
Analysing Android Spam Call Applications: Developing a Methodology For
Dynamic Analysis

Atanas Pashov
Supervisor(s): Apostolis Zarras, Yury Zhauniarovich

EEMCS, Delft University of Technology, The Netherlands
22-6-2022

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering

Abstract
The aim of this research is to provide a structured
approach for dynamically analysing Android appli-
cations, focusing on applications that block or flag
suspected spam caller IDs. This paper discusses
ways to determine how an application stores the
data regarding the phone numbers, and what APIs
it utilizes. In order to develop a methodology of
what to search for while performing dynamic anal-
ysis, the research in this paper focuses on analysing
one such Android application, using it as a tem-
plate. Additionally, it provides insights and limita-
tions on this analysed application, and potential im-
provements both on the techniques and tools used.

1 Introduction
Many bad actors have developed malicious tactics and meth-
ods to abuse the telephony infrastructure and disturb the mo-
bile phone users due to the popularity of mobile telephony.
Because of this many Android applications that detect and/or
prevent spam calls have been created 1, however, there is little
information about how they work or where they fetch their in-
formation from. This research paper will focus on analysing
such applications and developing a methodology to try and
get more information about how they work, and where they
get their data from.

The already existing research on the topic focuses on build-
ing a database of potentially spam or scam callers. Four dif-
ferent ways to obtain such phone numbers are described in
[9].

Other research focuses on the security aspects of the An-
droid operating system, and how it is (theoretically) protect-
ing its users. Section 7.10 in [12] describes the spam filters
that Android utilizes and some notable third-party applica-
tions, but does not go in depth into how they work, what per-
missions/API calls they require, or where the data is taken
from and stored.

Another way to detect spam calls is by utilizing algorithms.
An algorithm that detects spam phone numbers based on
call patterns is discussed in [8]. [11] provides an algorithm
that classifies calls based on conversation, and [14] develops
a ”Humming call” smart phone application that helps with
identifying spam calls.

However, there is little to no research on how existing pro-
duction applications work (as it is also briefly discussed in
[9]), including where they get their data from, what API calls
the applications need and/or perform, and where the data re-
garding (potentially) spam/scam calls is stored.

Therefore, the main objective for this reseach is to develop
a methodology that can be used to determine what Android
API calls are performed by a pre-determined set of applica-
tions by performing dynamic analysis. Additionally, a script
has to be developed that extracts the differences between sub-
sequent runs of a given application with different inputs (dif-

1https://api.ctia.org/wp-content/uploads/2020/01/
robocall-resources-for-android-2020.pdf

ferent phone numbers that would be handled differently based
on the functionality of the application).

2 Methodology
In order to dynamically analyse the API calls made by An-
droid applications, ACVTool [10] was used 2. After initial
inspection of the reports generated by ACVTool (an exam-
ple and description of the output of ACVTool can be found
in Appendix D), it is obvious that a big number of the API
calls made by the applications are irrelevant to the subject of
the research (namely what API calls are needed for the call
blocking and caller ID flagging nature of the applications, as
described in Section 1). In order to ease the research process,
a Python script was developed 3, such that the common API
calls can be identified.

The process of analysing an application can be summarized
as follows:

Using ACVTool:

1. Instrument a given application.

2. Upload the instrumented apk to the Android emulator.

3. Start ACVTool and simulate a phone call to the emulated
device.

4. Generate a report.

This has to be done multiple times in order to generate re-
ports for different cases, namely when the phone number is
blocked, flagged as spam, or let through. These cases depend
on the application that is being tested.

Then, using the report generated by ACVTool:

1. Extract the differences between the API calls from the
several generated reports using the developed script. The
tool will automatically extract the differences in all re-
ports in the reports/ directory, and will group them by
application. So if there are multiple applications anal-
ysed, each having multiple reports, the script will extract
the differences between the reports per application, and
group the results by the application’s corresponding di-
rectory.

2. Manually analyse the common API calls (this is not as
important as the next step, but it is still important to try
to go through some of the common libraries especially
if there is obfuscation involved, as they likely contain
useful information).

3. Manually analyse the different API calls.

Finally, the data extracted from the analysis, and the differ-
ent techniques utilized and motivations are summarized in the
next section. The next section also contains the findings and
the developed workflow after analysing the first application
referenced in Appendix A. More detailed notes and the ex-
tracted information can be found in the github repository 4.

2https://github.com/pilgun/acvtool
3https://github.com/yoonhwanjeong/SpamCallBlockingApps/

blob/dynamic api analysis/ref/extract common api calls.py
4https://github.com/yoonhwanjeong/SpamCallBlockingApps/

tree/dynamic api analysis/ref

https://api.ctia.org/wp-content/uploads/2020/01/robocall-resources-for-android-2020.pdf
https://api.ctia.org/wp-content/uploads/2020/01/robocall-resources-for-android-2020.pdf
https://github.com/pilgun/acvtool
https://github.com/yoonhwanjeong/SpamCallBlockingApps/blob/dynamic_api_analysis/ref/extract_common_api_calls.py
https://github.com/yoonhwanjeong/SpamCallBlockingApps/blob/dynamic_api_analysis/ref/extract_common_api_calls.py
https://github.com/yoonhwanjeong/SpamCallBlockingApps/tree/dynamic_api_analysis/ref
https://github.com/yoonhwanjeong/SpamCallBlockingApps/tree/dynamic_api_analysis/ref

Differences Extractor Tool
After the initial observations of the report generated by ACV-
Tool, the need to somehow filter the irrelevant executed in-
structions from the decompiled code became apparent. This
is the reason why a script that logs the decompiled smali code
file names that have differences in the executed lines of code
was developed.

The script utilizes the xml reports that were generated by
ACVTool. For each apk analysed, the script compares the dif-
ferent reports generated and logs for which file the code cov-
erage differs, and between which reports. This significantly
lowers the number of files and lines of code that need to be
manually analysed, as it removes the ”expected” libraries that
are executed in multiple runs of the same application. Usu-
ally these common libraries include low-level Android code
that is irrelevant to the subject of research.

Still, there are a lot of cases, where code from these com-
mon libraries has to be analysed. This is mainly because a
big part of the application code could be obfuscated and may
have most of its strings and variable names removed, as was
the case for the first application - Hiya. Therefore, in order
to understand what information some variables hold, or what
some executed methods do, deeper code analysis is usually
required.

3 Dynamic analysis of the utilized Android
system APIs

As described in Section 2 the dynamic analysis of an Android
application involves a lot of manual code inspection. The re-
sults of this analysis and the developed methodology as a re-
sult of the performed research are described in the following
subsections. Initially, I expected to be able to perform man-
ual analysis on at least 5 different applications. However, this
became unfeasible after I started with the first application,
because in order to obtain any information, I had to spend a
considerable amount of time and effords reverse engineering
the obfuscated code of the application. Later, when I per-
formed analysis on a second application, I found that it did
not utilize nearly as much obfuscation, and the codebase was
considerably smaller.

Still, the topic of the research was modified to include de-
veloping a methodology of reverse engineering these types of
applications, as it would provide an approach that could be
used later to analyse a bigger list of applications. This sec-
tion, therefore, describes the workflow and results mostly of
the first application - Hiya.

Experimental work
This section provides a discussion of the findings and moti-
vations of the analysis performed on the application. Since
decompiled code analysis is very time consuming, the re-
search was performed on one application, namely the first
provided in Appendix A. The following subsections summa-
rize the findings after analysing the application and provides a
discussion of the motivations and expected results from each
of the performed actions.

Hiya: Initial Analysis
In the beginning of the analysis, several interesting library
names were chosen for a quick code inspection, as they could
contain some useful information about, for example, where
the data was stored or how the application works. Especially
the com.hiya.client.database.db library is interesting,
because it contains references to a Hiya.db database and a
lot of references to the androidx.roomAPI. This is to be ex-
pected, as Room is an Android built-in library that provides a
layer of abstraction over the default internal SQLite database
[6].

More interesting is the HiyaRoomDb_Impl$a.smali de-
compiled file, because it contains several CREATE TABLE
SQL statements, which reveal some internal database schema
that is sumarized in Appendix C. HiyaRoomDb_Impl.smali
also contains two interesting hashes, one of which is put into
the room_master_table after it is initialized.

Finally, before getting into the deeper code analy-
sis, I briefly looked over some of the libraries in the
com.hiya.stingray package and found the following
strings in some executed code segments:

Two interesting method names: ”callLogDisplayType”,
”notificationType” were executed. Based on the names, it
looks like they return how the UI should present the caller
ID for this received phone call. It would be interesting to find
out later where they get this data from, i.e. if it is from local
storage, or from a remote database.

A ”CallLifecycleHandler” object. Based on the class
name, it sounds like this object handles the phone call’s life-
cycle, so it might be used to extract, analyse, and/or store
some information about the call.

A format string: ”Showing post call notification:
reputation=%s identity=%s notification=%s”. The most in-
teresting part is the logged ”reputation” variable, because it
would determine how the caller ID should be treated. So it
should be further analysed where this ”reputation” variable
comes from.

These libraries are probably used to intercept the phone
calls in real time and display the UI menu that appears when-
ever the phone is ringing. Regarding the Android APIs uti-
lized to intercept the call, the TelephonyManager [7] and
BroadcastReceiver [1] classes were used.

Analysing the Differences
After noting the initial observations from only one run of the
application, it was run with 4 different phone numbers that
can be found in Appendix B. Then, the script described in
Section 2 was used to generate the differences between the
four runs of the application. Each class was manually anal-
ysed, and the most interesting findings are summarized be-
low:

There were some differences in some internal Android
WorkManager libraries. This API is used to run code asyn-
chronously by creating tasks and specify when they need
to be run [4]. Following some of the classes referenced
there, I found an Enum with values ”CONNECTED”, ”ME-
TERED”, ”NOT REQUIRED”, ”NOT ROAMING”, ”UN-
METERED”, which belong to the NetworkType Android

enum 5. As expected, the application would probably behave
differently depending on what the network connection is.

There were also some differences in the code cover-
age in the scheduling internal library, and classes of the
WorkDatabase and ProcessUtils types, but they are prob-
ably not relevant.

In an obfuscated class there is a method
this.isFraudOrSpam that receives an instance of an
enum as a parameter and returns a boolean. I also found a
this.toCallerId that returns a RoomCallerId that has the
same fields as one of the tables found earlier (caller_ids
in Appendix C). So from the caller ID of the caller, the
application determines if the call is a fraud or spam. It is still
not clear where the data is fetched from.

There were some differences between some google li-
braries regarding number parsing, which is to be expected,
as different phone numbers were used between the differ-
ent application runs, and they need to be parsed differently
based on the location. There were also some references to
user configs and different languages, so this is probably re-
lated to locale settings. Some of these libraries probably
deal with phone number parsing, which would explain why
there are differences in the reports as different phone num-
bers would be parsed differently, depending on multiple fac-
tors, like geographical location, locale config of the device,
phone number prefix, etc. It is interesting that in the report
of the phone number that is flagged as suspected spam, a
NumberParseException class from the i18n library is ex-
ecuted, and a custom PhoneParserFailure class returns an
exception. This would indicate that this phone number has
an unexpected format, but still is flagged as suspected spam.
Therefore, there is some offline on-device phone number pro-
cessing that is able to flag some caller IDs.

An interesting library used is the i18n internationalization
library. It is used to differentiate between different phone
types, but it can also be used to set up the region of the
phone [3]. This is useful, in the use-case of the applica-
tion, because some caller IDs might need to be handled
differently, depending on the geographical region of the
receiving phone. The application also differentiates between
the following types of phone numbers: FIXED LINE,
FIXED LINE OR MOBILE, MOBILE, PAGER, PER-
SONAL NUMBER, PREMIUM RATE, SHARED COST,
TOLL FREE, UAN, UNKNOWN, VOICEMAIL, VOIP.

Most of the classes in the com.hiya.stingray package
contain useful information. For example, a class inside the
Stingray Manager iterates through the following enum val-
ues: SPAM, FRAUD, NEUTRAL, AUTO BLOCK PASS,
AUTO BLOCK BLOCK, BLOCKED STARTS WITH,
BLOCKED BLACK LIST, BLOCKED AUTO SPAM,
BLOCKED AUTO FRAUD, BLOCKED AUTO PRIVATE,
BLOCKED CALL SCREENER, ADD BLACKLIST, RE-
MOVE BLACKLIST. Based on thses values it is apparent
that the application also utilizes an internal database (to add
and remove blocklisted phone numbers) together with some
caller ID analysis (BLOCKED STARTS WITH), in order to

5https://developer.android.com/reference/androidx/work/
NetworkType

categorize the phone numbers.
The application sets up a Realm databse 6 and implements

a lot of realm data access objects (or DAOs). One of these
objects that is saved in this database is a PhoneEvent object. It
is saved in the test with the identified caller ID, but not in the
test with the suspected spam caller. This is because this phone
number is probably invalid, as it became clear when it was
being parsed. This may be because of the location that the
application perceived the phone to be in, combining it with
the lack of a country code. Based on some error messages I
found, this PhoneEvent object is saved, sent, and found in the
com.hiya.stingray.manager.l2 class.

While analysing the differenes in the one of the
stingray packages, I found an interesting method name -
hashingCountryListProvider, as it indicates that a list
of country codes is utilized to perform some analysis on
the phone numbers. Moreover, another variable name is
hashingCountriesDao, therefore, since there is a data ac-
cess object, there is also a database probably containing con-
try codes, stored on-device.

A similar object, called PhoneSendEvent, is also saved
to the Realm database, and it has the following parameter
names: time, phone, isContact, direction, termination, pro-
fileTag, phoneWithMeta, userDisposition, duration, client-
Disposition, eventType, isBlackListed. The information
stored in this object is apparently logging the phone calls
that the device receives. These parameters indicate that in-
formation about the phone calls is stored in an application
database, but I found no indication that this information left
the device, so the application might perform some heuristic
analysis, based on phone calls from a given caller ID, in or-
der to determine if a call should be flagged. However, fur-
ther research on the uses of this database table are required
to determine how this information is used,especially because
Realm is not the default internal Android database system and
remote data synchronization could have been configured.

The methods in the stingray manager packages ex-
ecute several interesting function calls, like for exam-
ple java/util/Locale;->getDisplayCountry(). This
might be used by the UI to display from what coun-
try the phone call originates, or it might also be
saved in the internal Realm database (as it is in the
com.hiya.stingray.manager package and not in any of
the UI packages) to be used later. Also, an obfuscated library,
referenced in a class from the stingray manager package, pat-
tern matches country codes. It is probably used in combina-
tion with the country list mentioned above to categorize caller
IDs based on contries. Additionally, there are several enums
with interesting values, most notably ADD BLACKLIST and
REMOVE BLACKLIST, which would indicate that users can
also blocklist numbers they consider spam.

Analysing Code Containing Interesting Strings
After analysing the differences in the executed instructions, it
was still not obvious where the data was taken from. There-
fore, I decided to search for some potentially useful strings
through the decompiled code, and analyse the classes where
they were used. I had to also search for some of the classes

6https://realm.io/

https://developer.android.com/reference/androidx/work/NetworkType
https://developer.android.com/reference/androidx/work/NetworkType
https://realm.io/

and enums that were found above to find where they were
initialized or referenced.

One of the obfuscated functions, namely
g.g.b.c.f->v(), that was found during the analysis
of the differences in the executed instructions, returns
whether something is fraud or spam. Therefore, after search-
ing what initializes this object, and thus saves the data that
v() returns, I found several potentially useful classes. One
of them is a UI class that deals with displaying the phone
numbers as it has parameters with the following names:
”formattedPhone”, ”rawPhone”, ”contact”, and references a
ViewUtil object.

I also found the following class names and mapped
them to the obfuscated variables used in the code:
BlockManagerLazy, DeviceUserInfoManager, CallScreener-
HelperLazy, RxEventBus, ContactManager. The most inter-
esting would be the ContactManager, as I had encountered it
before, and it could indicate that whether a phone number is
in the device’s contract list could influence how it was shown
in the app. It would be interesting to further test how the
contact information is used by the app, and whether it is sent
somewhere over the network. I found an indication that this
information may be sent over the Internet, which is discussed
below.

I continued searching for where some of the more in-
teresting functions are called. It was done by recursively
searching throught the strings of the decompiled Android
code for the name of the method, in order to determine
where it is referenced. For example, the method that calls
this.isFraudOrSpam is referenced in a method in a differ-
ent obfuscated class that then calls getReputationLevel()
and then uses the returned value to decide whether the call
is SPAM or FRAUD. Also, apparently there are different
FRAUD enums that are being referenced throughout the code
base. Using this information I was able to conclude that the
reputation level of a caller ID is used to determine whether
the call is spam, fraud, or neither.

At this point I started going through the more interesting
classes that are connected to getting the reputation of a caller
ID, since this would indicate where the caller ID informa-
tion is fetched from. There are a lot of DAO objects, like
RoomCallerId that are initialized, and some enums, most
notably ProfileIconType with possible values BUSINESS,
WARN, PERSON, STOP, PREMIUM, NONE, and Reputa-
tionLevel with possible values OK, UNCERTAIN, SPAM,
FRAUD. This step requires many recursive string searches
and analysis of obfuscated object references.

It was important to find where the caller ID information
is stored. I started searching for references to the enum
and DAO classes, containing information about the caller
IDs. Apparently, this information comes from the Room
database, because there is a SELECT * FROM caller_ids
string passed to a method from the androidx.room pack-
age. The implementation of the Room DB class that returns
the caller IDs uses a Map object stored as a global variable to
store and return the required values. The values in the Map
were added from a different method in the same class, where
they are taken from a parameter given to this method. Fur-
thermore, there is a global variable that is used as an index

for the variable passed as a method parameter.
The method that adds the values to the internal Map struc-

ture is called in 11 different classes, 6 of which are in
the androidx.work.impl package. It makes sense that
the Room DB implementation utilizes the internal Android
WorkManager, so I did not spend too much time analysing
them. However, all of the 11 classes look like internal
database calls. I could not find any references to remote con-
nections that fetch the caller ID information.

Additionally, one of the DAO objects contains a variable
that is referenced by the string reputationLevel. The
global variable that holds this value is only set in the construc-
tor, and has one getter function that is referenced in multiple
places in the application. The information about the reputa-
tion level of the caller in this package looks to be taken from
calls to the internal Room database. Since this information
could have been cached, I decided to further search for some
common internal Android libraries that are associated with
making requests over the Internet.

Analysing Code Referencing Certain Android Libraries
One such class would be HttpURLConnection, however,
there are too many obfuscated places where this class is ref-
erenced. The Google and Android classes can probably be
ignored, as they would contain mostly library functions that
do not provide useful information. I looked over some of the
classes and most are not executed in any of the reports. The
most interesting things I found are summarized below.

There is a ping request to https://pagead2.
googlesyndication.com/pagead/gen 204?id=gmob-apps.
This URL seems to be connected to Google’s advertisements,
which would indicate the application uses Google AdSense 7.
However, the package name is obfuscated, so unfortunately
as some Android APIs cannot be discovered from the
package name alone, they need to be analysed as well.

Additionally, there are many references to Google Protocol
Buffers, which is a protocol used to serialize and deserialize
data to and from raw bytes [5]. They may be used by an An-
droid or Google library, but it is also possible the application
uses them to transmit some data, because as it is discussed
below, the application also uses GSON 8.

Moreover, the g.g.a.a.k.j class performs
some m/z$a;->request()’s and may throw a
HiyaExcessiveAuthRequestsException, so it prob-
ably makes some internal Hiya HTTP authenticated requests.
However, I could not find credentials being hardcoded
anywhere, so they might be stored in a database or are
heavily obfuscated.

Finally, I found a class that links the following strings to
global variables and contains only getter and setters (which
could inticate it is a DAO, or some data-store object):
”attributionDTO”, ”displayCategory”, ”displayImageString”,
”displayLocation”, ”displayMessage”, ”displayName”, ”en-
tityType”, ”localizedLineType”, ”profileTag”, ”reputation-
Level”. Each of them is an object that can be further analysed
if necessary, but they appear to be connected to the UI part of
the application.

7https://www.google.com/adsense/
8https://github.com/google/gson

https://pagead2.googlesyndication.com/pagead/gen_204?id=gmob-apps
https://pagead2.googlesyndication.com/pagead/gen_204?id=gmob-apps
https://www.google.com/adsense/
https://github.com/google/gson

Analysing Code Referencing Certain Strings
Another interesting string to search for is ”JSON”, because
of how popular the JSON serialization protocol is to trans-
mit data over the internet, as pointed out by [13]. The files
that contain ”JSON” reveal some information about the re-
quests the application makes, but most of them are not con-
nected to determining whether a phone call should be con-
sidered as spam. The only potentially relevant informa-
tion is fetched with an HTTP GET request that retrieves
hash/hashCountries. The hashed countries list may be
used to determine whether a phone number is considered as
spam based on the geographical location of the user and/or
the location of the dialing phone number.

Other references of ”JSON” include a file called
Hiya_Services.json, a service for reporting called
Zipkin 9, a package revenuecat.purchases that
is used to manage paid subscriptions 10, and several
HTTP requests. Most notably, the application makes
the following requests: POST requests to auth/token,
phone_numbers/feedback, phone_numbers/events;
POST request to phone_numbers/eventProfile that prob-
ably sends an EventProfile object to some server, and expects
a JSON response. auth/token is probably used to gener-
ate some session token, and phone_numbers/feedback
probably sends users’s feedback, if they want to share it.

However, the requests to phone_numbers/events and
phone_numbers/eventProfile are really interesting. The
EventProfile object contains the following variable names:
”attribution”, ”displayBackground”, ”displayDescription”,
”displayDetail”, ”displayImage”, ”displayName”, ”pro-
fileDetails”, ”profileIcon”, ”profileTag”, ”reputationLevel”,
”verified”, so it is probably connected to displaying
the information on the user interface. The request to
phone_numbers/events expects a list of g.g.a.a.i.k.d
objects. This class contains the following variable names:
”cachedProfileTag”, ”clientSignal”, ”clientTag”, ”disposi-
tion”, ”eventProfileEvent”, ”profileTag”, of which the ”dis-
position” and ”eventProfileEvent” objects are the only ones
that are not Strings. The former is not interesting (it con-
tains mainly just enums), but the latter is an object with the
following variables: ”direction”, ”duration”, ”isBlock”, ”is-
Contact”, ”lastInteraction”, ”phone”, ”termination”, ”times-
tamp”, ”tokens”, ”type”.

This object suggest that information about the received
phone calls could be sent in an HTTP POST request. It is
important to note that there is no indication that the meth-
ods containing the POST requests have been executed in any
of the reports. Nevertheless, just the possibility to send an
”Event” object is alarming from a privacy point of view, al-
though the context, in which it is used, is not known.

Finally, the last analysed file that references ”JSON” is
an obfuscated class containing some cryptographic infor-
mation, although most of it is not executed in the reports.
First, there are two Date variables initialized in one of
the two constructors: for years 1970 and 2048, so this is
probably the timespan in which the certificates in the other

9https://zipkin.io/
10https://www.revenuecat.com/

methods are valid. The second constructor reads the fol-
lowing variables from its parameters: ”userInfoProvider”,
”productInfoProvider”, ”idProvider”, ”measurable”. Then,
the other methods use a java.security.PrivateKey
and a java.security.cert.Certificate objects for
JOSE (Javascript Object Signing and Encryption) with
com.nimbusds.jose 11. This implies that the application
needs to transmit some JSON objects securely over a net-
work. The class uses RSA with SHA-512 to generate public-
private key pair to be used to securely share some secret prob-
ably with a remote server.

Another method builds a GSON object with the following
fields: ”createdAt”, ”productName”, ”installationId”, ”devi-
ceId”, ”accountUserId”, ”userPhoneNumber”, and then con-
verts it to a string. Considering the field names, this object is
probably used for logging some of the device’s information
to a server. Especially interesting is the ”userPhoneNumber”
field, because it implies the phone number of the user us-
ing the application is saved on a Hiya server and tied to the
user’s ”accountUserId” and more importantly to the ”devi-
ceId”, which should be private information.

The last two methods in this class contain: a hard-
coded PKCS8EncodedKeySpec and X509 strings, which
are probably Hiya’s public key and are used to gen-
erate private keys, because there is an exception with
the string ”Failed to generate private key based on the
Hiya key.” if the key generation fails; a base64 string
”6bef0890a22741259d0d28035810f5cc” that is decoded and
XORed with the second method parameter.

RoomCallerId and SQL
The last things I decided to search for are the RoomCal-
lerId data class, as it is an object containing information
about the caller ID, and the string ”SQL”, because I al-
ready found some SQL schemas, queries, and references
to a database, so it would be useful to find what other in-
formation is saved. I found an insert SQL statement that
is being built for the caller_ids table, which is prob-
ably for an internal database, as it was with the select
statements discussed above. Furthermore, RoomCallerId
objects are converted to CallerId, and one method iter-
ates through Set objects given as parameters and references
a com.hiya.client.database.db.HiyaRoomDb class to
get phone, phoneNumbers, and callerIds. This is a simi-
lar pattern as the one observed for the select statements dis-
cussed above with the difference that there a Map object was
used instead of a Set. I could not find any indication that the
HiyaRoomDb object connects to a remote database, and all
references to it suggest the use of an internal database.

The search for ”SQL” produced mostly expected results:
mostly references to SQLite 12 (the internal Android database
system) and some java.sql classes like Timestamp,
Date, and Time. An interesting database is referenced in
the com.hiya.client.repost.db.a class, which opens
”Elixir.db” and creates a table called stored_requestswith

11https://mvnrepository.com/artifact/com.nimbusds/
nimbus-jose-jwt

12https://developer.android.com/training/data-storage/sqlite

https://zipkin.io/
https://www.revenuecat.com/
https://mvnrepository.com/artifact/com.nimbusds/nimbus-jose-jwt
https://mvnrepository.com/artifact/com.nimbusds/nimbus-jose-jwt
https://developer.android.com/training/data-storage/sqlite

type, body, and retry_count fields, and also contains the
relevant select, update, insert, and delete queries.

This indicates that some HTTP requests are being built and
stored in this database, although it is important to note this
class is not executed in any of the reports. Other interesting
table names I found are ”events”, ”event metadata”, ”trans-
port contexts”, and ”event payloads”, and their correspond-
ing ”create”, ”alter”, and ”drop” SQL queries. Neither of the
SQL modifier statements were executed in any of the reports,
but this is probably because there might be certain conditions
that need to be met. For example, the ”create” query might
only be executed when the application starts, and the ”drop”
query might be executed whenever the application is updated.
However, there is an SQLiteEventStore database object in
the g.f.a.b.i.x.j.b0 class that operates on the ”events”
table. This ”events” table seems to save different objects
than the ones discussed with the phone_numbers/events
request, because the names of the variables are different.

Some of the ”events” database table’s variable names
are ”context id”, ”transport name”, ”timestamp ms”, ”up-
time ms”, ”payload encoding”, ”code”, ”num attempts”, ”in-
line”, ”payload”. Initially, I thought that this database is con-
nected to the PhoneEvent object, however after searching for
the schema, I found it is used by the Google Firebase library
13, so it is not connected to the flagging functionality of the
application.

Additionally, one class from the com.hiya.stingray
package that is executed in each of the four reports uses the
call logs from the internal database. Possibly, the applica-
tion uses them to flag caller IDs with certain call patterns
that could indicate they are spam. This class uses another
internal Android package that compiles and executes SQL
statements, and enables write ahead logging for the SQLite
database. Therefore, it might be useful to further analyse
where this internal library is referenced, in order to determine
what other SQL statements are built, what class builds them,
and on what database they are executed.

Finally, even though these results do not show exactly how
the application operates, they can be used to further analyse
the codebase by searching for where the classes are refer-
enced, and which methods are executed in any of the reports.

I did not find where the information about the caller IDs
was initially obtained from. All database references I could
find use the local database, and I did not find any indication
that the application made external calls to get information
about the phone numbers. With that being said, I also tried
intercepting the network traffic using BurpSuite 14 to find if
numbers are being sent anywhere. Unfortunately, even after I
installed the custom CA certificated on the emulated device,
the application did not try to perform any network requests
whenever the intercepting proxy was turned on. This also
caused the Hiya overlay to not display any useful information
regarding the caller ID, which would imply that the applica-
tion does indeed require unintercepted internet connection to

13https://github.com/firebase/firebase-android-sdk/blob/master/
transport/transport-runtime/src/main/java/com/google/android/
datatransport/runtime/scheduling/persistence/SchemaManager.java

14https://portswigger.net/burp

fetch its data. Furthermore, it appears the application is sav-
ing some information regarding the phone calls performed by
the users, which might later be used to change the reputation
level of the caller IDs, and may even be sent to a remote Hiya
server to build their database of scam phone numbers.

4 Responsible Research
All data that was used and extracted during the research is
publicly available 15. Since the purpose of this research is
to analyse the API calls performed by Android applications
for educational purposes only, it is ethical to apply the re-
verse engineering techniques described in this paper, in order
to uncover what APIs the spam call blocking applications re-
quire in order to function [2]. From an ethical point of view it
is important to perform such application analysis in order to
uncover any potential unconventional or malicious practices
the applications could employ.

The APK files of the applications analysed, the reports gen-
erated by ACVTool, the script used to extract the differences
between subsequent runs of the same application as well as its
outputs are all available in the project repository. This makes
the project and the methods in this paper fully reproducible.

5 Discussion
It is important to note that most of the information in this
paper is based on speculation and a lot of educated guesses.
This is because of the whole nature of reverse engineering
and dynamic code analysis. In order to properly analyse an
application, a lot more time would be required and more so-
phisticated tools for reverse engineering of Android bytecode
would be necessary to be developed.

However, this paper and the extracted data still serve as an
interesting insight on to the inner workings of one of the most
popular Android spam call blocking applications. Addition-
ally, the methodology described in the paper can be further
utilized to find more information about the analysed applica-
tion, or to extract information from any other Android appli-
cation with a similar functionality.

6 Conclusions and Future Work
After performing in-depth dynamic analysis of the selected
application, it became apparent to me that such analysis
should only be performed for applications that are hard to
analyse statically or using different methods. Reverse en-
gineering, especially when obfuscation techniques were em-
ployed, becomes too time and efford consuming to be worth
utilizing it for mass application analysis. Nevertheless, the
research performed in this paper provides an interesting
methodology approach that could be used whenever little in-
formation could be extracted from other analysis approaches,
or when simply more information is needed for a specific ap-
plication.

Initially, the plan was to perform a dynamic analysis on all
10 applications, however, after several weeks focusing on one
application, it became apparent that more useful would be to

15https://github.com/yoonhwanjeong/SpamCallBlockingApps/
tree/dynamic api analysis

https://github.com/firebase/firebase-android-sdk/blob/master/transport/transport-runtime/src/main/java/com/google/android/datatransport/runtime/scheduling/persistence/SchemaManager.java
https://github.com/firebase/firebase-android-sdk/blob/master/transport/transport-runtime/src/main/java/com/google/android/datatransport/runtime/scheduling/persistence/SchemaManager.java
https://github.com/firebase/firebase-android-sdk/blob/master/transport/transport-runtime/src/main/java/com/google/android/datatransport/runtime/scheduling/persistence/SchemaManager.java
https://portswigger.net/burp
https://github.com/yoonhwanjeong/SpamCallBlockingApps/tree/dynamic_api_analysis
https://github.com/yoonhwanjeong/SpamCallBlockingApps/tree/dynamic_api_analysis

focus on developing a structured approach to reverse engi-
neer the list of applications rather than going over each of
them breifly. Developing a methodology that can be utilized
to perform a more in-depth analysis could also be useful for
analysis of different types of Android applications, not only
the spam flagging or blocking ones. Furthermore, initially I
underestimated the amount of time and efford reverse engi-
neering decompiled Android code would take.

Future research on this topic could try to integrate string
search functionality from the decompiled source code with
the xml report generated by ACVTool. In this way, the re-
searcher would be able to search for strings in the code, be it
method/class/library names, or hardcoded strings, that were
actually executed. Currently, the workflow includes manually
executing recursive grep for some string found in the reports
to see where some functions were called, however, in a lot
of cases, these functions not executed in any of the reports.
Although it is also useful to read through code that was not
executed, I found that most of the useful information is found
in the instructions that were executed.

Finally, the ability to rename some of the packages, classes,
variables, and types would be a really useful addition to ACV-
Tool, or any reverse engineering tool. After extensive analy-
sis of the decompiled code, it became apparent that keeping
track of all packages and classes would be increasingly dif-
ficult the more obfuscated classes an application has. In the
case of Hiya, most of the code had no sensible strings, so I had
to manually keep track of class names like g.g.b.b.a.e and
g.g.b.b.a.g. Even though not all applications are that diffi-
cult to analyse (like for example telGuarder had a lot smaller
codebase, so it was easier to keep track of the classes), al-
lowing variable and class renaming would greatly ease the
reverse engineer’s work.

A Application Analysed

• Hiya - Call Blocker, Fraud Detection & Caller
ID: https://play.google.com/store/apps/details?id=com.
webascender.callerid&hl=en&gl=US

• Spam Call Blocker - telGuarder: https://play.google.
com/store/apps/details?id=com.telguarder&hl=en&gl=
US

B Hiya Phone Numbers Tested

Number How it is handled
(650) 555-1212 produces a name and location of caller
605-367-1378 produces a warning
0611945863112 produces ”suspected spam”
201-200-0014 falgged but also identified caller ID

C Hiya Database Schema

caller ids
id INTEGER

entity type TEXT
phone number TEXT
display name TEXT
display location TEXT
display image url TEXT
attribution image TEXT
attribution url TEXT
attribution name TEXT
profile tag TEXT
display line type TEXT
entity expired time millis INTEGER
source type TEXT
last access time millis INTEGER
profile icon type TEXT
reputation category id INTEGER
category name TEXT
display category name TEXT
line type id TEXT
display detail TEXT
display description TEXT
language tag TEXT
display background url TEXT
display background assettype TEXT

local override ids
id INTEGER

phone number TEXT
reported name TEXT
user comment TEXT
category name TEXT
reputation category id INTEGER
profile tag TEXT
time created INTEGER

translated strings
id INTEGER

key TEXT
translated text TEXT

postevent data
id INTEGER

type TEXT
direction TEXT
phone number TEXT
country hint TEXT
duration INTEGER
is missed INTEGER
is blocked INTEGER
is contact INTEGER
timestamp INTEGER
profile tag TEXT
block reason INTEGER

https://play.google.com/store/apps/details?id=com.webascender.callerid&hl=en&gl=US
https://play.google.com/store/apps/details?id=com.webascender.callerid&hl=en&gl=US
https://play.google.com/store/apps/details?id=com.telguarder&hl=en&gl=US
https://play.google.com/store/apps/details?id=com.telguarder&hl=en&gl=US
https://play.google.com/store/apps/details?id=com.telguarder&hl=en&gl=US

room master table
id INTEGER

identity hash TEXT

block numbers
id INTEGER

phone number TEXT
normalized number TEXT
created time millis INTEGER
is partial INTEGER
country calling code INTEGER

D ACVTool Example Output
The following images are screenshots of the reports generated
by ACVTool.

The following images are some of the libraries in the
generated ACVTool report. The name of the package
is on the left, and some statistics about the number of
executed and missed instructions is on the right side:

The package names are not obfuscated, so it is easier to
distinguish the internal Android API calls from the Hiya
packages.

Unfortunately, there are also a lot of obfuscated pack-
age names, as shown by the following two pictures:

They are a lot harder to analyse, because there is no way of
knowing which would be relevant, and which are lower-level

Android API calls.
The following images show the classes

in the com.hiya.stingray.manager and
com.hiya.stingray.exception packages, respectively:

The first package has 365 files, while the second has only
7, so there are a lot of files to go through to get an idea of how
the application works.

Finally, the following images show some of the decom-
piled code for the com.hiya.stingray.manager.l2

class. The green lines represent executed instruc-
tions, while the lines with a transparent back-
round are parts of the code that was not executed:

References
[1] BroadcastReceiver Android Class. https:

//developer.android.com/reference/android/content/
BroadcastReceiver. [Online; accessed 06-June-2022].

[2] Ethics in Computing. https://ethics.csc.ncsu.edu/
intellectual/reverse/study.php. [Online; accessed 30-
May-2022].

[3] Google Android Localization API. https://developer.
android.com/guide/topics/resources/localization. [On-
line; accessed 30-May-2022].

[4] Google Android WorkManager API. https://developer.
android.com/jetpack/androidx/releases/work. [Online;
accessed 30-May-2022].

[5] Protocol Buffers. https://developers.google.com/
protocol-buffers/docs/overview. [Online; accessed 12-
June-2022].

[6] Room. https://developer.android.com/jetpack/androidx/
releases/room. [Online; accessed 19-June-2022].

https://developer.android.com/reference/android/content/BroadcastReceiver
https://developer.android.com/reference/android/content/BroadcastReceiver
https://developer.android.com/reference/android/content/BroadcastReceiver
https://ethics.csc.ncsu.edu/intellectual/reverse/study.php
https://ethics.csc.ncsu.edu/intellectual/reverse/study.php
https://developer.android.com/guide/topics/resources/localization
https://developer.android.com/guide/topics/resources/localization
https://developer.android.com/jetpack/androidx/releases/work
https://developer.android.com/jetpack/androidx/releases/work
https://developers.google.com/protocol-buffers/docs/overview
https://developers.google.com/protocol-buffers/docs/overview
https://developer.android.com/jetpack/androidx/releases/room
https://developer.android.com/jetpack/androidx/releases/room

[7] TelephonyManager Android Class. https:
//developer.android.com/reference/android/telephony/
TelephonyManager. [Online; accessed 06-June-2022].

[8] Arka Bhowmik and Debashis De. mtrust: Call behav-
ioral trust predictive analytics using unsupervised learn-
ing in mobile cloud computing. Wireless Personal Com-
munications, 117:1–19, 03 2021.

[9] Sharbani Pandit, Roberto Perdisci, Mustaque Ahamad,
and Payas Gupta. Towards measuring the effectiveness
of telephony blacklists. 01 2018.

[10] Aleksandr Pilgun, Olga Gadyatskaya, Yury Zhau-
niarovich, Stanislav Dashevskyi, Artsiom Kushniarou,
and Sjouke Mauw. Fine-grained code coverage mea-
surement in automated black-box android testing. ACM
Transactions on Software Engineering and Methodol-
ogy (TOSEM), 29(4):1–35, 2020.

[11] Chinmay R C, Mrinal Raj, Sarthak Mishra, and Shobha
K. Record.ai - an ai based solution to classify calls based
on conversation. In 2021 2nd International Conference
on Smart Electronics and Communication (ICOSEC),
pages 1096–1101, 2021.

[12] A. Shabtai, Y. Fledel, U. Kanonov, Yuval Elovici,
and Shlomi Dolev. Google android: A state-of-the-
art review of security mechanisms. Neural Networks,
abs/0912.5, 12 2009.

[13] Audie Sumaray and S. Makki. A comparison of data
serialization formats for optimal efficiency on a mobile
platform. 02 2012.

[14] Chang Sung, Chi Kim, and Joo Park. Development of
humming call system for blocking spam on a smart-
phone. Multimedia Tools and Applications, 76, 08 2017.

https://developer.android.com/reference/android/telephony/TelephonyManager
https://developer.android.com/reference/android/telephony/TelephonyManager
https://developer.android.com/reference/android/telephony/TelephonyManager

	Introduction
	Methodology
	Dynamic analysis of the utilized Android system APIs
	Hiya: Initial Analysis
	Analysing the Differences
	Analysing Code Containing Interesting Strings
	Analysing Code Referencing Certain Android Libraries
	Analysing Code Referencing Certain Strings
	RoomCallerId and SQL

	Responsible Research
	Discussion
	Conclusions and Future Work
	Application Analysed
	Hiya Phone Numbers Tested
	Hiya Database Schema
	ACVTool Example Output

