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a b s t r a c t

Conflicting objectives are frequently encountered in most real-world problems. When dealing with
conflicting objectives, decision makers prefer to obtain a range of possible optimal solutions from which
to choose. In theory, methods exists that can produce a range of possible solutions, some of which are
“Pareto Optimal”. The application of these methods to solve bi-objective production optimization pro-
blems is increasing. A recent paper introduced a method to find points on the boundary of the objective
function space by solving a constrained optimization problem using adjoint gradients. In this work, we
investigate the applicability of using ensemble optimization (EnOpt) (which relies on approximate en-
semble gradients instead of exact adjoint-based gradients) to generate points along a “Pareto” front with
acceptable computational effort.. Moreover, we investigate the applicability of this approximate gradient
technique to solve constrained optimization problems using the augmented Lagrangian method. Finally,
we compare the performance of this bi-objective optimization method to a traditional weighted sum
method for bi-objective water flooding optimization of two different synthetic reservoir models. The two
objectives used in this work are, undiscounted (0%) net present value (NPV), representing long-term
targets and highly discounted (25%) NPV, representing short-term operational targets. The controls are
inflow control valve (ICV) settings over time for one model and water injection rate controls for the other.
The effect of different starting points and the computational efficiency of the constrained optimization
method are also investigated.
& 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

A majority of studies and applications of life-cycle water
flooding optimization using a model-based approach have focused
on a single objective optimization with emphasis being placed on
the theoretical understanding and practical application of the
optimization methodology. Life-cycle optimization essentially
aims to find a strategy which optimizes long-term reservoir
management targets, but life-cycle optimization is often at the
expense of operationally significant short-term targets. Thus, there
is a need to solve a bi-objective problem to obtain a strategy that
accounts for the two objectives because the long-term perspective
is usually in conflict with the short-term targets which are decided
by operational constraints, contractual obligations etc. Van Essen
et al. (2011) introduced a hierarchical optimization framework to
solve such a multi-objective optimization problem. This was
r B.V. This is an open access article

y, Department of Geoscience
therlands.
motivated by the observation in, e.g., Jansen et al. (2009) that the
objective function space consists of many redundant degrees of
freedomwhich can be exploited to optimize a secondary objective.
This hierarchical structure provides a single optimal strategy
which incorporates multiple objectives. However, decision makers
usually prefer to have multiple strategies to choose from, espe-
cially when dealing with conflicting objectives. Isebor and Dur-
lofsky (2014) applied an evolutionary algorithm to generate points
along a “Pareto” front for a bi-objective water flooding problem.
The main pitfall of this approach was the computational effort
required to obtain the points on a Pareto front. Also they did not
compare the front generated with any other method used to
generate Pareto fronts to check if the front obtained was Pareto
optimal. Liu and Reynolds (2014) applied the normal boundary
intersection method (NBI) first introduced in Das and Dennis
(1998) to a bi-objective water flooding problem with and without
geological uncertainty. Liu and Reynolds (2014) showed that the
NBI method is computationally more efficient than the method of
Isebor and Durlofsky (2014) and produces better solutions than
the traditional weighted sum method. The NBI method involves
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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solving a series of constrained optimization sub-problems. In Liu
and Reynolds (2014), these constrained optimization problems
were solved using an augmented Lagrangian method using an
adjoint formulation to compute the gradients. The adjoint for-
mulation, an overview of which can be found in Jansen (2011) and
references therein, is a computationally efficient method which
requires access to the simulator source code to implement. Most
commercial simulators either do not have a fully developed ad-
joint code or access to the source code is not permissible. This has
led to an increase in the application of various approximate gra-
dient based techniques which are computationally less efficient
but use the simulator as a black-box, and are more flexible. Do and
Reynolds (2013) provided theoretical connections between various
existing approximate gradient techniques which use an ensemble
of perturbed controls to estimate a gradient. One such approx-
imate gradient technique introduced in Lorentzen et al. (2006) and
thereafter in its current form by Chen et al. (2009) is the ensemble
optimization (EnOpt) method. Recently many studies have used
EnOpt for life-cycle production optimization problems. Fonseca
et al. (2014) applied EnOpt to solve a bi-objective optimization
problem using the hierarchical structure proposed by Van Essen
et al. (2011). Additionally there has been an increase in the num-
ber of applications of different evolutionary algorithms to solve
either a bi-objective optimization problem, Isebor and Durlofsky
(2014) etc., or for history matching applications, as detailed in Liu
and Reynolds (2014). In this work we investigate the applicability
of the EnOpt technique to generate points along a “Pareto” front
with acceptable computational effort. A secondary aim is the ap-
plication of EnOpt to solve constrained optimization problems
using the augmented Lagrangian method. Note that Fonseca et al.
(2014) consider hierarchical optimization (using EnOpt), in which
case an a-priory choice is made which of the two objectives is
most important. Here we consider bi-objective optimization (using
EnOpt) based on the Pareto front approach which provides free-
dom to the decision maker to choose the relative importance of
each of the two objectives, as will be explained in more detail
below.
2. Theory

This section investigates the applicability of the use of ap-
proximate ensemble gradients to calculate points on a Pareto front
for bi-objective production optimization problems.

2.1. Objective functions

We first define the objective functions followed by an overview
of EnOpt. We apply the usual expression for Net Present Value
(NPV) as objective function J:
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where qo k, is the average oil production rate in m3/day for time
step k, qwp k, is the water production rate in m3/day for time step k,
qwi k, is the water injection rate in m3/day for time step k, ro is the
sale price of oil in $/ m3, rwp is the cost of water produced in $/ m3,
rwi is the cost of water injected in $/m3, Δtk is the length of the kth

time step in days, b is the discount factor, tk is the cumulative time
in days corresponding to time step k, and τt is the reference time
period for discounting, typically one year (i.e. 365 days). In this
work the two objective functions are:

– Undiscounted NPV, b¼0.0 (0%) in Eq. (1), representing the long-
term objective (“recovery optimization”).
– Highly discounted NPV, b¼0.25 (25%) in Eq. (1), representing
the short-term objective (“day-to-day production optimization”).

2.2. Ensemble optimization (EnOpt)

In this section, we outline the standard formulation of the
EnOpt algorithm as proposed by Chen et al. (2009). We take u to
be a single control vector containing all the control variables to be
optimized. This vector has N components where N is equal to the
product of the controllable well parameters (number of well set-
tings like bottom hole pressures, rates or valve settings) and the
number of control time steps. Chen et al. (2009) sample the initial
mean control vector from a Gaussian distribution while, at later
iteration steps, the final control vector of the previous iteration is
taken as the mean control. However, the initial controls can also be
chosen by the user, as will be done in our experiments. The vector
of controls is given by,

= [ ⋯ ] ( )u u uu 2i N
T

1 2

where the counter i preempts the use of multiple control vectors,
and where ui is assumed to be a random vector which has a mean
u and covariance matrix C̃, i.e. ui�N(u,C̃). Then an ensemble of M
independent samples of N(u, C̃) are generated as,

= + ˜ ( )u u C z , 3i i
1/2

with i¼1, 2, …, M, where zi�N(0,I), i.e., each zi is a vector of in-

dependent standard random normal deviates, and C̃
1/2

is any

square root of C̃. In our examples ˜ =C L
1/2

, where L is the lower
triangular matrix in the Cholesky decomposition of C̃. We truncate
any element of the ensemble of controls outside of the set of
bounds to the bound value. Then, the sample mean is computed as

∑¯ =
( )=M

u u
1

.
4i

M

i
1

To estimate the gradient, a mean-shifted ensemble matrix is
defined as

Δ = [ − ¯ − ¯ ⋯ − ¯ ] ( )U u u u u u u . 5M1 2

Similarly, a mean-shifted objective function vector is defined as

⎡⎣ ⎤⎦Δ = ( ) − ¯ ( ) − ¯ ⋯ ( ) − ¯ ( )J J J J J Jj u u u , 6M
T

1 2

where the average of the objective function is given by

∑¯ = ( )
( )=

J
M

J u
1

.
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M
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In the present paper, we use as the search direction in a stee-
pest ascent algorithm an approximation to the gradient, rather
than the approximation of the smoothed gradient that is used in
standard EnOpt. The approximate gradient is

Δ Δ Δ Δ Δ Δ= ( ) = ( ) ( )Τ Τ† †g U U U j U j, 8

where the superscript † indicates the Moore-Penrose pseudo in-
verse, which is conveniently computed using a singular value
decomposition (SVD); see, e.g., Strang (2006). Do and Reynolds
(2013) demonstrated that it is akin to what is known as a ‘simplex
gradient’, Conn et al. (2009). They also provided theoretical con-
nections between various ensemble methods such as simulta-
neous perturbation stochastic approximation (SPSA), simplex
gradient and EnOpt. Moreover, they proposed a modification to
the gradient formulation which uses the current control vector

ℓu and the corresponding objective function value ℓJ to calculate
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the control and objective function anomalies ΔU and Δj:

Δ = [ − − ⋯ − ] ( )ℓ ℓ ℓU u u u u u u , 9M1 2

⎡⎣ ⎤⎦Δ = ( ) − ( ) − ⋯ ( ) − ( )
ℓ ℓ ℓJ J J J J Jj u u u , 10M

T
1 2

where the superscript ℓ is the optimization iteration index. In this
work, we have used (Eqs. (9) and 10) in combination with Eq. (8).
We note that many authors also use single and double smoothed
versions of Eq. (8) which can be obtained by pre-multiplication
(either once or twice) of the gradient estimate by the covariance
matrix used to generate the ensemble of controls. For the original
derivation of EnOpt, including an extension to use the method
under geological uncertainty (as represented by an ensemble of
geologically different reservoir models), we refer to Chen et al.
(2009). Here we restrict our application to “deterministic EnOpt”,
i.e. to optimization under the assumption that the geology is
known.

2.3. Update rules

The approximate gradient g from Eq. (8) can be used in any
gradient-based optimization algorithm. In our study we use the
simple steepest ascent scheme given by

α= +
‖ ‖ ( )

ℓ+ ℓ ℓ
ℓ

ℓ
∞

u u
g

g
,

11
1

where the superscript ℓ is the iteration index, and αℓ is a step
length in the direction of the approximate gradient. Note that we
scaled the gradient by its infinity norm and choose a step length to
be 10% of the difference between the maximum and minimum
values of the controls. We allowed for a maximum of five back-
tracking steps, each time reducing the step size with a factor of
one half if the objective function J decreases from one iteration to
the next. If after the five back-tracking steps we still do not find an
increase in J we accept the current control strategy and continue
with the optimization until a convergence criteria is satisfied.
Optimal update schemes and their corresponding parameters are
typically case-dependent and more sophisticated line search al-
gorithms are sometimes beneficial. However, we chose to use a
relatively simple update strategy to facilitate the comparison of
the various multi-objective optimization schemes which form the
key subject of our paper.
Mul�ple objec�ves

Bi-objec�ve (Pareto) 
op�miza�on 

Hierarchical 
op�miza�on

Normal boundary 
intersec�on (NBI)

Weighted sum
method Hessian method

Regular weighted
sum method Switching method

NBI with tracking

NBI without tracking

1

2

3

4

5

Adjusted weighted
sum method

Fig. 1. Overview of various methods available to solve multi-objective reservoir
optimization problems.
3. Multi-objective optimization

Most real world problems have multiple objectives that need to
be satisfied. Usually these objectives are in conflict with each
other, i.e. one must accept decreases in one objective to achieve
increases in another objective. The process of optimizing system-
atically and simultaneously a collection of objective functions is
called multi-objective optimization. In theory, there exist many
methods to solve a multi-objective problem and recently there has
been an increased focus on finding methods to solve multi-ob-
jective problems in the reservoir simulation community. These
objectives are usually defined as long-term (life-cycle) objectives
from a reservoir engineering viewpoint and short-term objectives
from a production engineering/operational constraints viewpoint.
Van Essen et al. (2011) showed that these two objectives may be in
conflict with each other and suggested the use of a hierarchical
framework for multi-objective optimization. An alternative to
hierarchical bi-objective optimization (in which the primary ob-
jective is considered more important than the secondary
objective), is regular bi-objective optimization in which there is no
predefined preference for one of the objectives. Isebor and Dur-
lofsky (2014), and Liu and Reynolds (2014) have introduced
methodologies to generate the ‘Pareto front’ i.e. a range of possible
solutions for a decision maker for a regular bi-objective reservoir
optimization problem. Isebor and Durlofsky (2014) presented their
methodology using a hybrid evolutionary algorithm, PSO-MADS,
and reported results which were obtained with a significant
computational effort. Liu and Reynolds (2014) presented a method
using adjoint gradients which was shown to be computationally
much more efficient. We use, in this work, the methods in-
troduced in Liu and Reynolds (2014) and investigate their applic-
ability in combination with the EnOpt method.

A point is defined as “Pareto optimal” if at that point the value
of one objective function cannot be increased unless the value of a
second objective function is decreased or, in other words, a control
set is Pareto optimal if there does not exists any other control set
which achieves better objective function solutions. Liu and Rey-
nolds (2014) provide details of the commonly used theoretical
definitions to determine whether points are non-dominated, i.e.
Pareto optimal, and lie on a Pareto front.

3.1. Weighted sum method

The life-cycle waterflooding problem is inherently a long-term
optimization problem as shown in Van Essen et al. (2011) and
short-term goals are sacrificed to achieve the optimal long-term
targets. A traditional technique to balance two conflicting objec-
tives is the weighted sum method, see Marler and Arora (2004),
which aims to optimize a weighted objective function that com-
bines both objectives in a single function according to

= ⋅ + ⋅ ( )J w J w J , 12ws 1 1 2 2

where Jws is the weighted sum objective function constructed from
the long-term and short-term objective functions J1 and J2 with w1

and w2 as weighting factors. Liu and Reynolds (2014), among
others, showed that the biggest drawback of this method in
finding solutions on a Pareto curve is that the solutions tend to be
concentrated on one part of the curve, i.e., the solutions generated
are not evenly distributed along the Pareto front. Another dis-
advantage is that the weighted sum method cannot obtain points
on the concave part of the Pareto front, see, for example, Fig. 1 of
Liu and Reynolds (2014).
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3.2. Adjusted weighted sum method

To overcome the difficulties of the weighted sum method, Liu
and Reynolds (2014) proposed an adjusted weighted sum for-
mulation where the weights w1 and w2 are now replaced by

˜ =
+ ( )

( *) − ( *)

( *) − ( *) ( *) − ( *)

w ,
13

w
J J

w
J J

w
J J

u u

u u u u

1

1

1 1 1 2
1

1 1 1 2

2

2 2 2 1

and

˜ = − ˜ ( )w w1 , 142 1

while Eq. (12) is replaced by

˜ = ˜ ⋅ + ˜ ⋅ ( )J w J w J . 15ws 1 1 2 2

Note that w1¼1 implies ˜ =w 11 and ˜ =J Jws 1 so maximizing J̃ws
with ˜ =w 11 corresponds to maximizing J1. Similarly, w1¼0 implies
˜ =w 01 and in this case maximizing J̃ws corresponds to maximizing
J2. Liu and Reynolds (2014) found that choosing decreasing w1

from 1 to 0.1 in increments of 0.1, computing the corresponding
values of w̃1 and w̃2, and maximizing J̃ws for each of these w̃1, w̃2
values tended to result in points that were well distributed along
the Pareto front when maximizing J̃ws, whereas Eq. (12) with the
same set of w1 values did not generate a well-distributed Pareto
front.

3.3. Normal Boundary Intersection (NBI) method

In order to overcome the disadvantages of the weighted sum
method, Das and Dennis (1998) proposed a technique, the Normal
Boundary Intersection (NBI) method, to find points on the
boundary of a feasible set starting from points along the “utopia
line” which is defined as the line in the objective function space
that connects the optimum solutions for the individual objective
functions. The boundary points are then found by optimizing the
magnitude of a unit normal to the utopia line in the objective
function space. A detailed description of the NBI method can be
found in Das and Dennis (1998) and, for petroleum engineering
applications, in Liu and Reynolds (2014). The NBI method is mo-
tivated by the fact that the Pareto front must coincide with a part
of the boundary of the feasible region. The disadvantage of NBI is
that boundary points may or may not be Pareto optimal, i.e., may
or may not lie on the Pareto front. However once optimal design
vectors *u1 , …., *un are generated it is easy to check if each point is
non-dominated by any other, which must be the case if (J1( *un),
J2( *un)) is a point on the Pareto front; see definitions in Liu and
Reynolds (2014, 2016). The following is a brief description of the
method as described in Liu and Reynolds (2014) for bi-objective
water flooding optimization problems. For the two objective
functions denoted by J1 and J2 the NBI procedure is repeated for
different points along the utopia line. The general formulation for
NBI is given by

( )
( )

β β β β β β

Φβ

β

= + − ( ) =

= > > + = ( )

t

s t t te u n j u 0
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T1 1 1 2

2 1 2 2
1 2

and where *u1 and *u2 are the optimal control strategies obtained
for the individual optimizations of J1 and J2. The line segment that
connects ( *)j u1 and ( *)j u2 in the objective space as
β β Φβ[ ( *) ( *)][ ] =j u j u T

1 2 1 2 is defined as the utopia line. To solve the
equality constrained optimization problem as described in Eq. (16),
Liu and Reynolds (2014) used the augmented Lagrangian method.
While there exist several techniques to solve constrained optimi-
zation problems, we too have applied the augmented Lagrangian
method because the main purpose of this work is to investigate
the ability of approximate gradient techniques like EnOpt to gen-
erate solutions along a Pareto front. A by-product of this work is
the demonstration of the applicability of an approximate gradient
technique to solve constrained optimization problems. The aug-
mented Lagrangian method (Nocedal and Wright, 2006), used to
solve the different NBI sub-problems, is based on the augmented
Lagrangian function which is defined by

( )μ
μ

λ λ= − −
( )

J t tu e e e, , ,
1

2
,

18nbi
T T

where e is defined in Eq. (16), λis a vector of Lagrange multipliers
and μ is a penalty parameter. The constraint violation is given by

σ = e e/2 .cv
T Liu and Reynolds (2014), because they were using

adjoint gradients, calculated the gradient of the Lagrangian func-
tion with respect to u in terms of the gradients of objective
functions J1 and J2 with respect to u. In this work, because we use
approximate ensemble gradients, we calculate the gradient of the
Lagrangian function directly using Eq. (8). The following is a brief
algorithmic description of the NBI method as implemented in our
case.

– Calculate the initial optimization parameters: β, n, u, t, e(u), λ, μ
where u¼β1* *u1 þ β2* *u2, and where t, following Liu and Rey-
nolds (2014), is initialized as

Φβ= ( ( ) − )
t

n j u
n n

.
T

T

The initial penalty parameter is then given by μ = ( ⋅ )te e/ 0.1T

and the Lagrange multipliers by μλ = e/ ..

– While scv4 0.01 (outer loop)
– Until stopping criteria is satisfied (inner loop)
Maximize the Lagrangian function given by Eq. (18) until con-
vergence is achieved. Note:λ,μare constant within the inner loop
and can only change in the outer loop. Gradients are approxi-
mated using Eq. (8) in conjunction with (Eqs. (9) and 10)

End Inner Loop

– Check criteria to update λ and μ using formulas given in Liu and
Reynolds (2014)

– Repeat until convergence of outer loop.

3.4. Tracking the Pareto front using NBI

The NBI method as implemented by Liu and Reynolds (2014)
choses as a starting point a combination of the optimal control sets

*u1 and *u2 depending on the weight factors chosen. Due to the non-
linearity of the problem these initial points usually have objective
function values that do not lie exactly on the utopia line. The NBI
problem does not necessarily require the starting points to be on
or close to the utopia line, so we propose to generate points on the
Pareto front by starting from a point on the front which has al-
ready been obtained with different values of β1 and β2. This is akin
to “tracking” a front. In the results section, we discuss the ad-
vantages/disadvantages of using this method of generating solu-
tions on a front.
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3.5. Hierarchical switching method

Van Essen et al. (2011) introduced a hierarchical optimization
scheme to achieve multi-objective production optimization, which
prioritizes the objective functions. The optimization of the sec-
ondary objective function J2 is constrained by a maximum allow-
able change in the primary objective function. Thus the primary
objective function J1 will remain close to its optimal value. The
ordering of the different objective functions is the prerogative of
the user, thus secondary objectives can be implemented as pri-
mary objectives and vice versa. This hierarchical scheme is espe-
cially attractive in the presence of redundant degrees of freedom
in the primary objective function. Van Essen (2011) proposed two
different varieties of the hierarchical scheme: one requiring the
computation of the Hessian matrix of the objective function with
respect to the controls, and one which, in a more pragmatic
fashion, alternatingly optimizes the short and long-term objectives
while maintaining the first objective function value close to its
initial maximum. Based on the results in Fonseca et al. (2014), we
use the hierarchical switching method with EnOpt for the opti-
mization where details of the implementation are provided. This
method optimizes the objectives alternatingly with the use of a
switching function according to

Ω Ω= + ( )J J J , 19switch 1 1 2 2

where Ω1 and Ω2 are switching functions for J1 and J2 that take on
values of 1 and 0 or vice versa:

⎪

⎪
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⎪

⎧
⎨
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⎨
⎩
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* − ≤

( ) =
* − >
* − ≤ ( )
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J J

J J

J
J J

J J

1if ,
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0if ,

1if . 20

1 1
1 1

1 1

2 1
1 1

1 1

Here ε is the threshold value and J1* is the value of the primary
objective at the optimal solution achieved during life cycle opti-
mization. We will compare the results obtained from hierarchical
switching optimization to the other methods presented above. The
advantage of using a hierarchical switching method is that a user
can decide the maximum allowable decrease in the primary ob-
jective value which is practically impossible to know when using
the weighted sum method. However, with this hierarchical
method, only a single control set is generated which may or may
not be Pareto optimal since no other information is available for
comparison.

Fig. 1 depicts an overview of various optimization methods
Fig. 2. (a) Five-spot reservoir model. The colors indicate the initial oil saturation. (b) Tr
(blue) thus is sealing. (For interpretation of the references to color in this figure legend
available to solve multi-objective reservoir optimization problems.
In the current paper we compare the methods indicated with
numbers 1–5 with the aid of two numerical examples.
4. Example 1: faulted five-spot

4.1. Reservoir model

Advances in technology have led to an increase in the appli-
cation of inflow control valves (ICVs) to regulate flow rates and
maintain pressure in the reservoir. We consider a control problem
where ICV settings of injection and production wells in a 3D
synthetic reservoir model, from JOA (2007), are manipulated to
optimize waterflooding over the producing life of the reservoir.
The model, illustrated in Fig. 2(a), consists of 25�32�5¼4000
grid blocks. The approximate size of each grid block is
110�90�20 m, so that the reservoir volume is
2.5�3.5�0.1 km3. The geological structure consists of uplifted
blocks, separated by faults. The reservoir is produced using an
inverted five-spot well pattern, i.e. four producers at the corners of
the grid with an injector in the center. The reservoir is divided into
five layers with different horizontal permeabilities. Fig. 2(b) is the
top view of the transmissibility multipliers used for this model and
the white cells are grid blocks that are inactive. There is a sealing
fault on the North-Western side of the block, close to producer 1.
Table 1 lists the reservoir and fluid properties of the model. A
Corey model with exponents equal to 2 for both oil and water is
used for the relative permeabilities where the connate water sa-
turation is 0.2, the residual oil saturation is 0.3 and the end point
relative permeabilities to oil and water are 0.8 and 0.4 respectively.
Capillary pressure effects are not included. The wells penetrate all
five layers with one ICV in each layer. The producing life of the
reservoir is divided into 15 optimization control steps, each of
which is one year (365 days) in duration, and there are 25 controls
per control step which results in a total of 15�25¼375 controls to
be optimized. Water is injected at a constant pressure of 300 bars
and the production wells are operated at a minimum pressure of
15 bars. We used an oil price ro¼130 $/m3, water production costs
rwp¼25 $/m3, and water injection costs rwi¼6 $/m3. Well index
multipliers were used to model the ICVs in the simulator with
bounds of 1�10�4 and 1, where the finite lower bound was
chosen to avoid numerical problems in the simulator associated
with a zero lower bound. For the simulation of the model we used
a commercial fully implicit finite difference black oil simulator
(Eclipse, 2011).
ansmissibility multiplier values for the model. One fault has a zero transmissibility
, the reader is referred to the web version of this article.)



Table 1
Reservoir and fluid properties.

Property Values Units

Porosity 0.2 –

Permeability (layer 1–layer 5) 100-300-50-600-100 mD
Reservoir pressure @1950 m 200 bar
Density of oil 800 kg/m3

Density of water 1000 kg/m3

Temperature 77 °C
Oil compressibility @200 bar 4e-5 1/bar
Water compressibility @200 bar 4e-5 1/bar
Rock compressibility 0 1/bar
Viscosity of oil @1 bar 2 cP
Viscosity of water @1 bar 0.5 cP

Table 2
Objective function values of the black circles in Fig. 3.

β1 β 2 Long-term objective (�109) $ Short-term objective (�109) $

1 0 9.1060 3.3522
0.9 0.1 9.0952 3.4757
0.8 0.2 9.0749 3.5938
0.7 0.3 9.0619 3.7161
0.6 0.4 9.0472 3.8363
0.5 0.5 9.0414 3.9645
0.4 0.6 9.0266 4.0854
0.3 0.7 9.0174 4.2075
0.2 0.8 9.0123 4.3293
0.1 0.9 8.9750 4.4430
0.08 0.92 8.8760 4.4336
0.02 0.98 8.7609 4.4692
0 1 8.7086 4.4759
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4.2. Results for NBI

In this section we compare the use of the NBI method without
tracking (method 3 in Fig. 1) and with tracking (method 4 in Fig. 1).
Following Liu and Reynolds (2014), we obtain the normal vector n
by setting the second component of n to 1 and solving the fol-
lowing equation

[ ( *) − ( *)] = ( )n j u j u 0 21T
1 2

In Eq. (21), ( *)j u1 ¼[9.1060�109, 3.3522�109]T and
( *)j u2 ¼[8.7086�109, 4.4759�109]T. The optimization is not de-
pendent on the choice of n. The solution of this equation gives n¼
[2.822, 1]T, which is the same for all the different starting points
used in this work. Solving multiple NBI sub-problems for different
choices of weight combinations, we obtain the solutions shown in
Fig. 3. The black circles are obtained for starting points based on
the first step of the NBI algorithm presented previously. The ob-
jective of this initialization is to obtain a starting point on or close
to the utopia line. Due to the non-linearity of the problem the
objective function values achieved for this initial guess are never
on the utopia line, but always slightly above the line. Using the
solutions already obtained we also test the applicability of finding
solutions which satisfy the constraints starting from points (con-
trol sets) that have previously satisfied the constraints. This is akin
to “tracking” points along a front. The red circles in Fig. 3 are the
points achieved when the tracking process begins from β1¼0.1
(point A in Fig. 3). We observe that for most of the weight com-
binations, the tracking procedure achieve solutions that dominate
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the solutions represented by the black circles. Since there is no
preference to choose from which end the tracking begins, we also
began the tracking from β1¼0.9 (point B in Fig. 3), to obtain the
solutions shown by blue circles in Fig. 3. We observe that in this
case the tracking procedure achieves solutions that dominate the
solutions from the other two initialization procedures for all the
points. Additionally this tracking procedure is computationally
more efficient as is discussed later. Thus, different initial guesses
for a given value of β1 can have a significant impact on the solu-
tions achieved with the bi-objective optimization algorithm. Be-
sides the different starting points, all other algorithmic details are
exactly the same for the three different sets of points generated.
The gradients are estimated with an ensemble size equal to 30
with a perturbation size equal to 0.001.

Table 2 provides the objective function values for 11 different
optimum points (black circles) along a boundary front. We observe
that for the β1¼0.4 case, we obtain a 0.8% decrease in the primary,
long-term objective function from its optimal value (9.1060�109

$) and an approximately 22% increase in the secondary, short-term
objective function. For the solution obtained with initial guesses
based on the front tracking procedure for β1¼0.1 we observe a
0.8% decrease in the primary objective to achieve a 33% increase in
the secondary objective. There is only a 5% difference in the pri-
mary objective function values between the optimal strategies for
the two objective functions J1 and J2, i.e. the first and last points in
Table 2. Thus, for the objective functions chosen in this study, we
do not expect to observe major increases in primary (long-term)
objective for minor decreases in the secondary (short-term) ob-
jective, indicating that there may exist fewer redundant degrees of
freedom in the short-term objective function.

Independent of the method used to generate the initial guess of
a given β1, the approximate Pareto front generated with NBI (Fig. 3)
shows that one can obtain a sharp increase in the secondary ob-
jective function for a very minimal decrease in the primary objec-
tive. Moreover, it seems that for this case that the Pareto front
consists of two branches; a near-horizontal one near the optimal
secondary objective and a near-vertical one near the optimal pri-
mary objective. Fig. 4(a) is an illustration of the evolution of the
Lagrangian function through the iteration process. The sharp drop in
the value of the Lagrangian function corresponds to an update
(decrease) of the penalty parameter μ in the augmented Lagrangian
method. In most of the cases we observe that we generally perform
5 outer loop iterations in which we update the penalty parameter
for 3 iterations and the vector of Lagrange multipliers λ for the
remaining two iterations. Fig. 4(b), right-side plot, shows the con-
straint violation throughout the optimization process. Note that the
constraint violation must be less than the given tolerance specified
in the optimization algorithm to obtain convergence for the outer
loop of the augmented Lagrangian algorithm. When the inner loop
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converges and the constraint violation is sufficiently small the al-
gorithm converges. Thus it is possible that there are multiple points
at which the constraint violation is satisfied, however there is only
one point at which both the inner and outer loop's stopping criteria
are satisfied.

Fig. 5 depicts a comparison of the optimal control settings for
two different strategies for the highest permeability layer in pro-
ducer 2. The blue line is the life-cycle strategy, i.e. one end point of
Fig. 6. Saturation distribution in layer 4 after 4 years of production for (a) (left), optim
Fig. 5. (For interpretation of the references to color in this figure, the reader is referred
the utopia line, while the red line is the NBI strategy (blue circles
in Fig. 3) obtained for weight combinations of β1¼0.1 and β2¼0.9,
i.e. the strategy that achieved a 33% increase in the short-term
objective for a 0.8% decrease in the long-term objective. From
Fig. 5 we observe that significantly different strategies can be
achieved by performing bi-objective optimization. For the red
curve, the ICV setting is almost fully open for the first 10 years
with lower setting values towards the end of the producing time
period, which is in line with the emphasis on increasing the short-
term increase in NPV. For the optimal life-cycle strategy, the same
ICV is almost closed for four or the first five years and then is fully
open through most of the remaining producing life, in order to
virtually maintain the goal of life-cycle optimization. The opti-
mized control settings for other valves are similar to the trend
shown in Fig. 5. Fig. 6 shows the saturation distribution in layer
4 after 4 years of production for the different optimal strategies
whose controls are compared in Fig. 5. We see that the optimal
life-cycle strategy, being less aggressive, sweeps a much smaller
area with less water being injected, while the optimal NBI strategy,
i.e. the one for β1¼0.1 using the front tracking procedure, is more
aggressive, i.e more is water injected and more oil is displaced and
produced.

4.3. Comparison of weighted sum techniques

In this section we compare the adjusted sum method (method
1 in Fig. 1) and the adjusted weighted sum method (method 2 in
Fig. 1). Liu and Reynolds (2014) showed cases where the adjusted
weighted sum method produces a significantly better spread of
solutions compared to the traditional weighted sum technique.
Tables 3 and 4 provide the solutions for the various weight com-
binations used where we observe, as reported in Liu and Reynolds
(2014), that the adjusted weighted sum technique provides a
better spread of solutions, and in particular gives a better re-
presentation of the front near the optimal long-term NPV which is
the most important part of the front.

Fig. 7 provides a visual comparison of the solutions obtained
with the two different methods. Note: The stopping criterion used
to achieve this set of points is exactly the same as the stopping
criterion used for the inner loop in the augmented Lagrangian-
based NBI method albeit the objective functions are different.

4.4. Comparison of weighted sum and NBI

Fig. 8 is a comparison of the solutions achieved from the ad-
justed weighted sum method and the best results achieved with
al life-cycle strategy and (b) (right) optimal NBI strategy for the controls shown in
to the web version of this article.)



Table 3
Solutions for different weight combination using the weighted sum method.

w1 w2 Long-term objective (�109) $ Short-term objective (�109) $

1 0 9.1060 3.3522
0.9 0.1 9.0851 3.6872
0.8 0.2 9.0419 3.9719
0.7 0.3 8.9720 4.1763
0.6 0.4 8.9156 4.3591
0.5 0.5 8.8696 4.4106
0.4 0.6 8.7873 4.4313
0.3 0.7 8.7538 4.4476
0.2 0.8 8.7403 4.4448
0.1 0.9 8.7243 4.4492
0 1 8.7086 4.4759

Table 4
Solutions for different weight combination using the adjusted weighted sum
method.

w1 w2 Long-term objective (�109) $ Short-term objective (�109) $

1 0 9.1060 3.3522
0.9 0.1 9.1020 3.4502
0.8 0.2 9.0918 3.5996
0.7 0.3 9.0758 3.7522
0.6 0.4 9.0433 3.9326
0.5 0.5 8.9927 4.1400
0.4 0.6 8.9515 4.2268
0.3 0.7 8.8956 4.3905
0.2 0.8 8.8040 4.4384
0.1 0.9 8.7454 4.4423
0 1 8.7086 4.4759
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Fig. 7. Comparison of the spread in points along the Pareto front for the two var-
iants of the weighted sum method.
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the NBI method. The results here are very interesting: for w1¼0.9
the solutions obtained with either method do not dominate each
other while for w1¼0.8 and w1¼0.7 we observe that the adjusted
weighted sum method achieves solutions which slightly dominate
the solutions obtained with NBI. However, for the other weight
combinations the solutions obtained with NBI dominate. It is dif-
ficult to know why this behavior is observed and it could be either
case dependent or gradient quality dependent. However, Liu and
Reynolds (2016) also find that the NBI method generally gives a
better representation of the front than is obtained with the
weighted sum method. Fig. 9 is a comparison of the optimization
path for the different methods with the weight combination
w1¼0.7 and w2¼0.3. The original NBI and the weighted sum have
the same starting point, however they have very different paths.
The adjusting of the weights in the adjusted weighted sum
method leads to a significantly different starting point for the
optimization. All the optimization results shown here are influ-
enced not only by the gradient quality, but for the NBI method,
also by the choices of the initial penalty parameter μ and Lagrange
multipliers λ. Using a larger ensemble size for the gradient esti-
mate (Fonseca et al., 2015) could lead to smoother optimization
paths to solve the individual sub-problems and possibly better
solution points, however for computational reasons this has not
been investigated.

Fig. 10 is an illustration of the total number of simulations
performed for each of the methods including the two initial op-
timization runs to obtain the utopia line. The original NBI method
was computationally the most expensive one with approximately
28,000 total simulations, while for the NBI tracking method about
half the number of simulations required for the original NBI
method were needed to achieve better solutions. Both the
weighted sum variants were computationally much more efficient,
similar to the results obtained in Liu and Reynolds (2014). We note
that ensemble methods to generate approximate gradients, such
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Fig. 12. Permeability field of the reservoir model used for nominal optimization.
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as EnOpt, are well suited for embarrassingly parallel processing.
Moreover, when introducing geological uncertainty, in the form of
different geological realizations, the computational load of en-
semble methods becomes relatively less disadvantageous as
compared to adjoint-methods; see Fonseca et al. (2015). We also
note that the use of ensemble methods to compute approximate
gradients involves various user-defined choices such as the en-
semble size and the definition of the co-variance matrix (which
may be used to enforce temporal correlations between the con-
trols). Moreover a wide variety of ensemble gradient formulations
is available; see, e.g., Fonseca et al. (2015) for an overview. In the
present study we did not address these aspects, and we refer to
Fonseca et al. (2015) for further information on the effects of the
various formulations and user-defined parameters.

4.5. Hierarchical switching optimization method

In this section we compare the results of the NBI and weighted
sum methods with those obtained with hierarchical switching
(method 5 in Fig. 1). The switching method optimizes the objec-
tives alternatingly, while staying within a maximum allowable
decrease ε in the primary objective. The choice of ε is user de-
pendent. Thus, the user has to a-priori decide the maximum al-
lowable acceptable decrease in the optimal primary objective
function value. Fig. 11 plots the optimization path where a max-
imum decrease of 0.3% in the primary objective is allowed (red
curve). We see that we achieve approximately a 10% increase in
the secondary objective. The values obtained are similar to using a
weight combination of w1¼0.7 and w2¼0.3 for either the NBI
method or the adjusted weighted sum method. However the so-
lution is a non-dominated point when compared to all solutions
obtained with the NBI and adjusted weighted sum methods. If the
optimization is repeated for a 1% allowable decrease in the pri-
mary objective we observe that we achieve a 20% increase in the
secondary objective function (black dotted curve). This solution
however is dominated by the solutions from the other two
methods. The hierarchical method only provides a single strategy
which may or may not be Pareto optimal. A tracking procedure like
the one implemented for the NBI method could be used with this
method to generate a front. Alternatively we can use the primary
objective function as a constraint while optimizing a secondary
objective, i.e., a lexicographic approach; for details see Liu and
Reynolds (2016).
5. Example 2: the egg model

5.1. Reservoir model

The model, illustrated in Fig. 12, which was introduced in Van
Essen et al. (2009), represents a channelized depositional system
in the form of a discrete permeability field modeled with
60�60�7¼25,200 grid cells of which 18,553 cells are active. A
detailed description along with fluid and geological properties of
the standardized version of this “egg model” is given in Jansen
et al. (2014). The model is produced using eight peripheral water
injection wells (blue) and four production wells (red) which are
completed in all seven layers. No capillary pressures are included,
the reservoir rock is assumed to be incompressible, and the liquids
slightly compressible. The controls to be optimized are the water
injection rates with a maximum allowable injection rate per well
fixed at 79.5 m3/day and a minimum rate of 0 m3/day. The pro-
ducers are operated at a minimum bottom hole pressure of 395
bars without rate constraints. The producing life of the reservoir is
divided into 40 control steps of 90 days each, and therefore the
control vector u has N¼8�40¼320 elements. The NPV para-
meters used are ro¼126 $/m3, rwp¼19 $/m3, and rwi¼5 $/m3. The
two objectives used are the same as in the previous example. We
use a commercial fully implicit black oil simulator (Eclipse, 2011)
for the reservoir simulations.
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5.2. Results and comparison

For this somewhat larger and more complex example we only
compare the use of the NBI methods without and with tracking
(methods 3 and 4 in Fig. 1). The normal vector n is obtained, si-
milar to the example reported above, by setting the second com-
ponent of n to 1 and solving Eq. (21) which gives n¼[1.6329 1]T.
Where ( *)j u1 ¼[4.7035�107 2.3004�107]T and
( *)j u2 ¼[4.0269�107 3.4053�107]T. For different linearly varying
combinations of β we solve multiple NBI sub-problems to find
solutions for the two objective functions, as shown in Fig. 14,
which satisfy the stopping criteria of the augmented Lagrangian
function and the constraint violation. The black circles are ob-
tained for starting points which aim to start on the utopia line.
Again, due to the non-linearity of the problem, the objective
function values of the starting points are never on the utopia line.
The spread in the points found using NBI is more continuous
compared to the solutions achieved in the previous example.
Again instead of solving the sub-problems from a starting point
close to or on the utopia line we aim to “track” points along a front.
The blue circles in Fig. 13 are the points achieved when the
tracking process begins from β1¼0. The results illustrated in
Fig. 13 seem to suggest that there exists different fronts in the
objective function space. We observe that till β1¼0.7 the points
seem to lie on a line with a certain slope for both the original NBI
method as well as the NBI tracking method. From β1¼0.6 onwards
the points seem to align themselves along a line with a completely
different slope for both the methods. The points obtained with NBI
tracking seem to always dominate the solutions obtained with the
original NBI method. Thus, similar to the previous example, dif-
ferent starting points of the optimization have significant impact
on the solutions achieved. Besides the different starting points, all
other algorithmic details are exactly the same for the three dif-
ferent sets of points generated. The gradients are estimated with
an ensemble size equal to 30 with a perturbation size equal to 0.01.

With only a 0.7% decrease in the primary (long-term) objective
function, we have found a solution that achieves an approximately
19% increase in the secondary (short-term) objective function for
the black open circles, i.e. the original NBI method for β1¼0.7. For
the same weight combination, the NBI tracking method finds a
solution for which a 0.3% decrease in the long-term objective leads
to a 20% increase in short-term gains. Additionally, for the blue
circles, i.e., NBI with tracking, we observe that for a 1.3% decrease
in the primary objective, we can achieve an even more significant
increase of 38% in the secondary objective. This last result
corresponds to the β1¼0.4 solution.

The results from the previous example illustrated that the ad-
justed weighted sum method produced a much better spread in
solution points compared to the weighted sum method. Thus for
this example we compare the NBI solutions with solutions from
the adjusted weighted sum technique. We observe, as shown in
Fig. 14, that the solutions achieved by the NBI tracking method
dominate the solutions from the adjusted weighted sum method.
The solutions from the original NBI method also dominate the
solutions from the adjusted weighted sum method. A comparison
of the plot of remaining oil saturation for the top layer after 3 years
of production illustrates the difference in the strategies; see Fig. 15.
The optimal long-term strategy is less aggressive, as significantly
less area is swept by injected water, while the NBI tracking solu-
tion for β1¼0.4, i.e. a 38% increase in short-term gains for a 1.3%
decrease in long-term gains, is a more aggressive strategy as larger
areas of the reservoir have been swept.

The control strategies that resulted in the saturation plots
shown in Fig. 15 are illustrated in Fig. 16. The control settings have
only been displayed for the first 3 years to highlight the differ-
ences between the strategies. We observe that the optimal NBI
strategy injects much more water compared to the optimal long-
term strategy. A similar trend in the control strategies is seen in
the other wells.

Fig. 17 is a comparison of the computational efficiency of the
different methods. The original NBI method requires the highest
computational effort similar to the results reported for the pre-
vious example. We needed about 21,000 simulations to achieve
the 11 points for the original NBI method while we needed ap-
proximately 14,000 simulations when using the NBI to track the
boundary front. The adjusted weighted sum method required less
than 8000 simulations to find the 11 points, and is thus the
computationally most efficient one, though the solutions achieved
are far from Pareto optimal compared to the solutions achieved by
the NBI method.

5.3. Discussion

The differences between the results of the adjusted weighted
sum and the traditional weighted sum methods for this example



Fig. 15. Comparison of oil saturation distributions for the top layer after 3 years of production for (a) optimal long-term solution (left side) and (b) NBI tracking solution for
β1¼0.4 (right side).
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Fig. 16. Comparison of injection rate controls for injector 7 (top) and injector 8
(bottom) for the first 3 years of production resulting from the different strategies,
life-cycle strategy (red line) and NBI strategy (blue line). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 17. Comparison of the computational effort required to achieve solutions using
the different methods.
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are far from significant because the adjustment of the weights
does not lead to very different weight combinations, i.e., scaling of
the problem is not as important for this problem as it was for the
5 spot ICV problem and the problems investigated in Liu and
Reynolds (2014). For this example, the difference between the
optimal primary long-term objective function values is 14%, which
is much higher than in the previous example, while the difference
between the short-term objective function values is 48%.
6. Conclusions
– Approximate gradient techniques like EnOpt can be used to
generate solutions for a bi-objective optimization problem
which may lie on a Pareto front although the computational
costs are significant.

– Tracking the Pareto front using NBI is a computationally more
efficient method and produces better solutions for the decision
maker to choose from compared to the original NBI method.
Different starting point have a significant impact on the optimal
solutions achieved. This is observed for the two different ex-
ample problems investigated.

– The adjusted weighted sum produces a more even distribution
of solutions and is marginally computationally more efficient
compared to the traditional weighted sum technique for the ICV
control problem.

– For some weight combinations, the NBI method produces solu-
tions which dominate solutions obtained by the weighted sum
variants and vice versa for the ICV control problem.

– A hierarchical switching method provides a single solution
which satisfies the maximum allowable decrease in the objec-
tive function value. For the ICV problem, the single solution
point was non-dominated when compared to all the points
obtained from the NBI and weighted sum method.
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