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Abstract 
 
In this thesis, we present the first DNS reference model with the aim to predict the 
query behaviour of domain name system (DNS) under given conditions, e.g. when 
the amount of a specific DNS query response increases by a certain percentage or 
more specifically when the DNS query load towards the authoritative name servers 
(NS) increases by a certain fraction. The DNS reference model takes into account all 
relevant components present in a nowadays DNS architecture: starting from client’s 
application browser and operating system (OS), then recursive resolver present 
mostly at an Internet Service Provider (ISP), to the authoritative NS which include 
the root, top level domain (TLD) and second level domain (SLD) NSs. To 
characterize the system variables describing the query behaviour at each of these 
independent system components, we analyze the real-world data of an UNBOUND 
recursive resolver, captured by an ISP in The Netherlands. We even estimate and 
verify the probabilistic distributions for the two system variables. With this step we 
account for the stochastic simulation of system behaviour by using Monte Carlo 
simulation. Additionally, we validate the model by comparing the statistics found in 
the real-world data with the output of the DNS stochastical Monte Carlo method. 
Additional to these main contributions, we discuss shortcoming related to the real-
world data and possible extensions of the model. Finally, we demonstrate the 
applicability of the model by evaluating some relevant case studies e.g. the impact of 
the increase of a specific DNS query response by a certain percentage.  

Key Words: DNS, scalability, flow level modeling, stochastic modeling, impact analysis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 VIII

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 



 IX

Acknowledgements 
 
First of all, I would like to thank my supervisors Ir.Bart Gijsen and Dr.ir. Almerima 
Jamakovic from the Netherlands organization for applied scientific research (TNO) 
and Prof.dr.ir.Robert E. Kooij from Delft University of Technology (TU Delft) for 
their guidance and support during my research. Additionally, many other people were 
instrumental in making this study possible. Roland Rijswijk from SURFnet was 
extremely helpful for providing real world data as well as answering operational 
questions about DNS. I am thankful to Sander Degen from TNO for being always 
friendly when supplying equipments for data analysis and providing original ideas 
about simulation and software related problems. My TNO colleague Piotr 
Zuraniewski’s help was vital to solving problems related to data analysis. The 
discussions with Dr. Ertan Onur from TU Delft were valuable and his comments were 
insightful. I would like to thank my colleagues Miroslav Zivkovic and Kostas 
Trichias from TNO for useful discussions on the topic and for the relaxing coffee 
breaks. Additionally, in various discussions, many other members of the TNO and 
TU Delft community were helpful in focussing this work. Last but surely not least I 
am grateful to my family and my girl friend for their support and encouragement.  
 
 
Delft, The Netherlands                 Yakup Koç 
August 02, 2011 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 X

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 XI

Contents  
1 Introduction ................................................................................................................................. 1 

2 Domain Name System.................................................................................................................. 3 
2.1 DNS structure ............................................................................................................................... 3 

2.1.1 Domain name space and resource records ............................................................................ 4 
2.1.2 Authoritative name servers ................................................................................................... 7 
2.1.3 Resolvers .............................................................................................................................. 9 

2.2 DNS operation.............................................................................................................................. 9 
2.2.1 Domain name resolution process .......................................................................................... 9 
2.2.2 DNS queries........................................................................................................................ 10 
2.2.3 DNS responses.................................................................................................................... 11 
2.2.4 DNS caching mechanism.................................................................................................... 12 

2.3 Future DNS challenges............................................................................................................... 13 
2.3.1 IPv6..................................................................................................................................... 13 
2.3.2 New TLDs .......................................................................................................................... 14 
2.3.3 DNSSEC............................................................................................................................. 14 

3 DNS Reference Model ............................................................................................................... 15 
3.1 General features and assumptions ............................................................................................. 15 
3.2 System variables and input parameters ...................................................................................... 16 

3.2.1 Query multiply factor ......................................................................................................... 16 
3.2.2 Cache hit ratio..................................................................................................................... 23 
3.2.3 Response distribution at authoritative NSs ......................................................................... 25 
3.2.4 Scenario .............................................................................................................................. 26 

3.3 Model structure and operation ................................................................................................... 27 
3.3.1 DNS reference model structure........................................................................................... 29 
3.3.2 DNS reference model operation ......................................................................................... 30 

4 Experimental Results ................................................................................................................ 35 
4.1 System variable distributions...................................................................................................... 35 

4.1.1 Cache hit ratio..................................................................................................................... 35 
4.1.2 Response distribution at the authoritative NS..................................................................... 39 

4.2 Model validation......................................................................................................................... 43 
4.2.1 Data analysis....................................................................................................................... 43 
4.2.2 Model simulation ................................................................................................................ 46 
4.2.3 Analysis of validation results.............................................................................................. 47 
4.2.4 Sensitivity check................................................................................................................. 49 

4.3 Case studies................................................................................................................................ 50 
Case 1: The impact of Linux-Firefox and MAC-Safari clients’ aggressivity .............................. 50 
Case 2: The impact of Servfail responses’ increase..................................................................... 51 
Case 3: Impact of domain name blocking.................................................................................... 53 

5 Conclusion and Future Work ................................................................................................... 55 
5.1 Conclusion.................................................................................................................................. 55 
5.2 Future work ................................................................................................................................ 56 



 XII

Bibliography ........................................................................................................................................ 59 

Appendix .............................................................................................................................................. 63 
I. DNSSEC ........................................................................................................................................ 63 
II. MATLAB m-files........................................................................................................................... 65 
III. Recipes........................................................................................................................................ 75 
IV. Histograms.................................................................................................................................. 76 



 XIII

List of Figures 
Figure 2.1: An overview of DNS architecture. ............................................................. 4 
Figure 2.2: The domain name space tree. ..................................................................... 4 
Figure 2.3: An example of a RR of type A. .................................................................. 6 
Figure 2.4: Domain name resolution process.............................................................. 10 
Figure 2.5: The client caching (a) and the resolver caching (b).................................. 13 
 
Figure 3.1: DNS reference model. .............................................................................. 10 
Figure 3.2: Windows client Timeout behaviour’s query sequence diagram............... 17 
Figure 3.3: MAC-Safari client behaviour’s query sequence diagram......................... 17 
Figure 3.4: Linux-Firefox client behaviour’s query sequence diagram...................... 18 
Figure 3.5: BIND9 Servfail response behaviour’s query sequence diagram. ............. 19 
Figure 3.6: BIND9 Timeout response behaviour’s query sequence diagram. ............ 20 
Figure 3.7: BIND9 Refused and Partial responses behaviours’ query sequence 
diagram........................................................................................................................20 
Figure 3.8: BIND9 NXdomain response behaviour’s query sequence diagram......... 20 
Figure 3.9: UNBOUND Servfail response behaviour’s query sequence diagram...... 21 
Figure 3.10: UNBOUND Refused response behaviour’s query sequence diagram. ..21 
Figure 3.11: UNBOUND Timeout response behaviour’s query sequence diagram...22 
Figure 3.12: UNBOUND NXdomain response behaviour’s query sequence    
diagram........................................................................................................................22 
Figure 3.13: Overall DNS structure. ........................................................................... 27 
Figure 3.14: The DNS reference model view. ............................................................ 28 
Figure 3.15: The initial queries going from the users to the authoritative NSs. ......... 31 
Figure 3.16: The ‘Query to SLD’ part of the DNS reference model. ......................... 33 
 
Figure 4.1: Q-Q plots of Cache hit ratio vs. normal theoretical values. ..................... 39 
Figure 4.2: Q-Q plots for Response distribution at TLD (a) and SLD (b) NSs. ......... 42 
Figure 4.3: CoVs for the system variables and for the outputs................................... 10 
Figure 4.4: Impact of Linux-Firefox and MAC-Safari clients’ aggressivity on DNS 
traffic. .......................................................................................................................... 51 
Figure 4.5: Impact of Servfail increase at TLD NS on DNS traffic. .......................... 52 
Figure 4.6: Impact of Servfail increase at SLD NS on DNS traffic............................ 52 
Figure 4.7: Impacts of NXdomain and Servfail responses increases’ on DNS     
traffic. .......................................................................................................................... 53 
 
 



 XIV

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 XV

List of Tables 
Table 3.1: Query multiply factors for OS and application browsers........................... 18 
Table 3.2: Relevant BIND8, BIND9 and UNBOUND behaviours. ........................... 23 
Table 3.3: Query multiply factors for the recursive resolvers..................................... 23 
Table 3.4: Cache hit ratio for the application browsers’ stub resolver....................... 23 
Table 3.5: Cache hit ratio for OS. .............................................................................. 24 
Table 3.6: Cache hit ratio for BIND9, BIND8 and UNBOUND. .............................. 25 
Table 3.7: Authoritative NS responses (a) and Response distribution at authoritative 
NS (b). ......................................................................................................................... 26 
Table 3.8: A Scenario for the DNS reference model. ................................................. 27 
Table 3.9: Scenario for the example. .......................................................................... 30 
 
Table 4.1: Cache hit ratio values for UNBOUND for each subset. ........................... 35 
Table 4.2: Mean, Variance and q statistic for Cache hit ratio samples for 
UNBOUND................................................................................................................. 37 
Table 4.3: Shapiro-Wilk test statistics for Cache hit ratio samples............................ 38 
Table 4.4: Response types at TLD (a) and SLD (b) NSs. ........................................... 39 
Table 4.5: Response distribution at TLD (a) and SLD (b) NSs................................... 40 
Table 4.6: Mean, variance and q for Response distribution at TLD (a) and SLD (b). 40 
Table 4.7: Shapiro-Wilk statistics for Response distribution at authoritative NS for 
TLD (a) and for SLD (b)............................................................................................. 41 
Table 4.8: Repeat definition at the authoritative NSs. ................................................ 44 
Table 4.9: Initial and repeat queries at the point of interests in the real world data. ..45 
Table 4.10: Initial queries’ OS distribution. ............................................................... 46 
Table 4.11: Scenario for the model to imitate the real world data environment. ....... 46 
Table 4.12: Initial and repeat queries at the POIs in the DNS reference model. ........ 47 
Table 4.13: Fractions of the queries at POIs in the real world data and in the model.47 
Table 4.14: Initial-repeat query ratio at POIs in the real world data and in the    
model........................................................................................................................... 48 
Table 4.15: The query rates towards resolver and authoritative NS. .......................... 50 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 XVI

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 



 XVII

List of Abbreviations 
CName Canonical name 
CH Chaos 
cc TLD Country code TLD 
CoV Coefficient of variance 
DNS Domain name system 
DNSSEC DNS security extensions 
FQDN Fully qualified domain name  
gTLD Generic TLD 

0H  Null hypothesis 

aH  Alternative hypothesis 
HS Hesiod 
IND cc TLD Internationalized country TLD  
IN Internet 
ICANN Internet Corporation for Assigned Names and Numbers 
IE Internet Explorer 
IP Internet protocol 
IPv4 Internet protocol version 4 
IPv6 Internet protocol version 6 
ISP Internet service provider 
MX Mail exchanger 
NS Name server 
OS Operating system 
POI Point of interest 
q Von Neumann statistic 

tq  Von Neumann statistic threshold value 
PTR Pointer 
Q-Q plot Quantile-quantile plot 
RData Resource data 
RR Resource record  
SLD Second-level domain 
SOA Start of authority 
SIDN Stichting Internet domainregistratie Nederland 
TTL Time to live 
TLD Top level domain 
UDP User datagram packets 
W Shapiro-Wilk statistic 

tresholdW  Shapiro-Wilk statistic threshold value 



 XVIII

 

 

 

 

 

 

 

 

 

 

 

 



 1

 
Introduction 
 
In the last decade the Internet gained more and more importance such that it became 
one of the essential needs of the society in the daily life. The continuity of the Internet 
is therefore crucial. One of the major components having key role for the continuity 
of the Internet is Domain Name System (DNS). The DNS is primarily used to 
translate the human readable domain names into the corresponding Internet protocol 
(IP) addresses, which are used for the routing purposes. For instance, thanks to the 
DNS, one just needs to recall ‘tudelft.nl’ instead of ‘131.180.77.26’. The data for this 
mapping between domain names and IP addresses is stored in a tree-structured 
distributed database where the mapping responsibility for each domain is assigned to 
designated authoritative name servers (NSs). The authoritative NSs, which consist of 
the root, top level domain (TLD) and second level domain (SLD) NSs, are thus 
assigned to be responsible for a particular domain name. This mechanism makes 
DNS distributed and resilient against failure [1].  
 
DNS is facing the most radical changes with the introduction of new technologies 
such as:  

• introduction of the Internet protocol version 6 (IPv6); 
• securing the DNS by new extensions i.e. DNS security extensions (DNSSEC); 
• introduction of new TLD names. 
 

The initiation of these (new) technologies is expected to have serious consequences to 
the stability of DNS and indirectly, to the continuity of the entire Internet. For 
example, the query load towards the authoritative NSs is expected to increase [20, 39] 
and a specific type of DNS query response, Servfail responses, will possibly increase 
due to the validation errors [49, 50]. All the mentioned challenges have triggered a 
need for public awareness and more research on proper understanding of the DNS 
behaviour in the increasingly evolving DNS landscape. 
 
At this point one needs a reference model to predict the behaviour of DNS under 
certain conditions e.g. when the amount of a specific DNS query response type 
increases by 1% or when the DNS query load towards the authoritative name servers 
increases by 10%. To help this out, we create a DNS reference model with which the 
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impact of the introduction of the new technologies on the DNS can be analyzed and 
‘what-if’ scenarios can be evaluated. 
The outline of this thesis is structured as follows. In Chapter 2, the DNS is introduced. 
Here, a simplified description of the DNS structure and DNS operation is given: the 
system structure components and the interactions between them are explained. In 
Chapter 3, the DNS reference model is presented. First, the general features of the 
model and assumptions are introduced. Then the system variables and the input 
parameters are defined, and subsequently determined in the lab environment. Finally, 
the structure and the operation of the model are explained. In Chapter 4, at first, 
probabilistic distributions for the system variables are determined by analyzing the 
real-world data. Then the model is validated by using real world data as well. 
Furthermore, some relevant cases of DNS real-world problems are evaluated by using 
the model. Finally, in Chapter 5, the conclusion is drawn and future work is discussed. 
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Domain Name System 
 

 
Throughout this chapter the DNS structure and operation will be explained. In 
Section 2.1 the DNS structure will be presented. To this end, the domain name space 
and resource records (RRs) will be treated. Furthermore, the authoritative NSs and 
resolvers will be introduced.  In Section 2.2 a simplified view of DNS operation will 
be given and the operation related concepts will be introduced: domain name 
resolution process, DNS queries, DNS responses and caching mechanism. Beside 
these main DNS aspects, in Section 2.3, the future DNS challenges will be explained: 
the introduction of IPv6, new TLDs and DNS security extension (DNSSEC).  

2.1 DNS structure 
DNS is a huge system consisting of millions of elements. However, in the DNS the 
following generic components are distinguishable: DNS clients, DNS recursive 
resolvers and authoritative name NSs. A DNS client is connected to multiple 
recursive resolvers and it addresses recursive resolvers for the domain name 
resolution by means of a query. The recursive resolvers extract the domain name 
space information from NSs in response to DNS client requests. In general, two 
different resolver types can be distinguished: stub resolvers and recursive resolvers. 
The name servers are databases which hold information about a particular domain 
name space. The authoritative NSs consist of root, TLD and SLD NSs. The 
worldwide DNS consists of hundreds of millions of DNS clients and more than seven 
million recursive resolvers [24]. An overview of DNS architecture is given in Figure 
2.1. 
 
Beside these main generic structural components, the DNS knows also the following 
important concepts: domain name space and RRs [2]. The domain name space has a 
tree structure enabling the uniqueness of a domain name. The RRs contain data 
associated with the queried domain name. 
 
The rest of this section is organized as follows. In Subsection 2.1.1 the domain name 
space and RRs will be explained. Then, in Subsection 2.1.2 and 2.1.3 the 
authoritative NSs and the resolvers will be explained, respectively.  
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Figure 2.1: An overview of DNS architecture. 

2.1.1 Domain name space and resource records 

Domain name space 
The DNS is a hierarchical and distributed database containing various types of data. 
The domain names in a DNS database form a hierarchical tree structure called the 
domain namespace [1]. This tree structure can be seen in Figure 2.2. Each node in the 
tree is called a domain name and has a label with maximum length of 63 characters 
[31]. In the domain names, only alphanumeric characters and ‘-’ character are 
allowed to be used [32]. Each domain name makes up an inverse tree where each 
node is separated from the following node (label) by a dot e.g. www.cnn.com. 

 
Figure 2.2: The domain name space tree. 
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Any domain name used in the domain name space tree is technically a domain which 
colloquially refers to ‘zone’. Hence, a zone could be a single node or the whole 
subtree in the domain name space tree but it is typically a simple subtree [1].  
 
Based on their level in name hierarchy, domains are identified in one of five 
categories:  

• root domain;  
• TLD; 
• SLD;  
• sub-domain;  
• host or resource name. 

 
Root domain 
Root domain is the top of the domain name space tree. It is represented by ‘NULL’ 
string or by a dot (‘.’). The DNS domain name is considered to be complete and 
refers to an exact location in the tree when it is ended by a dot referring to the root 
zone. Such a name is called fully qualified domain name (FQDN). A FQDN is a sub-
tree of a domain name tree and it is unique [14]. Referring to Figure 2.2, 
‘www.cnn.com.’ is an example of a FQDN.  

TLD 
TLD is used to indicate a country (or territory) or the type of the organization which 
uses the name. It is located always after ‘.’ representing the root zone in the FQDN. 
In ‘www.cnn.com.’, ‘com’ is the TLD of domain name and it stands for ‘commercial’ 
indicating that ‘cnn’ is registered on the Internet for commercial purposes. There are 
four different TLD zone groups: country code TLD (ccTLD), internationalized 
country TLD (IND ccTLD), generic TLD (gTLD) and infrastructure TLD. ccTLDs 
are two letter TLDs which are established for countries and territories e.g.‘.nl’. After 
2009, it has been announced that the countries which are using a non-Latin based 
alphabet may apply for IND ccTLD [34]. This means that a country which uses e.g. 
Arabic alphabet can use its own letters to express its own country code in TLD. 
gTLDs are TLD names consisting of three or more characters. Some popular gTLDs 
are ‘.com’, ‘.edu’, ‘.gov’ and ‘.mil’. The infrastructure TLD group consists of just one 
domain name: address and routing parameter area (ARPA). ‘.arpa’ is used for reverse 
DNS lookup. 

SLD 
These are the names which are registered to an individual or an organization for use 
on the Internet. They are settled in the second place from most right-hand side in the 
FQDN. ‘cnn.com’ is the registered SLD name for ‘www.cnn.com.’. 

Sub-domain 
Sub-domains are the additional names that can be derived from SLD by an 
organization. These names can, for instance, be used by an organization to distinguish 
between its different departments. ‘www.cnn.com.’ is a sub-domain which is assigned 
by CNN for use in documentation of ‘www’ names.  
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Host or resource name 
Host or resource names correspond to leaves in DNS name space tree and they refer 
to specific resources on the Internet. Typically, the first name in the left hand side of 
a domain name stands for a specific computer on the network. For instance, in 
‘host.example.cnn.com.’ the first label ‘host’ is a specific computer on the network. 

Resource records 
DNS RRs are the data which are associated with the domain names in the DNS name 
space [2]. Each domain name of the DNS name space tree contains a set of RR’s, and 
each RR contains different types of information relating to the domain name. A DNS 
query includes the domain name that is to be resolved and the type of the information 
desired i.e. the RR that are requested. For instance, a query for the authoritative NS 
for a domain name returns an NS RR whereas a query for the IP addresses of DNS 
hosts returns an A or AAAA RR. An A type RR packet is given in Figure 2.3. 

Domain name (FQDN) TTL Type Class RData 
www.tno.nl. 3600 A IN 192.87.96.141 

Figure 2.3: An example of a RR of type A. 
 
The RR message contains the following fields: 

• domain name; 
• time to live (TTL); 
• type; 
• class; 
• resource data (RData). 
 

Domain name 
The DNS domain name is recorded in this field. It has to be a FQDN name i.e. ended 
by a dot.  

Time to Live (TTL) 
This field is a 32 bits integer value in seconds indicating the time to live for an RR. It 
is primarily used by resolvers when they cache RRs. A DNS resolver caches the 
received responses when it resolves DNS queries. These cached responses can then 
be used to answer later queries for the same information. TTL indicates the time how 
long a RR may be kept in cache before it is discarded. 

Type 
RR type is a value consisting of 16 bits and it indicates the type of RR. Although 
there are numerous RR types, the most important ones will be mentioned [3, 9]: 

• Start of authority (SOA): It indicates the DNS server that either originally 
created the zone or is now the primary server for the zone. It is also used to 
store other properties such as version information and timing that affect zone 
renewal or expiration. 
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• Host (A and AAAA): The A and AAAA records deal with host address 
information. They simply map a host name to an IP address. Zones with A or 
AAAA records are called ‘forward zones’. 

• Pointer record (PTR): The PTR record is a pointer towards another part of the 
domain namespace. It maps an IP address to a host name. The zones with PTR 
records are called ‘reverse zones’. 

• Name server (NS): The NS record defines an authoritative NS for a zone. NS 
records are the glue that binds distributed database (name servers) together.  

• Mail exchanger (MX): The MX record specifies a host that will accept an e-
mail on behalf of a given host. When a user sends an email to an address 
(user@domain), the outgoing mail server interrogates the domain NS with 
authority over the domain in order to obtain the MX record.  

• Canonical name (Cname): The CNAME record maps an alias hostname to an 
A record hostname. It is particularly useful for supplying alternative names 
relating to different services on the same machine. 

Class 
The class field contains an encoded 16 bits value identifying a protocol family or an 
instance of a protocol. RR Class is set to IN (Internet) for common DNS records 
involving Internet hostnames, servers or IP addresses. Additionally, CH (Chaos) and 
HS (Hesiod) classes exist. Each class is an independent name space with potentially 
different delegations of DNS zones [1, 29]. 

RData 
The RData field contains different data according to the record type. For instance, if 
the RR is an A type record then RData contains a 32 bits IP address of corresponding 
hostname. For other types of RR, following data is contained within RData field: 

• CNAME: a domain name;  
• MX: a priority 16 bit value, followed by the host name;  
• NS: a host name;  
• PTR: a domain name;  
• SOA: several fields.  

2.1.2 Authoritative name servers 
Name servers are server programs which hold information about a part of the domain 
name space tree i.e. zone [2]. In general, a particular name server has complete 
information about a subset of the domain name space. A name server is said to be 
authority for these part of domain name space. The authoritative information is 
divided into zones and these zones are distributed to NSs which provide redundant 
services for the data in zone. The most important task of an authoritative NS is to 
give answer in response to queries for its own zone. For instance, there is at least one 
NS which has complete information about “com” zone and that NS can provide the IP 
address of the NSs which are responsible for “cnn.com”.  
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Although each zone has only one primary NS, there might be multiple NSs which are 
authoritative for a zone. In that case, a distinction is done between primary NS and 
secondary NSs. The primary NS is an authoritative server for which the zone 
information is locally configured while the secondary NSs obtain the DNS zone 
information from a primary server via a zone transfer mechanism [23, 28]. When a 
recursive resolver does not receive a positive response from the primary NS, it 
queries also the secondary NSs for the same domain name. DNS authoritative NSs 
consist of three different servers:  

• Root NSs; 
• TLD NSs;  
• SLD NSs. 

 
Root name server 
Root NSs are the servers for DNS root zone. They accommodate the information of 
all TLDs of the Internet. They directly answer requests for RRs in the root zone by 
returning IP addresses of designated authoritative NSs for appropriate TLD. The root 
NSs are one of the most critical parts of the Internet since translating a domain name 
to an host IP address (resolving) starts by either requesting root about TLD or reusing 
a record which was previously sent by one of the root NSs. 

There are in total 13 clusters of root NSs for the entire Internet. This limitation is 
caused by user datagram packets (UDP): UDP packets are used to transfer DNS 
packets and a UDP packet can support at most 13 root NS addresses. However, by 
using other techniques, such as anycast [25, 30], number of the root NSs is increased 
and now there are more than 100 root NSs over the world sharing 13 IP addresses 
[21].   

TLD name server 
TLD NSs are the servers for DNS TLD zone. TLD NSs store all the information 
about their sub-domains. For instance, in the case of “www.yahoo.com”, “.com” 
stands for the TLD and TLD NS for ‘.com’ has IP address of NS which is responsible 
for ‘yahoo.com’. 
 
Internet assigned numbers authority (IANA) delegates the governing of the TLD 
zones to other institutions. These institutions deploy their own NSs to manage the 
corresponding TLD zone. For instance, ‘.nl’ is governed by ‘Stichting Internet 
domainregistratie Nederland (SIDN)’. SIDN’s TLD NSs have complete information 
about more than four million sub-domains of ‘.nl’ such as ‘tno.nl’ [18]. 

 
SLD name server 
SLD NSs are the servers for SLD zone. They are the last step in the domain name 
resolution process as they answer requests by returning host IP addresses instead of 
IP address of a designated authoritative NS. 
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2.1.3 Resolvers 
The resolvers act as intermediaries between DNS clients and the authoritative NSs [2]. 
They answer the client queries with the data which are obtained by sending one or 
more queries to the authoritative NSs. Usually they cache those data, reducing traffic 
and latency in the case that the data are frequently requested. The resolvers are further 
classified into two subcategories: recursive resolvers and stub resolvers. 

Recursive resolvers 
The recursive resolvers talk directly to the authoritative NSs. They have the ability to 
handle DNS queries from clients by sending queries to authoritative NSs. They need 
to be able to communicate to arbitrary NSs as they follow the chain of referrals from 
an authoritative NS to another authoritative NS. They are also known as caching 
resolvers.  

Stub resolvers 
The stub resolvers communicate only to the recursive resolvers to which they have 
been configured to forward queries. They are not supposed to send queries to the 
authoritative NSs directly. Stub resolvers are typically found in the user applications 
(e.g. application browsers and mail agents) [8] and they do not perform domain name 
resolution process, passing that work onto the recursive resolvers. Stub resolvers 
concentrate multiple streams of DNS traffic into a single stream.  
 
An important feature of stub resolvers is domain name completion. When a negative 
response is received for a query, stub resolver will automatically retry resolving the 
domain name by adding suffixes or prefixes to original domain name [22]. For 
instance, when name resolution for ‘tno.nl’ failed, ‘www.tno.nl’ will be automatically 
retransmitted by stub resolver. Domain name completion is an optional property of 
stub resolvers and they can be enabled or disabled by user.  

2.2 DNS operation  
As mentioned earlier, the following generic components can be distinguished in the 
DNS architecture: DNS client, DNS recursive resolvers and the authoritative NSs. 
More specifically, the DNS client contains other important subelements: application 
browser and operating system (OS) whereas authoritative NSs consist of root, TLD 
and SLD NSs. The detailed DNS architecture can be seen in Figure 2.4 in which the 
domain name resolution process is depicted for the domain name ‘www.cnn.com’.  
 
In the rest of this section, at first, the domain name resolution process will be 
introduced. Then, query and response types will be explained and finally caching 
mechanism will be presented.  

2.2.1 Domain name resolution process 
The mechanism for finding the IP address related to a host name is called domain 
name resolution. Domain name resolution for ‘www.cnn.com’ is depicted in Figure 
2.4. When an application wants to connect to a host with its domain name e.g. 
‘www.cnn.com’, then it looks into its own cache whether or not the domain name is 
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already registered in the cache. In case of the absence of domain name in the 
application cache, the request is sent to OS and the same check is done also here. If 
‘www.cnn.com’ cannot be found in the cache again, the OS interrogates a recursive 
resolver defined in its network configuration and sends a query to the recursive 
resolver for the desired domain name. In fact, each machine connected to the network 
has the IP addresses of its service provider’s recursive resolvers in its configuration.  
 
The recursive resolver starts a resolution process on behalf of the client by visiting a 
root server and asking information about the authoritative NS for the TLD (in Figure 
2.4, the authoritative NS for TLD “.com”). The root NS sends a list of the NSs with 
authority over the domain (in this case, the IP addresses of the primary and secondary 
NSs for ‘cnn.com’). The primary NS with authority over the domain will then be 
interrogated and will return the corresponding record to the resolver so that the 
desired host IP address (i.e. IP address of “www.cnn.com” server) can be obtained. 
The interim results, i.e. addresses of NSs responsible for zones, are also cached by the 
recursive resolver. If a domain name is already in cache and the TTL of the 
corresponding record is not expired, then the recursive resolver can return the result 
to the client immediately without sending remote queries to the authoritative NSs [15, 
9]. 

 

Figure 2.4: Domain name resolution process. 

2.2.2 DNS queries 
Queries are the messages which are sent to NSs in order to get a response. They 
request the RR for a specific DNS data e.g. domain name. The DNS queries can be 
sent either from the client to the recursive resolver or from the recursive resolver to 
the authoritative NSs. Consequently, there are two types of queries: recursive queries 
and iterative queries [16]. 
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A query is said to be recursive when it involves conducting further queries to the 
authoritative NSs to complete the domain name resolution process. Hence resolving a 
query recursively requires the ability to deal with answers from the authoritative NSs 
that refer the resolver to another NS. Since the client applications (stub resolvers) do 
not have this ability, they send recursive queries to recursive resolver which can 
implement recursive resolution. 
 
An iterative query is the one to which the authoritative NS is expected to respond 
with the best local information it has. The positive response on an iterative query can 
either be the actual data or a referral. The actual data can be responded if the queried 
NS is authoritative for the requested domain name. When the queried NS is not an 
authority for the requested domain name, then it returns a referral which indicates the 
authoritative NS’s IP address for the requested domain name.   
 
Both querying mechanisms are shown in Figure 2.4. The query from stub resolver to 
recursive resolver is a recursive query while the queries between the recursive 
resolver and authoritative NSs are iterative queries. 

2.2.3 DNS responses 
There are different types of responses which can be given to a query at the 
authoritative NSs. A response on a query can be either positive or negative. Positive 
response returns desired information while a negative response returns an error. 
Throughout this report, the positive answers will be classified into three different 
groups: 
 

• Valid response: The valid response is given when the requested DNS data can 
be correctly delivered and the response packet size fits in a standard UDP 
packet of at most 512 bytes.  

• Valid>512B response: These are the valid responses which are, larger than 
512 bytes and are carried within a single UDP packet.  

• Truncated response: The truncated response is given by a NS when the 
response information requires more than 512 byte which is the recommended 
maximum number of bytes which should be transported in a single UDP 
packet. The truncated responses are used to inform the requester that the 
response size exceeds 512 bytes threshold. Requester then initiates a TCP 
connection to the DNS server and resend the request over TCP, allowing up to 
64K in a packet.  

 
The common negative responses are [2, 13, 16]: 
 

• NXdomain response: The ‘NXdomain’ response is used by a NS to indicate 
that the requested DNS data does not exist.  

• Partial response: A response is considered to be a ‘Partial’ response when it 
does not contain all information that it should do anyway. 
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• Servfail response: ‘Servfail’ response indicates that DNS NS encountered an 
internal error e.g. a forwarding timeout and at the moment it can not be 
answered. 

• Timeout response: A response is considered to be a ‘Timeout’ response when 
a DNS client cannot receive an answer to its query. This can happen when the 
connection between DNS client and the NSs is broken.  

• Refused response: The ‘Refused’ response is given when a NS refuses to 
perform the specified operation for policy reasons. This could be the case 
when, for instance, a NS does not wish to provide the information to the 
particular requester or when a NS does not wish to perform a particular 
operation for a particular data. 

2.2.4 DNS caching mechanism 
A cache is a component that stores data so that future requests for that data can be 
served faster. In the context of the DNS, cache is a DNS servers’ internal database 
which is used to reduce the load towards the authoritative NSs and the long delay that 
a client has to wait due to multiple network round-trips before getting an answer for 
his query [2, 3].  
 
A RR is stored in the cache for the duration of its TTL value. Hence, zero TTL 
suppresses the caching. Upon the expiration of the TTL, the record will be deleted by 
the cache. The administrator of a domain can adjusts the TTL duration of a RR. 
Rapidly changing data should have a low TTL trading off latency and server load for 
fresh data [1, 4]. 
 
Effectiveness of caching can be increased to a certain extend by increasing the 
lengths of TTL values of RRs and number of the client population which are 
connected to the same caching recursive resolver. More details on DNS caching 
effectiveness can be found in [4, 10, 44]. 
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Figure 2.5: The client caching (a) and the resolver caching (b). 

                       
The caching of DNS records is done at multiple levels. Any recursive resolver has a 
cache shaped by possibly thousands of clients’ queries. Recursive resolvers may also 
be chained to provide increasingly larger client sets. Besides resolver caching, there 
are also occasional application level caches. In this case, the client application 
browser performs caching by storing cached data on local disk as temporary file or 
browser internal memory. This provides quick access of some information by client 
and reduces the network load and server load. This information can't be shared by 
other clients so it is client specific. For instance, web browsers like Internet Explorer 
(IE) and Firefox perform application level caching of domain names. However, the 
TTL value in the RRs is not used. Instead, all the RRs are stored in the cache for a 
fixed period of time which is usually shorter than actual TTL [5]. The client caching 
and the resolver caching are illustrated respectively in the left hand and right hand 
side of Figure 2.5. 

2.3 Future DNS challenges 
In this section, the potential threats due to the introduction of new technologies will 
be summarized. Specifically the motivation for the expected increase of redundant 
DNS traffic towards the authoritative NS, and the increase of Servfail responses will 
be explained.  

2.3.1 IPv6 
Internet protocol version 6 (IPv6) is designed to succeed Internet protocol version 4 
(IPv4). The IPv4 uses 32 bits for IP addresses meaning that 322  IP addresses can be 
supported by IPv4. This was the limitation of IPv4 leading to IPv6 design which can 
support 1282  IP addresses. It should be understood that IPv4 and IPv6 are not 
‘compatibles on the wire’ meaning that an IPv4-only host can not communicate with 
an IPv6-only host. Therefore, IPv6 will not substitute IPv4 and both protocols will 
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co-exist for several years. This means that an IPv6 enabled host will have two IP 
addresses; one for IPv4 and the other one for IPv6.  
 
As explained in Subsection 2.1.1, an A RR is served to a client when it sends a query 
for domain name resolution. However, if a query is sent by an IPv6 enabled host, then 
an additional query for AAAA RR will be sent as well. The queries for AAAA 
records are used for the address resolution of IPv6 enabled hosts [20]. Hence, domain 
name request by an IPv6 enabled host will lead to two queries: one for an A RR and 
other one for an AAAA RR. Consequently, increase in the number of IPv6 enabled 
host will cause an increase in DNS traffic going to authoritative NSs. 

2.3.2 New TLDs 
In Subsection 2.1.1 it is mentioned that only ASCII characters could be used in 
domain names. However, in 2009 the Internet Corporation for Assigned Names and 
Numbers (ICANN) introduced IND ccTLD which can contain characters not 
belonging to ASCII characters [34], e.g. Arabic or Chinese letters. 
 
It is expected that number of negative queries will increase substantially with the 
introduction of INT ccTLDs causing an increase of the number of the queries going 
towards the authoritative NSs and in particular to the root NSs. An extraordinary 
percentage of the queries arriving at the root are queries for nonexistent domain 
names [6] and these are mainly due to the queries which contain invalid TLD name 
i.e. nonexistent TLD name [7]. We expect that introduction of INT ccTLDs will 
increase the number of queries with invalid TLD name and so the redundant traffic 
going to the authoritative NSs, in particular towards the root NS. 

2.3.3 DNSSEC 
Although DNSSEC brings additional security in DNS (see Appendix I for more 
detailed explanation on DNSSEC), it has two important side effects: the DNS 
response packet size will be larger and number of Servfail responses will increase [49, 
50]. The former effect is rather obvious since the response packets will have to 
include more data such as RRsig records. Because of the additional data, DNS 
response packets will be slightly larger than 512 byte causing more Valid>512 B 
responses. The problem with these responses will be experienced because the 
residential gate ways (GWs) can block a fraction of these responses [33]. A blocked 
DNS response is considered as a Timeout response by client and many other repeat 
queries can be initiated by the client to get a response. The latter effect is expected 
because when an unauthorized user tries to connect a web server it will be responded 
by a Servfail response which can cause an avalanche of repeat queries [26].  
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DNS Reference Model 
 

 
In this chapter we introduce the DNS reference model. Figure 3.1 illustrates the DNS 
reference model scheme. In Section 3.1 we give general features of the DNS reference model 
and discuss the assumptions. In Section 3.2 we determine the system variables and explain the 
model input parameters. The system variables are Query multiply factors, Cache hit ratio and 
Response distribution at the authoritative NS which are explained respectively in Subsection 
3.2.1 until 3.2.3. The model input parameters which are represented by Scenario list will be 
explained in Subsection 3.2.4. Finally, in Section 3.3, we describe the DNS reference model 
structure and operation.  

System variables 
Query multiply factors 

Cache hit ratio 
Response distribution at authoritative NS 
  

 
 
 
          Input           Output 
        Scenario              DNS behaviour 
 
 
 
 
 
 

Figure 3.1: DNS reference model. 

3.1 General features and assumptions 
We assume a certain number of clients generating a certain number of DNS queries in a given 
time frame. We are interested in the distribution of the DNS queries over the different point of 
interests (POIs) and the ratio between the initial and repeat queries at these POIs in the DNS 
in this time frame. Consequently, we ignore the time notion i.e. the delay is not taken into 
account. 
 

 
 

DNS Reference 
model 
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We created a DNS reference model at flow level. Consequently, DNS caches are not modeled 
as states i.e. the domain name is in cache or not, but by a hit ratio. Secondly, we do not model 
the dynamic behaviour over time, but rather the query flow rate at an arbitrary point in time.  
 
Caching is an important concept in DNS with a stochastic and state dependent behaviour [4]. 
The probability that a query will be in the cache depends strongly on the TTL value and inter-
arrival time of the queries. Looking at a short time scale and at an individual user, the caching 
mechanism makes the query flow state dependent. However, the DNS reference model is 
targeted to analyze the query flow at a longer time scale, and a combined flow of DNS queries 
from multiple users. This assumption makes the DNS reference model suitable for 
investigating the scalability issues instead of the performance of the DNS related to e.g. delay. 
 
In the DNS reference model, we assume that the DNS querying behaviour (i.e. querying 
pattern) of all the clients are independent and their behaviour is identical so that they can be 
modeled as one query generator. We also assume that the same holds for recursive resolvers. 
This assumption enables us to control the entire system by adjusting input parameters for just 
a single end user and a single recursive resolver. The same assumption allows us to model the 
queries between those main components as flows.  
 
Furthermore, we model ‘the root’ as one component, because we are (at this point in time) not 
interested in how the queries are split out to the large number of NS in root A through M. We 
make the same assumption also for TLD and SLD NSs since we are not interested in how the 
queries are distributed over TLDs and domain names. 
 
The DNS reference model can be used to investigate the impact of DNS features which are 
suspected to contribute significantly to the redundant DNS traffic. These factors e.g. the 
poorly configured resolvers, the short TTLs of the RRs and domain name completion are 
usually “fact of life” and practiced everyday. By using the DNS reference model, the impact 
analysis can be done to evaluate the contribution of these factors on redundant DNS traffic.  

3.2 System variables and input parameters 
As shown in Figure 3.1, the DNS reference model has the following system variables Cache 
hit ratio, Query multiply factors, Response distribution at the authoritative NS , and Scenario 
as the group of input parameters. In this section, the system variables will be explained and 
the values for them will be obtained by analyzing real world data. Anonymized real world 
data is provided by SURFnet, Internet service provider (ISP) in the Netherlands. Data consist 
of 300.000 DNS packets and the duration of the capture is 14 seconds. It is captured at an 
UNBOUND recursive resolver.  

3.2.1 Query multiply factor 
Query multiply factor indicates how many queries will be reinitiated by a component in 
reaction to a negative response. In other words, it reflects how the component behaves when it 
receives a DNS response in terms of DNS query rates. The determination of Query multiply 
factor involves the characterisation of the detailed querying behaviour of both the client and 
the recursive resolver. 

Characterization of the client behaviour 
The experiments in the lab environment have shown that when a negative response is received 
for an initial query, the client may automatically resend new identical repeat queries. The 
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amount of repeat queries depends on the implemented DNS functions in the user’s application 
browser and OS type [26].  
 
In [26], different combinations of OSs and application browsers are used to explore the client 
behaviour. The operating systems Windows7, Windows XP, MAC OSX and Ubuntu (Linux) 
are taken into consideration while as application browsers IE8, Firefox and Safari are 
considered. Although not all the combinations of application browsers and OSs are evaluated, 
the most common combinations were tested: Windows XP and Windows 7 with all kind of 
application browsers, Safari with MAC OSX and Firefox with Linux. By using these 
combinations, it was determined how the clients with these combinations react when they 
receive different type of responses for their initial queries. 
 

• Windows - any browser: Windows clients behave same in the case of Servfail, Partial, 
Refused and NXdomain responses: no repeat queries are sent to the resolver. In case 
that no response is received from the recursive resolver, three extra repeat queries are 
retried by the Windows client. Consequently, for a queried domain name, which will 
not be answered, in total, four queries are sent to the resolver. The Timeout behaviour 
of Windows client is shown in Figure 3.2. 

 
Figure 3.2: Windows client Timeout behaviour’s query sequence diagram. 

 
• MAC OSX - Safari: In the case of Servfail, Refused and Timeout cases, Safari does 

not send any repeat queries while MAC OSX initiates three more repeat queries i.e. in 
total four queries. This behaviour is illustrated in Figure 3.3a. In reaction to the 
NXdomain and Partial responses, MAC OSX sends in total two queries while Safari 
does not send any repeat query. The query sequence diagram showing this behaviour 
is depicted in Figure 3.3b. 

 
Figure 3.3: MAC-Safari client behaviour’s query sequence diagram. 

 
• Linux - Firefox: Linux and Firefox clients are observed to be the most aggressive 

clients when a negative response is returned. In the case of NXdomain and Partial 
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responses, Firefox causes in total two queries while Linux sends in total two queries 
for each NXdomain and Partial responses i.e. in total four queries from the client to 
the resolver. This trend can be seen in Figure 3.4a. When no response is received, in 
total 8 queries are sent to the resolver. Linux-Firefox client Timeout behaviour can be 
seen in Figure 3.4b. Finally, when Servfail or Refused responses are received, again in 
total two queries are initiated by Firefox while Linux causes, in total, four queries for 
each response i.e. in total eight queries from the client to the resolver. This observation 
is illustrated in Figure 3.4c. 

 
Figure 3.4: Linux-Firefox client behaviour’s query sequence diagram. 

 
The variables indicating the number of total sent queries will be called the Query multiply 
factors. Table 3.1 displays Query multiply factors for different application browsers and OS 
types, and for any possible response type. It should be noted that the depicted numbers in 
Table 3.1 include also the initial query, e.g. in case of the Servfail response, a Linux-Firefox 
client will send in total eight queries, including the initial query.  

Table 3.1: Query multiply factors for OS and application browsers. 
Category Windows XP Windows 7 Linux Mac OSX IE8 Firefox Safari
Valid  1 1 1 1 1 1 1 
NXdomain 1 1 2 2 1 2  1 
Partial 1 1 2 2 1 2  1 
Servfail 1 1 4 4 1 2  1 
Timeout 4 4 4 4 1 2  1 
Refused  1 1 4 4 1 2  1 
Truncated  2 2 2 2 1 1  1 

Characterization of the resolver behaviour 
The characterization of the resolver behaviour is achieved by analyzing DNS data obtained 
from SURFnet. Algorithm 3.1 is implemented in Wireshark to obtain the resolver behaviour, 
for a particular response type. 
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i. Obtain only the responses from the authoritative NSs to the recursive resolver. 
ii. Consider one of the response packets carrying the desired response type e.g. 

Servfail and retrieve the queried domain name from the response e.g. 
‘www.tudelft.nl’. 

iii. Determine the query and response packets which are containing the retrieved 
domain name e.g. ‘www.tudelft.nl’ in the entire dataset. 

iv. Use time stamp at each packet to obtain the desired traffic between the recursive 
resolver and the authoritative NSs related to the queried domain name. 

Algorithm 3.1: Recipe to determine the recursive resolver behaviour. 
 
In the DNS reference model, three different versions of recursive resolvers are included: 
BIND8, BIND9 and UNBOUND. We have characterized BIND9 and UNBOUND behaviours 
by analyzing real world data while for BIND8 behaviour we have used the literature.  
 

• BIND9: BIND9 is by far the most popular resolver software [24]. Although, there are 
different versions of BIND9 such as BIND9.7.x, BIND9.6.x, we will refer to them as 
just BIND9. Further setting specific configuration parameters can change its 
behaviour. The behaviour described below is based on experiments with an as-is, 
downloaded BIND version 9.7.0. 

 
In the case of valid responses from authoritative NSs, BIND9 is just transparent and it 
forwards the responses from the authoritative NSs to the clients. However, in the case 
of negative response, BIND9 may take some extra actions. In particular, Servfail and 
Timeout responses will be treated differently than other negative responses.  

 
In the case of a Servfail response from the authoritative NS, BIND9 double checks the 
responses with the authoritative NS before giving response to the client. The repeat 
queries from the client side, during the domain name resolution process, will not be 
held back by the BIND9 resolver and these queries will be forwarded to the 
authoritative NSs. In other words, BIND9 does not perform caching for Servfail 
responses and the identical repeat queries for Servfail responses are passed to the 
authoritative NSs. This behaviour is shown in Figure 3.5. 

Client BIND9 Authoritative NS

Servfail

Servfail
Servfail

Servfail

Servfail
Servfail

 
Figure 3.5: BIND9 Servfail response behaviour’s query sequence diagram. 

 
When receiving no response from the authoritative NSs for a requested domain name, 
BIND9 sends six more repeat queries for the same domain name while this time it 
holds back the repeat queries from the client for that particular domain name. If there 
is still no answer received, then BIND9 will answer the client with a Servfail response. 
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The further repeat queries, for the same domain name will be responded by Servfail 
responses for the next seven seconds. This behaviour is shown in Figure 3.6. 

 
Figure 3.6: BIND9 Timeout response behaviour’s query sequence diagram. 

 
In case of recursion Refused and Partial responses from the authoritative NSs, the 
BIND9 will return a Servfail response to the client. The repeat queries for these 
responses will again be passed to the authoritative NSs. The sequence diagram 
displaying this behaviour is shown in Figure 3.7. 

Client BIND9 Authoritative NS

Refused
Servfail

Client BIND9 Authoritative NS

Partial
Servfail

 
Figure 3.7: BIND9 Refused and Partial responses behaviours’ query sequence diagram. 

 
BIND9 performs negative caching i.e. caching of NXdomain responses. When a 
domain name request is replied by an NXdomain response, it will first be cached by 
BIND9 and then it will be sent back to the client. The further queries for the same 
domain name, within the TTL, will be responded by BIND9 skipping the iterative 
queries from the clients towards the authoritative NSs. This behaviour of BIND9 is 
shown in Figure 3.8. 

Client BIND9 Authoritative NS

NXDomain

NXDomain

NXDomain

 
Figure 3.8: BIND9 NXdomain response behaviour’s query sequence diagram. 

 
• BIND8: BIND8 is an older version and there are some important differences between 

BIND8 and BIND9. No negative caching is implemented in BIND8. Therefore, the 
number of NXdomain queries toward the authoritative NSs will be increased 
significantly. Furthermore, BIND8 does not implement double checking of Servfail 
responses from the authoritative NSs. In case of Servfail response BIND8 acts just as 
an intermediary between the client and the authoritative NS. The same behaviour is 
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also observed when there is no response received from the authoritative NSs. In that 
case, BIND8 just forwards the repeat queries, from the client to the authoritative NSs, 
for the domain name under consideration.  

 
• UNBOUND: In case of Servfail response from the authoritative NS, UNBOUND 

sends in total five queries towards the authoritative NS before sending Servfail 
response to the client. After that UNBOUND holds back the repeat queries for the 
same domain name from the client when it is resolving the queried domain name. 
These repeat queries are answered by UNBOUND later on when the domain name 
resolution process is completed. We will refer to this UNBOUND property as 
‘shielding’. The repeat queries for the Servfailed domain name are shielded by 
UNBOUND during the next seven seconds. Figure 3.9 displays the Servfail response 
behaviour of the UNBOUND.  

 
Figure 3.9: UNBOUND Servfail response behaviour’s query sequence diagram. 

 
Exactly the same behaviour has been observed for the recursion Refused responses. 
Figure 3.10 displays the Refused response behaviour of the UNBOUND. It should be 
noted that UNBOUND returns a Servfail response to the client although it receives a 
Refused response from the authoritative NS. In Figure 3.9 and in Figure 3.10, the 
repeat queries from client to the resolver have same transaction IDs while the queries 
from UNBOUND to the NS have different transaction IDs. 

 
Figure 3.10: UNBOUND Refused response behaviour’s query sequence diagram. 
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When receiving no response from the authoritative NSs for a requested domain name, 
UNBOUND sends six more repeat queries for the same domain name. If there is still 
no answer received, then UNBOUND will answer the client with a Servfail response. 
The further repeat queries, for the same domain name will be responded by Servfail 
responses in the next few seconds. If there are multiple NSs, first, UNBOUND will 
send a few queries towards the primary NS, then the secondary NSs will be queried 
and after that again the primary NS. This trend will continue until each NS is queried 
in total seven times. The Timeout response behaviour of the UNBOUND is depicted in 
Figure 3.11 in which multiple NSs are queried. All the queries from the client to the 
UNBOUND resolver and from the UNBOUND to the authoritative NSs have different 
transaction IDs. 

Client Unbound NS1

Servfail

Servfail

t

t+12 sec

Servfail

Servfail

NS2

Servfail

MX

MX

MX

MX

MX

MX

MX

MX

MX

MX

MX

MX

MX

MX

MX

MX

MX

MX

 
Figure 3.11: UNBOUND Timeout response behaviour’s query sequence diagram. 

 
UNBOUND also features the negative caching property. When a domain name request 
is replied by an NXdomain response, UNBOUND will first cache the response and 
then it will send the response back to the client. The further queries for the same 
domain name, within the TTL, will be responded by UNBOUND. NXdomain 
behaviour of UNBOUND is shown in Figure 3.12. 

 
Figure 3.12: UNBOUND NXdomain response behaviour’s query sequence diagram. 
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Table 3.2 shows four distinct behavioural properties of the recursive resolvers: negative 
caching, no response behaviour, service failure behaviour and shielding. Those properties are 
taken into the account when determining the system variable Query multiply factor for the 
recursive resolvers, which is given in subsequent Table 3.3. Note that Query multiply factor 
accounts for clients’ and recursive resolvers’ querying behaviours. Additional model 
parameters are created to account for Negative caching and shielding features when 
implementing the model in Microsoft Excel. 

Table 3.2: Relevant BIND8, BIND9 and UNBOUND behaviours. 
Behaviour BIND8 BIND9 UNBOUND 

Negative caching No Yes Yes 
In case of no response 
from the authoritative 
NS 

Forwarding all the 
repeat queries from 
the end user to NSs 

6 retries holding back 
the end user repeat 
queries 

6 retries holding 
back the end user 
repeat queries 

In case of service 
failure from the 
authoritative NS 

Forwards the 
Servfail responses 
back to the client 

Double checking 
before responding to 
the client 

Four retries before 
responding to the 
client 

Shielding No  Only Timeout Yes 
 

Table 3.3: Query multiply factors for the recursive resolvers. 
  Category BIND8 BIND9 UNBOUND 

Valid 1 1 1 
NXdomain 1 1 1 
Partial 1 1 1 
Servfail 1 2 5 
Timeout 1 7 7 
Refused 1 1 5 
Truncated 1 1 1 

3.2.2 Cache hit ratio 
Cache hit ratio values indicate the probability that a queried domain name will be in the cache 
of a system component under consideration. Cache hit ratio values concern any entity having 
a cache i.e. application browsers, OS and recursive resolvers. The notion of a Cache hit ratio 
is different for recursive resolvers and the client side. Therefore, Cache hit ratio for recursive 
resolver and client will be treated separately.  

Cache hit ratio at the client side 
Cache hit ratio values at the client side indicate the probability that a query will be answered 
with a certain response type from the cache. Whether the received DNS data can be cached or 
not depends on the response type. For instance, application browsers cache only the DNS 
response types that provide valid data (valid, valid>512B and truncated) and NXdomain 
response type. OS and application browser cache hit ratios are rather complicated to 
determine. Therefore, considering the ‘relative scale’ nature of the DNS reference model, we 
assume the values for Cache hit ratio for OS and application browser as given in Table 3.4 
and Table 3.5. 

Table 3.4: Cache hit ratio for the application browsers’ stub resolver. 
Category IE8 (%) Firefox (%) Safari (%) 
Total  25 25 25 
Valid  22 22 22 
Valid (>512B) 1 1 1 
NXdomain 1 1 1 
Truncated  1 1 1 
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Table 3.5: Cache hit ratio for OS. 

Category Windows XP (%) Windows 7 (%) Linux (%) Mac OSX (%) 
Total  25 25 0 25 
Valid  22 22 0 22 
Valid (>512B) 1 1 0 1 
NXdomain  1 1 0 1 
Truncated  1 1 0 1 

 
In Table 3.4 and 3.5, ‘Total’ stands for the amount of the total traffic which will be responded 
from the application browser/OS cache. Correspondingly, the percentage of 22% for example 
for the IE8 application browser indicates the amount of traffic that will be responded with the 
‘Valid’ response type. The Cache Hit Ratio values for OS and application browser are 
relatively smaller than the recursive resolver Cache Hit Ratio values since these are client 
specific caches.  

Cache hit ratio at the resolver 
Cache hit ratio for recursive resolvers indicates the probability that an incoming query will be 
placed into one of the four different groups from caching point of view. Based on the group 
they are classified in, they will be answered at the recursive resolver or sent to the root, TLD 
or SLD NSs. The caching groups are: 
 

• ‘Noncached’ queries are the queries for DNS data which are not in the cache. So these 
queries have to be sent to the root directly and domain name resolution will be 
performed by the resolver until whole name is resolved. ‘www.tno.nl’ would belong to 
this group when ‘.nl’ is not known by root NSs. 

• ‘TLD cached’ queries are those whose only TLD is known by the caching resolver. 
This means that ‘TLD cached only’ queries will be sent directly to TLD NS by 
skipping the root. ‘www.tno.nl’ would belong to this group when ‘.nl’ is in the cache 
while ‘.tno.nl’ is not in the cache. 

• ‘SLD cached’ queries will directly be sent to SLD NSs. TLD and SLD of those queries 
are known by caching resolver. Hence ‘www.tno.nl’ would belong to this group when 
‘.tno.nl’ is known by recursive resolver while ‘www.tno.nl’ is not in the cache. 

• ‘Domain cached’ queries occur when the entire request is in the cache. This occurs in 
most of the cases. ‘www.tno.nl’ would be in this group when ‘www.tno.nl’ is 
completely in the cache.  

 
The probability that an incoming query will be located in one of these groups is given by the 
Cache hit ratio values for the resolvers. We have determined the Cache hit ratio values for 
the resolvers by using Algorithm 3.2 which is implemented in MATLAB and Wireshark. 
Based on Algorithm 3.2, the Cache hit ratio for UNBOUND is computed by using the 
SURFnet data. These values, together with the assumed Cache hit ratio values for BIND8 and 
BIND9, are shown in Table 3.6. One might think it is interesting that ‘TLD only’ and ‘SLD 
only’ probabilities for BIND9 are 0. This can be explained by BIND9 property that it always 
starts querying from root NS when a RR expires [17, 23]. However, it has to be remarked that 
this property can be changed in the configuration settings of BIND9.   
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i. Determine the initial queries from the clients to the resolver; 
ii. Determine the number of initial queries sent from the resolver to the root; 
iii. Determine the referrals from the root to the resolver; 
iv. Determine number of initial queries sent from the resolver to the TLD; 
v. Determine the referrals from TLD to the resolver; 
vi. Determine number of initial queries going to the SLD. 
 

• Noncached:  ii 
• TLD cached:  iv-iii 
• SLD cached:  vi-v 
• Domain cached: i – Noncached -TLD cached - SLD cached 
 

 
Algorithm 3.2: Recipe to determine Cache hit ratio for recursive resolvers. 

 
Table 3.6: Cache hit ratio for BIND9, BIND8 and UNBOUND. 

Caching group BIND9 (%) BIND8 (%) UNBOUND (%) 
TLD cached 0 10 4.16 
SLD cached  0 5 41.18 
Domain cached  90 80 54.54 
Noncached (queries to root)  10 5 0.12 

 
Since the recursive resolver’s cache is shaped by the queries of possibly thousands of clients, 
it accommodates the most popular domain names in it. As a consequence, recursive resolver’s 
Cache hit ratio amounts much higher than stub resolvers’ cache hit ratio, see ‘Domain 
cached’ query group in Table 3.6.  

3.2.3 Response distribution at authoritative NSs 
Response distribution at the authoritative NSs indicates the fraction of response types which 
are given, in response to incoming initial queries, at the authoritative NSs. These values are 
different for root, TLD and SLD NSs. The distribution values at the authoritative NSs are 
determined by analyzing the real world data. Algorithm 3.3 which is implemented in 
MATLAB and Wireshark, is applied at the root, TLD and SLD responses respectively to 
determine the response distribution at the authoritative NSs. Table 3.7a shows the number of 
responses at the authoritative NSs. It should be remarked that just seven initial queries are 
sent to the root NS from the UNBOUND resolver and all these queries are replied by 
NXdomain. The latter observation indicates the proper working of the caching mechanism of 
UNBOUND recursive resolver while former observation is due to the fact that our data set 
covers just 14 seconds of DNS traffic. However, since our dataset is not large enough to 
determine Response distribution at root NSs, we use the values which are given in [8]. These 
values are included in Table 3.7(b).  
 
SLD NS is the last step in the domain name resolution process. Therefore, we observe 
diversity in SLD response types unlike TLD NS responses in Table 3.7a. These values are 
translated into the DNS reference model response types based on the recipe explained in the 
Algorithm 3.3. Table 7.3b shows the response distribution at the NSs. 
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i. Determine the initial queries going to the corresponding NS. 
ii. Determine the responses given to these queries at the name server. 
iii. Group the responses based on their types. The following response types will be 

obtained: Referrals, A, AAAA, CNAME, MX, PTR, No such name, Not implemented, 
Refused, Service failure, NS, SOA, TXT and Format error. 

iv. Determine the number of each response type. 
v. Translate these response types into the variables which are used in the model: 

 
• Valid:   Sum of Referrals, A, AAAA, CNAME, MX, PTR, NS, SOA, TXT and 

Format errors. 
• NXdomain: No such name. 
• Servfail: Service failure 
• Refused: Refused 

 
Algorithm 3.3: Recipe to compute Response distribution at the authoritative NS. 

 
Table 3.7: Authoritative NS responses (a) and Response distribution at authoritative NS (b). 

Response Root TLD SLD 
Referrals 0 377 741 
A 0 0 1072 
AAAA 0 0 20 
CNAME 0 0 673 
MX 0 1 23 
PTR 0 2 105 
NXdomain 7 31 510 
Not Imp. 0 0 89 
Refused 0 5 270 
Servfail 0 2 199 
NS 0 0 3 
SOA 0 0 1 
TXT 0 0 6 
Format Error 0 0 5 

(a) 
Response Root (actual) (%) Root (literature) (%) TLD (%) SLD (%) 
Valid  0 91,5 90,90 73,67 
NXdomain  100 8.1 7,42 13,72 
Servfail  0 0,4 0,48 5,35 
Refused  0 0 1,20 7,26 

(b) 

3.2.4 Scenario 
A Scenario is a collection of input parameters which are used to imitate the real world data 
conditions with the DNS reference model. These inputs concern:  

• fraction of IPv6 enabled clients with respect to the total number clients;  
• average number of secondary NSs, ; 
• number of simultaneously active clients ; 
• number of recursive resolvers querying the authoritative NSs simultaneously. 
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Table 3.8 depicts an example of a Scenario to be tested. The total number of users who are 
querying the recursive resolver simultaneously can be entered in the model by adjusting the 
‘Average number of simultaneously active DNS clients’ entry in Table 3.8. In the example, 
we considered 10.000 DNS clients meaning that, at the moment, 10.000 clients are querying 
per resolver infrastructure (typically more than one). The last entry can be used to control the 
number of recursive resolvers which are querying the authoritative NSs simultaneously.   

Table 3.8: A Scenario for the DNS reference model. 
Fraction of IPv6 clients w.r.t all clients. 10% 
Primary & secondary NS: average number 1 
Number of simultaneously active DNS clients 10.000 
Number of simultaneously active resolvers 10.000 

 
As mentioned in Subsection 2.1.2, each zone can have multiple NSs to provide redundancy. 
In the DNS reference model we assume that there is no secondary NS for an authoritative NS. 
However, this can be changed in the second entry of the Scenario. In Subsection 2.3.1, the 
relevance of the number of IPv6 enabled hosts is stressed. The fraction of IPv6 enabled hosts 
is adopted as 10%. However, again, this number can be changed to a desired value by 
modifying the first entry of the Scenario in Table 3.8.  

3.3 Model structure and operation  
As mentioned in Section 2.1, following generic components can be found in DNS: application 
browser, OS, recursive resolver, root domain NS, TLD NS and SLD NS. Figure 3.13 shows 
these elements and also the interactions between them. Q (or q) stands for query, R (or r) for 
response, d for domain name and t for response type. The arrows indicate the direction of 
query/response stream.  

 
Figure 3.13: Overall DNS structure. 

 
Based on Figure 3.13, the DNS reference model is built in Microsoft Excel. Figure 3.14 
depicts the DNS reference model as it is made in the Windows Excel. Here, the same 
architecture is preserved as in Figure 3.13. In the rest of this section, first, the components in 
the DNS reference model will be explained. Then, the DNS reference model operation will be 
explained.  
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Response Repeat query User Firefox Linux Resid.GW No resolver behavioUNBOUND Authoritative NS
Query to Root 1,1E+00 8,3E-01 8,3E-01 825 825 83 Root

Valid 0,07
Valid (>512B) 0,00 1 (Repeated queries)
Nxdomain 7,5E-04 7,5E-04 7,5E-04 0,75 0,75

Repeat-NXdomain 1,5E-03 3,0E-03 2,3 0,0
Partial 0,0E+00 0,0E+00 0,0E+00 0,00 0,00

Repeat-Partial 0,0E+00 0,0E+00 0,0 0,0
Servfail 3,0E-06 3,0E-06 3,0E-06 0,00 0,00

Repeat-Servfail 6,1E-06 2,4E-05 0,0 0,0
Timeout 0,0E+00 0,0E+00 0,0E+00 0,00 0,00

Repeat-Timeout 0,0E+00 0,0E+00 0,0 0,0
Refused 0,0E+00 0,0E+00 0,0E+00 0,00 0,00

Repeat-Refused 0,0E+00 0,0E+00 0,0 0,0
Truncated 0,00

Repeat-Truncated 0,0

Query to TLD 4.049 TLD
Valid 37,37
Valid (>512B) 0,00 178 (Repeated queries
Nxdomain 2,7E-03 2,7E-03 2,7E-03 2,67 2,67

Repeat-NXdomain 5,3E-03 1,1E-02 8,0 0,0
Partial 0,0E+00 0,0E+00 0,0E+00 0,00 0,00

Repeat-Partial 0,0E+00 0,0E+00 0,0 0,0
Servfail 4,5E-04 4,5E-04 4,5E-04 0,28 0,28

Repeat-Servfail 8,9E-04 3,6E-03 3,1 1,1
Timeout 0,0E+00 0,0E+00 0,0E+00 0,00 0,00

Repeat-Timeout 0,0E+00 0,0E+00 0,00 0,0
Refused 0,0E+00 0,0E+00 0,0E+00 0,16 0,16

Repeat-Refused 0,0E+00 0,0E+00 0,0 0,6
Truncated 0,00

Repeat-Truncated 0,0

Query to SLD 36.820 SLD
Valid 9,8E-01 7,4E-01 7,4E-01 735,28
Valid (>512B) 1,7E-02 6,4E-03 6,4E-03 6,4E-03 6,44 3.240 (Repeated queries)
Nxdomain 7,2E-02 6,1E-02 6,1E-02 60,75 60,75

Repeat-NXdomain 1,2E-01 2,4E-01 182,3 0,0
Partial 0,0E+00 0,0E+00 0,0E+00 0,00 0,00

Repeat-Partial 0,0E+00 0,0E+00 0,0 0,0
Servfail 8,1E-03 8,1E-03 8,1E-03 3,31 3,31

Repeat-Servfail 1,6E-02 6,5E-02 56,7 13,3
Timeout 0,0E+00 0,0E+00 0,0E+00 0,0E+00 0,00 0,00

Repeat-Timeout 0,0E+00 0,0E+00 0,0 0,0
Refused 0,0E+00 0,0E+00 0,0E+00 4,79 4,79

Repeat-Refused 0,0E+00 0,0E+00 0,0 19,1
Truncated 2,3E-02 1,2E-02 1,2E-02 12,27 12,27

Repeat-Truncated 0,0  
Figure 3.14: The DNS reference model view. 
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3.3.1 DNS reference model structure 

User 
The user corresponds to the querying entity in any Internet accessible device. The main 
role of the user in the reference model is initiating queries to connect to web servers. 
User click actions go directly to the application browser. In the Figure 3.14, the user 
clicking rate of 1.1 in the user box stands for 1.1 clicks per unit time (qpt) e.g. clicks per 
hour. 

Application browser 
The application browser is a part of the end-user device. The application browser 
attempts to handle the queries, first, by checking its own cache. If the queried domain 
name can be matched with one of the entries in the cache, then the user is provided by 
the cached DNS data e.g. an IP address. If the requested domain name cannot be 
matched with any of the entries in the cache, it has to be sent to the OS. The Cache hit 
ratio for the different application browsers for the various response types can be seen in 
Table 3.4. As explained in Subsection 3.2.1, application browsers can initiate new repeat 
queries in the case of negative response. The Query multiply factors for application 
browsers are given in Table 3.1. 

Operating system 
The operating system is the last stage contained by the end-user device. When a domain 
name is not cached by the application browser it is sent to OS. First, the OS attempts to 
handle a query by itself by using its own cache. Again, whether a domain name is in the 
cache depends on its type. Cache hit ratio for each OS for the various response types are 
given in Table 3.5. If a query can be answered by the OS, then the application browser is 
instantly provided with DNS data. Otherwise, OS addresses recursive resolver to resolve 
the queried domain name. An OS can initiate new repeat queries in case of a negative 
response. Table 3.1 displays the Query multiply factors of each OS for a particular 
negative response.   

Recursive resolver 
Recursive resolvers are addressed by OS by means of recursive queries. Recursive 
resolvers categorize each arriving query in one of the four groups based on Cache hit 
ratio which will be determined in the next chapter. A query is either directly answered 
(when it is Domain cached) or it is sent to one of the authoritative NSs based on its 
cache group for the recursive resolution process. 
 
The recursive resolution process is done by means of sending iterative queries towards 
the authoritative NSs. How a recursive resolver reacts to a specific response type is 
defined by Query multiply factors for resolvers, given in Table 3.3. 
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Root name server 
Root server is addressed by the recursive resolvers when the TLD of a queried domain 
name is not known. Based on the queried domain names, different responses can be 
given to the queries. The response distribution on the queries at the root NS is done 
based on the Response distribution at the root. 

Top level domain name server 
The TLD NS is issued by the recursive resolver with ‘TLD cached only’ queries and 
with the ‘Noncached’ queries which are responded with valid, valid>512B and truncated 
at the root. The Response distribution at TLD NS indicates the distribution of the 
responses at TLD. 

Second level domain name server 
The SLD NS is addressed by the recursive resolver with the ‘SLD cached only’ queries 
and the queries which are responded at the TLD NS by valid, valid>512B and truncated. 
The responses on the queries arriving at the SLD NS are distributed based on Response 
distribution at the SLD NS. 

3.3.2 DNS reference model operation 
We assume that, in the model, the queries are sent in “one go” from the client side to the 
authoritative NS side, and the responses to these queries also in ‘one go’ from the 
authoritative NS side to the client side. Based on this assumption the DNS reference 
model operation will be divided in three different steps:  

• The initial queries are going from the client side to the authoritative NS side;  
• The responses to the initial queries are returned from the authoritative NS side to 

the client side; 
• The repeat queries due to these responses are resend from the client side towards 

the authoritative NS side. 
 
In the rest of this subsection, the operation of the DNS reference model will be explained 
by considering each step separately. The model will be explained by using the following 
Scenario input which is depicted in Table 3.9. Note that the model output is shown in 
Figure 3.14. We emphasize that the chosen values in Scenario list in Table 3.9 are just 
for illustrative purpose. The input parameters in the model can be modified, for 
analyzing other scenarios. 

Table 3.9: Scenario for the example. 
Fraction of IPv6 clients w.r.t all clients. 10% 
Primary & secondary NS: average number 1 
Number of simultaneously active DNS clients 1000 
Number of simultaneously active recursive resolvers 100 
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Step I: initial queries from the users to the authoritative NSs  
In the first step, the initial queries are generated by the end user and sent to the 
authoritative NSs via the application browser, OS and recursive resolver, respectively. 
This process can be observed at the first row of the DNS reference model as depicted in 
Figure 3.14. This part is also depicted in Figure 3.15. 

User Firefox Linux Resid.GW No resolver behavioUNBOUND Authoritative NS
1,1E+00 8,3E-01 8,3E-01 825 825 83 Root  

Figure 3.15: The initial queries going from the users to the authoritative NSs. 
 
The user generates 1.1 qpt. The generated queries are sent towards the application 
browser which forwards 0.83 qpt to the OS. Note the difference between the two query 
rates which is due to the caching property of application browser which in this example 
is Firefox. As shown in Table 3.4, Firefox caches 25% of the total queries meaning that 
it handles 25% of the incoming queries by itself and 75% of the queries are forwarded to 
OS. In Figure 3.15, the incoming query number is equal to the outgoing query number in 
Linux. This is because Linux does not implement caching, as shown in Table 3.5 and it 
just forwards the incoming queries to the recursive resolver. 
 
In Figure 3.15, although the Linux (i.e.client) sends 0.825 qpt, there are 825 qpt at 
recursive resolver, UNBOUND. The reason for this is given in the Scenario Table 3.9. 
In there, it is specified that there are 1.000 DNS clients querying the root NS 
simultaneously resulting in 825 qpt at recursive resolver.  
 
As explained in Subsection 3.2.2, the queries arriving at the recursive resolver will be 
classified into four different groups. The distribution of the queries over the different 
classes is done based on the system variable Cache hit ratio for the resolver is given in 
Table 3.6. According to the Table 3.6, in the UNBOUND case, 0,12% of the queries 
belongs to the ‘Noncached’ group (i.e. the queries directly to the root) while 4,16% of 
the queries are classified in the ‘TLD cached’, 41,18% in the ‘SLD cached’ and 54,54% 
in the ‘Domain cached’ group. Consequently, 54,54% of the queries will be answered by 
the recursive resolver itself while the rest of the queries will undergo the recursive 
resolution process. Hence, in Figure 3.15, the number of initial queries going to the root 
will be 83 qpt.  
 
Once the domain name resolution has been initiated at the root, it will be performed until 
the entire domain name is resolved. This means that, the queries which are responded 
with a Valid response at the root will be sent to the TLD NS by the recursive resolver. 
The queries which are again qualified as valid at the TLD NS will be sent to the SLD NS. 
After receiving the response from the SLD NS, the domain name resolution process for 
the initial queries will be completed. The number of queries going from the root to the 
TLD NS can be found by using response distribution at the root in the Table 3.7b. It can 
be seen that 8.1% of total initial queries at the root will be forwarded to TLD NS. To 
determine the fraction of the positive responses at the TLD NS, again Table 3.7b will be 
used. The same will be done at the SLD NS. These tables will also be used to determine 
the distributions of the responses at each authoritative NS on the initial queries. 
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In this way, the total number of the queries going from one particular UNBOUND to the 
root, TLD and SLD NSs can be found as 0.83, 40.49 and 368.2 qpt while 454.6 qpt will 
be answered by UNBOUND itself. Taking into account the Scenario list stating that 
there are 100 UNBOUNDs querying the root, TLD and SLD NSs, the total numbers of 
the initial queries at root, TLD and SLD NSs can be found as 83, 4049 and 36820 
respectively.  

Step II: responses on the initial queries from the authoritative NS to the 
users 

In the first step, the initial queries from the users are distributed over all NSs and 
recursive resolver and the responses on these initial queries are further distributed at the 
authoritative NSs based on the queried domain names. In the second step, these 
responses will be sent back from the authoritative NSs to the user. The response stream 
from the authoritative NS to the users is classified based on the response type. In this 
way we can observe which response type causes how many repeat queries at which 
authoritative NS.     
 
In step I, it has been found that 83, 4049 and 36820 queries arrived at the root, TLD and 
SLD NSs, respectively. We assume that the authoritative NSs will answer all the queries. 
Therefore, there will be exactly the same number of responses as the number of queries 
on each authoritative NS level, i.e. root, TLD and SLD. These responses will have 
distributions according to the Table 3.7b.  
 
After the responses are generated for the initial queries, they will be sent back from 
authoritative NSs to the UNBOUND in “one go”. In Figure 3.14, the number of 
responses at the UNBOUND from the root (i.e. 0,07 Valid+0,75NXdomain=0,82) is, a 
factor of 100 times smaller than the number of the responses at the root (i.e. 82,5 which 
is rounded up to 83). This is because 100 recursive resolvers were querying the root 
simultaneously. Since we assumed that all the recursive resolvers are identical, we can 
simply divide the number of the responses at the root by 100 to find the number of the 
responses from the root at each particular recursive resolver. The same has to be done to 
determine the number of queries at UNBOUND resolver from TLD and SLD NSs. 
However, in Figure 3.14, it can be observed that the number of responses at the 
UNBOUND from the root i.e. 823 is more than 368,20 (i.e. number of responses at the 
SLD NSs/100). The reason for difference is that the responses for Domain cached 
queries are aggregated to the responses which are returned by SLD NSs. This is shown 
in Figure 3.14 between the SLD NSs and UNBOUND resolver. 
 
As seen in Table 3.3, for each Servfail response, UNBOUND initiates four extra repeat 
queries towards the authoritative NS while for each Timeout response six new repeat 
queries will be initiated. In the DNS reference model, we assume that a repeat query will 
have the same response as the original query. Therefore, in total five Servfail responses 
will be gathered at the UNBOUND although, just one of them is sent back to the end 
user. The same will be done for Timeout responses i.e. only one response will be sent 
back to the end user. 
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After the Servfail and Timeout responses are retried, negative responses will be sent to 
the user while positive responses will not be sent directly to the users. Because, a Valid 
response from the root or from the TLD NS indicates that a domain name resolution 
process is continuing and no Valid response should be sent to the user before the domain 
name resolution has been completed. Therefore, in Figure 3.14, negative responses from 
the root, TLD and SLD NSs are sent from UNBOUND to the users while the positive 
responses are sent just after recursive resolution is completed i.e. after the SLD NS sent 
the responses to the UNBOUND. These positive responses are the responses on all the 
initial queries.   
 
Because each particular resolver serves 1.000 identical users simultaneously, the number 
of the responses at the OS (Linux) can be found by simply dividing the value at the 
resolver by 1.000. These responses are sent from the OS to the application browser 
(Firefox) and from the application browser to the user.  
 
Two important points have to be mentioned about the transferring of valid answers to the 
user. The first point is about a fraction of the Valid>512B responses which are 
transformed to Timeout responses when going from the recursive resolver to the OS. 
The corresponding part of the DNS reference model is displayed in Figure 3.16. 
Although the fraction of Valid>512B blocked by GW is given by the Scenario in Table 
3.9 as 0%, this point is included in the reference model to be able to analyze the effect of 
the residential GW which can block the packets with a size larger than 512B. In such a 
case, a blocked Valid>512 response is perceived and treated as a Timeout response by 
the end user.  
 
The second point concerns the responses which are given by the application browser and 
the OS. As explained in step I, a fraction of the initial queries are responded by the 
Firefox browser and Linux since they have those domain names in their caches. The 
responses from Firefox and Linux are aggregated to the response traffic between the 
application browser and the User. This aggregation of responses is shown in Figure 3.16 
between the User and Firefox by means of green arrows pointing to the Valid, 
Valid>512B, Truncated and NXdomain responses. 

 
Repeat-Truncated 0,0

36.820
Valid 9,8E-01 7,4E-01 7,4E-01 735,28
Valid (>512B) 1,7E-02 6,4E-03 6,4E-03 6,4E-03 6,44 3.240
Nxdomain 7,2E-02 6,1E-02 6,1E-02 60,75 60,75

Repeat-NXdomain 1,2E-01 2,4E-01 182,3 0,0
Partial 0,0E+00 0,0E+00 0,0E+00 0,00 0,00

Repeat-Partial 0,0E+00 0,0E+00 0,0 0,0
Servfail 8,1E-03 8,1E-03 8,1E-03 3,31 3,31

Repeat-Servfail 1,6E-02 6,5E-02 56,7 13,3
Timeout 0,0E+00 0,0E+00 0,0E+00 0,0E+00 0,00 0,00

Repeat-Timeout 0,0E+00 0,0E+00 0,0 0,0
Refused 0,0E+00 0,0E+00 0,0E+00 4,79 4,79

Repeat-Refused 0,0E+00 0,0E+00 0,0 19,1
Truncated 2,3E-02 1,2E-02 1,2E-02 12,27 12,27

Repeat-Truncated 0,0

Figure 3.16: The ‘Query to SLD’ part of the DNS reference model. 
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At the end of the step II, all the responses on the initial queries are sent back. Hence, all 
the responses, on the initial queries, from each particular authoritative NS are 
determined. 

Step III: repeat queries from the user to authoritative NS 
In step II, the responses on the initial queries are sent from authoritative NS and 
recursive resolver to the user. As mentioned in Subsection 2.1.1, there will be initiated 
new repeat queries for negative responses. Since the response streams from the 
authoritative NSs to the user are kept separated, it can now be determined how many 
repeat queries will be retransmitted for each type of the negative response stream from 
the client side. The fraction of the types of the repeat queries at the authoritative NSs can 
also be traced. In this way, the total number of repeat queries at the root, TLD and SLD 
NSs can be found. 
 
The repeat queries will be initiated by the application browser and OS based on the 
values given in the Query multiply factors Table 3.1. In Figure 3.14, for instance, the 
NXdomain responses from SLD NS to the User amounts 0.061 qpt. From Table 3.1, the 
Query multiply factors for an NXdomain response is two for both Firefox and Linux. 
Therefore, 0.061 is multiplied by two when passing through Firefox and again by two 
when going through Linux. Consequently, 0.24 qpt in total will be sent by the OS to the 
resolver due to SLD NXdomain responses. As explained in section 2.1.1, a ‘2’ for 
NXdomain response in Table 3.1 means that one extra repeat query will be resent for the 
initial query. Therefore, before sending the repeat queries from the OS to the recursive 
resolver, the number of initial NXdomain responses, 0.061 qpt, has to be subtracted from 
0.24 qpt. Hence, 0.179 repeat queries will be sent from the OS to the recursive resolver. 
The same procedure will be followed for each response in the model and all the repeat 
queries will be gathered at the recursive resolver’s first level. In the first level, number 
of repeat queries can be seen at the recursive resolver. On the other hand, the second 
level at the resolver shows the number of the repeat queries which will be sent to the 
authoritative NSs after caching properties of the resolver is taken into consideration e.g. 
repeat queries due to the NXdomain responses will arrive at the UNBOUND however 
they will not be sent to the authoritative NSs since UNBOUND deploys negative 
caching.  
 
Whether a repeat query is sent to the authoritative NSs depends on the type of the 
recursive resolver and on the type of the response for which a repeat query is generated. 
Different types of the recursive resolvers have different properties from the caching 
point of view. UNBOUND caches the Valid responses and NXdomain responses. Hence, 
all the repeat queries due to NXdomain responses will be in the cache of UNBOUND 
and they will be answered by UNBOUND. It should be remarked that all these repeat 
queries would be sent to the authoritative NSs in the case of BIND8. All the repeat 
queries beside those which were due to the NXdomain responses will be sent to the 
authoritative NSs. As a result, 1, 178 and 3240 repeat queries will arrive at the root, TLD 
and SLD NSs.  
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Experimental Results 
 

 
In this chapter we account for the stochastic behaviour of the DNS. To this end, in 
Section 4.1, we determine probabilistic distributions of the system variables: Cache hit 
ratio and Response distribution at the authoritative NS. In Section 4.2 we validate the 
DNS reference model by using the real-world data. Finally, in Section 4.3, we evaluate 
some relevant cases of DNS real-world problems by using the DNS reference model. 

4.1 System variable distributions 
To bring the stochastic nature in the DNS reference model, we will find distributions for 
system variables Cache hit ratio and Response distributions at the authoritative NS by 
analyzing real world data. To do so, we will first chop the SURFnet data consisting of 
300.000 DNS packets in 10 smaller data subsets of 30.000 DNS packets. Then we will 
use Algorithm 3.2 and Algorithm 3.3 to determine the Cache hit ratio and the Response 
distributions at the authoritative NS in each subset. The independency of these values 
will be tested by using the Von Neumann test. Finally, we will estimate distributions for 
the system variables and verify this estimation by using distribution fitting techniques. 

4.1.1 Cache hit ratio  
Algorithm 3.2 is applied to data subsets and the values i up to vi which are mentioned in 
Algorithm 3.2 are calculated. These values are shown in Table 4.1a. Then based on these 
values, the Cache hit ratio for UNBOUND is computed and translated into fractions 
which are shown in Table 4.1b.  

Table 4.1: Cache hit ratio values for UNBOUND for each subset. 
Quantity Set1 Set2 Set3 Set4 Set5 Set6 Set7 Set8 Set9 Set10 

i 7528 7475 7269 6671 6985 7691 7595 7498 7036 7316 
ii 7 10 2 10 7 8 7 14 12 5 
iii 0 0 0 0 0 0 0 0 0 0 
iv 291 355 421 373 332 316 307 266 289 308 
v 266 319 414 365 306 304 297 252 275 289 
vi 3014 3027 3512 2998 3165 3048 2944 2863 3101 3006 

(a) 
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Category Set1 

(%) 
Set2 
(%) 

Set3 
(%) 

Set4 
(%) 

Set5 
(%) 

Set6 
(%) 

Set7 
(%) 

Set8 
(%) 

Set9 
(%) 

Set10 
(%) 

Noncached 0.09 0.13 0.03 0.15 0.10 0.10 0.09 0.19 0.17 0.07 
TLD cached 3.92 4.68 6.09 5.65 4.81 4.18 4.14 3.62 4.16 4.29 
SLD cached 41.18 36.32 44.37 39.53 40.89 35.61 35.06 34.72 40.29 37.26 
Domain cached  54.81 58.87 49.51 54.67 54.20 60.11 60.71 61.47 55.38 58.38 

(b) 

Independency test 
Having obtained the Cache hit ratio samples in each subset we have to verify whether 
the subsets are long enough to have independent Cache hit ratio samples. The needed 
length of the subsets for the independency of the samples is determined by the 
autocorrelation between the samples. The stronger the autocorrelation between the 
Cache hit ratio samples, the larger subsets we need in order to have independent 
observations.  

To test the independency between Cache hit ratio samples given in Table 4.1b, we throw 
the following null and alternative hypothesis: 

• 0H : Cache hit ratio samples given in Table 4.1b are independent. 

• aH : Cache hit ratio samples given in Table 4.1b are correlated.   

To test the null hypothesis, we will choose an independency test. Based on the chosen 
test, we will compute the test statistic. After that, we will determine the threshold value 
for this test statistic for desired level of confidence. A typical value for confidence level 
is 95% [13] and we will use it to test 0H . Finally, we will compare the computed test 
statistic with the threshold test statistic to conclude whether 0H  can be rejected i.e. 
whether the samples are independent. 

Von Neumann statistic will be used to test 0H . Von Neumann test involves computing 
the ratio of the mean square successive difference to the variance [35, 42]. This statistic 
is also referred as Von Neumann ratio. Von Neumann ratio can be found in Formula 4.1. 
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where  ix  stands for the thi  sample value and n  for the sample size, while x  denotes the 
global mean of the samples. Von Neumann states that when ix ’s are independent, then q  
is normally distributed as follows: 
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 where 2  is the mean while 2

4( 2)
1

n
n
−
−

 is the variance of the distribution. Cache hit ratio 

samples are correlated if q  is smaller than the Von Neumann threshold statistic, tq . For 
a significance level of 5%, tq  can be found as follows:  

2 1.645t qq σ= −                         (4.3) 

where qσ  denotes the standard deviation of q  and can be found as: 
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n
n
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−

                                                           (4.4) 

Having substituted n by 10, i.e. the number of samples per caching group, in Equation 
4.4, the standard deviation for q  given in Equation 4.2 can be found. Then, tq  in 
Equation 4.3 turns out to be 1,46. The Von Neumann statistic is computed for the Cache 
hit ratio sample values of each subset. Table 4.2 shows the mean, variance and 
corresponding q  values for each caching group. We observe that q  is larger than tq  for 
each caching group implying that there is no enough evidence to reject 0H  i.e. there is no 
enough evidence to reject the null hypothesis that Cache hit ratio sample values are 
independent. 

Table 4.2: Mean, Variance and q statistic for Cache hit ratio samples for UNBOUND. 
Category Mean (% ) Variance (%) q 
Noncached 0,11 0,005 2.2 
TLD cached 4,55 0.51 1.47 
SLD cached 38,52 9.11 1.95 
Domain cached 56,82 12.37 1.74 

Estimating the distribution 
After verifying that the Cache hit ratio samples are independent, the distribution of 
Cache hit ratio can be determined. Looking at the values from Table 4.1b, we throw the 
following null and alternative hypotheses: 

• 0H : Cache hit ratio samples given in Table 4.1b are normally distributed. 

• aH : Cache hit ratio samples given in Table 4.1b are not normally distributed.   

To test the null hypothesis we are going to deploy Shapiro-Wilk normality test [36]. 
There are two main reasons that we choose for Shapiro-Wilk test: 

• It requires the estimated values for mean and standard deviations instead of 
precise values unlike e.g. Kalmogorov-Smirnov test [48]. 

• It is applicable in data sets even with small number of samples, n (i.e. n>=3) 
unlike e.g. Anderson-Darling test [47]. 
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Shapiro-Wilk test involves computing W statistics which tests whether a given a set of 
random samples 1 2, ,..., nX X X  come from a normal distribution. W statistics is 
calculated as follows: 
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where iy  is the thi  order statistic while y  is the mean value of the samples. 1n ia − +  stands 
for the weights whose values depend only on sample size n . ia ’s are given as: 
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where 1 2, ,.., nm m m  are the expected values of the order statistics and V  is the 
covariance matrix of these order statistics. tresholdW  and 1n ia − +  values can simply be found 
by using Table 5 and Table 6 given in [36].  

Table 4.3: Shapiro-Wilk test statistics for Cache hit ratio samples. 
Category W Wt 
Noncached 0,970 0,842 
TLD cached 0,881 0,842 
SLD cached 0,926 0,842 
Domain cached 0,925 0,842 

Table 4.3 shows the calculated W  values and tresholdW  values for the confidence level of 
95%. In Table 4.3, W  is larger than tresholdW for each Cache hit ratio group. This implies 
that there is no enough evidence to conclude aH  is true at the pre-determined 
confidence level of 95% and we fail to reject 0H . Therefore, we can conclude that Cache 
hit ratio samples given in Table 4.1 are normally distributed. The distribution has the 
arithmetic mean of the samples and the variance of the sample set [36]. The mean and 
the variance are given in Table 4.2. This result can be illustrated by using quantile-
quantile (Q-Q) plots. Q-Q plot is a graphical method for comparing two probabilistic 
distributions. A point on the plot corresponds to one of the quantiles of the second 
distribution plotted against the same quantile of the first distribution [37]. If the 
distributions are identical, then the Q-Q plot follows the 45°  line i.e. y=x line. If the 
distributions are linearly related, Q-Q plot will approximately lie on a line but not 
necessarily on 45°  line. Q-Q plot can also be used to compare a data set to a theoretical 
distribution. To illustrate the result about the Cache hit ratio distribution, Cache hit ratio 
values (given in Table 4.1b) are plotted versus normal theoretical quantiles. Figure 4.1 
shows that the Q-Q plots are almost linear indicating that Cache hit ratio values can be 
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considered normally distributed. Another remarkable point is that the plot is S shaped. 
This indicates that one of the distributions is more skewed or that one of the distributions 
has heavier tails than the other [38]. 
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Figure 4.1: Q-Q plots of Cache hit ratio vs. normal theoretical values. 

4.1.2 Response distribution at the authoritative NS 
To determine the Response distribution at authoritative NS, Algorithm 3.3 is applied to 
each subset and the number of different types of responses at each level (i.e. root, TLD 
and SLD) is determined. All the responses arriving at the root NS are replied by 
NXdomain. However, the responses at the TLD and SLD NSs have a big diversity. 
Therefore, we only show the responses at TLD and SLD NSs in Table 4.4a and 4.4b.  

Table 4.4: Response types at TLD (a) and SLD (b) NSs. 
Category Set1 Set2 Set3 Set4 Set5 Set6 Set7 Set8 Set9 Set10 
Valid 267 322 407 357 310 302 304 253 278 290 
NXdomain 19 30 15 17 22 13 6 15 11 15 
Servfail 2 1 1 0 0 1 0 0 1 2 
Refused 1 0 0 0 0 0 0 0 0 0 

(a) 
Category Set1 Set2 Set3 Set4 Set5 Set6 Set7 Set8 Set9 Set10 
Valid 2428 2476 2413 2448 2603 2345 2380 2205 2439 2397 
NXdomain 492 467 509 469 467 598 476 547 547 521 
Servfail 27 31 45 41 43 44 58 53 52 55 
Refused 37 30 37 34 37 37 27 37 50 44 

(b) 
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Then, again by using Algorithm 3.3, the values in Table 4.4a and 4.4b are translated into 
the Valid, TLD cached, SLD cached and Noncached quantities which are given in Table 
4.5a and 4.5b. 

Table 4.5: Response distribution at TLD (a) and SLD (b) NSs. 
Category  Set1 

(%) 
Set2 
(%) 

Set3 
(%) 

Set4 
(%) 

Set5 
(%) 

Set6 
(%) 

Set7 
(%) 

Set8 
(%) 

Set9 
(%) 

Set10 
(%) 

Valid 92.35 91.19 96.19 95.48 93.43 95.52 98.06 94.42 95.84 94.45 
NXdomain 6.46 8.53 3.57 4.52 6.57 4.16 1.94 5.58 3.81 4.90 
Servfail 0.69 0.28 0.24 0 0 0.32 0 0 0.35 0.65 
Refused 0.50 0 0 0 0 0 0 0 0 0 

(a) 
Category Set1 

(%) 
Set2 
(%) 

Set3 
(%) 

Set4 
(%) 

Set5 
(%) 

Set6 
(%) 

Set7 
(%) 

Set8 
(%) 

Set9 
(%) 

Set10 
(%) 

Valid 81.32 82.45 80.23 81.87 82.61 77.58 80.94 77.42 78.88 79.49
NXdomain 16.51 15.53 16.89 15.59 14.84 19.70 16.17 19.42 17.76 17.23
Servfail 0.91 1.03 1.60 1.38 1.37 1.46 1.97 1.86 1.74 1.82
Refused 1.26 0.99 1.28 1.16 1.18 1.26 0.92 1.30 1.62 1.46

(b) 

Independency test 
Again Von Neumann statistic is used to test the null hypothesis that the sample values 
for Valid, NXdomain, Servfail and Refused in Table 4.5 are independent against the 
alternative hypothesis that the sample values are correlated. To do that, the arithmetic 
mean and corresponding variance of the values in Table 4.5 are determined. After that, 
the Von Neumann statistic, q , is computed. Table 4.6 depicts these values for TLD and 
SLD responses. Since we have same number of samples as in previous subsection, tq  
remains same: 1,46. Hence, looking at the q  values in Table 4.6, we verify that the 
Response distribution at authoritative NS samples given in Table 4.5 are independent.  

Table 4.6: Mean, variance and q for Response distribution at TLD (a) and SLD (b). 
Category Mean (%) Variance (%) q 
Valid 94,70 3.7 1.52 
NXdomain 5,00 3.2 1.98 
Servfail 0,25 0,04 1.6 
Refused 0,05 0.02 2.85 

(a) 
Category Mean (%) Variance (%) q 
Valid 80,29 3.23 1.9 
NXdomain 16,96 2.23 2.4 
Servfail 1,51 0,13 1.5 
Refused 1,24 0.04 1.6 

(b) 

Estimating the distribution 

The approach, which is used to test the normality of Cache hit ratio samples will also be 
used to test the normality of Response distribution at authoritative NS samples. Table 
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4.7 shows W  and tresholdW values for Response distribution at authoritative NS samples 
for TLD (a) and SLD (b) given in Table 4.5a and 4.5b. Looking at Table 4.7, we can 
conclude that the Response distribution at authoritative NS samples have a normal 
distributions with mean and variance given in Table 4.6a (for TLD responses) and 4.6b 
(for SLD responses). The only exception is TLD Refused responses. However, since the 
fraction of TLD Refused responses is very small, these responses are not significant with 
respect to the experiments that we will do. Figure 4.2a and 4.2b depicts Q-Q plots for 
Response distribution at authoritative NS for TLD and SLD samples respectively. Also 
from these figures, it can be observed that the data points lie approximately on a flat line. 
This implies that Response distribution at authoritative NS samples fit a normal 
distribution.  

Table 4.7: Shapiro-Wilk statistics for Response distribution at authoritative NS for TLD (a) and for 
SLD (b). 

Category W 
tresholdW  H0 

Valid 0,971 0,842 Accepted 
NXdomain 0,979 0,842 Accepted 
Servfail 0,848 0,842 Accepted 
Refused 0,365 0,842 Rejected 

(a) 
Category W 

tresholdW  H0 

Noncached 0,929 0,842 Accepted 
TLD cached 0,951 0,842 Accepted 
SLD cached 0,944 0,842 Accepted 
Domain cached 0,964 0,842 Accepted 

(b) 

Note that we did not determine any distribution for Response distribution at root NS. 
The reason for that is that there are very few queries are arriving at the root NS. 
However, to determine Response distribution at root NS, we need a bigger amount of 
queries towards the root NS. Nevertheless, bigger amount of root DNS traffic requires a 
significantly larger data set which can not be analyzed by the computers we have. 
Therefore, for Response distribution at root NS, we will use the values given in [8]. 
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(b) 
Figure 4.2: Q-Q plots for Response distribution at TLD (a) and SLD (b) NSs. 
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4.2 Model validation 
In this section, we validate the DNS reference model by using a new data set captured 
also at an UNBOUND recursive resolver but in different environmental setting. The new 
data set is again anonymized and it consists of 30.000 DNS packets with duration of 51 
seconds.  
 
To validate the model, in Subsection 4.2.1, we first analyze the data and obtain the input 
parameters so as to run the simulations. Having obtained the model input parameters 
from the real world data, in Subsection 4.2.2, we present the simulation results. In 
Subsection 4.2.3, we analyze the results from the model and compare to the results from 
the real world data. Lastly, in Subsection 4.2.4, we perform sensitivity check of the 
model by using coefficient of variance indicator. 

4.2.1 Data analysis  
Obtaining input parameters will be achieved by analyzing the real world data by 
different algorithms. This involves different steps to be taken and in this subsection, 
these steps will be introduced. 

Cleaning the data 
Before starting data processing, it should be ensured that all the anomalies are detected 
and cleaned from the data set. With anomaly, we imply clients’ and resolvers’ odd 
behaviours. For instance, when testing the model with one of the data sets we observed a 
big error between model and real world results. Later on, we noticed that the error was 
due to a client who generated 10% of the total DNS queries towards the recursive 
resolver. He was sending lots of repeat queries for one single domain name although he 
was receiving positive answers on his queries. After excluding that client’s traffic from 
the data set, the big error between the model and the real-world is diminished.  
 
To check if there is an anomaly, we are going to use Wireshark. Recipe 4.1 gives the 
steps. The corresponding commands of recipes can be found in Appendix III. 

i. Determine all the queries from the clients to the resolvers. 
ii. Obtain a list of clients with the fraction of the traffic that they are generating. 
iii. Select ten most aggressive clients. 
iv. Check whether their traffic can be considered as ‘normal’ queries.  

Recipe 4.1: Anomaly detection for client traffic. 

We applied Recipe 4.1 to the new data set and we observed that some clients were 
misconfigured. They send lots of repeat queries for domain names in a short time while 
they receive positive answers on their queries. As a cure, we determined the domain 
names for which the most repeat queries are sent. “allmx.tue.nl” and “edgesmtp.uu.nl” 
were the domain names for which the most repeat queries were sent by misconfigured 
clients. We excluded the traffic related to these queries from the data set. 
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Obtaining the initial queries 
Having obtained a clean dataset, the number of the initial queries can be determined at 
different POIs in the real world data. The determination of the initial query numbers is 
crucial since the DNS reference model will be calibrated with the initial queries at the 
different points in the system. To determine the number of initial queries, first a formal 
repeat definition has to be done.  
 
Repeat definition: Considering two queries, the second query will be defined as a repeat 
query if it has the same domain name, query type and destination level as the first query. 
Additionally, the time difference between two queries has to be smaller than a certain 
numberδ . For repeats at the recursive resolvers, δ  will be 13 seconds while for repeats 
at the authoritative NS,δ will be 3 seconds. These values are determined by analyzing 
the client behaviour and the recursive resolver behaviour. Recall that in the case of a 
Servfail response shown in Figure 3.4.b, Linux client sends seven repeat queries towards 
the recursive resolver. The time difference between the initial query and the last repeat 
query seems to be around 13 seconds. Therefore, 13 second for δ  is adopted when the 
repeat at the recursive resolver is in consideration. On the other hand, in the case of a 
Servfail response, the time difference between the initial query and the last repeat query 
from the UNBOUND towards the authoritative NSs is three seconds. Therefore, three 
second is adopted for δ  when the repeat at the authoritative NSs is in consideration. 
Repeat definition idea at the SLD NS is illustrated in Table 4.8.  

Table 4.8: Repeat definition at the authoritative NSs. 
Query category Domain name Query type Destination level Time (sec) 
Initial ‘random.com’ A SLD t 
Repeat ‘random.com’ A SLD t+2 

Strategy: Having defined the repeat query notion, initial queries from a given set of 
aggregated (i.e. initial and repeat queries mixed) queries will be distinguished by using 
Algorithm 4.1. It has to be ensured that the aggregated queries are sent to the same 
destination level i.e. either to root or to TLD or to SLD NSs.  

i. Generate two empty sets: Initial queries and Repeat queries; 
ii. First query in the aggregated set is considered as an initial query and move it 

to the Initial query set. 
iii. The following query from the aggregated set will be tested on each query 

from the Initial query set whether they satisfy the repeat conditions given in 
Table 4.8.   

iv. If the query from the aggregated set satisfies the repeat conditions with any 
of the initial queries in the Initial queries set then it will be placed in Repeat 
queries set, otherwise it will be places in Initial queries set. 

v. This process will continue until the aggregated query set is empty. 
Algorithm 4.1: Initial query determination. 
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Wireshark and MATLAB are used to obtain the initial queries at the resolver, root, TLD 
and SLD NSs. All the implemented MATLAB m-files can be seen in Appendix II. 
Recipe 4.2 defines the steps to be taken to determine the initial queries from the 
SURFnet data. 

i. Determine the queries towards recursive resolver, root, TLD and SLD NS 
separately (by using Wireshark). 

ii. Export the Wireshark data to a ‘pcap’ file so that it can be used in MATLAB. 
Note that IP and DNS headers have to be open. Additionally, in DNS header, 
query details should be visible. 

iii. Import the data from Wireshark to MATLAB.  
iv. Obtain query name, query type, source, destination, IP TTL and time 

information from the queries. This is done by GetPacketDetails m-file.  
v. Finally, Algorithm 4.1 is applied to it to determine the initial and the repeat 

queries. Algorithm 4.1 is implemented in GetInitialQueriesAtResolver and 
GetInitialQueriesAtNS m-files  
Recipe 4.2: Obtaining initial queries at resolver, root, TLD and SLD NSs. 

Table 4.9 shows the initial and repeat queries at the recursive resolvers, root, TLD and 
SLD NSs. In each column, the first row shows number of the initial queries while the 
second row shows the number of repeat queries at the corresponding POI.  

Table 4.9: Initial and repeat queries at the point of interests in the real world data. 
Query category Resolver Root NS TLD NS SLD NS 
Initial 7131 13 204 3414 
Repeat 2360 0 8 723 

Determining the distribution of initial Queries’ OS  
The last model input to be obtained from the real world data is the initial queries’ OS 
distribution. It indicates which fraction of the initial queries by which client type is 
generated rather than clients’ OS distribution. OS’s fingerprint on each DNS packet will 
be found by using the fact that OSs use different initial IP TTL values. The initial IP 
TTL is indicated under ‘Internet protocol’ header. Default initial IP TTL values for OSs 
[8]: 

• BSD and Linux variants: 60 or 64 
• Microsoft Windows: 128 
• MAC OS: 255 

Based on IP TTL values in each packet, initial queries’ OS distribution will be 
determined. Note that OS distribution will be determined by using initial queries and not 
by using aggregated queries. GetOSFraction m-file will be used to obtain the initial 
queries’ OS distribution. Table 4.10 shows the result. Supremacy of the Linux queries in 
Table 4.10 does not mean supremacy of the Linux clients in the data set. It might for 
instance indicate that the most aggressive clients are Linux clients in the data set. 
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Table 4.10: Initial queries’ OS distribution. 
 Linux Windows MAC 
Fraction (%) 60,1 30,2 9,7 

4.2.2 Model simulation 
Having obtained the model inputs from the real world data, these inputs can be used to 
determine the Scenario for the DNS reference model. In this subsection, at first the 
Scenario list will be formed and the model will be calibrated with the initial queries at 
the recursive resolver. Then, the DNS reference model run by using Monte Carlo 
simulations and the results will be obtained.  

Calibrating the model and creating the Scenario for the model 
The input parameters values obtained from the real-world data serve as a starting point 
for the validation process. As the data is captured at one single UNBOUND recursive 
resolver, the “Number of simultaneously active resolvers” entry of the Scenario given in 
Table 4.11 will be 1. Additionally, as data is captured at one UNBOUND recursive 
resolver, the model will be calibrated at this POI with the number of initial queries, 
instead of the number of initial queries at the users, i.e. before the client’s operating 
system and application browser. As a consequence, the “Number of simultaneously 
active DNS clients” entry of the Scenario given in Table 4.11 is determined by trial and 
error method: we found that with a query rate of 1 qpt, 9700 users generate 7131 initial 
queries at recursive resolver (obtained from real-world data). This number of 9700 users 
concerns thus “Number of simultaneously active DNS clients”. Calibrating the model at 
the recursive resolver, makes the first entry of the Scenario input “Fraction of IPv6 
clients w.r.t all clients” irrelevant since we consider all the queries from the client side as 
a bulk. Therefore, we can just adopt 0% for this entry. Furthermore, we will ignore the 
effect of secondary NSs by assuming that there will be no secondary NSs. This concerns 
the “Primary & secondary NS: average number” entry of the Scenario list. 

Table 4.11: Scenario for the model to imitate the real world data environment. 
Fraction of IPv6 clients w.r.t all clients. 0% 
Primary & secondary NS: average number 1 
Number of simultaneously active DNS clients 9.700 
Number of simultaneously active resolvers 1 

Running the model: Monte Carlo simulations 
Having obtained the Scenario for the model, we can now run the model. Algorithm 4.2 
is deployed to determine the model output. At each model drawing, initial and repeat 
queries at the POIs are determined for each client type (i.e. Windows-IE, MAC-Safari 
and Linux-Firefox), they are weighted by initial queries’ OS distribution and they are 
summed up. The DNS reference model is drawn 30.000 times and the histograms 
showing the weighted sum of initial and repeat queries at the POIs are obtained. These 
histograms can be seen in Appendix  IV. Most probable values from these histograms 
can be seen in Table 4.12. 
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i. Pick a random number for system variables Cache hit ratio and Response 
distribution at NS.  

ii. Run the DNS reference model with these numbers for each client type i.e. 
MAC-Safari, Linux-Firefox and Windows-IE. 

iii. Obtain the number of initial and repeat queries at the point of interests (POI) 
i.e. resolver, root, TLD and SLD NSs. 

iv. Compute the weighted sum of these numbers by using initial queries’ OS 
distribution given in Table 4.10. 

v. Repeat steps i up to iv n time to obtain n output values. 
vi. Make a histogram to see the possible outcomes with the frequency that they 

are occurring. 
Algorithm 4.2: Obtaining initial and repeat queries at the POIs in the DNS reference model. 

 
Table 4.12: Initial and repeat queries at the POIs in the DNS reference model. 

Query type Resolver Root NS TLD NS SLD NS 
Initial 7204 8 350 3030 
Repeat 1530 0 5 350 

4.2.3 Analysis of validation results 
Having obtained the DNS reference model output, we can compare it with the real world 
data output which is given in Table 4.9. We will test the model at two points: 

• Query distribution over the POIs in the DNS; 
• Repeat-initial query ratio at the POIs. 

Query distribution over the POIs in the DNS indicates the ratio between the total number 
of queries (i.e. initial and repeat queries) at POI and the total number of the queries in 
the entire system. For instance, in the DNS reference model output, the fraction of the 
queries at the resolver can be found as the ratio between the number of queries at 
recursive resolver and the number of queries in the entire system as: 

7204 1530 70%
7204 1530 8 350 5 3030 350

+
=

+ + + + + +
 

Table 4.13 shows the fractions of the queries at POIs in the real world data and in the 
DNS reference model data. It can be observed that DNS reference model can predict the 
query distribution over the POIs in the system with very small errors. We attribute the 
small error to the variance of the Cache hit ratio random variable. 

Table 4.13: Fractions of the queries at POIs in the real world data and in the model. 
Packet distribution Resolver (%) Root (%) TLD NS (%)  SLD NS (%)
Real world data 68,5 0,1 1,5 29,9 
Model 70,0 0,1 2,8 27,1 

 
The second test point of the DNS reference model concerns the repeat-initial query ratio 
at POIs. This ratio indicates the fraction of the repeat queries with respect to the total 
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number of queries at a particular POI. For instance, in the DNS reference model output, 
the faction of the repeat queries at the resolver can be found as: 

1530 17,5%
1530 7204

=
+

 

Table 4.14 shows the repeat initial ratio at POIs in the real world data and in the DNS 
reference model.  

Table 4.14: Initial-repeat query ratio at POIs in the real world data and in the model. 
Initial-repeat ratio Resolver (%) TLD NS (%)  SLD NS (%) 
Real world data 24,8 3,8 17,5 
Model 17,5 1,4 10,4 

At recursive resolver, a difference of 7,3% is observed. We expect this error occurs due 
to effect of IPv6 clients. As mentioned in Section 2.3.1, IPv6 enabled clients send two 
queries in pair for address resolution: A query and AAAA query. When they receive a 
negative response from the recursive resolver, then they will resend repeat queries also 
in pair. For instance, as depicted in Figure 3.4b, a Linux-Firefox client sends in total 
eight queries in case of a Servfail response. However, if an IPv6 enabled client receives 
a Servfail response then it will send additional eight AAAA queries beside the usual 
eight A queries. This is the effect of IPv6 enabled clients causing extra repeat queries the 
real world. However, this effect is not taken into consideration in the DNS reference 
model and this might cause the difference between real world and model outcomes at the 
resolver in Table 4.14. 
 
The error at the authoritative NSs might be due to the secondary NS effect. As 
mentioned in Subsection 2.1.2, there might be secondary NSs for a zone. When a 
recursive resolver receives a negative response from the primary NS, it tries to obtain the 
required DNS data by sending same query to secondary NS.  
 
Querying pattern of the recursive resolver is worth to mention. For instance, in case of 
Servfail response, we observed that UNBOUND sends, at first, two repeat queries to the 
primary NS. If it receives again Servfail responses, then it queries the secondary NS. If 
also secondary NS returns Servfail responses, then UNBOUND queries again the 
primary NS. This querying pattern continues until each NS is queried five times. In this 
way, a Servfail response causes in total ten queries instead of five as it was shown in 
Table 3.3. Note that the amount of ten can increase based on the number of secondary 
NSs. Each additional NS causes five extra queries. On the other hand, the response from 
the secondary NS can also be a positive answer while primary NS returns a negative 
response for the same domain name. In that case, a Servfail response causes just three 
queries instead of five.  
 
In the DNS reference model, we ignored the effect of secondary NS. We expect this 
contributes to the error at the authoritative NSs. Additionally, we expect that, in the 
dataset, there are also some other “hidden” anomalies having impact on the number of 
the repeat queries at the authoritative NS. 
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4.2.4 Sensitivity check 
An interesting question to be answered is how the variation in the system variables 
affects the outcome of the DNS reference model. In other words, how sensitive the 
model output is with respect to the random system variables. This question can be 
answered by coefficient of variance (CoV) metric. CoV is a statistical measure of 
dispersion around the mean in a probability distribution. CoV can be calculated as 
follows: 

CoV σ
µ

=                                         (4.7) 

where σ  is the standard deviation while µ  is the mean of the corresponding distribution. 
CoV is a useful statistic for comparing the degree of variation from one data series to 
another, even if the means are drastically different from each other. More details on CoV 
can be found in [40, 41].  

Figure 4.3 depicts CoVs for system variables and the output values of the DNS reference 
model. On the left hand side of Figure 4.3, CoVs for Response distribution at TLD NS, 
Response distribution at SLD NS and Cache hit ratio for UNBOUND are shown while 
on the right hand side, CoVs for the DNS reference model outputs are placed. In Figure 
4.3, two points are remarkable: 

• CoVs at the output are smaller than 1: This means that the dispersion in the 
distributions is small and all the values are concentrated around the mean. This is 
important since a small CoV indicates that mean value of the output is 
meaningful. This statement can be justified when considering Equation 4.8. 

Pr[ ( , )] 0,68x µ σ µ σ∈ − + =                                  (4.8) 

In Equation 4.8 µ  stands for the mean of the probabilistic distribution while σ  
is the standard deviation. Equation 4.8 can be rewritten as: 

Pr[ ( (1 ), (1 )] 0,68x σ σµ µ
µ µ

∈ − + =           (4.9) 

Substitution of Equation 4.7 in Equation 4.9 gives: 

Pr[ ( (1 ), (1 )] 0,68x CoV CoVµ µ∈ − + =                   (4.10) 

Equation 4.10 implies that when CoV of a probabilistic distribution is small, then 
the possible values for the random variable are concentrated around the mean.  

• CoVs of system variables and output values are comparable: This observation 
implies that the error at the input of the model will be at the same level at the 
output of the model. Hence, the DNS reference model does not amplify the 
uncertainty due to the random system variables.  
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Figure 4.3: CoVs for the system variables and for the outputs. 

4.3 Case studies 
Having validated the DNS reference model, we can evaluate case studies by using the 
DNS reference model. In this section, different case studies will be studied. In each case, 
the data set which is treated in Section 4.2 will be used as a reference data set. Hence, 
we assume the same initial queries’ OS distribution, same recursive resolver (i.e. 
UNBOUND) and so forth. 

 Case 1: The impact of Linux-Firefox and MAC-Safari clients’ 
aggressivity 

As shown in Table 3.1, the experiments in the lab environment have shown that the 
clients having Linux-Firefox and MAC-Safari combinations as their OS and application 
browser show more aggressive behaviour with respect to Windows-IE8 clients. To 
investigate the impact of this aggressivity, the DNS reference model will be deployed. 
To do that, an overall mix case will be compared to the Windows-IE only case in which 
it is assumed that all the clients are Windows-IE. The difference between the cases will 
give the impact of Linux-Firefox and MAC-Safari clients’ aggressivity. 
 
 Recall that in Section 4.2, the number of queries at POIs in the DNS reference model is 
determined and they are given in Table 4.12. Note that these values are for the overall 
mixed case. To determine the Windows-IE only case, the DNS reference model will be 
drawn with the same Scenario i.e. 9700 clients with 1.1.qpt. Table 4.15 shows the results. 

Table 4.15: The query rates towards resolver and authoritative NS. 
Client type Resolver Root NS TLD NS SLD NS 
Overall mix 8734 8 355 3380 
Windows-IE only 6002 7 283 2880 

The difference between overall mix rates and Windows-IE clients’ rates gives the impact 
of Linux-Firefox and MAC-Safari clients’ aggressivity. From Table 4.15, it can be 

Input's CoVs Output's CoVs

Valid: 0,02 Resolver Initials: 0
NXdomain: 0,36 Resolver Repeats: 0,10
Servfail: 1,00
Refused:1,00

Root Initials: 0,6
Valid: 0,02 Root Repeats: 0
NXdomain: 0,09 DNS Reference
Servfail: 0,24 Model
Refused:0,15 TLD Initials: 0,12

TLD Repeats: 0,68
Noncached: 0,64
TLD cached: 0,16
SLD cached: 0,08 SLD Initials: 0,08
Domain cached: 0,06 SLD Repeats: 0,17
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concluded that, if all the clients were using Windows-IE8 then the query flow towards 
the recursive resolver would decrease by 31% while a decrease of 13%, 2% and 20% 
would occur in the query flow to the root, TLD and SLD respectively. This is illustrated 
in Figure 4.4.  

-31%

-20%

-13%

-15%

Operating system
DNS stub

Applic. browser

Cache

Cache

CLIENT
Resolver
(DNS proxy)
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Tx device

 
Figure 4.4: Impact of Linux-Firefox and MAC-Safari clients’ aggressivity on DNS traffic. 

Case 2: The impact of Servfail responses’ increase  
In Section 2.3, we stated the DNS is facing several dramatic changes, among which the 
introduction of DNSSEC and accordingly the expected increase in Servfail responses 
due to validation errors. In Case 2, we evaluate the impact of the increase in Servfail 
responses by analysing the DNS traffic towards the recursive resolver, TLD and SLD 
NSs for different scenario’s of Servfail response amount increase in the system. 
 
At first, we increase the fraction of Servfail responses at TLD NS while keeping the 
fraction of Servfail responses at root and SLD NSs fixed. Note that as a consequence of 
additional Servfail responses at TLD NS, the number of repeat queries from the 
recursive resolver towards TLD NS and the number of Servfail responses from the 
recursive resolver towards the clients will increase, while the DNS traffic towards other 
POIs remains unchanged. Therefore, we will evaluate the traffic towards the recursive 
resolver and towards TLD NSs by increase of Servfail responses at TLD NS. After that, 
the number of Servfail responses at SLD NS will be increased and those at the TLD NS 
will be kept fixed. In that case, we will investigate the traffic towards SLD NS and the 
recursive resolver. Figure 4.5 and 4.6 show the result. In Figure 4.5, the amount of 
Servfail response increase at the authoritative NS is given on the x-axes. 2% on the x-
axes implies additional 2% Servfails to the existing Servfail responses. The values on the 
y-axes show the traffic increase towards the recursive resolver or towards the 
authoritative NS as a consequence of the Servfail increase at TLD NS.  
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Figure 4.5: Impact of Servfail increase at TLD NS on DNS traffic. 
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Figure 4.6: Impact of Servfail increase at SLD NS on DNS traffic. 

In both Figure 4.5 and 4.6, the DNS traffic towards the authoritative NSs increases 
significantly by the increase of Servfail responses. We note that the Servfail increase at 
TLD NS is not expected to be as large as the Servfail increase at SLD NS. In worst case 
scenario, 15% additional SLD NS Servfail response increase is considered. This would 
cause a DNS traffic increase of almost 50% towards SLD NS. This increase indicates 
that the concerns about the impact of DNSSEC on the DNS traffic might be right and 
more attention should be paid on the infrastructure upgrading. 
 
In Figure 4.5 and 4.6, we see that when Servfail responses are increased at SLD NS, 
DNS traffic increase towards the recursive resolver is higher than the case that the 
Servfail responses are increased at TLD NS. This is due to the fact that the amount of the 
queries going to SLD NS is significantly larger than the queries going to TLD NS. 
Therefore, increasing the Servfail response fraction at SLD NS will cause much more 
Servfail responses at the recursive resolver in comparison with the increasing Servfail 
response fraction at the TLD NS. 
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Case 3: Impact of domain name blocking 
In this case study, we address ICANN’s concern about the impact of censure on DNS 
traffic. Blocking of a domain name can be done by returning either an NXdomain or a 
Servfail response or by giving no response to the client for the requested domain name. 
The question is then what the impact of blocking of domain names would be on the DNS 
traffic. In this case study we will consider blocking by NXdomain and Servfail responses 
and compare their impact on DNS traffic.  
 
We assume that blocking is done on the complete domain name i.e. at SLD NS level. 
Figure 4.7 shows the comparison of the impacts of NXdomain and Servfail responses 
increases’ on the DNS traffic towards SLD NS. 
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Figure 4.7: Impacts of NXdomain and Servfail responses increases’ on DNS traffic. 

Figure 4.7 show that blocking by NXdomain brings less additional query load in the 
system. Looking at the DNS traffic towards the recursive resolver, we observe that the 
amount of DNS traffic is halved when returning an NXdomain response instead of a 
Servfail response for censure. The huge difference is observed when considering the 
traffic increase towards the SLD NS. Servfail response increase can cause, in worst case 
scenario, almost 50% DNS traffic increase towards SLD NS. On the other hand, the 
increase of NXdomain responses at the SLD NS does not affect the DNS traffic towards 
SLD NS i.e. almost 0% DNS traffic increase towards SLD NS. This result is not 
surprising because we know that UNBOUND caches the NXdomain responses. This 
means that UNBOUND will respond to the repeat queries for the censured domain name 
from its cache and it will not send any repeat query towards the authoritative NS. 
Therefore, we conclude that returning an NXdomain response brings less traffic load in 
the system than returning a Servfail response for a censured domain name request. 
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Conclusion and Future Work 
 

 

5.1 Conclusion 
DNS is facing the most radical changes with the introduction of new technologies. 
Introduction of IPv6 leads to AAAA queries in addition to A queries. This fact causes an 
increase in the number of the queries going to the authoritative NSs. This point deserves 
more attention when considering the exhaustion of IPv4 addresses meaning that, in near 
future, a big part of the end users will be IPv6 enabled. Introduction of IND ccTLD and 
DNSSEC gives rise to an increase in negative responses from the authoritative NSs, in 
particular in the NXdomain and Servfail responses. These responses trigger an avalanche 
of the repeat queries towards the recursive resolvers and authoritative NSs. These facts 
raise concerns about the stability of DNS in the future. Whether they are right can be 
answered by a model with which the DNS behaviour can be predicted. 
 
To satisfy this need, we created a DNS reference model. Our primary concern was the 
scalability of the DNS. We therefore modeled DNS at the flow level, being only 
interested in the query flow distribution at an arbitrary point in time. Consequently, the 
time notion did not play a role and the distribution of the DNS queries was only 
dependent on the behaviour of various components in the DNS system. 
 
In the DNS reference model we assumed that all the client types had the same querying 
pattern whereas all the recursive resolvers had the same querying behaviour. This 
assumption allowed us to control the entire client side by adjusting just one parameter. 
Furthermore, we modeled the root NSs as one NS since we were not interested in how 
the queries were distributed over the different root NSs. The same was done also for 
TLD and SLD NSs.  
 
In the DNS reference model, we distinguished the following generic components: 
application browser, OS, recursive resolver and the authoritative NSs consisting of root, 
TLD and SLD NSs. In order to capture the different behaviour of all these components 
we introduced three different system variables:  
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• Query multiply factor is used to characterize the client and the resolver behaviour. 
It indicates how many queries will be reinitiated by a component in reaction to a 
negative query response. 

• Cache hit ratio is used to model the caching property of the client and the 
recursive resolver. It is the value which indicates the probability that a queried 
domain name will be in the cache of a system component under consideration. 

• Response distribution at authoritative NS is used to characterize the authoritative 
NSs behaviour with respect to the different types of DNS responses. It indicates 
the fraction of response types which are given, in response to incoming initial 
queries, at the authoritative NSs. 

We determined Query multiply factor by expanding the lab experiments of results 
presented in [26]. For Cache hit ratio and Response distribution at authoritative NS, we 
found the probabilistic distributions by analyzing real world data which is captured at a 
recursive resolver. We showed that these two system variables can be approximated by 
normal distribution. To determine the distributions we ensured that the datasets were 
independent by using Von Neumann test. Later on, by using Q-Q plots, we verified that 
they were normally distributed.  
 
Having determined the probabilistic distributions for the system variables we accounted 
for the stochastic behaviour of DNS. For the validation of the model, we relied on the 
approach of Monte Carlo simulation.  
 
Before validating the results, we analyzed a new data set (captured in a different setting 
of a recursive resolver) to obtain input parameters for the model. Having compared the 
results from the real world data and the results from the DNS reference model, we 
showed that the DNS reference model captured the DNS behaviour properly. Recall that 
there were two test points for the model performance evaluation: the distribution of the 
queries over the POIs in the system and the initial-repeat queries ratio at the POIs. We 
observed a negligible error at the first test point while the error in the second test point 
was relatively small. We attributed the error in the second test point to the effects of 
IPv6 enabled clients and the secondary NSs. After validating the model, we used CoV 
metric to show that the model output is not sensitive to the uncertainty in the system 
variables. 
 
Finally, we evaluated different case studies to assess the impact of the challenges the 
DNS is facing in near future. We did the impact analysis for Linux-Firefox and MAC-
Safari clients’ aggressivity, Servfail response increase and the censure on domain names. 
By addressing these concerns, also put forward by ICANN, we gave a couple of 
examples how and in which cases the DNS reference model could be used  

5.2 Future work 
There are number of ways in which this work can be extended. At first, the data sets 
considered in this study are captured by the recursive resolvers operated by SURFnet. 
Validation of the DNS reference model by data from the different environments e.g. 
another ISP or a registrar, can give a broader view on DNS reference model applicability. 
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Additionally, we used a data set consisting of 300.000 DNS packets to determine the 
system variables. Although the dataset was large enough to determine almost all system 
variables, we have experienced that it was not sufficient to determine the Response 
distribution at the root NS. Remarking that the Response distribution at the authoritative 
NS has crucial importance for the initial-repeat query ratio, we recommend making data 
analysis with larger data sets to obtain representative numbers for all the system 
variables.  
 
Furthermore, we could not model all the specific factors in DNS due to time constraint. 
The most important among those not modeled factors are the effects of the secondary 
NSs and IPv6 enabled hosts. We attributed the difference between the outcomes of the 
real world data and the DNS reference model to these effects. We expect that modeling 
these factors would reduce the error and lead to a better performance of the DNS 
reference model on the prediction of DNS behaviour.  
 
We evaluated three different case studies to give a feeling how to use the DNS reference 
model. These case studies can be extended with other relevant case studies. For instance, 
there are some important application browser features which contribute significantly to 
redundant DNS traffic. Prefetching and domain name completion are two of the most 
important ones. The impact of these features can be analyzed by using DNS reference 
model as future research topic. 
 
Lastly, we have presented a recipe (see Recipe 4.1) to detect anomalies in the dataset. 
Recipe 4.1 concerns anomalies only in client traffic. However, there might also be 
anomalies in the recursive resolver traffic caused by e.g. a misconfigured recursive 
resolver. More advanced algorithms for detecting these DNS abusers would contribute 
significantly to anomaly detection in the dataset and help improving the results. 
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Appendix  
I. DNSSEC 
DNS security extensions (DNSSEC) are a set of specifications used to add an additional 
layer of security to the DNS so that computers can verify that they are connected to 
proper servers [43].  By caching address information, NSs don’t have to look up the IP 
address every time a frequently visited site is accessed. If malicious parties are able to 
insert a bogus IP address into a cache, however, all users of that NS will be directed to 
the wrong site (until the cache expires and is refreshed). Corrupting the operation of 
DNS in this way can lead to many kinds of fraud and other malicious activity. 
 
To defend against the threats, DNSSEC is designed to achieve two security goals: data 
origin authentication and data integrity. DNSSEC uses public key cryptography to 
enable each zone to prove the authenticity and the integrity of the DNS data. To achieve 
this, DNSSEC defines a number of different RRs, namely DNSKEY, RRSIG, NSEC and 
DS RRs [19].  
 
When requested by the client in the DNS query, the authoritative NS will add RRSIG 
RR to the DNS responses. RRSIG is an encrypted hash of the RRsets. This is intended to 
allow the DNS client to authenticate the DNS response. If there is no authoritative DNS 
data to respond to the query, such as when no such domain name exists, then the DNS 
response will include an NSEC RR response, plus its accompanying RRSIG record. In 
addition to an RRSIG response covering the RRset records in the answer section of the 
DNS response, there is also an RRSIG response covering the records in the authority 
section and one or more RRSIG responses relating to records in the additional response 
section. 
 
To verify the validation of the received DNS response, the DNSSEC-aware client should 
perform a three-step procedure. First, the hash of the received RRset has to be generated. 
Then, the RRSIG has to be decrypted with the zone’s public key, published by 
DNSKEY RR [19], and the hash value of RRSIG can be retrieved. Finally, these two 
hash values have to be compared. If the DNS response is authentic then the hash of the 
RRset data will match the decrypted RRSIG hash value [27].  
 
For DNSSEC to work, the recursive resolver needs to know that the public key being 
used is trustworthy. This creates a chicken-and-egg situation: the resolver needs to ask 
the NS for its public key, but the public key itself is used to verify the NS’s identity. 
This problem is solved by concept of chain of thrust. 
The chain of trust makes it possible to start with a root zone key, the highest possible 
key in the DNS tree, and following cryptographic pointers to lower zones. Each pointer 
is validated with the previous validated zone key. For instance ‘www.tno.nl’ is an A 
record which is signed at the SLD NS for ‘tno.nl’. ‘tno.nl’ is signed at TLD NSs for 
‘com’ which is signed at the root. By using this mechanism only the root key is needed 
to validate all DNSSEC keys on the Internet and since the root key is a public key, it can 
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be done very easily. With these DNSSEC keys the DNS data in each zone can then be 
validated.  
 
The chain of trust works by following "secured pointers," which are called secured 
delegation in DNSSEC. A special new record called the Delegation Signer (DS) record 
delegates trust from a parental key to a child's zone key. The DS record holds a hash of a 
child's zone key. This DS record is signed with the zone key from the parent. By 
checking the signature of the DS record, a resolver can validate the hash of the child's 
zone key. If this is successful, the resolver can compare this validated hash with the yet-
to-be-validated hash of the child's zone key. If these two hashes match, the child's real 
zone key can be used for validation of data in the child's zone. By successfully following 
a secured delegation, the amount of trust a resolver has in the parental key is transferred 
to a child's key [11]. The chain of thrust concept is illustrated by Figure I.1. 

 
Figure I.1: DNSSEC chain of thrust concept. 

When an unauthenticated end user wants to access a signed server, the end user will be 
responded with a Servfail response [49]. 
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II. MATLAB m-files 
In this section, we provide the MATLAB m-files which are mentioned in the report. The 
m-files are generated in MATLAB 7.4.0 (R2007a). 
 
GetPacketDetails.m 
function [ID, Type, Name, Destination, Source, IP_TTL, Time, 
PacketDetails]=GetPacketDetails(A) 
  
% This m-file retrieves ID, type, name, destination, source, IP TTL and time stamp of 
each DNS packet in the data set A. 
 
%   Input:       A= is the cell converted from a txt file.  
%   Output:     ID= row vector containing ID's of all packets in A 
%               Type= row vector containing types of all packets in A 
%                Name= row vector containing names of all packets in A 
  
ID={}; 
Type={}; 
Name={}; 
Destination={}; 
Source={}; 
IP_TTL={}; 
Time={}; 
S=size(A); 
  
for i=1:S(1) 
     
    if strcmp(A{i,1},'Transaction') == 1 
        tempID=A{i,3}; 
        l=char(tempID); 
        h=cellstr(l); 
        ID=[ID h]; 
    end 
end 
     
for i=1:S(1) 
     
    if strcmp(A{i,1},'Type:') == 1 
        tempType=A{i,2}; 
        p=char(tempType); 
        k=cellstr(p); 
        Type=[Type k];  
    end 
end     
     
for i=1:S(1) 
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    if strcmp(A{i,1},'Name:') == 1 
        tempName=A{i,2}; 
        o=char(tempName); 
        c=cellstr(o); 
        Name=[Name c]; 
    end 
end     
for i=1:S(1) 
     
    if strcmp(A{i,1},'Internet') == 1 
        tempDest=A{i,7}; 
        l=char(tempDest); 
        d=cellstr(l); 
        Destination=[Destination d]; 
         
        tempSrc=A{i,4}; 
        v=char(tempSrc); 
        j=cellstr(v); 
        Source=[Source j]; 
    end 
end 
  
for i=1:S(1) 
     
    if strcmp(A{i,1},'Time') == 1 
        tempTTL=A{i,4}; 
        l=char(tempTTL); 
        h=cellstr(l); 
        IP_TTL=[IP_TTL h]; 
   end 
end 
  
for i=1:S(1) 
     
    if strcmp(A{i,1},'Arrival') == 1 
        tempTime=A{i+3,7}; 
        o=char(tempTime); 
        c=cellstr(o); 
        Time=[Time c]; 
    end 
end    
  
PacketDetails=[ID' Type' Name' Destination' Source' IP_TTL' Time']; 
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SortPackets.m 
function [SortedPackets]=SortPackets(A) 
% This file detects different query types and classifies them based on their query types. 
Then the smaller subsets are sorted again based their query name. Hence; sorting of 
sorted data. 
  
%Input:       A:   It is the mixed cell containing ID, name and types of 
    queries. This is the cell converted from the txt file. 
%Output:    SortedPackets:  It contains all the packets sorted. These queries are first 

sorted based on their type i.e. all A queries are grouped 
together while all AAAAqueries are sorted separately. 
Then in these subsets they are sorted again based on their 
domain names. 

   
[ID, Type, Name, Destination, Source,IP_TTL, Time, 
PacketDetails]=GetPacketDetails(A); 
  
%First sorting based on packet types e.g. A, AAAA or PTR. 
Aqueries={};    
AAAAqueries={}; 
PTRqueries={}; 
MXqueries={}; 
ANYqueries={}; 
TXTqueries={}; 
SRVqueries={}; 
SOAqueries={}; 
DSqueries={}; 
  
types=PacketDetails(:,2); 
S=size(types); 
  
for i=1:S(1) 
    temp1=types{i,1}; 
    temp2=PacketDetails(i,:); 
     
    if strcmp(temp1,'A') == 1 
        Aqueries=[Aqueries; temp2]; 
    elseif strcmp(temp1,'AAAA') == 1 
        AAAAqueries=[AAAAqueries;temp2]; 
    elseif strcmp(temp1,'PTR') == 1 
        PTRqueries=[PTRqueries;temp2]; 
    elseif strcmp(temp1,'MX') == 1 
        MXqueries=[MXqueries;temp2]; 
    elseif strcmp(temp1,'ANY') == 1 
        ANYqueries=[ANYqueries;temp2]; 
    elseif strcmp(temp1,'TXT') == 1 
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        TXTqueries=[TXTqueries;temp2]; 
    elseif strcmp(temp1,'SRV') == 1 
        SRVqueries=[SRVqueries;temp2]; 
    elseif strcmp(temp1,'DS') == 1 
        DSqueries=[DSqueries;temp2]; 
    elseif strcmp(temp1,'SOA') == 1 
        SOAqueries=[SOAqueries;temp2]; 
    end 
end 
  
%Then sorting based on domain names 
SortedAqueries={}; 
SortedAAAAqueries={}; 
SortedPTRqueries={}; 
SortedMXqueries={}; 
SortedANYqueries={}; 
SortedTXTqueries={}; 
SortedSRVqueries={}; 
SortedSOAqueries={}; 
SortedDSqueries={}; 
   
Sa=size(Aqueries);          %Sorting A queries 
if Sa(1)>0 
ANames=Aqueries(:,3); 
[B, IXA]= sort(ANames); 
  
    for i=1:Sa(1) 
        temp1=IXA(i); 
        temp2=Aqueries(temp1,:); 
        SortedAqueries=[SortedAqueries; temp2]; 
    end 
end 
  
Saaaa=size(AAAAqueries);    %Sorting AAAA queries        
if Saaaa(1)>0 
AAAANames=AAAAqueries(:,3); 
[B, IXAAAA]=sort(AAAANames); 
  
    for i=1:Saaaa(1) 
        temp1=IXAAAA(i); 
        temp2=AAAAqueries(temp1,:); 
        SortedAAAAqueries=[SortedAAAAqueries; temp2]; 
    end 
end 
  
Sptr=size(PTRqueries);      %Sorting PTR queries 



 

 

69

69

if Sptr(1)>0 
PTRNames=PTRqueries(:,3); 
[B, IXPTR]= sort(PTRNames); 
  
    for i=1:Sptr(1) 
        temp1=IXPTR(i); 
        temp2=PTRqueries(temp1,:); 
        SortedPTRqueries=[SortedPTRqueries; temp2]; 
    end 
end 
  
Smx=size(MXqueries);        %Sorting MX queries 
if Smx(1)>0 
MXNames=MXqueries(:,3); 
[B, IXMX]= sort(MXNames); 
  
    for i=1:Smx(1) 
        temp1=IXMX(i); 
        temp2=MXqueries(temp1,:); 
        SortedMXqueries=[SortedMXqueries; temp2]; 
    end 
end 
  
Sany=size(ANYqueries);      %Sorting ANY queries 
if Sany(1)>0 
ANYNames=ANYqueries(:,3); 
[B, IXANY]= sort(ANYNames); 
  
    for i=1:Sany(1) 
        temp1=IXANY(i); 
        temp2=ANYqueries(temp1,:); 
        SortedANYqueries=[SortedANYqueries; temp2]; 
    end 
end 
  
Stxt=size(TXTqueries);      %Sorting TXT queries 
if Stxt(1)>0 
TXTNames=TXTqueries(:,3); 
[B, IXTXT]= sort(TXTNames); 
  
    for i=1:Stxt(1) 
        temp1=IXTXT(i); 
        temp2=TXTqueries(temp1,:); 
        SortedTXTqueries=[SortedTXTqueries; temp2]; 
    end 
end 
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Ssrv=size(SRVqueries);      %Sorting SRV queries 
if Ssrv(1)>0 
SRVNames=SRVqueries(:,3); 
[B, IXSRV]= sort(SRVNames); 
  
    for i=1:Ssrv(1) 
        temp1=IXSRV(i); 
        temp2=SRVqueries(temp1,:); 
        SortedSRVqueries=[SortedSRVqueries; temp2]; 
    end 
end 
  
Ssoa=size(SOAqueries);      %Sorting SRV queries 
if Ssoa(1)>0 
SOANames=SOAqueries(:,3); 
[B, IXSOA]= sort(SOANames); 
  
    for i=1:Ssoa(1) 
        temp1=IXSOA(i); 
        temp2=SOAqueries(temp1,:); 
        SortedSOAqueries=[SortedSOAqueries; temp2]; 
    end 
end 
  
Sds=size(DSqueries);      %Sorting DS queries 
if Sds(1)>0 
DSNames=DSqueries(:,3); 
[B, IXDS]= sort(DSNames); 
  
    for i=1:Sds(1) 
        temp1=IXDS(i); 
        temp2=DSqueries(temp1,:); 
        SortedDSqueries=[SortedDSqueries; temp2]; 
    end 
end 
  
SortedPackets=[SortedAqueries; SortedAAAAqueries; SortedPTRqueries; 
SortedMXqueries; SortedANYqueries; SortedTXTqueries; SortedSRVqueries; 
SortedSOAqueries; SortedDSqueries]; 
 
GetInitialQueriesAtResolver.m 
function [InitialQueries, RepeatQueries, NumberOfInitials, NumberOfRepeats] = 
GetInitialQueriesAtResolver(A) 
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%This m-file is used to determine the repeat queries and the initials queries @ resolver. 
It is assumed that all the queries are received by %just one destination.  
  
% Input:         A: From Wireshark exported detailed data. Frame, IP and DNS headers 
  should be visible, query details as well! 
% Outputs:      InitialQueries: Initial queries from the data set. 
%               RepeatQueries: Repeat queries for the initial queries. 
%  NumberInitialQueries: Number of initial queries. 
%  NumberRepeatQueries: Number of repeat queries. 
  
[SortedPackets]=SortPackets(A); 
Src=SortedPackets(:,5); 
Time=SortedPackets(:,7); 
Type=SortedPackets(:,2); 
Name=SortedPackets(:,3); 
S=size(Name); 
  
InitialQueries=SortedPackets(1,:);      % First element in the list is always an initial 
query 
RepeatQueries={}; 
for i=2:S(1) 
     
    temp=SortedPackets(i,:); 
    temp11char=Time{i}; 
    temp11=str2num(temp11char); 
    temp12=Type(i); 
    temp13=Name(i); 
    temp14=Src(i); 
     
    count=0; 
    SrcI=InitialQueries(:,5); 
    TimeI=InitialQueries(:,7); 
    TypeI=InitialQueries(:,2); 
    NameI=InitialQueries(:,3); 
     
    SI=size(InitialQueries); 
    for j=1:SI(1) 
         
        temp21char=TimeI{j}; 
        temp21=str2num(temp21char);         
        temp22=TypeI(j); 
        temp23=NameI(j); 
        temp24=SrcI(j); 
         
        if (strcmp(temp12,temp22) == 1) && (strcmp(temp13,temp23) == 1)&& 
(strcmp(temp14,temp24) == 1)&& (temp11-temp21)<13 
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            count =count+1;  
        end   
    end 
  
    if count>0 
            RepeatQueries=[RepeatQueries; temp]; 
        else 
            InitialQueries=[InitialQueries; temp]; 
    end 
end 
  
S1=size(InitialQueries); 
S2=size(RepeatQueries); 
  
NumberOfInitials=S1(1); 
NumberOfRepeats=S2(1); 
 
GetInitialQueriesAtNS.m 
function [InitialQueries, RepeatQueries, NumberOfInitials, NumberOfRepeats ] = 
GetInitialQueriesAtNS(A) 
  
%This m-file is used to determine # of repeats and initials towards authoritative NS. It is 
assumed that all the queries are sent by just one source.  
 
%Input: A: From Wireshark imported DNS data.  
%Output: InitialQueries: Set of initial queries and repeat queries. 
%  RepeatQueries: Set of repeat queries. 
%  NumberInitialQueries: Number of initial queries. 
%  NumberRepeatQueries: Number of repeat queries. 
  
[SortedPackets]=SortPackets(A); 
Time=SortedPackets(:,7); 
Type=SortedPackets(:,2); 
Name=SortedPackets(:,3); 
S=size(Name); 
  
InitialQueries=SortedPackets(1,:);      % First element in the list is always an initial 
query 
RepeatQueries={}; 
for i=2:S(1) 
     
    temp=SortedPackets(i,:); 
    temp11char=Time{i}; 
    temp11=str2num(temp11char); 
    temp12=Type(i); 
    temp13=Name(i); 
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    count=0; 
    TimeI=InitialQueries(:,7); 
    TypeI=InitialQueries(:,2); 
    NameI=InitialQueries(:,3); 
     
    SI=size(InitialQueries); 
    for j=1:SI(1) 
         
        temp21char=TimeI{j}; 
        temp21=str2num(temp21char);         
        temp22=TypeI(j); 
        temp23=NameI(j); 
          
        if (strcmp(temp12,temp22) == 1) && (strcmp(temp13,temp23) == 1)&& (temp11-
temp21)<3 
            count =count+1;  
        end   
    end 
  
    if count>0 
            RepeatQueries=[RepeatQueries; temp]; 
        else 
            InitialQueries=[InitialQueries; temp]; 
    end 
end 
  
S1=size(InitialQueries); 
S2=size(RepeatQueries); 
  
NumberOfInitials=S1(1); 
NumberOfRepeats=S2(1); 
 
GetOSFraction.m 
function [Linux, Windows, MAC, Lost]=GetOSFraction(InitialQueries) 
%This m-file computes number of Linux, MAC and Windows clients. 
  
%Input:      InitialQueries: Set of initial queries 
%Output: Number of Linux, MAC and Windows clients. 
  
IP_TTL=InitialQueries(:,6); 
Si=size(InitialQueries); 
  
Linux=0; 
Windows=0; 
MAC=0; 
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Lost=0; 
  
for i=1:Si(1) 
     
    if strcmp(IP_TTL{i,1},'64') == 1 ||strcmp(IP_TTL{i,1},'63') == 1 
||strcmp(IP_TTL{i,1},'62') == 1 || strcmp(IP_TTL{i,1},'61') == 1 
||strcmp(IP_TTL{i,1},'60') == 1 ||strcmp(IP_TTL{i,1},'59') == 1 
||strcmp(IP_TTL{i,1},'58') == 1 ||strcmp(IP_TTL{i,1},'57') == 
1||strcmp(IP_TTL{i,1},'56') == 1||strcmp(IP_TTL{i,1},'55') == 
1||strcmp(IP_TTL{i,1},'54') == 1||strcmp(IP_TTL{i,1},'53') == 
1||strcmp(IP_TTL{i,1},'52') == 1||strcmp(IP_TTL{i,1},'51') == 
1||strcmp(IP_TTL{i,1},'50') == 1||strcmp(IP_TTL{i,1},'49') == 
1||strcmp(IP_TTL{i,1},'48') == 1||strcmp(IP_TTL{i,1},'47') == 
1||strcmp(IP_TTL{i,1},'46') == 1||strcmp(IP_TTL{i,1},'45') == 
1||strcmp(IP_TTL{i,1},'44') == 1||strcmp(IP_TTL{i,1},'43') == 
1||strcmp(IP_TTL{i,1},'42') == 1||strcmp(IP_TTL{i,1},'41') == 
1||strcmp(IP_TTL{i,1},'40') == 1 
 
       Linux=Linux+1; 
 
    elseif strcmp(IP_TTL{i,1},'128') == 1 ||strcmp(IP_TTL{i,1},'127') == 1 
||strcmp(IP_TTL{i,1},'126') == 1 || strcmp(IP_TTL{i,1},'125') == 1 
||strcmp(IP_TTL{i,1},'124') == 1 ||strcmp(IP_TTL{i,1},'123') == 1 
||strcmp(IP_TTL{i,1},'122') == 1||strcmp(IP_TTL{i,1},'121') == 
1||strcmp(IP_TTL{i,1},'120') == 1||strcmp(IP_TTL{i,1},'119') == 
1||strcmp(IP_TTL{i,1},'118') == 1||strcmp(IP_TTL{i,1},'117') == 
1||strcmp(IP_TTL{i,1},'116') == 1||strcmp(IP_TTL{i,1},'115') == 
1||strcmp(IP_TTL{i,1},'114') == 1||strcmp(IP_TTL{i,1},'113') == 
1||strcmp(IP_TTL{i,1},'112') == 1||strcmp(IP_TTL{i,1},'111') == 
1||strcmp(IP_TTL{i,1},'110') == 1||strcmp(IP_TTL{i,1},'109') == 
1||strcmp(IP_TTL{i,1},'108') == 1||strcmp(IP_TTL{i,1},'107') == 
1||strcmp(IP_TTL{i,1},'106') == 1||strcmp(IP_TTL{i,1},'105') == 
1||strcmp(IP_TTL{i,1},'104') == 1 
 
       Windows=Windows+1; 
 
    elseif strcmp(IP_TTL{i,1},'255') == 1 ||strcmp(IP_TTL{i,1},'254') == 1 
||strcmp(IP_TTL{i,1},'253') == 1 || strcmp(IP_TTL{i,1},'252') == 1 
||strcmp(IP_TTL{i,1},'251') == 1 ||strcmp(IP_TTL{i,1},'250') == 1 
||strcmp(IP_TTL{i,1},'249') == 1||strcmp(IP_TTL{i,1},'248') == 
1||strcmp(IP_TTL{i,1},'247') == 1||strcmp(IP_TTL{i,1},'246') == 
1||strcmp(IP_TTL{i,1},'245') == 1||strcmp(IP_TTL{i,1},'244') == 
1||strcmp(IP_TTL{i,1},'243') == 1||strcmp(IP_TTL{i,1},'242') == 
1||strcmp(IP_TTL{i,1},'241') == 1||strcmp(IP_TTL{i,1},'240') == 
1||strcmp(IP_TTL{i,1},'239') == 1||strcmp(IP_TTL{i,1},'238') == 
1||strcmp(IP_TTL{i,1},'237') == 1||strcmp(IP_TTL{i,1},'236') == 
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1||strcmp(IP_TTL{i,1},'235') == 1||strcmp(IP_TTL{i,1},'234') == 
1||strcmp(IP_TTL{i,1},'233') == 1||strcmp(IP_TTL{i,1},'232') == 
1||strcmp(IP_TTL{i,1},'231') == 1||strcmp(IP_TTL{i,1},'230') == 1 
 
       MAC=MAC+1;    
 
    elseif strcmp(IP_TTL{i,1},'10') == 1||strcmp(IP_TTL{i,1},'9') == 
1||strcmp(IP_TTL{i,1},'8') == 1||strcmp(IP_TTL{i,1},'7') == 1||strcmp(IP_TTL{i,1},'6') 
== 1||strcmp(IP_TTL{i,1},'5') == 1||strcmp(IP_TTL{i,1},'4') == 
1||strcmp(IP_TTL{i,1},'3') == 1||strcmp(IP_TTL{i,1},'2') == 1||strcmp(IP_TTL{i,1},'1') 
== 1 
       Lost=Lost+1; 
 
    end 
end 
 
ImportText.m 
function [A]=ImportText(text) 
% The code in this m file can be used to convert a text file into a S*17 cell where s is # 
of rows of the file. All the characters are saved as string. Note that it does not work as a 
function. Hence, you just need to copy the code and evaluate it. 
 
% Input:     text= txt file. 
% Output:    A= cell consisting of strings. 
  
[col1 col2 col3 col4 col5 col6 col7 col8 col9 col10 col11 col12 col13 col14 col15 col16 
col17] = 
textread('QueriesToPOI.txt','%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s*[^\n]'); 
  
A = horzcat(col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13, 
col14, col15, col16, col17); 

III. Recipes 
In this section, we provide the detailed Wireshark commands for Recipe 4.1 and 4.2.  
 
Recipe 4.1: 

i. Ip.dst == “IP address of the recursive resolver” e.g.195.169.124.124. 
ii. “Statistics => Ip addresses”: This shows all the clients with the fraction of query 

that they are generating.  
iii. Ip.addr == “Ip address of aggressive clients”: This gives a breakdown of the 

aggressive client traffic towards/from the recursive resolver.  
 

 
 
 
Recipe 4.2: 
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Obtaining data from Wireshark: 
i. Ip.dst == “IP address of recursive resolver” (for queries towards resolver)  
ii. Make Frame, IP and DNS headers open. Additionally, make query details in 

DNS header visible.  
iii. Go to File=>Export=> Plain Text. Choose “Displayed” button and tick 

“Packet details”/ “As displayed” and obtain “QueriesToResolver”. 
iv. ip.dst == “All root NS IP addresses” (for queries towards root NSs)  
v. Repeat ii and iii. Obtain “QueriesToRoot”. 
vi. ip.dst == “All TLD NS IP addresses” (for queries towards TLD NSs) 
vii. Repeat ii and iii. Obtain “QueriesToTLD”. 
viii. ip.src == “IP address of recursive resolver” && dns.flags.response == 0 && 

not(ip.dst == “All TLD NS IP addresses”) && not(ip.dst == “All Root NS IP 
addresses”) 

ix. Repeat ii and iii. Obtain “QueriesToSLD”. 
 

Processing data with MATLAB: 
x. Convert all these files in .txt file so that it can be read by MATLAB. 
xi. Import “QueriesToResolver” by ImportTest.m and obtain the initial and 

repeat queries at the recursive resolver by GetInitialQueriesAtResolver.m 
xii. Import “QueriesToRoot”, “QueriesToTLD” and “QueriesToSLD” by 

ImportTest.m and obtain the initial and repeat queries at the recursive 
resolver by GetInitialQueriesAtNS.m 

IV. Histograms 
Recall that when running the DNS reference model we deployed the Monte Carlo 
simulation with 30.000 repetitions. In this section, we provide the histograms of the 
DNS reference model outputs from the Monte Carlo simulations. On the x-axes, the 
weighted sum of initial and repeat queries at the POIs is depicted while on the y-axes, 
the number of times that a possible outcome occurred is shown. Note that the most 
probable values from these histograms are depicted n in Table 4.12. 
 

Root Initial Queries

0

20

40

60

80

100

120

0 2 4 6 8 10 12 14 16 18 20 22

Query number

Fr
eq

ue
nc

y

 



 

 

77

77

Recursive Resolver Repeat Queries
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SLD Initial Queries

0

10

20

30

40

50

60

23
30

24
10

24
90

25
70

26
50

27
30

28
10

28
90

29
70

30
50

31
30

32
10

32
90

33
70

34
50

35
30

36
10

36
90

More

Query number

Fr
eq

ue
nc

y

 

SLD Repeat Queries

0

20

40

60

80

100

120

140

160

15
0

19
0

23
0

27
0

31
0

35
0

39
0

43
0

47
0

51
0

55
0

Query number

Fr
eq

ue
nc

y

 
 
 
 


