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Abstract

System identification is the art of constructing mathematical models from observed data. It
is a well established field with a history of over 40 years, characterized by a rich theoretical
background, while it has proven its worth in many real life applications. On the other hand,
Gaussian processes form a specific category of kernel based machine learning algorithms. Both
methods aim at making predictions based on the past data. However, in contrast with the
system identification algorithms, Gaussian processes do not deliver a parametric model but a
mere (non-parametric) relation between the available inputs and outputs.

Over the past few years the possible synergy between the two fields is extensively investigated.
More specifically, the incorporation of the Gaussian process framework in the Prediction Error
Identification (PEI) methods for Linear Time Invariant (LTI) systems was recently achieved.
In this way, desirable properties of the Gaussian processes such as the increased flexibility
and the minimum variance property of the estimator were included in the PEI framework.
Moreover, these methods manage to incorporate simple prior knowledge to the algorithm
through the sophisticated determination of the covariance (kernel) properties of the related
coefficients.

This synergy was also recently extended to the Subspace Identification (SID) framework for
LTI systems. This is exactly the starting point of this thesis. After this point, we analyse the
effect of various aspects on this new algorithm, such as the kernel structure, the effect of Signal-
to-Noise Ratio (SNR) ratio and the effect of the available data points. More importantly, the
effect of the past window value is extensively investigated, since its value is critical towards the
accurate identification in the classical SID methods. In this thesis it is shown that the kernel
based SID methods exhibit a superior accuracy compared to the up-to-date SID algorithms.
Moreover, it is shown that they are the least affected by the choice of the past window value,
thus opening the way for more automatic methods, less affected by the specific choices of the
users.

Following the examination of the LTI case, the possible synergy between Gaussian processes
and SID methods for Linear Parameter Varying (LPV) systems is under consideration. To
this end, we start with an analytic investigation of the LPV SID methods in order to highlight
their characteristics. At this point it becomes obvious that a direct use of the kernel methods
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for LTI systems is impossible due to the differences between the two classes of systems.
Therefore, new methods were sought, opening the way to two novel approaches for the kernel
based SID of LPV systems. The first one is based on the introduction of a prior on the LPV
equivalent Markov parameters, while the second one introduces a prior on the time varying
impulse response coefficients. The theoretical aspects of the proposed algorithms are then
highlighted to reveal their merits and deficiencies.

Moreover, the structure of the kernels is a crucial aspect of the kernel based SID methods
for LPV systems. Especially for the second proposed approach, the proposed kernels balance
between two desirable but contradictory characteristics. On the one hand, simple structures
alleviate the computational burden of the involved (non-convex) optimization algorithms but
they can be too restrictive and so they may fail to capture the underlying dynamics. On the
other hand, rich kernel structures are expected to offer better results but only if they manage
to avoid local-minima, while the computational time is expected to be a serious limitation.
Our solution follows after an assiduous investigation of the coefficients to be estimated and
the subsequent establishment of a correlation between the kernel structure and the impulse
response coefficients. This could be seen as the LPV equivalent of introducing simple prior
knowledge in the proposed methods.

Finally, the validity of the proposed algorithms is verified through a series of identification
examples. The main result of this thesis project is that the new, kernel based algorithms
show a superior accuracy compared to the standard SID methods for LPV systems. From
these algorithms, the so called “LPV-RKHS-PBSIDopt” algorithm exhibits the most accurate
results, as it is both theoretically justified and also observed in the simulation examples. All in
all, the performance of the kernel based SID methods for LPV systems shows a high potential,
which can lead to a change of paradigm of how mathematical models can be constructed from
the observed data.
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Chapter 1

Introduction

1-1 Introduction to the identification of dynamical systems

System identification is the art of constructing mathematical models from observed data.
It has a long history that spans more than 40 years in its contemporary form. Its origins,
though, lay back on the work of Legendre and Gauss in the 19th century, when both used the
least squares method during their independent efforts to understand and predict the motion
of the planets and comets [1]. The theory of system identification defines an alternative
approach to the analytic modelling, in which the underlying mathematical model is based on
physical intuition. Nowadays, it is a well defined scientific field that has proven its merits in
a large spectrum of applications.

The two most prominent identification schemes are the so called Prediction Error Identifi-
cation (PEI) and the Subspace Identification (SID) methods. While the first ones include
an explicit (possibly nonlinear) optimization criterion whose minimization delivers the most
suited system variables, the SID methods follow a different scheme. More specifically, by
incorporating tools from linear algebra, they are also capable of estimating models with high
accuracy without requiring an explicit optimization criterion, thus avoiding the pitfalls of a
possibly nonlinear optimization problem.

Both identification techniques have been successfully applied in the Linear Time Invariant
(LTI) class of systems. However, this class is not capable of capturing the dynamics of more
complex systems, that may exhibit a nonlinear behaviour. On the other hand, nonlinear
models are able to interpret a larger variety of systems but the high complexity of these models
creates many problems when it comes to their identification and control and so it has restricted
their applicability. For this reason, the class of Linear Parameter Varying (LPV) systems was
proposed at the beginning of the ’90s as the middle ground between LTI and nonlinear systems.
Following the development of the related theory, the identification of the LPV systems based
on both identification techniques was addressed in a series of publications [2, 3].

Another popular scientific field is machine learning. In simple terms, machine learning is
trying to answer the question of how a “machine” can be programmed to automatically learn
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2 Introduction

and improve its performance based on the experience that it gains over time. This learning
procedure also includes the task of predicting the future behaviour of the machine, based
on the past paradigms. In contrast with the system identification techniques, the machine
learning techniques do not deliver an explicit mathematical model to describe the underlying
system, but instead they establish relations between the given data points. Its origins are
traced far beyond the advent of digital computers. The first known analogue computer was
the Antikythera mechanism, used to predict celestial information such as the phases of the
moon [4]. Gaussian processes are a specific way to perform learning tasks and it is based on the
Gaussian process statistical framework [5]. The Gaussian processes encode the information
about the statistical properties (such as covariance) of the variables in kernels. By suitably
shaping these kernel matrices it is possible to derive meaningful solutions, able to describe in
an accurate way the behaviour of the underlying system.

In total, it becomes evident that the two scientific fields, namely system identification and
machine learning, share a common target; the accurate prediction of the trajectory of the
system, taking into account a trade-off between too complex models that may suffer from
limited applicability and too simple models that may suffer from limited interpretability.

1-2 Problem statement

In the past few years, the common ground between the fields of system identification and
machine learning attracted the attention of the scientific community [6]. More specifically,
the incorporation of the merits of the Gaussian process framework (such as the view of
the coefficients to be estimated as the maximum a posteriori estimates) in the (parametric)
identification of dynamical systems was pursued.

This goal was eventually accomplished in 2008 with the successful incorporation of a step
based on Gaussian processes in the PEI method for LTI systems [7]. From that time onwards
the research interest on this topic has attracted the interest of many more scientists, as the
exponential growth in the number of the related publications witnesses. In the last five
years new kernels that incorporate simple prior knowledge about the underlying systems
(such as stability) have been proposed and many theoretical aspects of the kernel based PEI
methods have been investigated. The derived results were rather astonishing; the kernel based
PEI methods almost always showed a superior performance compared to the standard PEI
methods, which were considered to deliver the optimal estimates (due to Cramér-Rao bound),
up to that time.

The extension of the kernel methods in the SID algorithms was the next step to be taken.
The solution was rather straightforward. For the SID methods that use the so called Vector
ARX (VARX) step this extension was accomplished some years later [8]. However, this
synergy between Gaussian processes and SID methods is still in a preliminary stage, since
various aspects of the algorithm are not examined. This includes general questions (what is
the effect of noise, excitation signal etc.) as well as questions about how specific selections in
the SID algorithms affect the kernel based methods (such as the chosen past window value). It
is therefore our first aim to examine this field, explicitly from a SID perspective. To this end,
the analytic comparison of the differences between kernel based PEI and SID methods offers
new insights. After this point, we aim at investigating the effect of various parameters in the

Ioannis Proimadis Master of Science Thesis



1-3 Contributions 3

accuracy of the kernel based SID. Among these, the most important will be the investigation
of the effect of the past window, which is a critical parameter in the SID algorithms. An
investigation of the kernel based SID method in different simulation examples will be used to
reveal in a clear way its advantages and possible pitfalls.

Following the results for the kernel based SID of LTI systems, an important question arises
naturally. Is it possible to extend the kernel based methods in the LPV SID
framework? This question is not trivial at all. Up to our knowledge, there is only one
preliminary result on the synergy between the PEI and the kernel methods for LPV systems
[9]. It is therefore clear that the incorporation of kernel based methods in SID of LPV systems
(and specifically of discrete-time LPV state-space systems) is an open question. And this will
be exactly the main question of this thesis project.

In order to achieve this goal, we have to follow some necessary steps. First, by using the kernel
based SID methods as the basis, the investigation of the similarities and differences between
the SID algorithms for LTI and LPV systems has to be investigated. Additionally, the changes
that a kernel based approach induces in the LPV SID algorithm have to be identified and
taken into account. Questions such as what is the optimal kernel, what kernels can be used in
practice and how the algorithm can be implemented in an efficient way have to be answered.
Finally, the possible approaches in this problem have to be validated in simulation examples
and further re-evaluated.

All in all, the synergy of the SID methods and the kernel based methods has been partially
explored in the LTI case but not at all in the LPV case. Therefore, this thesis aims at
providing a complete framework, starting from the identification of LTI systems and using
this knowledge as a basis for the identification of LPV systems.

1-3 Contributions

This thesis project investigates the synergy between SID methods and kernel based approaches
for two different classes of systems, namely the LTI and the LPV systems. It offers some new
insights in the LTI case, while in the LPV case novel developments are presented.

More specifically, in the LTI case the following contributions are made:

• A comparison of the proposed kernel structures is performed, using different models as
well as different configurations (SNR, available data points). This comparison is not
thoroughly performed in the related literature, but it is necessary towards the imple-
mentation of the proposed algorithms in an experimental setup. The results showed
that the kernel based methods are able of delivering highly accurate models under very
challenging simulations setups, such as low SNR, bad excitation and small number of
available data points, while the performance of the other SID methods that were used
as a comparison was much lower.

• The choice of the past window value is crucial for the accurate estimation in the SID
algorithms. In this thesis we investigated the effect of the past window in the kernel
based SID. This gave a new insight into the SID methods, currently missing from the
literature. More specifically, it is shown that the choice of the past window is not a
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crucial choice in the kernel based SID, since these algorithms are able to deliver highly
accurate models for almost any past window value.

In the LPV case, we investigated the possible synergy of the kernel methods and the SID
algorithms. This led to a number of new insights and developments.

• The common and different aspects between the kernel based SID approaches for LTI
systems and the possible ones for the LPV systems is investigated. Following this
comparison, we propose and investigate two possible approaches towards a kernel based
SID method for LPV systems.

• The notion of optimal regularization for LPV systems is introduced. This will be useful
since it sets an upper bound for the accuracy of the estimated model in the asymptotic
case (when the past window value is infinite).

• The first proposed approach is investigated and its merits and deficiencies are high-
lighted. This method is based on assigning a prior on the LPV equivalent Markov
parameters, while the proposed kernels show some similarities with the ones in the LTI
case.

• The second proposed approach is treating the impulse response coefficients as Gaussian
processes. It gives itself rise to two novel methods: the LPV-K&PBSIDopt and the
LPV-RKHS-PBSIDopt algorithm. These algorithms are investigated in depth and we
also justify when and why each of these two algorithms is expected to yield better
results. These theoretical aspects are further investigated in simulation examples.

• New kernel structures are proposed for the second approach. These kernels aim at
accurately capturing the dynamics of the underlying systems, while keeping the number
of the parameters to be estimated low. This is necessary to avoid the local-minima in
the involved non-convex optimization. The desired result is achieved by exploiting the
structure of the impulse response coefficients and using as a basis the Radial Basis
Function (RBF) kernel structure.

• All the proposed approaches lead in general to a more accurate estimation of the un-
derlying systems, compared with the up-to-date LPV-PBSIDopt based methods. The
methods that follow from the second approach are better than the ones from the first
approach especially when the number of local systems is relatively low, as it is theoret-
ically justified. Among the investigated methods, the LPV-RKHS-PBSIDopt algorithm
is in overall the most accurate one as it was indeed expected, following the theoretical
analysis that was performed.

1-4 Outline of the thesis

This thesis project is divided in three parts. In the first part the necessary theoretical aspects
of the subspace methods for LTI and LPV systems are given, followed by an introduction
in Gaussian processes. In the second part we introduce the kernel methods for LTI systems
based on the PEI framework and see how they can be extended in the subspace methods,
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1-4 Outline of the thesis 5

followed by simulations results and the related conclusions. Finally, in the third part we move
towards the kernel based identification of LPV systems. In this part we will propose some
novel approaches and their performance will be evaluated based on simulation examples, while
in the end we will draw the necessary conclusions.

More specifically, the thesis project is divided in chapters as follows.

In Chapter 2 we make a brief introduction on the system identification methods for LTI
systems. The main focus will be on the state-of-the-art SID algorithms for LTI systems and
specifically on the PBSIDopt algorithm. In this Chapter we will also highlight the role of the
VARX formulation, which will prove to be crucial for the incorporation of the kernel based
methods in the SID framework.

In Chapter 3 we will show how the SID for LTI systems can be extended to cope with
discrete-time LPV systems in state-space form. We will mainly focus on the first steps of
the LPV-PBSIDopt algorithm, which will be proven to be the most important towards the
incorporation of the kernel methods in the LPV SID methods.

In Chapter 4 we outline the main characteristics of the Gaussian process framework. We
will define notions such as kernels and we will see how quantities such as marginal likelihood
and maximum a posteriori estimates will become useful for the derivation of the estimates.

In Chapter 5 we will make the transition towards the kernel based approaches. More specifi-
cally, by first pointing out the pitfalls of the SID algorithms, we will proceed to the description
of the recent developments in the identification of LTI systems, namely the incorporation of
Gaussian processes in the PEI methods. Next, we will show how these methods can also be
incorporated in the SID framework, pointing out their main characteristics, as well as the
differences between the kernel based SID and PEI methods.

In Chapter 6 we will compare the discussed kernel based SID methods in different simulation
setups. Various aspects of the algorithms will be investigated, such as the effect of the past
window value, the SNR value and the data length.

At the end of Part I, namely in Chapter 7, we will conclude on the kernel based methods for
LTI systems and moreover we will discuss about the possible extensions and improvements
of these methods.

Part II begins with Chapter 8, in which the possible synergy between kernel based methods
and SID methods for LPV systems will be examined. To achieve this target, the following
steps are followed. First, an investigation on the already existing regularization methods is
performed. Then, we delineate two possible approaches for the kernel based identification of
LPV systems, each one of which gives rise to different novel methods.

In Chapter 9 we will resort to simulation examples to evaluate the validity of the proposed
methods and highlight their advantages and disadvantages.

Finally, in Chapter 10 we will conclude on the kernel based SID methods for LPV systems.
Numerous questions arise from the novel developments. For this reason, we will analytically
elaborate on these aspects of the algorithms that can be improved or further investigated in
future work.
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Chapter 2

Introduction to Subspace
Identification methods for LTI systems

in state-space form

In this chapter we will introduce the state-of-the-art framework for the Subspace Identification
(SID) of Linear Time Invariant (LTI) systems in state-space form. We will start with a brief
overview of the available model descriptions of a state-space model and we will describe in a
nutshell the two main identification methods, namely the Prediction Error Identification (PEI)
and the SID methods. Finally, we will introduce the PBSIDopt method, which will be used
as a basis for the kernel based methods that will be developed in the next chapters.

2-1 Introduction to model description forms

The mathematical description of a dynamic system is at the core of control theory. The
various model descriptions do not simply describe the same system by different means, but
they rather highlight (or hide) different properties of this system. In other words, the model
descriptions offer a different point of view. Discrete-time LTI systems are usually described
by two different model descriptions: the input-output and the state-space description [10, Ch.
4].
In the general setting, a system in input-output form is described by

yk = g(uk−1, uk−2, · · · , uk−nu , yk−1, yk−2, · · · , yk−ny), (2-1)

where g is a linear function of its inputs. On the other hand, a state-space model is described
by

xk+1 = f(xk, uk)
yk = g(xk, uk)

(2-2)
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10 Introduction to Subspace Identification methods for LTI systems in state-space form

where uk denotes the input at time instant k, y denotes the output and x denotes the states
of the system, while f and g denote linear functions, with respect to xk and uk.

2-2 Introduction to identification methods for LTI systems

In this thesis we will focus on the identification of discrete-time state-space systems. It is well
known that the state-space description offers a very interesting point of viewing the dynamical
systems, while many modern control methods are specifically tailored for state-space models.
The two most prominent identification schemes for these models are the PEI and the SID
methods.

As far as the PEI methods are concerned, the basis for these methods were laid in 60’s, while
the most significant steps towards the contemporary form of PEI were taken around 1980,
most notably by researchers in Swedish universities such as Ljung, Stoica, Wahlberg and
Söderström. The PEI methods are mainly used for the identification of systems described
by an input-output model, however they can also be employed for the identification of state-
space models. Over the past 40 years these methods have shown a high applicability, while
the associated theoretical framework offers many tools for the investigation of the asymptotic
properties of the estimated coefficients [10]. PEI are based on the explicit minimization of a

mathematical criterion, such as J = arg min
θ

N∑
k=1
||yk − ŷk(θ)||22, that is to say, the estimated

output value ŷk is parametrized with the use of the coefficients θ, the value of which is
estimated by solving the related optimization problem.

Nonetheless, the PEI methods are also characterized by a number of limitations. First of all, it
is often the case that a non-convex optimization algorithm is required for the estimation of the
unknown system parameters, which of course can lead to suboptimal solutions. Moreover,
if a full block parametrization is performed (e.g. in the case where there is no physical
insight about the relation of the states), then the accompanied optimization problem will
show high complexity. On the other hand, known state-space parametrizations that require
a smaller number of coefficients (such as companion or observer canonical form) usually lead
to numerically ill-conditioned problems. The efforts of the system identification community
to circumvent these problems finally led to a different approach, which was presented around
1990 and it is now known as Subspace Identification (SID).

SID methods are non-parametric, in the sense that they do not require any a priori parametriza-
tion of the unknown system. This leads to the absence of an explicit optimization criterion,
thus making cumbersome the investigation of the asymptotic properties of the identified
model. However, SID have gained an increased interest over the past 20 years, mainly be-
cause the estimated quantities are computed with the use of the Least Squares (LS) method
and some suitable projection operations in the vector space defined by the collected input-
output data and so any non-convex optimization routines are avoided.

All in all, it would be rather unfair to completely disregard one of the two methods in favour
of the other. On the contrary, we could say that the identification method should be chosen
based on the specific characteristics of the setup, the desired identification and control goals
etc., while a combination of the two methods (by using the identified model based on a SID
method as an initialization point for the PEI method) is also an attractive way to tackle the
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2-3 Subspace Identification methods for LTI systems 11

identification problem. Nonetheless, some specific characteristics of the SID methods, such
as the convenience in identifying Multiple Input Multiple Output (MIMO) systems and more
importantly, the fact that they do not involve any non-convex optimization problem (which
is not always the case in PEI methods) lead to a preference of these methods and so they will
also be in the center of our attention in this thesis.

2-3 Subspace Identification methods for LTI systems

Brief history of Subspace Identification methds for LTI systems

Subspace identification methods are a powerful tool for the estimation of state-space models
from a given input-output data. Their roots lie in concepts from statistics and linear algebra,
as well as system theory. The first related work was presented by Ho and Kalman in 1966 [11].
In this work, the authors showed how the system matrices of a deterministic system can be
derived up to a similarity transformation, based on realization theory (which was established
in this publication). Nonetheless, this publication didn’t directly result in the birth of what
is known today as subspace identification. In the next 20 years only one major contribution
was made towards the birth of subspace identification. This was the publication by Akaike in
1974, in which he presented an approach for the realization of purely stochastic systems [12].

It was not until 1990 when the first algorithms that belong to subspace identification meth-
ods made their appearance. These early developments were focusing on the identification of
discrete-time LTI state-space models, which operate under open-loop conditions. The most
characteristic works of that period are the ones from Van Overschee and De Moor [13] (N4SID
method), Verhaegen [14] (Multivariable Output- Error State-sPace (MOESP) method) and
Larimore [15] (CVA method), which were finally incorporated in the unifying theorem, pro-
posed by Van Overschee and De Moor in [16]. From that time on, the subspace identification
field experienced a rapid development.

Nowadays, the subspace identification of open-loop LTI systems is a well developed area,
while this work is summarized in the books of Van Overschee and De Moor [17] (1996),
Katayama [18] (2005) and Verhaegen [11] (2007). Moreover, many prominent researchers in
the field of PEI have shown an increasing interest in subspace methods, such as Ljung [19]. The
combination of these two methods is also used in the System Identification toolbox in matlab,
where subspace methods are used to derive a first estimation when the predictor is non-
linear in the parameters to be estimated (e.g. Box-Jenkins parametrization) [20]. Subspace
identification for open-loop systems has also been implemented successfully for input-output
data given in frequency domain (e.g. [21]).

In contrast to the identification of open-loop systems, the direct use of the aforementioned
subspace methods for the identification of closed-loop systems is not possible, because the
inherent assumption that the process and measurement noise sources are uncorrelated with
the input signal is no longer true. In order to circumvent this limitation, many different
approaches are followed, as it will be shown in the next section. These approaches led to
state-of-the-art methods, which can also be used for the identification of open-loop systems.
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12 Introduction to Subspace Identification methods for LTI systems in state-space form

State-of-the-art Subspace Identification methods for LTI systems

A breakthrough in the SID field was accomplished by Chiuso, most notably in [22]. The new
approach that was proposed, known as PBSIDopt, is characterized by a synergy between SID
and PEI methods. More specifically, a Vector ARX (VARX) model is used to capture the
impulse response of the unknown LTI system, while the estimated quantities are used in a
novel SID algorithm in which the state sequence is estimated and subsequently the unknown
system matrices are derived. It is well known that the coefficients of an Auto-Regressive with
Exogenous Input (ARX) model can be estimated with the use of convex optimization methods,
such that all the related steps in this algorithm don’t involve any non-convex optimization
routine. Moreover, PBSIDopt does not require any assumption on the correlation between
the noise and the input of the unknown system (except for the requirement that there is
at least one delay instant in the open- or closed-loop [23]), thus rendering it proper for the
identification of closed-loop systems, too.

The VARX parametrization step, first appeared in [24], is essential to the derivation of ac-
curate models with the least required assumptions, while it also enabled the adaptation of
old or the creation of new algorithms that involve this step [23], such as closed-loop MOESP.
They key theoretical result for the justification of the VARX based methods lies in the abil-
ity of high order ARX model structures to describe any LTI system, as the order goes to
infinity [25].

The comparison of these new methods, although it is not exhaustively investigated in the
literature (the only related publication is [23]), has shown that in general the PBSIDopt

algorithm leads to a more accurate identified model than the other state-of-the-art methods.
For this reason we will use this algorithm as the basis for the ideas that will be developed in
the next part of this thesis project. To do so, the required mathematical framework will be
developed in the next section.

Mathematical framework for the PBSIDopt algorithm

In this section we will give all the required definitions that are crucial for the ideas that will
be developed in Chapter 5. For the same reason, the first steps of the PBSIDopt algorithm
will be given in this section, while the rest of the steps are given in Appendix A.

First of all, the state-space model description is given in (2-3) and it is depicted in Figure 2-1.

xk+1 = Axk +Buk + wk

yk = Cxk +Duk + vk
(2-3)

where dim(A) = n × n, dim(B) = n × nu, dim(C) = ny × n and dim(D) = ny × nu. The
vectors wk and vk are called the process noise and measurement noise, respectively. They are
assumed to be zero-mean white noise sequences and their joint covariance matrix is given
by

E

[[
vk
wk

] [
vTj wTj

]]
=
[
R ST

S Q

]
δk−j . (2-4)
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2-3 Subspace Identification methods for LTI systems 13

Figure 2-1: Discrete Time System representation

This model will be called from now on the process form. Due to the assumptions about
the linearity of the system and the whiteness of the noises, we can design a Kalman filter
to estimate the state variables. Usually the estimated states are denoted as x̂, but here we
will ignore this notation for simplicity. Moreover, from now on we will assume for simplicity
that there is no feed-through term D. The extension to this case is straightforward, however,
specific requirements about the delay of the system have to be fulfilled to render the system
identifiable [10,23]. The so called innovation form is given by

xk+1 = Axk +Buk +Kek,

yk = Cxk + ek,
(2-5)

where the innovation ek ∈ Rny is a white noise sequence with zero mean and variance equal to
E(ejeTk ) = Wδjk with W ∈ Rny×ny , W > 0, while K is a standard notation for the Kalman
gain. Finally, another useful formulation of the state-space model is the one-step ahead
predictor form, given by

xk+1 = Ãxk +Buk +Kyk,

yk = Cxk + ek,
(2-6)

where Ã = A−KC.

At this point we will slightly divert from the conventional PBSIDopt nomenclature (e.g. as
the one used in [23]). This decision is justified by the need in the next part of this thesis to
treat input and output signals separately, as it will be shown in the corresponding chapters.
The following definition holds for both input and the output signals.

Definition 2.1. We define the input vector ū(p)
k ∈ Rnup (similarly, the output matrix ȳ(p)

k ∈
Rnyp)

ū
(p)
k =

[
uTk−1 uTk−2 · · · uTk−p

]T (2-7)

where p is used to denote the size of the past window and the parenthesis is used to distinguish
it from uk to the power of p. 4
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14 Introduction to Subspace Identification methods for LTI systems in state-space form

Moreover, the formulation of Toeplitz or Hankel matrices [26] is a necessary step in SID
algorithms. For example, the input and the output measurements are used for the construction
of the corresponding Toeplitz/Hankel matrices. A Toeplitz matrix constructed by input
measurements is given by

Ui,s,N =


ui+s−1 ui+s . . . ui+N+s−2

...
... . . . ...

ui+1 ui+2 . . . ui+N
ui ui+1 . . . ui+N−1

 (2-8)

Remark 2.1. In the related literature (e.g. [11,23]) a Hankel formulation is usually employed.
Even though both choices are possible, in the kernel based methods that we will develop later
it is more convenient to use the Toeplitz formulation. Nonetheless, in the Appendix A we
will describe the steps of the PBSIDopt algorithm using the Hankel formulation to stick with
the related SID literature. 4

Finally, we will define the impulse response of the LTI system based on (2-6). To keep the
notation tractable, without any loss of generality we will assume from now on that
the unknown system is Single Input Single Output (SISO).

Definition 2.2. The impulse response of a SISO LTI system described by (2-6) is given by

yk =
∞∑
t=1

hut uk−t +
∞∑
t=1

hyt yk−t + ek. (2-9)

4

Lemma 2.1. The impulse response coefficients hut and hyt are given by

hut = CÃt−1B

hyt = CÃt−1K
(2-10)

Proof. The result in (2-10) can be obtained by propagating (2-6) to the past. Together
with the assumption that the eigenvalues of Ã are inside the unity circle (that is to say, the
predictor is stable) then it holds that lim

t→∞
Ãt → 0. �

For practical reasons we have to limit ourselves to a finite past window p. This in turn means
that (2-9) will not hold exactly. In this case, the output is described by [23]

yk = CÃpxk +
p∑
t=1

hut uk−t +
p∑
t=1

hyt yk−t (2-11)

If the predictor state-space model is exponentially stable, it means that the eigenvalues of the
matrix Ã are strictly inside unity circle. Consequently, for a large enough value of p, Ãp ≈ 0.
Taking this into account, the VARX form can be constructed. First, we define the quantities
Y = Yp+1,1,N−p, Yp = Y1,p,N−p and Up = U1,p,N−p, E = Ep+1,1,N−p based on (2-8). Now,
based on straightforward computations we derive the following relationship.
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2-4 Conclusion on Subspace Identification methods for LTI systems 15

Y =
[
hu1 hu2 · · · hup

]
Up +

[
hy1 hy2 · · · hyp

]
Yp + Ep. (2-12)

It is well known [10] that the unknown coefficients hut , h
y
t , t ∈ {1, . . . , p} can be estimated

with the use of the LS method, which minimizes the objective function

min
hut ,h

y
t ,t∈{1,...,p}

∣∣∣∣∣
∣∣∣∣∣Y − [ hu1 hu2 · · · hup hy1 hy2 · · · hyp

] [ Up
Yp

]∣∣∣∣∣
∣∣∣∣∣
2

2
. (2-13)

As it was explained in [25], the ARX model structure can approximate arbitrarily well any
LTI system as p→∞. In the classical VARX based SID framework the selection of p reflects
a trade-off between two competitive aspects: a large past window renders the approximation
Ãp ≈ 0 accurate enough and leads to an accurate approximation of the impulse response but
it may lead to overfitting. The latter arises from the fact that, for a large past window, the
number of coefficients to be estimated is too high and so the unknown coefficients may adjust
to the noise characteristics, which is undesirable. Since this trade-off is very important for
the success of the PBSIDopt algorithm, it will be further investigated in Chapter 5.

After the estimation of the VARX model coefficients, the algorithm proceeds to the estimation
of the state sequence and finally to the estimation of the LTI system matrices. This procedure
is analytically described in Appendix A.

2-4 Conclusion on Subspace Identification methods for LTI sys-
tems

The state-of-the-art SID algorithms for LTI systems are characterized by a VARX formu-
lation followed by a model reduction step, as it is described in the previous section and in
Appendix A. For an accurate estimation of an LTI system, the selection of the past window
value p is a crucial aspect of the algorithm, since it affects the solution the LS problem (2-13).
The PBSIDopt algorithm was shown to lead to more accurate identified models, following the
results in [23]. For this reason PBSIDopt will serve as a basis for the methods that will be
developed in Part 2 of the thesis and it will be explained how kernel based regularization
methods can lead to a change of paradigm in the up to now discussion on the selection of p.
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Chapter 3

Introduction to SID methods for LPV
systems in state-space form

Following the developments of Subspace Identification (SID) and Prediction Error Identifica-
tion (PEI) methods for Linear Time Invariant (LTI) systems, the investigation of how these
two methods can be extended to Linear Parameter Varying (LPV) systems was a major re-
search subject over the recent years. Both research directions were investigated, while a good
summary for both can be found in a series of books [2, 3, 27].
LPV systems themselves are also at the epicentre of an intensive scientific research that aims
at building a more concrete theoretical basis, developing advanced modelling and control
methods [28,29] and of course, finding ways to identify such systems.
In this chapter, we will make a brief review of the characteristics of the PEI and SID methods
for the identification of discrete-time LPV systems in state-space form. The main focus will
be on the SID methods and especially on the LPV-PBSIDopt method, which is a global SID
method [2]. For this purpose we will develop the necessary mathematical framework, which
will slightly differ from the one found in [30]. Following the same structure as in the previous
chapter, we will first show how an LPV VARX equivalent form can be derived, which will be
crucial for the ideas that will be developed in Part III. After this point, the steps that have
to be taken are thoroughly explained in [30], while they are also outlined in Appendix B.

3-1 PEI methods for LPV systems

As it is already discussed in Chapter 2, PEI methods deliver a model which is in the I/O
form. Within the context of PEI many different LPV identification methods have been
developed [31], also by extending the model structures for LTI systems (such as ARX, Box-
Jenkins etc.) to the LPV case. A rather complete and mathematically analytical description
of the related framework is also given in [3].
The PEI methods offer an elegant statistical framework to characterize the asymptotic prop-
erties of the estimated variables. Nonetheless, there is a number of drawbacks associated
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18 Introduction to SID methods for LPV systems in state-space form

with these methods. First of all, many of the LPV equivalent model structures (such as
ARMAX or Box-Jenkins) require the solution of a non-convex problem, similar to the LTI
case. Most importantly, in the LPV case, the relation between the I/O and the state-space
equivalent model is not trivial. As it was shown in [32], the state-space equivalent of an I/O
model requires the introduction of dynamic dependency in the scheduling parameters, thus
increasing the complexity of the model. This factor could be crucial in terms of control, since
the majority of modern control methods for LPV systems require a state-space model. For
this reason, efforts to circumvent this problem have been made (based on realization and
model reduction techniques), which perform a trade-off between accuracy and complexity of
the derived state-space model. However, in order to ensure static dependency in the LPV
state-space model, the resulting state-space model is often not minimal [33,34].

3-2 SID methods for LPV systems

The SID methods offer a viable alternative to the PEI methods also for the LPV case. These
methods deliver an LPV state-space model, which is usually described by an affine function of
the various local systems. Nonetheless, other model descriptions have also been investigated,
such as Linear Fractional Transformation ( e.g. [35], where the equivalence between this form
and the affine one can also be established [36]) or different basis functions such as polynomial.
In general, a parameter dependent matrix can be expressed in the affine form

A(δ) = A(0) +A(1)δ(1) + . . .+A(m)δ(d), ∈ N, (3-1)

where δ =
[
δ(1), . . . , δ(m)

]
∈ Rnδ are functions of the scheduling parameters µ. It can be

proven that any LPV model can be written in an affine form similar to (3-1) under some
finite substitutions of the variables [32].

The origins of SID methods for LPV systems were laid at the end of nineties. Like many
pioneering ideas, the first developed algorithms were making some rather restrictive assump-
tions about the available information and the operating conditions of the underlying model.
For example, this was the case in the algorithms developed by Verdult, in which the un-
known system was allowed to operate only in open loop [36]. The algorithms developed in
his work offer a so-called global approach to identify an LPV system [2]. In other words,
these algorithms are based on the assumption that all the matrices of the local systems can
be estimated by a single experiment, by using information about the input, the output and
the scheduling parameter of the unknown system. It is worth noting that a global approach
was followed in one of the very first publications regarding the identification of LPV state-
space models [35]. However, in this approach the unknown coefficients were estimated via a
gradient-based non-convex optimization algorithm, so they don’t belong to the family of SID
methods.

Nonetheless, the global approaches for the identification of LPV systems show mainly two
limitations: first, the input and the scheduling parameter were assumed to be sufficiently
excited and second, these methods were characterised by the so-called curse of dimension-
ality, that is to say, the number of the parameters that have to be estimated is increasing
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3-3 State-of-the-art SID methods for state-space models 19

exponentially with respect to the past window p [37]. The effort of the scientific community
to circumvent this problem led to different approaches.

The first approach was to follow a different identification paradigm, leading to methods called
local. In these methods the scheduling parameter is assumed to be constant and only the
input is excited. This procedure, though, creates another implication; the identified local
models are not expressed in the same basis due to the fact that the SID methods identify
a system up to a similarity transformation. For this reason, an extra step has to be
introduced so that all local systems are transformed to a common state basis [38]. Finally,
when the models are brought into a common basis, the parameter dependent model is derived
by interpolating between the various local models [2].

The complexity of the local methods and the expected loss of accuracy due to the interpolation
render these approaches definitely not optimal. On the other hand, many scientists continued
to work on the global methods, aiming at improving the accuracy of these methods and
circumventing the aforementioned limitations. This effort led to some very interesting results,
which are characterized by less computational complexity and less assumptions regarding the
operation and the characteristics of the underlying model, compared to the first developed
global methods.

3-3 State-of-the-art SID methods for state-space models

The recent developments in the SID methods for LTI systems, as they were described in
Chapter 2, had also some important consequences in the LPV SID methods. More specifically,
the synergy between LTI and LPV identification techniques (accomplished via the VARX
parametrization of the state-space model in the LTI case) and the improved results that were
derived with these new methods (such as PBSIDopt [22]), let along the fact that they can
identify systems operating in open- or closed-loop, led to the question: Is it possible to enjoy
these desirable properties in SID methods for LPV systems?

The LPV-PBSIDopt algorithm

This question was finally answered with the development of the LPV-PBSIDopt [30]. In order
to describe this method, we have to develop the related mathematical framework. The LPV-
PBSIDopt assumes that the system is given in the affine form (called the innovation form)

xk+1 =
m∑
i=1

µ
(i)
k

(
A(i)xk +B(i)uk +K(i)ek

)
, (3-2)

yk = Cxk +Duk + ek, (3-3)

wherem ∈ N+, xk ∈ Rn, uk ∈ Rnu , yk ∈ Rny and ek ∈ Rny denote the number of local systems,
the state, the input, the output and the zero mean white innovation process, respectively.
The innovation process will be assumed to be normally distributed, with covariance described
by cov(ek, e′k) = Wδk−k′ , where the function δ represents the Kronecker delta and W ∈
Rny×ny , W > 0 is a diagonal matrix. Similar to the LTI case, the innovation sequence
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20 Introduction to SID methods for LPV systems in state-space form

is given by ek = yk − ŷk, where yk is the measured and ŷk is the estimated output. The
scheduling parameters µ(i)

k ∈ R could be seen as weighting factors among the various local
systems A(i), while we will always assume that µ(1)

k = 1. Without loss of generality (as long
as specific conditions concerning the delay of the system are fulfilled, see [10, 23]), we will
assume that D = 0. Taking this into account we can rewrite (3-2)-(3-3)in the predictor form

xk+1 =
m∑
i=1

µ
(i)
k

(
Ã(i)xk +B(i)uk +K(i)yk

)
, (3-4)

yk = Cxk + ek, (3-5)

where Ã(i) = A(i) −K(i)C. Now we are in position to formulate the identification problem:

Problem 3.1. Given the input sequence uk, the output sequence yk and the scheduling
parameter µk for k = {1, . . . , N}, k ∈ N+ estimate, if they exist, the system matrices
A(i), B(i), C,D and K(i) with i ∈ {1, 2, · · · ,m} up to a global similarity transforma-
tion.

At this point we have to make an important remark. In order to keeep consistency with the
framework used in the next sections, we will deviate a little from the formulation developed
in the work of J.W. van Wingerden [30,39]. Nonetheless, in the end we will end up with the
same quantities and variables. Now let us first introduce the following definitions.

Definition 3.1. We define the following matrices:

Lu1 =
[
B(1), · · · , B(m)

]
,

Ly1 =
[
K(1), · · · , K(m)

]
,

(3-6)

Based on (3-6), we extend this definition to include Lut , L
y
t for every t ∈ N+ [30].

Lut =
[
Ã(1)Lut−1, · · · , Ã(m)Lut−1

]
,

Lyt =
[
Ã(1)Lyt−1, · · · , Ã

(m)Lyt−1

]
,

(3-7)

where Lyt , Lut ∈ Rn×mt . 4

Based on (3-7), we can verify that the number of columns increases exponentially as mt,
leading to the well known curse-of-dimensionality.

Definition 3.2. We define the µ dependent vector Pt|k as

Pt|k = µk−1 ⊗ . . .⊗ µk−t, Pt|k ∈ Rm
t
, (3-8)

4
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3-3 State-of-the-art SID methods for state-space models 21

where µk =
[
1, µ

(2)
k , · · · , µ

(m)
k

]T
and ⊗ represents the Kronecker product. Moreover,

we will make use of the following transition matrix for discrete-time varying systems, defined
as [40]

φk,j = Ãk−1 · · · Ãk−j+1Ãk−j

where Ãk =
m∑
i=1

µ
(i)
k Ã

(i).
(3-9)

Remark 3.1. From this point onwards to keep the notation tractable we will present the
framework for a SISO system. The extension to the MIMO case is a straightforward
procedure, see for example [30]. However, when we find it necessary, we will give information
about the modification that have to be done in the MIMO case.

Now, we are in position to describe the impulse response of an LPV system that corresponds
to (3-4),(3-5), which will then lead to the VARX form of the LPV system.

Definition 3.3. The impulse response of an LPV system is described by

yk =
∞∑
t=1

hu(µk−t, . . . , µk−1; t)uk−t

+
∞∑
t=1

hy(µk−t, . . . , µk−1; t)yk−t + ek,

(3-10)

4

where the impulse response coefficients can be analytically characterized with the use of
Definitions 3.1, 3.2, as the next lemma shows.

Lemma 3.1. The impulse response coefficients
hu(µk−t, . . . , µk−1; t) and correspondingly for hy(µk−t, . . . , µk−1; t) are given by

hu(µk−t, . . . , µk−1; t) = CLut Pt|k,
hy(µk−t, . . . , µk−1; t) = CLytPt|k .

(3-11)

Proof 3.1. The result in (3-11) can be obtained by propagating (3-4)-(3-5) to the past and
taking into account that for a stable predictor matrix Ãk, lim

j→∞
φk,j → 0. �

Remark 3.2. The previous Lemma holds only in the case where both B and K
matrices depend on the scheduling parameter. If this is not the case for one/both
matrices, then we have to change the corresponding Pt|k vector to preserve consistency.

In reality, we will limit ourselves to a finite past window p, similar to the LTI case, assuming
that φk,j ≈ 0 for j > p for a stable predictor. Again, the value of the past window, p, has to be
kept small enough to avoid the curse-of-dimensionality and to avoid the problem of overfitting
but on the other hand it has to be large enough so that the aforementioned approximation
holds.
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22 Introduction to SID methods for LPV systems in state-space form

A standard way to treat the output data is by discarding the first p samples [10, p.3]. By
doing so, we define the stacked output matrix as

Y = [yp+1, yp+2, . . . , yN ] , (3-12)

while we can define the matrix E in a similar way. The output signals for the finite case are
given by

yp+1 ≈ CLu1P1|p+1up + . . .+ CLupPp|p+1u1 + CLy1P1|p+1yp + . . .+ CLypPp|p+1y1 + ep+1

yp+2 ≈ CLu1P1|p+2up+1 + . . .+ CLupPp|p+2u2 + CLy1P1|p+2yp+1 + . . .+ CLypPp|p+2y2 + ep+2
...

yN ≈ CLu1P1|NuN−1 + . . .+ CLupPp|NuN−p + CLy1P1|NyN−1 + . . .+ CLypPp|NyN−p + eN .
(3-13)

Now we can define the stacked matrix Z as

Z =



P1|p+1up P1|p+2up+1 · · · P1|NuN−1
...

...
...

...
Pp−1|p+1u2 Pp−1|p+2u3 · · · Pp−1|NuN−p−1
Pp|p+1u1 Pp|p+2u2 · · · Pp|NuN−p
P1|p+1yp P1|p+2yp+1 · · · P1|NyN−1

...
...

...
...

Pp−1|p+1y2 Pp−1|p+2y3 · · · Pp−1|NyN−p−1
Pp|p+1y1 Pp|p+2y2 · · · Pp|NyN−p


, Z ∈ Rq̃×N . (3-14)

where, in the general MIMO case, q̃ = (nu+ny)
p∑
j=1

mj . Before we formulate the Least Squares

(LS) problem that we have to solve, we will define the LPV extended controllability
matrix as

K(p) =
[
Lu1 · · · Lup Ly1 · · · Lyp

]
∈ Rn×q̃. (3-15)

Finally, we are in position express (3-14) in vector form and solve the corresponding LS
problem to derive the unknown matrix CKp.

Y = CK(p)Z + E ⇒
min
CKp
||Y − CK(p)Z||22

(3-16)

where, E = [ep+1, ep+2, . . . , eN ], while in the MIMO case the norm-2 LS problem has
to be replaced by the Frobenius norm [26]. The solution for the LS problem in (3-16) can be
computed analytically and it is given by

CK(p) = Y ZT (ZTZ)−1 (3-17)
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At this point it becomes obvious that we indeed came up with the same LS problem as in [30]
by introducing some additional coefficients in the intermediate steps. More specifically, the
main difference between the notation that we introduced and the standard one is that we
split the various coefficients such that they correspond to one specific input or output signal.
As we will show in Part III, with this notation we can more easily describe the kernel based
regularization. The next steps of this algorithm are identical to the ones given in [30] and
they are given for convenience in Appendix B.

3-4 Conclusion

The LPV systems form a highly active scientific area over the past few years. As far as the SID
methods are concerned, we have seen that the LPV-PBSIDopt algorithm is a very attractive
way to identify discrete-time state-space models. The basic remark for this algorithm is that
it also involves a VARX step, in which the impulse response coefficients of the LPV system
are estimated. This specific property will prove to be very useful (as it will be described in
Part III) towards the introduction of kernel based methods in order to increase the accuracy
of the identified LPV model.
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Chapter 4

Introduction to Gaussian processes

In this chapter we will make a short introduction to Gaussian processes. We do not intend to
give an exhaustive review of this field but an interested reader can find a well-written treatise
in [5]. Machine learning and especially Gaussian processes for machine learning are in the
center of an extensive scientific research over the last ten years. Although being developed to
tackle problems similar to the ones that data-driven identification and model-based control
are trying to tackle, the two scientific fields seemed to move on two parallel lines. It is
characteristic that this process is also reflected in the vocabulary that the two fields are using.
When someone hears about “training set” in the machine learning community, it refers to the
“estimation set” within the system identification community. The same holds for the words
“test set” and “validation set”, correspondingly. Nonetheless, in the recent years, following
the thorough cover of the Gaussian processes topic by Rasmussen [5], not only a common
ground between these two methods was established but also a possible synergy started to
grow up as an idea. It was after all a natural process, following the employment of Least
Squares Support Vector Machines (LS-SVM) in system identification (e.g. [41, 42]), which is
another popular machine learning approach.

4-1 Gaussian processes for Machine Learning

Gaussian process regression, in simple terms, focuses on inferring a relation between inputs uk
and outputs yk, given a dataset D = {(u1, y1) , (u2, y2) , . . . , (uN , yN )}, N ∈ N+ (also known
as “supervised learning”, where the teacher is the dataset and the student is the function!). It
is usually the case that the output is corrupted by additive noise. In this case, a mathematical
formulation can be given by

y = f(u) + e, (4-1)

where u ∈ Rd, f : Rd → R. In the Gaussian process framework, the additive noise is assumed
to follow an independent, identically distributed Gaussian distribution, that is to say,
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e ∼ N
(
0, σ2

)
. (4-2)

The function f can be any nonlinear functional that maps the input space to the space of
real numbers. In the Gaussian process regression it is customary to introduce a prior over
the unknown function f that expresses our beliefs about it. Based on this prior and the
collected training set, we can compute the posterior distribution of the function f at the
training points and moreover we can use this posterior distribution to make predictions for
a given input vector u. In other words, Gaussian process regression is based on a Bayesian
framework, following the Bayes rule

posterior = likelihood× prior
marginal likelihood . (4-3)

Gaussian processes are named so due to the fact that the function f is modelled as a Gaussian
process, that is to say, its distribution can be fully characterized by its mean and covariance.

E [f((x)] = m(x),
E
[
f((x) f(

(
x′
)]

= k(x, x′),
(4-4)

where, usually, m(x) is set to zero. The Gaussian process will also be written as f(x) ∼ GP.
The latter assumptions, together with the assumption about the noise characteristics renders
the output signal a normally distributed random process. This in turn means that all the
required quantities for the estimation of the posterior distribution of f can be computed in
an analytical way 1. If this was not the assumption, then more cumbersome, non-analytic
methods (such as Markov Chain Monte Carlo or particle based methods [44]) or analytic
approximation methods can be used, for which the computational burden is usually much
higher than in the Gaussian case or the estimation is not accurate.
The posterior distribution of f can be used to predict the value of the function at the training
points (auto-validation) as well as at the test points. To illustrate this idea, let us assume that
we have collected N data points, where the outputs are stacked in the vector Y = [y1 . . . yN ]T
and the function evaluations are stacked in the vector f(U) = [f(u1) . . . f(uN )]T . Then, the
joint distribution of the outputs and the function values at the test locations is given by

[
Y

f(U∗)

]
∼ N

(
0,
[
K(U,U) + σ2I K(U,U∗)
K(U∗, U) K(U∗, U∗)

])
(4-5)

where

K(U,U) =


k(u1, u1) k(u1, u2) · · · k(u1, uN )
k(u2, u1) k(u2, u2) · · · k(u2, uN )

... . . . . . . ...
k(uN , u1) k(uN , u2) · · · k(uN , uN )

 (4-6)

1Based on the assumptions about the normal distribution of f and e, the posterior of f is also Gaussian
and so its mean is equal to its mode (the value that appears most often in the data). If we set the posterior
estimate to be equal to its mean value, then the estimate coincides with the Maximum a Posteriori (MAP)
estimate [43]
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and the the star is used to denote the predictive test points. The matrix K(U∗, U) (and its
transpose, K(U,U∗)) is built following the same rationale as K(U,U). Based on these equa-
tions and the known assumptions about normality, we can compute the posterior distribution
at the training points, f(U).

E [f(U)|U, Y ] = K(U,U)
(
K(U,U) + σ2I

)−1
Y

E
[
f(U)f(U)T |U, Y

]
= K(U,U)−K(U,U)

(
K(U,U) + σ2I

)−1
K(U,U).

(4-7)

Moreover, we can compute the value of the function at the test points f(U∗). In this case the
mean and the covariance are given by

E [f(U∗)|U,U∗, y] = K(U∗, U)
(
K(U,U) + σ2I

)−1
Y

E
[
f(U∗)f(U∗)T |U,U∗, y

]
= K(U∗, U∗)−K(U∗, U)

(
K(U,U) + σ2I

)−1
K(U,U∗).

(4-8)

The main difference between the Gaussian process and the parametric model description is
that the former one does not parametrize explicitly the unknown function based on a fixed
basis (e.g. linear or polynomial). This in turn means that in the Gaussian process framework
we do not acquire an explicit mathematical formula for the unknown function but a relation
between the inputs and outputs based on their statistical properties, which is also called a
non-parametric model. In other words, even if a basis is infinite dimensional (e.g. the
Radial Basis Function [5]), the Gaussian process regression framework is able to compute the
a posteriori estimate of f . It is therefore obvious that this framework is characterized by
increased flexibility compared to the parametric one, thus potentially enabling the approxi-
mation of almost every (non)linear function.

Corrsepondence between Reproducing Kernel Hilbert Space (RKHS) and posterior
estimates

RKHS defines an hypothesis space which is useful when it comes to the derivation of a
regularized solution to an ill-posed problem [45]. An introduction to this theory is given
in Appendix D. Here we only want to highlight the relation between the solution derived
in (4-7) and the Tikhonov regularization [26, p. 309], which is derived by facilitating the
RKHS framework. As it is shown in Appendix D, the mean of the posterior E [f(U)|U, Y ]
corresponds to the following Least Squares (LS) Tikhonov regularization problem.

min
α∈RN

||Y − αK(U,U)||+ αK(U,U)αT , (4-9)

and the quantity E [f(U)|U, Y ] is equal to

E [f(U)|U, Y ] = αK(U,U). (4-10)
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4-2 Estimation of the hyperparameters

Up to this point there was no discussion about the covariance matrix K. It is usually the
case that K is expressed as a function of some hyperparameters, symbolized here by the
variable η, so we will write it as K(η). The choice of these variables is crucial for the accurate
approximation of the unknown function, since they encode important information about the
characteristics of the unknown system.

Example 4.1. To illustrate how the selection of the hyperparameters plays a crucial role in
the approximation of the unknown function, let as assume that we have collected an input-
output data ({y1, u1}, . . . , {y20, u20}), where the output is corrupted by an additive noise, and
we are trying to approximate the underlying function with the use of an RBF kernel [5]. Since
we intend to focus only on the importance of the hyperparameters, it suffices to state that
the RBF kernel is affected by two parameters, denoted as σu and λu [46]. In the following
two figures we investigate especially the role of the parameter λu.
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Figure 4-1: Effect of λu in the estimation and prediction of the unknown function. The red
crosses correspond to the measured outputs and the blue stars corresponds to the predicted values,
while the grey area corresponds to the 95% confidence bounds. Top left: λu = 100. Top right:
λu = 10. Bottom left: λu = 1. Bottom right: λu = 0.1 [47].

As we can see from Figure 4-1, the correct selection of the hyperparameters plays a crucial
role. If we choose a very small value for λu the confidence bounds are rather tight but the
estimated function is not really flexible, in the sense that the estimated model shows too low
complexity. On the other hand, a large λu value leads to a very flexible model, which is able
to perform estimations close to the measured outputs. However, this flexibility leads to very
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large confidence bounds and it also means that the Gaussian process has adopted the noise
characteristics, which is of course undesirable since it can lead to bad predictions.

It is now evident that a good estimation with the Gaussian process framework de facto requires
a careful selection/estimation of the hyperparameters. For this purpose, the two most often
used methods are the marginal likelihood and the cross-validation.

Estimation of hyperparameters via Marginal Likelihood

The most common method for the estimation of the hyperparameters is through a Bayesian
framework lying on themarginal likelihood function, which is also known as the empirical
Bayes method.

This method can also be viewed based on an hierarchical model, as the one depicted in
Figure 4-2. The quantities f and e are stochastic according to (4-2),(4-4) and they depend on
some fixed (deterministic) hyperparameters (η and σ correspondingly). Finally, the quantity
y is also stochastic, following (4-1).

Figure 4-2: Hierarchical model depiction of the model. Dashed lines and circles represents
stochastic quantities/relations, while the compact lines and circles represent deterministic ones.

As we mentioned before, at the core of the Bayesian scheme is the marginal likelihood. Its
name comes from the fact that we marginalize the probability distribution function of y with
respect to f , that is to say,

p(y|u, η) =
∫
p(y, f |u, η)df =

∫
p(Y |f, u, η)p(f |u, η)df (4-11)

Taking into account the assumptions stated above, we can compute (4-11) analytically, as it
is shown in the following equation.

p(Y |U, η) = 1
(2π)

N
2 (det (K + σ2I))

1
2

exp
(
−1

2Y
T
(
K + σ2I

)−1
Y

)
. (4-12)

An intrinsic characteristic of the Bayesian scheme is that it automatically incorporates a
trade-off between model complexity and data fit [48]. This effect is also called “Occam’s

Master of Science Thesis Ioannis Proimadis



30 Introduction to Gaussian processes

Razor”, even though this term usually refers to the automatic trade-off between the number
of the parameters and data fit, which in our case is not applicable since we focus on non-
parametric ways to model the output. This can be clearly seen when the negative logarithm
of (4-12) is employed, which is the criterion that is usually minimized in order to estimate
the hyperparameters. This quantity is given by

− log p(Y |U, η) = N

2 log (2π) + 1
2 log

(
det

(
K(η) + σ2I

))
+
(1

2Y
TK(η) + σ2I

)−1
Y. (4-13)

The last two terms of (4-13) account for different characteristics of the system, while the first
one is simply a normalization term. More specifically, the second term is not affected by the
output signal and it can be viewed as a penalizing term for the complexity of the system.
On the other hand, the last term can be seen as a data-fit term due to output vector Y .
All in all, the intrinsic regularization of the marginal likelihood qualifies it as an attractive
way to compute the unknown hyperparameters η. This can be done by minimizing (4-13)
with respect to η. However, there is also a price to pay: the optimization algorithm is
non-convex. This is not necessarily devastating, since ending up in a local minimum means
that the data is interpreted with a different way; one local minimum may corresponds to a
high complexity and low noise system and another one to a low complexity but high noise
system. Nonetheless, the possibility of ending up in a "bad" local minimum that leads to
a totally wrong interpretation of the data cannot be excluded (more discussion about this
subject can be found in Section 5.4 of [5]).

Estimation of hyperparameters via cross-validation

The idea of cross-validation, in simple terms, requires the division of the data in smaller parts,
where some of them are used for the estimation (training) of the unknown hyperparameters
and the rest are used for the validation (test) of the derived non-parametric model. The
selection of a measure of fit gives rise to many possibilities; the predictive log probability
and the squared loss functions are among them. The latter one is also used in the classical
Prediction Error Identification (PEI) framework when use of a parametric model is made [49],
which is however not useful in the non-parametric case since it ignores the variance of the
validation set.

Let as assume that we leave one element (yi) for validation. In this case, the predictive minus
log probability is given by [5]

− log p(yi|U, Y−i, η) = 1
2 log(2π) + 1

2 log det (Σi(η)) + 1
2 (yi − µi)T Σ−1

i (yi − µi) , (4-14)

where Y−i denotes the outputs except for yi, while the predictive mean µi and covariance Σi

are computed by (4-8). This method is also known as leave-one-out (LOO) method due
to the fact that only one output point is used for validation, but this is repeated for all the
outputs, so the total LOO minus log predictive probability is given by
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J(η) = −
n∑
i=1

log p (yi|U, Y−i, η) . (4-15)

Similar to the marginal likelihood method, the estimation of the hyperparameters by (4-15)
is a non-convex problem. In the literature there are many different versions of the cross-
validation method, one of which is the LOO method. It is beyond the scope of this thesis
to fully describe the available methods, but a concise introduction for the parametric case
can be found in [46]. It is also worth mentioning that in the same family belongs the
Generalized Cross-Validation (GCV) method, which also appeared in a series of publications
for the regularization of the LPV SID methods [30, 50]. However, in the nonparametric case
that we discuss here, it is known that GCV is not expected to yield good results due to the fact
that it neglects the information regarding the covariance of the estimates, since it minimizes
a weighted squared error between the measured y and the estimated E [f(U∗)|U,U∗, Y ] (for
an analytic treatment of the GCV method in the parametric case see [51] [26, p. 307]).

4-3 Conclusion

Gaussian processes offer an attractive framework for the nonparametric estimation of linear
or nonlinear functions. In this brief overview we have highlighted the role of hyperparameter
selection in order to obtain a function that can approximate well the underlying system. The
two most prominent methods for the estimation of the hyperparameters, namely the marginal
likelihood and the cross validation (such as the LOO method), were also discussed, while it was
pointed out that the related optimization routines are non-convex. In the next parts of this
dissertation we will show how this framework can be incorporated in the Subspace Identifica-
tion (SID) algorithms. More specifically, it will be shown how this synergy between Gaussian
processes and system identification can improve the accuracy of the estimated models, while
the cost to be paid for this is an increase in the complexity of the algorithm.
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Part II

Kernel methods for the identification
of LTI systems
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Chapter 5

Kernel based regularization for Linear
Time Invariant (LTI) systems

In this chapter we will investigate the role of regularization in the accuracy of the identified
LTI model with the use of PBSIDopt algorithm. The chapter is organized as follows. In
Section 5-1 we will illustrate how the solution of the VARX based Least Squares (LS) problem
is affected by the selection of the past window p, keeping in mind the way of reasoning at the
end of Section 2-3. In order to alleviate this problem, in the next section we will introduce
the notion of regularization and we will establish the link between regularization methods
and Prediction Error Identification (PEI) following the frequentist perspective. It will also
be shown how the incorporation of kernels can lead to the optimal identification (in Mean
Squared Error (MSE) sense) of the coefficients in a linear regression problem. In Section 5-3
we will follow a different perspective, namely a Gaussian process perspective to investigate the
derivation of the estimator in terms of a posteriori distributions. The practical construction
and selection of the proper kernels is another important topic that is covered in the same
section. After this point, in Section 5-4 we will move from the kernel based PEI methods
towards the kernel based SID methods, while in the last section we will discuss about the
similarities and differences between the two kernel based identification methods.

5-1 Limitations of the classical PBSIDopt method

As it was discussed in Section 2-3, the value of the past window p plays a significant role
regarding the accuracy of the identified model. One of the main problems related to this
quantity is that the engineer cannot deduce what should be the value of p, such that the
trade-off between the error in the approximation Ãp ≈ 0 and the effort to avoid overfitting is
well balanced. To illustrate this idea, consider the following example.

Example 5.1. In this example we will use the (without any regularization) PBSIDopt al-
gorithm, implemented in the PBSID toolbox [52], to identify a 4th order, 2-inputs 1-output
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system. The system, given the innovation form, is simulated with Signal-to-Noise Ratio
(SNR)= 5.3 1, and the length of the collected data is 400. The system matrices are given
in Example 1 of [52] with the difference that we removed the second output. To show how
the aforementioned trade-off shapes the final estimate, we present in Table 5-1 the Variance
Accounted For (VAF) results when the true Markov parameters are used (thus skipping the
VARX estimation step), as well as the quantity

∣∣∣∣∣∣CÃp [ xp+1 . . . x400
]∣∣∣∣∣∣

2
. The quantity

CÃpxk is the approximation error when the true coefficients are used, see also (2-11). More-
over, we give in the same table the VAF results of the standard PBSIDopt algorithm. The
simulations were performed for different past window values p, while the future window was
kept constant, equal to f = 5. The VAF is given by the equation [11]

VAF(yk, ŷk) = max
{

1−

N∑
k=1
||yk − ŷk||22
N∑
k=1
||yk||22

, 0
}

100%. (5-1)

Table 5-1: VAF results and norm of the approximation error for different past window values p

p 5 10 25 50 100
VAF, true coef. 92.32 % 95.18 % 98.97 % 99.32 % 99.73 %

Approx. error norm 1030.62 63.70 6.49 0.29 0.00049
VAF, standard PBSIDopt 95.91 % 97.78 % 97.60 % 97.35 % 0 %

From this table it becomes clear that the performance of the PBSIDopt algorithm, when the
true Markov parameters are used, is improving as the past window value p gets larger. This
is of course reasonable, since it means that more information is taken into account. On the
other hand, the standard PBSIDopt shows a peak value for p = 10, while for larger p values
its performance acutely drops. This demonstrates in a clear way the importance of choosing
a past window value that avoids both a large bias error as well as the overfitting problem.

As it evident from the previous example, the aforementioned trade-off is crucial for the suc-
cessful identification of the unknown LTI system. A large past window means that the ap-
proximation error is small, so the algorithm is capable of estimating correctly the unknown
coefficients. However, this capability is hindered by the problem of overfitting. The question
arises naturally: is there a way to combine the benefits of a large past window without the
problem of overfitting? As we will explain in the following sections, this answer lies in the
regularization methods and especially in the kernel based regularization.

1The SNR is given by SNR = var(y)
var(e) , where var(y) denotes the variance of the output, corrupted by noise

and var(e) is the noise variance. Usually it is expressed in dB. In this case SNRdB = 10 log10
var(y)
var(e)
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5-2 Regularization in LS problems

The bias-variance trade-off

Regularization is a standard way to influence the solution of a LS problem, for example by
putting a larger significance is some quantities than others [26]. Moreover, regularization can
be used to derive numerically robust solutions in ill-posed problems, such as the estimation
of the (infinite) impulse response of an LTI system with a finite number of observations or
the inversion of a matrix with large condition number 2.

A very informative perspective on the regularization problem is in terms of the MSE. MSE
is broadly used in the area of statistics, since it gives information about the accuracy of the
estimator3 both in terms of variance and bias. Mathematically, the MSE of an estimator θ of
a deterministic parameter θ0 is given by

MSE(θ) = E
[
(θ − θ0)2

]
= (E [θ]− θ0)2 + E

[
(θ − E [θ])2

]
= Bias2 + Variance,

(5-2)

while in the case where θ0 is a random variable, only the first equation of (5-2) holds. Before
we give a mathematical description of the regularization methods, let us present an intuitive
example.

Example 5.2. As a simple example, consider the Figure 5-1. In this hypothetical experiment,
we are trying to estimate two variables, namely θ1, θ2 ∈ R (the number of the coefficients was
chosen to enable a graphical representation of the MSE value). On the left side we present
the (hypothetical) estimates of the unknown deterministic variables θ1, θ2, assuming that
the experiment has been repeated multiple times and each experiment delivered a different
estimate of them. In this case, the bias is rather small, since the average of the estimates is
close to θ1, θ2 . However, it is obvious that the variance of the estimates is high. So, in terms
of MSE, it would be rather fair to seek for a better estimator. On the other hand, in the
right figure we present the opposite case: an estimate with relatively large bias (due to the
distance of the real, red cross and the mean of the estimates, represented by the green cross)
and low variance.

In total, if we were only based on the mean value or only on the variance of the estimator,
we could end up with false conclusion. On the other hand, the MSE is taking both bias and
variance into account, thus enabling a mathematically fair justification of what is a “good”
or “bad” estimator.

2The condition number is defined as the ratio σmax
σmin

, where σmax denotes the largest singular value of a
matrix and σmin the smallest one [26]. In problems such as LS, one of the steps requires the inversion of a
matrix of the form ATA. If this matrix shows a large condition number then the derived solution may be
inaccurate.

3The estimator should not be confused with the estimate, which is the result of the estimator. See also [53,
Ch.2].
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Figure 5-1: Estimates of two variables θ1, θ2. Left: a low bias, high variance estimate. Right:
a high bias, low variance estimate. The black crosses represent the estimates from different
experiments. The green ones represent the mean value of these estimates and the red ones the
actual values of the variables.

A mathematical framework for regularization

The discussion about the MSE value reflects the underlying bias-variance trade-off. It is
therefore of high importance to find a way to balance between these two antagonistic charac-
teristics of the estimate. In order to do so, we have to develop the corresponding mathematical
framework. For simplicity, let us assume that the data generating system is given by

Y = θ0Z + E, (5-3)
where Y ∈ RN is the measured output of the system, θ0 ∈ Rp are the unknown coefficients and
Z ∈ Rp×N is a known matrix (e.g. in the ARX model it contains the past input and output
data formed in a block Toeplitz or Hankel matrix form). E ∈ RN are the N samples of a
Gaussian distributed zero-mean white-noise sequence with variance σ2. The same assumptions
for the noise will hold for the rest of this dissertation, unless otherwise stated.
Let us assume that the model used for estimation is described by

Ŷ = θZ, (5-4)

where Ŷ ∈ RN are the estimated outputs of the system and θ ∈ Rp, that is to say, we
assume that we have chosen the correct number of coefficients. Then, the standard
LS problem and the solution are given by [11]

min
θ
||Y − θZ|| ⇒

θ = Y ZT
(
ZZT

)−1 (5-5)

The estimate in (5-5) is characterized by a very attractive asymptotic property, namely the
fact that there is no better unbiased estimate due to the Cramèr-Rao limit. This can
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be verified by observing that the Maximum Likelihood (ML) estimation of θ coincides with
the LS estimation under the aforementioned noise assumptions [11, p. 120]. It is trivial to
show that indeed θ is unbiased by computing the quantity E [θ − θ0].
In the general setting, the regularized equivalent of the LS problem in (5-5) is expressed as

min
θ
||Y − θZ||+ J (θ). (5-6)

The term J (θ) can represent any form of regularization, such as the nuclear-norm regular-
ization or Tikhonov-type. In case of a Tikhonov regularization (5-6) can be written as

min
θ
||Y − θZ||22 + γθD−1θT , D < 0, γ ≥ 0, (5-7)

where γ and D are the regularization parameter and matrix, respectively, while the symbol
< denotes an inequality in the matrix sense, that is to say, D is assumed to be positive
semi-definite.
In this classical (or frequentist) perspective we aim at minimizing the MSE value. Com-
pared to the solution in (5-5), it is to our hope that by enabling an amount of bias in the final
estimate, we will manage to reduce the associated variance, eventually reducing the MSE 4.
This is exactly the role of the regularization parameter in (5-7). In order to show this, we
compute first the solution of (5-7). With the use of the matrix inversion lemma [53], we find
that

θ = Y
(
ZTDZ + γ2I

)−1
ZD, (5-8)

for which it is evident now that E [θ − θ0] 6= 0.
Moreover, it is interesting to note that the same result as the one in (5-8) can also be derived
with the use of a Bayesian framework by treating θ as a normally distributed random
variable, that is to say, θ ∼ N (0, P ). The steps to be taken are similar to the ones described
for the derivation of the posterior estimates of Gaussian processes in Chapter 4 and for this
reason will be omitted from this chapter, however they can be found in Appendix C. Based
on this analysis, one can easily deduce that (C-9) and (5-8) are equivalent for γ = σ and
D = P .

Estimation of the kernel parameters

In the classical (frequentist) approach, certain selections are being accomplished with the use
of the Cross-Validation (CV) criterion. For example, these variables can be the number of
the coefficients in θ (in case that we do not know the exact number), or the parameters γ and
D. More specifically for D, this is usually expressed in a parametric form so we will write it
as D(η), where η denotes the collection of all the required hyperparameters to describe D.
The CV criterion in the LS setting is being carried out as follows [54] (this approach can be
seen as a category of the methods discussed in Section 4-2) :

4It is important to notice that the sample MSE value is given by ˆMSE = 1
N
||Y − Ŷ ||22. By comparing it

with the VAF definition in (5-1) it is obvious that the two criteria show a strong resemblance. Consequently
the reduction of the MSE value means that the VAF value is increasing.
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• Split the data in one estimation and one validation part.

• Estimate θ for different selections of the variables, as it was discussed above.

• For each selection, compute the error between measured and model outputs (e.g. using
the quadratic criterion):

J = ||Y − Ŷ ||22 (5-9)

It is rather obvious that the steps in the previous algorithm describe a cumbersome procedure
for the estimation of the unknown parameters η, γ or the number of θ parameters (the order
of the system), since the procedure has to be repeated for each fixed selection, practically
forcing us to limit the search in only some fixed values on a selected grid. Moreover, it is
also mathematically justified that the CV method may lead to poor estimations [55]. For
these reasons the classical approach for selecting these parameters is not preferred. A viable
alternative is the maximization of the log marginal likelihood given in (C-5). This opens
the road for a fully Bayesian approach, which finally makes the Gaussian process regression
framework more attractive, as we will show in Section 5-3.

Regularization meets system identification

The reduction of the MSE value by introducing bias was well known in the statistical commu-
nity for over 20 years (e.g. [56]). However, in the system identification community it was less
used, while in most times its usability was restricted in rendering the inversion of a possibly
ill-conditioned matrix (such as ZTZ in (5-5)) numerically stable. It was only recently when
the interest in the regularization methods was revived and, in parallel to a Gaussian regres-
sion framework (which will be presented in the next section), it led to new regularization
techniques, which were observed to be capable of delivering more accurate estimates than the
classical PEI/ML framework [6, 57].

The basic attribute of these techniques, which are mainly investigated in the PEI framework,
is that they are trying to incorporate simple prior information about the underlying system in
the regularization parameters. In the last two years numerous papers have appeared, which
investigate the various aspects of these algorithms [54,58–67].

Most of the related publications mainly focus either on an Finite Impulse Response (FIR)
or an Auto-Regressive with Exogenous Input (ARX) model structure. The first choice is
justified by the fact that the newly proposed methods are trying to incorporate information
about the impulse response of the unknown system (and so an FIR is a natural choice), while
the latter one is based on the fact that an ARX model can approximate arbitrarily well any
LTI system when its order tends to infinity [25]. Moreover, since both methods do not require
any non-convex optimization step, it renders them even more attractive.

In this dissertation, due to the direct relation with the VARX step in the PBSIDopt algorithm,
we will consider the ARX model case. In this case it is straightforward to establish the
relation between the quantities in (5-3) and the ARX model. More specifically, by borrowing
the notation from (2-12), the following relations hold.
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θ0 =
[
hu1 hu2 · · · hup hy1 hy2 · · · hyp

]
Z =

[
Up
Yp

] (5-10)

It is therefore obvious that the previous discussion about the regularization of LS problems
can be directly implemented to the ARX case. The next challenge that we face now is how
we will manage to balance the bias-variance trade-off. To this end, the optimal regularization
can be used as a guide.

Remark 5.1. In (5-10) we assumed that the number of the hu and hy coefficients is the
same. This is by no means a general assumption for the ARX models [10], so the two number
may differ from each other, depending on the specific problem. On the other hand, this is
always the case in the VARX formulation used in SID methods, which are in the center of
our attention on this dissertation and so it is more convenient to use the same number even
in the ARX case.

Optimal regularization

To define the optimal regularization parameter, let us first compute the MSE value for the
estimate (5-8). For the optimal estimate it is necessary to assume that it is of the same
order as θ0 [54]. First let us derive a general expression for the MSE value.

Lemma 5.1. The MSE value for the estimate θ in (5-8) is given by

MSE(θ)(D) =
(
ZZT + γD−1

)−1 (
σ2ZZT + γ2D−1θT0 θ0D

−1
) (
ZZT + γD−1

)−1
. (5-11)

Proof 5.1. The proof can be derived by using the definition of MSE in (5-2) together with
(5-5) and (5-8). �

Now we are in position to define the optimal regularization, which is given in the following
lemma.

Lemma 5.2. The following inequality holds for the MSE value, given the selection γ = σ:

MSE(θ)(D) ≥ MSE(θ)(θT0 θ0). (5-12)

Proof 5.2. The proof is given in the appendix of [54]. �

The corresponding estimate is expressed in the following way to avoid ill-condition.

θopt = Y
(
σ2I + ZT θT0 θ0Z

)−1
ZT θT0 θ0. (5-13)

As it would be expected, the optimal MSE value is related to the "true" system parameters
θ0, which in a real life problem are of course unknown. However, this result is still useful in
the sense that it gives a hint on how we should choose the regularization parameters.

Master of Science Thesis Ioannis Proimadis



42 Kernel based regularization for LTI systems

Finally, for the better explanation of the results we have to investigate how close the estimated
optimal θopt is to the θ0 value. In other words, finding an optimal estimate is itself not sufficient
unless if it is close to the real value of the variable. By substituting (5-3) in (5-13), we have
that

θopt = (θ0Z + E)
(
σ2I + ZT θT0 θ0Z

)−1
ZT θT0 θ0 ⇒ (5-14)

E [θopt] = (θ0Z)
(
σ2I + ZT θT0 θ0Z

)−1
ZT θT0 θ0

= (θ0Z)
(
σ2I + ZT θT0 θ0Z

)−1
ZT θT0 θ0ZZ

T (ZZT )−1,
(5-15)

where we assumed that the matrix ZZT is full rank. From the expression above it becomes
obvious that

E [θopt] ≈ θ0 as σ2 → 0 or ZT θT0 θ0Z >> σ2I (5-16)

5-3 Gaussian processes meet system identification

Another interesting point of view is closely related to the Gaussian process regression frame-
work, which was also presented in Chapter 4. In order to describe this approach, let us start
with an ARX model, using the assumptions and the notation from (2-9), which is repeated
here for convenience.

yk =
∞∑
t=1

hut uk−t +
∞∑
t=1

hyt yk−t + ek. (5-17)

In the Gaussian process framework we treat the impulse response coefficients hut and hyt as
zero-mean Gaussian processes, defined over the set of positive natural numbers, t ∈ N+. They
are assumed to be mutually independent, as well as independent of the noise ek [7,59]. Their
covariance (kernel) is described by the equations

cov(hut1 , h
u
t2) = ku(t1, t2),

cov(hyt1 , h
y
t2) = ky(t1, t2),

cov(hut1 , h
y
t2) = 0, for every t1, t2 ∈ N+,

(5-18)

where k(·, ·) is a function : N+ × N+ → R. Again, we let the function k be parametrized by
some hyperparameters ηu and ηy, so a more accurate notation of this function would be as
k(·, ·; ηu) (similarly for the output’s kernel). Nonetheless, in order to simplify the notation,
this dependency will usually be omitted.

A first observation regarding this framework is that it resembles the Bayesian interpretation
of the regularization methods, as it was discussed in Section 5-2 and further described in
Appendix C. Consequently, the Bayesian point of view arises naturally in this case. Therefore,
the hyperparameters η can be derived by solving the non-convex optimization problem, that
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is to say, by minimizing the minus log marginal likelihood − log p (Y |ηu, ηy, Up, Yp), given
by (C-5). Moreover, it is usually the case that the noise variance, involved in (C-5), is not
known and so it can be seen as a hyperparameter and be estimated together with the other
hyperparameters via the marginal likelihood algorithm. However, a different paradigm can be
used, following the remarks in [68]. By using a low-bias estimate, that is to say a model that
contains a relatively high number of coefficients, it was observed that the sample variance of
noise given by

σ̂2 ≈ 1
N − 1

N∑
k=1

(ŷk − yk)2 (5-19)

can be used as an estimation of σ2.
After having estimated the hyperparameters, the mean and variance of the posterior dis-
tributions of hu and hy can be derived. Following a MAP approach, we finally end up
with the estimates of hu and hy by setting their values to be equal to their average values
E [hu|Y, Yp, Up, ηu, ηy], E [hy|Y, Yp, Up, ηu, ηy], see also (C-9).

Remark 5.2. Under some specific assumptions, a connection can be established between the
MSE and the minimizer of the minus log marginal likelihood value. More specifically, under
some assumptions to ensure a unique SVD decomposition of Z, as well as the assumption that
the matrix ZTZ converges to a constant value (see also the discussion in Section 5-3) and the
selection of a diagonal kernel, that is to say, E

[
θT θ

]
= λI, it can be shown that the value

that minimizes the minus log marginal likelihood converges asymptotically to a scaled version
of the MSE. Therefore, Aravkin proposed that the latter one can be used for the estimation
of the hyperparameters [60]. To overcome the dependency of the MSE on the real parameters
of the system (see also (5-11)), he proposed to set their values to the ones estimated by an
unregularized LS problem. Nonetheless, based on simulation results it was shown that this
new algorithm is not superior to the Marginal Likelihood. Some other theoretical perspectives
of the proposed algorithm are given in [69].

Relation between Gaussian process framework for System Identification (SysID)
and Reproducing Kernel Hilbert Space (RKHS) theory

In this section we will reveal the links between the Gaussian process modelling for SysID,
described in the previous section, and the RKHS theory. To this end, we have to make some
useful remarks. First of all, here we notice that now the various impulse response instants,
e.g. hu1 , hu2 etc. are not treated as coefficients but instead they are treated as functions,
evaluated at the points t = 1, t = 2 correspondingly. For this reason, it is appealing to
explicitly write them as a function of t, that is to say, hu(t) := hut (similarly for hyt ). Due
to the Bayesian approach that is more natural to use in this case, the discussion in terms
of LS problems is replaced by the discussion about the minimum variance estimate (or the
Maximum a Posteriori (MAP) estimate or the mean of the posterior estimate in the Gaussian
case, since all of them coincide).
The relation with a Tikhonov type LS problem can eventually be established. The tool for this
is the RKHS theory, introduced earlier in Section 4-1 and further elaborated in Appendix D
for the nonparametric case.
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For the present problem formulation, the combination of a nonparametric part (namely hu and
hy) with a parametric one (the past input and output data) creates no complications. Under
the assumption that hu and hy are continuous functionals in the corresponding (possibly
infinite dimensional) Hilbert spaces Hu,Hy, then similar to the nonparametric case, we can
express them as a function of a finite number of coefficients.

In order to show how this can be accomplished, we need first to truncate the impulse response
such that a finite number of impulse response instants are used, making sure that it is large
enough to capture well the impulse response of the underlying system. This number will again
be denoted by p, the past window. Using the results from the RKHS theory, we can express
hu and hy with the use of only p basis functions. The corresponding equations are given by

hu(t) =
p∑
i=1

αui k
u(t, i), αui ∈ R

hy(t) =
p∑
i=1

αyi k
y(t, i), αyi ∈ R

(5-20)

Based on this approach, we can stack the values of the functions, evaluated at t = {1, 2, . . . , p}
in a row vector, so

[
hu(1) hu(2) · · · hu(p)

]
=
[
αu1 αu2 · · · αup

]

ku(1, 1) ku(1, 2) · · · ku(1, p)
ku(2, 1) ku(2, 2) · · · ku(2, p)

... . . . . . .
...

ku(p, 1) ku(p, 2) · · · ku(p, p)


Hu = AuKu,

(5-21)

where the matrices Ku and Ky should be by definition positive semi-definite, due to the fact
that they are covariances matrices.

Making use of (5-20) and (5-21), we formulate the following Tikhonov LS problem:

||Y −HuUp −HyYp||22 + σ2||Hu||2Hu + σ2||Hy||2Hy , (5-22)

where, in general, || · ||Hz denotes the norm associated with the Hilbert space Hz. This norm
can be analytically computed (see Appendix D). For example, for Hu (similarly for Hy) it is
given as

||Hu||2Hu = AuKuAuT . (5-23)

We have thus lifted the problem of estimating Hu and Hy to a LS problem of estimating Au
and Ay. Now it is straightforward to compute the solution of the LS problem (5-22) with
respect to Au and Ay. The corresponding equations are given by

Au = Y
(
Y T
p K

yYp + UTp K
uUp + σ2I

)
UTp

Ay = Y
(
Y T
p K

yYp + UTp K
uUp + σ2I

)
Y T
p

(5-24)
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and so we can directly compute Hu and Hy with the use of (5-21). It is therefore trivial
to show that the solution derived with the use of the RKHS theory coincides with the one
derived with the use of the regularization method discussed in the previous section, see also
(C-9). However, as we will see in the next part of this dissertation, the RKHS framework can
offer more insight in specific cases.

Remark 5.3. The extension to the MIMO case can be accomplished in a straightforward
manner, following the same hypotheses that were stated in this section.

Kernels that incorporate information about the underlying LTI system

Until now we have described the mathematical tools that are used in the kernel methods and
we have also seen what is the optimal regularization kernel. However, we still have to answer
an important question regarding the kernel themselves. As we already outlined earlier, these
kernels are usually described as a function of some specific hyperparameters, denoted by η.
We have also reasoned why the Bayesian framework (and consequently, the Gaussian process
regression framework) provides an attractive way to compute these hyperparameters through
the marginal likelihood.
The analysis so far in this part was rather analytic, since the framework described here is also
important for the ideas developed in the next part of this dissertation. As far as the kernels
for the LTI case are concerned, there is currently a huge work being done and so it is rather
fair to say that the best selection of a kernel is still an open question and the various ideas
are not yet brought to a common ground.
Moreover, due to the different origins of the Gaussian process regression [59] and the reg-
ularization in LS framework for the identification of LTI systems, the kernels proposed for
each method are different but with strong resemblances. For the reasons discussed above, in
this framework we will focus on the kernels for the Gaussian regression approach (with the
only exception of the diagonal kernel), but an interested user can find information about the
kernels for the regularized LS problems in [54,63].

A first approach to the kernel selection problem

Maybe the simplest kernel that can incorporate prior knowledge about the underlying system
is the so-called diagonal kernel. Despite the fact that the followed way of reasoning for the
derivation of this kernel is based on the frequentist approach, it is still very useful to under-
stand the rationale behind the construction of kernels. First let us assume that the underlying
LTI system admits an FIR structure and so does the model used for the identification. Using
(5-11) as a starting point, let as assume that the input u is being generated by a zero-mean
white-noise random sequence with variance equal to s. Then it follows that Z = Up. It is
well known (e.g. [11]) that the following condition holds.

lim
N→∞

1
N − p

ZZT = sI (5-25)

Let as assume that γD−1 = diag(l1, l2, . . . , lp). Then, by employing (5-2), the nth diagonal
element of the MSE is expressed as
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MSE(n, n) = σ2s(N − p) + ln(hun)2

(s(N − p) + hun)2 , (5-26)

which is minimized with respect to ln for ln = σ2/(hun)2 [54]. Consequently, if the system
is exponentially stable, the coefficients should decay exponentially, so we can choose ln =
σ2/(λαn), where λ > 0 and 0 < α < 1. The corresponding γ coefficients can then be chosen
to be equal to σ2 and we also define D = diag

(
λα, λα2, . . . , λαp

)
. The two parameters λ

and α are of course unknown and have to be estimated through the log Marginal Likelihood
(MargLik) algorithm. The exponential decay of the diagonal terms is also verified in Figure 5-
2.
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Figure 5-2: Diagonal elements of the diagonal kernel with exponential decay with λ = 20 and
past window p = 20. The three plots correspond to α = 0.25 (blue), α = 0.5 (red) and α = 075
(green)

Remark 5.4. The results for the FIR case cannot be straightforwardly extended to the ARX
case, due to the fact that the condition that (5-25) does not hold for the output matrix YpY T

p .
However, in practice it is observed that following the same approach for an ARX model may
also yield satisfactory results. This claim is also investigated in Chapter 6.

Stable spline kernels

The diagonal kernel is a first approach to the optimization problem, which is expected to
improve the accuracy of the identified model. Nonetheless, in the very recent years the so-
called stable spline kernels gained a high interest following a stochastic approach, while their
origins date back in the work of Wahba on cubic smoothing splines [70]. The stable spline
kernels are characterized by the fact that they do not only incorporate information about
the smoothness of the function, but also information about the stability of the LTI system.
The theory of the stable spline kernels is itself pretty rich, while many aspects of this family
of kernels is currently in the center of attention of the related scientific community. It is
also worth stressing that the related framework was initially developed for continuous time
functions, but its implementation in the discrete time case is also possible.
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Depending on the number of the absolutely continuous derivatives of a spline function, two
specific choices are the most common. If the function has no continuous derivatives or only
one continuous derivative, it means that the corresponding spline constitutes of 2nd or 3rd
order polynomials, correspondingly. The regularization term, defined over the RKHS with
x ∈ X = [0, 1] is described by

||g||2H =
1∫

0

(
g(ζ)(x)

)2
dx (5-27)

and the corresponding kernel is given by

K
(
e−βs, e−βt

)
=

1∫
0

(
e−βs − u

)ζ−1

+
(ζ − 1)!

(
e−βt − u

)ζ−1

+
(ζ − 1)! du, u+ =

{
u, if u ≥ 0
0 otherwise

(5-28)

while the notation g(ζ) denotes the ζth derivative. Under the choices of ζ = 1 and ζ = 2 we
get the 1st order and the 2nd order stable spline kernel, correspondingly.

K
(
e−βs, e−βt

)
= e−βmax{s,t}, for ζ = 1, (5-29)

K
(
e−βs, e−βt

)
= e−β(s+t+max(s,t))

2 − e−3βmax(s,t)

6 , for ζ = 2 (5-30)

The increased smoothness of the kernel in (5-30) compared with the kernel in (5-29) can also
be verified by the surf plots in Figure 5-3. The 1st order stable spline exhibits a square shape
of decay, while the 2nd order stable spline resembles a smoother, circle-like decay as we move
from the top left to the lower right element.
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Figure 5-3: Surf plots of the 1st order stable spline kernel (left figure) and the 2nd order stable
spline (right figure). The chosen β value is 0.1 and the size of the kernel is 20.
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Moreover, another kernel that will be employed in this thesis is a modification of the stable
spline kernels, the so-called high frequency (HF) stable spline [62]. The main purpose
of this kernel is to capture highly oscillating dynamics. In terms of kernel structure this
is translated to a negative correlation between adjacent elements of the covariance matrix
(kernel), e.g. the kernel Ku. It is built based on the 1st order stable spline, so it is described
by

K
(
e−βs, e−βt

)
=
{
e−βmax{s,t} if s+ t is even,
−e−βmax{s,t} if s+ t is odd

(5-31)

A better view of this kernel can also be offered by comparing it with the two other stable
spline kernels. By taking the first line of each kernel it is possible to plot the three kernels in
a 2-D plot, as it is shown in Figure 5-4. In this plot it becomes evident that the HF stable
spline kernel exhibits a highly oscillatory form, compared to the other two kernels.
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Figure 5-4: 1st row of the kernels that correspond to the 1st order stable spline (blue), 2nd order
stable spline (red) and HF stable spline (green). The chosen β value is 0.1 and the size of the
kernel is 20.

Remark 5.5. As we already mentioned, the theory of the stable spline kernels is much richer
as it was presented here. An interested reader is referred to [58, 59, 71] for a more in-depth
discussion on this subject.

Selecting the kernel structure

The different kernels incorporate different information about the underlying system. A di-
agonal kernel is a simple form kernel that accounts for the exponential decay of the impulse
response coefficients but it neglects the possible cross-variance by setting it to be zero. On
the other hand, the 1st and the 2nd order stable spline kernels set a prior distribution on the
cross-terms too. The 1st order assumes that the impulse response coefficients exhibit a less
smooth relation, which is reflected in the shape of the kernel, while the 2nd order is much
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smoother, as it was also shown in Figure 5-3. Finally, in cases where the underlying system
shows a highly oscillatory behaviour it is recommended to use the HF stable spline, which
incorporates an oscillatory shape.

All in all, it becomes obvious that the kernel selection problem is still an open question,
with many new approaches appearing up to this day. It would be rather fair to admit
that the theoretical aspects of the proposed kernels are not fully grasped by the scientific
community up to this point and for this reason a great effort to this direction is currently
being made. Taking as a starting point of this new synergy between Gaussian processes
and system identification the year 2008 [7], it is characteristic that since then the number of
related publication is exponentially increasing. This research includes new kernel structures,
such as multiple kernels to capture more complicated dynamics [64], as well as regularization
techniques that combine the kernels methods with nuclear norm regularization [72]. Moreover,
it can be the case that the introduction of a specific kernel is introducing further restrictions in
the class of the systems that can interpret the data. As a solution to this problem, Pillonetto
combined the kernel based non-parametric framework with a parametric part, such that
the algorithm exhibits increased flexibility. However, the increased complexity of the final
algorithm makes it rather uncomprehending and so no further investigation of this approach
was reported in the literature, at least up to our knowledge.

In this dissertation it is not our aim to exhaustively investigate the various methods proposed
in the scientific community, while even if this was the case, the high publication activity
renders prohibitive for now any idea to review this field at the same time where the questions
are still open. It is however our purpose to investigate how the general idea can be extended
to the subspace identification framework for LTI systems, towards the incorporation of the
kernel methods in the subspace identification of LPV state-space models.

5-4 Regularization of the VARX solution in the PBSIDopt algorithm

As we have seen in Chapter 2, the state-of-the-art subspace identification algorithms for LTI
systems involve a step where the Markov parameters of the unknown system are estimated
via a Vector ARX (VARX) parametrization, leading to a LS problem. In the same chapter
we explained that the accurate identification of these parameters plays a crucial role in the
success of the algorithm. For this reason, the improvement of this estimation is a necessity
towards the improvement of the PBSIDopt algorithm. Ideally, the estimation of the impulse
response coefficients is pursued in the VARX step, but in reality a trade-off has to be achieved
such that the selected past window avoids the overfitting problem and simultaneously achieves
the smallest bias, due to the approximation in the state term (2-11).

However, this difficult task can be circumvented by employing the kernel methods. More
specifically, by taking advantage of the characteristics of the ARX model structure, we can
introduce a kernel based regularization in LPV-PBSIDopt algorithm in a way which is identical
to the one for the kernel based PEI of ARX models, developed in the previous sections. This
procedure is also briefly outlined in [8] and the accuracy of the algorithm is verified in four
different systems, for which the length of the data is relatively small.

In this section we will only highlight what approaches can be followed to alleviate the com-
putational burden of the kernel based PBSIDopt algorithm and we will summarize the steps
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that have to be followed.

Computational and practical aspects of the kernel based subspace identification

Until now we have given the general framework for the available kernels. In practice, though,
the kernels should have more flexibility. More specifically, for the stable spline kernels family,
the hyperparameter β and the structure of the kernel specify the general characteristics of
the kernels, such as the smoothness or the exponential decay rate. Nonetheless, depending
on the system to be identified, we have to scale these kernels up or down. In practice, this
means that the kernels that describe the covariance of the impulse response coefficients are
given by

cov
(
hui , h

u
j

)
= λ2

uk
u(i, j;βu), (5-32)

where ku can be any stable spline kernel element that we described above. On the other
hand, the diagonal kernel that we described in the previous section already incorporates this
scaling factor.

If we pre-estimate σ then the number of the unknown hyperparameters, in the general MIMO
case is given by 2(nu + ny)ny, because we create one kernel for each signal and each kernel
contains two hyperparameters, while this procedure has to be repeated for each output sep-
arately. It is obvious that the number of hyperparameters grows linearly with respect to nu
and quadratically with respect to ny. It is therefore important to alleviate the computational
burden, considering that these hyperparameters are estimated via a non-convex optimization
problem.

To this end, let us consider the impulse response coefficients, as they were given in (2-10).
For convenience we rewrite them here.

hut = CÃt−1B

hyt = CÃt−1K.
(5-33)

As we can see, the two impulse response coefficients share a common product, namely CÃt−1,
and this is multiplied by the vectors that correspond to each signal. Remember that here we
treat each signal separately, so in case of a MIMO system (where B ∈ Rn×nu and K ∈ Rn×ny)
the impulse response coefficients of each input (similarly for the outputs) will be multiplied
by the corresponding column vector of the B matrix (correspondingly, of the K matrix).

For the total impulse response sequence of each signal we deduce that the exponential decay
rate is mainly attributed to the CÃt−1 row vector, which is common among the various
signals, while the B and K vectors (or matrices) can be seen as a scaling factor that scale up
or down all the impulse response coefficients of a signal. Moreover, due to the fact that the
C matrix is different for each output signal, it is preferable to repeat the estimation of the
hyperparameters for each output signal.

However, with the previous observation we can partially reduce the computational complexity.
For each output signal we can use the same β for all the involved impulse response sequences
to capture the exponential rate of CÃt−1, t ∈ [1, . . . , p] and use a different λu (correspondingly,
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5-4 Regularization of the VARX solution in the PBSIDopt algorithm 51

λy) for each signal to capture the scaling facto of B (correspondingly, K). So, we will need
ny different β and (nu + ny)ny different λ for the stable spline kernels. A comparison of the
number of the hyperparameters involved in this approach and the conventional one is also
given in Table 5-2.

Table 5-2: Number of required hyperparameters for the conventional approach and the approach
that requires less hyperparameters versus the number of the inputs and outputs. In each cell, the
number on the left side corresponds to the former approach, while the number on the right side
corresponds to the latter one.

nu \ny 1 2 5

Full par. Reduced par. Full par. Reduced par. Full par. Reduced par.
1 4 3 12 8 60 35
2 6 4 16 10 70 40
5 12 7 28 16 100 55

Summary of the algorithm

Now we have described all the required steps to be taken for the implementation of the kernel
based PBSIDopt for LTI systems. These steps are summarized in the following algorithm.

Algorithm 5.1. Kernel based LTI-PBSIDopt

• Construct the quantities Y = Yp+1,1,N−p, Yp = Y1,p,N−p and Up = U1,p,N−p based on
(2-8)

• Choose a kernel structure such as a diagonal, or the ones described in (5-29), (5-30) or
(5-31)

• By defining Z =
[
UTp
Y T
p

]T
and using the assumptions in (5-18) together with the as-

sumption that the noise is independent of the impulse response coefficients, solve the
non-convex problem (the minus log marginal likelihood)

arg min
η

(− log p ((Y |Z, η)) = N − p
2 log(2π) + 1

2 log
(
det

(
ZTKZ + σ2I

))
+ 1

2Y
(
ZTKZ + σ2I

)−1
Y T .

(5-34)

where
K =

[
Ku 0
0 Ky

]
, K ∈ R2p×2p, (5-35)

p denotes the past window, η contains all the related hyperparameters and the quantity
Ku (similarly for Ky) is defined in (5-21). If the system has multiple inputs or/and
outputs then the matrix (5-35) is extended in an obvious way, preserving its block
diagonal form due to the assumptions in (5-18). This procedure has to be repeated for
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each output signal. Moreover, if the noise variance σ is treated as a hyperparameter,
then it can be estimated together with η, otherwise it can be pre-estimated, see also
(5-19).

• Compute the MAP estimates by making use of (5-24) and (5-21).

5-5 Comparison of the PEI and SID kernel based identification

A necessary step towards the comprehension of the kernel based methods is to see how they
are incorporated in the PEI and in SID methods. First of all, it is of high importance to
clarify that the kernel based methods are used in cases where the estimator is linear in the
parameters. For this reason the ARX and FIR structures are used. For both model structures
the predictor can generally be expressed as

ŷ(k|k − 1) = B(q−1)u(k) +
(
1−A

(
q−1

))
y(k), (5-36)

where B(q−1) =
∞∑
t=0

btq
−t and A(q−1) = 1 +

∞∑
t=1

atq
−t [10]. In the ARX case we have to

substitute the infinite sums with the finite ones that correspond to the "real" system. In the
FIR case the sequence A is equal to one and so the output term is removed, while B is also
expressed by a finite number of coefficients.

It is nonetheless unclear if and when these model structures correspond to the "real" system.
As far as the FIR case is concerned, someone would expect that the kernel based identification,
being able to avoid the over-fitting problem, will manage to estimate more accurately the un-
known system. Unfortunately, this way of reasoning is not theoretically justified, mainly due
to the fact that it does not cover the case of coloured noise. However, the FIR model structure
offers an interesting way to view the regularization problem, as we showed in Section 5-3.

On the other hand, the selection of the ARX model structure can be much better justified; in
this case the result in [25] asserts that if the number of a and b coefficients tends to infinity, as
shown in (5-34), and the number of data points N increases even faster than the ARX model
is able to approximate arbitrarily well every LTI system. In practice, selecting a sufficiently
large number of coefficients (the number of which in the kernel based methods does not reflect
any more a bias-variance trade-off, as long as the number of the coefficients is large enough
to capture the dynamics of the system [59]) results in a model capable of capturing in an
accurate way the dynamics of the system.

The latter argument directly holds for the VARX step in the PBSIDopt algorithm. However,
there is a crucial difference between the two methods. Following a control purpose
perspective, we are interested in estimating low complexity systems, capable of accurately
estimating the dynamics of the system. For this reason, in the PEI setting the introduc-
tion of a model reduction step is necessary to end up with a low order system [59]. On
the other hand, this extra step is already incorporated in the subspace identifica-
tion algorithms since most of the algorithms use an SVD decomposition to select the most
dominant singular values (see also Appendix A). In this sense, the kernel methods seem to
be better suited for the subspace algorithms.
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Another difference between kernel based PEI and SID methods is related to the allowed past
window value. In the kernel based PEI methods it is usually stated that the past window
(or the order of the system) can be very large, possibly larger than the number of data
points. This choice in general does not create any overfitting problems due to the intrinsic
regularization of the kernel methods. Consequently, the same assumption can also be made
for the SID methods that employ kernel methods. Nonetheless, a large past window is not
a safe choice for the SID methods (more specifically for the PBSIDopt algorithm) due to the
complications in the steps that follow the estimation of the Markov parameters.

The Singular Value Decomposition (SVD) performed after the calculation of the Markov
parameters is used to deliver an estimation of the state sequence Xp+1,1,N−p in the PBSIDopt

algorithm. As it was discussed in Appendix A, it is assumed that the state sequence is having
full row rank n and the same holds for the extended observability (full column rank n), the
controllability matrix (full row rank n) and the data matrix (full row rank pnu + pny). It is
important, though, to clarify that the rank property of the data matrix is not related any
more to the accurate estimation of the Markov parameters (as it is the case in the classical
PBSIDopt algorithm). Based on these assumptions it is possible to consistently estimate the
state of the system and the state sequence, up to a similarity transformation. However,
when the number of parameters p(nu +ny) is larger that the data points N the derived state
sequence estimate is not necessarily of rank n. To see this, based on Sylvester’s lemma [11],
we have that

Xp+1,1,N−p︸ ︷︷ ︸
n×N

= K̃(p)︸︷︷︸
n×(nu+ny)p

Z1,p,N−p︸ ︷︷ ︸
(nu+ny)p×N

⇒

rank(K̃(p)) + rank(Z1,p,N−p)− (nu + ny)p ≤ rank(Xp+1,1,N−p) ≤ min rank(K̃(p), Z1,p,N−p)
n+ rank(Z1,p,N−p)− (nu + ny)p︸ ︷︷ ︸

≤0

≤ rank(Xp+1,1,N−p) ≤ n,

(5-37)

so the rank of the state sequence can be less than n, thus leading to an inaccurate approxi-
mation. Moreover, the larger the number p(nu + ny) is, the lower the rank of matrix can be,
as it can be deduced from (5-37).

The celebrated advantages of the kernel based methods are not without a cost. More specif-
ically, it is a common characteristic of both the PEI methods using ARX or FIR model
structure and the subspace methods that they can treat MIMO systems in a direct manner,
while the involved optimization routines are convex. Unfortunately, the kernel methods lead
to the loss of these two properties in both identification approaches. As we already saw, the
kernel methods require a non-convex optimization step for the estimation of the hyperparam-
eters. Moreover, this estimation is usually repeated for each output, since the characteristics
between the various input-output relations, such as the exponential decay rate, are not shared
among the outputs, that is to say, each output is described by a different model and so the
kernel specifications are different.

All in all, the kernel based approaches offer a very attractive framework for the identification of
LTI systems. Despite their drawbacks, namely the increase in the complexity of the algorithm,
the introduction of prior knowledge in the identification process is a very interesting property
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which is expected to increase the accuracy of the estimated models. Since the subspace
methods (through the use of the PBSIDopt algorithm) are in the center of our interest, we
will resort to various simulation examples in order to verify the validity of the claims in this
chapter using the Algorithm 5.1.
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Chapter 6

Simulations for the LTI case

In this chapter we will present some informative simulation examples to investigate the various
aspects of the kernel-based SID method. More specifically, it is in our aims to investigate the
following characteristics:

• The effect of the past window value

• The effect of the SNR value

• The effect of data length

• The relation between the kernels and the unknown system

In order to do so, we will use both SISO and MIMO systems as examples. The investigated
kernels will be the 1st order stable spline, the 2nd order stable spline, the HF stable spline and
the diagonal kernel, while for all of these we used the reduced number of hyperparameters,
as it was discussed in Section 5-4. We also intend to compare these results with a kernel
based method that uses an identity matrix as kernels but makes use of the estimated noise
variance, σ2. This practically means that the estimation is ridge regression [26], since the
regularization term is σ2||θ||22. In the related literature the latter estimator is not mentioned.
This method contains no hyperparameters if σ is pre-estimated, so there is no requirement
for any non-convex optimization. Therefore it is an attractive way to see if we can avoid this
optimization without sacrificing the accuracy of the algorithm.

Moreover, we will compare these results with the optimal estimate following the analysis in
Section 5-2. Additionally, the direct use of the real coefficients (based on the selected past
window) will also be used to see how close the optimal regularization is to the real coefficients.
Finally, a regularization method that makes use of the Generalized Cross-Validation (GCV)
criterion will also be used [51]. The latter one is extensively used in the LPV-PBSIDopt

algorithm, but it can of course be employed in the LTI case too.

In these examples we will assume that the order of the system is known. In general, a com-
monly used way to find the order of the system is by examining the amplitude of the singular
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values of the extended observability-times-controllability matrix (see also Appendix A) and
detecting a gap [11].

Up to the author’s knowledge, the only publication focusing on the synergy of kernel methods
with SID methods is [8]. Nonetheless, in this publication some major aspects of the proposed
algorithm are not investigated or clarified. More specifically

• It is not clear if a parametric part is finally introduced, following the idea in [59]

• No information about the noise characteristics used in the simulations is given.

• The effect of different past window values, as well as different data length values (espe-
cially of large data sets) is not investigated.

• The stable spline of order 2 was only investigated.

For these reasons, it is important to try to shed light in all these aspects of the kernel based
PBSIDopt algorithm. In all the following simulation examples we performed 50 Monte Carlo
simulations for each setting, that is to say, we identified each system 50 times and each time
a fresh input and noise sequence were used for the identification procedure.

As far as the noise is concerned, we simulated the system for specific SNR values. First of
all, let us express again here the SNR definition for simplicity.

SNR = var(y)
var(e) , (6-1)

where var(y) denotes the variance of the output, corrupted by noise and var(e) is the noise
variance. Usually it is expressed in dB. In this case SNRdB = 10 log10

var(y)
var(e) . Since y =

ynoiseless + e, it is not feasible to produce the desired SNR value with the use of (6-1) in our
algorithms. For this reason, we will instead use a modification of SNR value, given by

SNRmod =
var(ynoiseless)

var(e) . (6-2)

Of course, after the execution of the simulation we can compute (6-1) (based on the samples)
and so we can get an estimate of its value based on the 50 Monte Carlo simulations that we
perform.

In each experiment we estimated a model based on various regularization schemes. More
specifically, we examined in total the following cases:

1. Diagonal kernel + PBSIDopt (Diag)

2. Stable spline kernel of order 1 + PBSIDopt (SS-1)

3. Stable spline kernel of order 2 + PBSIDopt (SS-2)

4. HF stable spline kernel + PBSIDopt (SS-HF)

5. Ridge regularization with noise estimate + PBSIDopt (NP ridge)
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6. Classical PBSIDopt (no regularization) (PBSIDopt)

7. GCV ridge regularization + PBSIDopt (GCV-PBSIDopt)

8. Optimal regularization + PBSIDopt (Opt)

9. True VARX coefficients + PBSIDopt (MSE opt)

Let us summarize the main characteristics of the investigated algorithms 1-9. The first four
methods are based on the kernels explained in Section 5-3. The ridge regularization with
noise estimate adds a regularization term of the form σ2||θ||22, where the noise variance was
pre-estimated. The GCV ridge regularization is a standard method to perform regularization.
It is implemented in PBSID Toolbox [73] and is based on [51]. The optimal regularization
is based on the theory developed in Section 5-2. Finally, the “True VARX coefficients +
PBSIDopt” method is skipping the VARX step by directly using the actual values of the
Markov parameters. Here it is important to make an important remark, that will be further
investigated in the examples to follow. The fact that the latter two methods use the real
Markov parameters somewhere in the algorithm does not mean at all that they will always
exhibit the best results. Even though they are not expected to suffer from any overfitting
problems, the approximation error is directly related to the value of past window. Conse-
quently, if the past window is small, the perfect knowledge of the Markov parameters is not
enough to lead to a highly accurate model because there can be too much "information" about
the system in the term CÃpXp+1,1,N−p, which is nonetheless neglected due to the approxi-
mation. Finally, we will either call these methods based on the given numbers or based on
the abbreviations, given in brackets above.

6-1 Example 1: A 2nd order open-loop LTI SISO system in ARX
form

The system under investigation is taken from [8]. In order to keep consistency with the nota-
tion, we will use the schematic in Figure 6-1 to characterize the involved transfer functions.

In this example we examine an open-loop system, described by the following transfer functions:

F (z) = 0.5778z − 0.242
z2 − 0.7z − 0.18

G(z) = z2 + 0.4z − 0.21
z2 − 0.7z − 0.18

(6-3)

This system is rather not oscillatory, since its poles are at −0.2 and 0.9 (for relation between
pole location and impulse response behaviour see [74]). So, it is expected that smooth kernels
will yield the best results.

The noise variance was pre-estimated, based on (5-19), by using a VARX model with a past
window 4 times the order of the system. In general, it was observed that a past window of
4-6 times the order of the system yield a σ estimation which is close to the actual noise of
the system.
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Figure 6-1: Schematic of an LTI system

We simulated the system using N = 150 data points and with an SNRmod = 10, while the
average of the SNR value was 5dB. The future window was kept constant in all simulations,
f = 10. The input signal is Random Binary Sequence (RBS) with amplitude 1, exciting all
the frequencies (0 until π rad/s), while the sampling frequency is 1s. In order to enable the
clear exhibition of the results, we present on the left plot of Figure 6-2 a comparison of the
non-parametric kernel methods (1-4) and on the right plot of Figure 6-2 a comparison of the
best non-parametric kernel method with the rest algorithms (5-9). The validation results are
generated using a fresh input sequence with the same characteristics as in the estimation set
but without the addition of noise.
Moreover, in order to investigate the susceptibility of the methods to the data length, we
repeated the simulations with the same setting except for the data length, which is now
chosen to be N = 500. The results are given in Figure 6-3.
As we can see, all the kernels methods are capable of performing much better than the other
methods for all past window values. Among them, it is evident that the “Diag” algorithm is
performing very well but in most cases it is overweighted by the “SS-2” algorithm. The fact
that all the stable spline kernels show these deviations is mainly attributed to their sensitivity
on the chosen initialisation values for the hyperparameters. Taking into account that a mul-
tistart approach in the optimization routine was avoided (mainly for computational reasons),
we have a clear explanation of the results. Moreover, we observe that indeed the “HF-SS” is
not capable of capturing well the dynamics of this non-oscillatory system, but still it delivers
better results than the methods 5-9. As far as the “SS-1” algorithm is concerned, by closely
investigating the derived results it was observed that the algorithm fails to deliver reason-
able values for the hyperparameters only at a few Monte Carlo simulations. However, this
leads to a completely wrong estimation and so a zero VAF is accounted at these simulations.
Nonetheless, if we neglect these cases (which were about the 10% of the total Monte Carlo
simulations) then the VAF results are close to these of the other kernel methods (1-4). The
same conclusions can be verified by both simulation settings, as they are shown in Figure 6-2
and Figure 6-3.
We also see that the “MSE opt” method shows almost the same accuracy as the “Opt”

Ioannis Proimadis Master of Science Thesis



6-1 Example 1: A 2nd order open-loop LTI SISO system in ARX form 59

25 50 75 100
70

75

80

85

90

95

100

Past window length

V
.A

.F
. 
[%

]

25 50 75 100
20

30

40

50

60

70

80

90

100

Figure 6-2: Example 1: validation results for different p values and N = 150. Left plot: The
orange curve corresponds to “HF-SS”, the steel blue to “Diag”, the blue one to “SS-1” and the
gold one to “SS-2”. Right plot: The gold curve corresponds to SS-2, the dark green to “NP-
ridge”, the red one to “PBSIDopt”, the black to the “GCV-PBSIDopt”, the magenta to the “MSE
opt” and the light green to “Opt”.
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Figure 6-3: Example 1: validation results for different p values and N = 500. Left plot: The
orange curve corresponds to “HF-SS”, the steel blue to “Diag”, the blue one to “SS-1” and the
gold one to “SS-2”. Right plot: The gold curve corresponds to SS-2, the dark green to “NP-
ridge”, the red one to “PBSIDopt”, the black to the “GCV-PBSIDopt”, the magenta to the “MSE
opt” and the light green to “Opt”.
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algorithm (see also the discussion at the end of Section 5-2). At this point it is important to
clarify their drop in terms of VAF results for the case whereN = 150, which is not related with
the accuracy of the Markov parameters. This result is related to the inaccurate estimation
of the state sequence, following the lines in Section 5-5. The same justification is enhanced
by noticing that the “Opt” method completely skips the VARX steps (since it uses directly
the real Markov parameters) and yet it experiences a deterioration in the accuracy of the
estimated model, as it can be seen in Figure 6-2.

This example is a rather simple one. In order to better investigate the validity of the new
kernel based methods, we will proceed to the identification of more complex systems.

6-2 Example 2: A 2nd order closed-loop LTI SISO system in ARX
form

In this example we will investigate the behaviour of the kernel based algorithm in a closed-loop
setting. The related transfer functions are given by

F (z) = 0.4802z − 1.351
z2 − 0.6z + 0.73

G(z) = z2 + 0.6z − 0.27
z2 − 0.6z + 0.73

K(z) = 1

(6-4)

Following the same approach as in the previous example, we performed 50 Monte Carlo
simulations for each past window. The chosen future window was kept constant, f = 10. In
this example the derived VAF results for the free run outputs (SNR → ∞) do not lead to
safe conclusions because the VAF values of most of the examined methods are really close.
For this reason, we evaluated the accuracy of the algorithms by making use of the one step
ahead predictor. In these validation simulations we used an input of the same characteristics
as the one used in the estimation dataset, while the noise sequence ek is a zero mean normally
distributed white noise with variance 0.1. In order to view a different aspect of the kernel
based methods, we present the one step ahead predictor VAF results for two different cases:
the first one is based on a system with high noise (SNR ≈ 7dB), while the second one is
characterized by a better SNR value equal to 10dB. In both simulations we used 500 data
points, while the results for the former case are given in Figure 6-4 and for the latter case in
Figure 6-5.

The best kernel based method for this case was the “HF-SS”, a result which was rather
expected due to the fact that the system poles are located at 0.3 ± 0.8i and so the system
exhibits an oscillatory behaviour. These simulations also reveal a different aspect of the
examined methods. More specifically, it is observed that the “NP ridge” method is able to
identify accurately the underlying model when the past window is relatively small. On the
other hand, when the past window is getting large, the accuracy of the “NP ridge” method
is falling, as it can be seen in Figure 6-6, which is a zoom-in of Figure 6-4.

In order to understand this result we have to make some remarks. Concerning the drop in
performance as the past window value increases, it is obvious that it is related to the fact that

Ioannis Proimadis Master of Science Thesis



6-2 Example 2: A 2nd order closed-loop LTI SISO system in ARX form 61

25 50 75 100 125 150 175 200
75

80

85

90

95

100

Past window length

V
.A

.F
. 

[%
]

25 50 75 100 125 150 175 200
75

80

85

90

95

100

Figure 6-4: Example 2: validation results for different p values and N = 150. Left plot: The
orange curve corresponds to “HF-SS”, the steel blue to “Diag”, the blue one to “SS-1” and the
gold one to “SS-2”. Right plot: The gold curve corresponds to “HF-SS”, the dark green to “NP-
ridge”, the red one to “PBSIDopt”, the black to the “GCV-PBSIDopt”, the magenta to the “MSE
opt” and the light green to “Opt”.
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Figure 6-5: Example 2: validation results for different p values and N = 500. Left plot: The
orange curve corresponds to “HF-SS”, the steel blue to “Diag”, the blue one to “SS-1” and the
gold one to “SS-2”. Right plot: The gold curve corresponds to SS-2, the dark green to “NP-
ridge”, the red one to “PBSIDopt”, the black to the “GCV-PBSIDopt”, the magenta to the “MSE
opt” and the light green to “Opt”.
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Figure 6-6: Example 2: zoom-in of Figure 6-4.The dark green curve corresponds to “NP-ridge”,
the orange one to “HF-SS”, the magenta to the “MSE opt” and the light green to “Opt”.

the regularization term of “NP ridge” assigns the same significance in all the coefficients due
to its structure (σ2||θ||22). Therefore, it is not able to “realize” that for large past windows the
difference between the values of the first impulse response coefficients (CB,CK) and the last
ones (CÃp−1B,CÃp−1K) is getting too large and so the imposition of an identity variance is
not valid. However, the ability of this method to estimate accurately the underlying system
when p is small is related to the fact that it is not using any hyperparameters (except for σ,
which is though not treated as such) and so it is avoiding any pitfalls due to the non-convex
optimization routine of methods 1-4.

Finally, another interesting remark is related to the VAF results for “MSE opt” and “Opt”.
For small past window values, the VAF results for these two methods are lower than the other
methods. This result though is not unexpected and it is related to the neglect of the term
CÃpXp+1,1,N−p, as it was already discussed in the beginning of this chapter. Therefore, for
systems that show an oscillatory behaviour (as the one in this example) it is necessary to take
more impulse response coefficients into account in order to achieve the optimal approximation
of the impulse response. Of course, the value of C and Xp+1,1,N−p also play a role to this.

6-3 Example 3: A 4th order open-loop LTI SISO system in ARX
form

In this example we estimated a more complex system, namely an open-loop 4th order LTI
system described by the following transfer functions.
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F (z) = 1.067z3 − 6.824z2 − 1.39z − 0.8556
z4 − 1.1z3 + 0.95z2 − 0.523z − 0.153

G(z) = z4 + 0.8z3 + 0.8z2 + 0.256z − 0.1785
z4 − 1.1z3 + 0.95z2 − 0.523z − 0.153 .

(6-5)

The future window was set to f = 10, while we compared the accuracy of the algorithms
for different past windows. Again, due to the highly oscillatory behaviour of the system, the
“HF-SS” was observed to offer the most accurate results. In this example, though, we would
like to investigate some other aspects of the kernel based SID methods.

Results for a sufficiently excited system

First of all, elaborating on the observations in the previous example concerning the “NP
ridge” method, we turn our attention to the comparison of the “NP ridge” with the ‘HF-
SS” method. On the left plot of Figure 6-7 we compare the accuracy of the one-step ahead
predictor of ‘HF-SS” with the ones of the methods 5-9, while on the right plot we zoom in to
examine better the results of the “NP ridge” and ‘HF-SS” methods. The input used in the
validation simulations was an RBS signal, which excited uniformly the frequencies 0 until π
and the noise sequence ek is a zero mean normally distributed white noise with variance 0.1.
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Figure 6-7: Example 3: validation results for N = 500. Left plot: the orange curve corresponds
to “HF-SS”, the dark greento “NP-ridge”, the red one to “PBSIDopt”, the black to the “GCV-
PBSIDopt”, the magenta to the “MSE opt” and the light green to “Opt”. Right plot: zoom-in of
the left plot.

In the right plot we observe a slightly different behaviour for “NP-ridge” compared to the one
in Example 3. The obtained VAF results for this method are still high, but now the “HF-SS”
is having in general a higher VAF value even for small past window values, except for p = 25,
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which is rather due to a local minimum in the non-convex optimization routine. In order to
understand this difference it is required to investigate the properties of the underlying model,
which is the only setting that is different from the previous example (the future window,
the data length and the past window values were the same). The system in this example is
showing a more oscillatory response compared to the one in Example 2. The poles of the
system in this example are at 0.9,−0.2 and 0.2±0.9i. Therefore, it is more crucial to capture
these dynamics through a well tuned kernel and the “HF-SS” kernel is the most appropriate
for it. For this reason the “NP-ridge” method, by completely disregarding the off-diagonal
terms, is not able to perform any more well due to the assigned covariance, which is identity.

Poor excitation of the system

The same results can also be verified in the case of poor excitation. By keeping the various
parameters the same, we only changed the input signal to an RBS signal, which excites
uniformly only the frequencies from 0 until π/2rad/s. Consequently, the high frequency
dynamics of the system are not well excited, which can be crucial for this system that contains
high frequency dynamics. In order to make this point clear, we present in Figure 6-8 the
spectrum of the input signal (expressed in dB) versus the frequency, as well as the magnitude
of the bode diagram for the system (6-5).
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Figure 6-8: Upper figure: spectrum of input signal. Lower figure: magnitude of the bode diagram
for the system in (6-5)

The resonant frequency is rather well excited, but after this point the amplitude of the
spectrum for the input signal drops rapidly and so the higher frequencies (which contain
three zeros and one pole of F3 in [π/2, π]) are not well excited.
This study case is presenting in a clear way the merits of the kernel based methods and
especially of “HF-SS”. More specifically, the incorporated information about the system in
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the kernel based methods is the key to preserve the accuracy of the estimation. On the other
hand, the “NP-ridge” lacks this information and so it is not able to estimate the unknown
system with an accuracy close to the one of the “HF-SS” method. These results are visualized
in Figure 6-9, where the one-step ahead predictor estimates are being shown. Now, the VAF
results for “HF-SS” are around 96%, while the VAF results for “NP-ridge” are around 93% for
past window values until p = 85. It is also interesting that the classical PBSIDopt algorithm
completely fails to estimate correctly the underlying system, making more clear that the
regularization is necessary in the general setting.
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Figure 6-9: Example 3: validation results for N = 500 under poor excitation. The orange curve
corresponds to “HF-SS”, the dark green to “NP-ridge”, the red one to “PBSIDopt”, the black to
the “GCV-PBSIDopt”, the magenta to the “MSE opt” and the light green to “Opt”.

Comparison of the singular values

Before we conclude on this example, it is useful to show another property of the kernel based
methods, related to the fact that they estimate accurately the Markov parameters even for
very large past window values. More specifically, this accurate estimation is reflected in the
estimation of the order based on the detection of the gap in the SVD of (A-8). To see this,
let us compare the singular values of “HF-SS” and the classical PBSIDopt algorithm, based on
the data used in Section 6-3. For small past window values (until p = 50), at is was shown in
Figure 6-7, the VAF results of the “HF-SS” are slightly better than the ones of the classical
PBSIDopt (approximately 0.5-1%) and so the gap in the singular values is almost the same
for both methods. For this specific example, the difference becomes obvious when p = 200,
as it is presented in Figure 6-10.
Therefore, the kernel based methods can lead to a better selection of the order of the system,
when this is not known (as it is assumed in these examples). In general, it was observed
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Figure 6-10: Example 3: singular values of “HF-SS” (blue stars), classical PBSIDopt (red circles)
and “MSE opt” (magenta crosses) for a past window p = 200.

that the same results are derived in cases where the input is not sufficiently exciting but the
kernel methods can still lead to an accurate estimation of the Markov parameters, due to the
incorporated information about the system properties. This observation is useful since this
gap is the main information used both in cases where the engineer himself chooses the order
of the system or when automated procedures (such as the singular value criterion [75]) are
used.

6-4 Example 4: A 4th order open-loop LTI MIMO system in state-
space form

As a final example to evaluate the validity of the kernel based methods we would like to
compare the accuracy of the kernel methods with the accuracy of the classical PBSIDopt

method in the system described in [23]. This is a 2-inputs, 2-outputs system, described by

Ioannis Proimadis Master of Science Thesis



6-4 Example 4: A 4th order open-loop LTI MIMO system in state-space form 67

[
A
]

=


0.67 0.67 0 0
−0.67 0.67 0 0

0 0 −0.67 −0.67
0 0 0.67 −0.67

 , [
B
]

=


0.6598 −0.5256
1.9698 0.4845;
4.3171 −0.4879
−2.6436 −0.3416

 ,
[
C
]

=
[
−0.3749 0.0751 −0.5225 0.5830
−0.8977 0.7543 0.1159 0.0982

]
,
[
D
]

=
[

0
0

]
,

[
K
]

=


−0.6968 −0.1474
0.1722 0.5646
0.6484 −0.4660
−0.9400 0.1032

 .
For these simulations we used a past window of f = 5, which is just above the order of the
system. The average SNR value for the two outputs were 4.5dB and 2.67dB. In this example
we would like to highlight the general superiority of the kernel based methods and specifically
of the “HF-SS” algorithm but also the possible inaccurate results of this method in cases
where the non-convex optimization is ending up in a local minimum. For the simulations we
used again 500 data points and we used an input that excites uniformly all the frequencies
up to Nyquist frequency. The VAF results of the one step ahead predictors for different past
window values are given in Figure 6-11.
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Figure 6-11: Example 4: validation results of the one step ahead predictors for N = 500. The
left plot corresponds to the first output and the right one to the second output. The orange curve
corresponds to “HF-SS”, the red one to “PBSIDopt”, the magenta to the “MSE opt” and the
light green to “Opt”

As it is expected, the validation results favour the “HF-SS” method. In this example, though,
we would also like to highlight the variance properties of the “HF-SS” method, based on the
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50 Monte Carlo simulations that we performed for each past window. By plotting the 25th
and the 75th percentiles (given by the grey frames) based on the Monte Carlo results, we
present in Figure 6-12 only the results for “HF-SS”.
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Figure 6-12: Example 4: validation results of the one step ahead predictor of“HF-SS”, together
with the 25th and 75th percentiles. The left figure corresponds to the first output and the right
one to the second output.

The Figure 6-12 shows more clearly another property of the kernel based methods. By
observing that the 25th and 75th percentiles are very high while the sample average VAF
value for each past window is sometimes outside this region, it becomes evident that the
drop in performance is related to the local-minima in the non-convex optimization. Even
though an inaccurate estimation of the underlying model is not the rule, it is still enough
to bring the sample average down. Actually, this is also verified by investigating one by
one all the VAF results. In total there are 50 Monte Carlo simulations for each p times 13
different past window values, so in total 650 identification procedures. Among these it was
observed that there is at most one identification procedure for each past window value that
delivers lower VAF results. Consequently, this enhances the argument that in experimental
setups it is advisable to repeat the non-convex optimization of the marginal likelihood for
different initialization points. This is however far from trivial. More specifically, even a
multistart procedure does not necessarily lead to a better accuracy. This is related to the fact
that the minus log marginal likelihood optimization problem is not trying to optimize with
respect to σ2 (even though this is possible) and more importantly, there is no optimization
taking place with respect to the kernel structure itself. Therefore, a smaller value of the
objective function does not necessarily lead to a more accurate estimation. This was indeed
verified in the case of p = 15. More specifically, we performed a multistart approach for
β and all the λ. For each output, the value of β was initialized based on a logarithmic
grid with β = [0.0003, 0.0013, 0.0056, 0.0237, 0.1] and λ based on a linear grid with
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λ = [0.1, 5.075, , 10.05, 15.025, 20]. For all possible combinations we computed the
hyperparameters that minimize the minus log marginal likelihood function and we kept the
ones that give the lowest value for the objective function. Moreover, we performed the same
procedure by skipping the pre-estimation step for σ2 since we set it directly to its real value.
On the other hand, we identified the system by using only one initialization point for the
hyperparameters, namely β = 0.005 and λ = 1, which correspond to the initialization values
that we used in all the simulations of this chapter. Of course, for all these identification
procedures we used the same data set to enable a fair comparison between the 1-step ahead
predictor VAF values, while in these validation results we simulated the system without noise.
The results are concentrated in Table 6-1.

Table 6-1: 1-step ahead predictor (without noise) VAF results for Example 4 with p = 15. Mult.
stands for a multistart approach.

Method Mult.. HF-SS HF-SS Mult.. HF-SS, known σ2 HF-SS, known σ2

1st output VAF 98.10 % 99.84 % 99.47 % 99.77 %
2st output VAF 97.12 % 97.69 % 97.08 % 99.86 %

As we can see, the multistart procedures actually deteriorate the VAF results. Moreover,
when σ2 is known, the VAF results are improved but still it is not enough to lead to an
accurate estimation of the underlying LTI system in the multistart case, thus enhancing the
argument that the kernel structure itself plays an important role in the accuracy of the kernel
based PBSIDopt method. Even though there is no reason to assume that this will be always
the case for other LTI systems, it is nonetheless obvious that by finding the hyperparameters
that minimize the objective function there is no guarantee that the corresponding VAF results
will be improved.
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Chapter 7

Conclusions and recommendations for
the kernel based SID of LTI systems

7-1 Conclusions on the kernel based methods for Subspace Iden-
tification (SID)

In this chapter we introduced the kernel based identification methods for LTI systems. By
introducing simple prior knowledge in the identification algorithm and sophisticatedly tuning
the bias variance trade-off, these methods have shown in multiple experiments to deliver su-
perior results with respect to the classical identification methods and therefore they attracted
the interest of many scientists in the system identification field. In this thesis we took as a
staring point the research on the kernel based Prediction Error Identification (PEI) methods
and we showed how this framework can also be applied in SID methods and specifically in the
PBSIDopt algorithm, following the lines in [8]. Moreover, since an in depth investigation of
this synergy between the SID methods and the kernel methods was missing from the related
literature, both in theoretical and in practical (based on simulations) terms, we investigated
in depth its various aspects.

What did we win and what did we sacrifice in the kernel based PBSIDopt algorithm? In a
nutshell, in this new approach we had to sacrifice the convexity and the direct treatment
of MIMO systems (both are the main characteristics of the classical PBSIDopt algorithm),
but we won in terms of a much higher accuracy in the identified model, which also had the
side-effect of revealing a more clear gap in the singular values, which are used to determine
the order of the system. In this sense, it becomes evident that the kernel based methods are
highly attractive due to their superior identification properties.

Moreover, it is well known that the value of the past window is a crucial parameter in the
classical SID methods. However, we have reasoned that in the kernel based SID methods its
value does not reflect any bias-variance trade-off as long as it is large enough to capture the
dynamics of the impulse response. On the contrary, the bias-variance trade-off was achieved
through the introduction of the Gaussian prior in the impulse response coefficients and the
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subsequent estimation of the maximum a posteriori estimates. Of course, when the past
window is extremely high, a small drop in the performance of the kernel based algorithms
was observed, but one has to take into account that in this case the number of the parameters
that have to be estimated is high and so numerical errors are to be expected. For example, for
a past window value p = 200, which was also used in Example 4, the number of the parameters
to be estimated for each output (by treating each output separately) from a Least Squares (LS)
problem was 200 × 2 × 2 = 800, while the corresponding number of hyperparameters (using
the approach in Section 5-4) that have to be estimated by a non-convex optimization was 5
(so 10 for both outputs).
As far as the examined kernel structures is concerned, it was observed that the HF stable
spline kernel is better suited in systems that show highly oscillatory behaviour, compared to
the other stable spline kernels. The diagonal kernel seems to be a decent selection, especially
in cases where the optimal (off-diagonal) covariance terms are close to zero. This is related to
the fact that the diagonal kernel is not even trying to set any value in the off-diagonal elements
of the kernels Ku and Ky. On the other hand, the stable spline kernels are always trying to
assign values in these off-diagonal elements due to their inherent structure. However, due to
the non-convex nature of the optimization routine for the calculation of the hyperparameters it
is possible that these off-diagonal terms will drive the hyperparameters to a rather “bad” local
minimum, due to the increased complexity of the algorithm. In order to allow this flexibility
in the stable spline kernels it is necessary to include another hyperparameter that accounts
for the off-diagonal elements in an independent way. For example, this is the case in the
recently proposed diagonal/correlated kernel [54]. Of course, the addition of a hyperparameter
increases the complexity of the algorithm and so it may also lead to the same result (ending
up in a local minimum) due to a different reason (further increase in the computational
complexity).
As a general remark about the kernel selection, we clearly observed that the stable spline
family of kernels can deliver more accurate results than the diagonal kernel, but they are more
susceptible to local-minima issues, which of course could be bypassed with the use of multistart
methods in the optimization routine. However, this is not a trivial procedure. As we explained
in Example 4, using different initialization points for the hyperparameters and choosing those
that minimize the minus log marginal likelihood is not itself enough to guarantee improved
results. In fact, the inherent assumptions contained in this non-convex optimization, such as
the value of the noise variance σ2, as well as the structure of the kernel are not optimized in it.
Therefore, finding the global minimum without taking care of the latter two parameters does
not necessarily mean that the identified model will exhibit the highest accuracy compared to
the other possible selections of the hyperparameters. Consequently, if a multistart approach
is to be followed, the chosen hyperparameters should be the ones that increase the accuracy
of the estimated model and not the ones that correspond to the lowest value of the minus log
marginal likelihood function.
In total, the kernel based methods are a highly attractive way to treat the SID problem. By
practically inactivating the role of the past window value in the accuracy of the SID algorithms
and simultaneously delivering more accurate models with respect to the so far state-of-the-art
identification methods, it is rather fair to say that they lead to a change of paradigm in the
system identification process. The whole discussion about these methods has just began and
there are still many aspects to be investigated, both theoretical and practical. For this reason
it is important to show some of these topics that could be treated in future works.
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7-2 Recommendations and possible future work

As it is the case with many new ideas, by offering answers to some questions they simulta-
neously lead to many new questions yet to be answered. For the kernel based identification
the aspects that have to be investigated are numerous. It is important though to realize that
the investigation of kernel based SID methods is in close terms with the discussion on the
kernel based ARX model identification and so many of the scientific questions that have to
be addressed can be applied in both system identification methods (PEI and SID).
First of all, for the improvement of the results, the multiple kernel based identification, pre-
sented at the end of 2014 [64] seems to be a promising one. As we already discussed in
Section 5-3, in this new approach multiple kernels are used to capture more complex impulse
responses. However, this approach still has many open questions, such as what is the optimal
number of kernels, while the possibility of combining different kernel structures is not yet
reported in the related literature.
Of course, the available kernel structures still need investigation and the possibility of creating
new ones has also to be examined. This research effort is also reflected on the fact that new
kernels have also been proposed very recently, merely because the discussion about what is
the practically optimal kernel structure is not fully answered yet.
Another open question is how the computational complexity of the algorithm, related to the
non-convex optimization of the marginal likelihood function, can be reduced, possibly by being
viewed as a trade-off between accuracy of the estimation and the computational complexity.
One partial solution to this problem is investigated in [72], where the hyperparameters for all
the outputs are estimated by their joint marginal likelihood and so the same hyperparameter
values can be used for all the outputs. However, in the same publication it is mentioned that
a parametric part similar to the one in [59] has to be introduced to increase the flexibility
of the algorithm. In general, the computational aspects of the proposed algorithm are of
high importance, mainly due to the introduction of the non-convex optimization routine.
Therefore, it is recommendable to explicitly investigate this aspect and propose more efficient
algorithms, a task which is yet in a preliminary stage [76,77].
On the other hand, if the computational aspects and the time limitations are not crucial
in a specific application, a different research approach can be investigated. Based on the
experience that we gained during this thesis it required a lot of effort, partially by employing
a trial and error method, to tune the optimization parameters (initialization values, number
of iterations etc.). Especially for the family of stable spline kernels it was rather difficult to
find a good initialization for β. Therefore it is expected that an improvement in the results
can be achieved through a multi-start approach. To this end, the remarks on the conclusions
above should necessarily be taken into account.
Additionally, a very interesting topic to be investigated is related to the comparison of the
kernel based SID and PEI methods. As we saw in this part, the kernel based methods aim at
identifying the impulse response of the underlying system. This subsequently means that we
have to estimate many coefficients, much more than the order of the system. In the PBSIDopt

algorithm the step of order reduction is already embedded in it. On the other hand, the kernel
based PEI methods deliver a model of very high order. If this model is to be used for control
purposes it is necessary to employ model reduction techniques in order to end up with a low
order model, as it was indeed observed in [59]. However, it is not yet reported in the related
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literature what is the cost of adding this extra step in terms of accuracy of the PEI methods.
Therefore, a comparison between the kernel based SID methods and the kernel based PEI
methods combined with a model reduction step is expected to reveal a new insight into the
potentials of the two methods.

The previous remarks are focusing on the kernel based methods for the identification of an
ARX model. However, in the SID method there are also another two LS problems that have
to be solved, given in (A-9) and (A-10). The idea of an optimal kernel (even though it cannot
be practically implemented), as it was shown in Section 5-2 is rather intriguing. So someone
could ask if there is an optimal kernel and if a kernel based method can be used in these two
problems. The questions that arise are multiple. The state sequence is itself an estimated
quantity, so it is rather unclear if the estimation of C based on a kernel based method can
indeed lead to better results. Moreover, the system matrices A,B,C are not characterized by
a specific structure (as it holds true for the impulse response coefficients) and so a possible
use of a kernel will require many hyperparameters to enable a flexible structure. However, for
systems that have a low number of states and a few outputs (possibly a MISO system) it may
be possible to follow a kernel based approach. At least for the estimation of C matrix, it may
be possible to view its coefficients as random variables and set a prior, whose hyperparameters
will be estimated via the marginal likelihood optimization.

It is also very important to investigate the validity of the claims in this thesis report on
an experimental setup. In general, the kernel based methods have not yet been applied to
experimental setups, with the only exception of the identification of a robotic arm using a
kernel-based FIR model [58]. It is more than obvious that the usefulness of the kernel based
methods and so of the kernel based PBSIDopt algorithm has to be tested in experimental
identification procedures. A systematic investigation of the effectiveness of these methods in
real setups can further justify their selection and possibly lead to new ideas about how these
methods could be improved.

Finally, another still unexplored path is the possible adaptation of recursive methods on the
kernel based SID setting. It is well known that the SID algorithms can be adapted for recursive
estimation of the unknown coefficients, a method which enables the online identification of
the unknown model [78, 79]. Moreover, similar ideas for recursive estimation have also been
developed for the Gaussian process regression [80]. Therefore, the combination of these two
ideas, in the first place, and the adaptation of them so that they cope with the kernel based
identification in a more suitable way, in the second place, forms an interesting and demanding
research project.

All in all, it becomes clear that the kernel based LTI system identification methods form a
promising research area that will be in the center of focus for many researchers in the years to
follow. The close cooperation of the machine learning and the classical system identification
approaches has still many things to offer in both communities. Moreover, the extension of
these methods in other classes of systems has barely been investigated. For this reason, in the
next part we will investigate if an extension of the kernel based methods to the identification
of LPV systems in state-space form is possible, having as a guide the results and conclusions
that were derived in this part of the thesis.
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Chapter 8

Kernel methods for SID of LPV
systems

In this chapter we will give an overview of the available regularization techniques for the LPV-
PBSIDopt algorithm and propose two novel approaches, influenced by the developments in the
LTI case, as shown in Part 2 of the present dissertation. More specifically, by elaborating on
the discussion in Chapter 3, we will first focus on the Generalized Cross-Validation (GCV)
based ridge regression, while the nuclear regularization method will also be briefly outlined.
Then, in Section 8-2 we will open the way for a kernel based approach in the subspace identifi-
cation of LPV systems. To this end, it is crucial to investigate the similarities and differences
between the LTI and the LPV case. Finally, in Section 8-3 we will develop two frameworks
for the subspace identification of LPV systems and we will highlight their advantages and
disadvantage. The discussion of this Chapter will provide the theoretical framework to un-
derstand the results in Chapter 9. Due to the close relation of this chapter with Chapter 5,
some of the necessary assumptions that we have to make here are identical to the ones in the
latter one and so we will avoid repeating them here.

8-1 Regularization in SID methods for LPV systems

As we have seen in Chapter 3, the curse of dimensionality was undoubtedly one of the most
severe limitations of the first global approaches for the identification of LPV systems in state-
space form. It was therefore necessary to find ways to circumvent this problem. For a specific
type of LPV systems a rigid way to cope with this problem was accomplished in 2007. More
specifically, it was shown that when the scheduling parameter shows a specific structure, such
as periodic [81] or piecewise constant [82], this limitation can be circumvented.

However, for the general case it was not possible to avoid the curse of dimensionality problem,
since for many systems (such as oscillatory ones) the value of the past window had to be large
to efficiently capture the characteristics of the impulse response, and so the number of rows
in the Z matrix, q̃, was large. There were, though, improvements in some specific cases.
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More specifically, when the unknown parameters are more than the available data points (for
example, due to the curse of dimensionality) there should still be a way to derive a satisfying
solution. In [50], this problem was tackled by considering the solution in the dual space (this
method is called "the kernel method" but it should not be confused with the ideas developed
in the next sections). The same result can also be derived within the framework of the Least
Squares Support Vector Machines, as it was shown in [83]. This solution corresponds to
the minimum norm solution and it can be computed by assuming that the solution is of
the form CKp = αZT , where Z was defined in (3-14) and Kp was defined in (3-15).

In order to clarify this approach, let us first remember that in (3-17) we have derived the
solution for the case where Z is full row rank. However, if the number of data points is
large, the matrix Z ∈ R(nu+ny)q̃×N can become ill-conditioned and may lose its full (row)
rank property (e.g. when N > (nu + ny)q̃), thus making the inversion of the matrix ZZT
impossible [53, p.138]. The latter could also be true when there is a poor excitation of the
system, which leads to a row rank deficient Z. For this reason, as it was discussed in [50], a
minimum norm solution is sought, as it was explained in the previous paragraph. However,
it is usually the case that now the matrix ZTZ is ill-conditioned and so regularization has
to be employed once more as a remedy to this problem. Verdult discussed both the cases
of Singular Value Decomposition (SVD) truncation (keeping and inverting only the most
dominant singular values), as well as the Ridge regression LS problem for the identification
of the LPV equivalent Markov parameters. Mathematically, the latter method means that
instead of solving (3-16), we solve the LS problem

min
α
||Y − αZTZ||22 + γ2||αZT ||22, (8-1)

where γ is the regularization parameter, while we have to clarify that in the dual space the
LS problem of (3-17) corresponds to a Tikhonov regularization 1.

In the next sections we will establish the relationship between this regularized problem and
the kernel regularization (which we will introduce later on). More specifically, we will show
that the solution of (8-1) can be seen as a special case of the kernel method, when considered
in a Bayesian framework.

The ridge regression is shown to deliver consistent results in many simulation examples.
However, different approaches can also be followed. An interesting regularization method
can be derived with the use of the nuclear norm. The motivation behind this method stems
from the requirement to derive a minimum rank model (from a philosophical aspect every
regularization method is based on the principle that “nature is simple” [57]).

In the LPV SID framework, the rank of the model is derived by the SVD decomposition
in (B-7). Consequently, a reasonable regularization scheme would be to impose a minimum
rank condition in this matrix. Nonetheless, the rank minimization is a non-convex problem.
For this reason, an approximation of the rank condition can be introduced with the use of
the nuclear norm (the sum of the singular values of a matrix), which eventually renders
the minimization problem convex. The SID of LPV systems with the use of nuclear norm

1For reasons of clarity and according to [26] we will call a regularized LS problem as a Ridge regression
when the regularization term is of the form γ2θθT (where θ is a row vector containing the unknown coefficients
and γ2 is the regularization parameter), while we will call it a Tikhonov regularization LS problem when this
term is of the form γ2θKθT , where K is a positive semi-definite regularization matrix.
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regularization was presented in [84]. Following the notation, the minimization problem is
mathematically expressed (in dual space) as

min
α
||Y − αZTZ||22 + γ2||L(α)||∗, (8-2)

where || · ||∗ denotes the nuclear norm and L(α) = ΓpKp, since the latter quantity can be
expressed as a linear function of α.

The results presented in [84] show the potential of this method. Nonetheless, the optimal
selection of the regularization parameter γ is a rather difficult task, since there is no physical
intuition about what is the ideal value and a wrong selection can even lead to a model
that is less accurate than the one derived with the unregularized LPV-PBSIDopt algorithm.
Consequently, a multi-start approach is necessary to assure that the identified model will be a
close approximation of the real one, thus increasing the computational complexity. Of course,
once a γ value is selected, the optimization problem is convex. Moreover, another serious
limitation of this method is related to the fact that the effort to find a minimum rank model
may suppress the values of too many singular values of (B-7), thus making it cumbersome to
estimate the rank of the system by the gap in the singular values [11].

So far we have discussed how the regularization methods can potentially increase the accuracy
of the estimated model. It is nonetheless an open question what is the optimal regulariza-
tion for the SID of LPV systems and how it can be achieved, while we also seek to avoid
computation in large spaces. To answer these questions, we will turn our look to the recent
developments for the LTI systems. By using these as a starting point for our thoughts, we
will develop a novel regularization framework for the SID of LPV systems.

8-2 Introduction to kernel methods for LPV systems

The advent of the kernel based identification methods for LTI systems (primarily investigated
within the framework of PEI methods), boosted by the development of Gaussian processes led
to some very interesting results, as we saw in Part I of this thesis. Nonetheless, it is still an
open question if these methods can succesfully be extended to SID methods for LPV systems.
It is therefore of high interest to investigate if a synergy between kernel based methods and
LPV systems could be established.

Up to our knowledge, there is only one related publication, which focuses on a kernel based PEI
method for LPV systems [9]. In this publication a Gaussian process formulation was chosen
to model the scheduling parameter dependency of the LPV system (which could might as
well be described by a nonlinear function). The results showed the potential of this method
in predicting the output of the system through the non-parametric framework. However, this
method relied on some very specific assumptions such as the periodicity of the scheduling
parameter and the input signal.

It is therefore obvious that there is a gap in the kernel-based SID of LPV systems and so
we have to introduce a novel framework. It is also important to make as few as possible
assumptions in order to enable the broad applicability of the new kernel based approaches.
In order to tackle this problem, we will start with examining the similarities and differences
between the LTI and LPV SID methods.
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LPV and LTI SID methods: Similarities and Differences

A first necessary clarification is related to the difference between the impulse response co-
efficients in the LTI and the LPV case, the estimation of which is the main purpose of the
kernel based methods. Let as make useof the notation introduced in Chapter 3. More specif-
ically, let us investigate (3-10). It becomes directly obvious that in the LPV case the impulse
response coefficients are not only a function of the impulse response instant t, but
also a function of the various scheduling parameters, the number of which is related
to t. In practice, this means that properties such as exponential stability are affected by the
scheduling parameter (e.g. see Figure 8-1).
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Figure 8-1: Five different implementations of the impulse response for a SISO 2nd order sys-
tem with m = 2 and µk = [1 vk], where vk is a normally distributed random variable. The
characteristics of the impulse response are highly affected by the scheduling parameter.

This condition can also be expressed mathematically. For example, in the case where the
input is zero, the exponential stability condition is expressed as follows [85].

Lemma 8.1. The LPV state equation where uk = 0 is uniformly exponentially stable if,
given a finite constant β > 0, there exist a finite constant γ > 0 and a constant λ, 0 ≤ λ < 1
such that

∣∣∣∣∣∣
∣∣∣∣∣∣
k−1∏
n=j

(
A(1) +

m∑
i=1

µ(i)
n A

(i)
)∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ γλk−j (8-3)

for all k, j such that k > j and for all µk such that sup ||µk||2 ≤ β. 4

On the other hand, the LTI systems are not affected by any time varying parameter. Actually,
this difference is the most important one between the two classes of systems. Consequently,
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a naive, straightforward implementation of the LTI related kernels to the LPV systems,
identified by a method such as LPV-PBSIDopt is bound to fail because it neglects the time-
varying nature of the impulse response coefficients. Nonetheless, it is worth mentioning that
other SID methods for LPV systems, such as the local methods, face no such obstacles since
the LTI kernel based methods can be applied to each local system separately.

8-3 Novel approaches for the kernel based SID of LPV systems

In an effort to derive a kernel based SID algorithm for the LPV systems we followed two
different methods. The first method, described in Section 8-3 is an adaptation of the kernel
based LTI methods. On the other hand, the method presented in Sections 8-3 and 8-3 define
a new approach, based on the modelling of the LPV system’s impulse response as a Gaussian
Process (GP), following the relatively recent developments in [5].

Assigning prior knowledge to the unknown coefficients

A first approach to overcome the µ dependency of the impulse response in the LPV case would
be the following. Since there is an analytic description for each impulse response coefficient,
presented in (3-10), a possible approach would be to assign a prior distribution directly to
the LPV equivalent Markov coefficients instead of the impulse response coefficients. This is
also schematically presented in Figure 8-2.
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Figure 8-2: Schematic representation of the new stochastic framework for the LPV case. The
scheduling parameter is lumped together with the input signal, while the unknown coefficients
CLu

t are treated as random variables.

By this simple trick, we can introduce a prior to the LPV equivalent Markov parameters,
which are not µ-dependent. In this case, the steps to be taken are in close terms with the
ones for the LTI case. First, to simplify the notation, let us denote in this section the vector
CKp as θ (or matrix in the MIMO case, but we still treat each output separately). The output
equation is then given by
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Y = θZ + E, (8-4)

where the quantities Y,E and Z were defined in (3-12) and (3-14), respectively. The noise
sequence ek is assumed to be a zero-mean white-noise with normal distribution. Moreover,
we will assign a prior normal distribution on the unknown coefficients θ. It is important
to mention once more that these are necessary conditions so that the related calculations
can be done in an analytic way. More general distributions though can be treated with the
use of approximation techniques such as Markov Chain Monte Carlo (MCMC) or analytical
approximations of the marginal likelihood [44].

Estimating the hyperparameters

We will describe the statistical properties of θ by θ ∼ N (0,K(η)), where K(η) is the covari-
ance of the related coefficients, written as a function of some unknown hyperparameters η.
Following the Bayesian paradigm (see Appendix C for more details), similar to the LTI case,
we can set the unknown hyperparameters by minimizing the minus log marginal likelihood.
The objective function that has to be minimized is given by

J(η) :=− log
(
p (Y |Z, η)

)
= N − p

2 log(2π)

+ 1
2 log

(
det

(
ZTK(η)Z + σ2I

))
+ 1

2Y
(
ZTK(η)Z + σ2I

)−1
Y T .

(8-5)

An open issue that is not discussed in the section concerns the parametrization of the kernel
K(η). As we will see in the following sections, this is not a trivial selection, especially in the
Subspace Identification (SID) framework for Linear Parameter Varying (LPV) systems. For
now, it suffices to assume that the parametrization is known.

After minimizing the function (8-5), we set the unknown coefficients η to the estimated values.
The final step is to compute the mean of the posterior estimate of θ,E (θ|Y, η, Z), the value
of which is given by (C-9).

Remark 8.1. The GCV based kernel method proposed by Verdult in [50] can also be inter-
preted by the Bayesian framework. In this publication, the solution was of the form

θ = Y
(
ZTZ + γI

)−1
ZT , (8-6)

where γ ≥ 0 is estimated via the GCV method [51]. Based on the assumptions about the
statistical properties of θ and ek it is straightforward to establish the relation. Imposing an
identity covariance for θ and assuming that σ2 = γ, it becomes obvious that Verdult’s solution
presented in (8-6) coincides with the Maximum a Posteriori (MAP) estimate of θ, see also
(C-9) in Appendix C. 4
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Limitations of the kernel based approach for LPV systems

Up to this point, the analysis concerning the kernel-based method for the LPV SID approach
is similar to the one presented for the LTI case. However, there is a major difference, related
to the selection of the kernel structure. The latter problematic will become clear through the
following example.

Example 8.1. Let us assume that we have an affine LPV system described by (3-4)-(3-5).
For simplicity let us choose a past window of p = 2 and assume that only A matrix depends
on the scheduling parameter. Then, by backward substitution, the output can be expressed
as

yk = C
[
Ã(1)2

+ µ
(2)
k−1Ã

(1)Ã(2) + µ
(2)
k−1Ã

(2)Ã(1) + µ
(2)
k−1µ

(2)
k−2Ã

(2)Ã(2)
]
xk−2 (8-7)

+ C
[
Buk−1 +

(
Ã(1) + µ

(2)
k−2Ã

(2)
)
Buk−2

]
(8-8)

+ C
[
Kyk−1 +

(
Ã(1) + µ

(2)
k−2Ã

(2)
)
Kyk−2

]
(8-9)

Let us now assume, just for the purposes of this example, that the past window is large enough
such that terms which are multiplied by xk−2 are zero. Now let us investigate only the terms
related to the past input signals, while the same analysis holds for the terms related to the
past output signals. We can immediately observe that there is only one unknown term that
corresponds to the impulse response instant t = 1, namely CB. On the other hand, there
are two unknown terms related to the impulse response instant t = 2. By increasing the past
window, the number of coefficients that refer to an “older” input grows exponentially. This
is of course not a new result; it is actually the curse of dimensionality, for which we discussed
about in Chapter 3. As we will see though, this result is also creating complications when it
comes to the assignment of a prior knowledge in the LPV equivalent Markov coefficients.

Based on the observations in the previous example, it is evident that the size of the kernel
will also increase exponentially with p, due to the curse of dimensionality. A kernel of this
type would have a form similar to the one in Figure 8-3.

Figure 8-3 highlights in a clear way the complications of this approach. In this LPV kernel
the cross terms are not any more always referring to the covariance of coefficients that belong
to different impulse response instants (depicted in yellow in Figure 8-3), since they could also
refer to the covariance of coefficients that belong to the same impulse response instant (the
off diagonal elements of the grey block matrices in the same figure). Therefore, it is not any
more clear how we can create a kernel structure that incorporates all these characteristics.
On the other hand, by employing the kernels used in the LTI case, then it is the case that the
richer a structure is, the more restrictive becomes a direct implementation in the LPV case.
In order to clarify this point, we will give a small example.
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Figure 8-3: General shape of an LPV kernel. The grey boxes correspond to the elements that
are referring to the same impulse response instant, based on the assigned number t and they are
of dimensions m×m, m2 ×m2 etc.

Example 8.2. Let us assume that we would like to use a 1st order stable spline kernel,
adjusted for the LPV case. We also assume that m = 2 and that the B matrix is not µ-
dependent. Here we will only focus on the input, but the same analysis holds for the output
or a MIMO system.
Let as choose a past window p = 3 and a β = 0.1. Then, the 1st order stable spline kernel
for the LTI case would be the following.

KLTI =

 0.9048 0.8187 0.7408
0.8187 0.8187 0.7408
0.7408 0.7408 0.7408

 (8-10)

In the LPV case, we would actually stretch this matrix, so that it assigns a prior distribution
in all the related coefficients. The covariance matrix is given by

E





CB

CÃ(1)B

CÃ(2)B

CÃ(1)2
B

CÃ(1)Ã(2)B

CÃ(2)Ã(1)B

CÃ(2)2
B


[·]T


=



0.9048 0.8187 0.8187 0.7408 0.7408 0.7408 0.7408
0.8187 0.8187 0.8187 0.7408 0.7408 0.7408 0.7408
0.8187 0.8187 0.8187 0.7408 0.7408 0.7408 0.7408
0.7408 0.7408 0.7408 0.7408 0.7408 0.7408 0.7408
0.7408 0.7408 0.7408 0.7408 0.7408 0.7408 0.7408
0.7408 0.7408 0.7408 0.7408 0.7408 0.7408 0.7408
0.7408 0.7408 0.7408 0.7408 0.7408 0.7408 0.7408


(8-11)
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It is clear that the LPV equivalent 1st order stable spline structure is rather restrictive, since
it assumes that many different coefficients are described by the same statistical properties.
Moreover, it is worth noticing that the latter kernel is not any more full rank, so it is positive
semi-definite, while the 1st order stable spline, like the one in (8-10), is positive definite.

Kernel selection

In the previous section we showed that the LPV equivalent of the stable spline kernel of 1st
order poses a strict restriction in the structure of the LPV kernel. In general, a straightforward
application of the kernel based SID methods for LTI systems is bound to offer limited or no
improvements. However, simpler kernel structures may still be able to surpass the modern
regularization methods for LPV systems. For example, a diagonal type of kernel can be of use
in the LPV case. Following the notation in Section 5-3, the LPV equivalent diagonal kernel
is given by

K = diag

λα1, · · ·λα1︸ ︷︷ ︸
m elements

, λα2, · · ·λα2︸ ︷︷ ︸
m2 elements

, · · ·λαp, · · ·λαp︸ ︷︷ ︸
mp elements

,

 , λ > 0 , α ∈ (0, 1) (8-12)

Two main characteristics are attributed to this kernel. Firstly, by assuming a not so restrictive
kernel structure, is may be possible to improve the accuracy of the identified model. Secondly,
the results are expected to be especially good when the values of the LPV equivalent Markov
parameters that refer to the same impulse response instant are close to each other (e.g. the
values of CÃ(1)B and CÃ(2)B in Example 8.2). At this point it is also necessary to clarify
that we always assume that all A,B and K matrices depend on the scheduling parameter,
unless otherwise specified.

In practice, we will assign to the kernels the same characteristics as we did in the LTI
case. This means that for each signal (inputs or outputs) we will assign a specific ker-
nel. For example, in the SISO case we will create the kernels Ku and Ky, assuming that
there is no correlation between the coefficients that correspond to a different signal, e.g.
E
[(
CÃ(1)B

) (
CÃ(1)K

)]
= 0. Therefore, the total kernel K will be of the form

K =
[
Ku 0
0 Ky

]
. (8-13)

Finally, we will also take advantage here of the fact that the exponential decay of the LPV
equivalent Markov parameters is attributed to the various products between the A(i) matrices.
Since these products appear in the same way at the coefficients of all the signals, we will use
a common α coefficient for all the input and output signals and a different λ for each one of
them. Of course, for each different output we will re-estimate the related hyperparameters
following the same rationale.
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Optimal kernel

Before we proceed to the second kernel based method, it is useful to answer an important
question, namely what is the optimal regularization for the VARX based SID methods for
LPV systems. This question is given in the following Lemma.

Lemma 8.2. The output of an LPV system is described by (3-10). Based on the assumption
that for a large enough past window value p the value of φk,j → 0, the output can be described
by (3-13). Then, by forming the output matrix Y as shown in (3-12) and combining the
scheduling parameter values together with the past inputs and outputs as shown in (3-14),
we end up with the data generating system

Y = θZ + E (8-14)

where E ∼ N
(
0 , σ2I

)
and θ = CKp. Then, the optimal regularization problem (in terms of

Mean Squared Error (MSE)) is formed as follows.

min
θ̂
||Y − θ̂Z||22 + σ2θ̂(θT θ)−1θ̂T (8-15)

where θ̂ is the estimated value and θ is the real one. 4

Proof 8.1. Following the construction of Z matrix, we end up with a problem similar to the
corresponding Linear Time Invariant (LTI) case. Consequently, the proof is identical to the
one presented in [54]. �

Similar to the LTI case, it is obvious that the optimal regularization term requires the knowl-
edge of the true system, which is of course unknown in a real-life experiment.

Modelling the LPV impulse response as a Gaussian process

In this previous section we investigated the possibility of assigning a prior distribution directly
to the LPV equivalent Markov parameters. However, it is apparent that this approach faces
some serious limitations. For this reason, we will now turn our attention to a different
approach. More specifically, we will assign a prior distribution directly on the impulse
response coefficients. However, there are two major considerations that have to be taken
into account. Firstly, the impulse response coefficients, as they were defined in (3-11) are
time varying, due to their dependence on µ. Therefore, if we want to model the impulse
response we cannot use the kernels presented so far. Secondly, the LPV-PBSIDopt algorithm
requires the LPV equivalent Markov parameters. It is therefore necessary to estimate these
coefficients. In this case, the estimation of the impulse response coefficients will be an extra
intermediate step before the estimation of the Markov parameters.
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Impulse response as a µ dependent Gaussian process

As we have seen in (3-11), the impulse response coefficients are affected by two coefficients,
namely the various scheduling parameters µ, which are a function of k and t, as well as ex-
plicitly by the impulse response instant, t, since for a different t we have a different expression
for the corresponding impulse response instant.

Following once more an approach similar to the ones that we followed in the previous sections,
we will model the impulse response coefficients as zero mean Gaussian processes. By assuming
that the coefficients of one signal are uncorrelated with the ones from another signal, we can
define their covariance properties (kernels) as follows.

E
[
hu(µk−t, . . . , µk−1; t)hu(µk′−t′ , . . . , µk′−1; t′)

]
= k

(
hu(µk−t, . . . , µk−1, µk′−t′ , . . . , µk′−1; t, t′

)
E
[
hu(µk−t, . . . , µk−1; t)hy(µk′−t′ , . . . , µk′−1; t′)

]
= 0 for every t, t′, k, k′ ∈ N,

(8-16)

The relation with the LTI case can be established by removing all the µ terms from (8-16).
We will now show what kernel structure can be chosen to tackle this problem.

Selection of kernel structure

The time varying nature of the impulse response coefficients is their most important attribute.
The notion of the exponential decay of the impulse response coefficients is more complicated
in the LPV case due to the µ dependency, as it was shown in Lemma 8.1. Therefore, it is
appealing to drop the dependency of the kernels in (8-16) on the impulse response instants t
and instead try to incorporate this exponential decay in a different way.

A broadly used kernel is the Radial Basis Function (RBF) [46]. Its most celebrated charac-
teristic is the so called non-degeneracy [5], that is to say, it can be expressed as a function
of possibly infinite basis functions. In practice, it will be a function of N basis functions,
where N is the number of available data points, but for large enough N it can lead to a good
approximation of the underlying, possibly nonlinear function.

In general, the RBF kernel (covariance) between two different evaluations of a function f :
D → R at the points u1, u2 is given by

E[f(u1)f(u2)]

= σ2
f exp−||u1 − u2||22

λ2
f

(8-17)

The connection with the impulse response of the LPV systems is direct; the inputs in the latter
case are the scheduling parameters. Due to the affine property, the scheduling parameter µ(1)

k

is always 1 for every k ∈ N and for this reason it will not be used as an input in the RBF
kernel. Moreover, due to the dynamic dependency on the µ coefficients in (3-11), we will
define the RBF kernel as (here we show the case where m = 2)
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[Ku
t ]i,j = E[hu(µp+i−t, . . . , µp+i−1; t)hu(µp+j−t, . . . , µp+j−1; t)]

= σ2
t,u exp

−
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 µp+i−t − µp+j−t

...
µp+i−1 − µp+j−1


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

2
λ2
t,u

 .
(8-18)

where i, j = {1, . . . , N − p}. The brackets with the right bottom index refer to a specific
position in a matrix.

With the use of (8-18) we can construct the kernel matrices Ku
t and Ky

t for t = {1, . . . , p},
while each of these matrices will be of dimensions (N − p)× (N − p).

By defining the kernels in this way, it becomes clear that the function that describes the
impulse response at a specific instant t is different from a function of different t. Moreover,
based on the definition of the impulse response coefficients in (3-11), the number of inputs
(that is to say, the number of the involved µ parameters) is different for each impulse response
instant. Therefore, based on the RBF kernel choice it is not clear how we should define the
inputs of the kernel in the cross-variance terms. Moreover, due to the independent modelling
of the impulse response instants, for a past window p and for an RBF kernel selection, we have

to additionally estimate 2
p−1∑
r=1

r hyperparameters for each signal, instead of 2p elements, if
we assume that the cross-variances between different impulse response instants is not zero.
Still, by modelling only the diagonal terms, we have to estimate in total 2p(nu + ny)ny
hyperparameters (2 hyperparameters for each signal for each impulse response instant t and
this procedure is repeated for all the output channels). It is therefore evident that the
computational burden is huge and so it necessary to alleviate it, if we want to render this
approach practically feasible.

Practical considerations concerning the kernel structure selection

In order to reduce the number of hyperparameters, we have to investigate what is their role in
the kernel and make the connection between them and the analytic expression that we have
for each impulse response instant.

First let us investigate the role of λu,t, λy,t. Since they refer to the same instant, let’s take
as an example t = 2. Using (3-7), (3-8) and (3-11) the two impulse responses, when both B
and K are µ-dependent and m = 2, are given by

hu(µk−2, µk−1; 2) = CÃ(1)B(1) + CÃ(1)B(2)µ
(2)
k−2 + CÃ(2)B(1)µ

(2)
k−1 + CÃ(2)B(2)µ

(2)
k−1µ

(2)
k−2,

hy(µk−2, µk−1; 2) = CÃ(1)K(1) + CÃ(1)K(2)µ
(2)
k−2 + CÃ(2)K(1)µ

(2)
k−1 + CÃ(2)K(2)µ

(2)
k−1µ

(2)
k−2.
(8-19)

Moreover, let us also write down the expressions for t = 1.
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hu(µk−1; 1) = CB(1) + CB(2)µ
(2)
k−1,

hy(µk−1; 1) = CK(1) + CK(2)µ
(2)
k−1.

(8-20)

If we investigate (8-18) in a qualitative way, we could say that the term λt,u (similarly for
λt,y) actually shows how far the inputs signals should be such that they are uncorrelated. If
this hyperparameter is very large, it means that even for two inputs with high difference, the
correlation will be relatively high and vice versa. Therefore, we could use this parameter to
capture the exponential decay rate, which is mainly attributed to the various Ã(i) coefficients.
Moreover, by investigating (8-19) and (8-20) we see that the Ã(i) coefficients enter in the
same way in all impulse response coefficients of the same instant t. Therefore, we can use the
same hyperparameter for the impulse response of all signals, as long as they refer to the same
instant t. So, from now on we will simply write that λt = λt,u = λt,y. Moreover, in order to
take into account the effect of C matrix, we will estimate a new set of λt coefficients when
there are multiple outputs. In total, we require now pny different λt instead of pny(nu + ny)
that we would require if we used a full parametrization.
Another link between the kernel structure and the analytic expression for the impulse response
coefficients could also be established. By investigating once more (8-19) and (8-20), we see
that all of the impulse response coefficients that correspond to the same signal (e.g. to the
input) are multiplied on the left by some vectors, namely B(1) and B(2) for the inputs and
K(1) and K(2) for the outputs. Therefore, we could view these vectors as scaling factors. Of
course, this assumption holds totally true when the systems are SISO of 1st order (such that
the B and K matrices are scalars) and all the local vectors are the same or when they are not
µ-dependent. In order to alleviate the computational burden, though, we could establish this
relation and so use one σu for each input signal and similarly for the σy. By applying
this relation, instead of requiring in total p(nu + ny)ny σu and σy hyperparameters, we will
need (nu + ny)ny.
Finally, another approach could be followed that shows strong similarities with the LTI case.
More specifically, the λt coefficients can be related to each other. This can be achieved by
introducing the following transformation.

λ2
t = λ2common

t
. (8-21)

With the use of (8-21) the exponential decay rate among the impulse response coefficients
is incorporated in the RBF kernel. Although this can be restrictive in some specific cases
(due to the additional relation that we introduced), this is an interesting approach, since
(8-21) reflects a real characteristic of the impulse response coefficients. Moreover, in cases
where the past window is very large, the simplification of the marginal likelihood problem
through this assumption can be crucial in order to avoid local minima. By combining this
assumptions with the assumptions regarding σu, σy, the total number of needed coefficients
to be estimated is (nu + ny + 1)ny.
To sum up, we give the four different methods together with their main characteristics in
Table 8-1. Based on this table we assume that Approach 3 includes the assumptions of
Approach 2 and Approach 4 includes the assumptions of Approach 3 and 2.
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Table 8-1: Different approaches for the parametrization of the kernel for the LPV case

Approach 1 Approach 2 Approach 3 Approach 4

Characteristics Full
parametr.

Common λt for
all signals

Common σu (σy) for
each input (output)

Common λ for
all signals

# of hyperpar. 2p(nu + ny)ny pny(nu + ny + 1) ny(p+ nu + ny) ny(1 + nu + ny)

Estimation the unknown hyperparameters

The estimation of the hyperparameters is not much different from what we have seen so far,
e.g. (8-5). However, in this case a matrix formulation of the deterministic part of the data
(which now contains only the past inputs and outputs but not the scheduling parameters)
is not really useful. For this reason we will follow a different paradigm, using the following
definition and lemma.

Definition 8.1. The matrix K is of dimensions (N − p)× (N − p) and its value at row i and
column j is given by the expression

[K]i,j =
p∑
t=1

ui+p−t [Ku
t ]i,j uj+p−t

+
p∑
t=1

yi+p−t [Ky
t ]i,j yj+p−t.

(8-22)

4

Based on this definition and with the use of (8-18) we can construct the matrix K. Sub-
sequently, we can describe the statistical properties of the outputs, given in the following
lemma.

Lemma 8.3. The mean mY and the covariance ΣY of the output vector Y (assuming that
hu and hy are also uncorrelated with the innovation sequence) are expressed as

Y ∼ N
(
0, K + σ2IN−p

)
. (8-23)

4

Proof 8.2. The proof follows from straightforward calculations, by taking into account
the statistical properties of the noise variance and the coefficients hu(µk−t, . . . , µk−1; t) and
hy(µk−t, . . . , µk−1; t), given in (3-11). �

Now that we have defined all the required quantities, we will determine the unknown hyper-
parameters via the minimization of minus the logarithm of the marginal likelihood function,
which is given by

J(η) :=− log
(
p (Y |η)

)
= N − p

2 log(2π)

+ 1
2 log

(
det (ΣY (η))

)
+ 1

2Y Σ−1
Y (η)Y T .

(8-24)
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Computation of the value of the GP at the training points

The next step is to compute the values of the functions hu(µk−t, . . . , µk−1; t) and hy(µk−t, . . . , µk−1; t)
for t = {1, . . . , p}, evaluated at the training points k = {p+ 1, . . . , N}. To do so, we are look-
ing for the a posteriori estimates p (hy|Y, η) and p (hu|Y, η). We note that the correspondence
of this method with the Tikhonov regularization in a Reproducing Kernel Hilbert Space can
also be proven [5], which will actually reveal its usefulness in the next section.
The a posteriori estimate can be derived in an analytical way [54]. The value of a Gaussian
process at a specific training point for hu (similarly for hy) is given by

hu(µk−t, . . . , µk−1; t) =

Y
(
K + σ2IN−p

)−1


uk−t [Ku

t ]1,k−p
uk−t+1 [Ku

t ]2,k−p
...

uk−t+N−p−1 [Ku
t ]N−p,k−p

 . (8-25)

With the use of (8-25) we can compute the value of hu (similarly for hy) for each k =
{p+ 1, . . . , N} and t = {1, . . . , p}.

Derivation of the LPV equivalent VARX coefficients

Following the estimation of the hyperparameters with the use of (8-24) and the impulse re-
sponse functions at the training points based on (8-25), we now need to estimate the unknown
coefficients which are contained in Lu1 ,L

y
1, · · · ,Lup ,Lyp, defined in (3-7). In order to end up

with a unique solution of the system matrices, the following condition should hold.

rank

[Pt|p+1, Pt|p+2, · · · , Pt|N
]

︸ ︷︷ ︸
mt×N−p

 = mt for each t ∈ N+, (8-26)

where p,N ∈ N+, p < N and N −p ≥ mt. This condition can be perceived as a persistency of
excitation condition and it is needed to uniquely determine the impulse response coefficients,
evaluated at the training points.
Using the result of (8-26) we can compute a unique solution for each Lut (and similarly for
each Lyt ) with the use of the Least Squares (LS) method. The equality that corresponds to
this problem is


hu(µp+1−t, . . . , µp; t)
hu(µp+2−t, . . . , µp+1; t)

...
hu(µN−t, . . . , µN−1; t)


T

= Lut


Pt|p+1
Pt|p+2

...
Pt|N


T

. (8-27)

The LS problem, based on (8-27), has to be solved for each t (similarly for hy). After having
estimated the system parameters, the algorithm proceeds as it is explained in Appendix B.
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Remark 8.2. In the specific case where all the states are measured then the state sequence
can be directly derived by inverting the C matrix. For example, assume that we have a second
order SISO LPV system, with C = diag (0.1, 0.2). What we have estimated are the impulse
response coefficients hu(k; t) and hy(k; t) for k = {p + 1, . . . , N} and t = {1, . . . , p}. Based
on these coefficients, we can directly get an estimate of the output yk without requiring the
estimation of the LPV equivalent Markov parameters. By inverting the C matrix, an estimate
of the states can be derived. This of course holds true for the LPV-PBSIDopt algorithm, too,
so the state estimation step via the extended observability times controllability matrix can be
skipped. However, in the case of the LPV-K&PBSIDopt algorithm, the estimated quantities
are p(N − p)(nu + ny)ny (in the general MIMO case), while in the LPV-PBSIDopt algorithm
they are q̃(nu + ny)ny. Therefore, in this specific case the LPV-K&PBSIDopt is not suffering
from the curse of dimensionality, therefore in cases where q̃ > (N−p)p the LPV-K&PBSIDopt

requires the estimation of less coefficients. 4

Summary of the proposed algorithm - The LPV-K&PBSIDopt algorithm

It is now time to summarize the proposed algorithm, which we will call it LPV Kernel and
PBSIDopt, LPV-K&PBSIDopt.

Algorithm 8.1. LPV-K&PBSIDopt

1. Create the matrix Y and the kernel K following (3-12) and (8-22).

2. Determine the value of the hyperparameters that minimize the value of (8-24)

3. Estimate the value of the Gaussian processes hu and hy, evaluated at the training points
k = {p+ 1, . . . , N} based on (8-26).

4. Solve the related Least Squares problems that correspond to (8-27) in order to estimate
the system parameters Lut ,L

y
t , t = {1, · · · , p}.

5. Proceed as it is explained in sections 4.2 and 4.3 of [30] to estimate the state sequence
and then the unknown matrices of the model (3-4)-(3-5) (see also Appendix B).

An improvement on the LPV-K&PBSIDopt algorithm based on RKHS theory

In Section 8-3 we outlined a novel method for the estimation of an LPV state-space model
in affine form. The extra step of estimating the MAP estimates of the impulse response
coefficients, evaluated at the training points, is necessary for the subsequent estimation of
the LPV equivalent Markov parameters. This actually reveals the inherent trade-off; by
increasing the complexity of the algorithm, we expect that the accuracy of the estimated
Markov parameters will be higher, due to the sophisticated regularization of the impulse
response coefficients (when using a regularization point of view).

However, this expectation may never become a reality in some specific cases. In (8-26)
we made a rather strong assumption regarding the scheduling parameter sequence matrix.
Unfortunately, this assumption can be easily violated. This is for example always the case
when we use a large past window, leading to mt > N for some t = [1, . . . , p]. The same
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undesirable result may also be observed for small past window values, when the number of
local systems is large. In such cases the related matrices will never be full row rank, thus
leading to an under-determined Least Squares (LS) problem, which will definitely lead to a
suboptimal estimation of the Markov parameters.

Fortunately, a different approach could be followed, based on the Reproducing Kernel Hilbert
Space (RKHS) theory, analysed in Appendix D. This is actually a different way of viewing
the kernel based methods, instead of a fully stochastic framework that uses notions such as
the MAP estimate. In the LTI case, the RKHS and the stochastic framework were leading
to the same solution. However, in the LPV case there are a few differences between the two
frameworks. In order to show how the estimates can be derived in the RKHS framework, we
need to introduce some necessary definitions first. These definitions will be given for the input
signal, but similar quantities have also to be defined for the output signal and, in general,
for all the signals of a MIMO system, as long as we treat the information from each output
signal separately.

Definition 8.2. The impulse response coefficients of instant t, evaluated at the training
points are gathered in the row vector Hu

t , given by

Hu
t =


hu(µp+1−t, . . . , µp; t)
hu(µp+2−t, . . . , µp+1; t)

...
hu(µN−t, . . . , µN−1; t)


T

︸ ︷︷ ︸
1×N−p

= Cθut︸︷︷︸
1×mt


Pt|p+1
Pt|p+2

...
Pt|N


T

︸ ︷︷ ︸
mt×N−p

.
(8-28)

4

With this definition, we can collect the impulse response coefficients for all t = [1, . . . , p] as
follows.

Hu =
[
Hu

1 · · · Hu
p

]
(8-29)

Based on the assumptions of the previous section, we can construct the related kernels with
the use of (8-18). The total Ku matrix take the following block-diagonal form.

Ku = block-diag

 Ku
1︸︷︷︸

N−p×N−p

, . . . ,Ku
p


︸ ︷︷ ︸

p(N−p)×p(N−p)

(8-30)

Finally, we also need to modify the data matrices in order to keep consistency between the
equations.

Definition 8.3. The modified data equations are given by (using Matlab notation inside the
parentheses)
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Umod =


diag (U1,p,N−p (1, :))
diag (U1,p,N−p (2, :))

· · ·
diag (U1,p,N−p (p, :))

 ,
︸ ︷︷ ︸

p(N−p)×N−p

(8-31)

where the matrix U1,p,N−p is defined in (2-8). In other terms, in order to keep consistency we
have to take each row of the data matrix and place its elements in a diagonal form. 4
Lemma 8.4. The output row vector for a SISO system is described by

Y = HuUmod +HyYmod + E (8-32)

4
Proof 8.3. The proof follows by straightforward calculations, using equations (8-30) and
(8-31). �

Finally, we are in position to formulate the corresponding Tikhonov regularization LS prob-
lem, following the RKHS theory. This is given by

J = ||Y −HuUmod −HyYmod||22 + σ2

σ2
u

||hu(µk−1; 1)||2Hu1 + . . .+ σ2

σ2
u

||hu(µk−p, . . . , µk−1; p)||2Hup

+ σ2

σ2
y

||hy(µk−1; 1)||2Hy1 + . . .+ σ2

σ2
y

||hy(µk−p, . . . , µk−1; p)||2Hyp ⇔

||Y −HuUmod −HyYmod||22 + σ2Hu(Ku)−1HuT + σ2Hy(Ky)−1HyT ,
(8-33)

where, in general, the notation Hji is used to denote a specific RKHS which corresponds to
the impulse response function at instant i of the signal j. By solving (8-33) and making use
of the matrix inversion lemma, we end up with the same solution as in (8-25), as expected.
However, in this specific case we can make use of the analytic expression (8-28). By this way,
we can skip step 4 in Algorithm 8.1. In order to show this in a clear way, let us first introduce
one more matrix,Mt, which is given by

Mt =


Pt|p+1
Pt|p+2

...
Pt|N


T

︸ ︷︷ ︸
mt×N−p

(8-34)

We also define the block diagonal matrix, given by

M =



M1

M2 0
. . .

0 . . .
Mp


(8-35)
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Now we can re-write (8-33) as follows.

J =
∣∣∣∣∣
∣∣∣∣∣Y − CK(p)

[
M 0
0 M

] [
Umod
Ymod

]∣∣∣∣∣
∣∣∣∣∣
2

2
+

σ2CK(p)
[
M 0
0 M

] [
Ku 0
0 Ky

]−1 [
M 0
0 M

]T
K(p)TCT

(8-36)

where K(p) was defined in (3-15). It is also noteworthy that in (8-36) we have completely sub-
stituted the impulse response coefficients, evaluated at the training points, by their analytic
expressions. Therefore we can also skip Step 3 in Algorithm 8.1. By requiring that

null

([ M 0
0 M

] [
Umod
Ymod

])T ∩ null

σ [ M 0

0 M

] [
Ku 0
0 Ky

]−1/2
T
 = ∅

(8-37)

the solution can be directly computed and it is given by

K(p) = Y

[
Umod
Ymod

]T [
M 0
0 M

]T ([
M 0
0 M

] [
Umod
Ymod

] [
Umod
Ymod

]T [
M 0
0 M

]T

+
[
M 0
0 M

] [
Ku 0
0 Ky

]−1 [
M 0
0 M

]T )−1

(8-38)

However, for the equation (8-38) we cannot use the matrix inversion lemma because
the matrix product in the second line of the equation is not necessarily invertible.

Remark 8.3. In case where not both B and K matrices are µ-dependent, then the two
involved M will be different, following the backward substitution in the LPV innovation
model (3-4) -(3-5). 4

All in all, this new approach manages to avoid two steps, compared to the LPV-K&PBSIDopt

algorithm, but it comes with the cost of an extra inversion, namely of the block-diagonal
matrix that contains the kernels Ku,Ky. Therefore, we expect that this method, which we
will call it the LPV-RKHS-PBSIDopt, will partially face some numerical problems due
to this inversion, but it will be able to estimate well the LPV equivalent Markov parameters
even for large past window values, for which mt > N , as long as (8-37) is satisfied.

Summary of the proposed algorithm - The LPV-RKHS-PBSIDopt algorithm

Here we will give a summary of the proposed algorithm, following the discussion above.
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Algorithm 8.2. LPV-RKHS-PBSIDopt

1. Create the matrix Y and the kernel K following (3-12) and (8-22).

2. Determine the value of the hyperparameters that minimize the value of (8-24).

3. Estimate the LPV equivalent Markov parameters using (8-38).

4. Proceed as it is explained in sections 4.2 and 4.3 of [30] to estimate the state sequence
and then the unknown matrices of the model (3-4)-(3-5) (see also Appendix B).
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Chapter 9

Simulations for the LPV case

In this chapter we will investigate the characteristics of the proposed algorithms by identifying
various LPV models. By examining different identification setups, it is our intention to reveal
the advantages and deficiencies of the proposed algorithms. The algorithms that will be
investigated are the following.

1. Diagonal kernel + LPV-PBSIDopt (LPV-Diag), presented in Section 8-3

2. LPV-K&PBSIDopt, presented in Section 8-3

3. LPV-RKHS-PBSIDopt, presented in Section 8-3

4. Ridge regularization with noise estimate + LPV-PBSIDopt (NPridge-LPV)

5. Classical PBSIDopt (no regularization) (LPV-PBSIDopt), presented in [30]

6. GCV ridge regularization + PBSIDopt (GCV+LPV-PBSIDopt), presented in [30,50]

7. Optimal regularization + LPV-PBSIDopt (LPV MSEopt), presented in Section 8-3

8. True VARX coefficients + LPV-PBSIDopt (Opt)

At this point some remarks are useful. The “Opt” algorithm is based on the direct use
of the LPV-equivalent Markov parameters that correspond to the first p impulse instants.
In practice, we saw that for the chosen simulation examples the “Opt” methods and the
“LPV MSEopt” method deliver almost identical results (see also (5-16)), so we will only give
the results for the “LPV MSEopt”. For the methods “LPV-K&PBSIDopt” and “ LPV-RKHS-
PBSIDopt” we used the Approach 3 (unless otherwise stated) for the parametrization kernel,
which is summarized in Table 8-1. The “NPridge-LPV” method is assigning an identity prior
to the LPV equivalent Markov parameters. In that sense, it could be seen as a special case
of the LPV-Diag method. The “GCV-LPV-PBSIDopt” algorithm, discussed in [50] is one
of the most well known techniques to perform SID of LPV systems, especially when the
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number of coefficients to be estimated is larger than the available data points. Finally, we
note that other kernel structures have been investigated (such as a block diagonal kernel,
based on Figure 8-3) but the results were rather poor, as it was indeed expected following
the discussion in Section 8-3. For this reason, we will not present any other kernel structures
of this type except for the diagonal one.

Concerning the simulations, we performed 50 Monte Carlo simulations for each setting (except
if otherwise stated), using a fresh noise and input sequence in each one of them. Following the
remarks in Chapter 6 (referring to the LTI kernel-based identification), we define a specific
SNRmod value for each experiment, given in (6-2).

Moreover, we pre-estimated the noise variance σ, using the same approach as in the LTI
case, that is to say, we estimated first the LPV equivalent Markov parameters using the LPV
equivalent VARX formulation step, without any regularization and then we employed (5-19).
However, in the LPV case it is much possible to end up with an under-determined Least
Squares (LS) problem due to the curse of dimensionality, as it was discussed in the previous
chapter and in Chapter 3. In this case, the pre-estimation of the noise will be inaccurate,
as we experienced by investigating multiple cases 1. For this reason, we decided to use
the pre-estimation step, but we always treated it as an additional hyperparameters, while
the pre-estimated value was used as the initialization point in the optimization routine.
Nonetheless, if someone would prefer to avoid this increase in the complexity of the algorithm,
another approach may be possible. More specifically, the maximum past window value could
be used such that the VARX LS problem is not under-determined. With this approach the
estimated σ will be as close as it can be to the actual noise variance. However, this does
not guarantee that the estimation will be accurate, since this method is mainly empirical and
so there does not exist a mathematical tool to explain the relation between the chosen past
window value and the accuracy of the estimated σ.

9-1 A 2nd order SISO LPV system, described by 2 local systems

Simulations results for a well excited scheduling parameter sequence

In this example we consider a second order LPV model, which is a modified version of a model
for the flapping dynamics of a wind turbine, also used as an example in [81]. The system

1This is actually the typical effect of over-parametrization, thus leading to the over-fitting problem. In other
words, the model contains too many free variables to be estimated and so they adopt the noise characteristics.
This is the reason why in these cases the estimated noise variance is much lower than the actual one. If we use,
though, cross-validation to evaluate the accuracy of the estimated model the results will reveal the inaccuracy
of the estimated model.
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matrices of the data-generating LPV state-space model are given by

[
A(1) A(2)

]
=

[
0 0.0734 −0.0021 0

−6.5229 −0.4997 −0.0138 0.5196

]
,

[
B(1) B(2)

]
=

[
−0.7221 0
−9.6277 0

]
,[

C
]

=
[

1 0
]
,[

D
]

=
[

0
]
,[

K(1) K(2)
]

=
[

1 0
0 1

]
.

The LPV system is excited by a white noise input signal uk with E [uk] = 0 and var(uk) = 1.
The scheduling parameter is given by µk =

[
1, cos(2π

10k) + 0.2 + 0.1vk
]T
, where vk is a

zero mean white noise sequence with auto-variance equal to one.

In this example we simulated the system using two different SNRmod values, namely 1 and 10.
The data length was chosen to be N = 400, while the input signal is a zero mean white noise
sequence with variance 1. The past window f was kept constant, f = 3 in all the experiments.
In Figure 9-1 we present the results for methods 1-7 with SNRmod = 1, while in Figure 9-2
we present the VAF results for SNRmod = 10 for the past window values p = {4, 5, 6, 7, 8}.
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Figure 9-1: VAF results for the methods 1-6. The SNRmod is 1. The blue line corresponds
to “LPV-K&PBSIDopt”, the red one to LPV-RKHS-PBSIDopt, the dark green to “LPV-Diag”,
the orange one to “NPridge-LPV”, the black one to the “PBSIDopt”, the light green to the
“GCV+LPV-PBSIDopt” and the magenta one to the “LPV MSEopt”.

For both SNR cases it is evident that the RBF based approaches (LPV-K&PBSIDopt and
LPV-RKHS-PBSIDopt) exhibit much better results. Moreover, it is important to notice that
the LPV-MSEopt is not providing an upper limit for the VAF results, since the past window
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Figure 9-2: VAF results for the methods 1-6. The SNRmod is 10. Left plot: the blue line
corresponds to “LPV-K&PBSIDopt”, the red one to LPV-RKHS-PBSIDopt, the dark green to
“LPV-Diag”, the orange one to “NPridge-LPV”, the black one to the “PBSIDopt”, the light
green to the “GCV+LPV-PBSIDopt” and the magenta one to the “LPV MSEopt”. Right plot:
Comparison of “LPV-K&PBSIDopt” with “LPV-RKHS-PBSIDopt”.

value is small and so the inherent assumption of Lemma 8.2 is not satisfied. Moreover,
as it is expected, the GCV+LPV-PBSIDopt algorithm offers better results compared to the
standard LPV-PBSIDopt, but both fail to compete the RBF based approaches. Finally the
NPridge-LPV method is delivering satisfying results only for the smallest past window p = 4.
Following the remark in Chapter 6, this is an expected result, since this method is taking
advantage of the pre-estimation of the noise variance σ, but it fails to deliver good results
for large past window values because it assigns the same prior in all the impulse response
coefficients, despite the fact that it is expected that their value will decay exponentially for
a exponentially stable system. So, the larger the past window is, the more restrictive this
assumption becomes.

Additionally, we see that the LPV-K&PBSIDopt is delivering in general slightly better results,
compared to LPV-RKHS-PBSIDopt. It is reasonable to assume that this result is directly
related to the computational aspects of these two methods and specifically to the inversion
of the Kui ,K

y
i , i ∈ [1, . . . , p] kernels, as shown also in (8-38). Nonetheless, it is observed

in Figure 9-2 that the VAF results for the LPV-RKHS-PBSIDopt algorithm surpass LPV-
K&PBSIDopt when the past window value is large (p = 8). This is mainly related to a pitfall of
the LPV-K&PBSIDopt, namely the derivation of the LPV equivalent Markov parameters from
the impulse response coefficients, shown in (8-27). For p = 8 and for a µ dependent matrix,
such as K in this example, the matrixM8 in (8-34) will be of dimensions 28×392 = 256×392,
so it may be possible that it will be ill-conditioned. For example, this would be definitely the
case for M9. It is nonetheless important to clarify that even in the latter case the results
will not be much worse because the algorithm will still be able to uniquely determine the
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Markov parameters that correspond to the first 8 impulse response instants, since these can
still be determined in a unique way (more discussion about this topic will follow in the next
example.).

Another important remark is related to the scheduling parameter. In this example the µ
sequence is a sinusoid, corrupted by additive noise. The latter characteristic is in fact very
important for the RBF based methods. For both methods the good excitation of the schedul-
ing parameter is important. As Rasmussen put it, “... supervised learning algorithms are
based on the idea that similar input patterns will usually give rise to similar outputs”. Conse-
quently, the rich excitation of µ delivers the information needed for the correct estimation of
the hyperparameters and the subsequent estimation of the impulse response coefficients and
the LPV equivalent Markov parameters, a condition which is also reflected by the rank of the
kernels in (8-18). However, for the LPV-K&PBSIDopt algorithm, the good excitation of the
scheduling parameters is necessary for an additional reason, namely the correct derivation of
the LPV equivalent Markov parameters in (8-27). In total, we see that the LPV-K&PBSIDopt

algorithm requires more strict assumptions, as it was also discussed in Section 8-3.

Finally, a different point of view can be given by investigating the accuracy in the estimation
of the pole locations. By comparing the best novel kernel based method, namely LPV-
K&PBSIDopt, with the best method from the existing ones, namely GCV+LPV-PBSIDopt for
p = 7, SNRmod = 1 and N = 400, we can indeed verify in Figure 9-3 that LPV-K&PBSIDopt

delivers much better estimates.
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Figure 9-3: Pole location for the LPV-K&PBSIDopt (red crosses) and GCV+LPV-PBSIDopt

(blue circles) for a past window p = 7 and SNRmod = 1
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Simulations results for a sinusoidal scheduling parameter sequence

Following the remarks of the previous section, it will be insightful to investigate the accuracy
of the proposed methods for the case of a periodic µ sequence. For this purpose, we simulated
the same system with exactly the same configurations, except for the fact that we removed
the white noise part in the µ parameter and we chose an SNRmod = 1.
In this case the RBF kernels will definitely be rank deficient, due to the periodicity of their
input signal, which is the scheduling parameter. This subsequently entails that the µ data
is not "rich-enough" and so we expect that this will be reflected in the accuracy of the RBF
based methods. Indeed, this can be deduced from Figure 9-4.
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Figure 9-4: VAF results for the methods 1-6. The SNRmod is 10. Left plot: the blue line
corresponds to “LPV-K&PBSIDopt”, the red one to LPV-RKHS-PBSIDopt, the dark green to
“LPV-Diag”, the orange one to “NPridge-LPV”, the black one to the “PBSIDopt”, the light
green to the “GCV+LPV-PBSIDopt” and the magenta one to the “LPV MSEopt”. Right plot:
Comparison of “LPV-K&PBSIDopt” with “LPV-RKHS-PBSIDopt”.

As far as the LPV-RKHS-PBSIDopt method is concerned, Figure 9-4 reveals that the drop in
its performance is not critical, namely around 0.5-1% less than the performance observed in
Figure 9-1 and it is definitely showing the best performance among the examined methods.
On the other hand, LPV-K&PBSIDopt method is showing much worse results when µ is
periodic. This is clearly due to rank conditions that are not fulfilled in the estimation step
of the LPV equivalent Markov parameters from the impulse response coefficients, evaluated
at the training points. In this case, the periodicity of µ leads to row rank deficiency many of
theMt matrices and so it leads to underdetermined LS problems (see also (8-28)). Finally,
it is interesting to notice that the NPridge-LPV method is able to identify highly accurate
models, while the expected drop in the performance as the past window value increases is
still observed, but it is not as severe as shown in (9-1).
In total, the comparison of the results in Figure 9-4 with the ones in Figure 9-1 demonstrates
in a clear way the main pitfall of most of the SID methods, namely the high dependency
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on the numerical aspects of the algorithm. The many different involved signals, the large
data matrices and the usually large number of coefficients to be estimated form an exquisite
problem, in which a slight change in the configuration setting (as it is the removal of the
white noise part in µ in this example) may lead to steep changes in the results.

Comparison of different kernel structures

In the beginning of this chapter we clarified that we use the Approach 3, given in Table 8-1,
as the kernel structure for the RBF based methods. In this section we would like to evaluate
the accuracy of Approach 4, compared to Approach 3. In general, Approach 3 has shown its
worth in this example, while it was often observed that Approaches 1 and 2 suffer from local
minima and so they were not further investigated.

We used as a past window the value p = 8 and an SNRmod = 1, while the rest of the settings
are the same as in Section 9-1. The noise variance σ2 was treated as a hyperparameter. The
results as given in Table 9-1.

Table 9-1: Average VAF results for Approach 3 and 4 in the RBF kernel, where σ is treated as
a hyperparameter

Past Window p = 6

K&PBSIDopt LPV-RKHS-PBSIDopt

Approach 3 90.30 % 88.70 %
Approach 4 54.15 % 54.77 %

As we can see, Approach 3 is delivering much more accurate models. The result is directly
related to the fact that Approach 3 contains more hyperparameters and so the non-convex
optimization problem has a bigger flexibility. In general, though, the balance between the
flexibility of the kernel and the avoidance of local minima is far from trivial due to the nature
of the optimization problem.

Estimation of singular values

It is expected that the accurate estimation of the VARX coefficients will be reflected on the
gap of the singular values of the extended observability times controllability matrix (B-4).
This was also observed in the LTI case. In order to investigate this, we used a data length
of N = 800, the SNRmod was set to 10 and the past window was set equal to the future
window, f = p = 6. In Figure 9-5 we plotted the average singular values (using 10 Monte
Carlo simulations) of this matrix for the algorithms LPV-RKHS-PBSIDopt, LPV-PBSIDopt

and GCV+LPV-PBSIDopt.

As we can see, the distance between the first two singular values and the rest of the singular
values is obviously higher for the LPV-RKHS-PBSIDopt, while the singular values of the LPV-
PBSIDopt algorithm do not show at all any visible gap, thus making the estimation of the
order of the system really difficult. This advantage of the kernel based methods will turn out
to be extremely useful in real life applications, where the order of the system is usually not
known.
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Figure 9-5: Singular values of the extended observability times controllability matrix. The blue
stars correspond to LPV-RKHS-PBSIDopt, the dark green crosses “GCV+LPV-PBSIDopt” and
the red ones to the ”LPV-PBSIDopt”

9-2 A 3rd order SIMO LPV system, described by 2 local systems

In this example we investigated the accuracy of the proposed algorithms in a more complex
system, characterized by 2 outputs and one input. The related system matrices are given by

[
A(1) A(2)

]
=

 0 0.9 0.2 0.6 0.5 0.5
−0.9 0.5 0 0.5 0.6 0
−0.2 0 0.2 −0.5 0 0.6

 ,
[
B(1) B(2)

]
=

 1 0.4
1 0.2
1 0.12

 ,
[
C
]

=
[

0.2 1 0.5
0.2 0.1 1

]
,

[
D
]

=
[

0
0

]
,

[
K(1) K(2)

]
=

 0.013 0.0225 0 0
0.0089 0.006 0 0
0.0002 −0.001 0 0

 .
The LPV system is excited by a white noise input signal uk with E [uk] = 0 and var(uk) = 1.
The scheduling parameter is given by µk =

[
1, 0.1vk

]T
, where vk is a zero mean white

noise sequence with auto-variance equal to one. We used a future window f = 4 and the data
length was chosen to beN = 400. This model is an adaptation of the example in [86, p.99]. We
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evaluated the accuracy of the proposed algorithms for different past window values, namely
for p = [4, . . . , 10]. The corresponding VAF results versus the past window values are given in
Figure 9-6 for the case where SNRmod = 1 and in Figure 9-7 for the case where SNRmod = 10.
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Figure 9-6: VAF results for the methods 1-6. The SNRmod is 1. Left plot: VAF results for
the first output. The blue line corresponds to “LPV-K&PBSIDopt”, the red one to LPV-RKHS-
PBSIDopt, the dark green to “LPV-Diag”, the orange one to “NPridge-LPV”, the black one to
the “PBSIDopt”, the light green to the “GCV+LPV-PBSIDopt” and the magenta one to the “LPV
MSEopt”. Right plot: VAF results for the second output (same colours used).

In general, it is expected that for a well excited system (e.g. with high SNR value) the merits
and pitfalls of the kernel based methods will not be easily distinguishable. For example, this
is the case for LPV-K&PBSIDopt, which shows a high accuracy when SNRmod = 10 but in
the case where SNRmod = 1 the disadvantages of this method are clearly observed, especially
as the past window value increases. However, since a non-convex problem is introduced in
the kernel based methods, this relation will not be always visible due to the complexity of the
algorithm. For example, in the previous example we observed the same drop of performance
for LPV-K&PBSIDopt in the case of SNRmod = 10 and not in the case of SNRmod = 1.
In any case, it is clear that the LPV-K&PBSIDopt faces more difficulties in delivering highly
accurate models. The same analysis holds for the NPridge-LPV and the GCV+LPV-PBSIDopt

methods. For the case of SNRmod = 10 their performance is very close to the LPV-RKHS-
PBSIDopt algorithm (but still slightly worse than the latter), but we have to notice that the
GCV+LPV-PBSIDopt algorithm is inconsistent with respect to the past window value, since
it fails to deliver accurate models for p < 7. However, both methods show a much lower
performance in VAF terms when SNRmod = 1.
Finally, another point of view can again be offered by looking at the estimated eigenvalues.
In Figure 9-8 we compared the estimated eigenvalues for p = 10 and SNRmod = 10 for the
methods LPV-RKHS-PBSIDopt and GCV+LPV-PBSIDopt.
Following the results in the previous example, it is observed that the higher accuracy of the
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Figure 9-7: VAF results for the methods 1-6. The SNRmod is 10. Left plot: VAF results for
the first output. The blue line corresponds to “LPV-K&PBSIDopt”, the red one to LPV-RKHS-
PBSIDopt, the dark green to “LPV-Diag”, the orange one to “NPridge-LPV”, the black one to
the “PBSIDopt”, the light green to the “GCV+LPV-PBSIDopt” and the magenta one to the “LPV
MSEopt”. Right plot: VAF results for the second output (same colours used).
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Figure 9-8: Pole location for the LPV-RKHS-PBSIDopt (red crosses) and GCV+LPV-PBSIDopt

for a past window p = 10 and SNRmod = 10
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LPV-RKHS-PBSIDopt in terms of VAF values is also reflected in the estimation of the poles
of the systems. Nonetheless, the higher complexity of this system is clearly seen in the pole
estimation. In reality the large number of parameters to be estimated means that there can
still be a combination of A,B,C,K matrices that may not lead to an accurate estimation of
the poles but still it can estimate the underlying system with high accuracy.

9-2-1 Comparison of different kernel structures

In order to validate the results concerning the Approaches 3 and 4 for the structure of the
RBF, we repeated the simulations using these two approaches. The parameters were similar
to the ones described above, while the SNRmod was chosen to be 1. The results are given in
Tables 9-2 and 9-3.

Table 9-2: Average VAF results for Approach 3 and 4 in the RBF kernel, output #1

Past Window p = 6

K&PBSIDopt LPV-RKHS-PBSIDopt

Approach 3 92.04 % 93.21 %
Approach 4 93.11 % 93.57 %

Table 9-3: Average VAF results for Approach 3 and 4 in the RBF kernel, output #2

Past Window p = 6

K&PBSIDopt LPV-RKHS-PBSIDopt

Approach 3 94.13 % 95.53 %
Approach 4 94.81 % 96.03 %

As we can see in this case, Approach 4 is able to identify the underlying model with high
accuracy and actually it is about 0.5% more accurate than Approach 3. In general, Approach
4 is more attractive due to the fact that it requires less hyperparameters. In general, though,
the example in Section 9-1 demonstrated in clear way that this is not always the case and in
fact Approach 4 can lead to much worse results. Therefore, it is recommended to resort to
Approach 4 only in cases where Approach 3 fails to deliver accurate models. This could be
the case, for example, in some systems or some datasets, in which the local minima in the
non-convex optimization routine create serious problems.

9-3 A 4th order MISO LPV system, described by 3 local systems

In order to highlight all the aspects of the proposed algorithms we proceeded to the identifi-
cation of a 2-inputs 1-output LPV system, described by 3 local systems. The system matrices
are described by
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[
A(1)

]
=


−1.3 −0.6325 −0.1115 0.0596

1 0 0 0
0 1 0 0
0 0 1 0

 ,

[
A(2)

]
=


−0.51 −0.1075 −0.007275 −6.25 · 10−5

1 0 0 0
0 1 0 0
0 0 1 0

 ,

[
A(3)

]
=


0.2 0 0 0
0 0.4 0 0
0 0 0 0
0 0 0 0

 ,

[
B(1) B(2) B(3)

]
=


0 1 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 1 0.3 0.3 0.3 0.3

 ,
[
C
]

=
[

1 0 0 0
]
,[

D
]

=
[

0 0
]
,

[
K
]

=


0.16
0.1
0.2
0.16

 .

This system is a slight adaptation of the Example 20 in the PBSID toolbox [73]. The main
attribute of this system, compared to the two previous ones, is the 3 local systems. We
again simulated the system for different past window values. In order to highlight another
characteristic of the kernel based methods, we used a relatively small number of data points,
N = 2000. The future window was chosen to be f = 5 and the past window values p = [5, 6, 7].
The results are given in Figure 9-9.

First of all, we observe that for the specific system, the LPV-Diag kernel is showing a relatively
high accuracy in VAF terms. The most important remark here, though, is related to the RBF
based kernels. More specifically, we see that their accuracy is relatively low and it is dropping
as the past window increases. For the explanation of the results for LPV-RKHS-PBSIDopt

and LPV-K&PBSIDopt we have to resort to the Gaussian process theory and especially in
the RBF characteristics. As it is well known from the related theory [5], the RBF kernel
is a non-degenerate one. This practically means that the corresponding Gaussian process
can be expressed using an infinite dimensional basis. In practice, though, the number of the
basis coefficients is limited by the number of the available data points, which in this case is
N − p = 2000− p, depending on the specific choice of the past window.

The RBF kernels, as they were defined in (8-18), take as input arguments the µ coefficients.
It is evident that the number of inputs is mt, where t corresponds to the impulse response
instant, t ∈ [1, p]. Following a weight-space view [5, p.8] we could view the impulse response
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Figure 9-9: VAF results for the methods 1-6. The SNRmod is 10. The blue line corresponds
to “LPV-K&PBSIDopt”, the red one to “LPV-RKHS-PBSIDopt”, the dark green to “LPV-Diag”,
the orange one to “NPridge-LPV”, the black one to the “PBSIDopt”, the light green to the
“GCV+LPV-PBSIDopt” and the magenta one to the “LPV MSEopt”.

.

functions as mappings hu(µp+i−t, . . . , µp+i−1; t) : Rmt → RN (similarly for the outputs), that
is to say, functions that project the input space to a feature space. This point of view gives
us the most appropriate perspective to understand the limitations of the RBF kernels. If the
number ofm is large, then the number of the available data points should also be large in order
to make this mapping informative enough to describe the underlying system. Moreover, the
same should also hold for p. In other words, as the past window value gets larger, the mapping
will become less capable to describe the underlying impulse response instant. However, its
effect is not as crucial as the value of m. In fact, if the data length is not too small, the feature
spaces that correspond to the first impulse response instants, let’s say t′, will be informative
enough to make accurate estimations and only the impulse response functions for p ≤ t < t′

will start suffering from this limited expressiveness. Consequently, this analysis implies that
in the RBF based methods we always have to pay high attention to the number of available
data points, in cases where their results are not the expected ones.

Finally, in order to verify our claims, we compared the accuracy of the two RBF kernels for
two different values of available data points, namely 2000 and 3000. The results are given
in Table 9-4. From these results it becomes clear that the RBF based methods can indeed
deliver accurate models. As we already explained, though, the number of the available data
points should always be taken into consideration in cases of inaccurate identification.
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Table 9-4: Average VAF results for Approach 3 and 4 in the RBF kernel, where σ is treated as
a hyperparameter

Past Window p = 6

K&PBSIDopt LPV-RKHS-PBSIDopt

N=2000 76.16 % 77.50 %
N=3000 89.18 % 91.64 %
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Chapter 10

Conclusions and future work

10-1 Conclusions on the kernel based LPV SID

In Part III of this thesis we introduced a novel framework for the kernel based Subspace
Identification (SID) of Linear Parameter Varying (LPV) systems. Two different paths were
followed; in the first one we incorporated a Gaussian prior distribution on the LPV equivalent
Markov parameters, while in the second one we modelled the time-varying impulse response
coefficients as Gaussian processes. The first one led to the development of a new approach
that makes use of a diagonal kernel (named LPV-Diag in Chapter 9). On the other hand, the
second one gave rise to two new methods, namely the LPV-K&PBSIDopt and the LPV-RKHS-
PBSIDopt, where both of them used the Radial Basis Function (RBF) kernel to characterise
the statistical properties of the related coefficients. Following the theoretical analysis of these
methods in Chapter 8 and the simulation examples in Chapter 9, we are now in position to
draw some important conclusions.

First of all, it is clear that the LPV-K&PBSIDopt and LPV-RKHS-PBSIDopt algorithms de-
liver much more accurate models than the standard approaches, namely the LPV-PBSIDopt

algorithm and the PBSIDopt approach with Generalized Cross-Validation (GCV) ridge regu-
larization, as well as the other investigated methods. The flexibility of the Gaussian processes,
together with the sophisticated correlation of the system characteristics with the hyperpa-
rameters of the kernels played a major role to this result. Moreover, despite the introduced
non-convex optimization for the determination of these hyperparameters, we clearly observed
that the derived results do not suffer from the local minima (one should take into account
that we avoided any multi-start approach of this optimization step).

Regarding the past window value, it is well known that the LPV-PBSIDopt algorithm suffers
from the curse of dimensionality, which becomes more severe for larger past window values
p. Moreover, it is well known that a small number of data points is expected to reduce
the accuracy of the SID algorithms. Nonetheless, when it comes to the RBF kernel based
methods (LPV-K&PBSIDopt and LPV-RKHS-PBSIDopt algorithms), there is one more reason
why the number of data points is crucial for the success of the algorithms. As we explained
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in Section 9-3, another limitation arises in the RBF kernel based methods in cases where
the number of available data points is rather small. In such cases, the functions used to
approximate the impulse responses hu(µp+i−t, . . . , µp+i−1; t), where t = {1, . . . , p}, will show
a reduced accuracy for larger impulse response instants t, due to the small number of basis
functions in the feature space, which is limited by the number of available data points. The
same consideration should also be taken into account when the number of local systems m is
large, as we explained in the same section. Therefore, for systems where m is very large it
may be the case that this will have severe effects on the RBF kernel based algorithms. On
the other hand, the diagonal kernel presented in Section 8-3 does not suffer from this specific
limitation, because its only “input” signal is the impulse response instant t = [1, . . . , p].
The comparison of the LPV-K&PBSIDopt and LPV-RKHS-PBSIDopt algorithms is definitely
a significant result of this thesis. Following the analysis in Section 8-3, it was observed that in
some cases the LPV-K&PBSIDopt shows a slightly better performance than the LPV-RKHS-
PBSIDopt algorithm. This result was mainly attributed to the numerical aspects of the latter
one and more specifically to the additional step of the inversion of the kernels. However, the
LPV-K&PBSIDopt is more dependent on the past window value as well as on the excitation
conditions of the scheduling parameter. These remarks were indeed verified mainly in the
first two examples of Chapter 9, in which we confirmed that the performance of the LPV-
K&PBSIDopt algorithm drops in cases where the scheduling parameters are sinusoidal or
when the past window value is getting large. Therefore, it is rather fair to qualify the LPV-
RKHS-PBSIDopt algorithm as the best proposed method, since it makes the least assumptions
regarding the scheduling parameter and it is more consistent with respect to the past window
value.
The kernel structure is also an important aspect of the RBF based methods. In Table 8-
1 we introduced four different approaches for the construction of the kernels that differ on
how strong is the correlation that we establish between the impulse response coefficients and
the kernel’s hyperparameters. As we saw in the examples of Chapter 9, the Approach 3 in
Table 8-1 shows the most consistent results. On the other hand, Approach 4 also showed
some promising but inconsistent results (as we saw in the first two simulation examples),
thus rendering its direct use rather insecure. However, the fact that it shows a much smaller
computational burden, compared to Approach 3, implies that it can still be useful in some
applications (e.g. when there are time limitations or when Approach 3 is highly vulnerable
to suboptimal solutions).
As far as the diagonal kernel is concerned, presented in Section 8-3, we experienced in a
clear way the limitations of this approach. By assigning the same prior to all the LPV
equivalent Markov parameters that refer to the same impulse response instant, it is obvious
that, when the local systems are described by much different dynamics, this kernel will be
very restrictive. It is therefore recommended that this method is used only when there is prior
knowledge asserting that the local models have very close characteristics. On the other hand,
the PBISDopt algorithm with the use of the estimated noise variance σ2 (“NPridge-PBSID”),
although it was not expected to be a superior technique, it still managed to deliver decent
models in many cases. This observation, together with the fact that it does not include any
non-convex optimization step (in cases where we pre-estimated σ2 instead of treating it as a
hyperparameter) means that it could may be an alternative in cases where the RBF based
kernels cannot be used (e.g. time limitations or very few available data points), but this
should always be done with consideration.
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All in all, it is rather fair to conclude that the LPV-RKHS-PBSIDopt exhibits the best perfor-
mance compared to the other presented approaches. However, this does not comes without
any cost. More specifically, in order to enjoy these improved results, we had to sacrifice some
interesting characteristics of the standard LPV-PBSIDopt: the direct treatment of MIMO
systems and the avoidance of non-convex optimization routines. Moreover, based on our ex-
perience with the code, we have to make clear that the computational time required for the
RBF based methods was very high. However, we confidently state that it was a well de-
served effort, since we managed to deliver highly accurate models in a variety of identification
examples.

10-2 Future work for the kernel based LPV SID

The main purpose of this part of the thesis was to suggest a new framework for the kernel
based SID of LPV systems, intrigued by the relevant developments for LTI systems. To this
end, two different paths were investigated.

Concerning the first proposed path, investigated in Section 8-3, the case of the diagonal kernel
was investigated, due to the complications of a full parametrization approach, as they were
discussed throughout this part of the thesis. However, in cases where the local models are
characterized by “close” dynamics, then the full parametrization of the kernel may deliver
more accurate models compared to the diagonal one. This extension necessarily requires two
steps: the justification of the term “close dynamics” through the investigation of different
LPV systems and the adaptation of the kernels for LTI systems to the LPV systems, possibly
by following a procedure similar to the one performed for the diagonal kernel.

Among the two proposed paths, the methods that introduce a prior in the impulse response
coefficients (the LPV-RKHS-PBSIDopt and LPV-K&PBSIDopt algorithms) were shown to
offer superior results compared to the other investigated methods. However, the proposed
framework is far from being regarded as “complete”. In fact, there are multiple aspects of the
proposed algorithms that should be further examined and can be possibly improved.

First of all, the structure of the RBF kernel is still an open question. The balance between a
too flexible kernel (that is highly susceptible to local minima, such as Approach 1 in Section 8-
3) and a too rigid one (that cannot adapt well to the current model, which was partially the
case for Approach 4) has to be further investigated.

More generally, the computational aspects of the proposed approaches require an analytic
investigation. Especially for the RBF kernel based approaches (introduced in Section 8-3 ) it
was observed that they show a heavy computational load, which hinders the investigation of
multiple simulation paradigms. This is directly related to the complexity of all the involved
steps and especially of the non-convex optimization routine (maximization of marginal likeli-
hood). It is characteristic that some investigated identification examples (involving 50 Monte
Carlo identification loops) required more than 3 days in 16-core processors of the 3ME com-
puter cluster. It therefore becomes apparent that ways have to be sought such that the
computational burden is alleviated, always keeping a balance between optimal solutions and
computational time. For example, this investigation can start from the special case where the
scheduling parameter is periodic, since there are already proposed methods for the reduction
of the computational complexity [30,81].
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At this point it is important to make another remark regarding the RBF kernel. We already
saw that the zero mean assumption of the Gaussian processes does not imply that the a
posterior estimate will also be zero mean. However, one should pay attention to the fact that
one of the inputs of the impulse responses, which are in practice the scheduling parameters, is
always one due to the affine assumption on the structure of the state space model. Therefore,
the terms which are explicitly related to this input are not “visible” in the kernel because
the difference between two of these inputs at any time instants is always zero. These terms
are the utmost left elements in each Lut ,L

y
t with t ∈ {1, . . . , p}, defined in (3-6) and (3-7).

The RBF kernel approaches 3 and 4 of Table 8-1 unfortunately do not have the required
flexibility to capture this characteristic. This can be deduced by noticing that for constantly
zero scheduling parameters, the auto-variances of all the impulse response instants of a signal
are the same, e.g. equal to σ2

u for the input signal. In other words, we assign the same prior to
the coefficients CÃ(1)B(1), CÃ(1)2

B(1) etc. As a solution, we could follow two different paths.
One way is by introducing a base-line model, which practically means that we introduce a
deterministic term for each past input and output term in order to capture these utmost left
elements that we mentioned above. However, in this way we do not introduce any regular-
ization for these elements. As an alternative, we can assign a normal prior distribution on
them, too, but this means that they have to be treated as hyperparameters, thus increasing
the computational complexity of the marginal likelihood maximization problem.

Moreover, the RBF kernel selection is itself debatable. The examination of other kernel
structures can reveal new, improved ways to perform kernel based SID for the LPV systems.
One new approach can be followed by implementing automatic relevance determination among
the various inputs of the RBF kernels [5, Section 5.1]. In other words, one hyperparameter
is assigned to each input (which in our case are the scheduling parameters) to determine the
characteristic length scale. In this way, the inputs that have the slightest contribution will be
neglected and therefore a more accurate estimation may be achieved. Additionally, the use
of polynomial kernels may be an interesting approach, due to the products of the scheduling
parameters that arise when we construct the predictor, as shown in (3-8).

The parametrization of the off-block-diagonal terms is also important for this type of kernels.
In this thesis we decided to assign a prior only on the elements that refer to the same impulse
response instant, as shown in (8-30). However, the optimal kernel is a full matrix, as it was
discussed in Section 8-3. Therefore, finding a way to fully parametrize the kernel is expected
to lead to better results. This procedure however is not trivial. In fact, by treating the
impulse response coefficients as functions defined over the domain Rmt , as shown in (8-18),
means that the construction of the RBF kernel for the off-diagonal elements is not feasible in
a straightforward way, since these terms correspond to different impulse response instants t
and so they correspond to different functions. Consequently, a different approach should be
pursued in order to assign a meaningful prior in these terms.

All in all, the proposed algorithms formulate an interesting approach for the SID of LPV
systems. The superior results (compared to the other investigated methods) together with
the many yet unexplored aspects render them an interesting topic, whose further investigation
can offer new insights and many improvements. We hope that this thesis managed to shed
light on this new path, where only the first few steps are taken but there are still many new
direction to explore.
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Appendix A

The PBSIDopt algorithm for Linear
Time Invariant (LTI) systems

In Chapter 2 we introduced some notation related to the PBSIDopt algorithm and we analysed
the steps to be taken till the VARX formulation. In this appendix we will enumerate the rest
of the steps that have to be taken, following the notation in [23]. To this end, let us first
define two useful quantities.

Definition A.1. The extended observability matrix and the extended controllability matrices
are given in (A-1) and (A-2), respectively.

Γ(f) =


C
CA
...

CAf−1

 (A-1)

K(p) =
[
Ap−1B̄ ... AB̄ B̄

]
, (A-2)

where B̄ = [B K].

We will also introduce the vector zk =
[
uTk yTk

]T
∈ Rnu+ny and the stacked vector

z
(p)
k =

[
zTk−p zTk−p+1 · · · zTk−1

]T (A-3)

Moreover, we will define the Hankel matrices in analogy with the Toeplitz matrix, defined in
(2-8). The Hankel matrix is given by
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UHi,s,N =


ui ui+1 . . . ui+N−1
ui+1 ui+2 . . . ui+N
...

... . . . ...
ui+s−1 ui+s . . . ui+N+s−2

 (A-4)

Given a future window f and a past window p with p ≥ f ≥ n, we can construct the extended
observability times controllability matrix Γ(f)K(p).

Γ̃(f)K̃(p) =


CÃp−1B̄ CÃp−2B̄ · · · · · · CB̄

CÃpB̄ CÃp−1B̄ · · · · · · CÃB̄
...

... · · · . . . ...
CÃp+f−2B̄ CÃp+f−3B̄ · · · · · · CÃf−1B̄

 (A-5)

In the PBSID algorithm the matrix is (A-5) is used without any modification. On the other
hand, in the PBSIDopt algorithm the approximation of Ãp+i ≈ 0 for i ≥ 0 is used, while it is
also shown in [22] that the PBSIDopt algorithm shows lower variance than PBSID. The latter
matrix quantity can be totally constructed with the use of the Markov parameters that were
identified in the VARX step and it is given by (the case where p = f is presented here)

Γ̃(f)K̃(p) ≈


CÃp−1B̄ CÃp−2B̄ · · · · · · CB̄

0 CÃp−1B̄ · · · · · · CÃB̄
...

... · · · . . . ...
0 0 · · · · · · CÃf−1B̄

 (A-6)

Moreover, if we multiply Γ̃(f)K̃(p) on the right with Z1,p,N−p it can be shown that the following
equivalence holds [23].

Γ̃(f)K̃(p)Z1,p,N−p = Γ(f)Xp+1,1,N−p (A-7)

Now we have to make some necessary assumptions. We will assume that the pair (A,C) is
observable and the pair

(
A,
[
B KW 1/2

])
is reachable, where E

[
eje

T
k

]
= Wδjk and δ denotes

the kronecker delta. Moreover, we will assume that the state sequence Xp+1,1,N−p has full
row rank equal to n.

With theses assumptions we can estimate the state sequence with the use of the rank revealing
SVD decomposition.

Γ̃(f)K̃(p)Z1,p,N−p =
[
Un U⊥n

] [ Σn 0
0 Σ2

] [
V T
n

V T
n
⊥

]
(A-8)

Ideally, the quantity Σ2 is zero but due to the noise this is not the case. However, by
detecting a gap in the singular values we can keep only the n most dominant singular values.
Consequently, we can estimate the state sequence as Xp+1,1,N−p = ΣnV

T
n .
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Having estimated the state sequence, it is straightforward to estimate the unknown matrices.
As a first step, we compute the following Least Squares (LS) problem based on the output
equation.

||Yp+1,1,N−p − CXp+1,1,N−p||2F (A-9)

With this LS problem we estimate the matrix C, while the residual can be used as an esti-
mation of Ep+1,1,N−p. Finally, we can estimate the matrices A, B and K by solving the LS
problem

||Xp+2,1,N−p−1 −AXp+1,1,N−p−1 −BUp+1,1,N−p−1 −KEp+1,1,N−p−1||2F . (A-10)
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Appendix B

Subspace Identification (SID) of LPV
systems: the LPV-PBSIDopt algorithm

In Chapter 3 we described the first steps of the LPV-PBSIDopt algorithm, up to the LPV
equivalent VARX formulation step. The related quantities (such as Z, K(p)) were defined in a
way that enables the direct incorporation of the kernel methods, that is to say, the coefficients
that correspond to each signal were brought together.

In order to keep consistency, thought, with the related literature, we will describe the next
steps in the LPV-PBSIDopt, as it is explained in [30] and also implemented in the PBSID
toolbox [52] 1. In order to do so, we have to redefine the matrices Z and K(p).

More specifically, the new Znew and K(p)
new are given by

Znew =



Pp|p+1u1 Pp|p+2u2 · · · Pp|NuN−p
Pp|p+1y1 Pp|p+2y2 · · · Pp|NyN−p
Pp−1|p+1u2 Pp−1|p+2u3 · · · Pp−1|NuN−p−1
Pp−1|p+1y2 Pp−1|p+2y3 · · · Pp−1|NyN−p−1

...
...

...
...

P1|p+1up P1|p+2up+1 · · · P1|NuN−1
P1|p+1yp P1|p+2yp+1 · · · P1|NyN−1


, Z ∈ Rq̃×N , (B-1)

K(p)
new =

[
Lp · · · L1

]
, (B-2)

where
L1 =

[
B(1), B(2), · · · , B(m), K(1), · · · K(m)

]
,

Lj =
[
Ã(1)Lj−1 · · · Ã(m)Lj−1

]
.

(B-3)

1The only difference between these two approaches is in the construction of the matrix L1. More
specifically, we will adopt the one in the PBSID toolbox, that is to say, we will define L1 =[
B(1), B(2), . . . , B(m), K(1), . . . K(m)]
Master of Science Thesis Ioannis Proimadis
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The next steps of the algorithm are the following. First, similar to the LTI case, we will
construct the extended observability times controllability matrix. In the LPV case, we use
the extended observability matrix of the first local system. By keeping in mind the assumption
that φk,j ≈ 0 for j > p, we derive the matrix (here we show the case where f = p)

ΓpK(p)
new =


CLp CLp−1 · · · CL1

0 CÃ(1)Lp−1 · · · CÃ(1)L1
... . . . . . . ...
0 · · · · · · C

(
Ã(1)

)p−1
L1

 , (B-4)

where the rest Lt, t = {2, . . . , p} are constructed similar to the procedure shown in (3-7).
Also, with Γp we denote the observability matrix of the first local system, given by

Γp =


C

CÃ(1)

...
C
(
Ã(1)

)p−1

 , (B-5)

The extended observability matrix is assumed to be full column rank. Now, the state sequence
is defined as

X =
[
xp+1 xp+2 · · · xN

]
. (B-6)

and it is assumed also to be full rank. Based on these assumptions, we can finally estimate the
state sequence (up to a similarity transformation) by using an Singular Value Decomposition
(SVD) decomposition of (B-4).

ΓpK(p)
newZnew =

[
U1 U2

] [ Σ1 0
0 Σ2

] [
V1
V2

]
, (B-7)

X = Σ1V1. (B-8)

From this point, the estimation of the unknown matrices is straightforward. First, we solve
a LS problem to derive the matrix C as well as the noise sequence ek for k = {p+ 1, . . . , N}
and then the noise is treated as a deterministic signal and it is used in the state equation to
compute the matrices A(i), B(i) and K(i) for i = {1, . . . ,m}.
The algorithm can now be summarized as follows:

1. Compute the quantities Y and Z based on (3-12) and (3-14) respectively.

2. Solve the LS problem (3-16).

3. Create the matrix (B-4).

4. Estimate the state sequence based on (B-8).

5. Estimate the unknown matrices by solving the LS problems based on (3-4)-(3-5).
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Appendix C

Bayesian framework for the kernel
based Subspace Identification (SID)

methods

C-1 Introduction to the bayesian framework and properties of nor-
mally distributed random variables

In Section 4-2 we already saw how we can compute the required distributions for the case
where the model is completely treated as non-parametric. The only difference in the kernel
based system identification is that the latter contains an additional parametric part due to
the past input and output data. Apart from this, the analysis and the computations from
Section 4-2 can also be applied in system identification with only a few modifications. In
order to show this, let us assume first that we have a data generating model, described by
the equation

Y = θZ + E (C-1)

where Y = [y1 y2 . . . yN ] denotes the output, E = [e1 e2 . . . eN ] denotes the noise, θ ∈ Rp
are the unknown coefficients to be estimated and Z is a known (deterministic) matrix of
dimensions p ×N . We also assume that the noise is a zero mean white noise sequence with
normal distribution and variance equal to σ2.

If we treat θ as random variables, we can assign a prior distribution to them.

θ ∼ N (0 , P ) (C-2)

Usually we let P be parametrized by some (unknown) hyper-parameters, which encode in-
formation about the system. For this reason, we will write the covariance matrix of θ as
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E
(
θT θ

)
= P (η) to make clear that it is a function of the hyper-parameters η ∈ Rd The

normality assumption is not in general necessary, but it is required in order to end up with
an analytic expression of the quantities to follow. Due to this assumption, the output signals
are themselves normally distributed random variables. Nonetheless, due to the assumption
that θ are random variables, the output signals are dependent random variables.

Before we proceed to the description of the Marginal Likelihood (MargLik) and the Maximum
a Posteriori (MAP) estimates, we will describe the joint statistical properties of Y and θ.

[Y, θ]T ∼

[ E (Y )T

E (θ)T

]
,

 E
(
Y TY

)
E
(
Y T θ

)
E
(
θTY

)
E
(
θT θ

) 
∼
([

0N×1
0p×1

]
,

[
ZTP (η)Z + σ2I ZTP (η)

P (η)Z P

]) (C-3)

C-2 Marginal Likelihood and a Posteriori estimates

The marginal likelihood of the output signals is given as [87]

p(Y |Z, η) =
∫
p(Y, θ|Z, η)dθ =

∫
p(Y |θ, Z, η)p(θ|Z, η)dθ (C-4)

In the Gaussian case, the quantity in (C-4) can be computed analytically, using the following
expression.

p(Y |Z, η) = 1
(2π)

N
2 (det(ZTP (η)Z + σ2I))

1
2

exp
(
−1

2Y
(
ZTP (η)Z + σ2I

)−1
Y T
)

(C-5)

Maximization of the MargLik (or more often, minimization of the minus logarithm of MargLik)
is a common way to estimate the values of unknown quantities such as the hyperparameters
in P (η). Taking the minus logarithm of (C-5) we find the expression

− log p(Y |Z, η) = N

2 log(2π) + 1
2 log

(
det

(
ZTP (η)Z + σ2I

))
+ 1

2Y
(
ZTP (η)Z + σ2I

)−1
Y T

(C-6)

Another useful quantity is the so-called posterior estimate. Based on the Bayes rule, the
general expression for the posterior distribution is the following (e.g. [5]):

posterior = likelihood× prior
marginal likelihood . (C-7)

Based on the data generating system in (C-1), the quantity in (C-7) can be written as

p(θ|Y,Z, η) = p(Y |θ, Z, η)p(θ|Z, η)
p(Y |Z, η) . (C-8)
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If the assumptions about the normal distribution of the random variables hold, then the
posterior estimate can be computed in an analytical way. For the model in (C-1), the 1st and
2nd order statistical properties of the posterior estimate of θ are given by [54]

E (θ|Y, η, Z) = Y
(
ZTP (η)Z + σ2I

)−1
ZTP (η) = Y ZT

(
ZZT + σ2P (η)−1

)−1
(C-9)

E
(
θT θ|Y, η, Z

)
= P (η)− P (η)Z

(
ZTP (η)Z + σ2I

)−1
ZTP (η) (C-10)

Writing the solution as shown in the second part of (C-9) is in general more convenient,
especially when p >> N due to the smaller size of the matrix that has to be inverted. On the
other hand, the most right part of this equation is more appealing at cases where p << N
but it may lead to numerical problems due to the inversion of the P matrix, so in general it
is avoided.

Moreover, it can be directly concluded that this analysis becomes identical with the one
presented in Section 4 if we substitute the product θZ with a function, let’s say f . In other
words, the selection of where a prior distribution will be assigned depends on what we want
to achieve. For example, in the kernel based SID methods for Linear Time Invariant (LTI)
systems the coefficients θ of (C-1) are the impulse response coefficients, whose domain are
the impulse response instants t ∈ R.

Another useful remark is that, due to the normality assumptions, the mean of the posterior
estimate of θ given in (C-8) is also its mode and so the posterior is also the MAP estimate of
θ [5]. Finally, it is worth noticing that the solution we derived with this Bayesian framework
is identical to the one being derived with the use of the Reproducing Kernel Hilbert Space
(RKHS) theory, which is analysed in Appendix D.
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Appendix D

Reproducing Kernel Hilbert Spaces
and Regularization

D-1 Theory of Reproducing Kernel Hilbert Spaces

In this Appendix we will give an insight into the theory of Reproducing Kernel Hilbert
Space (RKHS) and we will show its link with the Tikhonov based regularization. The theory
of RKHS was developed by Aronszajn [45] and since then it has been applied in many fields,
such as Machine Learning [5].

To introduce this theory, let us first define an index set X and assume that a set of functions
f are defined over that set. We will assume that these functions belong to a Hilbert space
H, that is to say, to a complete vector space with an inner product < f, g > and its norm is
defined as ||f || =

√
< f, f >.

The function k(x, y) : X×X → R is called a Reproducing Kernel Hilbert Space if the following
conditions hold:

1. For every y, k(x, y) as a function of x belongs to H.

2. k satisfies the reproducing property: f(y) =< f(x), k(x, y) >, where the inner product
is defined as a function of x.

As it is proven in [45], the RKHS uniquely determines the function k(x, y) : X × X → R if
k(x, y) is positive semi-definite. Moreover, the converse property also holds, that is to say,
to every positive semi-definite function k(x, y) there corresponds a unique RKHS.

Finally, a necessary and sufficient condition for the RKHS to exist is that the function f(x)
is a continuous functional of f in H for every x ∈ X .
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D-2 Representer theorem and regularization

The representer theorem is very useful tool for the theory of RKHS, since it provides a basis
for the functions f .

In order to explain this theorem, let us assume that f ∈ Rm, where m is finite, then we can
express f as follows [5]:

f(x) =
m∑
i=1

αik(x, xi), N ∈ N, xi ∈ X , αi ∈ R (D-1)

Now, we can define the representer theorem [67,88]:

Definition D.1. Given a set X , a positive semi-definite kernel k(x, y) : X × X → R, the
data set {(x1, y1), · · · (xN , yN )} ∈ X × R and a strictly monotonically increasing real-valued
function g on [0,∞), an arbitrary cost function c : (X × R2)m → R ∪ {∞} and a class of
functions

F =
{
f(z) =

∞∑
i=1

βik(z, xi), xi ∈ X , βi ∈ R, ||f || <∞
}

(D-2)

Then, any f(z) that minimizes a functional

J(f) = c
(
(x1, y1, f(x1)), · · · , (xN , yN )

)
+ g (||f‖|) (D-3)

has an optimal solution which can be expressed in the following form:

f(x) =
N∑
i=1

αik(x, xi), N ∈ N, xi ∈ X , αi ∈ R (D-4)

This is actually a powerful result. It means that the minimization over a possibly infinite
space can be expressed as a minimization problem over RN . Therefore, every solution in
RKHS can be expressed as a function of a finite basis, even when the function f(x) is itself
infinite dimensional.

D-3 Correspondence between Tikhonov based regularization and
Maximum a Posteriori estimate

RKHS and Tikhonov regularization

In order to make clear why and how the theory of RKHS can be used for the optimal derivation
of some unknown estimates, let us consider the functional

J(f) =
N∑
i=1

(yi − f(xi)) + σ2||f ||2H, (D-5)
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where || · ||2H denotes the regularization in the Hilbert space H.

Using the expression f(z) =
N∑
i=1

αik(z, xi) and the property 1 of the RKHS, namely <

k(z, xi), k(z, xj) >H= k(xi, xj), we find that the term ||f ||2H is equal to the following quantity:

||f ||2H =
[
α1 α2 · · · αN

]  k(x1, x1) k(x1, x2) · · · k(x1, xN )
... . . . . . . ...

k(xN , x1) k(xN , x2) · · · k(xN , xN )



α1
α2
...
αN

 = αKαT

(D-6)

Based on (D-6), we express (D-5) as follows:

J(α) = σ2αKαT + ||y− αK||22 (D-7)

where y = [y1, y2 · · · yN ]T . It is obvious that (D-7) corresponds to a Least Squares problem
with Tikhonov regularization [26]. Therefore, the solution can be computed analytically and
it is given by the following equation:

α = y
(
σ2IN +K

)−1
(D-8)

Substituting (D-8) to (D-4), we derive the optimal solution for f namely:

[
f(x1 f(x2) · · · f(xN )

]
= αK ⇒[

f(x1 f(x2) · · · f(xN )
]

= y
(
σ2IN +K

)−1
K

(D-9)

Maximum a Posteriori estimate

Let us now assume that a system is described by the following equation:

yi = f(xi) + ei (D-10)

where ei ∼ N
(
0, σ2) and moreover, E (eiej) = σ2δi−j , where δ represents the kronecker delta.

Let us again assume that we have collected N data points. If we model f as a zero-mean
Gaussian Process with E (f(xi)f(xj)) = k(xi, xj), we can compute the mean value of the
Maximum a Posteriori estimate of fi, E (fi|y), i ∈ {1, · · · , N}. It is straightforward to show
that the derived solution coincides with the solution that was derived in the previous section.
To do so, let us first compute the mean and covariance of the vector that contains all the
f(xi), yi:

Master of Science Thesis Ioannis Proimadis



128 Reproducing Kernel Hilbert Spaces and Regularization



f(x1)
f(x2)

...
f(xN )
y1
y2
...
yN


∼


 0

...
0

 , [ K K
K K + σ2IN

] (D-11)

Using the properties of Gaussian distributed random variables, we can compute the a Poste-
riori distribution p (f (xi) |f (x1) , · · · , f (xi−1) , f (xi+1) , f (xN ) , y1, · · · , yN ) (e.g. Appendix
A in [5]). In total, we derive the following result:

f(x1)
f(x2)

...
f(xN )

y1
y2
...
yN

∼ N
(
K(σ2IN +K)−1yT ,K −K(σ2IN +K)−1K

)
(D-12)

Consequently, by taking the transpose of the mean value in (D-12), we find that the Maximum
a Posteriori estimate of f , evaluated at the training points yields the same result as in (D-9).
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List of Acronyms

ARX Auto-Regressive with Exogenous Input

CV Cross-Validation

FIR Finite Impulse Response

GCV Generalized Cross-Validation

GP Gaussian Process

LPV Linear Parameter Varying

LS Least Squares

LS-SVM Least Squares Support Vector Machines

LTI Linear Time Invariant

MAP Maximum a Posteriori

MargLik Marginal Likelihood

MCMC Markov Chain Monte Carlo

ML Maximum Likelihood

MOESP Multivariable Output- Error State-sPace

MSE Mean Squared Error

PEI Prediction Error Identification

RBS Random Binary Sequence

RBF Radial Basis Function

RKHS Reproducing Kernel Hilbert Space
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136 Glossary

SID Subspace Identification

SISO Single Input Single Output

SNR Signal-to-Noise Ratio

SVD Singular Value Decomposition

SysID System Identification

VAF Variance Accounted For

VARX Vector ARX
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