discussion

4.3.2. Elburg
For the Elburg webcam footage the algorithm also preform rather well. It also removes the cars and people
and because this footage was taken in the evening, some effect of lighting can also be seen. The traffic sign
in the middle of the image is a good example that is relevant for this thesis. In the original picture, depicted
in figure 4.8, you can see that this sign lights up because of the reflection of the headlights of the car. In the
filtered background image generated by the algorithm, this reflection is removed, which is quit a nice feature
considering the end goal of this thesis.

(a) Original image (b) Background image

Figure 4.8: The result of filtering the background of the Elburg webcam footage by the algorithm.

4.3.3. George Washington Bridge
In this footage the limits of the algorithm become visible. As there are a lot of cars moving in this video and
the background, which in this case is a empty road, is hardly visible, the algorithm has problems with filtering
out all these cars. Therefore we can still see some feature of the cars that were driving there .

(a) Original image (b) Background image

Figure 4.9: The result of filtering the background of the George Washington Bridge webcam footage by the algorithm.

4.3.4. Times Square
If parts of an image have no constant background we can begin to see some strange effects. This can be seen
in the footage of times square, displayed in figure 4.10. Because the billboard in the image do not really have
a background, the algorithm replaces this part by some weird combination of picture that were displayed in
the time this was recorded. However most of the people were removed and some of the cars that were not
standing still were also removed.

4.4. Proximal gradient algorithm for removal of spurious illumination effect 21

(a) Original image (b) Background image

Figure 4.10: The result of filtering the background of the Times Square webcam footage by the algorithm.

4.4. Proximal gradient algorithm for removal of spurious illumination ef-
fect

After I used the algorithm on webcam footage I modified the code to use it on the welding spot images. I first
run the algorithm without taking the logarithm before feeding it into the algorithm.

4.4.1. Without logarithm
I first tested it on the FCA Italy footage. The result can be seen in figure 4.11. on the left we see the four input
images and next to that the parts that were filtered out by the algorithm. Normally the algorithm return four
different output pictures who only differ in brightness. The output picture we see on the right is a normalized
version of these where the grayscale values lie between 0 and 1.

(a) The input pictures next to the removed
parts. (b) The output picture normalized

Figure 4.11: On the left the four input pictures are shown. To the right of them are parts that were removed by the algorithm per input
image. On the right the output image of the algorithm is shown.

In this output the circular welding spot can been see rather good and if we compare it with the input im-
ages, it is clear that it removes a lot of unwanted reflections. For instance in the first input image we see a
reflection on the bottom left side of the welding spot, which is perfectly filtered away in the output image.

22 4. Results and Discussion

However we can see that for areas where the majority of input images are over saturated, like on the bulge on
the right side of the weld, the resulting output picture is also oversaturated. That is undesirable because we
do have information about this area from for example the first input image. In section 4.4.3 I tried to solve
this problem.

Then I ran the footage taken by the DSCS team. For this data set I decided to feed the algorithm with 7
frames, because I had much more frames of the same spots available. The result can been seen in figure 4.12
with the same layout as in figure 4.11.

(a) The input pictures next to the removed parts. (b) The output picture normalized

Figure 4.12: On the left three of the seven input pictures are shown. To the right of them are parts that were removed by the algorithm
per input image. On the right the output image of the algorithm is shown.

Here we can see that the algorithm also did quit good in filtering out the unwanted illumination effects.
However there is still some glints to be seen around both the welding spots, but they are significantly reduce
compared to the input pictures. Also the metal around the spots is clearly visible compared to for example
the second input picture depicted in figure 4.12. Concerning the bottom of the picture, this algorithm gives a
poorer representation than the median filter. The rest of the image however is displayed much better here.

4.4.2. With logarithm
After this I first took the logarithm of the images before feeding it into the algorithm to see if this provided any
significant improvements. I first tried this with the FCA Italy data, which can be seen in figure 4.13.

4.4. Proximal gradient algorithm for removal of spurious illumination effect 23

(a) The input pictures next to the
removed parts. (b) The output picture normalized

Figure 4.13: On the left the four input pictures are shown. To the right of them are parts that were removed by the algorithm with the use
of taken the logarithm per input image. On the right the output image of the algorithm is shown.

If we compare this to the non logarithmic case, we can see that more is removed here over the whole pic-
ture instead of only some areas. It does however not remove a lot in the areas that were not affected in the
non logarithmic case. Therefore if we compare the two outputs in figure 4.14, I do not see any significant
different. Since this is the case, I would recommend to use the algorithm without first taking the logarithm
of the input. This calculation takes some extra time and up top of that the algorithm take significantly more
time to run for the data where the logarithm is taken of.

(a) Output non-logarithmic (b) Output logarithmic

Figure 4.14: A comparison between the output with and without taking the logarithm during the algorithm for the FCA Italy data.

Then I also use the logarithm for the DCSC case. As can be seen in figure 4.15 and 4.16 this implementa-
tion of the logarithm does not make any significant improvements to the output. So with the same reasoning
as for the FCA Italy case, I conclude that the non logarithmic use of the algorithm is recommended.

24 4. Results and Discussion

(a) The input pictures next to the removed parts. (b) The output picture normalized

Figure 4.15: On the left the three of the seven input pictures are shown. To the right of them are parts that were removed by the algorithm
with the use of taken the logarithm per input image. On the right the output image of the algorithm is shown.

(a) Output non-logarithmic (b) Output logarithmic

Figure 4.16: A comparison between the output with and without taking the logarithm during the algorithm for the DCSC data.

4.4.3. Saturated Pixels
As discussed in section 4.4.1, if in most of the input images some area is oversaturated, the algorithm also fills
this area with oversaturated pixels. A example of such area is highlighted in figure 4.17.

(a) Input images (b) Output image

Figure 4.17: Highlighted area were the algorithm output takes a oversaturated value.

4.4. Proximal gradient algorithm for removal of spurious illumination effect 25

I would like to further improve this area so that it only uses the information of the pixels that are not
oversaturated. Therefor I apply the extra piece of code presented in the experimental method. This piece of
code is applied with two different normalisation constants. First I tried the normalisation based on the sum
of the weight factors. The result of this can been seen in figure 4.18.

(a) Output without excluding saturated pixels (b) Output image with excluding saturated pixels

Figure 4.18: A comparison between the output of the algorithm with or without the code that replaces the oversaturated pixels with the
normalisation constant based on the sum of the weight factors.

Here we see that the extra piece of code rightly selects the areas where the pixels of some input images
were oversaturated. However the value that replace them does not seem to blend in with the rest of the
image although more information about this area is given. Also a clear line is seen around the areas that were
effected by the extra code. This can be explained because the areas directly around these oversaturated spots
are almost oversaturated and have a grayscale-value close to 1. If I set the threshold for which I consider the
pixel oversaturated to a value lower then 1, we can decrease this bright border around it.This can been seen
in figure 4.19.

(a) Threshold = 1 (b) Threshold = 0.9 (c) Threshold = 0.8

Figure 4.19: The output of the algorithm with the saturated pixels replaced with the normalisation constant based on the sum of the
weight factors with different threshold values.

Then I tried the same code but with the normalisation constant based mean of the values in that particular
patch. The result is displayed in figure 4.20.

In this image the right areas are also rightly picked. However the values that replace these areas are totally
not correct. I do think this approach on the normalisation is a promising one though. Unfortunately due to
limited time, I did not have the time to further investigate what is going wrong here. Therefore I suggest that

26 4. Results and Discussion

(a) Output without excluding saturated pixels (b) Output image with excluding saturated pixels

Figure 4.20: A comparison between the output of the algorithm with or without the code that replaces the oversaturated pixels with the
normalisation constant based on the mean value of the particular patch.

for further research, one can try to improve this way of normalising the replaced values. Also the first way of
normalising seems to work quite descent and might do the trick if some improvements are made.

5
Conclusion

The goal of this thesis was to minimize unwanted illumination effect on images of metallic doors. Different
approaches were made to achieve this goal. Firstly a median filter was applied to the data. This made the
resulting image vaguer then the original and sometimes even distorted image. Then a algorithm developed
by Antonello et al was used to filter the input images. This algorithm gave a much more promising result. A
lot of unwanted specular features that were present on the input images were removed without sacrificing
clarity of the image. I then tried to further improve the output of this algorithm by taking the logarithm
of the input before feeding it into the algorithm but this only significantly increased the processing time
without improving the resulting output. At last I tried to remove the saturated pixels in the output of this
algorithm and replacing them by non oversaturated pixels. This method seems promising to further improve
the process, but due to time shortage the right replacement value could not be found, most probably due to
the wrong normalisation. Therefore I suggest to further investigate this replacement of oversaturated pixels
to perfect this method of illumination normalisation.

27

Bibliography

[1] Niccoló Antonello, Lorenzo Stella, Panagiotis Patrinos, and Toon van Waterschoot. Proximal gradient
algorithms: Applications in signal processing. arXiv preprint arXiv:1803.01621, 2018.

[2] Bruce G. Batchelor. Machine Vision Handbook. Springer, London, 2 edition, 2012.

[3] Jorge Bonekamp. Multi-image optimization based specular reflection removal from non-dielectric sur-
faces. 2021.

[4] N. Antonello L. Stella. Structuredoptimization.jl. https://github.com/JuliaFirstOrder/
StructuredOptimization.jl, 2017.

[5] MZ Abbas Shah, Stephen Marshall, Paul Murray, et al. Removal of specular reflections from image se-
quences using feature correspondences. Machine Vision and Applications, 28(3):409–420, 2017.

[6] Lawrence B Wolff and Terrance E Boult. Constraining object features using a polarization reflectance
model. Phys. Based Vis. Princ. Pract. Radiom, 1:167, 1993.

29

https://github.com/JuliaFirstOrder/StructuredOptimization.jl
https://github.com/JuliaFirstOrder/StructuredOptimization.jl

	Introduction
	Theoretical Background
	Diffuse versus specular reflected Light
	Construction of pixels in the image
	Existing Methods
	High-pass Filter
	Polarization based filtering
	Removal of Specular Reflections from Image Sequences using feature correspondences

	Julia

	Experimental Method
	Median filter
	Proximal gradient algorithm
	Webcam footage
	Welding spots
	multiplication modeling
	Saturated pixels

	Results and Discussion
	Data sets
	FCA Italy
	DCSC

	Median Filter
	Proximal gradient algorithm for webcam footage
	Scheveningen
	Elburg
	George Washington Bridge
	Times Square

	Proximal gradient algorithm for removal of spurious illumination effect
	Without logarithm
	With logarithm
	Saturated Pixels

	Conclusion
	Bibliography

