

Master of Science Thesis

Quantitative Modeling of

Domain Name System
Protocol

Yakup Koç

Network Architectures and Services (NAS) Group
Department of Telecommunications
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Performance of Networks and Systems (PoNS) Group
Technical Sciences Expertise Center
TNO

Copyright ©2011 NAS TU Delft and TNO
All rights reserved. No Section of the material protected by this copyright may be reproduced
or utilized in any form or by any means, electronic or mechanical, including photocopying,
recording or by any information storage and retrieval system, without the permission from
the author, Delft University of Technology and TNO.

 III

Quantitative Modeling of Domain

Name System Protocol

Master of Science Thesis

For the degree of Master of Science in
Network Services and Architectures Group (NAS)

at Department of Telecommunications
at Delft University of Technology

by

Yakup Koç

August 02, 2011

Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Delft, The Netherlands

 IV

 V

DELFT UNIVERSITY OF TECHNOLOGY

DEPARTMENT OF
TELECOMMUNICATIONS

The undersigned hereby certify that they have read and recommend to the
Faculty of Electrical Engineering, Mathematics and Computer Science for

acceptance a thesis entitled

Quantitative Modeling of Domain Name System Protocol

by

Yakup Koç

in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE.

Dated: August 02, 2011

Supervisors: Prof. dr. ir. Robert E. Kooij

 Ir. Bart Gijsen
 Dr. ir Almerima Jamakovic

Readers: Dr. Ertan Onur

 VI

 VII

Abstract

In this thesis, we present the first DNS reference model with the aim to predict the
query behaviour of domain name system (DNS) under given conditions, e.g. when
the amount of a specific DNS query response increases by a certain percentage or
more specifically when the DNS query load towards the authoritative name servers
(NS) increases by a certain fraction. The DNS reference model takes into account all
relevant components present in a nowadays DNS architecture: starting from client’s
application browser and operating system (OS), then recursive resolver present
mostly at an Internet Service Provider (ISP), to the authoritative NS which include
the root, top level domain (TLD) and second level domain (SLD) NSs. To
characterize the system variables describing the query behaviour at each of these
independent system components, we analyze the real-world data of an UNBOUND
recursive resolver, captured by an ISP in The Netherlands. We even estimate and
verify the probabilistic distributions for the two system variables. With this step we
account for the stochastic simulation of system behaviour by using Monte Carlo
simulation. Additionally, we validate the model by comparing the statistics found in
the real-world data with the output of the DNS stochastical Monte Carlo method.
Additional to these main contributions, we discuss shortcoming related to the real-
world data and possible extensions of the model. Finally, we demonstrate the
applicability of the model by evaluating some relevant case studies e.g. the impact of
the increase of a specific DNS query response by a certain percentage.

Key Words: DNS, scalability, flow level modeling, stochastic modeling, impact analysis.

 VIII

 IX

Acknowledgements

First of all, I would like to thank my supervisors Ir.Bart Gijsen and Dr.ir. Almerima
Jamakovic from the Netherlands organization for applied scientific research (TNO)
and Prof.dr.ir.Robert E. Kooij from Delft University of Technology (TU Delft) for
their guidance and support during my research. Additionally, many other people were
instrumental in making this study possible. Roland Rijswijk from SURFnet was
extremely helpful for providing real world data as well as answering operational
questions about DNS. I am thankful to Sander Degen from TNO for being always
friendly when supplying equipments for data analysis and providing original ideas
about simulation and software related problems. My TNO colleague Piotr
Zuraniewski’s help was vital to solving problems related to data analysis. The
discussions with Dr. Ertan Onur from TU Delft were valuable and his comments were
insightful. I would like to thank my colleagues Miroslav Zivkovic and Kostas
Trichias from TNO for useful discussions on the topic and for the relaxing coffee
breaks. Additionally, in various discussions, many other members of the TNO and
TU Delft community were helpful in focussing this work. Last but surely not least I
am grateful to my family and my girl friend for their support and encouragement.

Delft, The Netherlands Yakup Koç
August 02, 2011

 X

 XI

Contents
1 Introduction ... 1

2 Domain Name System.. 3
2.1 DNS structure ... 3

2.1.1 Domain name space and resource records .. 4
2.1.2 Authoritative name servers ... 7
2.1.3 Resolvers .. 9

2.2 DNS operation.. 9
2.2.1 Domain name resolution process .. 9
2.2.2 DNS queries.. 10
2.2.3 DNS responses.. 11
2.2.4 DNS caching mechanism.. 12

2.3 Future DNS challenges... 13
2.3.1 IPv6... 13
2.3.2 New TLDs .. 14
2.3.3 DNSSEC... 14

3 DNS Reference Model ... 15
3.1 General features and assumptions ... 15
3.2 System variables and input parameters .. 16

3.2.1 Query multiply factor ... 16
3.2.2 Cache hit ratio... 23
3.2.3 Response distribution at authoritative NSs ... 25
3.2.4 Scenario .. 26

3.3 Model structure and operation ... 27
3.3.1 DNS reference model structure... 29
3.3.2 DNS reference model operation ... 30

4 Experimental Results .. 35
4.1 System variable distributions.. 35

4.1.1 Cache hit ratio... 35
4.1.2 Response distribution at the authoritative NS... 39

4.2 Model validation... 43
4.2.1 Data analysis... 43
4.2.2 Model simulation .. 46
4.2.3 Analysis of validation results.. 47
4.2.4 Sensitivity check... 49

4.3 Case studies.. 50
Case 1: The impact of Linux-Firefox and MAC-Safari clients’ aggressivity 50
Case 2: The impact of Servfail responses’ increase... 51
Case 3: Impact of domain name blocking.. 53

5 Conclusion and Future Work ... 55
5.1 Conclusion.. 55
5.2 Future work .. 56

 XII

Bibliography .. 59

Appendix .. 63
I. DNSSEC .. 63
II. MATLAB m-files... 65
III. Recipes.. 75
IV. Histograms.. 76

 XIII

List of Figures
Figure 2.1: An overview of DNS architecture. ... 4
Figure 2.2: The domain name space tree. ... 4
Figure 2.3: An example of a RR of type A. .. 6
Figure 2.4: Domain name resolution process.. 10
Figure 2.5: The client caching (a) and the resolver caching (b).................................. 13

Figure 3.1: DNS reference model. .. 10
Figure 3.2: Windows client Timeout behaviour’s query sequence diagram............... 17
Figure 3.3: MAC-Safari client behaviour’s query sequence diagram......................... 17
Figure 3.4: Linux-Firefox client behaviour’s query sequence diagram...................... 18
Figure 3.5: BIND9 Servfail response behaviour’s query sequence diagram. 19
Figure 3.6: BIND9 Timeout response behaviour’s query sequence diagram. 20
Figure 3.7: BIND9 Refused and Partial responses behaviours’ query sequence
diagram..20
Figure 3.8: BIND9 NXdomain response behaviour’s query sequence diagram......... 20
Figure 3.9: UNBOUND Servfail response behaviour’s query sequence diagram...... 21
Figure 3.10: UNBOUND Refused response behaviour’s query sequence diagram. ..21
Figure 3.11: UNBOUND Timeout response behaviour’s query sequence diagram...22
Figure 3.12: UNBOUND NXdomain response behaviour’s query sequence
diagram..22
Figure 3.13: Overall DNS structure. ... 27
Figure 3.14: The DNS reference model view. .. 28
Figure 3.15: The initial queries going from the users to the authoritative NSs. 31
Figure 3.16: The ‘Query to SLD’ part of the DNS reference model. 33

Figure 4.1: Q-Q plots of Cache hit ratio vs. normal theoretical values. 39
Figure 4.2: Q-Q plots for Response distribution at TLD (a) and SLD (b) NSs. 42
Figure 4.3: CoVs for the system variables and for the outputs................................... 10
Figure 4.4: Impact of Linux-Firefox and MAC-Safari clients’ aggressivity on DNS
traffic. .. 51
Figure 4.5: Impact of Servfail increase at TLD NS on DNS traffic. 52
Figure 4.6: Impact of Servfail increase at SLD NS on DNS traffic............................ 52
Figure 4.7: Impacts of NXdomain and Servfail responses increases’ on DNS
traffic. .. 53

 XIV

 XV

List of Tables
Table 3.1: Query multiply factors for OS and application browsers........................... 18
Table 3.2: Relevant BIND8, BIND9 and UNBOUND behaviours. 23
Table 3.3: Query multiply factors for the recursive resolvers..................................... 23
Table 3.4: Cache hit ratio for the application browsers’ stub resolver....................... 23
Table 3.5: Cache hit ratio for OS. .. 24
Table 3.6: Cache hit ratio for BIND9, BIND8 and UNBOUND. 25
Table 3.7: Authoritative NS responses (a) and Response distribution at authoritative
NS (b). ... 26
Table 3.8: A Scenario for the DNS reference model. ... 27
Table 3.9: Scenario for the example. .. 30

Table 4.1: Cache hit ratio values for UNBOUND for each subset. 35
Table 4.2: Mean, Variance and q statistic for Cache hit ratio samples for
UNBOUND... 37
Table 4.3: Shapiro-Wilk test statistics for Cache hit ratio samples............................ 38
Table 4.4: Response types at TLD (a) and SLD (b) NSs. ... 39
Table 4.5: Response distribution at TLD (a) and SLD (b) NSs................................... 40
Table 4.6: Mean, variance and q for Response distribution at TLD (a) and SLD (b). 40
Table 4.7: Shapiro-Wilk statistics for Response distribution at authoritative NS for
TLD (a) and for SLD (b)... 41
Table 4.8: Repeat definition at the authoritative NSs. .. 44
Table 4.9: Initial and repeat queries at the point of interests in the real world data. ..45
Table 4.10: Initial queries’ OS distribution. ... 46
Table 4.11: Scenario for the model to imitate the real world data environment. 46
Table 4.12: Initial and repeat queries at the POIs in the DNS reference model. 47
Table 4.13: Fractions of the queries at POIs in the real world data and in the model.47
Table 4.14: Initial-repeat query ratio at POIs in the real world data and in the
model... 48
Table 4.15: The query rates towards resolver and authoritative NS. 50

 XVI

 XVII

List of Abbreviations
CName Canonical name
CH Chaos
cc TLD Country code TLD
CoV Coefficient of variance
DNS Domain name system
DNSSEC DNS security extensions
FQDN Fully qualified domain name
gTLD Generic TLD

0H Null hypothesis

aH Alternative hypothesis
HS Hesiod
IND cc TLD Internationalized country TLD
IN Internet
ICANN Internet Corporation for Assigned Names and Numbers
IE Internet Explorer
IP Internet protocol
IPv4 Internet protocol version 4
IPv6 Internet protocol version 6
ISP Internet service provider
MX Mail exchanger
NS Name server
OS Operating system
POI Point of interest
q Von Neumann statistic

tq Von Neumann statistic threshold value
PTR Pointer
Q-Q plot Quantile-quantile plot
RData Resource data
RR Resource record
SLD Second-level domain
SOA Start of authority
SIDN Stichting Internet domainregistratie Nederland
TTL Time to live
TLD Top level domain
UDP User datagram packets
W Shapiro-Wilk statistic

tresholdW Shapiro-Wilk statistic threshold value

 XVIII

 1

Introduction

In the last decade the Internet gained more and more importance such that it became
one of the essential needs of the society in the daily life. The continuity of the Internet
is therefore crucial. One of the major components having key role for the continuity
of the Internet is Domain Name System (DNS). The DNS is primarily used to
translate the human readable domain names into the corresponding Internet protocol
(IP) addresses, which are used for the routing purposes. For instance, thanks to the
DNS, one just needs to recall ‘tudelft.nl’ instead of ‘131.180.77.26’. The data for this
mapping between domain names and IP addresses is stored in a tree-structured
distributed database where the mapping responsibility for each domain is assigned to
designated authoritative name servers (NSs). The authoritative NSs, which consist of
the root, top level domain (TLD) and second level domain (SLD) NSs, are thus
assigned to be responsible for a particular domain name. This mechanism makes
DNS distributed and resilient against failure [1].

DNS is facing the most radical changes with the introduction of new technologies
such as:

• introduction of the Internet protocol version 6 (IPv6);
• securing the DNS by new extensions i.e. DNS security extensions (DNSSEC);
• introduction of new TLD names.

The initiation of these (new) technologies is expected to have serious consequences to
the stability of DNS and indirectly, to the continuity of the entire Internet. For
example, the query load towards the authoritative NSs is expected to increase [20, 39]
and a specific type of DNS query response, Servfail responses, will possibly increase
due to the validation errors [49, 50]. All the mentioned challenges have triggered a
need for public awareness and more research on proper understanding of the DNS
behaviour in the increasingly evolving DNS landscape.

At this point one needs a reference model to predict the behaviour of DNS under
certain conditions e.g. when the amount of a specific DNS query response type
increases by 1% or when the DNS query load towards the authoritative name servers
increases by 10%. To help this out, we create a DNS reference model with which the

Quantitative Modeling of Domain Name System Protocol

2

impact of the introduction of the new technologies on the DNS can be analyzed and
‘what-if’ scenarios can be evaluated.
The outline of this thesis is structured as follows. In Chapter 2, the DNS is introduced.
Here, a simplified description of the DNS structure and DNS operation is given: the
system structure components and the interactions between them are explained. In
Chapter 3, the DNS reference model is presented. First, the general features of the
model and assumptions are introduced. Then the system variables and the input
parameters are defined, and subsequently determined in the lab environment. Finally,
the structure and the operation of the model are explained. In Chapter 4, at first,
probabilistic distributions for the system variables are determined by analyzing the
real-world data. Then the model is validated by using real world data as well.
Furthermore, some relevant cases of DNS real-world problems are evaluated by using
the model. Finally, in Chapter 5, the conclusion is drawn and future work is discussed.

Quantitative Modeling of Domain Name System Protocol

3

Domain Name System

Throughout this chapter the DNS structure and operation will be explained. In
Section 2.1 the DNS structure will be presented. To this end, the domain name space
and resource records (RRs) will be treated. Furthermore, the authoritative NSs and
resolvers will be introduced. In Section 2.2 a simplified view of DNS operation will
be given and the operation related concepts will be introduced: domain name
resolution process, DNS queries, DNS responses and caching mechanism. Beside
these main DNS aspects, in Section 2.3, the future DNS challenges will be explained:
the introduction of IPv6, new TLDs and DNS security extension (DNSSEC).

2.1 DNS structure
DNS is a huge system consisting of millions of elements. However, in the DNS the
following generic components are distinguishable: DNS clients, DNS recursive
resolvers and authoritative name NSs. A DNS client is connected to multiple
recursive resolvers and it addresses recursive resolvers for the domain name
resolution by means of a query. The recursive resolvers extract the domain name
space information from NSs in response to DNS client requests. In general, two
different resolver types can be distinguished: stub resolvers and recursive resolvers.
The name servers are databases which hold information about a particular domain
name space. The authoritative NSs consist of root, TLD and SLD NSs. The
worldwide DNS consists of hundreds of millions of DNS clients and more than seven
million recursive resolvers [24]. An overview of DNS architecture is given in Figure
2.1.

Beside these main generic structural components, the DNS knows also the following
important concepts: domain name space and RRs [2]. The domain name space has a
tree structure enabling the uniqueness of a domain name. The RRs contain data
associated with the queried domain name.

The rest of this section is organized as follows. In Subsection 2.1.1 the domain name
space and RRs will be explained. Then, in Subsection 2.1.2 and 2.1.3 the
authoritative NSs and the resolvers will be explained, respectively.

Quantitative Modeling of Domain Name System Protocol

4

`

`

`

`

NS1

NS2

NS1

NS2
Clients Recursive Resolvers

Root NSs

TLD NSs

SLD NSs

Figure 2.1: An overview of DNS architecture.

2.1.1 Domain name space and resource records

Domain name space
The DNS is a hierarchical and distributed database containing various types of data.
The domain names in a DNS database form a hierarchical tree structure called the
domain namespace [1]. This tree structure can be seen in Figure 2.2. Each node in the
tree is called a domain name and has a label with maximum length of 63 characters
[31]. In the domain names, only alphanumeric characters and ‘-’ character are
allowed to be used [32]. Each domain name makes up an inverse tree where each
node is separated from the following node (label) by a dot e.g. www.cnn.com.

Figure 2.2: The domain name space tree.

Quantitative Modeling of Domain Name System Protocol

5

Any domain name used in the domain name space tree is technically a domain which
colloquially refers to ‘zone’. Hence, a zone could be a single node or the whole
subtree in the domain name space tree but it is typically a simple subtree [1].

Based on their level in name hierarchy, domains are identified in one of five
categories:

• root domain;
• TLD;
• SLD;
• sub-domain;
• host or resource name.

Root domain
Root domain is the top of the domain name space tree. It is represented by ‘NULL’
string or by a dot (‘.’). The DNS domain name is considered to be complete and
refers to an exact location in the tree when it is ended by a dot referring to the root
zone. Such a name is called fully qualified domain name (FQDN). A FQDN is a sub-
tree of a domain name tree and it is unique [14]. Referring to Figure 2.2,
‘www.cnn.com.’ is an example of a FQDN.

TLD
TLD is used to indicate a country (or territory) or the type of the organization which
uses the name. It is located always after ‘.’ representing the root zone in the FQDN.
In ‘www.cnn.com.’, ‘com’ is the TLD of domain name and it stands for ‘commercial’
indicating that ‘cnn’ is registered on the Internet for commercial purposes. There are
four different TLD zone groups: country code TLD (ccTLD), internationalized
country TLD (IND ccTLD), generic TLD (gTLD) and infrastructure TLD. ccTLDs
are two letter TLDs which are established for countries and territories e.g.‘.nl’. After
2009, it has been announced that the countries which are using a non-Latin based
alphabet may apply for IND ccTLD [34]. This means that a country which uses e.g.
Arabic alphabet can use its own letters to express its own country code in TLD.
gTLDs are TLD names consisting of three or more characters. Some popular gTLDs
are ‘.com’, ‘.edu’, ‘.gov’ and ‘.mil’. The infrastructure TLD group consists of just one
domain name: address and routing parameter area (ARPA). ‘.arpa’ is used for reverse
DNS lookup.

SLD
These are the names which are registered to an individual or an organization for use
on the Internet. They are settled in the second place from most right-hand side in the
FQDN. ‘cnn.com’ is the registered SLD name for ‘www.cnn.com.’.

Sub-domain
Sub-domains are the additional names that can be derived from SLD by an
organization. These names can, for instance, be used by an organization to distinguish
between its different departments. ‘www.cnn.com.’ is a sub-domain which is assigned
by CNN for use in documentation of ‘www’ names.

Quantitative Modeling of Domain Name System Protocol

6

Host or resource name
Host or resource names correspond to leaves in DNS name space tree and they refer
to specific resources on the Internet. Typically, the first name in the left hand side of
a domain name stands for a specific computer on the network. For instance, in
‘host.example.cnn.com.’ the first label ‘host’ is a specific computer on the network.

Resource records
DNS RRs are the data which are associated with the domain names in the DNS name
space [2]. Each domain name of the DNS name space tree contains a set of RR’s, and
each RR contains different types of information relating to the domain name. A DNS
query includes the domain name that is to be resolved and the type of the information
desired i.e. the RR that are requested. For instance, a query for the authoritative NS
for a domain name returns an NS RR whereas a query for the IP addresses of DNS
hosts returns an A or AAAA RR. An A type RR packet is given in Figure 2.3.

Domain name (FQDN) TTL Type Class RData
www.tno.nl. 3600 A IN 192.87.96.141

Figure 2.3: An example of a RR of type A.

The RR message contains the following fields:

• domain name;
• time to live (TTL);
• type;
• class;
• resource data (RData).

Domain name
The DNS domain name is recorded in this field. It has to be a FQDN name i.e. ended
by a dot.

Time to Live (TTL)
This field is a 32 bits integer value in seconds indicating the time to live for an RR. It
is primarily used by resolvers when they cache RRs. A DNS resolver caches the
received responses when it resolves DNS queries. These cached responses can then
be used to answer later queries for the same information. TTL indicates the time how
long a RR may be kept in cache before it is discarded.

Type
RR type is a value consisting of 16 bits and it indicates the type of RR. Although
there are numerous RR types, the most important ones will be mentioned [3, 9]:

• Start of authority (SOA): It indicates the DNS server that either originally
created the zone or is now the primary server for the zone. It is also used to
store other properties such as version information and timing that affect zone
renewal or expiration.

Quantitative Modeling of Domain Name System Protocol

7

• Host (A and AAAA): The A and AAAA records deal with host address
information. They simply map a host name to an IP address. Zones with A or
AAAA records are called ‘forward zones’.

• Pointer record (PTR): The PTR record is a pointer towards another part of the
domain namespace. It maps an IP address to a host name. The zones with PTR
records are called ‘reverse zones’.

• Name server (NS): The NS record defines an authoritative NS for a zone. NS
records are the glue that binds distributed database (name servers) together.

• Mail exchanger (MX): The MX record specifies a host that will accept an e-
mail on behalf of a given host. When a user sends an email to an address
(user@domain), the outgoing mail server interrogates the domain NS with
authority over the domain in order to obtain the MX record.

• Canonical name (Cname): The CNAME record maps an alias hostname to an
A record hostname. It is particularly useful for supplying alternative names
relating to different services on the same machine.

Class
The class field contains an encoded 16 bits value identifying a protocol family or an
instance of a protocol. RR Class is set to IN (Internet) for common DNS records
involving Internet hostnames, servers or IP addresses. Additionally, CH (Chaos) and
HS (Hesiod) classes exist. Each class is an independent name space with potentially
different delegations of DNS zones [1, 29].

RData
The RData field contains different data according to the record type. For instance, if
the RR is an A type record then RData contains a 32 bits IP address of corresponding
hostname. For other types of RR, following data is contained within RData field:

• CNAME: a domain name;
• MX: a priority 16 bit value, followed by the host name;
• NS: a host name;
• PTR: a domain name;
• SOA: several fields.

2.1.2 Authoritative name servers
Name servers are server programs which hold information about a part of the domain
name space tree i.e. zone [2]. In general, a particular name server has complete
information about a subset of the domain name space. A name server is said to be
authority for these part of domain name space. The authoritative information is
divided into zones and these zones are distributed to NSs which provide redundant
services for the data in zone. The most important task of an authoritative NS is to
give answer in response to queries for its own zone. For instance, there is at least one
NS which has complete information about “com” zone and that NS can provide the IP
address of the NSs which are responsible for “cnn.com”.

Quantitative Modeling of Domain Name System Protocol

8

Although each zone has only one primary NS, there might be multiple NSs which are
authoritative for a zone. In that case, a distinction is done between primary NS and
secondary NSs. The primary NS is an authoritative server for which the zone
information is locally configured while the secondary NSs obtain the DNS zone
information from a primary server via a zone transfer mechanism [23, 28]. When a
recursive resolver does not receive a positive response from the primary NS, it
queries also the secondary NSs for the same domain name. DNS authoritative NSs
consist of three different servers:

• Root NSs;
• TLD NSs;
• SLD NSs.

Root name server
Root NSs are the servers for DNS root zone. They accommodate the information of
all TLDs of the Internet. They directly answer requests for RRs in the root zone by
returning IP addresses of designated authoritative NSs for appropriate TLD. The root
NSs are one of the most critical parts of the Internet since translating a domain name
to an host IP address (resolving) starts by either requesting root about TLD or reusing
a record which was previously sent by one of the root NSs.

There are in total 13 clusters of root NSs for the entire Internet. This limitation is
caused by user datagram packets (UDP): UDP packets are used to transfer DNS
packets and a UDP packet can support at most 13 root NS addresses. However, by
using other techniques, such as anycast [25, 30], number of the root NSs is increased
and now there are more than 100 root NSs over the world sharing 13 IP addresses
[21].

TLD name server
TLD NSs are the servers for DNS TLD zone. TLD NSs store all the information
about their sub-domains. For instance, in the case of “www.yahoo.com”, “.com”
stands for the TLD and TLD NS for ‘.com’ has IP address of NS which is responsible
for ‘yahoo.com’.

Internet assigned numbers authority (IANA) delegates the governing of the TLD
zones to other institutions. These institutions deploy their own NSs to manage the
corresponding TLD zone. For instance, ‘.nl’ is governed by ‘Stichting Internet
domainregistratie Nederland (SIDN)’. SIDN’s TLD NSs have complete information
about more than four million sub-domains of ‘.nl’ such as ‘tno.nl’ [18].

SLD name server
SLD NSs are the servers for SLD zone. They are the last step in the domain name
resolution process as they answer requests by returning host IP addresses instead of
IP address of a designated authoritative NS.

Quantitative Modeling of Domain Name System Protocol

9

2.1.3 Resolvers
The resolvers act as intermediaries between DNS clients and the authoritative NSs [2].
They answer the client queries with the data which are obtained by sending one or
more queries to the authoritative NSs. Usually they cache those data, reducing traffic
and latency in the case that the data are frequently requested. The resolvers are further
classified into two subcategories: recursive resolvers and stub resolvers.

Recursive resolvers
The recursive resolvers talk directly to the authoritative NSs. They have the ability to
handle DNS queries from clients by sending queries to authoritative NSs. They need
to be able to communicate to arbitrary NSs as they follow the chain of referrals from
an authoritative NS to another authoritative NS. They are also known as caching
resolvers.

Stub resolvers
The stub resolvers communicate only to the recursive resolvers to which they have
been configured to forward queries. They are not supposed to send queries to the
authoritative NSs directly. Stub resolvers are typically found in the user applications
(e.g. application browsers and mail agents) [8] and they do not perform domain name
resolution process, passing that work onto the recursive resolvers. Stub resolvers
concentrate multiple streams of DNS traffic into a single stream.

An important feature of stub resolvers is domain name completion. When a negative
response is received for a query, stub resolver will automatically retry resolving the
domain name by adding suffixes or prefixes to original domain name [22]. For
instance, when name resolution for ‘tno.nl’ failed, ‘www.tno.nl’ will be automatically
retransmitted by stub resolver. Domain name completion is an optional property of
stub resolvers and they can be enabled or disabled by user.

2.2 DNS operation
As mentioned earlier, the following generic components can be distinguished in the
DNS architecture: DNS client, DNS recursive resolvers and the authoritative NSs.
More specifically, the DNS client contains other important subelements: application
browser and operating system (OS) whereas authoritative NSs consist of root, TLD
and SLD NSs. The detailed DNS architecture can be seen in Figure 2.4 in which the
domain name resolution process is depicted for the domain name ‘www.cnn.com’.

In the rest of this section, at first, the domain name resolution process will be
introduced. Then, query and response types will be explained and finally caching
mechanism will be presented.

2.2.1 Domain name resolution process
The mechanism for finding the IP address related to a host name is called domain
name resolution. Domain name resolution for ‘www.cnn.com’ is depicted in Figure
2.4. When an application wants to connect to a host with its domain name e.g.
‘www.cnn.com’, then it looks into its own cache whether or not the domain name is

Quantitative Modeling of Domain Name System Protocol

10

already registered in the cache. In case of the absence of domain name in the
application cache, the request is sent to OS and the same check is done also here. If
‘www.cnn.com’ cannot be found in the cache again, the OS interrogates a recursive
resolver defined in its network configuration and sends a query to the recursive
resolver for the desired domain name. In fact, each machine connected to the network
has the IP addresses of its service provider’s recursive resolvers in its configuration.

The recursive resolver starts a resolution process on behalf of the client by visiting a
root server and asking information about the authoritative NS for the TLD (in Figure
2.4, the authoritative NS for TLD “.com”). The root NS sends a list of the NSs with
authority over the domain (in this case, the IP addresses of the primary and secondary
NSs for ‘cnn.com’). The primary NS with authority over the domain will then be
interrogated and will return the corresponding record to the resolver so that the
desired host IP address (i.e. IP address of “www.cnn.com” server) can be obtained.
The interim results, i.e. addresses of NSs responsible for zones, are also cached by the
recursive resolver. If a domain name is already in cache and the TTL of the
corresponding record is not expired, then the recursive resolver can return the result
to the client immediately without sending remote queries to the authoritative NSs [15,
9].

Figure 2.4: Domain name resolution process.

2.2.2 DNS queries
Queries are the messages which are sent to NSs in order to get a response. They
request the RR for a specific DNS data e.g. domain name. The DNS queries can be
sent either from the client to the recursive resolver or from the recursive resolver to
the authoritative NSs. Consequently, there are two types of queries: recursive queries
and iterative queries [16].

Quantitative Modeling of Domain Name System Protocol

11

A query is said to be recursive when it involves conducting further queries to the
authoritative NSs to complete the domain name resolution process. Hence resolving a
query recursively requires the ability to deal with answers from the authoritative NSs
that refer the resolver to another NS. Since the client applications (stub resolvers) do
not have this ability, they send recursive queries to recursive resolver which can
implement recursive resolution.

An iterative query is the one to which the authoritative NS is expected to respond
with the best local information it has. The positive response on an iterative query can
either be the actual data or a referral. The actual data can be responded if the queried
NS is authoritative for the requested domain name. When the queried NS is not an
authority for the requested domain name, then it returns a referral which indicates the
authoritative NS’s IP address for the requested domain name.

Both querying mechanisms are shown in Figure 2.4. The query from stub resolver to
recursive resolver is a recursive query while the queries between the recursive
resolver and authoritative NSs are iterative queries.

2.2.3 DNS responses
There are different types of responses which can be given to a query at the
authoritative NSs. A response on a query can be either positive or negative. Positive
response returns desired information while a negative response returns an error.
Throughout this report, the positive answers will be classified into three different
groups:

• Valid response: The valid response is given when the requested DNS data can
be correctly delivered and the response packet size fits in a standard UDP
packet of at most 512 bytes.

• Valid>512B response: These are the valid responses which are, larger than
512 bytes and are carried within a single UDP packet.

• Truncated response: The truncated response is given by a NS when the
response information requires more than 512 byte which is the recommended
maximum number of bytes which should be transported in a single UDP
packet. The truncated responses are used to inform the requester that the
response size exceeds 512 bytes threshold. Requester then initiates a TCP
connection to the DNS server and resend the request over TCP, allowing up to
64K in a packet.

The common negative responses are [2, 13, 16]:

• NXdomain response: The ‘NXdomain’ response is used by a NS to indicate
that the requested DNS data does not exist.

• Partial response: A response is considered to be a ‘Partial’ response when it
does not contain all information that it should do anyway.

Quantitative Modeling of Domain Name System Protocol

12

• Servfail response: ‘Servfail’ response indicates that DNS NS encountered an
internal error e.g. a forwarding timeout and at the moment it can not be
answered.

• Timeout response: A response is considered to be a ‘Timeout’ response when
a DNS client cannot receive an answer to its query. This can happen when the
connection between DNS client and the NSs is broken.

• Refused response: The ‘Refused’ response is given when a NS refuses to
perform the specified operation for policy reasons. This could be the case
when, for instance, a NS does not wish to provide the information to the
particular requester or when a NS does not wish to perform a particular
operation for a particular data.

2.2.4 DNS caching mechanism
A cache is a component that stores data so that future requests for that data can be
served faster. In the context of the DNS, cache is a DNS servers’ internal database
which is used to reduce the load towards the authoritative NSs and the long delay that
a client has to wait due to multiple network round-trips before getting an answer for
his query [2, 3].

A RR is stored in the cache for the duration of its TTL value. Hence, zero TTL
suppresses the caching. Upon the expiration of the TTL, the record will be deleted by
the cache. The administrator of a domain can adjusts the TTL duration of a RR.
Rapidly changing data should have a low TTL trading off latency and server load for
fresh data [1, 4].

Effectiveness of caching can be increased to a certain extend by increasing the
lengths of TTL values of RRs and number of the client population which are
connected to the same caching recursive resolver. More details on DNS caching
effectiveness can be found in [4, 10, 44].

Quantitative Modeling of Domain Name System Protocol

13

Internet

Client Client
Client

Authoritative NSs
(a)

Internet

Client

Client Client

Authoritative NSs
(b)

Resolver

Figure 2.5: The client caching (a) and the resolver caching (b).

The caching of DNS records is done at multiple levels. Any recursive resolver has a
cache shaped by possibly thousands of clients’ queries. Recursive resolvers may also
be chained to provide increasingly larger client sets. Besides resolver caching, there
are also occasional application level caches. In this case, the client application
browser performs caching by storing cached data on local disk as temporary file or
browser internal memory. This provides quick access of some information by client
and reduces the network load and server load. This information can't be shared by
other clients so it is client specific. For instance, web browsers like Internet Explorer
(IE) and Firefox perform application level caching of domain names. However, the
TTL value in the RRs is not used. Instead, all the RRs are stored in the cache for a
fixed period of time which is usually shorter than actual TTL [5]. The client caching
and the resolver caching are illustrated respectively in the left hand and right hand
side of Figure 2.5.

2.3 Future DNS challenges
In this section, the potential threats due to the introduction of new technologies will
be summarized. Specifically the motivation for the expected increase of redundant
DNS traffic towards the authoritative NS, and the increase of Servfail responses will
be explained.

2.3.1 IPv6
Internet protocol version 6 (IPv6) is designed to succeed Internet protocol version 4
(IPv4). The IPv4 uses 32 bits for IP addresses meaning that 322 IP addresses can be
supported by IPv4. This was the limitation of IPv4 leading to IPv6 design which can
support 1282 IP addresses. It should be understood that IPv4 and IPv6 are not
‘compatibles on the wire’ meaning that an IPv4-only host can not communicate with
an IPv6-only host. Therefore, IPv6 will not substitute IPv4 and both protocols will

Quantitative Modeling of Domain Name System Protocol

14

co-exist for several years. This means that an IPv6 enabled host will have two IP
addresses; one for IPv4 and the other one for IPv6.

As explained in Subsection 2.1.1, an A RR is served to a client when it sends a query
for domain name resolution. However, if a query is sent by an IPv6 enabled host, then
an additional query for AAAA RR will be sent as well. The queries for AAAA
records are used for the address resolution of IPv6 enabled hosts [20]. Hence, domain
name request by an IPv6 enabled host will lead to two queries: one for an A RR and
other one for an AAAA RR. Consequently, increase in the number of IPv6 enabled
host will cause an increase in DNS traffic going to authoritative NSs.

2.3.2 New TLDs
In Subsection 2.1.1 it is mentioned that only ASCII characters could be used in
domain names. However, in 2009 the Internet Corporation for Assigned Names and
Numbers (ICANN) introduced IND ccTLD which can contain characters not
belonging to ASCII characters [34], e.g. Arabic or Chinese letters.

It is expected that number of negative queries will increase substantially with the
introduction of INT ccTLDs causing an increase of the number of the queries going
towards the authoritative NSs and in particular to the root NSs. An extraordinary
percentage of the queries arriving at the root are queries for nonexistent domain
names [6] and these are mainly due to the queries which contain invalid TLD name
i.e. nonexistent TLD name [7]. We expect that introduction of INT ccTLDs will
increase the number of queries with invalid TLD name and so the redundant traffic
going to the authoritative NSs, in particular towards the root NS.

2.3.3 DNSSEC
Although DNSSEC brings additional security in DNS (see Appendix I for more
detailed explanation on DNSSEC), it has two important side effects: the DNS
response packet size will be larger and number of Servfail responses will increase [49,
50]. The former effect is rather obvious since the response packets will have to
include more data such as RRsig records. Because of the additional data, DNS
response packets will be slightly larger than 512 byte causing more Valid>512 B
responses. The problem with these responses will be experienced because the
residential gate ways (GWs) can block a fraction of these responses [33]. A blocked
DNS response is considered as a Timeout response by client and many other repeat
queries can be initiated by the client to get a response. The latter effect is expected
because when an unauthorized user tries to connect a web server it will be responded
by a Servfail response which can cause an avalanche of repeat queries [26].

15

15

DNS Reference Model

In this chapter we introduce the DNS reference model. Figure 3.1 illustrates the DNS
reference model scheme. In Section 3.1 we give general features of the DNS reference model
and discuss the assumptions. In Section 3.2 we determine the system variables and explain the
model input parameters. The system variables are Query multiply factors, Cache hit ratio and
Response distribution at the authoritative NS which are explained respectively in Subsection
3.2.1 until 3.2.3. The model input parameters which are represented by Scenario list will be
explained in Subsection 3.2.4. Finally, in Section 3.3, we describe the DNS reference model
structure and operation.

System variables
Query multiply factors

Cache hit ratio
Response distribution at authoritative NS

 Input Output
 Scenario DNS behaviour

Figure 3.1: DNS reference model.

3.1 General features and assumptions
We assume a certain number of clients generating a certain number of DNS queries in a given
time frame. We are interested in the distribution of the DNS queries over the different point of
interests (POIs) and the ratio between the initial and repeat queries at these POIs in the DNS
in this time frame. Consequently, we ignore the time notion i.e. the delay is not taken into
account.

DNS Reference
model

16

16

We created a DNS reference model at flow level. Consequently, DNS caches are not modeled
as states i.e. the domain name is in cache or not, but by a hit ratio. Secondly, we do not model
the dynamic behaviour over time, but rather the query flow rate at an arbitrary point in time.

Caching is an important concept in DNS with a stochastic and state dependent behaviour [4].
The probability that a query will be in the cache depends strongly on the TTL value and inter-
arrival time of the queries. Looking at a short time scale and at an individual user, the caching
mechanism makes the query flow state dependent. However, the DNS reference model is
targeted to analyze the query flow at a longer time scale, and a combined flow of DNS queries
from multiple users. This assumption makes the DNS reference model suitable for
investigating the scalability issues instead of the performance of the DNS related to e.g. delay.

In the DNS reference model, we assume that the DNS querying behaviour (i.e. querying
pattern) of all the clients are independent and their behaviour is identical so that they can be
modeled as one query generator. We also assume that the same holds for recursive resolvers.
This assumption enables us to control the entire system by adjusting input parameters for just
a single end user and a single recursive resolver. The same assumption allows us to model the
queries between those main components as flows.

Furthermore, we model ‘the root’ as one component, because we are (at this point in time) not
interested in how the queries are split out to the large number of NS in root A through M. We
make the same assumption also for TLD and SLD NSs since we are not interested in how the
queries are distributed over TLDs and domain names.

The DNS reference model can be used to investigate the impact of DNS features which are
suspected to contribute significantly to the redundant DNS traffic. These factors e.g. the
poorly configured resolvers, the short TTLs of the RRs and domain name completion are
usually “fact of life” and practiced everyday. By using the DNS reference model, the impact
analysis can be done to evaluate the contribution of these factors on redundant DNS traffic.

3.2 System variables and input parameters
As shown in Figure 3.1, the DNS reference model has the following system variables Cache
hit ratio, Query multiply factors, Response distribution at the authoritative NS , and Scenario
as the group of input parameters. In this section, the system variables will be explained and
the values for them will be obtained by analyzing real world data. Anonymized real world
data is provided by SURFnet, Internet service provider (ISP) in the Netherlands. Data consist
of 300.000 DNS packets and the duration of the capture is 14 seconds. It is captured at an
UNBOUND recursive resolver.

3.2.1 Query multiply factor
Query multiply factor indicates how many queries will be reinitiated by a component in
reaction to a negative response. In other words, it reflects how the component behaves when it
receives a DNS response in terms of DNS query rates. The determination of Query multiply
factor involves the characterisation of the detailed querying behaviour of both the client and
the recursive resolver.

Characterization of the client behaviour
The experiments in the lab environment have shown that when a negative response is received
for an initial query, the client may automatically resend new identical repeat queries. The

17

17

amount of repeat queries depends on the implemented DNS functions in the user’s application
browser and OS type [26].

In [26], different combinations of OSs and application browsers are used to explore the client
behaviour. The operating systems Windows7, Windows XP, MAC OSX and Ubuntu (Linux)
are taken into consideration while as application browsers IE8, Firefox and Safari are
considered. Although not all the combinations of application browsers and OSs are evaluated,
the most common combinations were tested: Windows XP and Windows 7 with all kind of
application browsers, Safari with MAC OSX and Firefox with Linux. By using these
combinations, it was determined how the clients with these combinations react when they
receive different type of responses for their initial queries.

• Windows - any browser: Windows clients behave same in the case of Servfail, Partial,
Refused and NXdomain responses: no repeat queries are sent to the resolver. In case
that no response is received from the recursive resolver, three extra repeat queries are
retried by the Windows client. Consequently, for a queried domain name, which will
not be answered, in total, four queries are sent to the resolver. The Timeout behaviour
of Windows client is shown in Figure 3.2.

Figure 3.2: Windows client Timeout behaviour’s query sequence diagram.

• MAC OSX - Safari: In the case of Servfail, Refused and Timeout cases, Safari does

not send any repeat queries while MAC OSX initiates three more repeat queries i.e. in
total four queries. This behaviour is illustrated in Figure 3.3a. In reaction to the
NXdomain and Partial responses, MAC OSX sends in total two queries while Safari
does not send any repeat query. The query sequence diagram showing this behaviour
is depicted in Figure 3.3b.

Figure 3.3: MAC-Safari client behaviour’s query sequence diagram.

• Linux - Firefox: Linux and Firefox clients are observed to be the most aggressive

clients when a negative response is returned. In the case of NXdomain and Partial

18

18

responses, Firefox causes in total two queries while Linux sends in total two queries
for each NXdomain and Partial responses i.e. in total four queries from the client to
the resolver. This trend can be seen in Figure 3.4a. When no response is received, in
total 8 queries are sent to the resolver. Linux-Firefox client Timeout behaviour can be
seen in Figure 3.4b. Finally, when Servfail or Refused responses are received, again in
total two queries are initiated by Firefox while Linux causes, in total, four queries for
each response i.e. in total eight queries from the client to the resolver. This observation
is illustrated in Figure 3.4c.

Figure 3.4: Linux-Firefox client behaviour’s query sequence diagram.

The variables indicating the number of total sent queries will be called the Query multiply
factors. Table 3.1 displays Query multiply factors for different application browsers and OS
types, and for any possible response type. It should be noted that the depicted numbers in
Table 3.1 include also the initial query, e.g. in case of the Servfail response, a Linux-Firefox
client will send in total eight queries, including the initial query.

Table 3.1: Query multiply factors for OS and application browsers.
Category Windows XP Windows 7 Linux Mac OSX IE8 Firefox Safari
Valid 1 1 1 1 1 1 1
NXdomain 1 1 2 2 1 2 1
Partial 1 1 2 2 1 2 1
Servfail 1 1 4 4 1 2 1
Timeout 4 4 4 4 1 2 1
Refused 1 1 4 4 1 2 1
Truncated 2 2 2 2 1 1 1

Characterization of the resolver behaviour
The characterization of the resolver behaviour is achieved by analyzing DNS data obtained
from SURFnet. Algorithm 3.1 is implemented in Wireshark to obtain the resolver behaviour,
for a particular response type.

19

19

i. Obtain only the responses from the authoritative NSs to the recursive resolver.
ii. Consider one of the response packets carrying the desired response type e.g.

Servfail and retrieve the queried domain name from the response e.g.
‘www.tudelft.nl’.

iii. Determine the query and response packets which are containing the retrieved
domain name e.g. ‘www.tudelft.nl’ in the entire dataset.

iv. Use time stamp at each packet to obtain the desired traffic between the recursive
resolver and the authoritative NSs related to the queried domain name.

Algorithm 3.1: Recipe to determine the recursive resolver behaviour.

In the DNS reference model, three different versions of recursive resolvers are included:
BIND8, BIND9 and UNBOUND. We have characterized BIND9 and UNBOUND behaviours
by analyzing real world data while for BIND8 behaviour we have used the literature.

• BIND9: BIND9 is by far the most popular resolver software [24]. Although, there are
different versions of BIND9 such as BIND9.7.x, BIND9.6.x, we will refer to them as
just BIND9. Further setting specific configuration parameters can change its
behaviour. The behaviour described below is based on experiments with an as-is,
downloaded BIND version 9.7.0.

In the case of valid responses from authoritative NSs, BIND9 is just transparent and it
forwards the responses from the authoritative NSs to the clients. However, in the case
of negative response, BIND9 may take some extra actions. In particular, Servfail and
Timeout responses will be treated differently than other negative responses.

In the case of a Servfail response from the authoritative NS, BIND9 double checks the
responses with the authoritative NS before giving response to the client. The repeat
queries from the client side, during the domain name resolution process, will not be
held back by the BIND9 resolver and these queries will be forwarded to the
authoritative NSs. In other words, BIND9 does not perform caching for Servfail
responses and the identical repeat queries for Servfail responses are passed to the
authoritative NSs. This behaviour is shown in Figure 3.5.

Client BIND9 Authoritative NS

Servfail

Servfail
Servfail

Servfail

Servfail
Servfail

Figure 3.5: BIND9 Servfail response behaviour’s query sequence diagram.

When receiving no response from the authoritative NSs for a requested domain name,
BIND9 sends six more repeat queries for the same domain name while this time it
holds back the repeat queries from the client for that particular domain name. If there
is still no answer received, then BIND9 will answer the client with a Servfail response.

20

20

The further repeat queries, for the same domain name will be responded by Servfail
responses for the next seven seconds. This behaviour is shown in Figure 3.6.

Figure 3.6: BIND9 Timeout response behaviour’s query sequence diagram.

In case of recursion Refused and Partial responses from the authoritative NSs, the
BIND9 will return a Servfail response to the client. The repeat queries for these
responses will again be passed to the authoritative NSs. The sequence diagram
displaying this behaviour is shown in Figure 3.7.

Client BIND9 Authoritative NS

Refused
Servfail

Client BIND9 Authoritative NS

Partial
Servfail

Figure 3.7: BIND9 Refused and Partial responses behaviours’ query sequence diagram.

BIND9 performs negative caching i.e. caching of NXdomain responses. When a
domain name request is replied by an NXdomain response, it will first be cached by
BIND9 and then it will be sent back to the client. The further queries for the same
domain name, within the TTL, will be responded by BIND9 skipping the iterative
queries from the clients towards the authoritative NSs. This behaviour of BIND9 is
shown in Figure 3.8.

Client BIND9 Authoritative NS

NXDomain

NXDomain

NXDomain

Figure 3.8: BIND9 NXdomain response behaviour’s query sequence diagram.

• BIND8: BIND8 is an older version and there are some important differences between

BIND8 and BIND9. No negative caching is implemented in BIND8. Therefore, the
number of NXdomain queries toward the authoritative NSs will be increased
significantly. Furthermore, BIND8 does not implement double checking of Servfail
responses from the authoritative NSs. In case of Servfail response BIND8 acts just as
an intermediary between the client and the authoritative NS. The same behaviour is

21

21

also observed when there is no response received from the authoritative NSs. In that
case, BIND8 just forwards the repeat queries, from the client to the authoritative NSs,
for the domain name under consideration.

• UNBOUND: In case of Servfail response from the authoritative NS, UNBOUND

sends in total five queries towards the authoritative NS before sending Servfail
response to the client. After that UNBOUND holds back the repeat queries for the
same domain name from the client when it is resolving the queried domain name.
These repeat queries are answered by UNBOUND later on when the domain name
resolution process is completed. We will refer to this UNBOUND property as
‘shielding’. The repeat queries for the Servfailed domain name are shielded by
UNBOUND during the next seven seconds. Figure 3.9 displays the Servfail response
behaviour of the UNBOUND.

Figure 3.9: UNBOUND Servfail response behaviour’s query sequence diagram.

Exactly the same behaviour has been observed for the recursion Refused responses.
Figure 3.10 displays the Refused response behaviour of the UNBOUND. It should be
noted that UNBOUND returns a Servfail response to the client although it receives a
Refused response from the authoritative NS. In Figure 3.9 and in Figure 3.10, the
repeat queries from client to the resolver have same transaction IDs while the queries
from UNBOUND to the NS have different transaction IDs.

Figure 3.10: UNBOUND Refused response behaviour’s query sequence diagram.

22

22

When receiving no response from the authoritative NSs for a requested domain name,
UNBOUND sends six more repeat queries for the same domain name. If there is still
no answer received, then UNBOUND will answer the client with a Servfail response.
The further repeat queries, for the same domain name will be responded by Servfail
responses in the next few seconds. If there are multiple NSs, first, UNBOUND will
send a few queries towards the primary NS, then the secondary NSs will be queried
and after that again the primary NS. This trend will continue until each NS is queried
in total seven times. The Timeout response behaviour of the UNBOUND is depicted in
Figure 3.11 in which multiple NSs are queried. All the queries from the client to the
UNBOUND resolver and from the UNBOUND to the authoritative NSs have different
transaction IDs.

Client Unbound NS1

Servfail

Servfail

t

t+12 sec

Servfail

Servfail

NS2

Servfail

MX

MX

MX

MX

MX

MX

MX

MX

MX

MX

MX

MX

MX

MX

MX

MX

MX

MX

Figure 3.11: UNBOUND Timeout response behaviour’s query sequence diagram.

UNBOUND also features the negative caching property. When a domain name request
is replied by an NXdomain response, UNBOUND will first cache the response and
then it will send the response back to the client. The further queries for the same
domain name, within the TTL, will be responded by UNBOUND. NXdomain
behaviour of UNBOUND is shown in Figure 3.12.

Figure 3.12: UNBOUND NXdomain response behaviour’s query sequence diagram.

23

23

Table 3.2 shows four distinct behavioural properties of the recursive resolvers: negative
caching, no response behaviour, service failure behaviour and shielding. Those properties are
taken into the account when determining the system variable Query multiply factor for the
recursive resolvers, which is given in subsequent Table 3.3. Note that Query multiply factor
accounts for clients’ and recursive resolvers’ querying behaviours. Additional model
parameters are created to account for Negative caching and shielding features when
implementing the model in Microsoft Excel.

Table 3.2: Relevant BIND8, BIND9 and UNBOUND behaviours.
Behaviour BIND8 BIND9 UNBOUND

Negative caching No Yes Yes
In case of no response
from the authoritative
NS

Forwarding all the
repeat queries from
the end user to NSs

6 retries holding back
the end user repeat
queries

6 retries holding
back the end user
repeat queries

In case of service
failure from the
authoritative NS

Forwards the
Servfail responses
back to the client

Double checking
before responding to
the client

Four retries before
responding to the
client

Shielding No Only Timeout Yes

Table 3.3: Query multiply factors for the recursive resolvers.
 Category BIND8 BIND9 UNBOUND

Valid 1 1 1
NXdomain 1 1 1
Partial 1 1 1
Servfail 1 2 5
Timeout 1 7 7
Refused 1 1 5
Truncated 1 1 1

3.2.2 Cache hit ratio
Cache hit ratio values indicate the probability that a queried domain name will be in the cache
of a system component under consideration. Cache hit ratio values concern any entity having
a cache i.e. application browsers, OS and recursive resolvers. The notion of a Cache hit ratio
is different for recursive resolvers and the client side. Therefore, Cache hit ratio for recursive
resolver and client will be treated separately.

Cache hit ratio at the client side
Cache hit ratio values at the client side indicate the probability that a query will be answered
with a certain response type from the cache. Whether the received DNS data can be cached or
not depends on the response type. For instance, application browsers cache only the DNS
response types that provide valid data (valid, valid>512B and truncated) and NXdomain
response type. OS and application browser cache hit ratios are rather complicated to
determine. Therefore, considering the ‘relative scale’ nature of the DNS reference model, we
assume the values for Cache hit ratio for OS and application browser as given in Table 3.4
and Table 3.5.

Table 3.4: Cache hit ratio for the application browsers’ stub resolver.
Category IE8 (%) Firefox (%) Safari (%)
Total 25 25 25
Valid 22 22 22
Valid (>512B) 1 1 1
NXdomain 1 1 1
Truncated 1 1 1

24

24

Table 3.5: Cache hit ratio for OS.

Category Windows XP (%) Windows 7 (%) Linux (%) Mac OSX (%)
Total 25 25 0 25
Valid 22 22 0 22
Valid (>512B) 1 1 0 1
NXdomain 1 1 0 1
Truncated 1 1 0 1

In Table 3.4 and 3.5, ‘Total’ stands for the amount of the total traffic which will be responded
from the application browser/OS cache. Correspondingly, the percentage of 22% for example
for the IE8 application browser indicates the amount of traffic that will be responded with the
‘Valid’ response type. The Cache Hit Ratio values for OS and application browser are
relatively smaller than the recursive resolver Cache Hit Ratio values since these are client
specific caches.

Cache hit ratio at the resolver
Cache hit ratio for recursive resolvers indicates the probability that an incoming query will be
placed into one of the four different groups from caching point of view. Based on the group
they are classified in, they will be answered at the recursive resolver or sent to the root, TLD
or SLD NSs. The caching groups are:

• ‘Noncached’ queries are the queries for DNS data which are not in the cache. So these
queries have to be sent to the root directly and domain name resolution will be
performed by the resolver until whole name is resolved. ‘www.tno.nl’ would belong to
this group when ‘.nl’ is not known by root NSs.

• ‘TLD cached’ queries are those whose only TLD is known by the caching resolver.
This means that ‘TLD cached only’ queries will be sent directly to TLD NS by
skipping the root. ‘www.tno.nl’ would belong to this group when ‘.nl’ is in the cache
while ‘.tno.nl’ is not in the cache.

• ‘SLD cached’ queries will directly be sent to SLD NSs. TLD and SLD of those queries
are known by caching resolver. Hence ‘www.tno.nl’ would belong to this group when
‘.tno.nl’ is known by recursive resolver while ‘www.tno.nl’ is not in the cache.

• ‘Domain cached’ queries occur when the entire request is in the cache. This occurs in
most of the cases. ‘www.tno.nl’ would be in this group when ‘www.tno.nl’ is
completely in the cache.

The probability that an incoming query will be located in one of these groups is given by the
Cache hit ratio values for the resolvers. We have determined the Cache hit ratio values for
the resolvers by using Algorithm 3.2 which is implemented in MATLAB and Wireshark.
Based on Algorithm 3.2, the Cache hit ratio for UNBOUND is computed by using the
SURFnet data. These values, together with the assumed Cache hit ratio values for BIND8 and
BIND9, are shown in Table 3.6. One might think it is interesting that ‘TLD only’ and ‘SLD
only’ probabilities for BIND9 are 0. This can be explained by BIND9 property that it always
starts querying from root NS when a RR expires [17, 23]. However, it has to be remarked that
this property can be changed in the configuration settings of BIND9.

25

25

i. Determine the initial queries from the clients to the resolver;
ii. Determine the number of initial queries sent from the resolver to the root;
iii. Determine the referrals from the root to the resolver;
iv. Determine number of initial queries sent from the resolver to the TLD;
v. Determine the referrals from TLD to the resolver;
vi. Determine number of initial queries going to the SLD.

• Noncached: ii
• TLD cached: iv-iii
• SLD cached: vi-v
• Domain cached: i – Noncached -TLD cached - SLD cached

Algorithm 3.2: Recipe to determine Cache hit ratio for recursive resolvers.

Table 3.6: Cache hit ratio for BIND9, BIND8 and UNBOUND.

Caching group BIND9 (%) BIND8 (%) UNBOUND (%)
TLD cached 0 10 4.16
SLD cached 0 5 41.18
Domain cached 90 80 54.54
Noncached (queries to root) 10 5 0.12

Since the recursive resolver’s cache is shaped by the queries of possibly thousands of clients,
it accommodates the most popular domain names in it. As a consequence, recursive resolver’s
Cache hit ratio amounts much higher than stub resolvers’ cache hit ratio, see ‘Domain
cached’ query group in Table 3.6.

3.2.3 Response distribution at authoritative NSs
Response distribution at the authoritative NSs indicates the fraction of response types which
are given, in response to incoming initial queries, at the authoritative NSs. These values are
different for root, TLD and SLD NSs. The distribution values at the authoritative NSs are
determined by analyzing the real world data. Algorithm 3.3 which is implemented in
MATLAB and Wireshark, is applied at the root, TLD and SLD responses respectively to
determine the response distribution at the authoritative NSs. Table 3.7a shows the number of
responses at the authoritative NSs. It should be remarked that just seven initial queries are
sent to the root NS from the UNBOUND resolver and all these queries are replied by
NXdomain. The latter observation indicates the proper working of the caching mechanism of
UNBOUND recursive resolver while former observation is due to the fact that our data set
covers just 14 seconds of DNS traffic. However, since our dataset is not large enough to
determine Response distribution at root NSs, we use the values which are given in [8]. These
values are included in Table 3.7(b).

SLD NS is the last step in the domain name resolution process. Therefore, we observe
diversity in SLD response types unlike TLD NS responses in Table 3.7a. These values are
translated into the DNS reference model response types based on the recipe explained in the
Algorithm 3.3. Table 7.3b shows the response distribution at the NSs.

26

26

i. Determine the initial queries going to the corresponding NS.
ii. Determine the responses given to these queries at the name server.
iii. Group the responses based on their types. The following response types will be

obtained: Referrals, A, AAAA, CNAME, MX, PTR, No such name, Not implemented,
Refused, Service failure, NS, SOA, TXT and Format error.

iv. Determine the number of each response type.
v. Translate these response types into the variables which are used in the model:

• Valid: Sum of Referrals, A, AAAA, CNAME, MX, PTR, NS, SOA, TXT and

Format errors.
• NXdomain: No such name.
• Servfail: Service failure
• Refused: Refused

Algorithm 3.3: Recipe to compute Response distribution at the authoritative NS.

Table 3.7: Authoritative NS responses (a) and Response distribution at authoritative NS (b).

Response Root TLD SLD
Referrals 0 377 741
A 0 0 1072
AAAA 0 0 20
CNAME 0 0 673
MX 0 1 23
PTR 0 2 105
NXdomain 7 31 510
Not Imp. 0 0 89
Refused 0 5 270
Servfail 0 2 199
NS 0 0 3
SOA 0 0 1
TXT 0 0 6
Format Error 0 0 5

(a)
Response Root (actual) (%) Root (literature) (%) TLD (%) SLD (%)
Valid 0 91,5 90,90 73,67
NXdomain 100 8.1 7,42 13,72
Servfail 0 0,4 0,48 5,35
Refused 0 0 1,20 7,26

(b)

3.2.4 Scenario
A Scenario is a collection of input parameters which are used to imitate the real world data
conditions with the DNS reference model. These inputs concern:

• fraction of IPv6 enabled clients with respect to the total number clients;
• average number of secondary NSs, ;
• number of simultaneously active clients ;
• number of recursive resolvers querying the authoritative NSs simultaneously.

27

27

Table 3.8 depicts an example of a Scenario to be tested. The total number of users who are
querying the recursive resolver simultaneously can be entered in the model by adjusting the
‘Average number of simultaneously active DNS clients’ entry in Table 3.8. In the example,
we considered 10.000 DNS clients meaning that, at the moment, 10.000 clients are querying
per resolver infrastructure (typically more than one). The last entry can be used to control the
number of recursive resolvers which are querying the authoritative NSs simultaneously.

Table 3.8: A Scenario for the DNS reference model.
Fraction of IPv6 clients w.r.t all clients. 10%
Primary & secondary NS: average number 1
Number of simultaneously active DNS clients 10.000
Number of simultaneously active resolvers 10.000

As mentioned in Subsection 2.1.2, each zone can have multiple NSs to provide redundancy.
In the DNS reference model we assume that there is no secondary NS for an authoritative NS.
However, this can be changed in the second entry of the Scenario. In Subsection 2.3.1, the
relevance of the number of IPv6 enabled hosts is stressed. The fraction of IPv6 enabled hosts
is adopted as 10%. However, again, this number can be changed to a desired value by
modifying the first entry of the Scenario in Table 3.8.

3.3 Model structure and operation
As mentioned in Section 2.1, following generic components can be found in DNS: application
browser, OS, recursive resolver, root domain NS, TLD NS and SLD NS. Figure 3.13 shows
these elements and also the interactions between them. Q (or q) stands for query, R (or r) for
response, d for domain name and t for response type. The arrows indicate the direction of
query/response stream.

Figure 3.13: Overall DNS structure.

Based on Figure 3.13, the DNS reference model is built in Microsoft Excel. Figure 3.14
depicts the DNS reference model as it is made in the Windows Excel. Here, the same
architecture is preserved as in Figure 3.13. In the rest of this section, first, the components in
the DNS reference model will be explained. Then, the DNS reference model operation will be
explained.

28

28

Response Repeat query User Firefox Linux Resid.GW No resolver behavioUNBOUND Authoritative NS
Query to Root 1,1E+00 8,3E-01 8,3E-01 825 825 83 Root

Valid 0,07
Valid (>512B) 0,00 1 (Repeated queries)
Nxdomain 7,5E-04 7,5E-04 7,5E-04 0,75 0,75

Repeat-NXdomain 1,5E-03 3,0E-03 2,3 0,0
Partial 0,0E+00 0,0E+00 0,0E+00 0,00 0,00

Repeat-Partial 0,0E+00 0,0E+00 0,0 0,0
Servfail 3,0E-06 3,0E-06 3,0E-06 0,00 0,00

Repeat-Servfail 6,1E-06 2,4E-05 0,0 0,0
Timeout 0,0E+00 0,0E+00 0,0E+00 0,00 0,00

Repeat-Timeout 0,0E+00 0,0E+00 0,0 0,0
Refused 0,0E+00 0,0E+00 0,0E+00 0,00 0,00

Repeat-Refused 0,0E+00 0,0E+00 0,0 0,0
Truncated 0,00

Repeat-Truncated 0,0

Query to TLD 4.049 TLD
Valid 37,37
Valid (>512B) 0,00 178 (Repeated queries
Nxdomain 2,7E-03 2,7E-03 2,7E-03 2,67 2,67

Repeat-NXdomain 5,3E-03 1,1E-02 8,0 0,0
Partial 0,0E+00 0,0E+00 0,0E+00 0,00 0,00

Repeat-Partial 0,0E+00 0,0E+00 0,0 0,0
Servfail 4,5E-04 4,5E-04 4,5E-04 0,28 0,28

Repeat-Servfail 8,9E-04 3,6E-03 3,1 1,1
Timeout 0,0E+00 0,0E+00 0,0E+00 0,00 0,00

Repeat-Timeout 0,0E+00 0,0E+00 0,00 0,0
Refused 0,0E+00 0,0E+00 0,0E+00 0,16 0,16

Repeat-Refused 0,0E+00 0,0E+00 0,0 0,6
Truncated 0,00

Repeat-Truncated 0,0

Query to SLD 36.820 SLD
Valid 9,8E-01 7,4E-01 7,4E-01 735,28
Valid (>512B) 1,7E-02 6,4E-03 6,4E-03 6,4E-03 6,44 3.240 (Repeated queries)
Nxdomain 7,2E-02 6,1E-02 6,1E-02 60,75 60,75

Repeat-NXdomain 1,2E-01 2,4E-01 182,3 0,0
Partial 0,0E+00 0,0E+00 0,0E+00 0,00 0,00

Repeat-Partial 0,0E+00 0,0E+00 0,0 0,0
Servfail 8,1E-03 8,1E-03 8,1E-03 3,31 3,31

Repeat-Servfail 1,6E-02 6,5E-02 56,7 13,3
Timeout 0,0E+00 0,0E+00 0,0E+00 0,0E+00 0,00 0,00

Repeat-Timeout 0,0E+00 0,0E+00 0,0 0,0
Refused 0,0E+00 0,0E+00 0,0E+00 4,79 4,79

Repeat-Refused 0,0E+00 0,0E+00 0,0 19,1
Truncated 2,3E-02 1,2E-02 1,2E-02 12,27 12,27

Repeat-Truncated 0,0
Figure 3.14: The DNS reference model view.

 29

3.3.1 DNS reference model structure

User
The user corresponds to the querying entity in any Internet accessible device. The main
role of the user in the reference model is initiating queries to connect to web servers.
User click actions go directly to the application browser. In the Figure 3.14, the user
clicking rate of 1.1 in the user box stands for 1.1 clicks per unit time (qpt) e.g. clicks per
hour.

Application browser
The application browser is a part of the end-user device. The application browser
attempts to handle the queries, first, by checking its own cache. If the queried domain
name can be matched with one of the entries in the cache, then the user is provided by
the cached DNS data e.g. an IP address. If the requested domain name cannot be
matched with any of the entries in the cache, it has to be sent to the OS. The Cache hit
ratio for the different application browsers for the various response types can be seen in
Table 3.4. As explained in Subsection 3.2.1, application browsers can initiate new repeat
queries in the case of negative response. The Query multiply factors for application
browsers are given in Table 3.1.

Operating system
The operating system is the last stage contained by the end-user device. When a domain
name is not cached by the application browser it is sent to OS. First, the OS attempts to
handle a query by itself by using its own cache. Again, whether a domain name is in the
cache depends on its type. Cache hit ratio for each OS for the various response types are
given in Table 3.5. If a query can be answered by the OS, then the application browser is
instantly provided with DNS data. Otherwise, OS addresses recursive resolver to resolve
the queried domain name. An OS can initiate new repeat queries in case of a negative
response. Table 3.1 displays the Query multiply factors of each OS for a particular
negative response.

Recursive resolver
Recursive resolvers are addressed by OS by means of recursive queries. Recursive
resolvers categorize each arriving query in one of the four groups based on Cache hit
ratio which will be determined in the next chapter. A query is either directly answered
(when it is Domain cached) or it is sent to one of the authoritative NSs based on its
cache group for the recursive resolution process.

The recursive resolution process is done by means of sending iterative queries towards
the authoritative NSs. How a recursive resolver reacts to a specific response type is
defined by Query multiply factors for resolvers, given in Table 3.3.

30

30

Root name server
Root server is addressed by the recursive resolvers when the TLD of a queried domain
name is not known. Based on the queried domain names, different responses can be
given to the queries. The response distribution on the queries at the root NS is done
based on the Response distribution at the root.

Top level domain name server
The TLD NS is issued by the recursive resolver with ‘TLD cached only’ queries and
with the ‘Noncached’ queries which are responded with valid, valid>512B and truncated
at the root. The Response distribution at TLD NS indicates the distribution of the
responses at TLD.

Second level domain name server
The SLD NS is addressed by the recursive resolver with the ‘SLD cached only’ queries
and the queries which are responded at the TLD NS by valid, valid>512B and truncated.
The responses on the queries arriving at the SLD NS are distributed based on Response
distribution at the SLD NS.

3.3.2 DNS reference model operation
We assume that, in the model, the queries are sent in “one go” from the client side to the
authoritative NS side, and the responses to these queries also in ‘one go’ from the
authoritative NS side to the client side. Based on this assumption the DNS reference
model operation will be divided in three different steps:

• The initial queries are going from the client side to the authoritative NS side;
• The responses to the initial queries are returned from the authoritative NS side to

the client side;
• The repeat queries due to these responses are resend from the client side towards

the authoritative NS side.

In the rest of this subsection, the operation of the DNS reference model will be explained
by considering each step separately. The model will be explained by using the following
Scenario input which is depicted in Table 3.9. Note that the model output is shown in
Figure 3.14. We emphasize that the chosen values in Scenario list in Table 3.9 are just
for illustrative purpose. The input parameters in the model can be modified, for
analyzing other scenarios.

Table 3.9: Scenario for the example.
Fraction of IPv6 clients w.r.t all clients. 10%
Primary & secondary NS: average number 1
Number of simultaneously active DNS clients 1000
Number of simultaneously active recursive resolvers 100

31

31

Step I: initial queries from the users to the authoritative NSs
In the first step, the initial queries are generated by the end user and sent to the
authoritative NSs via the application browser, OS and recursive resolver, respectively.
This process can be observed at the first row of the DNS reference model as depicted in
Figure 3.14. This part is also depicted in Figure 3.15.

User Firefox Linux Resid.GW No resolver behavioUNBOUND Authoritative NS
1,1E+00 8,3E-01 8,3E-01 825 825 83 Root

Figure 3.15: The initial queries going from the users to the authoritative NSs.

The user generates 1.1 qpt. The generated queries are sent towards the application
browser which forwards 0.83 qpt to the OS. Note the difference between the two query
rates which is due to the caching property of application browser which in this example
is Firefox. As shown in Table 3.4, Firefox caches 25% of the total queries meaning that
it handles 25% of the incoming queries by itself and 75% of the queries are forwarded to
OS. In Figure 3.15, the incoming query number is equal to the outgoing query number in
Linux. This is because Linux does not implement caching, as shown in Table 3.5 and it
just forwards the incoming queries to the recursive resolver.

In Figure 3.15, although the Linux (i.e.client) sends 0.825 qpt, there are 825 qpt at
recursive resolver, UNBOUND. The reason for this is given in the Scenario Table 3.9.
In there, it is specified that there are 1.000 DNS clients querying the root NS
simultaneously resulting in 825 qpt at recursive resolver.

As explained in Subsection 3.2.2, the queries arriving at the recursive resolver will be
classified into four different groups. The distribution of the queries over the different
classes is done based on the system variable Cache hit ratio for the resolver is given in
Table 3.6. According to the Table 3.6, in the UNBOUND case, 0,12% of the queries
belongs to the ‘Noncached’ group (i.e. the queries directly to the root) while 4,16% of
the queries are classified in the ‘TLD cached’, 41,18% in the ‘SLD cached’ and 54,54%
in the ‘Domain cached’ group. Consequently, 54,54% of the queries will be answered by
the recursive resolver itself while the rest of the queries will undergo the recursive
resolution process. Hence, in Figure 3.15, the number of initial queries going to the root
will be 83 qpt.

Once the domain name resolution has been initiated at the root, it will be performed until
the entire domain name is resolved. This means that, the queries which are responded
with a Valid response at the root will be sent to the TLD NS by the recursive resolver.
The queries which are again qualified as valid at the TLD NS will be sent to the SLD NS.
After receiving the response from the SLD NS, the domain name resolution process for
the initial queries will be completed. The number of queries going from the root to the
TLD NS can be found by using response distribution at the root in the Table 3.7b. It can
be seen that 8.1% of total initial queries at the root will be forwarded to TLD NS. To
determine the fraction of the positive responses at the TLD NS, again Table 3.7b will be
used. The same will be done at the SLD NS. These tables will also be used to determine
the distributions of the responses at each authoritative NS on the initial queries.

32

32

In this way, the total number of the queries going from one particular UNBOUND to the
root, TLD and SLD NSs can be found as 0.83, 40.49 and 368.2 qpt while 454.6 qpt will
be answered by UNBOUND itself. Taking into account the Scenario list stating that
there are 100 UNBOUNDs querying the root, TLD and SLD NSs, the total numbers of
the initial queries at root, TLD and SLD NSs can be found as 83, 4049 and 36820
respectively.

Step II: responses on the initial queries from the authoritative NS to the
users

In the first step, the initial queries from the users are distributed over all NSs and
recursive resolver and the responses on these initial queries are further distributed at the
authoritative NSs based on the queried domain names. In the second step, these
responses will be sent back from the authoritative NSs to the user. The response stream
from the authoritative NS to the users is classified based on the response type. In this
way we can observe which response type causes how many repeat queries at which
authoritative NS.

In step I, it has been found that 83, 4049 and 36820 queries arrived at the root, TLD and
SLD NSs, respectively. We assume that the authoritative NSs will answer all the queries.
Therefore, there will be exactly the same number of responses as the number of queries
on each authoritative NS level, i.e. root, TLD and SLD. These responses will have
distributions according to the Table 3.7b.

After the responses are generated for the initial queries, they will be sent back from
authoritative NSs to the UNBOUND in “one go”. In Figure 3.14, the number of
responses at the UNBOUND from the root (i.e. 0,07 Valid+0,75NXdomain=0,82) is, a
factor of 100 times smaller than the number of the responses at the root (i.e. 82,5 which
is rounded up to 83). This is because 100 recursive resolvers were querying the root
simultaneously. Since we assumed that all the recursive resolvers are identical, we can
simply divide the number of the responses at the root by 100 to find the number of the
responses from the root at each particular recursive resolver. The same has to be done to
determine the number of queries at UNBOUND resolver from TLD and SLD NSs.
However, in Figure 3.14, it can be observed that the number of responses at the
UNBOUND from the root i.e. 823 is more than 368,20 (i.e. number of responses at the
SLD NSs/100). The reason for difference is that the responses for Domain cached
queries are aggregated to the responses which are returned by SLD NSs. This is shown
in Figure 3.14 between the SLD NSs and UNBOUND resolver.

As seen in Table 3.3, for each Servfail response, UNBOUND initiates four extra repeat
queries towards the authoritative NS while for each Timeout response six new repeat
queries will be initiated. In the DNS reference model, we assume that a repeat query will
have the same response as the original query. Therefore, in total five Servfail responses
will be gathered at the UNBOUND although, just one of them is sent back to the end
user. The same will be done for Timeout responses i.e. only one response will be sent
back to the end user.

33

33

After the Servfail and Timeout responses are retried, negative responses will be sent to
the user while positive responses will not be sent directly to the users. Because, a Valid
response from the root or from the TLD NS indicates that a domain name resolution
process is continuing and no Valid response should be sent to the user before the domain
name resolution has been completed. Therefore, in Figure 3.14, negative responses from
the root, TLD and SLD NSs are sent from UNBOUND to the users while the positive
responses are sent just after recursive resolution is completed i.e. after the SLD NS sent
the responses to the UNBOUND. These positive responses are the responses on all the
initial queries.

Because each particular resolver serves 1.000 identical users simultaneously, the number
of the responses at the OS (Linux) can be found by simply dividing the value at the
resolver by 1.000. These responses are sent from the OS to the application browser
(Firefox) and from the application browser to the user.

Two important points have to be mentioned about the transferring of valid answers to the
user. The first point is about a fraction of the Valid>512B responses which are
transformed to Timeout responses when going from the recursive resolver to the OS.
The corresponding part of the DNS reference model is displayed in Figure 3.16.
Although the fraction of Valid>512B blocked by GW is given by the Scenario in Table
3.9 as 0%, this point is included in the reference model to be able to analyze the effect of
the residential GW which can block the packets with a size larger than 512B. In such a
case, a blocked Valid>512 response is perceived and treated as a Timeout response by
the end user.

The second point concerns the responses which are given by the application browser and
the OS. As explained in step I, a fraction of the initial queries are responded by the
Firefox browser and Linux since they have those domain names in their caches. The
responses from Firefox and Linux are aggregated to the response traffic between the
application browser and the User. This aggregation of responses is shown in Figure 3.16
between the User and Firefox by means of green arrows pointing to the Valid,
Valid>512B, Truncated and NXdomain responses.

Repeat-Truncated 0,0

36.820
Valid 9,8E-01 7,4E-01 7,4E-01 735,28
Valid (>512B) 1,7E-02 6,4E-03 6,4E-03 6,4E-03 6,44 3.240
Nxdomain 7,2E-02 6,1E-02 6,1E-02 60,75 60,75

Repeat-NXdomain 1,2E-01 2,4E-01 182,3 0,0
Partial 0,0E+00 0,0E+00 0,0E+00 0,00 0,00

Repeat-Partial 0,0E+00 0,0E+00 0,0 0,0
Servfail 8,1E-03 8,1E-03 8,1E-03 3,31 3,31

Repeat-Servfail 1,6E-02 6,5E-02 56,7 13,3
Timeout 0,0E+00 0,0E+00 0,0E+00 0,0E+00 0,00 0,00

Repeat-Timeout 0,0E+00 0,0E+00 0,0 0,0
Refused 0,0E+00 0,0E+00 0,0E+00 4,79 4,79

Repeat-Refused 0,0E+00 0,0E+00 0,0 19,1
Truncated 2,3E-02 1,2E-02 1,2E-02 12,27 12,27

Repeat-Truncated 0,0

Figure 3.16: The ‘Query to SLD’ part of the DNS reference model.

34

34

At the end of the step II, all the responses on the initial queries are sent back. Hence, all
the responses, on the initial queries, from each particular authoritative NS are
determined.

Step III: repeat queries from the user to authoritative NS
In step II, the responses on the initial queries are sent from authoritative NS and
recursive resolver to the user. As mentioned in Subsection 2.1.1, there will be initiated
new repeat queries for negative responses. Since the response streams from the
authoritative NSs to the user are kept separated, it can now be determined how many
repeat queries will be retransmitted for each type of the negative response stream from
the client side. The fraction of the types of the repeat queries at the authoritative NSs can
also be traced. In this way, the total number of repeat queries at the root, TLD and SLD
NSs can be found.

The repeat queries will be initiated by the application browser and OS based on the
values given in the Query multiply factors Table 3.1. In Figure 3.14, for instance, the
NXdomain responses from SLD NS to the User amounts 0.061 qpt. From Table 3.1, the
Query multiply factors for an NXdomain response is two for both Firefox and Linux.
Therefore, 0.061 is multiplied by two when passing through Firefox and again by two
when going through Linux. Consequently, 0.24 qpt in total will be sent by the OS to the
resolver due to SLD NXdomain responses. As explained in section 2.1.1, a ‘2’ for
NXdomain response in Table 3.1 means that one extra repeat query will be resent for the
initial query. Therefore, before sending the repeat queries from the OS to the recursive
resolver, the number of initial NXdomain responses, 0.061 qpt, has to be subtracted from
0.24 qpt. Hence, 0.179 repeat queries will be sent from the OS to the recursive resolver.
The same procedure will be followed for each response in the model and all the repeat
queries will be gathered at the recursive resolver’s first level. In the first level, number
of repeat queries can be seen at the recursive resolver. On the other hand, the second
level at the resolver shows the number of the repeat queries which will be sent to the
authoritative NSs after caching properties of the resolver is taken into consideration e.g.
repeat queries due to the NXdomain responses will arrive at the UNBOUND however
they will not be sent to the authoritative NSs since UNBOUND deploys negative
caching.

Whether a repeat query is sent to the authoritative NSs depends on the type of the
recursive resolver and on the type of the response for which a repeat query is generated.
Different types of the recursive resolvers have different properties from the caching
point of view. UNBOUND caches the Valid responses and NXdomain responses. Hence,
all the repeat queries due to NXdomain responses will be in the cache of UNBOUND
and they will be answered by UNBOUND. It should be remarked that all these repeat
queries would be sent to the authoritative NSs in the case of BIND8. All the repeat
queries beside those which were due to the NXdomain responses will be sent to the
authoritative NSs. As a result, 1, 178 and 3240 repeat queries will arrive at the root, TLD
and SLD NSs.

35

35

Experimental Results

In this chapter we account for the stochastic behaviour of the DNS. To this end, in
Section 4.1, we determine probabilistic distributions of the system variables: Cache hit
ratio and Response distribution at the authoritative NS. In Section 4.2 we validate the
DNS reference model by using the real-world data. Finally, in Section 4.3, we evaluate
some relevant cases of DNS real-world problems by using the DNS reference model.

4.1 System variable distributions
To bring the stochastic nature in the DNS reference model, we will find distributions for
system variables Cache hit ratio and Response distributions at the authoritative NS by
analyzing real world data. To do so, we will first chop the SURFnet data consisting of
300.000 DNS packets in 10 smaller data subsets of 30.000 DNS packets. Then we will
use Algorithm 3.2 and Algorithm 3.3 to determine the Cache hit ratio and the Response
distributions at the authoritative NS in each subset. The independency of these values
will be tested by using the Von Neumann test. Finally, we will estimate distributions for
the system variables and verify this estimation by using distribution fitting techniques.

4.1.1 Cache hit ratio
Algorithm 3.2 is applied to data subsets and the values i up to vi which are mentioned in
Algorithm 3.2 are calculated. These values are shown in Table 4.1a. Then based on these
values, the Cache hit ratio for UNBOUND is computed and translated into fractions
which are shown in Table 4.1b.

Table 4.1: Cache hit ratio values for UNBOUND for each subset.
Quantity Set1 Set2 Set3 Set4 Set5 Set6 Set7 Set8 Set9 Set10

i 7528 7475 7269 6671 6985 7691 7595 7498 7036 7316
ii 7 10 2 10 7 8 7 14 12 5
iii 0 0 0 0 0 0 0 0 0 0
iv 291 355 421 373 332 316 307 266 289 308
v 266 319 414 365 306 304 297 252 275 289
vi 3014 3027 3512 2998 3165 3048 2944 2863 3101 3006

(a)

36

36

Category Set1

(%)
Set2
(%)

Set3
(%)

Set4
(%)

Set5
(%)

Set6
(%)

Set7
(%)

Set8
(%)

Set9
(%)

Set10
(%)

Noncached 0.09 0.13 0.03 0.15 0.10 0.10 0.09 0.19 0.17 0.07
TLD cached 3.92 4.68 6.09 5.65 4.81 4.18 4.14 3.62 4.16 4.29
SLD cached 41.18 36.32 44.37 39.53 40.89 35.61 35.06 34.72 40.29 37.26
Domain cached 54.81 58.87 49.51 54.67 54.20 60.11 60.71 61.47 55.38 58.38

(b)

Independency test
Having obtained the Cache hit ratio samples in each subset we have to verify whether
the subsets are long enough to have independent Cache hit ratio samples. The needed
length of the subsets for the independency of the samples is determined by the
autocorrelation between the samples. The stronger the autocorrelation between the
Cache hit ratio samples, the larger subsets we need in order to have independent
observations.

To test the independency between Cache hit ratio samples given in Table 4.1b, we throw
the following null and alternative hypothesis:

• 0H : Cache hit ratio samples given in Table 4.1b are independent.

• aH : Cache hit ratio samples given in Table 4.1b are correlated.

To test the null hypothesis, we will choose an independency test. Based on the chosen
test, we will compute the test statistic. After that, we will determine the threshold value
for this test statistic for desired level of confidence. A typical value for confidence level
is 95% [13] and we will use it to test 0H . Finally, we will compare the computed test
statistic with the threshold test statistic to conclude whether 0H can be rejected i.e.
whether the samples are independent.

Von Neumann statistic will be used to test 0H . Von Neumann test involves computing
the ratio of the mean square successive difference to the variance [35, 42]. This statistic
is also referred as Von Neumann ratio. Von Neumann ratio can be found in Formula 4.1.

1
2

1
1

2

1

()

()

n

i i

n

i

x x
q

x x

−

+−
=

−

∑

∑
 (4.1)

where ix stands for the thi sample value and n for the sample size, while x denotes the
global mean of the samples. Von Neumann states that when ix ’s are independent, then q
is normally distributed as follows:

2

4(2)(2,)
1

nN
n
−
−

 (4.2)

37

37

 where 2 is the mean while 2

4(2)
1

n
n
−
−

 is the variance of the distribution. Cache hit ratio

samples are correlated if q is smaller than the Von Neumann threshold statistic, tq . For
a significance level of 5%, tq can be found as follows:

2 1.645t qq σ= − (4.3)

where qσ denotes the standard deviation of q and can be found as:

2

4(2)
1

n
n
−
−

 (4.4)

Having substituted n by 10, i.e. the number of samples per caching group, in Equation
4.4, the standard deviation for q given in Equation 4.2 can be found. Then, tq in
Equation 4.3 turns out to be 1,46. The Von Neumann statistic is computed for the Cache
hit ratio sample values of each subset. Table 4.2 shows the mean, variance and
corresponding q values for each caching group. We observe that q is larger than tq for
each caching group implying that there is no enough evidence to reject 0H i.e. there is no
enough evidence to reject the null hypothesis that Cache hit ratio sample values are
independent.

Table 4.2: Mean, Variance and q statistic for Cache hit ratio samples for UNBOUND.
Category Mean (%) Variance (%) q
Noncached 0,11 0,005 2.2
TLD cached 4,55 0.51 1.47
SLD cached 38,52 9.11 1.95
Domain cached 56,82 12.37 1.74

Estimating the distribution
After verifying that the Cache hit ratio samples are independent, the distribution of
Cache hit ratio can be determined. Looking at the values from Table 4.1b, we throw the
following null and alternative hypotheses:

• 0H : Cache hit ratio samples given in Table 4.1b are normally distributed.

• aH : Cache hit ratio samples given in Table 4.1b are not normally distributed.

To test the null hypothesis we are going to deploy Shapiro-Wilk normality test [36].
There are two main reasons that we choose for Shapiro-Wilk test:

• It requires the estimated values for mean and standard deviations instead of
precise values unlike e.g. Kalmogorov-Smirnov test [48].

• It is applicable in data sets even with small number of samples, n (i.e. n>=3)
unlike e.g. Anderson-Darling test [47].

38

38

Shapiro-Wilk test involves computing W statistics which tests whether a given a set of
random samples 1 2, ,..., nX X X come from a normal distribution. W statistics is
calculated as follows:

2

1
2/ 2

1 1
1

()

()

n

i

n

n i n i i

y y
W

a y y− + − +

−
=
⎡ ⎤

−⎢ ⎥⎣ ⎦

∑

∑
 (4.5)

where iy is the thi order statistic while y is the mean value of the samples. 1n ia − + stands
for the weights whose values depend only on sample size n . ia ’s are given as:

1

1 2 1 21
1 1 2

(, ,..,) ; (, ,..,)
()

T
T

n n
T

m Va a a m m m m
m V V m

−

− −

= = (4.6)

where 1 2, ,.., nm m m are the expected values of the order statistics and V is the
covariance matrix of these order statistics. tresholdW and 1n ia − + values can simply be found
by using Table 5 and Table 6 given in [36].

Table 4.3: Shapiro-Wilk test statistics for Cache hit ratio samples.
Category W Wt
Noncached 0,970 0,842
TLD cached 0,881 0,842
SLD cached 0,926 0,842
Domain cached 0,925 0,842

Table 4.3 shows the calculated W values and tresholdW values for the confidence level of
95%. In Table 4.3, W is larger than tresholdW for each Cache hit ratio group. This implies
that there is no enough evidence to conclude aH is true at the pre-determined
confidence level of 95% and we fail to reject 0H . Therefore, we can conclude that Cache
hit ratio samples given in Table 4.1 are normally distributed. The distribution has the
arithmetic mean of the samples and the variance of the sample set [36]. The mean and
the variance are given in Table 4.2. This result can be illustrated by using quantile-
quantile (Q-Q) plots. Q-Q plot is a graphical method for comparing two probabilistic
distributions. A point on the plot corresponds to one of the quantiles of the second
distribution plotted against the same quantile of the first distribution [37]. If the
distributions are identical, then the Q-Q plot follows the 45° line i.e. y=x line. If the
distributions are linearly related, Q-Q plot will approximately lie on a line but not
necessarily on 45° line. Q-Q plot can also be used to compare a data set to a theoretical
distribution. To illustrate the result about the Cache hit ratio distribution, Cache hit ratio
values (given in Table 4.1b) are plotted versus normal theoretical quantiles. Figure 4.1
shows that the Q-Q plots are almost linear indicating that Cache hit ratio values can be

39

39

considered normally distributed. Another remarkable point is that the plot is S shaped.
This indicates that one of the distributions is more skewed or that one of the distributions
has heavier tails than the other [38].

-2 -1 0 1 2
0

0.05

0.1

0.15

0.2

Normal theoritical quantiles

N
on

ca
ch

ed
 q

ue
rie

s
Noncached queries vs normal theoritical quantiles

-2 -1 0 1 2
3

3.5

4

4.5

5

5.5

6

Normal theoritical quantiles

TL
D

 c
ac

he
d

qu
er

ie
s

TLD cached queries vs normal theoritical quantiles

-2 -1 0 1 2
30

35

40

45

Normal theoritical quantiles

S
LD

 c
ac

he
d

qu
er

ie
s

SLD cached queries vs normal theoritical quantiles

-2 -1 0 1 2
45

50

55

60

65

Normal theoritical quantiles

D
om

ai
n

ca
ch

ed
 q

ue
rie

s

Domain cached queries vs normal theoritical quantiles

Figure 4.1: Q-Q plots of Cache hit ratio vs. normal theoretical values.

4.1.2 Response distribution at the authoritative NS
To determine the Response distribution at authoritative NS, Algorithm 3.3 is applied to
each subset and the number of different types of responses at each level (i.e. root, TLD
and SLD) is determined. All the responses arriving at the root NS are replied by
NXdomain. However, the responses at the TLD and SLD NSs have a big diversity.
Therefore, we only show the responses at TLD and SLD NSs in Table 4.4a and 4.4b.

Table 4.4: Response types at TLD (a) and SLD (b) NSs.
Category Set1 Set2 Set3 Set4 Set5 Set6 Set7 Set8 Set9 Set10
Valid 267 322 407 357 310 302 304 253 278 290
NXdomain 19 30 15 17 22 13 6 15 11 15
Servfail 2 1 1 0 0 1 0 0 1 2
Refused 1 0 0 0 0 0 0 0 0 0

(a)
Category Set1 Set2 Set3 Set4 Set5 Set6 Set7 Set8 Set9 Set10
Valid 2428 2476 2413 2448 2603 2345 2380 2205 2439 2397
NXdomain 492 467 509 469 467 598 476 547 547 521
Servfail 27 31 45 41 43 44 58 53 52 55
Refused 37 30 37 34 37 37 27 37 50 44

(b)

40

40

Then, again by using Algorithm 3.3, the values in Table 4.4a and 4.4b are translated into
the Valid, TLD cached, SLD cached and Noncached quantities which are given in Table
4.5a and 4.5b.

Table 4.5: Response distribution at TLD (a) and SLD (b) NSs.
Category Set1

(%)
Set2
(%)

Set3
(%)

Set4
(%)

Set5
(%)

Set6
(%)

Set7
(%)

Set8
(%)

Set9
(%)

Set10
(%)

Valid 92.35 91.19 96.19 95.48 93.43 95.52 98.06 94.42 95.84 94.45
NXdomain 6.46 8.53 3.57 4.52 6.57 4.16 1.94 5.58 3.81 4.90
Servfail 0.69 0.28 0.24 0 0 0.32 0 0 0.35 0.65
Refused 0.50 0 0 0 0 0 0 0 0 0

(a)
Category Set1

(%)
Set2
(%)

Set3
(%)

Set4
(%)

Set5
(%)

Set6
(%)

Set7
(%)

Set8
(%)

Set9
(%)

Set10
(%)

Valid 81.32 82.45 80.23 81.87 82.61 77.58 80.94 77.42 78.88 79.49
NXdomain 16.51 15.53 16.89 15.59 14.84 19.70 16.17 19.42 17.76 17.23
Servfail 0.91 1.03 1.60 1.38 1.37 1.46 1.97 1.86 1.74 1.82
Refused 1.26 0.99 1.28 1.16 1.18 1.26 0.92 1.30 1.62 1.46

(b)

Independency test
Again Von Neumann statistic is used to test the null hypothesis that the sample values
for Valid, NXdomain, Servfail and Refused in Table 4.5 are independent against the
alternative hypothesis that the sample values are correlated. To do that, the arithmetic
mean and corresponding variance of the values in Table 4.5 are determined. After that,
the Von Neumann statistic, q , is computed. Table 4.6 depicts these values for TLD and
SLD responses. Since we have same number of samples as in previous subsection, tq
remains same: 1,46. Hence, looking at the q values in Table 4.6, we verify that the
Response distribution at authoritative NS samples given in Table 4.5 are independent.

Table 4.6: Mean, variance and q for Response distribution at TLD (a) and SLD (b).
Category Mean (%) Variance (%) q
Valid 94,70 3.7 1.52
NXdomain 5,00 3.2 1.98
Servfail 0,25 0,04 1.6
Refused 0,05 0.02 2.85

(a)
Category Mean (%) Variance (%) q
Valid 80,29 3.23 1.9
NXdomain 16,96 2.23 2.4
Servfail 1,51 0,13 1.5
Refused 1,24 0.04 1.6

(b)

Estimating the distribution

The approach, which is used to test the normality of Cache hit ratio samples will also be
used to test the normality of Response distribution at authoritative NS samples. Table

41

41

4.7 shows W and tresholdW values for Response distribution at authoritative NS samples
for TLD (a) and SLD (b) given in Table 4.5a and 4.5b. Looking at Table 4.7, we can
conclude that the Response distribution at authoritative NS samples have a normal
distributions with mean and variance given in Table 4.6a (for TLD responses) and 4.6b
(for SLD responses). The only exception is TLD Refused responses. However, since the
fraction of TLD Refused responses is very small, these responses are not significant with
respect to the experiments that we will do. Figure 4.2a and 4.2b depicts Q-Q plots for
Response distribution at authoritative NS for TLD and SLD samples respectively. Also
from these figures, it can be observed that the data points lie approximately on a flat line.
This implies that Response distribution at authoritative NS samples fit a normal
distribution.

Table 4.7: Shapiro-Wilk statistics for Response distribution at authoritative NS for TLD (a) and for
SLD (b).

Category W
tresholdW H0

Valid 0,971 0,842 Accepted
NXdomain 0,979 0,842 Accepted
Servfail 0,848 0,842 Accepted
Refused 0,365 0,842 Rejected

(a)
Category W

tresholdW H0

Noncached 0,929 0,842 Accepted
TLD cached 0,951 0,842 Accepted
SLD cached 0,944 0,842 Accepted
Domain cached 0,964 0,842 Accepted

(b)

Note that we did not determine any distribution for Response distribution at root NS.
The reason for that is that there are very few queries are arriving at the root NS.
However, to determine Response distribution at root NS, we need a bigger amount of
queries towards the root NS. Nevertheless, bigger amount of root DNS traffic requires a
significantly larger data set which can not be analyzed by the computers we have.
Therefore, for Response distribution at root NS, we will use the values given in [8].

42

42

-2 -1 0 1 2
90

92

94

96

98

100

Normal theoritical quantiles

TL
D

 V
al

id
 re

sp
on

se
s

TLD Valid's vs normal theoritical quantiles

-2 -1 0 1 2
0

2

4

6

8

10

Normal theoritical quantiles

TL
D

 N
X

do
m

ai
n

re
sp

on
se

s

TLD NXdomain's vs normal theoritical quantiles

-2 -1 0 1 2
-0.5

0

0.5

1

Normal theoritical quantiles

TL
D

 S
er

vf
ai

l r
es

po
ns

es

TLD Servfail's vs normal theoritical quantiles

-2 -1 0 1 2
0

0.1

0.2

0.3

0.4

0.5

Normal theoritical quantiles

TL
D

 R
ef

us
ed

 re
sp

on
se

s

TLD Refused's vs normal theoritical quantiles

(a)

-2 -1 0 1 2
76

78

80

82

84

Normal theoritical quantiles

S
LD

 V
al

id
 re

sp
on

se
s

SLD Valid's vs normal theoritical quantiles

-2 -1 0 1 2
14

15

16

17

18

19

20

Normal theoritical quantiles

S
LD

 N
X

do
m

ai
n

re
sp

on
se

s

SLD NXdomain's vs normal theoritical quantiles

-2 -1 0 1 2
0.5

1

1.5

2

2.5

Normal theoritical quantiles

S
LD

 S
er

vf
ai

l r
es

po
ns

es

SLD Servfail's vs normal theoritical quantiles

-2 -1 0 1 2
0.8

1

1.2

1.4

1.6

1.8

Normal theoritical quantiles

S
LD

 R
ef

us
ed

 re
sp

on
se

s

SLD Refused's vs normal theoritical quantiles

(b)
Figure 4.2: Q-Q plots for Response distribution at TLD (a) and SLD (b) NSs.

43

43

4.2 Model validation
In this section, we validate the DNS reference model by using a new data set captured
also at an UNBOUND recursive resolver but in different environmental setting. The new
data set is again anonymized and it consists of 30.000 DNS packets with duration of 51
seconds.

To validate the model, in Subsection 4.2.1, we first analyze the data and obtain the input
parameters so as to run the simulations. Having obtained the model input parameters
from the real world data, in Subsection 4.2.2, we present the simulation results. In
Subsection 4.2.3, we analyze the results from the model and compare to the results from
the real world data. Lastly, in Subsection 4.2.4, we perform sensitivity check of the
model by using coefficient of variance indicator.

4.2.1 Data analysis
Obtaining input parameters will be achieved by analyzing the real world data by
different algorithms. This involves different steps to be taken and in this subsection,
these steps will be introduced.

Cleaning the data
Before starting data processing, it should be ensured that all the anomalies are detected
and cleaned from the data set. With anomaly, we imply clients’ and resolvers’ odd
behaviours. For instance, when testing the model with one of the data sets we observed a
big error between model and real world results. Later on, we noticed that the error was
due to a client who generated 10% of the total DNS queries towards the recursive
resolver. He was sending lots of repeat queries for one single domain name although he
was receiving positive answers on his queries. After excluding that client’s traffic from
the data set, the big error between the model and the real-world is diminished.

To check if there is an anomaly, we are going to use Wireshark. Recipe 4.1 gives the
steps. The corresponding commands of recipes can be found in Appendix III.

i. Determine all the queries from the clients to the resolvers.
ii. Obtain a list of clients with the fraction of the traffic that they are generating.
iii. Select ten most aggressive clients.
iv. Check whether their traffic can be considered as ‘normal’ queries.

Recipe 4.1: Anomaly detection for client traffic.

We applied Recipe 4.1 to the new data set and we observed that some clients were
misconfigured. They send lots of repeat queries for domain names in a short time while
they receive positive answers on their queries. As a cure, we determined the domain
names for which the most repeat queries are sent. “allmx.tue.nl” and “edgesmtp.uu.nl”
were the domain names for which the most repeat queries were sent by misconfigured
clients. We excluded the traffic related to these queries from the data set.

44

44

Obtaining the initial queries
Having obtained a clean dataset, the number of the initial queries can be determined at
different POIs in the real world data. The determination of the initial query numbers is
crucial since the DNS reference model will be calibrated with the initial queries at the
different points in the system. To determine the number of initial queries, first a formal
repeat definition has to be done.

Repeat definition: Considering two queries, the second query will be defined as a repeat
query if it has the same domain name, query type and destination level as the first query.
Additionally, the time difference between two queries has to be smaller than a certain
numberδ . For repeats at the recursive resolvers, δ will be 13 seconds while for repeats
at the authoritative NS,δ will be 3 seconds. These values are determined by analyzing
the client behaviour and the recursive resolver behaviour. Recall that in the case of a
Servfail response shown in Figure 3.4.b, Linux client sends seven repeat queries towards
the recursive resolver. The time difference between the initial query and the last repeat
query seems to be around 13 seconds. Therefore, 13 second for δ is adopted when the
repeat at the recursive resolver is in consideration. On the other hand, in the case of a
Servfail response, the time difference between the initial query and the last repeat query
from the UNBOUND towards the authoritative NSs is three seconds. Therefore, three
second is adopted for δ when the repeat at the authoritative NSs is in consideration.
Repeat definition idea at the SLD NS is illustrated in Table 4.8.

Table 4.8: Repeat definition at the authoritative NSs.
Query category Domain name Query type Destination level Time (sec)
Initial ‘random.com’ A SLD t
Repeat ‘random.com’ A SLD t+2

Strategy: Having defined the repeat query notion, initial queries from a given set of
aggregated (i.e. initial and repeat queries mixed) queries will be distinguished by using
Algorithm 4.1. It has to be ensured that the aggregated queries are sent to the same
destination level i.e. either to root or to TLD or to SLD NSs.

i. Generate two empty sets: Initial queries and Repeat queries;
ii. First query in the aggregated set is considered as an initial query and move it

to the Initial query set.
iii. The following query from the aggregated set will be tested on each query

from the Initial query set whether they satisfy the repeat conditions given in
Table 4.8.

iv. If the query from the aggregated set satisfies the repeat conditions with any
of the initial queries in the Initial queries set then it will be placed in Repeat
queries set, otherwise it will be places in Initial queries set.

v. This process will continue until the aggregated query set is empty.
Algorithm 4.1: Initial query determination.

45

45

Wireshark and MATLAB are used to obtain the initial queries at the resolver, root, TLD
and SLD NSs. All the implemented MATLAB m-files can be seen in Appendix II.
Recipe 4.2 defines the steps to be taken to determine the initial queries from the
SURFnet data.

i. Determine the queries towards recursive resolver, root, TLD and SLD NS
separately (by using Wireshark).

ii. Export the Wireshark data to a ‘pcap’ file so that it can be used in MATLAB.
Note that IP and DNS headers have to be open. Additionally, in DNS header,
query details should be visible.

iii. Import the data from Wireshark to MATLAB.
iv. Obtain query name, query type, source, destination, IP TTL and time

information from the queries. This is done by GetPacketDetails m-file.
v. Finally, Algorithm 4.1 is applied to it to determine the initial and the repeat

queries. Algorithm 4.1 is implemented in GetInitialQueriesAtResolver and
GetInitialQueriesAtNS m-files
Recipe 4.2: Obtaining initial queries at resolver, root, TLD and SLD NSs.

Table 4.9 shows the initial and repeat queries at the recursive resolvers, root, TLD and
SLD NSs. In each column, the first row shows number of the initial queries while the
second row shows the number of repeat queries at the corresponding POI.

Table 4.9: Initial and repeat queries at the point of interests in the real world data.
Query category Resolver Root NS TLD NS SLD NS
Initial 7131 13 204 3414
Repeat 2360 0 8 723

Determining the distribution of initial Queries’ OS
The last model input to be obtained from the real world data is the initial queries’ OS
distribution. It indicates which fraction of the initial queries by which client type is
generated rather than clients’ OS distribution. OS’s fingerprint on each DNS packet will
be found by using the fact that OSs use different initial IP TTL values. The initial IP
TTL is indicated under ‘Internet protocol’ header. Default initial IP TTL values for OSs
[8]:

• BSD and Linux variants: 60 or 64
• Microsoft Windows: 128
• MAC OS: 255

Based on IP TTL values in each packet, initial queries’ OS distribution will be
determined. Note that OS distribution will be determined by using initial queries and not
by using aggregated queries. GetOSFraction m-file will be used to obtain the initial
queries’ OS distribution. Table 4.10 shows the result. Supremacy of the Linux queries in
Table 4.10 does not mean supremacy of the Linux clients in the data set. It might for
instance indicate that the most aggressive clients are Linux clients in the data set.

46

46

Table 4.10: Initial queries’ OS distribution.
 Linux Windows MAC
Fraction (%) 60,1 30,2 9,7

4.2.2 Model simulation
Having obtained the model inputs from the real world data, these inputs can be used to
determine the Scenario for the DNS reference model. In this subsection, at first the
Scenario list will be formed and the model will be calibrated with the initial queries at
the recursive resolver. Then, the DNS reference model run by using Monte Carlo
simulations and the results will be obtained.

Calibrating the model and creating the Scenario for the model
The input parameters values obtained from the real-world data serve as a starting point
for the validation process. As the data is captured at one single UNBOUND recursive
resolver, the “Number of simultaneously active resolvers” entry of the Scenario given in
Table 4.11 will be 1. Additionally, as data is captured at one UNBOUND recursive
resolver, the model will be calibrated at this POI with the number of initial queries,
instead of the number of initial queries at the users, i.e. before the client’s operating
system and application browser. As a consequence, the “Number of simultaneously
active DNS clients” entry of the Scenario given in Table 4.11 is determined by trial and
error method: we found that with a query rate of 1 qpt, 9700 users generate 7131 initial
queries at recursive resolver (obtained from real-world data). This number of 9700 users
concerns thus “Number of simultaneously active DNS clients”. Calibrating the model at
the recursive resolver, makes the first entry of the Scenario input “Fraction of IPv6
clients w.r.t all clients” irrelevant since we consider all the queries from the client side as
a bulk. Therefore, we can just adopt 0% for this entry. Furthermore, we will ignore the
effect of secondary NSs by assuming that there will be no secondary NSs. This concerns
the “Primary & secondary NS: average number” entry of the Scenario list.

Table 4.11: Scenario for the model to imitate the real world data environment.
Fraction of IPv6 clients w.r.t all clients. 0%
Primary & secondary NS: average number 1
Number of simultaneously active DNS clients 9.700
Number of simultaneously active resolvers 1

Running the model: Monte Carlo simulations
Having obtained the Scenario for the model, we can now run the model. Algorithm 4.2
is deployed to determine the model output. At each model drawing, initial and repeat
queries at the POIs are determined for each client type (i.e. Windows-IE, MAC-Safari
and Linux-Firefox), they are weighted by initial queries’ OS distribution and they are
summed up. The DNS reference model is drawn 30.000 times and the histograms
showing the weighted sum of initial and repeat queries at the POIs are obtained. These
histograms can be seen in Appendix IV. Most probable values from these histograms
can be seen in Table 4.12.

47

47

i. Pick a random number for system variables Cache hit ratio and Response
distribution at NS.

ii. Run the DNS reference model with these numbers for each client type i.e.
MAC-Safari, Linux-Firefox and Windows-IE.

iii. Obtain the number of initial and repeat queries at the point of interests (POI)
i.e. resolver, root, TLD and SLD NSs.

iv. Compute the weighted sum of these numbers by using initial queries’ OS
distribution given in Table 4.10.

v. Repeat steps i up to iv n time to obtain n output values.
vi. Make a histogram to see the possible outcomes with the frequency that they

are occurring.
Algorithm 4.2: Obtaining initial and repeat queries at the POIs in the DNS reference model.

Table 4.12: Initial and repeat queries at the POIs in the DNS reference model.

Query type Resolver Root NS TLD NS SLD NS
Initial 7204 8 350 3030
Repeat 1530 0 5 350

4.2.3 Analysis of validation results
Having obtained the DNS reference model output, we can compare it with the real world
data output which is given in Table 4.9. We will test the model at two points:

• Query distribution over the POIs in the DNS;
• Repeat-initial query ratio at the POIs.

Query distribution over the POIs in the DNS indicates the ratio between the total number
of queries (i.e. initial and repeat queries) at POI and the total number of the queries in
the entire system. For instance, in the DNS reference model output, the fraction of the
queries at the resolver can be found as the ratio between the number of queries at
recursive resolver and the number of queries in the entire system as:

7204 1530 70%
7204 1530 8 350 5 3030 350

+
=

+ + + + + +

Table 4.13 shows the fractions of the queries at POIs in the real world data and in the
DNS reference model data. It can be observed that DNS reference model can predict the
query distribution over the POIs in the system with very small errors. We attribute the
small error to the variance of the Cache hit ratio random variable.

Table 4.13: Fractions of the queries at POIs in the real world data and in the model.
Packet distribution Resolver (%) Root (%) TLD NS (%) SLD NS (%)
Real world data 68,5 0,1 1,5 29,9
Model 70,0 0,1 2,8 27,1

The second test point of the DNS reference model concerns the repeat-initial query ratio
at POIs. This ratio indicates the fraction of the repeat queries with respect to the total

48

48

number of queries at a particular POI. For instance, in the DNS reference model output,
the faction of the repeat queries at the resolver can be found as:

1530 17,5%
1530 7204

=
+

Table 4.14 shows the repeat initial ratio at POIs in the real world data and in the DNS
reference model.

Table 4.14: Initial-repeat query ratio at POIs in the real world data and in the model.
Initial-repeat ratio Resolver (%) TLD NS (%) SLD NS (%)
Real world data 24,8 3,8 17,5
Model 17,5 1,4 10,4

At recursive resolver, a difference of 7,3% is observed. We expect this error occurs due
to effect of IPv6 clients. As mentioned in Section 2.3.1, IPv6 enabled clients send two
queries in pair for address resolution: A query and AAAA query. When they receive a
negative response from the recursive resolver, then they will resend repeat queries also
in pair. For instance, as depicted in Figure 3.4b, a Linux-Firefox client sends in total
eight queries in case of a Servfail response. However, if an IPv6 enabled client receives
a Servfail response then it will send additional eight AAAA queries beside the usual
eight A queries. This is the effect of IPv6 enabled clients causing extra repeat queries the
real world. However, this effect is not taken into consideration in the DNS reference
model and this might cause the difference between real world and model outcomes at the
resolver in Table 4.14.

The error at the authoritative NSs might be due to the secondary NS effect. As
mentioned in Subsection 2.1.2, there might be secondary NSs for a zone. When a
recursive resolver receives a negative response from the primary NS, it tries to obtain the
required DNS data by sending same query to secondary NS.

Querying pattern of the recursive resolver is worth to mention. For instance, in case of
Servfail response, we observed that UNBOUND sends, at first, two repeat queries to the
primary NS. If it receives again Servfail responses, then it queries the secondary NS. If
also secondary NS returns Servfail responses, then UNBOUND queries again the
primary NS. This querying pattern continues until each NS is queried five times. In this
way, a Servfail response causes in total ten queries instead of five as it was shown in
Table 3.3. Note that the amount of ten can increase based on the number of secondary
NSs. Each additional NS causes five extra queries. On the other hand, the response from
the secondary NS can also be a positive answer while primary NS returns a negative
response for the same domain name. In that case, a Servfail response causes just three
queries instead of five.

In the DNS reference model, we ignored the effect of secondary NS. We expect this
contributes to the error at the authoritative NSs. Additionally, we expect that, in the
dataset, there are also some other “hidden” anomalies having impact on the number of
the repeat queries at the authoritative NS.

49

49

4.2.4 Sensitivity check
An interesting question to be answered is how the variation in the system variables
affects the outcome of the DNS reference model. In other words, how sensitive the
model output is with respect to the random system variables. This question can be
answered by coefficient of variance (CoV) metric. CoV is a statistical measure of
dispersion around the mean in a probability distribution. CoV can be calculated as
follows:

CoV σ
µ

= (4.7)

where σ is the standard deviation while µ is the mean of the corresponding distribution.
CoV is a useful statistic for comparing the degree of variation from one data series to
another, even if the means are drastically different from each other. More details on CoV
can be found in [40, 41].

Figure 4.3 depicts CoVs for system variables and the output values of the DNS reference
model. On the left hand side of Figure 4.3, CoVs for Response distribution at TLD NS,
Response distribution at SLD NS and Cache hit ratio for UNBOUND are shown while
on the right hand side, CoVs for the DNS reference model outputs are placed. In Figure
4.3, two points are remarkable:

• CoVs at the output are smaller than 1: This means that the dispersion in the
distributions is small and all the values are concentrated around the mean. This is
important since a small CoV indicates that mean value of the output is
meaningful. This statement can be justified when considering Equation 4.8.

Pr[(,)] 0,68x µ σ µ σ∈ − + = (4.8)

In Equation 4.8 µ stands for the mean of the probabilistic distribution while σ
is the standard deviation. Equation 4.8 can be rewritten as:

Pr[((1), (1)] 0,68x σ σµ µ
µ µ

∈ − + = (4.9)

Substitution of Equation 4.7 in Equation 4.9 gives:

Pr[((1), (1)] 0,68x CoV CoVµ µ∈ − + = (4.10)

Equation 4.10 implies that when CoV of a probabilistic distribution is small, then
the possible values for the random variable are concentrated around the mean.

• CoVs of system variables and output values are comparable: This observation
implies that the error at the input of the model will be at the same level at the
output of the model. Hence, the DNS reference model does not amplify the
uncertainty due to the random system variables.

50

50

Response
distribution at
TLD NS

Response
distribution at
SLD NS

Cache hit
ratio

Figure 4.3: CoVs for the system variables and for the outputs.

4.3 Case studies
Having validated the DNS reference model, we can evaluate case studies by using the
DNS reference model. In this section, different case studies will be studied. In each case,
the data set which is treated in Section 4.2 will be used as a reference data set. Hence,
we assume the same initial queries’ OS distribution, same recursive resolver (i.e.
UNBOUND) and so forth.

 Case 1: The impact of Linux-Firefox and MAC-Safari clients’
aggressivity

As shown in Table 3.1, the experiments in the lab environment have shown that the
clients having Linux-Firefox and MAC-Safari combinations as their OS and application
browser show more aggressive behaviour with respect to Windows-IE8 clients. To
investigate the impact of this aggressivity, the DNS reference model will be deployed.
To do that, an overall mix case will be compared to the Windows-IE only case in which
it is assumed that all the clients are Windows-IE. The difference between the cases will
give the impact of Linux-Firefox and MAC-Safari clients’ aggressivity.

 Recall that in Section 4.2, the number of queries at POIs in the DNS reference model is
determined and they are given in Table 4.12. Note that these values are for the overall
mixed case. To determine the Windows-IE only case, the DNS reference model will be
drawn with the same Scenario i.e. 9700 clients with 1.1.qpt. Table 4.15 shows the results.

Table 4.15: The query rates towards resolver and authoritative NS.
Client type Resolver Root NS TLD NS SLD NS
Overall mix 8734 8 355 3380
Windows-IE only 6002 7 283 2880

The difference between overall mix rates and Windows-IE clients’ rates gives the impact
of Linux-Firefox and MAC-Safari clients’ aggressivity. From Table 4.15, it can be

Input's CoVs Output's CoVs

Valid: 0,02 Resolver Initials: 0
NXdomain: 0,36 Resolver Repeats: 0,10
Servfail: 1,00
Refused:1,00

Root Initials: 0,6
Valid: 0,02 Root Repeats: 0
NXdomain: 0,09 DNS Reference
Servfail: 0,24 Model
Refused:0,15 TLD Initials: 0,12

TLD Repeats: 0,68
Noncached: 0,64
TLD cached: 0,16
SLD cached: 0,08 SLD Initials: 0,08
Domain cached: 0,06 SLD Repeats: 0,17

51

51

concluded that, if all the clients were using Windows-IE8 then the query flow towards
the recursive resolver would decrease by 31% while a decrease of 13%, 2% and 20%
would occur in the query flow to the root, TLD and SLD respectively. This is illustrated
in Figure 4.4.

-31%

-20%

-13%

-15%

Operating system
DNS stub

Applic. browser

Cache

Cache

CLIENT
Resolver
(DNS proxy)

Server OS

DNS resolver SW Cache

Authoritative
Root DNS

Authoritative
TLD

Authoritative
SLD

Tx device

Figure 4.4: Impact of Linux-Firefox and MAC-Safari clients’ aggressivity on DNS traffic.

Case 2: The impact of Servfail responses’ increase
In Section 2.3, we stated the DNS is facing several dramatic changes, among which the
introduction of DNSSEC and accordingly the expected increase in Servfail responses
due to validation errors. In Case 2, we evaluate the impact of the increase in Servfail
responses by analysing the DNS traffic towards the recursive resolver, TLD and SLD
NSs for different scenario’s of Servfail response amount increase in the system.

At first, we increase the fraction of Servfail responses at TLD NS while keeping the
fraction of Servfail responses at root and SLD NSs fixed. Note that as a consequence of
additional Servfail responses at TLD NS, the number of repeat queries from the
recursive resolver towards TLD NS and the number of Servfail responses from the
recursive resolver towards the clients will increase, while the DNS traffic towards other
POIs remains unchanged. Therefore, we will evaluate the traffic towards the recursive
resolver and towards TLD NSs by increase of Servfail responses at TLD NS. After that,
the number of Servfail responses at SLD NS will be increased and those at the TLD NS
will be kept fixed. In that case, we will investigate the traffic towards SLD NS and the
recursive resolver. Figure 4.5 and 4.6 show the result. In Figure 4.5, the amount of
Servfail response increase at the authoritative NS is given on the x-axes. 2% on the x-
axes implies additional 2% Servfails to the existing Servfail responses. The values on the
y-axes show the traffic increase towards the recursive resolver or towards the
authoritative NS as a consequence of the Servfail increase at TLD NS.

52

52

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Servfail response increase at TLD NS (%)

D
N

S
 tr

af
fic

 in
cr

ea
se

 to
w

ar
ds

 re
cu

rs
iv

e
re

so
lv

er
 (%

)

0 2 4 6 8
0

5

10

15

20

25

30

35

40
TLD Servfail responses increase's impact on DNS traffic

Servfail response increase at TLD NS (%)

D
N

s
tra

ffi
ic

 in
cr

ea
se

 to
w

ar
ds

 T
LD

 N
S

 (%
)

Figure 4.5: Impact of Servfail increase at TLD NS on DNS traffic.

0 2 4 6 8 10 12
0

5

10

15

20

25

Servfail response increase at SLD NS (%)

D
N

S
 tr

af
fic

 in
cr

ea
se

 to
w

ar
ds

 re
cu

rs
iv

e
re

so
lv

er
 (%

)

0 2 4 6 8 10 12
0

10

20

30

40

50

Servfail response increase at SLD NS (%)

D
N

S
 tr

af
fic

 in
cr

ea
se

 to
w

ar
ds

 S
LD

 N
S

 (%
)

SLD Servfail response increase's impact on DNs traffic

Figure 4.6: Impact of Servfail increase at SLD NS on DNS traffic.

In both Figure 4.5 and 4.6, the DNS traffic towards the authoritative NSs increases
significantly by the increase of Servfail responses. We note that the Servfail increase at
TLD NS is not expected to be as large as the Servfail increase at SLD NS. In worst case
scenario, 15% additional SLD NS Servfail response increase is considered. This would
cause a DNS traffic increase of almost 50% towards SLD NS. This increase indicates
that the concerns about the impact of DNSSEC on the DNS traffic might be right and
more attention should be paid on the infrastructure upgrading.

In Figure 4.5 and 4.6, we see that when Servfail responses are increased at SLD NS,
DNS traffic increase towards the recursive resolver is higher than the case that the
Servfail responses are increased at TLD NS. This is due to the fact that the amount of the
queries going to SLD NS is significantly larger than the queries going to TLD NS.
Therefore, increasing the Servfail response fraction at SLD NS will cause much more
Servfail responses at the recursive resolver in comparison with the increasing Servfail
response fraction at the TLD NS.

53

53

Case 3: Impact of domain name blocking
In this case study, we address ICANN’s concern about the impact of censure on DNS
traffic. Blocking of a domain name can be done by returning either an NXdomain or a
Servfail response or by giving no response to the client for the requested domain name.
The question is then what the impact of blocking of domain names would be on the DNS
traffic. In this case study we will consider blocking by NXdomain and Servfail responses
and compare their impact on DNS traffic.

We assume that blocking is done on the complete domain name i.e. at SLD NS level.
Figure 4.7 shows the comparison of the impacts of NXdomain and Servfail responses
increases’ on the DNS traffic towards SLD NS.

0 2 4 6 8 10 12
0

5

10

15

20

25

Response increase at SLD NS (%)

D
N

S
 tr

af
fic

 in
cr

ea
se

 to
w

ar
ds

 re
cu

rs
iv

e
re

so
lv

er
 (%

)

0 2 4 6 8 10 12
-10

0

10

20

30

40

50

Response increase at SLD NS (%)

D
N

S
 tr

af
fic

 in
cr

ea
se

 to
w

ar
ds

 S
LD

 N
S

 (%
)

Comparison of SLD Servfail and NSdomain response increase's impact on DNS traffic

NXdomain
Servfail

NXdomain
Servfail

Figure 4.7: Impacts of NXdomain and Servfail responses increases’ on DNS traffic.

Figure 4.7 show that blocking by NXdomain brings less additional query load in the
system. Looking at the DNS traffic towards the recursive resolver, we observe that the
amount of DNS traffic is halved when returning an NXdomain response instead of a
Servfail response for censure. The huge difference is observed when considering the
traffic increase towards the SLD NS. Servfail response increase can cause, in worst case
scenario, almost 50% DNS traffic increase towards SLD NS. On the other hand, the
increase of NXdomain responses at the SLD NS does not affect the DNS traffic towards
SLD NS i.e. almost 0% DNS traffic increase towards SLD NS. This result is not
surprising because we know that UNBOUND caches the NXdomain responses. This
means that UNBOUND will respond to the repeat queries for the censured domain name
from its cache and it will not send any repeat query towards the authoritative NS.
Therefore, we conclude that returning an NXdomain response brings less traffic load in
the system than returning a Servfail response for a censured domain name request.

54

54

55

55

Conclusion and Future Work

5.1 Conclusion
DNS is facing the most radical changes with the introduction of new technologies.
Introduction of IPv6 leads to AAAA queries in addition to A queries. This fact causes an
increase in the number of the queries going to the authoritative NSs. This point deserves
more attention when considering the exhaustion of IPv4 addresses meaning that, in near
future, a big part of the end users will be IPv6 enabled. Introduction of IND ccTLD and
DNSSEC gives rise to an increase in negative responses from the authoritative NSs, in
particular in the NXdomain and Servfail responses. These responses trigger an avalanche
of the repeat queries towards the recursive resolvers and authoritative NSs. These facts
raise concerns about the stability of DNS in the future. Whether they are right can be
answered by a model with which the DNS behaviour can be predicted.

To satisfy this need, we created a DNS reference model. Our primary concern was the
scalability of the DNS. We therefore modeled DNS at the flow level, being only
interested in the query flow distribution at an arbitrary point in time. Consequently, the
time notion did not play a role and the distribution of the DNS queries was only
dependent on the behaviour of various components in the DNS system.

In the DNS reference model we assumed that all the client types had the same querying
pattern whereas all the recursive resolvers had the same querying behaviour. This
assumption allowed us to control the entire client side by adjusting just one parameter.
Furthermore, we modeled the root NSs as one NS since we were not interested in how
the queries were distributed over the different root NSs. The same was done also for
TLD and SLD NSs.

In the DNS reference model, we distinguished the following generic components:
application browser, OS, recursive resolver and the authoritative NSs consisting of root,
TLD and SLD NSs. In order to capture the different behaviour of all these components
we introduced three different system variables:

56

56

• Query multiply factor is used to characterize the client and the resolver behaviour.
It indicates how many queries will be reinitiated by a component in reaction to a
negative query response.

• Cache hit ratio is used to model the caching property of the client and the
recursive resolver. It is the value which indicates the probability that a queried
domain name will be in the cache of a system component under consideration.

• Response distribution at authoritative NS is used to characterize the authoritative
NSs behaviour with respect to the different types of DNS responses. It indicates
the fraction of response types which are given, in response to incoming initial
queries, at the authoritative NSs.

We determined Query multiply factor by expanding the lab experiments of results
presented in [26]. For Cache hit ratio and Response distribution at authoritative NS, we
found the probabilistic distributions by analyzing real world data which is captured at a
recursive resolver. We showed that these two system variables can be approximated by
normal distribution. To determine the distributions we ensured that the datasets were
independent by using Von Neumann test. Later on, by using Q-Q plots, we verified that
they were normally distributed.

Having determined the probabilistic distributions for the system variables we accounted
for the stochastic behaviour of DNS. For the validation of the model, we relied on the
approach of Monte Carlo simulation.

Before validating the results, we analyzed a new data set (captured in a different setting
of a recursive resolver) to obtain input parameters for the model. Having compared the
results from the real world data and the results from the DNS reference model, we
showed that the DNS reference model captured the DNS behaviour properly. Recall that
there were two test points for the model performance evaluation: the distribution of the
queries over the POIs in the system and the initial-repeat queries ratio at the POIs. We
observed a negligible error at the first test point while the error in the second test point
was relatively small. We attributed the error in the second test point to the effects of
IPv6 enabled clients and the secondary NSs. After validating the model, we used CoV
metric to show that the model output is not sensitive to the uncertainty in the system
variables.

Finally, we evaluated different case studies to assess the impact of the challenges the
DNS is facing in near future. We did the impact analysis for Linux-Firefox and MAC-
Safari clients’ aggressivity, Servfail response increase and the censure on domain names.
By addressing these concerns, also put forward by ICANN, we gave a couple of
examples how and in which cases the DNS reference model could be used

5.2 Future work
There are number of ways in which this work can be extended. At first, the data sets
considered in this study are captured by the recursive resolvers operated by SURFnet.
Validation of the DNS reference model by data from the different environments e.g.
another ISP or a registrar, can give a broader view on DNS reference model applicability.

57

57

Additionally, we used a data set consisting of 300.000 DNS packets to determine the
system variables. Although the dataset was large enough to determine almost all system
variables, we have experienced that it was not sufficient to determine the Response
distribution at the root NS. Remarking that the Response distribution at the authoritative
NS has crucial importance for the initial-repeat query ratio, we recommend making data
analysis with larger data sets to obtain representative numbers for all the system
variables.

Furthermore, we could not model all the specific factors in DNS due to time constraint.
The most important among those not modeled factors are the effects of the secondary
NSs and IPv6 enabled hosts. We attributed the difference between the outcomes of the
real world data and the DNS reference model to these effects. We expect that modeling
these factors would reduce the error and lead to a better performance of the DNS
reference model on the prediction of DNS behaviour.

We evaluated three different case studies to give a feeling how to use the DNS reference
model. These case studies can be extended with other relevant case studies. For instance,
there are some important application browser features which contribute significantly to
redundant DNS traffic. Prefetching and domain name completion are two of the most
important ones. The impact of these features can be analyzed by using DNS reference
model as future research topic.

Lastly, we have presented a recipe (see Recipe 4.1) to detect anomalies in the dataset.
Recipe 4.1 concerns anomalies only in client traffic. However, there might also be
anomalies in the recursive resolver traffic caused by e.g. a misconfigured recursive
resolver. More advanced algorithms for detecting these DNS abusers would contribute
significantly to anomaly detection in the dataset and help improving the results.

58

58

59

59

Bibliography

[1] P.V. Mockapetris and K.J. Dunlap, Development of the domain name system,
in Proc. SIGCOMM, 1988, pp.123-133.

[2] P.V. Mockapetris, Domain names- concepts and facilities, November 1987,
RFC 1034

[3] P.V. Mockapetris, Domain names-implementation and specification,
November 1987, RFC 1035.

[4] J. Jung, E. Sit, H. Balakrishnan, and R. Morris, DNS performance and the
effectiveness of caching, presented at IEEE/ACM Trans. Netw., 2002, pp. 589-
603.

[5] E. Smit, A study of caching in the Internet Domain name system, MSc thesis,
Department of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, Cambridge, May 2000.

[6] S. Castro, D. Wessels, M. Fomenkov, and K.C. Claffy, A day at the root of
the internet, presented at Computer Communication Review, 2008, pp. 41-46.

[7] T. Toyono, H. Nishida and K. Ishibashi, An analysis of the queries from the
view point of caching servers, presented at DNS-OARC workshop, July 2007.

[8] D. Wessels and M. Fomenkov, Wow, that’s a lot of packets, in Proc. of Passive
and Active Measurement Workshop (PAM) 2003, San Diego, Apr. 2003.

[9] V. Pappas, Z. Xu, S. Lu, D. Massey, A. Terzis, and L. Zhang, Impact of
configuration errors on DNS robustness, in Proc. SIGCOMM, 2004, pp. 319-
330.

[10] B.M. Duska, D. Marwood, and M.J. Feeley, The Measured Access
Characteristics of World-Wide-Web Client Proxy Caches, in Proc. USENIX
Symposium on Internet Technologies and Systems, 1997.

[11] R. Arends, DNS Security introduction and requirements, March 2005. RFC
4033.

[12] M. Andrews, Negative caching of DNS queries, March 1998. RFC 2308
[13] R. A. Fisher, The Design of Experiments, 8th ed., New York: Hafner

Publishing Company Inc., 1966, 17.
[14] T. Asami, K. Yamazaki, Y. Hatori and S. Nakagawa, An FQDN-Based

Internet Architecture, IEICE TRANSACTIONS on Information and
Systems Vol.E85-D, No.8, 2002, pp. 1233-1240.

[15] R. Giaffreda, N. Walker and R.Y. Ruiz, Performance of the DNS name
resolution infrastructure, in Proc. of the IEE colloquium on Control of Next
Generation Networks, London, October 1999.

[16] C.J. Brandhorst, and A. Pras, DNS: a statistical analysis of name server traffic
at local network-to-Internet connections, in Proc. IFIP International Workshop
on Networked Applications, 2006, pp. 255-270.

[17] D. Wessels, M. Fomenkov, N. Brownlee, and K.C. Claffy, Measurements and
Laboratory Simulations of the Upper DNS Hierarchy, in Proc. PAM , 2004,
pp.147-157.

[18] SIDN home page. https://www.sidn.nl/.

60

60

[19] R. Arends, Resource Records for the DNS Security Extensions, March 2005.
RFC 4034.

[20] T. Toyono, K. Ishibashi and K. Toyama, Clear and Present Increase in
Number of DNS AAAA Queries, NANOG36 meeting, Dallas, February 2006

[21] S. Gibbard, Geographic Implications of DNS Infrastructure, Internet Protocol
Journal, Vol. 10, No. 1, 2007, pp. 12-24.

[22] T. Toyono and H. Nishida, DNS stub resolver behaviour of IPv6 ready hosts,
DNS OARC workshop, Redmond, USA, October 2006.

[23] P. Albitz and C. Liu, DNS and BIND, 2nd ed., O’Reilly and Associates, 1998.
[24] The Measurement Factory, DNS Survey: April 2005, April 2005. [Online].

Available: http:/dns.measurement-factory.com/surveys/200504.html [Accessed:
02.02.2011].

[25] C. Partridge, T. Mendez and W. Milliken, Host anycasting service, November
1993, RFC 1546.

[26] B. Gijsen, DNS(SEC) client analysis, DNS OARC Workshop, San Francisco,
March 2011.

[27] G. Huston, DNSSEC-A review, June 2010. [Online]. Available:
www.potaroo.net. [Accessed: 12.03.2011].

[28] R. Elz, R. Bush, S. Bradner and M. Patton, Selection and operation of
secondary DNS servers, July 1997. RFC 2182

[29] D. Eastlake, Domain name system IANA considerations, November 2008, RFC
5395.

[30] S. Sarat, V. Pappas and A. Terzis, On the use of anycast in DNS, in Proc.
SIGMETRICS, 2005, pp. 394-395.

[31] R. Elz, Clarifications to DNS specification, July 1997, RFC 2181.
[32] J. Klensin, Checking and transformation of names, February 2004, RFC 3696.
[33] R. Bellis and L. Phifer, Test Report: DNSSEC Impact on Broadband Routers

and Firewalls, September 2008. [Online]. Available on icann.org. [Accessed:
14.03.2011].

[34] ICANN home page. http://www.icann.org/.
[35] J. V. Neuman, Distribution of the ratio of the mean square successive

difference to the variance, The Annals of Mathematical Statistics, Vol. 12, No.
4, 1941, pp. 367-395.

[36] S.S. Shapiro and M.B. Wilk, An analysis of variance test for normality
(complete samples), Biometrika, Vol. 52, No. 3 and 4, 1956, pp. 591-611.

[37] R. Gnanadesikan and M. B. Wilk, Probability plotting methods for analysis of
data, Biometrika, Vol. 55, No. 1, 1968, pp. 1-17.

[38] J.J. Filliben, The Probability Plot Correlation Coefficient Test for Normality,
Technometrics (American Society for Quality), Vol. 17, No. 1, 1975, pp. 111–
117.

[39] S. Castro, M. Zhang, W. John, D. Wessels and K. Claffy, Understanding and
preparing for DNS evolution, presented at the 2nd International Traffic
Monitoring and Analysis (TMA'10) Workshop, April 2010. Published in
Lecture Notes in Computer Science, Vol. 6003, 2010, pp. 1-16.

61

61

[40] K.S. Nairy and K.A. Rao, Tests of coefficients of variation of normal
population, Communications in Statistics – Simulation and Computation, Vol.
32, No. 3, 2003, pp. 641–661.

[41] J.D. Curtoa and J. C. Pinto, The coefficient of variation asymptotic distribution
in the case of non-iid random variables, Journal of Applied Statistics, Vol. 36,
issue 1, 2009, pp. 21-32.

[42] P.C. Sander, Statistische aspecten van simulatie, Collegediktaat TU Eindhoven
nr. 1250, fac. Bedrijfskunde, 1987.

[43] R. Curtmola, A.D. Sorbo and G. Ateniese, On the Performance and Analysis
of DNS Security Extensions, in Proc. CANS, 2005, pp.288-303.

[44] A. Wolman, et al., On the scale and performance of cooperative Web proxy
caching, in Proc. SOSP, 1999, pp. 16-31.

[45] D. Wessels, Is your caching resolver polluting the internet?, in Proc. of the
ACM SIGCOMM workshop on Network troubleshooting. New York, NY,
USA: ACM Press, 2004, pp. 271-276.

[46] B. Ager, W. Mühlbauer, G. Smaragdakis, and S. Uhlig, Comparing DNS
resolvers in the wild, in Proc. Internet Measurement Conference, 2010, pp.15-
21.

[47] T.W. Anderson and A. D. Darling, Asymptotic theory of certain ‘goodness-of-
fit’ criteria based on stochastic processes, Annals of Mathematical Statistics,
Vol. 23, 1952, pp. 193–212.

[48] W. Feller, On the Kolmogorov-Smirnov limit theorems for empirical
distributions, Annals of Mathematical Statistics, Vol. 19, 1948, pp. 177–189.

[49] R. Arends, et al., Protocol modifications for the DNS security extensions,
March 2005. RFC 4035.

[50] S. Degen, DNS(SEC) client analysis, RIPE Meeting, Amsterdam, May 2011.

62

62

63

63

Appendix
I. DNSSEC
DNS security extensions (DNSSEC) are a set of specifications used to add an additional
layer of security to the DNS so that computers can verify that they are connected to
proper servers [43]. By caching address information, NSs don’t have to look up the IP
address every time a frequently visited site is accessed. If malicious parties are able to
insert a bogus IP address into a cache, however, all users of that NS will be directed to
the wrong site (until the cache expires and is refreshed). Corrupting the operation of
DNS in this way can lead to many kinds of fraud and other malicious activity.

To defend against the threats, DNSSEC is designed to achieve two security goals: data
origin authentication and data integrity. DNSSEC uses public key cryptography to
enable each zone to prove the authenticity and the integrity of the DNS data. To achieve
this, DNSSEC defines a number of different RRs, namely DNSKEY, RRSIG, NSEC and
DS RRs [19].

When requested by the client in the DNS query, the authoritative NS will add RRSIG
RR to the DNS responses. RRSIG is an encrypted hash of the RRsets. This is intended to
allow the DNS client to authenticate the DNS response. If there is no authoritative DNS
data to respond to the query, such as when no such domain name exists, then the DNS
response will include an NSEC RR response, plus its accompanying RRSIG record. In
addition to an RRSIG response covering the RRset records in the answer section of the
DNS response, there is also an RRSIG response covering the records in the authority
section and one or more RRSIG responses relating to records in the additional response
section.

To verify the validation of the received DNS response, the DNSSEC-aware client should
perform a three-step procedure. First, the hash of the received RRset has to be generated.
Then, the RRSIG has to be decrypted with the zone’s public key, published by
DNSKEY RR [19], and the hash value of RRSIG can be retrieved. Finally, these two
hash values have to be compared. If the DNS response is authentic then the hash of the
RRset data will match the decrypted RRSIG hash value [27].

For DNSSEC to work, the recursive resolver needs to know that the public key being
used is trustworthy. This creates a chicken-and-egg situation: the resolver needs to ask
the NS for its public key, but the public key itself is used to verify the NS’s identity.
This problem is solved by concept of chain of thrust.
The chain of trust makes it possible to start with a root zone key, the highest possible
key in the DNS tree, and following cryptographic pointers to lower zones. Each pointer
is validated with the previous validated zone key. For instance ‘www.tno.nl’ is an A
record which is signed at the SLD NS for ‘tno.nl’. ‘tno.nl’ is signed at TLD NSs for
‘com’ which is signed at the root. By using this mechanism only the root key is needed
to validate all DNSSEC keys on the Internet and since the root key is a public key, it can

64

64

be done very easily. With these DNSSEC keys the DNS data in each zone can then be
validated.

The chain of trust works by following "secured pointers," which are called secured
delegation in DNSSEC. A special new record called the Delegation Signer (DS) record
delegates trust from a parental key to a child's zone key. The DS record holds a hash of a
child's zone key. This DS record is signed with the zone key from the parent. By
checking the signature of the DS record, a resolver can validate the hash of the child's
zone key. If this is successful, the resolver can compare this validated hash with the yet-
to-be-validated hash of the child's zone key. If these two hashes match, the child's real
zone key can be used for validation of data in the child's zone. By successfully following
a secured delegation, the amount of trust a resolver has in the parental key is transferred
to a child's key [11]. The chain of thrust concept is illustrated by Figure I.1.

Figure I.1: DNSSEC chain of thrust concept.

When an unauthenticated end user wants to access a signed server, the end user will be
responded with a Servfail response [49].

65

65

II. MATLAB m-files
In this section, we provide the MATLAB m-files which are mentioned in the report. The
m-files are generated in MATLAB 7.4.0 (R2007a).

GetPacketDetails.m
function [ID, Type, Name, Destination, Source, IP_TTL, Time,
PacketDetails]=GetPacketDetails(A)

% This m-file retrieves ID, type, name, destination, source, IP TTL and time stamp of
each DNS packet in the data set A.

% Input: A= is the cell converted from a txt file.
% Output: ID= row vector containing ID's of all packets in A
% Type= row vector containing types of all packets in A
% Name= row vector containing names of all packets in A

ID={};
Type={};
Name={};
Destination={};
Source={};
IP_TTL={};
Time={};
S=size(A);

for i=1:S(1)

 if strcmp(A{i,1},'Transaction') == 1
 tempID=A{i,3};
 l=char(tempID);
 h=cellstr(l);
 ID=[ID h];
 end
end

for i=1:S(1)

 if strcmp(A{i,1},'Type:') == 1
 tempType=A{i,2};
 p=char(tempType);
 k=cellstr(p);
 Type=[Type k];
 end
end

for i=1:S(1)

66

66

 if strcmp(A{i,1},'Name:') == 1
 tempName=A{i,2};
 o=char(tempName);
 c=cellstr(o);
 Name=[Name c];
 end
end
for i=1:S(1)

 if strcmp(A{i,1},'Internet') == 1
 tempDest=A{i,7};
 l=char(tempDest);
 d=cellstr(l);
 Destination=[Destination d];

 tempSrc=A{i,4};
 v=char(tempSrc);
 j=cellstr(v);
 Source=[Source j];
 end
end

for i=1:S(1)

 if strcmp(A{i,1},'Time') == 1
 tempTTL=A{i,4};
 l=char(tempTTL);
 h=cellstr(l);
 IP_TTL=[IP_TTL h];
 end
end

for i=1:S(1)

 if strcmp(A{i,1},'Arrival') == 1
 tempTime=A{i+3,7};
 o=char(tempTime);
 c=cellstr(o);
 Time=[Time c];
 end
end

PacketDetails=[ID' Type' Name' Destination' Source' IP_TTL' Time'];

67

67

SortPackets.m
function [SortedPackets]=SortPackets(A)
% This file detects different query types and classifies them based on their query types.
Then the smaller subsets are sorted again based their query name. Hence; sorting of
sorted data.

%Input: A: It is the mixed cell containing ID, name and types of
 queries. This is the cell converted from the txt file.
%Output: SortedPackets: It contains all the packets sorted. These queries are first

sorted based on their type i.e. all A queries are grouped
together while all AAAAqueries are sorted separately.
Then in these subsets they are sorted again based on their
domain names.

[ID, Type, Name, Destination, Source,IP_TTL, Time,
PacketDetails]=GetPacketDetails(A);

%First sorting based on packet types e.g. A, AAAA or PTR.
Aqueries={};
AAAAqueries={};
PTRqueries={};
MXqueries={};
ANYqueries={};
TXTqueries={};
SRVqueries={};
SOAqueries={};
DSqueries={};

types=PacketDetails(:,2);
S=size(types);

for i=1:S(1)
 temp1=types{i,1};
 temp2=PacketDetails(i,:);

 if strcmp(temp1,'A') == 1
 Aqueries=[Aqueries; temp2];
 elseif strcmp(temp1,'AAAA') == 1
 AAAAqueries=[AAAAqueries;temp2];
 elseif strcmp(temp1,'PTR') == 1
 PTRqueries=[PTRqueries;temp2];
 elseif strcmp(temp1,'MX') == 1
 MXqueries=[MXqueries;temp2];
 elseif strcmp(temp1,'ANY') == 1
 ANYqueries=[ANYqueries;temp2];
 elseif strcmp(temp1,'TXT') == 1

68

68

 TXTqueries=[TXTqueries;temp2];
 elseif strcmp(temp1,'SRV') == 1
 SRVqueries=[SRVqueries;temp2];
 elseif strcmp(temp1,'DS') == 1
 DSqueries=[DSqueries;temp2];
 elseif strcmp(temp1,'SOA') == 1
 SOAqueries=[SOAqueries;temp2];
 end
end

%Then sorting based on domain names
SortedAqueries={};
SortedAAAAqueries={};
SortedPTRqueries={};
SortedMXqueries={};
SortedANYqueries={};
SortedTXTqueries={};
SortedSRVqueries={};
SortedSOAqueries={};
SortedDSqueries={};

Sa=size(Aqueries); %Sorting A queries
if Sa(1)>0
ANames=Aqueries(:,3);
[B, IXA]= sort(ANames);

 for i=1:Sa(1)
 temp1=IXA(i);
 temp2=Aqueries(temp1,:);
 SortedAqueries=[SortedAqueries; temp2];
 end
end

Saaaa=size(AAAAqueries); %Sorting AAAA queries
if Saaaa(1)>0
AAAANames=AAAAqueries(:,3);
[B, IXAAAA]=sort(AAAANames);

 for i=1:Saaaa(1)
 temp1=IXAAAA(i);
 temp2=AAAAqueries(temp1,:);
 SortedAAAAqueries=[SortedAAAAqueries; temp2];
 end
end

Sptr=size(PTRqueries); %Sorting PTR queries

69

69

if Sptr(1)>0
PTRNames=PTRqueries(:,3);
[B, IXPTR]= sort(PTRNames);

 for i=1:Sptr(1)
 temp1=IXPTR(i);
 temp2=PTRqueries(temp1,:);
 SortedPTRqueries=[SortedPTRqueries; temp2];
 end
end

Smx=size(MXqueries); %Sorting MX queries
if Smx(1)>0
MXNames=MXqueries(:,3);
[B, IXMX]= sort(MXNames);

 for i=1:Smx(1)
 temp1=IXMX(i);
 temp2=MXqueries(temp1,:);
 SortedMXqueries=[SortedMXqueries; temp2];
 end
end

Sany=size(ANYqueries); %Sorting ANY queries
if Sany(1)>0
ANYNames=ANYqueries(:,3);
[B, IXANY]= sort(ANYNames);

 for i=1:Sany(1)
 temp1=IXANY(i);
 temp2=ANYqueries(temp1,:);
 SortedANYqueries=[SortedANYqueries; temp2];
 end
end

Stxt=size(TXTqueries); %Sorting TXT queries
if Stxt(1)>0
TXTNames=TXTqueries(:,3);
[B, IXTXT]= sort(TXTNames);

 for i=1:Stxt(1)
 temp1=IXTXT(i);
 temp2=TXTqueries(temp1,:);
 SortedTXTqueries=[SortedTXTqueries; temp2];
 end
end

70

70

Ssrv=size(SRVqueries); %Sorting SRV queries
if Ssrv(1)>0
SRVNames=SRVqueries(:,3);
[B, IXSRV]= sort(SRVNames);

 for i=1:Ssrv(1)
 temp1=IXSRV(i);
 temp2=SRVqueries(temp1,:);
 SortedSRVqueries=[SortedSRVqueries; temp2];
 end
end

Ssoa=size(SOAqueries); %Sorting SRV queries
if Ssoa(1)>0
SOANames=SOAqueries(:,3);
[B, IXSOA]= sort(SOANames);

 for i=1:Ssoa(1)
 temp1=IXSOA(i);
 temp2=SOAqueries(temp1,:);
 SortedSOAqueries=[SortedSOAqueries; temp2];
 end
end

Sds=size(DSqueries); %Sorting DS queries
if Sds(1)>0
DSNames=DSqueries(:,3);
[B, IXDS]= sort(DSNames);

 for i=1:Sds(1)
 temp1=IXDS(i);
 temp2=DSqueries(temp1,:);
 SortedDSqueries=[SortedDSqueries; temp2];
 end
end

SortedPackets=[SortedAqueries; SortedAAAAqueries; SortedPTRqueries;
SortedMXqueries; SortedANYqueries; SortedTXTqueries; SortedSRVqueries;
SortedSOAqueries; SortedDSqueries];

GetInitialQueriesAtResolver.m
function [InitialQueries, RepeatQueries, NumberOfInitials, NumberOfRepeats] =
GetInitialQueriesAtResolver(A)

71

71

%This m-file is used to determine the repeat queries and the initials queries @ resolver.
It is assumed that all the queries are received by %just one destination.

% Input: A: From Wireshark exported detailed data. Frame, IP and DNS headers
 should be visible, query details as well!
% Outputs: InitialQueries: Initial queries from the data set.
% RepeatQueries: Repeat queries for the initial queries.
% NumberInitialQueries: Number of initial queries.
% NumberRepeatQueries: Number of repeat queries.

[SortedPackets]=SortPackets(A);
Src=SortedPackets(:,5);
Time=SortedPackets(:,7);
Type=SortedPackets(:,2);
Name=SortedPackets(:,3);
S=size(Name);

InitialQueries=SortedPackets(1,:); % First element in the list is always an initial
query
RepeatQueries={};
for i=2:S(1)

 temp=SortedPackets(i,:);
 temp11char=Time{i};
 temp11=str2num(temp11char);
 temp12=Type(i);
 temp13=Name(i);
 temp14=Src(i);

 count=0;
 SrcI=InitialQueries(:,5);
 TimeI=InitialQueries(:,7);
 TypeI=InitialQueries(:,2);
 NameI=InitialQueries(:,3);

 SI=size(InitialQueries);
 for j=1:SI(1)

 temp21char=TimeI{j};
 temp21=str2num(temp21char);
 temp22=TypeI(j);
 temp23=NameI(j);
 temp24=SrcI(j);

 if (strcmp(temp12,temp22) == 1) && (strcmp(temp13,temp23) == 1)&&
(strcmp(temp14,temp24) == 1)&& (temp11-temp21)<13

72

72

 count =count+1;
 end
 end

 if count>0
 RepeatQueries=[RepeatQueries; temp];
 else
 InitialQueries=[InitialQueries; temp];
 end
end

S1=size(InitialQueries);
S2=size(RepeatQueries);

NumberOfInitials=S1(1);
NumberOfRepeats=S2(1);

GetInitialQueriesAtNS.m
function [InitialQueries, RepeatQueries, NumberOfInitials, NumberOfRepeats] =
GetInitialQueriesAtNS(A)

%This m-file is used to determine # of repeats and initials towards authoritative NS. It is
assumed that all the queries are sent by just one source.

%Input: A: From Wireshark imported DNS data.
%Output: InitialQueries: Set of initial queries and repeat queries.
% RepeatQueries: Set of repeat queries.
% NumberInitialQueries: Number of initial queries.
% NumberRepeatQueries: Number of repeat queries.

[SortedPackets]=SortPackets(A);
Time=SortedPackets(:,7);
Type=SortedPackets(:,2);
Name=SortedPackets(:,3);
S=size(Name);

InitialQueries=SortedPackets(1,:); % First element in the list is always an initial
query
RepeatQueries={};
for i=2:S(1)

 temp=SortedPackets(i,:);
 temp11char=Time{i};
 temp11=str2num(temp11char);
 temp12=Type(i);
 temp13=Name(i);

73

73

 count=0;
 TimeI=InitialQueries(:,7);
 TypeI=InitialQueries(:,2);
 NameI=InitialQueries(:,3);

 SI=size(InitialQueries);
 for j=1:SI(1)

 temp21char=TimeI{j};
 temp21=str2num(temp21char);
 temp22=TypeI(j);
 temp23=NameI(j);

 if (strcmp(temp12,temp22) == 1) && (strcmp(temp13,temp23) == 1)&& (temp11-
temp21)<3
 count =count+1;
 end
 end

 if count>0
 RepeatQueries=[RepeatQueries; temp];
 else
 InitialQueries=[InitialQueries; temp];
 end
end

S1=size(InitialQueries);
S2=size(RepeatQueries);

NumberOfInitials=S1(1);
NumberOfRepeats=S2(1);

GetOSFraction.m
function [Linux, Windows, MAC, Lost]=GetOSFraction(InitialQueries)
%This m-file computes number of Linux, MAC and Windows clients.

%Input: InitialQueries: Set of initial queries
%Output: Number of Linux, MAC and Windows clients.

IP_TTL=InitialQueries(:,6);
Si=size(InitialQueries);

Linux=0;
Windows=0;
MAC=0;

74

74

Lost=0;

for i=1:Si(1)

 if strcmp(IP_TTL{i,1},'64') == 1 ||strcmp(IP_TTL{i,1},'63') == 1
||strcmp(IP_TTL{i,1},'62') == 1 || strcmp(IP_TTL{i,1},'61') == 1
||strcmp(IP_TTL{i,1},'60') == 1 ||strcmp(IP_TTL{i,1},'59') == 1
||strcmp(IP_TTL{i,1},'58') == 1 ||strcmp(IP_TTL{i,1},'57') ==
1||strcmp(IP_TTL{i,1},'56') == 1||strcmp(IP_TTL{i,1},'55') ==
1||strcmp(IP_TTL{i,1},'54') == 1||strcmp(IP_TTL{i,1},'53') ==
1||strcmp(IP_TTL{i,1},'52') == 1||strcmp(IP_TTL{i,1},'51') ==
1||strcmp(IP_TTL{i,1},'50') == 1||strcmp(IP_TTL{i,1},'49') ==
1||strcmp(IP_TTL{i,1},'48') == 1||strcmp(IP_TTL{i,1},'47') ==
1||strcmp(IP_TTL{i,1},'46') == 1||strcmp(IP_TTL{i,1},'45') ==
1||strcmp(IP_TTL{i,1},'44') == 1||strcmp(IP_TTL{i,1},'43') ==
1||strcmp(IP_TTL{i,1},'42') == 1||strcmp(IP_TTL{i,1},'41') ==
1||strcmp(IP_TTL{i,1},'40') == 1

 Linux=Linux+1;

 elseif strcmp(IP_TTL{i,1},'128') == 1 ||strcmp(IP_TTL{i,1},'127') == 1
||strcmp(IP_TTL{i,1},'126') == 1 || strcmp(IP_TTL{i,1},'125') == 1
||strcmp(IP_TTL{i,1},'124') == 1 ||strcmp(IP_TTL{i,1},'123') == 1
||strcmp(IP_TTL{i,1},'122') == 1||strcmp(IP_TTL{i,1},'121') ==
1||strcmp(IP_TTL{i,1},'120') == 1||strcmp(IP_TTL{i,1},'119') ==
1||strcmp(IP_TTL{i,1},'118') == 1||strcmp(IP_TTL{i,1},'117') ==
1||strcmp(IP_TTL{i,1},'116') == 1||strcmp(IP_TTL{i,1},'115') ==
1||strcmp(IP_TTL{i,1},'114') == 1||strcmp(IP_TTL{i,1},'113') ==
1||strcmp(IP_TTL{i,1},'112') == 1||strcmp(IP_TTL{i,1},'111') ==
1||strcmp(IP_TTL{i,1},'110') == 1||strcmp(IP_TTL{i,1},'109') ==
1||strcmp(IP_TTL{i,1},'108') == 1||strcmp(IP_TTL{i,1},'107') ==
1||strcmp(IP_TTL{i,1},'106') == 1||strcmp(IP_TTL{i,1},'105') ==
1||strcmp(IP_TTL{i,1},'104') == 1

 Windows=Windows+1;

 elseif strcmp(IP_TTL{i,1},'255') == 1 ||strcmp(IP_TTL{i,1},'254') == 1
||strcmp(IP_TTL{i,1},'253') == 1 || strcmp(IP_TTL{i,1},'252') == 1
||strcmp(IP_TTL{i,1},'251') == 1 ||strcmp(IP_TTL{i,1},'250') == 1
||strcmp(IP_TTL{i,1},'249') == 1||strcmp(IP_TTL{i,1},'248') ==
1||strcmp(IP_TTL{i,1},'247') == 1||strcmp(IP_TTL{i,1},'246') ==
1||strcmp(IP_TTL{i,1},'245') == 1||strcmp(IP_TTL{i,1},'244') ==
1||strcmp(IP_TTL{i,1},'243') == 1||strcmp(IP_TTL{i,1},'242') ==
1||strcmp(IP_TTL{i,1},'241') == 1||strcmp(IP_TTL{i,1},'240') ==
1||strcmp(IP_TTL{i,1},'239') == 1||strcmp(IP_TTL{i,1},'238') ==
1||strcmp(IP_TTL{i,1},'237') == 1||strcmp(IP_TTL{i,1},'236') ==

75

75

1||strcmp(IP_TTL{i,1},'235') == 1||strcmp(IP_TTL{i,1},'234') ==
1||strcmp(IP_TTL{i,1},'233') == 1||strcmp(IP_TTL{i,1},'232') ==
1||strcmp(IP_TTL{i,1},'231') == 1||strcmp(IP_TTL{i,1},'230') == 1

 MAC=MAC+1;

 elseif strcmp(IP_TTL{i,1},'10') == 1||strcmp(IP_TTL{i,1},'9') ==
1||strcmp(IP_TTL{i,1},'8') == 1||strcmp(IP_TTL{i,1},'7') == 1||strcmp(IP_TTL{i,1},'6')
== 1||strcmp(IP_TTL{i,1},'5') == 1||strcmp(IP_TTL{i,1},'4') ==
1||strcmp(IP_TTL{i,1},'3') == 1||strcmp(IP_TTL{i,1},'2') == 1||strcmp(IP_TTL{i,1},'1')
== 1
 Lost=Lost+1;

 end
end

ImportText.m
function [A]=ImportText(text)
% The code in this m file can be used to convert a text file into a S*17 cell where s is #
of rows of the file. All the characters are saved as string. Note that it does not work as a
function. Hence, you just need to copy the code and evaluate it.

% Input: text= txt file.
% Output: A= cell consisting of strings.

[col1 col2 col3 col4 col5 col6 col7 col8 col9 col10 col11 col12 col13 col14 col15 col16
col17] =
textread('QueriesToPOI.txt','%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s*[^\n]');

A = horzcat(col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13,
col14, col15, col16, col17);

III. Recipes
In this section, we provide the detailed Wireshark commands for Recipe 4.1 and 4.2.

Recipe 4.1:

i. Ip.dst == “IP address of the recursive resolver” e.g.195.169.124.124.
ii. “Statistics => Ip addresses”: This shows all the clients with the fraction of query

that they are generating.
iii. Ip.addr == “Ip address of aggressive clients”: This gives a breakdown of the

aggressive client traffic towards/from the recursive resolver.

Recipe 4.2:

76

76

Obtaining data from Wireshark:
i. Ip.dst == “IP address of recursive resolver” (for queries towards resolver)
ii. Make Frame, IP and DNS headers open. Additionally, make query details in

DNS header visible.
iii. Go to File=>Export=> Plain Text. Choose “Displayed” button and tick

“Packet details”/ “As displayed” and obtain “QueriesToResolver”.
iv. ip.dst == “All root NS IP addresses” (for queries towards root NSs)
v. Repeat ii and iii. Obtain “QueriesToRoot”.
vi. ip.dst == “All TLD NS IP addresses” (for queries towards TLD NSs)
vii. Repeat ii and iii. Obtain “QueriesToTLD”.
viii. ip.src == “IP address of recursive resolver” && dns.flags.response == 0 &&

not(ip.dst == “All TLD NS IP addresses”) && not(ip.dst == “All Root NS IP
addresses”)

ix. Repeat ii and iii. Obtain “QueriesToSLD”.

Processing data with MATLAB:
x. Convert all these files in .txt file so that it can be read by MATLAB.
xi. Import “QueriesToResolver” by ImportTest.m and obtain the initial and

repeat queries at the recursive resolver by GetInitialQueriesAtResolver.m
xii. Import “QueriesToRoot”, “QueriesToTLD” and “QueriesToSLD” by

ImportTest.m and obtain the initial and repeat queries at the recursive
resolver by GetInitialQueriesAtNS.m

IV. Histograms
Recall that when running the DNS reference model we deployed the Monte Carlo
simulation with 30.000 repetitions. In this section, we provide the histograms of the
DNS reference model outputs from the Monte Carlo simulations. On the x-axes, the
weighted sum of initial and repeat queries at the POIs is depicted while on the y-axes,
the number of times that a possible outcome occurred is shown. Note that the most
probable values from these histograms are depicted n in Table 4.12.

Root Initial Queries

0

20

40

60

80

100

120

0 2 4 6 8 10 12 14 16 18 20 22

Query number

Fr
eq

ue
nc

y

77

77

Recursive Resolver Repeat Queries

0

10

20

30

40

50

60

11
10

11
70

12
30

12
90

13
50

14
10

14
70

15
30

15
90

16
50

17
10

17
70

18
30

18
90

19
50

20
10

20
70

21
30

21
90

Query number

Fr
eq

ue
nc

y

TLD Initial Queries

0

20

40

60

80

100

120

10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

More

Query number

Fr
eq

ue
nc

y

TLD Repeat Queries

0

50

100

150

200

250

300

350

1 5 9 13 17 21 25 29 33 37 41

Query number

Fr
eq

ue
nc

y

78

78

SLD Initial Queries

0

10

20

30

40

50

60

23
30

24
10

24
90

25
70

26
50

27
30

28
10

28
90

29
70

30
50

31
30

32
10

32
90

33
70

34
50

35
30

36
10

36
90

More

Query number

Fr
eq

ue
nc

y

SLD Repeat Queries

0

20

40

60

80

100

120

140

160

15
0

19
0

23
0

27
0

31
0

35
0

39
0

43
0

47
0

51
0

55
0

Query number

Fr
eq

ue
nc

y

