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Abstract: Integrated chassis control systems represent a significant advancement in the dynamics of 

ground vehicles, aimed at enhancing overall performance, comfort, handling, and stability. As ve-

hicles transition from internal combustion to electric platforms, integrated chassis control systems 

have evolved to meet the demands of electrification and automation. This paper analyses the overall 

control structure of automated vehicles with integrated chassis control systems. Integration of lon-

gitudinal, lateral, and vertical systems presents complexities due to the overlapping control regions 

of various subsystems. The presented methodology includes a comprehensive examination of state-

of-the-art technologies, focusing on algorithms to manage control actions and prevent interference 

between subsystems. The results underscore the importance of control allocation to exploit the ad-

ditional degrees of freedom offered by over-actuated systems. This paper systematically overviews 

the various control methods applied in integrated chassis control and path tracking. This includes a 

detailed examination of perception and decision-making, parameter estimation techniques, refer-

ence generation strategies, and the hierarchy of controllers, encompassing high-level, middle-level, 

and low-level control components. By offering this systematic overview, this paper aims to facilitate 

a deeper understanding of the diverse control methods employed in automated driving with inte-

grated chassis control, providing insights into their applications, strengths, and limitations. 

Keywords: automated driving; electric vehicles; integrated chassis control; vehicle dynamics; vehicle 

state estimation; control allocation; sensors 

 

1. Introduction 

One of the distinctive features of modern vehicles on the architectural level is an in-

creased number of active and X-by-wire chassis components involved in many safety- and 

comfort-related tasks. At the same time, various chassis systems can perform quite similar 

functions, e.g., the vehicle trajectory can be corrected by the electronic stability control (ESC) 

with brake actuators, torque vectoring (TV) with multiple electric motors, or active front/rear 

steering. This suggests that it is possible to integrate several subsystems to implement a coor-

dinated control in one or more vehicle performance qualities, which leads to the concept of 

integrated chassis control (ICC). Due to various relevant terms that can be found in the litera-

ture to describe this concept, within the framework of this paper, the following definition can 

be proposed: An integrated chassis control is a complex system composed of several active sub-systems 

like brakes, steering, suspension, individual-wheel electric motors, etc., which can be controlled in a 

coordinated way to enhance vehicle dynamics in general with a simultaneous improvement of various 

vehicle characteristics like driving safety, comfort, and energy efficiency. 
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The proposed definition is also similar to interpretations from other studies, where 

the ICC is associated with a system designed to coordinate the control actions of individ-

ual chassis (and optionally powertrain) actuators, to achieve superior vehicle performance 

according to various criteria [1,2]. 

The sub-systems that can be included in the ICC are brakes, electric motors, active 

suspension variants [2,3], and active steering [4,5]. In some studies, less widespread com-

ponents such as active aerodynamics [2], wheel positioning systems [6,7], anti-roll bars 

[8], and dynamic tyre pressure control [9] are also considered within the ICC context. 

Hence, diverse actuator combinations are possible, making the ICC an over-actuated sys-

tem. In this case, an improper integration of several sub-systems leads to overlapping re-

gions of control. Therefore, to handle such an over-actuation and prevent control objective 

interference between sub-systems, an integration algorithm is required to optimally allo-

cate the control actions between the involved actuators. 

Although ICC concepts first appeared in studies published in the late 1980s [10,11], 

for a long time, the implementation of this approach has been limited to vehicles of the 

premium and high-performance classes. However, the topic of ICC has received increased 

research attention over the past decade due to the electrification and automation of road 

vehicles. First, mature and cost-efficient technologies for highly dynamic actuators such 

as X-by-wire systems and on-board/in-wheel electric motors (IWM) can be identified as a 

deciding factor for the availability of ICC for a broad spectrum of vehicle classes. Second, 

ICC can contribute to the solutions to the following essential challenges: 

• for electric vehicles (EV): 

• energy-efficient driving 

• improved driveability 

• better ride quality, particularly for EVs with IWM 

• for automated driving (AD): 

• redundancy 

• near-to-ideal driving comfort 

• precise motion control 

Automated and electric ground vehicles demonstrate the demand for ICC from dif-

ferent points of view. 

The main contributions of this paper are: 

1. Systematising knowledge of ICC targeting path tracking (PT) as part of AD: This pa-

per provides a comprehensive synthesis of existing knowledge related to ICC, spe-

cifically tailored to the critical task of PT in the context of AD. 

2. Presenting a systematic overview of applied control methods: Building on the sys-

tematisation of knowledge, this paper delivers a structured and systematic overview 

of the various control methods used in ICC and PT. This includes a detailed exami-

nation of sensing, state estimation techniques, reference generation strategies, and 

the hierarchy of controllers, encompassing high-level, middle-level, and low-level 

control components. By offering this systematic overview, this paper facilitates a 

deeper understanding of the diverse control methods employed in ICC, providing 

insights into their applications, strengths, and limitations. 

The rest of this paper consists of four sections. In Section 2, a literature review is per-

formed. In Section 3, a typical control layout and block structure and functionality are 

presented. In Section 4, applied control methods are presented including parameter esti-

mation, reference generation, and high-level and middle-level controllers. In Section 5, a 

discussion and conclusions are presented. 
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2. Previous Studies 

Based on extensive research over the past decades, ICC systems can be divided into 

five categories: 

(i). systems with longitudinal dynamics integration 

(ii). systems with combined longitudinal and lateral integration 

(iii). systems with lateral and vertical components 

(iv). systems with longitudinal and vertical integration 

(v). systems with longitudinal, lateral, and vertical integration 

The first category involves systems integrating longitudinal vehicle dynamics. One 

example is the brake blending in EV [12,13]. In this scenario, friction brakes work together 

with electric motors in a regeneration mode to ensure the required braking performance 

of the vehicle while improving energy efficiency. Another example of ICC results from the 

coordinated operation of ESC with friction brakes and TV. This coordinated use positively 

affects the vehicle’s agility and increases the tyre friction utilisation. 

The second category involves systems with longitudinal and lateral integration. For 

example, the fusion of active steering and braking systems has been proposed in various 

studies [5,14–28]. In the past decade, due to more attention to EV dynamics control, the 

combination of active steering with the propulsion system has also attracted attention 

[29,30]. In such an integration, the steering is the primary tool for lateral dynamics control, 

while braking serves as a complementary measure for vehicle stabilisation [31]. Further 

studies, [32,33], utilised active rear-axis steering and brakes to enhance a vehicle’s yaw 

stability. In several relevant studies, the active control of four-wheel steering combined 

with brakes has been chosen [34–36]. Wheel positioning actuators and tyre pressure sys-

tems are extensively investigated [6,37–40], and after reaching a high enough maturity 

level for industrial application, they may be integrated into the longitudinal and lateral 

ICC systems. Investigations in a simulation environment demonstrated the potential of 

this solution [41,42]. The integration of drivetrain control (e.g., active differentials and 

electric motors) with active steering falls under this category and has undergone intensive 

investigation [43–51]. Few of those studies explicitly mentioned the incorporation of the 

combined slip effect in controller design. For instance, in [34], the authors employed input-

output linearisation and sliding-mode control (SMC) to address the nonlinear Dugoff tyre 

model. Acarman [22] also adopted the Dugoff tyre model and utilised the state-dependent 

Riccati equation (SDRE) technique. Falcone et al. [21] explored optimal control input 

online with a four-wheel vehicle model incorporating wheel dynamics and the Pacejka 

tyre model. Researchers in [20,25] adopted a linear parameter-varying (LPV) model. Lin-

ear tyre models are frequently employed for simplification, assuming small slips in both 

directions. With a linear tyre model, the linear quadratic regulator (LQR) becomes a fa-

vourable choice for control strategy due to its optimality feature and has been adopted in 

several studies [5,16,24,44,49,51]. In [14,46], the authors utilised adaptive control to esti-

mate cornering stiffness online. In most cases, this assumption is acceptable since the con-

troller prevents the vehicle from entering a state where tyre force saturation can occur, 

and performance is satisfactory in simulated tests such as Double Lane Change and Sine-

with-Dwell manoeuvres.  

The third category involves longitudinal and vertical system integration. Notably, 

the application of suspension and braking systems or drivetrain for yaw stabilisation has 

primarily been explored in earlier years. Smakman [52] integrated an active suspension 

with a brake-based ESC system, examining two integration approaches to mitigate dis-

turbances between actuators and enhance overall system performance. The active suspen-

sion is predominantly employed as an active anti-roll bar, altering load transfer between 

the front and rear axles, with an extended function enabling the attainment of negative 

roll stiffness. Hac and Bodie [53] first calculated the capability of various actuators to gen-

erate the corrective yaw moment. The combination of active braking and magneto-rheo-

logical (MR) dampers was then adopted in the proposed ICC system, which used a 
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supervisory level to decide the control authority of actuators. In [54], the authors at-

tempted to design a global vehicle controller that coordinates independent brakes and 

active suspension to track a reference yaw rate. However, the authors reported the con-

trollability problem during the transition phase of the turn. Consequently, the active sus-

pension was only exploited for improving ride comfort, i.e., minimising pitch, roll, and 

vertical motion. It has been noticed that papers under this category commonly calculate 

look-up tables offline to control the suspension system, due to the high model complexity 

if vertical dynamics are included. 

The fourth category Involves lateral and vertical system integration. The earliest ex-

ploration of coordinating active suspension and active steering was conducted by Yokoya 

et al. [55] during the development of a sports car at Toyota. The controller predominantly 

employs rule-based functions, utilising rear-wheel steering and active suspension to en-

hance stability. The rear steering angle is proportional to that in the front and can switch 

between reverse-phase, neutral, and same-phase. The switching is solely based on longi-

tudinal velocity, i.e., reverse-phase for low velocity, same-phase for high velocity, and 

neutral for intermediate range (a concept still adopted by multiple manufacturers today). 

Active hydraulic suspension can adjust body height and roll stiffness distribution at high 

velocity. The integration of active suspension and active four-wheel steering for a μ-split 

braking manoeuvre was tested in [56], resulting in comprehensive improvements in yaw 

stabilisation and ride comfort. The controller was developed using a modified quarter-car 

model, incorporating vertical dynamics, wheel dynamics, and tyre forces at a single corner 

of the car. March and Shim [57] employed fuzzy logic to control active front steering and 

active suspension. The fuzzy controller’s output is a reference for the low-level normal 

force controller, based on a 2-D look-up table. In [58], the authors developed an integrated 

power steering system and active suspension. Alternatively, in [8], an active anti-roll bar 

was utilised instead of active suspension. Currently, controllable suspension has become 

widespread and may be installed in production vehicles starting from the C-segment, 

which has led to novel research in the field [4,59]. 

The fifth category involves full integration, combining longitudinal, lateral, and ver-

tical domains. A few studies have undertaken comprehensive coordination of all three 

variables. Kawakami et al. [60] used rule-based coordination to integrate four-wheel steer-

ing, active suspension, traction control and anti-lock braking system (ABS). The study 

suggested that the active suspension (active roll moment distribution) is more effective in 

the high-acceleration range. At the same time, the four-wheel steering works better with 

low to intermediate lateral acceleration. 

Control strategies are necessary for active vehicle systems. Rodic and Vukobratovic 

[61] proposed a synthesised control strategy with an advanced vision for an autopilot. The 

system aims to track a pre-programmed trajectory through the integrated control of four-

wheel steering, active damping and independent wheel torque control. The controller was 

designed with knowledge of the vehicle dynamics and uses the proportional–integral–

derivative (PID) technique at a low level. Simulation proved that the controller can accu-

rately track the trajectory and is robust against disturbances like changes in friction, wind, 

etc., when lateral acceleration is low (up to 2.6 m/s2). In paper [3], a desired yaw moment 

is calculated with vehicle state information and driver input using PID control. The mo-

ment is distributed among the subsystems according to specific demands, e.g., comfort- 

or safety-orientated strategy. The distribution also considers whether one or two subsys-

tems encountered a failure. The proposed system performs better than a conventional ESC 

system that relies only on differential braking. In [62], the authors used a desired yaw 

moment as the output of the high-level controller, employing an SMC technique for its 

calculation. The distribution of yaw moment is determined by the necessary condition for 

optimising a cost function, while roll moment distribution is controlled by a simple pro-

portional-integral (PI) controller. The results showed that the contribution of the anti-roll 

bar to enhance yaw stability could be ignored. It is not surprising though, since the reduc-

tion of roll angle due to the active anti-roll bar took more than 1 s to become visible. This 
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suggests that there may be a need for future efforts in this area. The constraint of friction 

limit is included in the optimisation of yaw moment distribution [63]. In this paper, 

steady-state load transfer is considered in coordinating active front wheel steering (AFS) 

and brake-based ESC. Yet the actual vertical load is influenced by the control of active 

dampers, which regulates roll moment distribution using SMC [64]. 

Vehicle electrification introduces new perspectives for ICC development. As reported 

in [65], EVs can exhibit over 20% higher mass than their internal combustion engine coun-

terparts. Furthermore, integrating IWMs in EVs significantly increases the unsprung mass 

(UM), potentially impacting ride comfort and vehicle handling. In response, ICC designs 

for EVs may incorporate semi-active or active suspension systems with additional func-

tionalities such as roll and pitch control [66] and ride blending (concurrent control of the 

action of IWMs and active suspension) [67]. 

Designing ICC for EVs requires careful consideration of the fact that the energy con-

sumption of active subsystems may affect the overall energy efficiency, potentially reduc-

ing the vehicle’s mileage per charge [68]. Transitioning from high-level feedback control-

lers, which are common in many ICC variants [69], to feedforward solutions can mitigate 

the issue of increased energy consumption [70]. 

ICC is also crucial in enabling various Advanced Driver Assistance System (ADAS) 

functionalities. These include increased passenger comfort, redundant driving safety con-

trol, overall energy consumption reduction, specific tasks related to PT, decision-making, 

and environment perception. Numerous studies focus on enhancing AD PT performance 

[71–75], lateral stability [76–79], and energy consumption [80,81]. 

As AD technology advances, simultaneous consideration of multiple objectives becomes 

crucial, as they often interfere [82]. Addressing these challenges involves measures at the con-

troller level logic, incorporating predictive components as demonstrated in [83–85]. 

Over the last 30 years, PT tasks have been extensively researched [86–89]. Most of 

them were developed for automated robots performing at low velocities and reached a 

high enough maturity level for industrial application. PT control approaches in the con-

text of AD address issues related to parametric uncertainties, and external disturbances 

that cannot be avoided [90]. Current investigations are performed in the automotive field, 

where velocities are high, and low-friction roads and roads with irregularities are wide-

spread [91,92]. 

Recent works have shifted focus towards ICC implementation in the realm of AD. 

For instance, in [93], the authors developed an AFS and braking ICC system designed for 

emergency collision avoidance in autonomous vehicles (AVs). Another study [94] delved 

into PT and ICC for obstacle avoidance, with a primary emphasis on improving PT [95,96]. 

Literature reviews published in recent years have explored ICC architectures for con-

ventional vehicles [1,97–100]. Simultaneously, another group of review papers has exam-

ined PT tasks specifically in the context of AVs [101–105]. In both research and review 

scientific publications related to ICC and PT, these problems are investigated separately. 

In ICC-related studies, the vector of control inputs typically involves forces and moments. 

In contrast, in PT tasks, the steering angle emerges as the most frequently employed con-

trol input. Recognising steering as a potential tool for regulating lateral and yaw dynam-

ics, the evolution of AD technology focusing on PT introduces opportunities for further 

advancements in ICC techniques. Simultaneously, integrating longitudinal, lateral, and 

vertical system dynamics offers additional prospects for enhancing PT performance. The 

incorporation of PT and ICC holds promise for synergetic development, where advance-

ments in one domain can contribute to the refining techniques in the other. 

3. Common Controller Layout for Automated Vehicles 

The main integrated vehicle control structures include decentralised, centralised, and 

coordinated architectures presented in Figure 1. The decentralised architecture, some-

times referred to as downstream [106], is extensively utilised by original equipment 
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manufacturers (OEMs). This preference arises from their ability to procure systems from sup-

pliers and subcontractors (Tier 1 and Tier 2), who develop both software and hardware. 

 

(a) 

 

(b) 

 

(c) 

Figure 1. Simplified integrated chassis control structures: (a) decentralised, (b) centralised, and (c) 

coordinated. 

This approach minimises the need for extensive integration, mainly relying on net-

work-based communication. Such systems are easy to fine-tune, but a key drawback is the 
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potential for malfunctioning operations. In some instances, decentralised systems incor-

porate a coordination layer that collects outputs from individual controllers and returns 

corrected values of the same variables to multiple actuators [1]. While this coordination 

layer helps mitigate issues, it may not eliminate them. A notable example of a decentral-

ised structure featuring a coordination layer is an ESC system produced by Tier 1. 

The centralised architecture is sometimes referred to as the upstream architecture 

[106]. It solves the principal drawback associated with decentralised systems. In the cen-

tralised architecture, a high-level controller coordinates subsystems and prevents conflicts 

through control allocation (CA). The development of the master controller requires col-

laboration between OEMs, Tier 1, and Tier 2. Integrating new actuators into such a system 

after its development can be challenging due to an increase in computational power and 

the reluctance of Tier 1 and Tier 2 to share algorithms.  

The third category is the coordinated or multi-layer structure, which belongs to up-

stream architectures. It includes a high-level controller, where the required demand is cal-

culated, middle-level control, where the control allocation task is solved by taking into 

account saturation and limitation of the actuators, and a low-level controller where sepa-

rate actuators are controlled. 

Using a decentralised control structure, it is impossible to realise ICC, as all the con-

trollers work independently. The centralised control structure has only one controller and 

cannot practically conform to the existing vehicle control system development mode due 

to (i) lack of modularity, which requires the OEMs to develop the controller together with 

Tier 1 and Tier 2, (ii) complexity of the controller, (iii) lack of flexibility when additional 

actuators are needed, and (iv) system failure in case of controller breakdown [1,107]. This 

work focuses on coordinated architecture as one of the most perspective ones for ICC im-

plementation. The schematical overall structure of the automated vehicle with integrated 

chassis control is presented in Figure 2 and contains sensing, data pre-processing, percep-

tion, planning, reference generator, and high-level/middle-level/low-level controllers. 

 

Figure 2. The overall structure of the automated vehicle with integrated chassis control. 
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In the schematic representation, the reference generator and middle-level controller 

contain several blocks with the designated green colour. This colour indicates that the 

saturation and constraints are applied to the reference values. Some of the constraints may 

be guided by the values provided in the standards to ensure safety and comfort, and oth-

ers by physical limitations. The symbols in the scheme are explained briefly as follows. 

The high-level controller produces 𝑣—control demand vector, which is fed into the mid-

dle-level controller. In the CA part, required control output values are generated, based 

on the control demand vector, system constraints, and saturation. These are the following: 

𝐹𝑧𝑖
𝐶𝐴— vertical forces, 𝛿𝑖

𝐶𝐴 —wheels steering/toe angles, 𝛾
𝑖
𝐶𝐴— wheels camber angles, 

𝑀𝑒𝑚,𝑖
𝐶𝐴 — propulsion torques on wheels, and 𝑀𝑏𝑟,𝑖

𝐶𝐴— braking torques on wheels. Based on 

these target values, individual low-level controllers generate the required voltage and cur-

rent values. 

For AD, many sensors (Figure 3) should not only provide information about the ve-

hicle states but should also be combined with data processing to enable localisation, envi-

ronment perception, and road conditions. With these data, the AV control algorithm could 

perform decision-making and motion planning similar to a human driver [108–111]. The 

main sensors available in AD, which can be used for ICC are presented in Figure 3. Using 

advanced sensors available in AD, the performance of ICC may be increased. Sensor systems 

can be used to acquire measurements about vehicle states, location, and environment. 

 

Figure 3. Sensor systems used in ICC and AD. 

Sensors can be categorised into internal and external state sensors, and passive and 

dynamic sensors [108]. Internal state sensors collect information about vehicle state, posi-

tion, events, and changes. They include in-vehicle sensors and global navigation satellite 

systems (GNSSs). External state sensors collect information about the environment such 

as cameras, radio detection and ranging (radar), light detection and ranging (LIDAR), and 

ultrasonic sensors. These types of sensors can be categorised by transmission range into 

short, medium, and long-range [108]. Passive sensors collect external energy and output 

information such as vision cameras, inertial measurement units (IMUs), and GNSS, while 

dynamic sensors emit energy and collect responses from the environment such as radars 

and LIDARs [108]. It should be noted that sensors often require calibration and recalibra-

tion. Cameras require lens distortion calibration [112], while IMUs should be calibrated 

for temperature, bias- [113], etc. In addition to sensors, V2X communications potentially 

provide infrastructure-related and other information during driving, which can be very 

valuable and enable a high level of convenience that is not possible otherwise [114]. 
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In-vehicle sensors are available in conventional vehicles, and they play a crucial role 

in measuring essential vehicle parameters. However, regarding vehicle demonstrators, 

additional sensors are frequently incorporated to implement control strategies. This sce-

nario differs from production vehicles, where the utilisation of sensors is constrained due 

to their high cost. Traditional ICC depends heavily on human interface sensors for steer-

ing, acceleration, and deceleration to calculate the basis of reference values [115]. As for 

AD vehicles, global and local targets need to be set [116]. Therefore, the main sensors that 

can still be used in ICC are IMU [117], steering angle, angular wheel velocity sensors, tyre 

pressure measurement sensors (TPMS), vertical wheel displacement sensors, external 

temperature sensors, light and rain sensors, sensors for battery monitoring systems in EV 

such as current, voltage and temperature. IMU, angular wheel velocity sensors, and TPMS 

[118] can also provide useful real-time information for vehicle state estimation [119]. Ex-

ternal temperature, rain, and light sensors can provide basic weather and road state infor-

mation important in tyre friction estimation. Together with the camera, IMU, and angular 

wheel encoders, these sensors can provide information about road surface friction coeffi-

cient [120]. The functions, advantages, and disadvantages of the types of main sensors are 

summarised in Table 1. 

Table 1. Sensor classes used for AD with ICC. 

Sensor Clas-

ses (Data 

Source) 

Advantages Disadvantages Functions 

GNSS 

global positioning, 

heading information, 

time synchronisation, 

insensitive to weather condi-

tions, and 

does not require pre-processing 

vulnerable to weak and multipath 

signals, 

no heading information while sta-

tionary, and 

low accuracy for usual GNSS 

global positioning, 

velocity, and 

heading 

IMU 

low cost and 

independent of weather condi-

tions 

requires pre-processing, filtering, 

and data fusion 

vehicle accelerations and relative 

position, 

angular velocities of sprung mass 

(SM), and 

heading 

LIDAR 

3D data about environment, ob-

jects, 

high stability, 

high accuracy, and 

independent of lighting condi-

tions 

high cost, 

limited mounting point selection 

(for visibility), 

complex processing algorithms, 

high computational resources, 

dependent on weather conditions 

(degraded performance under rain, 

snow and fog), 

does not work with reflective and 

transparent (glass) obstacles, and 

limited longevity due to moving 

parts and being placed outside the 

vehicle 

object detection, and 

distance to the object measure-

ment 
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Radar 

independent of weather condi-

tions,  

easily extractable information 

about the distance and velocity 

of objects, and 

can be placed behind plastic 

parts 

does not detect some objects (that 

do not reflect millimetre-length 

waves or microwaves), 

complex processing algorithms, and 

provides noisy output 

distance measurement, 

velocity movement direction, and 

azimuth and elevation of objects 

Visual sen-

sors  

(monocular 

or  

stereo cam-

eras) 

low cost, 

long life, 

can be placed inside the vehicle, 

high resolution, 

allows environmental and situa-

tional awareness, and 

abundance of information 

requires complex data processing 

algorithms, 

high computational power require-

ments, 

depends on lightning and visibility 

conditions, and 

limited sampling frequency 

motion blur 

object detection, 

object classification, 

object tracking, 

visual odometry, 

visual localisation, 

road curvature and geometry, and 

weather conditions 

Thermal cam-

eras 

independent of lighting condi-

tions 

high price, 

low resolution, 

complex processing algorithms, 

limited sampling frequency, 

high computational power require-

ments, and 

data dependency on thermal condi-

tions 

object detection, 

object classification, and 

object tracking 

Ultrasonic 

sensors 

low cost, 

fast processing, 

low power consumption, 

insensitive to weather condi-

tions, and 

can be placed behind plastic 

parts 

short working range and 

sensitive to sensor contamination, 

e.g., dust or snow 

local proximity 

Other  

in-vehicle 

sensors  

direct measurement limited sampling frequency 

wheel encoders, 

braking pressure, 

steering angle, 

UM vertical displacement/acceler-

ation, 

tire pressure, 

temperature 

Estimators 

and 

virtual sen-

sors (VSs) 

upgradable, 

no recurring production costs, 

and 

reduced mechanical complexity 

of the vehicle 

requires a mathematical model or 

dataset, 

accuracy depends on the accuracy 

of the model or coverage of data, 

high development cost, and 

requires computational resources 

velocity, 

sideslip angle, 

tire pressure, 

traction torque, and 

SM/UM velocity 

V2X  

communica-

tion 

low power consumption, 

low computational resources, 

and 

enables information sharing 

cybersecurity issues and 

wide variety of standards and pro-

tocols 

driving restrictions, 

road condition, 

preliminary location, 

traffic information, 

ambient conditions, and 

states of the vehicles and other 

traffic participants 
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GNSS provides positioning and navigation data to assist with route planning and 

vehicle positioning on the road [109,121]. The usual GNSS update rate is only 1–10 Hz. 

Nonetheless, when it is combined with IMU to achieve GNSS assisted inertial navigation 

system (GNSS/INS) capabilities, higher update rates of 400 Hz for position, velocity, and 

attitude and 800 Hz for pitch, yaw and roll angles, rates, and three-axis accelerations can 

be achieved. State-of-art tactical grade GNSS/INS modules achieve a horizontal position-

ing accuracy of 1 m without real-time-kinematics (RTK) [122]. Based on very useful posi-

tioning, heading, and dynamics information, this sensor is essential for AD [123]. How-

ever, it needs to be more robust to be used on its own due to the possibility of poor navi-

gation signal quality in cities with dense and high buildings. Therefore, there should al-

ways be an alternative system to provide positioning redundancy on roads [124–127]. 

Such systems require a higher level of integration that is enabled by localisation methods 

in the perception layer. 

The recent decade brought considerable advances in computer vision, making cam-

era devices almost as valuable as human vision in driving [108,109]. Human and camera 

systems have common and separate advantages and disadvantages when used for driving 

(Table 1). The cameras provide a 2D or 3D visual perception of the environment, and ther-

mal cameras provide thermal information that can be useful in bad weather conditions or 

at night to detect pedestrians, animals, and other vehicles. The main characteristics of such 

sensors are resolution, field of view (FoV), and light sensitivity. Currently, visual and ther-

mal cameras are used in ADAS systems, which can also be used in monocular and stereo 

vision systems to provide information about the environment, road conditions, and pre-

views [108].  

The cameras are affordable and have quite good sensitivity during the night; yet, the 

data that they provide require pre-processing and complex perception algorithms. The 

advantages of vision cameras are cost-effectiveness, an abundance of information about 

the environment, and the availability of advanced processing algorithms, whereas the dis-

advantages are huge processing resources and lower or poor performance in low light and 

severe weather conditions. The advantages of thermal cameras are the ability to perform 

well at night and discern warm living objects from the environment. Their drawbacks are 

that they are more expensive, have low resolution, and are monochrome. Cameras can 

also work in stereo configurations to detect depth and distance from disparity. ICC cam-

eras can be used for vehicle state estimation, environment, and other traffic participants’ 

detection. 

LIDAR projects infrared light and senses reflections from objects to estimate the dis-

tance by measuring the time of flight and surface reflectivity through the relative ampli-

tude of the reflected signal [108]. LIDAR technology is constantly improving and has re-

cently become affordable as a standard vehicle sensor. Currently, there are mechanical 

spinning LIDARs, solid-state spinning LIDARs, and static solid-state lidars. Even with 

current prices, LIDARs are too expensive for use in production vehicles. LIDAR can be 

used in 2D and 3D localisation [121] and object detection and tracking [128]. Yet most of 

the LIDARs are bound to weather impact [129] and have a limited minimal range of 0.5 m 

and a maximal range of operation of 50–100 m. The main characteristics of these sensors 

are vertical channels/resolution, working distance range, point rate, and vertical and hor-

izontal FoV. LIDARs produce point clouds, where points are reflection points in space and 

the value in this point shows the reflectivity of the point or intensity of reflection [108]. 

The processing of such 3D point clouds requires complex surface detection and object de-

tection and tracking algorithms to make them useful. An example of such an algorithm 

could be HYDRO-3D, where the historical object tracking information is leveraged to as-

sist the inference for object detection; such an approach improves object detection perfor-

mance with short-term occlusion and out-of-range issues [130]. Usually, it is hard to place 

one LIDAR on the vehicle to cover 360 degrees horizontally as there cannot be any ob-

structions in FoV. Therefore, LIDARs often are mounted in the centre and are lifted from 

it to cover the space as close to the vehicle as possible, but there will still be some blind 
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zones in the closest space. Other configurations include mounting two LIDARs on the 

front and back of the roof or mounting 180-degree horizontal FoV LIDARs on four sides 

of the vehicle to achieve the best coverage. Lidar data are suitable for accurate distance 

measurements, object detection, obstacle detection, localisation, and mapping. Usually, 

LIDARs are not used without combining them with cameras in the same AD vehicles 

[108,119]. 

Radar works by emitting electromagnetic waves and collecting the reflections [108]. 

State-of-the-art radars use frequency-modulated continuous wave ultrawide-band signals 

and measure the time of return, strength, and frequency Doppler shift between transmit-

ted and received reflected signals. In the last two decades, radar has become inseparable 

from ADAS systems such as adaptive cruise control (ACC), front collision prevention, lane 

change assistance, and AD in highway traffic jams [108,121]. In contrast to cameras, radars 

measure the distance to objects and relative velocity to the radar. Modern radars even 

support radar imaging using multiple-input multiple-output (MIMO) grid antennas. This 

allows for higher resolution and multi-object detection and tracking using radar in various 

weather conditions [131]. Radars are used for distance measurement, velocity measure-

ment, and object detection in various weather and illumination conditions. The ad-

vantages are affordable price, a robust basic principle of work, the ability to detect vehi-

cles, humans, and animals, possibility to be mounted behind plastic surfaces such as 

bumpers, while the disadvantages are that they only measure a single area or have poor 

resolution, the processing of radar signals can be complex due to multi-path reflections, 

they do not see stationary objects well, and they do not see objects that do not reflect the 

microwave frequencies. Such sensors, together with cameras, can improve object tracking 

precision and trajectory estimation. Radar data can be combined with video data in data-

pre-processing and perception to achieve the most valuable results. Usually, there are 

multiple radars in one AD vehicle with short- and long-range coverage; short-range cov-

erage provides an understanding of the close environment and lane change, and long-

range coverage is for ACC and emergency obstacle detection. 

Ultrasonic sensors are currently widely used in ADAS such as parking assist systems 

and obstacle proximity warning systems and as redundant or cheaper sensors in lane 

change assistants [132]. These sensors emit ultrasound chirps and detect objects and their 

distance to them based on the time of flight of reflected sound waves. Ultrasonic sensors 

work well in various weather conditions, except for sensor contamination. Their ad-

vantages are simple working principles, low price, fast processing, and functionality in 

various illumination and weather conditions if it is not partly covered. The disadvantages 

are that they measure the distance to the closest object in the ultrasonic beam and the 

distance measurement is unstable and may vary a lot; therefore, advanced processing is 

required to obtain stable measurements [132]. These sensors can also be replaced or sup-

ported by short-range radars, infrared proximity sensors [133], or single-channel LIDARs. 

Yet, optical sensors are always more susceptible to weather particles and dust. 

In the near future, AVs may use cooperative sensing that shares information through 

vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication [134]. V2I can 

provide information about the state of intersections and traffic lights, speed limits, and 

road hazards that may be used in ICC to optimise velocity to go on a green light at the 

intersection, to adapt the suspension to road roughness, choose a safe and comfortable 

velocity and be alert for unusual situations on the road. Also, such communication will 

enable sharing an accumulated experience about road roughness in the cloud so that each 

vehicle ICC can prepare vehicle systems in advance for changes in road conditions based 

on GNSS-based or localisation algorithms-based locations [114,135]. V2V communications 

will allow the sharing of real-time information about AD vehicle planned maneuverers 

and trajectories to provide smoother driving comfort [111,136–139]. The advantage of ve-

hicle-to-everything (V2X) communication systems is access to broad information from V2I 

and other V2V and access to computing and data resources in the vehicle-to-cloud (V2C) 

systems; the disadvantages of such systems are strict latencies for real-time operations 



Sensors 2024, 24, 600 13 of 43 
 

 

[140] and cybersecurity [141]. Cyberattacks could create serious safety issues and lead to 

accidents, posing a physical threat to users or passengers [142]. Due to cybersecurity and 

the possibility of losing the connection, AD and ICC should always have fallback solu-

tions, or use V2X as supplementary information to already working self-sufficient sensor 

systems. Reliance on cooperative sensing will reduce the demand for and the total cost of 

onboard sensors, making this approach highly cost-effective [143]. 

Sensor data pre-processing is now essential [110]. By combining sensors using kine-

matic and dynamic models in Kalman Filters and other adaptive filtering methods, the 

data from several sensors can be fused using the sensor fusion approach to achieve ro-

bustness, stability, and accuracy [144–146]. On the other hand, the data pre-processing 

step can involve virtual sensors that add additional measurements that cannot be pro-

vided by physical sensors or that are not available or costly to integrate. Additional sensor 

pre-processing involves deep learning [109]. The pre-processing step should also include 

methods for improving fault tolerance, and observers can be used for sensor fault estimation 

[147]. Kalman filters estimate different parameters using data from low-cost sensors [95]. 

Perception is an essential part of various AD and ICC systems [109,148]. Perception 

can include understanding and prediction of the local environment, road situation, and 

vehicle states. The perception methods such as object classification, object tracking, and 

vehicle localisations make sense of raw data that are brought after the pre-processing step 

by sensors and V2X communication. AD and ICC can use cameras to estimate velocity 

using visual odometry, yaw, roll, and pitch rates, detect road lines [149,150], road curve 

angle and road bank angle, intersections, railroad, and pedestrian crossings, road surface 

type and conditions [118], road lanes and boundaries [151,152], road signs including 

warnings and speed limits [153], and horizontal marking detection and recognition [154], 

road damage, potholes, and distress detection [155], location [156], velocity and displace-

ment of the vehicle [157] and other vehicles on the road even using their taillights [158]. 

ICC systems can use previously described advanced sensors to acquire horizon predic-

tion, and longitudinal and lateral road surface slopes, which, together with in-vehicle IMU 

and GNSS/INS, will enable a more accurate decomposition of linear and gravitation-

caused acceleration. The camera, combined with LIDARs, can provide valuable 3D infor-

mation about surface geometry in front of the vehicle to the nearest 50–100 m, as well as 

information about objects and the distance to them in higher angular resolution than radar 

technology. Object detection and tracking algorithms can rely on LIDAR, radar, and cam-

era data to acquire environmental and situational awareness. 

Vehicle localisation is highly relevant for global and local planning. It can be imple-

mented using direct positioning using GNSS and adding accuracy using LIDARs and 

cameras with simultaneous localisation and mapping (SLAM), visual odometry, and map 

matching methods [109,159,160]. Close surroundings and situational awareness based on 

radars, LIDARs, cameras, and ultrasonic sensors are used for trajectory planning [109]. In 

addition, the navigation system cannot provide much information about the road surface 

and curvature that would be essential for ICC. Thus it will be used together with V2X 

communication to cloud databases that are built by vehicles driving on the roads and 

sending telemetry to get actual data about the road [161,162]. Another way of getting the 

road surface information is by having detailed road profile maps saved in the vehicle’s 

memory and by periodically updating it This way, GNSS/INS with V2X communication 

enables an experience-based preview of the road surface in addition to navigation and 

road maps, which helps ICC to prepare for lateral accelerations on road curves, altitude 

changes, and decelerations and accelerations on traffic lights and intersections in advance 

[134,163,164]. Vehicle states such as longitudinal, lateral and vertical velocities, heading, 

and pitch and roll angles can be estimated by the fusion of data from various sensors and 

systems that overlap and therefore provide robustness and additional accuracy. 

Planning covers the AD decision-making processes from trajectory and behaviour 

generation in the moment to global decisions on the overall aim of the movement, such as 

routing from start to destination point [109], and responding to complex manoeuvres such 
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as roundabout merging [121]. It involves global planning, behavioural planning, local tra-

jectory generation and trajectory validation. 

Global planning considers road networks, traffic conditions, and any known obsta-

cles or restrictions [165–167]. It sets long-term goals and paths for the vehicle to follow 

and goals to achieve. Global planning re-assembles human route planning using detailed 

2D and 3D maps [121], navigation, and personal and publicly available information. Based 

on the fact that global planning is performed before starting the ride, and during any 

changes in the situation or objectives of the ride, it can even be offloaded to the cloud, and 

it can work using V2C communication. To improve at least basic fallback in case of broken 

connection and no network, the systems should provide at least limited global planning. 

For global planning, the system should be provided with the current global position of 

the vehicle, all destination points and desired arrival times if possible, a range that can be 

covered with a current charge or fuel amount, and the time when it will plan and solve 

any conflicts related to the objectives and add any required stops to refuel. Also, it sets 

constraints on lower planning levels such as max velocity, comfort level, etc. This planning 

would depend on vehicle localisation and V2X communications. 

Behavioural planning occurs between the start and finish of the ride. It involves more 

immediate decisions, such as when to change lanes, selection of safe target velocity in 

current road conditions and before the upcoming road curves, or navigating through a 

busy intersection [167–169]. Behavioural planning works with constraints set by the global 

plan but reacts to the nearby environment and situations that happen in real time and are 

predicted for the next moments. It may optimise the driving comfort, arrival duration, 

energy efficiency, safety, wear of components, etc. Behavioural planning would greatly 

depend on the perception of environmental awareness enabled by object detection, clas-

sification, vehicle localisation, object tracking, and trajectory prediction, which relies on 

sensors and V2X communication [136]. It takes the local real-time situation of road surface 

and road obstacles to make decisions. 

Trajectory generation or local planning is the creation of a reference path that the 

vehicle will follow, defined in terms of waypoints, velocity, and acceleration over time, 

known as PT in the literature [170,171]. It may also be bound by references for longitudinal 

velocity, lateral and longitudinal accelerations, and jerk set by global/behavioural plan-

ning. The local surroundings' understanding and prediction together with vehicle dynam-

ics is essential in this process. The trajectory should be aligned with constraints imposed 

by global planning for improving comfort and stability, for example, by limiting acceler-

ations and reducing jerk. At the same time, trajectory generation may account for unex-

pected obstacles found during the ride [94]. Also, trajectory generation and PT are key to 

safe lane changes [139]. For a safe trajectory, the information can be accumulated from 

vehicle sensors and combined with other vehicle information, including current state and 

planned trajectories and behaviour using V2V communication [94]. 

After a detailed exploration of sensing technologies and their role in AD with ICC, it 

is essential to understand their integration with controllers and actuators, as all these ele-

ments form the backbone of vehicles' dynamic control systems. In conventional vehicles, 

the driver directly impacts three primary parameters: acceleration, braking, and steering 

[172]. In AD, the fundamental situation remains the same, but reference parameters de-

pend on the environmental perception and decision-making systems. As the next step, 

reference values are compared to the measured or estimated ones, and a high-level control 

strategy is implemented for defining control demands. High-level controllers may range 

from extremely simple, such as PID, gain-scheduling controllers to highly complex, such 

as adaptive fuzzy SMC, nonlinear model predictive control (NMPC) [173–175]. Tradition-

ally, feedback control was employed for such tasks [176]. However, with the advancement 

of AD technologies, particularly in artificial intelligence and the focus on perception tasks, 

feedforward and control with preview can now be realised. This way, AD vehicles can 

plan and distribute control actions in advance, such as the preparation of the suspension 
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actuators based on upcoming road irregularities [177], predictive pedestrian avoidance, 

[178] and path planning. 

Since multiple actuators are available for control, which is expected to be the case in 

AD, the control allocator has to provide a way to allocate the control effort appropriately. 

It is conducted on a middle layer, where the CA task is resolved, making it an effective 

way to implement fault-tolerant and energy-efficient control [2]. The middle level pro-

duces target values for the low-level controllers, additionally limiting actuator targets 

when the control allocator requests more control effort than the system is physically ca-

pable of producing, a so-called saturation task [38,179]. 

The final component is the low-level control; commonly, the developer of actuators pro-

poses both hardware and software. Therefore, their inner dynamics may be uncertain for the 

automotive manufacturer, and integrating several systems requires additional testing [180]. 

In the sections below, a detailed description of each of the control subsystems is pro-

vided. 

4. Applied Control Methods 

In this section, vehicle state estimators are presented. After that, the evaluation of 

reference parameters considering saturation is described. Finally, control methods used 

for high-level and middle-level controllers are presented. 

4.1. Vehicle State Estimation 

Two types of input parameters are used in control tasks: measured and estimated 

[181]. Due to the sensors’ price, accuracy, and packaging issues, not all of the parameters 

were measured directly on production vehicles. The main measurable parameters were 

accelerations in X, Y, and Z directions and angular rates of pitch, roll, and yaw. This infor-

mation was received from the IMU. Other measurable parameters were the steering angle 

and angular velocities of four wheels [182]. In vehicles with controllable suspensions, ad-

ditional displacement and (or) acceleration sensors were installed on UMs [145], and in 

some industrial applications, additional acceleration sensors were installed above absorb-

ers on sprung mass (SM) [183]. 

Other parameters which are needed for vehicle control were estimated. These param-

eters were longitudinal velocity, vehicle body sideslip angle, cornering stiffness, tyre 

loads, vertical velocities of SM and UM, and other parameters needed for PT.  

There were no sensors for the measurement of longitudinal velocity in production 

vehicles. Longitudinal acceleration and angular wheel speed, which were both measured, 

can be used for estimation. Theoretically, longitudinal velocity can be estimated using the 

formula presented below [184]: 

𝑉𝑠𝑖𝑚𝑝𝑙𝑒 = 𝑟𝑒𝑓𝜔 + ∑ 𝑎𝑥,𝑚𝑒𝑎𝑠(𝑖)𝑑𝑡
𝑘
𝑖=𝑘𝑛𝑜 𝑏𝑟𝑎𝑘𝑒

, (1) 

where 𝑟𝑒𝑓  is the dynamic tyre radius, 𝜔  is the angular velocity of the selected wheel, 

𝑎𝑥,𝑚𝑒𝑎𝑠  is the measured acceleration in the longitudinal direction, and 𝑑𝑡 is the time step. 

Such an approach is not accurate as there are several sources of errors. First, errors occur 

during the estimation of the effective radius. Second, there is noise from angular velocity 

and acceleration sensors. Biases can occur frequently while acceleration is integrated over 

time 𝑑𝑡 (second term in Formula (1)). To address these issues, the Kalman filter is com-

monly adopted. Longitudinal velocity can be estimated using the formula [184]: 

�̂�(𝑘) = �̂�(𝑘 − 1) + 𝑎𝑥,𝑚𝑒𝑎𝑠(𝑘)𝑑𝑡 + 𝐾1 (𝜔(𝑘) −
1

𝑟𝑒𝑠𝑡
(�̂�(𝑘 − 1) + 𝑎𝑥,𝑚𝑒𝑎𝑠(𝑘)𝑑𝑡)), (2) 

where 𝐾1 is the Kalman gain, 𝑟𝑒𝑠𝑡 is the estimated tyre radius, and 𝑘 is the sample step. 

Body sideslip angle can be measured using optical flow or GPS sensors. However, 

this approach still has practical issues related to cost, accuracy, and reliability, which affect 

its use in production vehicles. The body sideslip angle depends on vehicle lateral and lon-

gitudinal velocities (Figure 4), and theoretically can be calculated using the formula: 
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𝛽 = 𝑡𝑎𝑛−1
𝑉𝑦

𝑉𝑥
, (3) 

where 𝑉𝑦 is the lateral velocity, 𝑉𝑥 is the longitudinal velocity.  

 

Figure 4. Bicycle model. 

The sideslip rate can be estimated without the need to use lateral velocity [185]: 

�̇̂�(𝑘) ≈
𝑎𝑦,𝑚𝑒𝑎𝑠

𝑉(𝑘)
− �̇�𝑚𝑒𝑎𝑠, (4) 

where 𝑎𝑦,𝑚𝑒𝑎𝑠 is the measured lateral acceleration and �̇�𝑚𝑒𝑎𝑠 is the measured yaw rate. 

Therefore, the sideslip can be estimated using the following formula [185]:  

�̂�(𝑘) = ∫(
𝑎𝑦,𝑚𝑒𝑎𝑠

𝑉(𝑘)
− �̇�𝑚𝑒𝑎𝑠) 𝑑𝑡. (5) 

The bicycle model is widely used for different control tasks due to its simplicity. The 

disadvantages of this model are that the mass, inertia, centre of gravity, and cornering 

stiffness of the tyres do not change due to load conditions, vehicle velocity, and road type, 

and this is not accurate in real operational conditions [186]. We discuss how to overcome 

the limitations of the bicycle model in the other sections. 

During estimator development, it should be noted that measured acceleration in lon-

gitudinal and lateral directions may be affected by Earth’s gravity while driving on a road 

with a slope or bank [185]. 

In practical applications, sometimes, both measured and modelled acceleration are 

used. Bias can occur during the integration procedure shown in (5); therefore, to eliminate 

the bias, an additional term, based on measured and modelled acceleration, is added to 

the formula. Modelled acceleration can be achieved from tyre forces, as described in [69]: 

𝑎𝑦,𝑚𝑜𝑑𝑒𝑙 =
𝐹𝑦,𝑓𝑟 + 𝐹𝑦,𝑟

𝑚
, (6) 

where 𝐹𝑦,𝑓𝑟 and 𝐹𝑦,𝑟 are lateral forces at the front and rear axles of the vehicle, which de-

pend on tyre slip, yaw rate, velocity, and friction, and 𝑚 is the vehicle mass. There is ex-

ternal wheel force measurement equipment from Kistler and other manufacturers, which 

can be placed on vehicle demonstrators. There is a solution when the hub bearing is 

equipped with sensors to measure forces [187]. However, the solution is not commercially 

available in production vehicles yet. As a result, lateral and longitudinal forces were esti-

mated using tyre models such as Brush, Dugoff, Pacejka, and others suitable for real-time 

applications. The drawback of such an approach is the risk of error occurring when using 
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incorrect tyre/road parameters. However, it is not unlikely to occur if the tyre was para-

metrised correctly [181]. 

Currently, the most widespread estimator for sideslip angle is one based on the Ex-

tended Kalman Filter (EKF) [186]: 

�̂�(𝑘) =
�̂�𝑘
− + 𝛽𝑘

𝑣

2
, (7) 

where �̂�𝑘
− is the predicted sideslip angle; the sideslip angle 𝛽𝑘

𝑣 can be calculated as follows: 

𝛽𝑘
𝑣 =

𝑣𝑆𝑇𝑀 − ℎ(�̂�𝑘
−)

𝐻
+ �̂�𝑘

−, (8) 

where 𝑣𝑆𝑇𝑀  is single track model wheel velocity without longitudinal slip, ℎ(�̂�𝑘
−)  is the 

predicted single track model wheel velocity, 𝐻 is the linearised output, calculated as fol-

lows 𝐻 =
𝜕𝑣𝑆𝑇𝑀

 𝜕�̂�𝑘
− . The sideslip angle defined in (8) is the estimated value and will be marked 

as 𝛽𝑒𝑠𝑡 in formulas below. 

EKF provides robust results for sideslip angle on high and low friction roads, taking 

into account road slope and banked corners. 

During the evaluation of cornering stiffness adaptive tyre-force model may be used 

[188]: 

𝐹𝑦,𝑖 = (𝐶𝑖 + ∆𝐶𝑖)𝛼𝑖, (9) 

where 𝑖 represents the front or rear axle, 𝐶𝑖 is cornering stiffness, ∆𝐶𝑖 is adaptive cornering 

stiffness, and 𝛼𝑖 is front/rear sideslip angle. The parameter ∆𝐶𝑖 was used to take into ac-

count changes in cornering stiffness. It was included in the state vector of the EKF, which 

was constructed with state, input, and measurement. More details can be found in [188]. 

Cornering stiffness estimation using EKF provides accurate and robust results [185,186]. 

The detailed estimation algorithm for cornering stiffness is presented in [181]. 

One of the primary challenges faced by these estimators is their limited accuracy 

when dealing with high wheel slips on low-friction roads or sudden changes in friction 

coefficients, often referred to as "friction jumps" [189]. An effective estimator example is 

the one based on the Unscented Kalman Filter (UKF); while demanding more computa-

tional resources compared to the EKF, it offers the advantage of not requiring the lineari-

sation of the model [190]. Recent research in the field of Kalman filter development for 

nonlinear systems has introduced the concept of adaptive covariance matrices; this ap-

proach yields superior results, particularly in complex driving conditions. 

In the last few years, so-called data-driven virtual sensors for vehicle state estimation 

have been proposed for application in the automotive industry. These data-driven ap-

proaches have the potential to replace model-based methods [145,191,192]. Data-driven 

estimators employ artificial neural networks (ANN), which necessitate datasets for train-

ing, testing, and validation, but do not rely on mathematical models and lead to higher 

accuracy. In essence, when developing a data-driven sensor, experimental data are re-

quired for each unique application. Additionally, a hybrid approach for data-driven esti-

mators has been proposed [193], where a model-based approach is used together with the 

ANN, enhancing the robustness of the estimator. The hybrid approach is more accurate 

than purely model-based or data-driven approaches [194]. 

To sum it up, vehicle state estimation is a crucial task, especially with the advance-

ment of AD technology. The number of sensors (provided in Table 1) will continue to rise, 

including cameras, radars, LIDARs, and other distance sensors becoming mandatory 

components for this technology. Simultaneously, estimators will undergo further devel-

opment, taking advantage of the increasing computational power of AVs. At the same 

time, OEMs will increasingly explore the possibility of transitioning from physical sensors 

to virtual ones. 
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4.2. Reference Generator and Saturation 

When vehicle parameters are measured/estimated they are compared to the reference 

values to realise feedback control strategy. The reference parameters needed for global 

control realisation are presented below. When the reference value reaches a physical limit, 

a saturation effect takes place. Commonly, the implementation of saturation is performed 

in the middle-level controller, for a better understanding by readers we will present it in 

this subsection. 

Some of the reference parameters can be predefined by the driver/occupant, while 

others are dependent on driving conditions and require mathematical models. For exam-

ple, in ESC systems, yaw rate is often used, and reference yaw rate is calculated using a 

bicycle model with the input of steering angle and vehicle velocity [38]. However, simple 

linear models can be used only for linear regimes of motion, on high-friction roads with 

accelerations below 5 [m/s2] [1,195], and with velocities below 40 [km/h]. The main ad-

vantage of such a solution is its simplicity. The situation is different when driving at high 

velocities or on low-friction pavements. In such a case, tyre dynamics need to be taken 

into account, which means that sideslip angle and tyre cornering stiffnesses need to be 

estimated as shown in Subsection 4.1. 

Reference longitudinal velocity is used for several systems in vehicles, such as ACC 

and lane-keeping assist systems (LKAS). The minimal value 𝑉𝑥,𝑚𝑖𝑛 for the ACC system is 

5 [m/s] [196] and 20 [m/s] for LKAS. With an activated LKAS system, longitudinal velocity 

should not decrease more than 5 [m/s] during manoeuvre [197]. 

For the vehicle cruise control system, reference longitudinal velocity is needed, and 

it can be set as constant by the driver/occupant. For comfort improvement using semi-

active suspension, vertical acceleration and vertical velocity of SM can be used as one of 

the metrics, and the reference can be set to 0. 

Reference longitudinal acceleration is used for vehicle control as well. When the ref-

erence value reaches a physical limit or one defined by system developers, a saturation 

effect occurs. The realisation of saturation is described below: 

𝑎𝑥,𝑠𝑎𝑡 = {
𝑎𝑥 , |𝑎𝑥| ≤ 𝑎𝑥,𝑚𝑎𝑥

±𝑎𝑥,𝑚𝑎𝑥 , |𝑎𝑥| > 𝑎𝑥,𝑚𝑎𝑥
, (10) 

where 𝑎𝑥,𝑚𝑎𝑥 is the maximal value of longitudinal acceleration that can be achieved from 

the tyre friction ellipse: 

𝑎𝑥,𝑚𝑎𝑥 = √𝜇𝑔2 − 𝑎𝑦
2 , 

(11) 

 

where 𝜇 is the maximal friction coefficient and 𝑔 is the gravitational acceleration. 

To implement this, we need to define maximal road friction. It can be achieved during 

braking (more details can be found in [198]). 

Longitudinal acceleration can be additionally limited to improve ride comfort. For 

example, in ACC systems, acceleration is limited during braking at velocities higher than 

20 m/s, with 𝑎𝑥,𝑚𝑎𝑥 = −3.5 [m/s2],. After that, 𝑎𝑥,𝑚𝑎𝑥 linearly decreases with a decrease in 

velocity and reaches −5 [m/s2] at velocities lower than 5 m/s. At velocities higher than 20 

[m/s], maximal positive acceleration is limited to 2 [m/s2] and is linearly increasing with 

a decrease in velocity before it reaches 4 [m/s2] at velocities lower than 5 [m/s] [196]. 

The saturated steady-state response (10) cannot describe the dynamic behaviour of 

the vehicle. Therefore, the second-order transfer function can be used for this purpose, 

and the final longitudinal acceleration reference value is set to be: 

𝑎𝑥,𝑟𝑒𝑓𝑓 =
𝑤𝑘
2(1+𝜏𝑠)

𝑠2+2𝜉𝑤𝑘𝑠+𝑤𝑘
2 𝑎𝑥,𝑠𝑎𝑡 ,  (12) 

where 𝑤k is the natural frequency and 𝜉 is the damping ratio. More details about these 

parameters can be found in [1]. 
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Reference lateral acceleration can be calculated using formula (6) or from the bicycle 

model [199]: 

𝑎𝑦 =
𝑉𝑥
2𝛿

𝐿
, (13) 

where 𝛿 is the steering angle and 𝐿 is the wheelbase. Lateral acceleration has limits that 

are defined by: 

𝑎𝑦,𝑠𝑎𝑡 = {
𝑎𝑦 , |𝑎𝑦| ≤ 𝑎𝑦,𝑚𝑎𝑥

±𝑎𝑦,𝑚𝑎𝑥 , |𝑎𝑦| > 𝑎𝑦,𝑚𝑎𝑥
. (14) 

From tyre friction ellipse: 

𝑎𝑦,𝑚𝑎𝑥 = √𝜇𝑔
2 − 𝑎𝑥

2. (15) 

Sometimes 𝑎𝑦,𝑚𝑎𝑥  is additionally limited. For example, in LKASs, lateral acceleration 

is limited to 𝑎𝑦,𝑚𝑎𝑥 ≤ 3[m/s2] [197]. The second-order transfer function can be used to re-

peat the dynamic behaviour of the vehicle in a similar way as was shown in formula (12). 

Reference yaw rate is commonly calculated using a bicycle model (Figure 4). The ref-

erence yaw rate for a steady-state case of a four-wheel steering vehicle is presented below: 

�̇�𝑟𝑒𝑓𝑓,𝑠𝑠 =
𝑉

𝐿 + 𝐾𝑢𝑠𝑉
2
(𝛿𝑓 − 𝛿𝑟), (16) 

where 𝐾𝑢𝑠 is the understeer gradient, 𝑉 is the vehicle velocity, and 𝛿𝑓 and 𝛿𝑟are the front 

and rear axle steering angles, respectively. 

The estimated (available) friction needed to constrain the desired steady-state re-

sponse can be selected based on the available friction. The maximum reference yaw rate 

can be determined as follows [38]: 

�̇�𝑚𝑎𝑥 ≈ 0.85
𝜇𝑔

𝑉𝑥
. (17) 

Maximal friction coefficient can be estimated through different techniques, for exam-

ple, by using ANNs and computer vision, as shown in [120]. The saturated reference yaw 

rate is described as follows: 

�̇�𝑠𝑎𝑡 = {
�̇�𝑟𝑒𝑓,𝑠𝑠 , |�̇�𝑟𝑒𝑓,𝑠𝑠| ≤ �̇�𝑚𝑎𝑥

±�̇�𝑚𝑎𝑥 , |�̇�𝑟𝑒𝑓,𝑠𝑠| > �̇�𝑚𝑎𝑥
. (18) 

The second-order transfer function can be used to repeat the dynamic behaviour of 

the vehicle in a similar way as was shown in formula (12). 

Reference sideslip angle 𝛽𝑟𝑒𝑓  can be set to some threshold with an upper limit. There 

are two approaches commonly used for estimation of limit values. The first one is velocity-

independent [1,200]: 

𝛽𝑙𝑖𝑚𝑖𝑡 = 𝑡𝑎𝑛
−1(0.02𝜇𝑔) ≈ 0.02𝜇𝑔 [rad]. (19) 

Another approach is to use a velocity-dependent value. The sideslip angle may not 

as important for small velocities such that formula (19) may be changed to: 

𝛽𝑙𝑖𝑚𝑖𝑡_2 = 10° − 7°
𝑉2

(40
𝑚
𝑠
)
2. (20) 

Therefore, the reference value is recalculated as: 

𝛽𝑟𝑒𝑓 = {
𝛽𝑒𝑠𝑡 , |𝛽𝑒𝑠𝑡| ≤ 𝛽𝑙𝑖𝑚𝑖𝑡

±𝛽𝑙𝑖𝑚𝑖𝑡_2, |𝛽𝑒𝑠𝑡| > 𝛽𝑙𝑖𝑚𝑖𝑡
. (21) 
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Phase-plane 𝛽 − �̇� is also widely used for ESC systems. In the first stages, the stability 

region is defined for a vehicle, after which control is realised to keep the vehicle stable. 

Using phase plane, the reference sideslip can be calculated as follows [201]: 

𝛽𝑟𝑒𝑓 =

{
 
 
 
 

 
 
 
 𝛽𝑒𝑠𝑡 − 𝛽𝑙𝑖𝑚𝑖𝑡 (1 −

�̇�𝑒𝑠𝑡

�̇�𝑙𝑖𝑚𝑖𝑡
) , 𝛽𝑒𝑠𝑡 ≥ 0 ∧ �̇�𝑒𝑠𝑡 ≥ 0 

𝛽𝑒𝑠𝑡 + 𝛽𝑙𝑖𝑚𝑖𝑡 (1 +
�̇�𝑒𝑠𝑡

�̇�𝑙𝑖𝑚𝑖𝑡
) , 𝛽𝑒𝑠𝑡 < 0 ∧ �̇�𝑒𝑠𝑡 < 0

𝛽𝑒𝑠𝑡 − 𝛽𝑙𝑖𝑚𝑖𝑡 (1 +
�̇�𝑒𝑠𝑡

�̇�𝑙𝑖𝑚𝑖𝑡
) , 𝛽𝑒𝑠𝑡 ≥ 0 ∧ �̇�𝑒𝑠𝑡 < 0

𝛽𝑒𝑠𝑡 + 𝛽𝑙𝑖𝑚𝑖𝑡 (1 −
�̇�𝑒𝑠𝑡

�̇�𝑙𝑖𝑚𝑖𝑡
) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. (22) 

Reference friction is another parameter commonly used in vehicle control systems. 

Theoretically, friction coefficient is the ratio between the longitudinal/lateral force and the 

vertical one [202]: 

𝜇𝑥 =
𝐹𝑥
𝐹𝑧
=
𝑎𝑥
𝑔
, (23) 

𝜇𝑦 =
𝐹𝑦

𝐹𝑧
=
𝑎𝑦

𝑔
. 

(24) 

Equations (23) and (24) furnish values of current friction, which may not necessarily 

represent the maximum. Maximal values can be determined by examining the derivative 

of force (or acceleration); when the derivative equals zero, the maximum value is attained. 

Another very important parameter is the reference longitudinal tyre slip. The actual 

tyre slip is calculated using the formula: 

𝜆𝑖 =

{
 
 

 
 𝑉𝑥 − 𝑟𝑒𝑓,𝑖𝜔𝑖

𝑉𝑥
, 𝑓𝑜𝑟 𝑏𝑟𝑎𝑘𝑖𝑛𝑔

𝑟𝑒𝑓,𝑖𝜔𝑖 − 𝑉𝑥

𝑟𝑒𝑓,𝑖𝜔𝑖
, 𝑓𝑜𝑟 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛

, (25) 

where 𝑟𝑒𝑓,𝑖 is the dynamic radius of the wheel, 𝑖 = 1…4, and 𝜔𝑖 is an angular velocity of 

an i-th wheel. 

In the first approach, the reference wheel slip may be considered to be the constant. 

However, this approach may lead to suboptimal braking performance on certain surfaces. 

Another approach is to estimate the friction and then match it with the closest value from 

a predefined lookup table, available at [203], to identify the road type and subsequently 

select the appropriate reference slip. Implementing this approach can be challenging due 

to the presence of noise in the measured data. To overcome this challenge, one effective 

method involves using ANNs to classify the road type, as demonstrated in the research 

[120]. Once the road type is determined, the reference slip values can be selected from the 

lookup table. This approach is particularly valuable, as it allows predefining the reference 

slip before braking. However, it should be noted that reference slip values may vary for 

different tyres and pavement types. A highly promising approach for estimating reference 

wheel slip involves utilising a polynomial fitting algorithm that considers changes in lon-

gitudinal wheel force, as outlined in the research available at [204], where the reference 

wheel slip is achieved when a change of longitudinal wheel force becomes equal to zero. 

Notably, this method offers the advantage of producing reference values that are insensi-

tive to variations in tyre and pavement types. There are a few more papers where refer-

ence slip is defined; however, they require additional sensors [205] and are not used in 

production vehicles. 

Using active anti-roll bars, active dampers or air springs, the roll angle can be con-

trolled as well. The reference roll may be set up to zero. In such a case for the region where 
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actuators provide enough force actual roll will be similar to zero, due to tyre deformations 

these values will be slightly different. In other cases, roll acceleration may be used as ref-

erence, and can be set up to zero. Another approach is to have a tilting effect when the 

vehicle is oriented towards the corner to increase the comfort level. In such a case reference 

roll may be calculated as follows [206]: 

𝜙𝑟𝑒𝑓 = {
𝑘1 sin(𝑘2𝑎𝑦) , |𝑘2𝑎𝑦| ≤ 𝜋/2

𝑘1, |𝑘2𝑎𝑦| > 𝜋/2
, (26) 

where 𝑘1 is the maximum permissible roll angle, 𝑎𝑦 is the lateral acceleration calculated 

from (6) or (13), and 𝑘2 according to [206] can be calculated as follows: 

𝑘2 =
1

𝑘1𝑔
. (27) 

The reference values mentioned earlier are typically employed in production vehicles. 

The primary objectives in realising AD include desired velocity keeping, lane keep-

ing/changing, following another vehicle, and braking. The first task requires in-vehicle 

sensors, and for the last three, camera and radar data are required. The distance between 

the vehicle's centre of gravity (CoG) and the lane's centreline (referred to as 𝑒𝑦 Figure 4) 

requires tracking. Standard [196] stipulates that the vehicle's longitudinal centreline rela-

tive to the target vehicle's longitudinal centreline should be maintained within a threshold 

of 0.5 meters. The orientation (heading) error of the vehicle concerning the road (denoted 

as 𝑒𝜓 in Figure 4) is the next parameter which is tracked. Reference values of these two param-

eters should be set to minimal values. These parameters are controlled using feedback con-

trollers. Simultaneously, feedforward control mechanisms must be implemented to account 

for road curvature – R. The reference value is estimated from visual data at a look-ahead dis-

tance 𝑥𝐿𝐴  and virtual look-ahead distance 𝑑𝐿𝐴  as shown in  

Figure 4. 

4.3. High-Level Controller 

A high-level control algorithm is designed to compute a vector of virtual inputs to 

the ICC and PT systems, which may include brakes, electric motors, steering system, sus-

pension, active anti-roll bars, wheel positioning, and dynamic tyre pressure system. 

The virtual inputs are usually chosen as longitudinal, lateral, and vertical forces, to-

gether with yaw, pitch and roll moments, and angles including steering, camber, and toe, 

that equal the number of degrees of freedom that the motion control system wants to con-

trol [207]. The equations of motion can be written as follows [202]: 

𝑚(𝑉�̇� + �̇�𝑉𝑧 − �̇�𝑉𝑦) ≈ 𝑚(𝑉�̇� − �̇�𝑉𝑦) = 𝐹𝑥 = (𝐹𝑥,𝑓𝑙 + 𝐹𝑥,𝑓𝑟) cos 𝛿𝑓 − (𝐹𝑦,𝑓𝑙 +

𝐹𝑦,𝑓𝑟) sin 𝛿𝑓 + (𝐹𝑥,𝑟𝑙 + 𝐹𝑥,𝑟𝑟) cos 𝛿𝑟 − (𝐹𝑦,𝑟𝑙 + 𝐹𝑦,𝑟𝑟) sin 𝛿𝑟 −
1

2
𝜌𝐶𝑥𝐴𝑥𝑉𝑥,𝑟𝑒𝑠

2 − 𝜑𝐹𝑧,  
(28) 

𝑚(𝑉�̇� + �̇�𝑉𝑥 − �̇�𝑉𝑧) ≈ 𝑚(𝑉�̇� + �̇�𝑉𝑥) = 𝐹𝑦 = (𝐹𝑦,𝑓𝑙 + 𝐹𝑦,𝑓𝑟) 𝑐𝑜𝑠 𝛿𝑓 + (𝐹𝑥,𝑓𝑙 +

𝐹𝑥,𝑓𝑟) 𝑠𝑖𝑛 𝛿𝑓 + (𝐹𝑦,𝑟𝑙 + 𝐹𝑦,𝑟𝑟) 𝑐𝑜𝑠 𝛿𝑟 + (𝐹𝑥,𝑟𝑙 + 𝐹𝑥,𝑟𝑟) 𝑠𝑖𝑛 𝛿𝑟 −
1

2
𝜌𝐶𝑦𝐴𝑦𝑉𝑦,𝑟𝑒𝑠

2 ,  
(29) 

𝑚(𝑉�̇� − �̇�𝑉𝑥 + �̇�𝑉𝑦) ≈ 𝑚𝑉�̇� = 𝐹𝑧 = 𝐹𝑧,𝑓𝑙 + 𝐹𝑧,𝑓𝑟 + 𝐹𝑧,𝑟𝑙 + 𝐹𝑧,𝑟𝑟, (30) 

𝐼𝑥�̈� = 𝑀𝑥 + �̇��̇�(𝐼𝑦 − 𝐼𝑧) ≈ 𝑀𝑥 = (𝐹𝑧,𝑓𝑙 − 𝐹𝑧,𝑓𝑟)
𝑏

2
+ (𝐹𝑧,𝑟𝑙 − 𝐹𝑧,𝑟𝑟)

𝑏

2
+𝑚𝑠𝑝𝑟𝑎𝑦(ℎ𝑐𝑔 −

ℎ𝑟),  
(31) 

𝐼𝑦�̈� = 𝑀𝑦 + �̇��̇�(𝐼𝑧 − 𝐼𝑥) ≈ 𝑀𝑦 = (𝐹𝑧,𝑟𝑙 + 𝐹𝑧,𝑟𝑟)𝑙𝑟 − (𝐹𝑧,𝑓𝑙 + 𝐹𝑧,𝑓𝑟)𝑙𝑓 −

𝑚𝑠𝑝𝑟𝑎𝑥(ℎ𝑐𝑔 − ℎ𝑝) + (ℎ𝑐𝑔 − ℎ𝑑)
1

2
𝜌𝐶𝑥𝐴𝑥𝑉𝑥,𝑟𝑒𝑠

2 ,  
(32) 

𝐼𝑧�̈� = 𝑀𝑧 + �̇��̇�(𝐼𝑥 − 𝐼𝑦) ≈ 𝑀𝑧 = [((𝐹𝑦,𝑓𝑙 + 𝐹𝑦,𝑓𝑟)𝑐𝑜𝑠𝛿𝑓 + (𝐹𝑥,𝑓𝑙 + 𝐹𝑥,𝑓𝑟)𝑠𝑖𝑛𝛿𝑓]𝑙𝑓 −

[(𝐹𝑦,𝑟𝑙 + 𝐹𝑦,𝑟𝑟)𝑐𝑜𝑠𝛿𝑟 + (𝐹𝑥,𝑟𝑙 + 𝐹𝑥,𝑟𝑟)𝑠𝑖𝑛𝛿𝑟]𝑙𝑟 + [(𝐹𝑥,𝑓𝑟 − 𝐹𝑥,𝑓𝑙)𝑐𝑜𝑠𝛿𝑓 − (𝐹𝑥,𝑓𝑟 −
(33) 
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𝐹𝑥,𝑓𝑙)𝑠𝑖𝑛𝛿𝑓]
𝑏

2
+ [(𝐹𝑥,𝑟𝑟 − 𝐹𝑥,𝑟𝑙)𝑐𝑜𝑠𝛿𝑓 − (𝐹𝑥,𝑟𝑟 − 𝐹𝑥,𝑟𝑙)𝑠𝑖𝑛𝛿𝑓]

𝑏

2
= 𝐹𝑦,𝑓𝑙𝑓 − 𝐹𝑦,𝑟𝑙𝑟 +

(𝐹𝑥,𝑓𝑟 − 𝐹𝑥,𝑓𝑙)
𝑏

2
+ (𝐹𝑥,𝑟𝑟 − 𝐹𝑥,𝑟𝑙)

𝑏

2
,  

where 𝐹𝑥,𝑖 is the longitudinal tyre force, 𝑖 = 𝑓𝑙, 𝑓𝑟, 𝑟𝑙, 𝑟𝑟 – front left, front right, rear left 

and rear right wheels, 𝐹𝑦,𝑖 is the lateral tyre force, 𝐹𝑧,𝑖  is the vertical tyre force, 𝐶𝑥 is the 

frontal drag coefficient, 

𝐴𝑥 is the frontal cross-section of the vehicle, 𝑉𝑥,𝑟𝑒𝑠 is the resulting in longitudinal ve-

locity taking into account wind velocity, 𝜑 is the rolling resistance of the tyre, 𝐶𝑦 is the 

side drag coefficient, 𝐴𝑦 is the lateral cross-section of the vehicle, 𝑉𝑦,𝑟𝑒𝑠 is the resulting in 

lateral velocity taking into account wind velocity, �̇� is the yaw rate, �̇� is the pitch rate, �̇� 

is the roll rate, 𝑏 is the track width, ℎ𝑐𝑔 is the centre of gravity height ℎ𝑟 is the roll centre 

height, ℎ𝑝 is the pitch centre height, and 𝑙𝑓 and 𝑙𝑟  are the distance from the front and rear axle 

to the vehicle CoG, respectively (see Figure 4). Bechtloff [208] has used experimental tests on 

a banked corner of 30 degrees to show that the gyroscopic term can be neglected. Road slope 

and banked corners may be taken into account for normal force calculation [202]: 

𝐹𝑧,𝑓𝑙 =
𝑙𝑟
2𝐿
𝑚𝑔𝑐𝑜𝑠(𝜂𝑙𝑜𝑛𝑔)𝑐𝑜𝑠(𝜂𝑙𝑎𝑡) −

1

2𝐿
𝑚𝑔ℎ𝑐𝑔𝑠𝑖𝑛(𝜂𝑙𝑜𝑛𝑔) −

𝑙𝑟
𝐵𝐿

𝑚𝑔ℎ𝑐𝑔𝑠𝑖𝑛(𝜂𝑙𝑎𝑡)

−
1

2𝐿
ℎ𝑐𝑔𝑚𝑎𝑥 −

𝑙𝑟
𝐵𝐿

ℎ𝑐𝑔𝑚𝑎𝑦 −
1

2𝐿
 𝜌𝐶𝑥𝐴𝑥𝑉𝑥

2ℎ𝑑 , 
(34) 

𝐹𝑧,𝑓𝑟 =
𝑙𝑟
2𝐿
𝑚𝑔𝑐𝑜𝑠(𝜂𝑙𝑜𝑛𝑔)𝑐𝑜𝑠(𝜂𝑙𝑎𝑡) −

1

2𝐿
𝑚𝑔ℎ𝑐𝑔𝑠𝑖𝑛(𝜂𝑙𝑜𝑛𝑔) +

𝑙𝑟
𝐵𝐿

𝑚𝑔ℎ𝑐𝑔𝑠𝑖𝑛(𝜂𝑙𝑎𝑡)

−
1

2𝐿
ℎ𝑐𝑔𝑚𝑎𝑥 +

𝑙𝑟
𝐵𝐿

ℎ𝑐𝑔𝑚𝑎𝑦 −
1

2𝐿
 𝜌𝐶𝑥𝐴𝑥𝑉𝑥

2ℎ𝑑 , 

(35) 

𝐹𝑧,𝑟𝑙 =
𝑙𝑓

2𝐿
𝑚𝑔𝑐𝑜𝑠(𝜂𝑙𝑜𝑛𝑔)𝑐𝑜𝑠(𝜂𝑙𝑎𝑡) +

1

2𝐿
𝑚𝑔ℎ𝑐𝑔𝑠𝑖𝑛(𝜂𝑙𝑜𝑛𝑔) −

𝑙𝑓

𝐵𝐿
𝑚𝑔ℎ𝑐𝑔𝑠𝑖𝑛(𝜂𝑙𝑎𝑡)

+
1

2𝐿
ℎ𝑐𝑔𝑚𝑎𝑥 −

𝑙𝑓

𝐵𝐿
ℎ𝑐𝑔𝑚𝑎𝑦 +

1

2𝐿
 𝜌𝐶𝑥𝐴𝑥𝑉𝑥

2ℎ𝑑 , 

(36) 

𝐹𝑧,𝑟𝑟 =
𝑙𝑓

2𝐿
𝑚𝑔𝑐𝑜𝑠(𝜂𝑙𝑜𝑛𝑔)𝑐𝑜𝑠(𝜂𝑙𝑎𝑡) +

1

2𝐿
𝑚𝑔ℎ𝑐𝑔𝑠𝑖𝑛(𝜂𝑙𝑜𝑛𝑔) +

𝑙𝑓

𝐵𝐿
𝑚𝑔ℎ𝑐𝑔𝑠𝑖𝑛(𝜂𝑙𝑎𝑡) +

1

2𝐿
ℎ𝑐𝑔𝑚𝑎𝑥 +

𝑙𝑓

𝐵𝐿
ℎ𝑐𝑔𝑚𝑎𝑦 +

1

2𝐿
 𝜌𝐶𝑥𝐴𝑥𝑉𝑥

2ℎ𝑑, 

(37) 

where 𝜂𝑙𝑜𝑛𝑔/𝑙𝑎𝑡  are longitudinal and lateral road slopes. Forces presented in Equations 

(28)–(33), and (34)–(37) are presented in Figure 5. 
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Figure 5. Main forces acting on the vehicle. 

The most widespread controller type for lateral vehicle dynamics includes longitudi-

nal or lateral forces and yaw moment. It is used for ESC systems performing using braking 

forces and can be calculated as follows: 

𝑀𝐸𝑆𝐶 = (𝐹𝑥,𝑓𝑟 − 𝐹𝑥,𝑓𝑙)
𝑏

2
+ (𝐹𝑥,𝑟𝑟 − 𝐹𝑥,𝑟𝑙)

𝑏

2
. (38) 

This formula can be used for ESC systems based on TV where moments are generated 

from electric motors as well. Systems where the ESC function is realised using steering 

can be defined as follows: 

𝑀𝐸𝑆𝐶 = 𝐹𝑦,𝑓𝑙𝑓 − 𝐹𝑦,𝑟𝑙𝑟 . (39) 

Feedback control is widely used to control the vehicle. It is a control system that con-

tinually monitors a system’s output and makes adjustments to maintain it close to a de-

sired reference, ensuring stability and performance. To realise a feedback control strategy, 

the error between the reference and measured/estimated values (presented in sections 4.1 

and 4.2) is achieved and the demand is calculated. The control error can be defined as 

follows [201]: 

𝑒𝑥 = {
𝑥𝑟𝑒𝑓 − 𝑥𝑚𝑒𝑎𝑠/𝑒𝑠𝑡 , |𝑥𝑟𝑒𝑓 − 𝑥𝑚𝑒𝑎𝑠/𝑒𝑠𝑡| > ∆𝑥

0, |𝑥𝑟𝑒𝑓 − 𝑥𝑚𝑒𝑎𝑠/𝑒𝑠𝑡| < ∆𝑥
, (40) 

where 𝑥𝑟𝑒𝑓  is the reference value and 𝑥𝑚𝑒𝑎𝑠/𝑒𝑠𝑡  is the measured or estimated value. Thresh-

olds ∆𝑥 are used to define dead zones to eliminate the demand generation when control 

errors are insignificant, for each parameter it is defined separately. 

The control law for ESC for PID controller can be described as: 

𝑀𝐸𝑆𝐶 = ∆𝑀𝜓 = 𝐾𝑝𝑒�̇� + 𝐾𝑖 ∫𝑒�̇� 𝑑𝑡 + 𝐾𝑑Δ𝑒�̇�, (41) 

where 𝐾𝑝  is proportional, 𝐾𝑖  is integral, 𝐾𝑑  is differential gains, 𝑒�̇�  is the yaw rate error 

calculated using formula (40). 

Similarly, control law can be described using sideslip angle as a reference: 

𝑀𝐸𝑆𝐶 = ∆𝑀𝜓 = 𝐾𝑝𝑒𝛽 + 𝐾𝑖 ∫𝑒𝛽 𝑑𝑡 + 𝐾𝑑Δ𝑒𝛽 , (42) 
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where 𝑒𝛽 is the sideslip angle error, which is defined in a more complex way compared to 

(40) [201]: 

𝑒𝛽 = {

|𝛽𝑒𝑠𝑡 − 𝛽𝑟𝑒𝑓|𝑠𝑖𝑔𝑛(𝛽𝑒𝑠𝑡), 𝛽𝑒𝑠𝑡 > 𝛽𝑟𝑒𝑓 ∧ �̇�𝑟𝑒𝑓 > 0 

|𝛽𝑒𝑠𝑡 − 𝛽𝑟𝑒𝑓|𝑠𝑖𝑔𝑛(𝛽𝑒𝑠𝑡), 𝛽𝑒𝑠𝑡 < 𝛽𝑟𝑒𝑓 ∧ �̇�𝑟𝑒𝑓 < 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. (43) 

The above-presented approaches can be used for ESC systems based on braking, TV, 

and brake blending. In systems where the ESC function is realised using steering, the re-

quired moment can be calculated as follows: 

𝑀𝐸𝑆𝐶 = ∆𝑀𝜓 = 𝐹𝑦,𝑓𝑙𝑓 − 𝐹𝑦,𝑟𝑙𝑟 . (44) 

In some cases, instead of forces or moments other parameters may be defined. For exam-

ple, in AV with four-wheel steering, demand for realisation ESC is calculated as follows: 

Δ𝛿 = Δ𝛿𝑓 − Δ𝛿𝑟 = (
𝑙

𝑉
+ 𝐾𝑢𝑠𝑉𝑥) 𝑒�̇�, (45) 

where 𝑒�̇� is the yaw rate error and 𝐾𝑢𝑠 is the understeer gradient. Four-wheel steering can 

be realised using four toe actuators. Such architecture can reduce Ackermann steering er-

ror, or even switch to the Anti-Ackermann steering while driving on handling limit. 

The control law for front wheels can be represented as follows: 

Δ𝛿𝑓 = 𝐾𝑝𝑒�̇� + 𝐾𝑖∫𝑒�̇� 𝑑𝑡 + 𝐾𝑑Δ𝑒�̇�. (46) 

The positioning of rear wheels can be done by proportional control, as shown in [41]: 

Δ𝛿𝑟 = 𝑘(𝑉)Δ𝛿𝑓 , (47) 

where 𝑘(𝑉) is steering gain, as presented in Figure 6. 

The control strategies presented above for vehicle lateral dynamics control. Longitu-

dinal vehicle dynamics controllers used for ABS or traction control systems (TCS) are 

based on vehicle wheel slip, using slip error 𝑒𝜆 as input: 

𝑀𝑏𝑟/𝑡𝑟 = 𝐾𝑝𝑒𝜆 + 𝐾𝑖∫𝑒𝜆 𝑑𝑡 + 𝐾𝑑Δ𝑒𝜆. (48) 

Slip error is defined using (40). In this example, PID controller is shown. 

 

Figure 6. Steering gain of rear wheels (developed by authors, based on [42]). 

AD requires additional sensors like cameras, radars, and lidars to realise perception 

[209], as mentioned in section 3. AD provides great opportunities for the improvement of 

vehicle control by implementing feedforward control as a preview option granted by the 

perception system. First, feedforward control can be realised for steering to provide an 

estimate of the steering angle required to traverse a path with a known path curvature 
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and velocity [210]. This minimises the level of compensation required by the steering feed-

back, reducing tracking errors and allowing for less overall control effort [210]. Below, the 

example is provided for the front wheels steering vehicle. 

The required steering angle can be defined as follows [211]: 

𝛿 = 𝛿𝑓𝑏 + 𝛿𝑓𝑓 = 𝐾𝑝𝑦𝑒𝑦 + 𝐾𝑝𝜓𝑒𝜓 + 𝛿𝑓𝑓 ,  (49) 

where 𝛿𝑓𝑏 is the steering angle required by feedback control, 𝛿𝑓𝑓 is the steering angle re-

quired by feedforward control, 𝑒𝑦 is lateral error, 𝑒𝜓 is heading error, and 𝐾𝑝𝑦 and 𝐾𝑝𝜓 are 

proportional gains. 

Feedforward contribution is calculated based on the turn radius R: 

𝛿𝑓𝑓 =
(𝐿 + 𝐾𝑢𝑠𝑉𝑥

2)

𝑅
. (50) 

Preview system parameters 𝑒𝑦 , 𝑒𝜓, 𝑅 can be defined using computer vision. When the 

vehicle in the front blocks the line of sight of the camera, only the longitudinal and lateral 

distance to the preceding vehicle can be accurately obtained, and single point information 

is available instead of path information. For this reason, two feedback control laws are 

applied. Switching between these laws is done depending on the available measurements. 

In the case of PT, all three system parameters (𝑒𝑦 , 𝑒𝜓, 𝑅) are available. Combined feed-

back error can be defined using 𝑥𝐿𝐴 and 𝑑𝐿𝐴 (Figure 4), and the steering angle can be de-

fined as follows [211]: 

𝛿 = (𝐿 + 𝐾𝑢𝑠𝑉𝑥
2)(

2

𝑑𝐿𝐴
2 𝑒𝑦,𝑟𝑜𝑎𝑑 +

2

𝑑𝐿𝐴
2 (𝑒𝑦 + 𝑥𝐿𝐴𝑒𝜓)). (51) 

Road curvature at the vehicle’s centre of gravity can be approximated from: 

�̂� =
𝑑𝐿𝐴
2

2𝑒𝑦,𝑟𝑜𝑎𝑑
. (52) 

The aforementioned examples are dependent on positioning infrastructure like lane 

markings and GNSS for PT. However, recent advancements in PT systems are geared to-

ward addressing more complex scenarios, including both unsignalised and signalised in-

tersections [212] and multi-lane roads. These advanced systems also require robust per-

ception capabilities to detect road signs and traffic lights. In addition, these PT systems 

must operate effectively in situations where traditional positioning infrastructure is una-

vailable. In such circumstances, the system must: (i) localise multiple vehicles within a 

shared coordinate system, (ii) maintain the desired platoon configuration by reconstruct-

ing the historical trajectory of the leading vehicle—this historical trajectory serves as a 

basis for planning the target state for the following vehicle, and (iii) implement a virtual 

controller-based algorithm capable of generating feasible trajectories for the following ve-

hicle in real-time [213]. These developments mark a significant shift toward more versatile 

and robust PT solutions that can handle a wide range of real-world scenarios, making 

them particularly valuable in novel PT tasks. 

Additionally, during AD, there is no driver, only an occupant, who may not be ready 

for the manoeuvre. So, all the manoeuvres need to be performed ensuring maximum com-

fort for passengers. To ensure this with the preview system, road slopes and banked corners 

may be considered. For vertical dynamics, control pitch/roll moments, or normal forces are 

used [206]. The required force demand can be calculated using (30) and (34) – (37). 

Feedforward control can be implemented without a preview option as well. The first case 

is when feedback control is too slow. Second, measurement/estimation of values needed for 

error calculation is a complex task, and the “correction” effect that feedback control will pro-

vide will not be significant enough. Below we present examples of such systems. 

Using active suspension components, handling and comfort may be improved, not 

only by changing damping forces, but changing pitch and roll moments thus minimising 

pitch and roll angles. There are solutions for roll angle estimation, for example using 
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Takagi-Sugeno fuzzy observer [214]. Practically, pitch and roll angle measurement is prob-

lematic on production vehicles, where the IMU sensor is used, which provides only angle 

rates. So, it may be challenging to realise feedback control. As a result, feedforward algo-

rithms can be used for such tasks. The active anti-roll moment can be realised as a linear 

function of the lateral acceleration [66]: 

𝑀𝜙 = 𝑚𝑠𝑝𝑟𝑎𝑦(ℎ𝑐𝑔 − ℎ𝑟),  (53) 

where 𝑚𝑠𝑝𝑟 is vehicle SM. 

The active anti-pitch moment is obtained from a linear function of the longitudinal 

acceleration: 

𝑀𝜃 = 𝑚𝑠𝑝𝑟𝑎𝑥(ℎ𝑐𝑔 − ℎ𝑝). (54) 

Realising control strategies acceleration is used as an input parameter for pitch and 

roll control.  

The control law for pitch and roll can be defined as: 

𝑀𝑝𝑖𝑡𝑐ℎ/𝑟𝑜𝑙𝑙 = 𝐾𝑝𝑎𝑥/𝑦,𝑟𝑒𝑓 + 𝐾𝑖∫𝑎𝑥/𝑦,𝑟𝑒𝑓 𝑑𝑡 + 𝐾𝑑Δ𝑎𝑥/𝑦,𝑟𝑒𝑓 , (55) 

where 𝑎𝑥/𝑦,𝑟𝑒𝑓 refers to the reference accelerations in longitudinal and lateral directions. 

Practically, the values of pitch and roll angles will not be equal to zero without feed-

back control, as deformation of the tyres appears; however, the error in practical systems 

is less than 1 degree. If such accuracy is not enough, pitch and roll angle can be calculated 

using data from displacement sensors installed on Ums. They are typically used on pro-

duction vehicles equipped with semi-active suspensions. 

As shown, for ICC in AD feedforward, feedback and a combination of feedforward-

feedback controllers may be used. The comparison of various control methods is shown 

in Table 2. All of them have advantages and disadvantages, and researchers developed the 

majority of modifications for controller improvement including, SMC, MPC, optimal, and 

others [215]. MPC controller modifications which are used for PT include adaptive MPC, 

linear time-varying MPC, nonlinear MPC, hybrid MPC, ANN MPC, robust MPC, and 

learning MPC; more details can be found in [101,216,217]. More information regarding 

control methods can be found in [102,103,218]. The usage of adaptive MPC together with 

stability systems such as direct yaw moment control increases PT accuracy [216]. 
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Table 2. Advantages and disadvantages of different control methods. 

Control 

Method 
Advantages Disadvantages Source 

Rule-based 

Used for their high functional safety, 

low computational cost, and real-

time capability 

Commonly outperformed by other con-

trollers and the complexity increases sig-

nificantly for more complex tasks. 

[219,220] 

PID 
Simple structure, easy implementa-

tion, and robustness 

Difficult to tune, contradiction between 

overshooting and response time, and 

poor versatility 

[103,104,218,221,222] 

Backstepping 

(BS) 

Nonlinear BS 

Robustness can be used for complex 

and nonlinear systems control 

Requires the design of Lyapunov func-

tions and has high computational com-

plexity 

[223] 

Pure pursuit 

(Stanley) 

(only for PT) 

Simple layout, few predictable pa-

rameters, suitability for controlling 

vehicle position 

Poor adaptability to nonlinear systems 

(thus not suitable for high velocities) and 

road curvatures because adjusting the 

look ahead distance is challenging. 

[103,218] 

SMC 

Few adjustment parameters, fast re-

sponse, insensitivity to disturbances, 

and parameter change 

It has a problem with the chattering phe-

nomenon 
[103,218,224–227] 

𝐻∞ 
Easy to establish constraints and has 

strong robustness 

Requires complicated theoretical deriva-

tion and can handle only bounded dis-

turbances 

[103,228–230] 

MPC 

A controller can properly deal with 

multiple state and actuator con-

straints 

Difficult to analyse system stability, high 

computational complexity, and poor 

real-time performance 

[1,218,231,232] 

ANN 

Good adaptability for nonlinear sys-

tems and can be used in parallel with 

other controllers to reduce computa-

tional requirements 

Needs training datasets for each new 

task and needs to be retrained for each 

new vehicle 

[218,233–235] 

Fuzzy 
Few requirements for mathematical 

model accuracy 

The selection of rules is not systematic 

and it is difficult to correct tracking er-

rors quickly 

[104,218,236] 

Optimal 
Performance indicators may be opti-

mised 

High requirements for mathematical 

model accuracy and is thus complex to 

implement for control of nonlinear sys-

tems. It also has poor robustness. 

[103,177,218,237] 

The system control variables are determined by the high-level controller, denoted as 

𝑣 = [𝐹𝑥, ∆𝐹𝑧 , 𝛿, ∆𝑀𝜓]
𝑇
 in this context. Specifically, the longitudinal force 𝐹𝑥 is the primary 

variable essential for longitudinal dynamics, and it can be substituted with the moment 

described in equation (48). The change in vertical force ∆𝐹𝑧 can be computed using equa-

tions (34)–(37), or it can be replaced with the pitch/roll moments introduced in equations 

(53) and (54). The use of pitch and roll moments necessitates additional normal forces to 

enhance ride comfort. The steering angle 𝛿 is employed for PT integration, as outlined in 

formula (51), and it can be adjusted with Δ𝛿 (equation 45) to enhance lateral dynamics. 

This can be implemented for both front- and four-wheel driving scenarios. Alternatively, 

the steering angle can be substituted with the moment described in equation (39); how-

ever, this is a more intricate solution. Furthermore, required yaw moments can be gener-

ated as described in equations (41) and (42). 
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4.4. Middle-Level Control 

Modern ground vehicles may be over-actuated systems consisting of several active 

sub-systems such as brakes, steering, suspension, individual-wheel electric motors, wheel 

positioning (camber, toe), and active aerodynamics actuators. Each of the actuators is in-

dependently developed to achieve a specific goal. Improper integration of several subsys-

tems leads to overlapping regions in control tasks. Therefore, to handle such an over-ac-

tuation and to prevent control objectives interference between subsystems, an algorithm 

is required to allocate the control actions of the different actuators [2,238]. 

Formulating CA involves computationally intensive tasks and can be categorised 

into various types: non-optimal methods, linear programming (LP), quadratic program-

ming (QP), nonlinear programming (NLP), model predictive CA (MPCA), multi-agent 

system (MAS) based, data-driven, and hybrid. Numerous methods have been developed 

for each of these CA types; more details can be found in [107,239–241]. 

The optimisation-based weighted least-squares CA method, falling under the QP cate-

gory, is predominantly utilised in ICC implementations [241]. The CA problem for ICC can be 

formulated as an optimisation task to minimise control input and allocation error [38]: 

𝑢 = arg min⏟
𝑢≤𝑢≤𝑢

(‖𝑊𝑢(𝑢 − 𝑢𝑑𝑒𝑠)‖2
2 + 𝛾‖𝑊𝑣(𝐵𝑢 − 𝑣)‖2

2)

= arg min⏟
𝑢≤𝑢≤𝑢

(‖𝑊𝑢∆𝑢‖2
2 + 𝛾‖𝑊𝑣(𝐵𝑢 − 𝑣)‖2

2), 
(56) 

where 𝑣 is the virtual control input request from the high-level controller, which includes 

[𝐹𝑥 , ∆𝐹𝑧, 𝛿, ∆𝑀𝑧], 𝑢 is the actual (reference) control input, with 𝑢 ≤ 𝑢 ≤ 𝑢 actuation limits, 

𝐵 is the control effectiveness matrix, 𝑊𝑢 and 𝑊𝑣 are the weighting matrices for penalising the 

use of specific actuators and for penalising the specific virtual control input, 𝛾 is the weighting 

parameter to minimise the allocation error, and 𝑢𝑑𝑒𝑠 is the desired control input. 

The objective function from (56) can be modified by adding additional objectives in 

the cost function as follows: 

𝐽(𝑘) = ∑‖𝑢(𝑘 + 𝑖) − 𝑣(𝑘 + 𝑖)‖2
2

𝑝

𝑖=1

+∑‖∆𝑢(𝑘 + 𝑖)‖2
2

𝑝

𝑖=1

+ 𝐽𝑎𝑑𝑑 , (57) 

where 𝐽𝑎𝑑𝑑 refers to additional objectives. A description of this part is presented in Table 

3. Some of the additional objectives may be used in combinations, and such an approach 

requires weights for each term. There are additional objectives, where the mechanical loss 

of actuators can be taken into account as well [242]. Partial cost functions that may be used 

for ICC realisation in AVs are presented in Table 4. 
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Table 3. Additional objectives in cost functions. 

Additional Objective Formulation Source 

Tyre energy dissipation longitudinal 𝐽𝑎𝑑𝑑 = ∑ ∫ 𝐹𝑥,𝑖𝑉𝜆,𝑖𝑑𝑡
𝑇

0
4
𝑖=1 =∑ 𝐹𝑥,𝑖

2 𝑉𝑦,𝑖
24

𝑖=1  [97] 

Tyre energy dissipation 𝐽𝑎𝑑𝑑 =∑𝐹𝑥,𝑖
2 𝑉𝑥,𝑖

2

4

𝑖=1

+∑𝐹𝑦,𝑖
2 𝑉𝑦,𝑖

2

4

𝑖=1

 [243] 

Wheel slip power losses 𝐽𝑎𝑑𝑑 =∑∫ 𝑃𝑤,𝑖(1 − 𝜆𝑖)𝑑𝑡
𝑇

0

4

𝑖=1

 [97] 

Energy consumption due to slip 𝐽𝑎𝑑𝑑 =∑|𝐹𝑥,𝑖|

4

𝑖=1

 [97] 

Tyre wear 𝐽𝑎𝑑𝑑 =∑|𝛼𝑖|

4

𝑖=1

 [97] 

Friction rate or tyre workload 

𝐽𝑎𝑑𝑑 =
√𝐹𝑥,𝑖

2 + 𝐹𝑦,𝑖
2

𝐹𝜇,𝑖
 

Defining 𝐹𝜇,𝑖 may be challenging so different ob-

jectives may be reformulated as: 

𝐽𝑎𝑑𝑑 =∑𝜇𝑖
2

4

𝑖=1

=∑
𝐹𝑥,𝑖
2 + 𝐹𝑦,𝑖

2

𝐹𝑧,𝑖
2

4

𝑖=1

 

[43,243]  

where T is the manoeuvre duration, 𝑉𝑥,𝑖 is the wheel linear velocity, 𝑖 = 𝑓𝑙, 𝑓𝑟, 𝑟𝑙, 𝑟𝑟; 𝛼𝑖 tyre slip an-

gle, 𝑃𝑤,𝑖 is the power supplied to the wheel I, 𝜆𝑖 is a slip of wheel I, 𝐹𝑥,𝑖 is longitudinal, and 𝐹𝑦,𝑖 is 

lateral tyre forces, and 𝐹𝜇,𝑖 is the force defined from the friction circle radius. 

Table 4. Partial cost function. 

Path Tracking Source 

Longitudinal 

Velocity offset: J = ∫ (𝑉𝑥,𝑟𝑒𝑓 − 𝑉𝑥)
2
𝑑𝑡

𝑡𝑓
𝑡𝑠

 

Longitudinal acceleration: J = ∫ 𝑎𝑥
2𝑑𝑡

𝑡𝑓
𝑡𝑠

 

Longitudinal acceleration error: J = ∫ (𝑎𝑥,𝑟𝑒𝑓 − 𝑎𝑥)𝑑𝑡
𝑡𝑓
𝑡𝑠

 

Jerk: J = ∫ �̇�𝑥
2𝑑𝑡

𝑡𝑓
𝑡𝑠

 

Lateral position error: J = ∫ (𝑥𝑟𝑒𝑓 − x)
2
𝑑𝑡

𝑡𝑓
𝑡𝑠

 

Path length: J = ∫ 𝑉𝑥𝑑𝑡
𝑡𝑓
𝑡𝑠

 

[101,244,245] 

Lateral 

Lateral position error: J = ∫ (𝑦𝑟𝑒𝑓 − y)
2
𝑑𝑡

𝑡𝑓
𝑡𝑠

 

Heading angle error: J = ∫ (𝜓𝑟𝑒𝑓 − ψ)
2
𝑑𝑡

𝑡𝑓
𝑡𝑠

 

Steering angle: J = ∫ 𝛿2𝑑𝑡
𝑡𝑓
𝑡𝑠

 

Steering rate: J = ∫ �̇�2𝑑𝑡
𝑡𝑓
𝑡𝑠

 

[101,244,245] 

Terminal 

Cost 
  

ICC  

Longitudinal 

Energy: J = ∫ 𝑃𝑥
2𝑑𝑡

𝑡𝑓
𝑡𝑠

 

Wheel slip: J = ∫ (𝜆𝑟𝑒𝑓 − λ)
2
𝑑𝑡

𝑡𝑓
𝑡𝑠

 

Wheel slip power loss: J = ∫ (𝑃𝑟𝑒𝑓 −Miωiλi)
2
𝑑𝑡

𝑡𝑓
𝑡𝑠

 

Traction moment: J = ∫ 𝑀𝑡𝑟
2 𝑑𝑡

𝑡𝑓
𝑡𝑠

 

Braking moment: J = ∫ 𝑀𝑏𝑟
2 𝑑𝑡

𝑡𝑓
𝑡𝑠

 

[22,97,246] 

Lateral Yaw rate error: J = ∫ (�̇�𝑟𝑒𝑓 − ψ̇)
2
𝑑𝑡

𝑡𝑓
𝑡𝑠

 [97,244,246] 
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Sideslip error: J = ∫ (𝛽𝑟𝑒𝑓 − β)
2
𝑑𝑡

𝑡𝑓
𝑡𝑠

 

Lateral acceleration: J = ∫ 𝑎𝑦
2𝑑𝑡

𝑡𝑓
𝑡𝑠

 

Lateral acceleration error: J = ∫ (𝑎𝑦,𝑟𝑒𝑓 − 𝑎𝑦)𝑑𝑡
𝑡𝑓
𝑡𝑠

 

Yaw moment: J = ∫ 𝑀𝜓
2𝑑𝑡

𝑡𝑓
𝑡𝑠

  

Vertical 

Sprung mass acceleration: J = ∫ �̈�𝑆𝑀
2 𝑑𝑡

𝑡𝑓
𝑡𝑠

 

Pitch acceleration: J = ∫ �̈�2𝑑𝑡
𝑡𝑓
𝑡𝑠

 

Roll acceleration: J = ∫ �̈�2𝑑𝑡
𝑡𝑓
𝑡𝑠

 

Yaw acceleration: J = ∫ �̈�2𝑑𝑡
𝑡𝑓
𝑡𝑠

 

Velocity change between SM and UM: J = ∫ (�̇�𝑆𝑀 − �̇�𝑈𝑀)𝑑𝑡
𝑡𝑓
𝑡𝑠

 

Displacement change between SM and UM: J = ∫ (𝑧𝑆𝑀 − 𝑧𝑈𝑀)𝑑𝑡
𝑡𝑓
𝑡𝑠

 

Displacement change between UM and road: J = ∫ (𝑧𝑢𝑚 − 𝑧𝑟𝑜𝑎𝑑)𝑑𝑡
𝑡𝑓
𝑡𝑠

 

SM vertical velocity: J = ∫ �̇�𝑆𝑀
2 𝑑𝑡

𝑡𝑓
𝑡𝑠

 

SM vertical displacement: J = ∫ 𝑧𝑆𝑀
2 𝑑𝑡

𝑡𝑓
𝑡𝑠

 

[177,246–249] 

where 𝑡𝑠 is the starting time, 𝑡𝑓 is the finish time, 𝑀𝑡𝑟 is the traction moment, 𝑀𝑏𝑟 is the braking mo-

ment, 𝑀𝜓 is the yaw moment, �̈�𝑆𝑀 is the SM acceleration, Mi is the wheel torque, ωi is the angular 

wheel, and λi is the wheel slip. 

Choosing the appropriate weights for the cost function, as outlined in formula (56), 

is a crucial step in enabling the pursuit of diverse strategies such as comfort, stability, and 

safety, either individually or in a combined manner, while concurrently minimising over-

all energy consumption. Prioritising safety is paramount, and this can be achieved 

through various means such as emergency braking or lane change manoeuvres. Typically, 

the cost function is structured to ensure that the sum of weights equals 1. When making 

decisions regarding the prioritisation of safety, stability, and comfort, the weight assigned 

to safety should be approximately one order of magnitude higher than the weight as-

signed to the next priority, such as stability [250].  

Several procedures exist for identifying weights, with the first being based on prede-

fined key performance indicators (KPIs). Various combinations of weights are proposed, 

and simulations are conducted to compare the achieved KPIs, allowing for the selection 

of appropriate weights. Another approach involves weight identification techniques 

based on fuzzy logic [251], or the implementation of operational research methods for 

weight definition [252]. Additionally, weights may be presented as hyperbolic tangent or 

exponential functions [253]. 

During the realisation of the control strategy, it is essential to take into account limi-

tations, which are caused by actuators, vehicle physical limits (saturation), or comfort re-

quirements. Saturation and comfort requirements for longitudinal velocity, longitudinal 

and lateral accelerations, yaw rate, and slip angle were presented in section 4.2. Here we 

focus on the physical limits of the actuators and requirements for PT. For the steering 

system, the steering angle is [101]: 

𝛿𝑚𝑖𝑛 ≤ 𝛿 ≤ 𝛿𝑚𝑎𝑥 , (58) 

and steering rate is: 

�̇�𝑚𝑖𝑛 ≤ �̇� ≤ �̇�𝑚𝑎𝑥.  (59) 

Similarly, there are limited camber and toe actuators, braking and propulsion torques 

and their rates, and normal forces produced by active suspension components and/or aer-

odynamic actuators. For PT errors are limited as follows [101]:  

𝑒𝑦,𝑚𝑖𝑛 ≤ 𝑒𝑦 ≤ 𝑒𝑦,𝑚𝑎𝑥 , (60) 
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and 

𝑒𝜓,𝑚𝑖𝑛 ≤ 𝑒𝜓 ≤ 𝑒𝜓,𝑚𝑎𝑥 . (61) 

Distance to the obstacle is limited as follows: 

𝑋𝑚𝑖𝑛 ≤ 𝑋 ≤ 𝑋𝑚𝑎𝑥 . (62) 

In recent years, Model Predictive Control Allocation (MPCA), an optimal control 

technique based on receding horizon control, has gained popularity among researchers, 

especially in addressing PT tasks [101]. This approach allows us to consider the predicted 

future behaviour of the system in the optimisation problem. The cost function is formu-

lated as follows [1]:  

min
𝑈
𝐽(𝑋(0), 𝑈(∙)) = 𝑙𝑁𝑝 (𝑋(𝑁𝑝)) + ∑ 𝑙(𝑋(𝑘), 𝑈(𝑘)) +

𝑁𝑐−1

𝑘=0

∑ 𝑙(𝑋(𝑘), 𝑈(𝑁𝑐 − 1))

𝑁𝑝−1

𝑘=𝑁𝑐

, (63) 

where 𝑋(0) is the initial value of state vector, 𝑈(∙) is the control sequence, 𝑙𝑁𝑝 (𝑋(𝑁𝑝)) is 

the terminal cost, ∑ 𝑙(𝑋(𝑘), 𝑈(𝑘))
𝑁𝑐−1
𝑘=0  is the stage cost function associated with each time 

step, 𝑁𝑐 is the number of steps in the control horizon, and 𝑁𝑝 is the number of steps in the 

prediction horizon. More details can be found in [1].  

Previously described CA methods rely on the system model [254]. Alternatively, an 

ANN-based approach or data-driven approach has been proposed for CA tasks [254,255]. 

This approach allows for the training of the model using input-output data without ne-

cessitating knowledge of the system dynamics. Furthermore, such model-based ap-

proaches are applicable in real-time applications, presenting a potential advantage over 

methods like MPCA, which may pose challenges in certain real-time scenarios. 

The final layer of the coordinated control structure is low-level controllers. Low-level 

control is used to generate input signals to control the actuator and to calculate constraints 

for middle-level CA. In production vehicles, the price of computational hardware is criti-

cally important; at the same time, functional safety requirements must be warranted. As a 

result, to realise low-level control, three main approaches are used widely: lookup tables, 

rule-based algorithms, and variations of PID algorithms. Commonly, these algorithms are 

designed and validated by Tier 1 and Tier 2, who design actuators and/or ECUs, and together, 

they ensure the functional safety of the system and perform homologation procedures. 

5. Discussion and Conclusions 

In the domain of ICC, the utilisation of X-in-the-loop environments or vehicle de-

monstrators remains limited, as evidenced by a constrained number of research papers 

[13,256–261]. The prevailing trend in ICC investigations predominantly involves simula-

tion-based methodologies. While sophisticated control strategies have been conceptual-

ised, uncertainties persist regarding their real-time applicability. Computational power 

has traditionally limited the seamless integration of advanced ICC algorithms into pro-

duction vehicles. Noteworthy industry players including OEMs and Tier 1, are orchestrat-

ing a paradigm shift in contemporary vehicle architecture. This transition involves mov-

ing from multiple individual control units to a streamlined centralised configuration us-

ing a few high-performance computers [262,263]. This evolution is already manifested in 

production vehicles like the Volkswagen ID series [263], heralding promising prospects 

for ICC advancement. 

X-by-wire technology, particularly brake-by-wire, has become indispensable in nu-

merous EVs during the last decade. Steer-by-wire, introduced nearly a decade ago in the 

Nissan Infinity Q50, is gaining widespread adoption by various OEMs and Tier 1 [264]. 

Mandatory ABS and ESC systems in new production vehicles, coupled with the availability of 

actuated suspension systems, collectively contribute to the continuous evolution of ICC. 
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A comprehensive examination of existing literature underscores a notable division 

in the analysis between PT tasks and ICC. The amalgamation of these tasks holds substan-

tial potential for various advantages. This includes augmenting the effectiveness of the 

ESC system through active steering and enhancing PT by bolstering stability with ICC 

interventions. Prior investigations have predominantly delved into systems concentrating 

on longitudinal and lateral vehicle dynamics control. However, considerations such as 

motion sickness and ride comfort have risen as AD gains prominence. Research indicates 

a concerted effort to attain a comfort level in AV comparable to that experienced in trains 

[177,265]. A plausible hypothesis emerges, suggesting an anticipated surge in interest in 

ICC systems, specifically focusing on vertical dynamics in the future. 

Within the PT tasks, acquiring initial data for driving trajectories typically occurs 

without considering perception integration. It is imperative to address this gap. It neces-

sitates a meticulous consideration of the sensors responsible for generating this initial 

data, a thorough analysis of their accuracy and redundancy, and formulation of algo-

rithms to ensure system resilience in fail-safe mode. 
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