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Abstract—In this paper the problem of unambiguous moving
target detection with wideband radar is considered. Doppler
ambiguities present in low pulse repetition frequency mode are
resolved using range migration phenomenon, which however
results in strong ambiguous sidelobes of both clutter and targets.
Utilization of standard detection algorithm leads to generation of
false alarms by the ambiguous sidelobes of real targets. Assuming
Gaussian distribution of clutter, two new detectors exploiting high
resolution spectral estimation to remove these false detections are
developed in this paper. These detectors are based on spectral
estimation obtained with non-parametric Iterative Adaptive Ap-
proach from spectrum analysis. The benefits of the proposed
detector are demonstrated via numerical simulations showing
improvement over existing techniques.

Index Terms—Radar Detection, Wideband radar Range Mi-
gration, Velocity Ambiguity, Iterative Adaptive Approach (IAA).

I. INTRODUCTION

Recently detection of moving targets with wideband (WB)
radars have attracted significant attention due to advantages
for target detection and classification resulting from high
range resolution. One of WB radars disadvantages is that fast
moving targets migrate from one range cell to another during
coherent processing interval (CPI). This phenomenon however
can be exploited to overcome velocity ambiguities in low pulse
repetition frequency (PRF) mode [1].

A matched filter technique for unambiguous estimation of
range-velocity map, taking into account target migration, has
been proposed and called wideband coherent integration (CI)
[1], [2]. This processing suffers from strong residuals at aliased
velocities (called ambiguous sidelobes) limiting its ability to
extract moving targets unambiguously.

Further research in the area was aimed at finding an efficient
estimator capable to deal with migrating targets in presence of
clutter. Among the proposed techniques, the most promising
results are obtained with Bayesian sparse estimator [3] and
Iterative Adaptive Approach (IAA) from spectrum analysis [4].

However, all the aforementioned techniques only perform
unambiguous amplitude estimation instead of detection. In
particular IAA is not followed by any detector [4], also
Bayesian sparse estimator [3] provides sparse estimation, but
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not detection. Moreover, the design of compressed sensing
detector is a rather complicated problem itself.

Designing of a detector for IAA output is also not straight-
forward task because of non-linear nature of the algorithm.
Some attempts to solve this problem were done in [5], [6]
with application to ground moving target detection. Hence the
discussion in these papers allows the data to be non-uniformly
sampled, the problem of false alarms generated by strong
sidelobes of targets is not considered there.

In this paper we present an efficient detector exploiting
IAA under the assumption of complex multivariate Gaussian
distribution of clutter, commonly used in narrowband radars.
This assumption can be reasonable for wideband surveillance
radars with high range resolution, but moderate azimuth res-
olution. In this case, integration of clutter is obtained from
large width of range-azimuth cell at long ranges, which allows
to use central limit theorem and assume clutter to follow
complex multivariate Gaussian distribution. Therefore we will
show that well-known Kelly’s test [7] and AMF detector [8]
can be extended for unambiguous moving target detection by
exploiting IAA amplitude estimation.

This paper is organized as follows. In Section II the models
of target and clutter are introduced. Then in Section III we
briefly recall the derivations of the Kelly’s test and AMF,
these results are further exploited in Section IV to develop
IAA-based detectors and analyze their performance. The con-
clusions are drawn in Section V.

II. CLUTTER AND TARGET MODELS

A signature of moving point scatterer observed by wideband
radar has been shown [1], [3] to have the following signature
in fast-frequency / slow-time domain as following:
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where m = 0...M − 1 is the pulse (sweep) number, k =
0...K − 1 is the fast-time index, Tr is the pulse repetition
interval (PRI), fc is the carrier frequency and B is the
waveform bandwidth, so the signal occupies frequencies from
fc to fc + B. The point target has an initial time delay
τ0 = 2R0/c depending on the initial target range (R0), and
constant velocity (v0). The last term in (1) is specific for the



wideband waveform, it models range migration of moving
target and depends only on its radial velocity v0 and allows
to measure target velocity unambiguously.

The same target signature can be expressed in slow-
time/fast-time domain:
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where l = 0..K − 1 is fast time index, l0 is the initial range
cell of the target and δR is the radar range resolution.

Unambiguous estimation of range-velocity map can be
obtained by coherent summation of target amplitude in several
range cells. Due to migration effect the matched filter should
be applied on the low resolution segment (LRRS) containing
K range cells, such that the condition on maximal target
velocity (Vmax) is hold:

K ≥ VmaxMTr/δR. (3)

The following assumptions on clutter are made in this study:

• Clutter can be modeled in each range cell separately,
since it does not migrate. Therefore, the migration term
in target model (1), (2) is negligible for clutter scatterers
and can be ignored;

• In each range cell clutter is a realization of stationary
random process having multivariate Gaussian distribution
with zero mean and covariance matrix (CM) Mv.

Under these assumptions, clutter CM in LRRS (bi-
dimentional data) has the following block-diagonal structure:

M =


Mv 0 · · · 0
0 Mv · · · 0
...

...
. . .

...
0 0 · · · Mv

, (4)

where Mv is M ×M clutter CM in slow-time usually used
in the narrow band case.

III. ADAPTIVE DETECTORS IN GAUSSIAN CLUTTER

The received data in LRRS under test can be given in matrix
notations by [4]:

y = Ax + n, (5)

where y and n stand for KM -long vectors of data and noise
in LRRS respectively, x is vectorized counterpart of unknown
range-velocity map and A is the sensing matrix of size KM×
NtNv including vectorized targets signatures corresponding to
Nt different range and Nv different velocity hypothesis (2) as
columns at,v = vec(Ttt

t,v).
The generalized likelihood ratio test (GLRT) proposed by

Kelly [7] is an asymptotically optimum test in Gaussian clutter.
To obtain a test capable to work with ambiguous targets, we

recall the derivations of Kelly and extend it with IAA-based
detector. The GLRT is given by:

Λ(Z,y) =
f1(Z,y)

f0(Z,y)

H1

R
H0

T, (6)

where f0(Z,y) is joint PDFs of LRRS under test and reference
LRRSs under hypothesis of target absence (H0) and f1(Z,y)
is the counterpart in the case of target presence (H1). Matrix Z
is built of vectorized data in reference LRRSs (zi) as columns.

The clutter in L reference LRRSs is assumed to be i.i.d.
zero mean complex Gaussian noise with covariance matrix
M: zi ∼ CN [0,M]. The joint PDFs under hypothesis H1 is:

f1(Z,y) = f1(y)

L∏
i=1
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=
1
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)
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)
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(7)

and joint PDF under H0 is obtained from f1 assuming zero
amplitude of the target i.e. f0(Z,y) = f1(Z,y)|α=0. In
the presented expressions for PDFs the covariance matrix of
clutter M and target amplitude α are unknown.

If we now substitute the inner product of matrices in PDFs
with the form of matrix trace zHi M−1zi = tr

(
M−1Z

)
, we

can obtain:
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and T0 and T1 being defined as:
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1
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H
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i
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and T0 = T1|α=0.
Matrices T0 and T1, being the sample covariance matrices

(SCM), are the MLE of clutter CM. The second summand
in (9) is a SCM S, estimated from the reference LRRSs and
scaled by a factor L/(L+ 1). By inserting the MLE of SCM
into densities one can obtain:

max
M

f0,1 =

(
1

πN |T0,1|

)L+1

, (10)

The determinants of matrices T0 and T1 can be written in
terms of SCM S using matrix determinant lemma. It yields the
following expressions, subject to maximization with respect to
unknown amplitude of target α:

|T1| =
(

L

L+ 1

)N
|S|
(

1 +
1

L
(y − αa)

H
S−1 (y − αa)

)
(11)

and under hypothesis H0: |T0| = |T1| |α=0.



Inserting these values into GLRT (6) gives:

Λ(Z,y) =

(
1 + 1

Ly
HS−1y

1 + 1
L (y − αa)

H
S−1(y − αa)

)L+1

. (12)

Maximization of (12) with respect to target amplitude α
with known steering vector a is obtained by minimization the
denominator of (12) by completing the squares. Amplitude
estimation is then obtained via whitening matched filter:

α̂ = αW =
aHS−1y

aHS−1a
. (13)

Then GLRT reduces to the well-known Kelly’s test [7],
optimal for single target detection in Gaussian clutter:

Λ =

(
1− 1

L

|aHS−1y|2

(aHS−1a)
(
1 + 1

Ly
HS−1y

))−(L+1)

(14)

which depends only on statistics

γKelly =
|aHS−1y|2

(aHS−1a)
(
1 + 1

Ly
HS−1y

) H1

R
H0

TKelly. (15)

The second term in the denominator can be interpreted as
the loss due to substitution of clutter CM by its estimation.
The expected value of this factor depended on the size of the
problem and the number of reference cells, but not on the
data itself, thus it can be moved to the threshold. Then the
test reduces to the Adaptive Matched Filter (AMF) [8]:

γAMF =
|aHS−1y|2

aHS−1a

H1

R
H0

TAMF . (16)

The thresholds for both tests is regulated by the required
probability of False Alarm (PFA). As shown in [7], [8], the
thresholds are defined using P = L+ 1−N [9]:

TKelly = L
(

1− P
1
P

fa

)
, (17)

and expected value of the loss factor ρ = (L+2−N)/(L+1):

TAMF = TKelly/ρ. (18)

IV. ADAPTIVE DETECTORS EXPLOITING ITERATIVE
ADAPTIVE APPROACH FOR AMPLITUDE ESTIMATION

Both the aforementioned detectors suffer from the ambigu-
ous sidelobes of strong targets in the scene and therefore can
produce many false alarms in presence of multiple targets
in the scene. Sidelobes-free amplitude estimations of a few
independent targets in the scene can be obtained with Iterative
Adaptive Approach (IAA) [10]. Then we can rewrite GLRT
(12) for each hypothesis with the steering vector a:

Λ(Z,y) =

(
1 + 1

Ly
HS−1y

1 + 1
L (y − αIa)

H
S−1 (y − αIa)

)L+1

(19)

where αI represents the amplitude estimation obtained itera-
tively by IAA:

αI =
aHR−1y

aHR−1a
, (20)

TABLE I: Parameters of simulated data

Waveform
Carrier frequency f0 10GHz

Bandwidth B 1 GHz
PRI Tr 1 ms

Pulses M 32
LRRS K 4

Processing parameters
Number of ambiguities Na 3

IAA iterations I 15
Maximum velocity Vmax 15 m/s

Range oversampling kt 2
Velocity oversampling kv 2

Migration per ambiguity µa 3.2

using covariance matrix of clutter plus targets in the LRRS R
estimated via IAA [10].

To process further, we use the following simplification:

(y − αIa)
H
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= yHS−1y + aHS−1a
(
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)
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∣∣2
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(
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2
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)
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(21)

Then the GLRT (19) can be rewritten as following:
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Therefore, the test statistics is given by:

γKelly−IAA =

∣∣aHS−1y
∣∣2

(aHS−1a)
(
1 + 1

Ly
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) (23)(
1− |αI − αW |

2
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R
H0

TKelly, (24)

and it differs from the previous test (15) by the second term,
which is a ’gain’ factor being always less or equal to one. This
term exploits sidelobe-free amplitude estimation obtained by
IAA and thus prevents strong sidelobes to pass through the
detection chain. On the other hand, for the correct position of
the target, both estimations tends to the correct value αW ≈ αI
and thus the introduced term in braces (23) tend to 1. Also, by
using the threshold from the original test (17), the false alarm
probability of the new test would not exceed the set value PFA,
hence the expected value can be slightly less, than required.

Similarly to the previous derivations, the AMF test exploit-
ing IAA estimation can be obtained by:

γAMF−IAA =
|aHS−1y|2

aHS−1a

(
1− |αI − αW |

2

|αW |2

)
H1

R
H0

TAMF .

(25)

The number of reference cells can be reduced by using the
assumptions on clutter given in Section II. In particular, instead
of obtaining clutter CM in LRRS M, clutter CM in one range
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SNR=10dB
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Fig. 5: ROC curves for a target with
SNR=13dB

cell Mv can be estimated. Then the loss factor will correspond
to the virtual number of averaged LRRS, proportional to the
square of the number of range cells in LRRS, thus L2 = K2L
and ρ = (L2 + 2−N)/(L2 + 1).

Performance of the proposed detectors in terms of their abil-
ity to hold the designated false alarm, probability of detection
and ROC curves for targets with SNR = 7 dB, 10 dB, 13 dB,
(after coherent integration) are shown in Fig. 1 - 5 accordingly
for radar and processing parameters mentioned in Table I.

Fig. 1 shows that both the proposed detectors provide lower
false alarm, than desired, using the thresholds from the original
tests, while the loss in probability of detection (PD) resulting
from this mismatch is rather negligible (less than 1dB, see
Fig. 2). The improvement achieved by the proposed detectors
is shown in Fig. 3 - 5. All the curves are almost equal for large
values of PFA, and weak targets (see Fig. 3). On the other
hand, the proposed techniques overcome Kelly’s test and AMF
for typical for radar values of PFA and strong targets, so when
the issue of sidelobes becomes more crucial. Accordingly, the
detection improvement for strong targets is more substantial.

V. CONCLUSIONS

In this paper the problem of unambiguous detection of
moving targets by wideband radar is discussed and range
migration phenomenon is used to resolve velocity ambiguities
present in low PRF mode. Unambiguous amplitude estimation
is obtained with high resolution Iterative Adaptive Approach
(IAA) from spectral analysis and exploited in the proposed

detectors. IAA - based detectors overcome their classical
analogs in terms of ROC curves. The problem of correct
threshold for IAA-detectors will be solved in the final paper.
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