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ABSTRACT The inherent luminous characteristics and stability of LED packages during the operation
period are highly dependent on their junction temperatures and driving currents. In this paper, the luminous
flux of LED packages operated under a wide range of driving currents and junction temperatures are
investigated to develop a luminous flux response surface model. The coefficients of the proposed model
are further extracted to compare the luminous efficacy decay mechanisms of LED packages with different
packaging structures. Furthermore, a spectral power distribution (SPD) method modeled by the Gaussian
function is proposed to analyze the long-term degradation mechanisms of all selected LED packages. The
results of this study show that: (1) The luminous flux of phosphor converted white LED decreases to
accompany with the increase of junction temperature, while that of bare blue LED die keeps relatively stable;
(2) The proposed general luminous flux response surface model can be used to predict the luminous flux of
LEDs with different packaging technologies accurately, and it can be known from the proposed model that
the influences of driving current and temperature on LED chip and phosphor vary with different packaging
structures; and (3) The driving current and temperature dependent sensitivities and degradation mechanisms
of LED packages can be investigated by using both the luminous flux response surface model and the spectral
power distribution method.

INDEX TERMS Light-emitting diode, luminous flux response surface model, spectral power distribution,
luminous efficacy decay, degradation mechanism.

I. INTRODUCTION
The first visible light emitted diode (LED) was discov-
ered in 1962 [1] and a blue LED chip with high effi-
ciency was invented in 1990s, thereafter LED has made
great progress in lighting industry [2]–[5]. About 19% of
electricity is consumed for lighting around the world [6],

The associate editor coordinating the review of this manuscript and
approving it for publication was Bo Sun.

LED has been regarded with great potential for electricity
saving as its higher luminous efficacy [7]. Moreover, it also
benefits with high efficiency, high reliability, long lifespan,
high-speed response and small volume.With the development
of LED technology, high power LED packages are increas-
ingly applied to many lighting and beyond-lighting indus-
tries, i.e. automotive lighting [8], indoor plant cultivation [9],
healthcare [10], data communication [11], [12] and so on.
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However, despite these excellent properties, there is a
big shackle called ‘‘efficiency/efficacy droop’’ to restrict
on LED’s application [13]. Several previous research works
have manifested that high junction temperature (Tj) and high
driving current (If ) can cause a significant droop on the
luminous efficacy of most LEDs [14]–[18]. With the tem-
perature raising, the internal quantum efficiency of LED
chip will decrease because of the temperature dependence of
radiation recombination and Auger recombination [19]. The
Auger recombination is a non-radiation recombination which
does harm to the luminous efficacy. Sukhoivanov et al. [20]
found that the Auger recombination rate was exponentially
depended on the temperature. Other studies [21], [22] have
proved that the Auger recombination was the major mech-
anism of efficiency droop and it could be reinforced when
the driving current increases. There are also several other
reasons for the efficiency droop and many studies have
been forwarded to explain the efficiency droop by using
the defect-assistedmechanisms, spontaneous emission reduc-
tion, carrier injection mechanisms [23] and carrier leak-
age model [24]–[26]. Moreover, different semi-polar planes,
thickness of Quantum-Well (QW) and threading disloca-
tion density also had impacts on the efficiency droop of
LEDs [27]–[31]. Kim et al. [32] found that the efficiency
droop might not related to the junction temperature under
high injection conditions, rather it was related to the recom-
bination of carriers outside the MQW region. In the package
level, phosphor converted white LED (pc-WLED) package is
widely used as one of cost-effective light sources, which is
always composed by the blue LED chip, phosphors and other
packagingmaterials. Thus, the efficiency droop in LED pack-
age level will consider the transient stability and long-term
reliability of all above components. However, there is still no
appropriate method to model the luminous efficacy decay of
LED package.

To understand the luminous efficacy decay mechanism of
LED in package level and its long-term degradation mech-
anism, two experiments are firstly designed in this study
for LED packages with four general packaging structures,
those are the transient thermal and luminous characteris-
tics measurements and accelerated ageing test. In our previ-
ous study [33], a universal luminous flux response surface
model was developed to relate the luminous flux with junc-
tion temperature and driving current effectively. Therefore,
the luminous flux response surface model considering the
electric-thermal-luminous coupling effect and the Gaussian
based SPD model are proposed in this paper to predict the
LED package level luminous efficacy decay and long-term
degradation mechanisms respectively.

The remaining of this paper is organized as follows:
Section II proposes the luminous flux response surface model
and spectral power distributionmethod. Section III introduces
the test samples and experimental setups used in this study.
Section IV discusses the effect of different packaging struc-
tures on the efficiency droop mechanism and degradation
mechanism based on the experiment results, the proposed

luminous flux response surface model and Gaussian based
SPD model. Finally, the concluding remarks are presented in
section V.

II. THEORIES AND METHODOLOGIES
A. LUMINOUS FLUX RESPONSE SURFACE MODEL
The increase of junction temperature and driving current can
deteriorate the luminous efficacy of LEDs. Thus, to predict
the luminous flux of LED under different operation condi-
tions, a general luminous flux response surface model [33] is
proposed as shown in Eq. (1) (hereby namedModel 1):

φv(If ,Tj) = φv0

(
If
If 0

)D
e
ln(HC)

( Tj−Tj0
75

)
(1)

where HC, D, Tj0, and If 0 correspond to the Hot-Cold (HC)
factor, droop constant, rated operating temperature and rated
driving current, respectively. HC and D represent the degree
of luminous efficacy droop with the increase of the junction
temperature and driving current, respectively.8v0 is the lumi-
nous flux of the LED at Tj0 and If 0.

With the development of LED’s technology and the expan-
sion of applied fields, Eq. (1) has often been used to pre-
dict the luminous flux of high-power LED under different
operating conditions. However, the Model 1 is not always
applicable, particularly in extremely harsh conditions, such as
the too high or too low driving current. To fix this problem,
a modification of Model 1 is proposed as shown in Eq. (2)
(hereby namedModel 2):

φv(If ,Tj) = φv0

(
If
If 0

)(D+Ce ln( If
If 0

))α1 − α2n
(

Tj−Tj0
100−Tj0

)
(2)

Furtherly, the α1 and α2 can be obtained from the fellow
equations:

α1 = 1+ α2 (3)

α2 =
HC

(
If
)
− 1

1− n
(4)

α3 =

(
m+ If 0
If 0

)
(5)

HC
(
If
)
= HC0 · α3 ·

(
If

m+ If

)
(6)

in Eq. (2), HC0, Ce, m, n represents the Hot Cold factor for
rated driving current, nonlinearity droop coefficient, current
coefficient of HC factor, temperature power coefficient for
flux, respectively. The part of Ce ∗ ln(If ∗ I

−1
f 0 ) is added to

improve prediction accuracy of the model at an extremely low
or high driving current condition.

B. SPECTRAL POWER DISTRIBUTION METHOD
The SPD of widely used pc-WLED always has multiple
peaks: one located in the short wavelength region represents
the blue light emitted by LED chip, the others are located
in the long wavelength region with converted light from
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FIGURE 1. The structure and light principle of pc-WLED and their SPD.

FIGURE 2. Different failure modes occurred in a pc-WLED.

phosphors, as shown in Fig. 1. Failure modes can be found
by using the area of the spectrum which represent the radiant
power of the LED.

According to our previous studies [34], the failure modes
of pc-WLEDs can be classified as three sections: as shown
in Fig. 2, (1) chip degradation may show the proportional
decrease of the areas of both the emitted spectrum and the
converted spectrum, for the reason that the lumen of phosphor
depends on the energy of the emitted blue light; (2) phosphors
degradation could result in the more decrease of the area of
the converted spectrum; (3) encapsulation silicone degrada-
tion will indicate the more decrease of the area of the emitted
spectrum, for the reason that the silicone is always sensitive to
short wavelength light. In general, these three failure modes
always appear jointly in an LED during the ageing process.

In order to acquire the areas of blue light emitting spectrum
and the phosphor-converted spectrum, it is convenient to use
theGaussianmodel to fit the entire spectrum and to extract the
features of spectrum. Then the entire SPD of the pc-WLED
is expressed as:

y = y0 +
a1

w1

√
π
2

e−2(
x−xc1
w1

)2
+

a2

w2

√
π
2

e−2(
x−xc2
w2

)2 (7)

in which y0 is the baseline offset, a1, xc1, and w1 are the area,
peak wavelength and full width at half maxima of the emitted
blue light spectrum, respectively; and a2, xc2, and w1 are the
area, peak wavelength and full width at half maxima of the
converted light spectrum, respectively.

III. SAMPLES AND EXPERIMENTS
In this section, the test samples used in this study are
introduced firstly. Then, two experimental setups, including

FIGURE 3. Schematic diagram of test samples: (a) CF2040 blue LED;
(b) CF2040 white LED; (c) HL mid-power 3000K white LED; (d) HL
mid-power 6000K white LED.

the junction temperature and luminous flux measurements
under different driving currents and case temperatures, and
a step-stress accelerated thermal ageing test (SSATAT) are
designed.

A. TEST SAMPLES
There are four kinds of LED packages with two common
packaging technologies used in this study, those are marked
as the CF2040 blue LED and the CF2040 white LED with
the flip-chip packaging, the HLmid-power 3000Kwhite LED
and HL mid-power 6000K white LED with the wire-bonding
packaging. The schematic packaging structures of all test
samples are shown in Fig. 3. To be compared, although both
CF2040 blue LED and CF2040 white LED are with the same
type of LED chip, the CF2040 white LED is covered by a
phosphor/silicone composite working as a light-converter and
chip-protector. The HL mid-power 3000K white LED and
HL mid-power 6000K white LED are with the same type of
LED chip, but they are with different phosphors. The rated
currents of CF2040 blue and white LEDs are 200mA and
the rated currents of two HL mid-power white LEDs are
60mA. As described in TABLE 1, among all kinds of LEDs,
HL mid-power 3000K and 6000K white LEDs will undergo
an SSATAT test, so their test sample IDs are marked as #5 and
#6 respectively. The quantity of each sample is shown in
TABLE 1. The averaged measured parameters of all samples
are used in this study for analysis.

B. EXPERIMENTS
TABLE 2 lists the test schemes of all samples under different
driving currents and different case temperatures. The specific
experimental process is shown in Fig. 4. It indicates that
the purpose of experiments in this work is to quantitatively
build the relationship between the optical parameters, such as
luminous flux and luminous efficacy, with the driving current
and junction temperature. In all experiments, the constant
current (CC) was adopt to power-on the test samples.

1) JUNCTION TEMPERATURE MEASUREMENT
In this experiment, the junction temperatures of test samples
treated under different conditions were measured by the

VOLUME 7, 2019 68497
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TABLE 1. Brief description of the test samples.

TABLE 2. Test schemes for all test samples.

FIGURE 4. The flow chart of experiments.

junction temperature measurement instrument (Model:
LEETS LEDT-300B with the accuracy of Tj±1◦C, the accu-
racy of K coefficient ±0.5◦C). The junction temperature
measurement was performed based on the forward voltage
method [35].

The experimental setup is shown in Fig.5, which con-
sists of a LEETS LEDT-300B instrument, a thermal cham-
ber (Model: ESPEC ST-110), a DC power supply (Model:
KEYSIGHT N5751), a thermal control platform and a data

FIGURE 5. The junction temperature measurement experimental setup.

FIGURE 6. The ph otoelectric parameter measurement system.

acquisition computer. The thermal chamber is used to control
the environment temperature for the purpose of calibrating
the K coefficient of each test sample. The thermal control
platform is applied to control the substrate temperature of test
sample.

2) PHOTOELECTRIC PARAMETERS MEASUREMENT
In this part, the photoelectric parameters in thermal equi-
librium state of all test samples were measured based on
the equipment setup shown in Fig.6. It has an integrating
sphere (Model: EVERFINE HASS2000), a DC power supply
(Model: KEYSIGHT N5751), a thermal control platform
system, and a data acquisition computer. The test samples
were fixed on the thermal control platform by using heat
dissipation paste, and then placed in the integrating sphere
for the photoelectric parameter measurement. Five minutes
after lighting, all test samples reach to the thermal equilibrium
state.

3) ACCELERATED AGEING TEST
To investigate the long-term degradation mechanisms of
white LEDs, a SSATAT was designed for two HL mid-power
white LEDs driven by a rated constant current 60mA. The
prepared samples were divided into two groups, Group A
(3000K, sample #5) and Group B (6000K, sample #6). The
experimental setup is shown in Fig. 7. The step-stress tem-
perature is set from 55◦C to 95◦C with an increment of 10◦C
in every 504 hours.

IV. RESULTS AND DISCUSSIONS
A. EXPERIMENTAL RESULTS AND ANALYSIS
The junction temperatures measurement results for the six
samples are shown in Fig. 8. As shown in Fig. 8(a), the junc-
tion temperatures of sample #2 are mostly higher than those
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FIGURE 7. The step-stress accelerated thermal ageing test setup.

FIGURE 8. The junction temperature response surfaces of test samples
under different conditions of driving current and case temperature:
(a) sample #1 and #2; (b) sample #3 and #5; (c) sample #4 and #6.

of sample #1 under most conditions, because of the effect of
phosphor self-heating [36] occurred in sample #2. Beyond
that, silicone material used in sample #2 also can make neg-
ative influence on heat dissipation. LEDs convert electrical
energy into both optical energy and thermal energy. If the
luminous efficiency of LED was degraded, more heat will be
produced, which leads to the increase of junction tempera-
ture. As shown in Fig. 8(b) and (c), the junction temperatures
of sample #5 and #6 are higher than those of sample #3 and
#4, respectively, which indicates that both sample #3 and
sample #4 have degraded, after the ageing test.

Fig. 9. plots the luminous flux of test samples under dif-
ferent driving currents and junction temperatures, the slopes
are shown in TABLE 3 and TABLE 4. As a light-conversion
of phosphors, it is can be known that the luminous flux
of sample #2 is much high than that of sample #1, shown
in Fig. 9(a) and (b). As shown in Fig. 9(a), there is a slight
improve of luminous flux for sample #1 with the increase
of junction temperature. Red-shift occurs in the spectrum of
sample #1 with the increase of temperature, which leads to a
higher spectral luminous efficacy. As shown in Fig. 9(c) to (f),
the luminous flux of sample #5 and #6 are lower than sample
#3 and #4, respectively, which also indicates that sample
#3 and sample #4 all have degraded, after aging. As shown in
TABLE 3 and TABLE 4, the slopes of all samples decrease

FIGURE 9. The luminous flux measurement results of the of test samples
under different conditions of driving current and junction temperature:
(a) sample #1; (b) sample #2; (c) sample #3; (d) sample #5; (e) sample
#4; (f) sample #6.

TABLE 3. The slopes of sample #1 and sample #2.

TABLE 4. The slopes of sample #3, sample #4, sample #5 and sample #6.

with the increase of driving current, indicating that overdriv-
ing may make LEDs more sensitive to junction temperature.

Fig.10 reveals the luminous efficacy of the six samples
under the different driving currents and junction tempera-
tures. The increase of the junction temperatures and driving
currents leads to the luminous efficacy drop of all test samples
except for the sample #1. It is also observed that the influ-
ences of these two loading factors on the lumen depreciation
are different. Except for the blue LED samples, the luminous
flux of test samples decreases more dramatically with the

VOLUME 7, 2019 68499
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TABLE 5. The fitting results by using model 1.

TABLE 6. The fitting results by using model 2.

increase of driving current than those with the increase of
junction temperature.

B. LUMINOUS EFFICACY DECAY MECHANISM ANALYSIS
In this part, the Model 1 and Model 2 are used to fit the data
collected from sectionA, respectively. Themodel coefficients
of these twomodels are extracted by the nonlinear fitting with
the 1stOpt software, and listed in TABLE 5 and TABLE 6,
respectively.

The R2 value is usually used to characterize the fitting
accuracy of model predictions, calculated by using the follow
equation:

R2 = 1−

∑
(y− ŷ)2∑
(y− ȳ)2

(8)

It is can be seen that both R2 values ofModel 1 andModel 2
are close to 1, which indicates that Model 1 and Model 2 all
have high prediction accuracy to capture the flux behavior.

A high D value (close to 1) indicates that the luminous
flux of the LED is nearly proportional to its driving current.
As shown in TABLE 6, the D value of sample #1(bare blue
LED die) is the smallest among all test sample, so it means
that an increase of applied driving current will lead to a most
serious luminous efficacy droop, as shown in Fig. 10(b). This
phenomenon is alleviated in the white LED package, since
high driving current, which means high input power density,
can also improve the light-conversion efficiency of phosphor.

As shown in the TABLE 6, HC0 of all test samples are
usually less than 1, except for the blue LED (sample #1). This
means that the luminous flux of the sample #1 increases a
little by the increase of the junction temperature, as shown
in Fig. 9(a). By contrast, the luminous fluxes of other white
LED samples will decrease more serious by the increase
of junction temperatures, as shown in Fig. 9(b) to (f). This
may attribute to the reason that when the temperature rises,
the efficiency drop of phosphors can accelerate the lumen
depreciation of LED chip.

TABLE 7. The results of fitting using Gaussian model.

FIGURE 10. The results of the luminous efficacy under different driving
current and different junction temperature: (a) sample #1; (b) sample #2;
(c) sample #3; (d) sample #5; (e) sample #4; (f) sample #6.

C. LONG-TERM LUMEN DEGRADATION MECHANISM
ANALYSIS
The mid-power 3000K and 6000K white LEDs are selected
to study the degradation mechanism of white LEDs aged
under SSATAT. The SPD data were collected from the inte-
grating sphere. Fig. 11 shows the fitting results, in which
the fitted SPDs with the proposed Gaussian based model,
as shown in Eq. (7), agree well with experimental data
(R2 is high than 0.99). The parameters a1 and a2 are
extracted and given in TABLE 7. The reduction ratio is
defined as the reduced percentage of area a before and after
ageing.

Significant reduction rates on a1 and a2 are observed as
shown in Table 7. This implies that mid-power 3000K and
6000K white LEDs all have degraded. Moreover, according
to the results from all samples shown in Table 7, the reduction
rate on a2 is much higher than that on a1, probably indicat-
ing that both the LED chip degradation and the phosphors
degradation have occurred in mid-power 3000K and 6000K
white LEDs. The difference between the reduction rate on
a2 and a1, the reduction rate on a2 minus the reduction rate
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FIGURE 11. The experiment and fitted SPD of mid-power 3000K and
6000k white LEDs.

on a1, is not more than the reduction rate on a1, hence LED
chip degradation is the dominant failure mode for mid-power
3000K white LEDs. In the same way, it is can be known that
phosphor degradation is the dominant failure mode for mid-
power 6000K white LEDs. Moreover, as shown in TABLE 6,
the D value of mid-power 3000K white LED decreased
after ageing, however, that of mid-power 6000K white LED
increased. This indicates that LED chip degradation will
result in the LED package more sensitive to driving current,
but phosphor degradation can cause it less sensitive to driving
current. TheHC0 of both mid-power 3000K and 6000Kwhite
LEDs are increased, indicating that both chip and phosphor
degradations can make white LED package less sensitive to
temperature.

V. CONCLUSIONS
In this paper, the junction temperatures and luminous flux
of different LED packages operated under different driving
current and case temperature conditions are firstly collected
to establish the luminous flux response surface model. Both
the luminous flux response surface model and SPD method
are then used to assess the reliability of LED packages.
The results show that: (1) The luminous flux and luminous
efficacy of white LED packages decrease with the increase of
junction temperature, however, the luminous flux of flip-chip
bare blue LED die increases slightly under high junction
temperature, as its luminous efficacy rises; (2) The proposed
luminous flux response surfacemodel can accurately describe
the luminous flux as a function of junction temperature and
driving current, and the extracted model coefficients reveal
that driving current and temperature mainly determine the
luminous efficacy decay mechanism of LED chip and phos-
phor respectively; (3) The degradation mechanism analysis
with SPD method indicates that both degradations of LED
chip and phosphor can occur in the selected mid-power
white LEDs aged under the designed test condition, however,
chip and phosphor degradations dominate the failure mode
of 3000K and 6000K white LEDs respectively. The luminous
flux response surfacemodel fitting results show that both chip
and phosphor degradations canmake white LED package less
sensitive to temperature, but the driving current dependent
sensitivity of white LED package with aged chip is higher
than that with aged phosphor.
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