
Comparing Ochiai and Relief for
Spectrum-based Fault Localization

Brian Oburak Omoro

Comparing Ochiai and Relief for
Spectrum-based Fault Localization

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Brian Oburak Omoro
born in Torit, South Sudan

Software Engineering Research Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

c⃝2013 Brian Oburak Omoro.

Comparing Ochiai and Relief for
Spectrum-based Fault Localization

Author: Brian Oburak Omoro
Student id: 4025687
Email: b.o.omoro@student.tudelft.n

Abstract

Fault localization is one of the activities of system diagnosis and its goal is to
pinpoint the precise locations of faults in systems. This process is recognized as one
of the most tedious, time-consuming and expensive undertakings of fault diagnosis.
Consequently research in this domain have lead to the birth of numerous approaches
to automate the process in order to minimize failures and produce reliable systems.
Among the proposed fault localization approaches are the statistical-based Spectrum-
based Fault Localization (SFL) and machine learning based Feature Selection Relief.
In SFL, the assumed faultiness of a system component is computed using a similarity
coefficient and the most commonly used coefficients are Ochiai, Tarantula and Jac-
card. Currently, Ochiai clearly outperforms most of the known similarity coefficients
in SFL. The Feature Selection based Relief, in short known as Relief, is an alterna-
tive technique that has been recently proposed for fault localization. The Relief tech-
nique works by assigning relevance weights to components and the components that
are likely to be faulty receive the highest relevance weights. In this document, we de-
scribe the study performed to compare the performance of Ochiai and Relief for SFL
in various systems using the SFL-Simulator which is a Ruby-based tool used for re-
search in SFL. Results from the study indicate that the diagnostic performance of both
fault localization methods largely depends on the configuration of the system under
investigation, i.e. the number of faults, the health states of the faulty components, the
constituent components and the links between them and the number of transactions
or test runs used. Furthermore, the study has shown that Ochiai has a computational
complexity that is superior to Relief.

Thesis Committee:

Chair: Prof. Dr. A. van Deursen, Faculty EEMCS, TU Delft
University supervisor: Dr. Hans-Gerhard Gross, Faculty EEMCS, TU Delft
Committee Member: Dr. Claudia Hauff, Faculty EEMCS, TU Delft

ii

Preface

This Master’s thesis written in partial fulfillment of the requirements for the degree of the
Master of Science in Computer Science, is a result of a research which I conducted at the
Software Engineering Research Group (SERG) at Delft University of Technology. I had
an interesting opportunity to perform a comparative study on software fault localization
techniques. It is conceivably a huge acquisition of Software Engineering knowledge for
me, an indispensable contribution to my career as a software engineer.

I would first like to thank my supervisor, Dr. Hans-Gerhard Gross, for giving me the
opportunity to carry out this research under his wings. I am thankful for his continuous
support and invaluable technical assistance. I would additionally like to express my grati-
tude to Cuiting Chen, for her inputs and discussions during those few brief meetings we had
together with her and Dr. Hans-Gerhard Gross.

I would also like to thank my friend, Joey Siadis for the chats, help, advice and end-
less inputs during the whole research duration. Last but not least, I would like to thank
my parents, Dr. Elijo Omoro and Marcelina Ikikila for instilling in me the belief of how
important education is in life and their endless support and love, without which it would be
humongously hard for me to get where I am standing right now.

Brian Oburak Omoro
Delft, the Netherlands

July 18, 2013

iii

Contents

Preface iii

Contents v

List of Figures ix

1 Introduction 1
1.1 Problem Statement . 2
1.2 Contributions . 3
1.3 Thesis Structure . 4

2 Background 5
2.1 Concepts and Terminology . 5

2.1.1 Fault, Error and Failure . 5
2.1.2 Transaction . 6
2.1.3 Program Spectrum and Error Vector 6
2.1.4 Similarity Coefficient (SC) . 6

2.2 Spectrum-based Fault Localization (SFL) 7
2.2.1 Input Data . 8
2.2.2 Test Runs Data . 8
2.2.3 Diagnosis Computation . 9
2.2.4 Example of SFL Diagnosis . 9

2.3 Feature Selection based Relief Approach (Relief) 10
2.3.1 Relief Algorithm . 11
2.3.2 Ranking Algorithm . 12
2.3.3 Example of Relief Diagnosis . 12

3 SFL-Simulator 15
3.1 Requirements . 15
3.2 Structure . 16
3.3 Usage . 17

v

CONTENTS

3.3.1 System Topology Creation . 17
3.3.2 System Topology Picture . 18
3.3.3 Simulation Types . 18
3.3.4 Traces . 19
3.3.5 System Topology Activations . 19
3.3.6 Diagnosis Results . 20
3.3.7 Contribution . 20

4 Experimental Setup 23
4.1 Systems . 23
4.2 Parameters . 25

4.2.1 Faults . 25
4.2.2 Health Value (h) . 25
4.2.3 Link Probability (lp) . 25
4.2.4 Transactions . 25

4.3 Interaction between parameters . 25
4.4 Experimental Design . 26
4.5 Performance Metric (PM) . 28

5 Experimental Results 29
5.1 Systems with one fault . 29

5.1.1 Experiments with predetermined number of transactions 29
5.1.2 Experiments with single error detection 30

5.2 Systems with two faults . 30
5.3 Systems with three faults . 35
5.4 Systems with all components faulty . 35

6 Discussion of Results 41
6.1 Single faults . 41
6.2 Multiple faults . 43

6.2.1 Two Faults . 43
6.2.2 Three Faults . 44
6.2.3 All components faulty . 44

6.3 Computational Complexity . 44
6.4 Statistical Significance of Experimental Results 45

7 Threats to Validity 49
7.1 Systems . 49
7.2 Simulations . 49
7.3 System granularity . 50
7.4 Transactions . 50
7.5 Faults, Health Probability, Link Probability 50
7.6 Relief Algorithm . 50
7.7 Statistical Significance of Experimental Results 51

vi

8 Related Work 53
8.1 Ochiai . 53
8.2 Relief . 54
8.3 Others . 54

9 Conclusions and Future Work 57
9.1 Conclusions . 57
9.2 Future work . 58

Bibliography 61

A Ruby Implementation of Relief 65

B Systems 69

vii

List of Figures

2.1 A defective C program [1]. 5
2.2 Input for SFL . 8
2.3 Example C Program, Activity Matrix and Ochiai diagnosis [2]. 10

3.1 A high level class (modules) structure of the SFL-Simulator 16
3.2 A system topology picture generated by SFL-Simulator. 18
3.3 A system topology activation picture generated by SFL-Simulator 20

4.1 System 7 with 8 components and 11 links. 24
4.2 Experimental design steps. 26

5.1 Comparison of 500 diagnosis results between Ochiai and Relief from System 3
with single fault (h = 0.0) and 25 transactions. 31

5.2 Comparison of 500 diagnosis results between Ochiai and Relief from System 6
with single fault (h = 0.5) and 25 transactions. 31

5.3 Comparison of 500 diagnosis results between Ochiai and Relief from System 3
with single fault (h = 0.8) and 25 transactions. 32

5.4 Comparison of 500 diagnosis results between Ochiai and Relief from System 4
with single fault (h = 0.8) and 100 transactions. 32

5.5 Comparison of 500 diagnosis results between Ochiai and Relief from System 3
with single fault (h = 0.6) and 100 transactions. 33

5.6 Comparison of 500 diagnosis results between Ochiai and Relief from System 6
with single fault (h = 0.9) and 200 transactions. 33

5.7 Comparison of diagnosis results between Ochiai and Relief from System 4 with
single fault (h = 0.5) and simulation until error is detected. 34

5.8 Comparison of diagnosis results between Ochiai and Relief from System 2 with
single fault (h = 0.9) and simulation until error is detected. 34

5.9 Comparison of 500 diagnosis results between Ochiai and Relief from System 2
with two faults (h = 0.0) and 200 transactions. 36

5.10 Comparison of 500 diagnosis results between Ochiai and Relief from System 7
with two faults (h = 0.4) and 25 transactions. 36

ix

LIST OF FIGURES

5.11 Comparison of 500 diagnosis results between Ochiai and Relief from System 3
with two faults (h = 0.6) and 100 transactions. 37

5.12 Comparison of 500 diagnosis results between Ochiai and Relief from System 6
with two faults (h = 0.6) and 200 transactions. 37

5.13 Comparison of 500 diagnosis results between Ochiai and Relief from System 5
with three faults (h = 0.4) and 100 transactions. 38

5.14 Comparison of 500 diagnosis results between Ochiai and Relief from System 3
with three faults (h = 0.8) and 200 transactions. 38

5.15 Comparison of 500 diagnosis results between Ochiai and Relief from System 7
with all components faulty (h = 0.6) and 25 transactions. 39

5.16 Comparison of 500 diagnosis results between Ochiai and Relief from System 8
with all components faulty (h = 0.0) and 200 transactions. 39

B.1 System 1 with 6 components and 7 links. 69
B.2 System 2 with 6 components and 11 links. 70
B.3 System 3 with 8 components and 7 links. 71
B.4 System 4 with 18 components and 21 links. 72
B.5 System 5 with 8 components and 16 links. 73
B.6 System 6 with 16 components and 27 links. 74
B.7 System 7 with 8 components and 11 links. 75
B.8 System 8 with 8 components and 21 links. 76

x

Chapter 1

Introduction

There are many reasons why faults exist in software systems. Although a system is con-
sistently tested during the development phase, faults may still persist in the system and
eventually emerge when the system is in production [3]. Additionally, systems are contin-
uously altered over their lifetime during maintenances and upgrades. These activities can
contribute to the introduction of additional faults into the system. In order to resolve these
faults, it is essential to pinpoint where they reside. By definition a fault is what elicits an
error in the system, and an error defines a system state that may evolve into a failure which
is an event that may result in the delivery of improper services that deviate from the correct
or expected services [4]. Therefore, in order to prevent incorrect delivery of services due to
faults, it is important to locate and diagnose these faults before they evolve into errors and
eventually into failures. Fault localization is one of the activities of system diagnosis1 and
its goal is to pinpoint the precise locations of faults in systems [2].

For the past few years a number of promising fault localization techniques have been
proposed. Most of these techniques pertain predominantly to two categories namely the
statistical and machine learning categories [5]. Generally, the statistical approaches find
faults in the system using abstraction of program traces known as program spectra col-
lected at runtime, whereas the machine learning approaches use mainly a static model of
the behavior of the system. However, some approaches from the machine learning domain
have taken the best-of-two-worlds approach and like their statistical counterparts, exploit
program spectra exclusively [6] or in combination with system models [7] to detect fault
locations in the system.

Spectrum-based Fault Localization (SFL) techniques are a class of statistical fault lo-
calization techniques that are known to be among the best statistical approaches because of
their low-cost diagnosis and accuracy [8]. They utilize system failure behavior and activ-
ity collected as program spectra to predict the likelihood of faultiness of constituent system
components [9]. In SFL, the assumed faultiness of a system component is computed using a
similarity coefficient and the most commonly used coefficients are Ochiai [2], Tarantula [1]
and Jaccard [8]. Currently, Ochiai undoubtedly outperforms most of the known similarity
coefficients in SFL [4].

1Diagnosis and debugging are synonymous.

1

1. INTRODUCTION

Machine learning approaches, conventionally diagnose a system by reasoning over its
model. Consequently, although mostly accurate than their SFL counterparts, they are more
complex. Nonetheless some machine learning techniques have taken advantage of program
spectra like in SFL to locate faults with a reasonable complexity. Some of these are the
Bayesian-based BARINEL [10] and Feature Selection based Relief [6] techniques. Relief is
less complex than BARINEL because it exclusively uses the program spectra to locate faults
without the need for a system model. The Relief technique works by assigning relevance
weights to components and the components that are likely to be faulty receive the highest
relevance weights.

Fault localization techniques have a common denominator namely accuracy. The accu-
racy of a technique is a measure of its performance or effectiveness to correctly identify the
locations of faults in a system. Consequently, the accuracy of a technique is one of the main
factors to consider when making a choice between several fault localization techniques. In
this thesis we investigate SFL using the Ochiai2 and Relief3 techniques and the extent to
which these two techniques are comparable to one another. The goal of this thesis is to gain
insight in the effectiveness of the two methods using a number of different systems.

1.1 Problem Statement

Contemporary software systems have an ever increasing complexity and their round-the-
clock availability to users has become a necessity. Diagnosing these systems and detecting
the locations of faults is a daunting task. Hence, the last few years have seen a spurt of state-
of-the-art automatic diagnosis techniques in the domain of fault localization to minimize
failures and produce reliable systems. Two such fault localization techniques are Ochiai
and Relief.

In numerous previous studies Ochiai has been proven to be among the best SFL tech-
niques specially in terms of fault localization accuracy. Abreu et al. [4] in their article about
accuracy of spectrum-based fault localization presented results that demonstrated Ochiai
having an improved diagnostic accuracy over other eight SFL methods. In another article
by Abreu et al. [8] results showed repeatedly that Ochiai outperforms Tarantula and Jac-
card. The toolset talked about in the study by Janssem et al. [11] also produced diagnostic
results that illustrate that Ochiai is better than its counterparts. Naish et al. [12] used sev-
eral coefficients to evaluate their SFL approach and for single-fault programs their results
demonstrated that Ochiai performs better than the rest. From the results obtained in these
studies and others it can be affirmed with some degree of certitude that Ochiai is a reliable
and feasible SFL technique.

For fault localization methods stemming from machine learning that use exclusively
program spectra as input for fault localization diagnosis, there have been a very few studies
and among them is the article by Roychowdhury et al. [6] in which they proposed the Re-
lief method for locating faults in systems. Their experimental results exhibited that using
the Siemens Test Suite, Relief performs similarly to Ochiai. However, according to the au-

2Ochiai is analogous with SFL using the Ochiai similarity coefficient.
3Relief is analogous with fault localization using the Feature Selection based Relief Algorithm.

2

Contributions

thors by using more code coverage Relief starts to perform better than Ochiai. They stated
that a merely 20% code coverage uncovers 90% of faults and 95% at 30% code coverage
compared to 88% faults discovered by Ochiai under the same code coverage.

The Siemens Test Suite has been used extensively in the majority of SFL research stud-
ies and among them those mentioned above. This test suite is feasible for studying programs
at a low component granularity level namely at the level of functions and statements. How-
ever, for bigger systems such as service-oriented systems, a larger grain size for components
is more befitting because it reduces monitoring and performance overhead [2]. One way to
do this is to model systems into component topologies with larger component granularity.
The main advantage of modeling the systems into topologies is that it allows us to easily
simulate the system and we can run thousands of system simulations within a reasonable
time. Additionally, using a system topology model of the base system, many variables of
the system can be altered easily to generalize findings according to different configurations
of the system and this averts system implementation details that may negatively affect ob-
servations. A very few studies have explicitly employed system topologies for their SFL
studies [13] and none have ever studied the impact of Ochiai and Relief on different sys-
tems.

The goal of this thesis is to investigate how Ochiai and Relief methods will perform on
different systems with larger component granularity. The SFL-Simulator [14] will largely be
used to simulate the systems under investigation. It is of paramount importance to find out
in which situations one fault localization method performs better than the other to enable
employing the right method in a specific scenario. The problems at hand give rise to a
number of research questions that need to be addressed. The goal of this thesis is to provide
answers to the following two main questions:

• Research Question 1:
Considering the two techniques Ochiai and Relief: Which one has a better fault lo-
calization performance or accuracy?

• Research Question 2:
Are there characteristics of systems that support the application of: Ochiai or Relief?

1.2 Contributions

We identify the following contributions of this thesis:

1. Identifying the characteristics of systems that affect fault localization performance
(Chapter 4).

2. Performing numerous Ochiai/Relief fault localization experiments with different sys-
tems (Chapter 4 and 5).

3. Proposed new performance metric for measuring the diagnosis accuracy or effective-
ness of a fault localization method (Chapter 4).

3

1. INTRODUCTION

4. Assessing and evaluating the effectiveness of Ochiai and Relief for different systems
based on the experimental results (Chapter 6).

1.3 Thesis Structure

The thesis is structured as follows. Chapter 2 comprises background information about SFL
and Relief. The SFL-Simulator tool is presented in Chapter 3. We describe the experimental
setup in chapter 4 and experimental results in chapter 5. The elaboration of the experimental
results is in Chapter 6, with the thread to validity of the results in Chapter 7. Related work
about Ochiai and Relief is in chapter 8. Finally, conclusions and future work are presented
in Chapter 9.

4

Chapter 2

Background

This chapter provides some background information on the topics discussed in this thesis.
Section 2.1 begins with concepts and terminology followed by Section 2.2 which presents
an understanding about SFL and the Ochiai method, whereas Section 2.3 provides a global
introduction to the Feature Selection based Relief fault localization method.

2.1 Concepts and Terminology

2.1.1 Fault, Error and Failure

A failure is an event that occurs when the service delivered deviates from the correct or
expected service, an error is a system state that may result in a failure and a fault, also
know as a bug, is the cause of an error in the system [4].

Figure 2.1: A defective C program [1].

5

2. BACKGROUND

To put the aforementioned concepts into perspective, lets consider Figure 2.1 used in
the article by Jones et al. [1] which depicts a faulty C program. The logic of the function
mid() is as follows, it takes three integer inputs and returns their median. The function
contains a fault on line 9 at the statement m = y;. For all values of x < y < z, the function
mid() will work properly. The problem starts when we have a situation where y < x < z,
in this case x should be denoted as the median but due to the fault in line 9 the variable y
will be designated as median instead. This is a fault which can propagate into an error and
eventually into a failure with an incorrect output as a result. This example shows clearly
that faults are the cause of failures but they do not necessarily lead to errors and failures as
long as the faulty conditions or paths are not executed. Nonetheless, it is crucial to uncover
them before they cause problems in the system.

2.1.2 Transaction

A transaction or an observation or a test run marks the start and end of a single execution ac-
tivity of a system. During this activity depending on the path taken a number of components
may or may not be involved (covered or activated) during the execution.

2.1.3 Program Spectrum and Error Vector

A program spectrum is a collection of data that projects the execution activity of a system,
denoting which program components are covered (active) or not covered (inactive) in partic-
ular transactions. The program components can be entities such as software systems, source
code classes, functions, statements, branches, paths or basic blocks. The components are
allocated binary values (1 or 0), also known as counters or flags. A ”1” is assigned to a
component to signify whether it has been covered and a ”0” if it has not been covered dur-
ing a particular transaction [2, 9]. Besides the program spectrum, another important piece
of information known as the error vector is obtained during transactions. The error vector
holds binary values representing the outcomes of individual transactions1. The error vector
denotes failed and passed transactions by ’1’ and ’0’ respectively. Both of these pieces of
information are vital for the fault localization process because potential faulty components
can be identified by computing the similarity between the program spectra and the error
vectors. There are many different kinds of program spectra [15], see Table 2.1. The most
commonly used program spectra type is the block hit program spectra. In a block hit spec-
trum each component is represented by a flag or a counter to indicate whether the block of
code or statement or component was executed during a particular transaction.

2.1.4 Similarity Coefficient (SC)

In SFL, the assumed faultiness of a component is computed using a similarity coefficient
(SC). Thus, the SC is a function that quantifies the similarity between the program spectra
of components and the error vectors to rank components based on their likelihood to contain

1Test runs and transactions are synonymous

6

Spectrum-based Fault Localization (SFL)

Name Description
BHS Branch Hit Spectra conditional branches that are executed
BCS Branch Count Spectra number of times each conditional branch is executed
CPS Complete Path Spectra complete path that is executed
PHS Path Hit Spectra loop-free path that is executed
PCS Path Count Spectra number of times each loop-free path is executed
DHS Data-Dependence Hit Spectra definition-use pairs that are executed
DCS Data-Dependence Count Spectra number of times each definition-use pair is executed
OPS Output Spectra output that is produced
ETS Execution Trace Spectra execution trace that is produced
DVS Data Value Spectra the values of variables in the execution
ESHS Executable Statement Hit Spectra executable statements that are executed

Table 2.1: Types of Program Spectra [15].

faults. Many SC formulas exit, but the most commonly used SCs in SFL are Ochiai [2],
Tarantula [1] and Jaccard [8].

2.2 Spectrum-based Fault Localization (SFL)

SFL uses program spectra and error vectors as input data to localize faulty components in a
system. SFL can be performed online and offline and both versions utilize the same input
information. The two versions differ only in the way how they run tests or transactions.
Unlike its offline counterpart, online SFL is applied to a system that is executing. Due
to the continuous execution nature of such a system the active testing used in the offline
version [9] is not efficient because it will cause undesirable interference with the system.
Thus, in online SFL the transaction and its validation must incorporate the continuous nature
of the system to reduce interference with the functions of the system. The functioning of
the system is overseen by monitors which report on the proper execution of the system
by providing test or transaction outcomes [2]. Monitoring is more fitting in online SFL
because of its passive nature, for example, it can be triggered by an event such as the arrival
of new data or a timer interrupt. A monitor is a specific component in the system that
observes and assesses the validity of the functionality without interfering with the rest of
the system. It oversees data or behavior of the system at specific locations and decides
based on built-in oracle logic whether an observation is expected (pass) or unexpected (fail).
The observation can occur, for instance, by checking the range of a variable, consistency
between different data, or through comparison with a state model. The monitor outcomes
are what test outcomes are for offline SFL [2]. SFL takes in the input information to yield
an ordered ranking of the program components based on their likelihood or suspicion to be
faulty.

7

2. BACKGROUND

2.2.1 Input Data

SFL takes the following data as input [9]:

• A finite set C = {c1,c2, ...,c j, ...,cM} of M components of a program P.

• A finite set T = {t1, t2, ..., ti, ..., tN} of N tests (transactions)

• A finite set O = {o1,o2, ...,oi, ...oN} of binary outcomes for the set T with oi = 0
if test ti passed and oi = 1 otherwise. The set O represents the error vector e (see
Figure 2.2).

• A[ai j] is an M x N matrix known as the coverage or activity matrix, where ai j = 1 if
test or transaction ti covers component c j, and ai j = 0 otherwise. Each row vector R
in the matrix, with R = {A[i] | 0≤ i < M}, is known as a spectrum (see Figure 2.2).

A =

a11 a12 · · · a1N

a21 a22 · · · a2N

· · · · · · · · · · · ·
...

...
...

...
aM1 aM2 · · · aMN

e =

e1
e2
· · ·
...

eN

Figure 2.2: Input for SFL

2.2.2 Test Runs Data

As depicted in Figure 2.2, the activity matrix A comprises N test runs and M different
program components. The information about fail/pass outcomes of runs constitutes the
vector column e, which is the error vector. For each program component j and test run i,
the frequency of runs is defined by the equation [16]:

npq(j) = |{i|ai j = p∧oi = q}|p,q ∈ {0,1}, (2.1)

where p is 1 if the component j is covered, and 0 otherwise. On the other hand, q is 1 if
test i fails, and 0 otherwise. For example, Table 2.2 contains all possible ai j counters for a
particular component, and for each component these counters constitute the number of test
runs N.

Component Passed Test Run Fail Test Run
Covered a10 a11
Not covered a00 a01

Table 2.2: Different types of test run frequency count.

8

Spectrum-based Fault Localization (SFL)

2.2.3 Diagnosis Computation

The diagnosis score D j for each component j is calculated using the information from
Table 2.2 as input for the similarity coefficient method. Underneath are three commonly
used SCs namely Ochiai, Tarantula and Jaccard:

Ochiai : D j =
n11(j)√

(n11(j)+n01(j)).(n11(j)+n10(j))
(2.2)

Tarantula : D j =

n11(j)
n11(j)+n01(j)

n11(j)
n11(j)+n01(j) +

n10(j)
n10(j)+n00(j)

(2.3)

Jaccard : D j =
n11(j)

n11(j)+n01(j)+n10(j)
(2.4)

where n11(j) is the number of failed transactions in which component j is involved, n10(j)
is the number of passed transactions in which component j is covered, n01(j) is the number
of failed transactions where component j is not involved and n00(j) is the number of passed
transactions in which component j is not involved. Using Figure 2.2 and Table 2.2 this can
be summarized as follows [10]:

n00(j) = |{i|ai j = 0∧ ei = 0}|, (2.5)

n01(j) = |{i|ai j = 0∧ ei = 1}|, (2.6)

n10(j) = |{i|ai j = 1∧ ei = 0}|, (2.7)

n11(j) = |{i|ai j = 1∧ ei = 1}| (2.8)

The ranking D j for each component is computed by comparing row vector or spectrum
of the component from the coverage matrix with the error vector to produce its likelihood
to be at fault.

2.2.4 Example of SFL Diagnosis

To illustrate the application of SFL on a sample of code, the example from [2] which is
based on a C function is used. The components in this example are denoted by the state-
ments of the function as can be seen in Figure 2.3. The function counts different types of
characters and contains a fault at component c3 because it mishandles uppercase characters.
The program is run against 6 tests or transactions producing the coverage matrix from t1 to
t6 with test or transaction outcomes (error vector) for each of the transactions. Utilizing this
information, the Ochiai SC for each statement is computed and the results are seen under
the SC column in the same Figure. Based on the SC outcomes, the components that are
potentially faulty have a higher SC value, and specifically in this example c3 where the fault
is located has the highest score.

9

2. BACKGROUND

Figure 2.3: Example C Program, Activity Matrix and Ochiai diagnosis [2].

2.3 Feature Selection based Relief Approach (Relief)

The approach in this type of fault localization technique employs the feature selection al-
gorithm Relief [17] in combination with a ranking algorithm [6] to compute the diagnosis
results. Feature selection is a fundamental preprocessing step in machine learning which
focuses on reducing the original feature datasets into smaller subsets with features that are
effective and adequate to describe the concept at hand [18]. Data used in machine lan-
guage is typically in a high dimensional feature space, described in the order of hundreds
or thousands of features. A key issue with such data is that it increases the computation
complexity of machine learning algorithms [19]. Therefore, feature selection operates by
reducing the high-dimension-feature-space datasets to ones with decreased dimensionality
while preserving vital features and possibly discarding irrelevant and redundant ones. In
order to determine which features to retain or discard, an efficient method of evaluating fea-
ture relevance to the target concept is required. There are three approaches for evaluating
the quality of candidate features, either through filters, wrappers or embedded approaches
[6]. The filters approach discards redundant and irrelevant features, whereas the wrapper
method selects a subset of features using learning algorithms. The wrappers often perform
better than filters because the target learning algorithms are used in the feature selection
process. Nonetheless, wrappers become time consuming as the dataset dimension feature
space increases. In the embedded approach the feature selection occurs in parallel with the
learning processes, typically in an iterative fashion and a good example of this category are
the decision trees.

Among the existing feature weighting algorithms, the Relief algorithm is considered one
of the most successful algorithms for evaluating the quality of features due to its simplicity
and effectiveness. The key idea of Relief is to iteratively estimate feature weights according

10

Feature Selection based Relief Approach (Relief)

to their ability to discriminate between neighboring patterns [20].

2.3.1 Relief Algorithm

Algorithm 1 as stated in the article by Roychowdhury and Khurshid [6] depicts an adapta-
tion of the Relief algorithm proposed by Kira and Randell [18]. Relief uses the k-nearest-
neighbors (KNN) classification principle [21], whereby samples or instances with identical
classes are assumed to have similar relevant features in comparison to instances from dif-
ferent classes. In the algorithm, we assume that there are N instances or transactions in a
P-dimensional feature space which means each instance Xk has P features (components) in
its dataset, denoted by Xk = {xk1, ...,xkP} where k ∈ {1, ...,N}. The algorithm works with
data containing instances categorized over two classes. For each instance, Relief searches
for the two nearest neighbor instances namely the nearest hit Xh and the nearest miss Xm.
The nearest hit instance, Xh, belongs to a class that is identical to the instance Xk. While
the nearest miss instance, Xm, is from a class that is different from that of the instance Xk.
The neighbor instances are found using the Euclidean distance [18]. Thus, each instance
is associated with a class category or label Ci, with Ci ∈ {1,0} (denotes failed or passed
transactions). Using the input data for the algorithm, the relevance weight, Wi, for each
individual feature (component) i is computed using the formula:

Wi =
1
N

N

∑
k=1

δ(i, Xk, Xm)

N
− δ(i, Xk, Xh)

N
, (2.9)

where δ(i, Xk, Xh) = (xki− xi
h)2 and δ(i, Xk, Xm) = (xki− xi

m)2.

Algorithm 1: Relief Algorithm
Data: X : N samples or instances of P-dimensional data set
Data: C: Class Labels for each sample
Result: W : Returns a list of relevance values for the features
begin

W ←− (0, ...,0)
for k←− 1 to N do

begin
Randomly select a sample Xk
Find nearest hit Xh, and nearest miss Xm

for j←− 1 to P do

W [j]←−W [j]− δ(j, Xk, Xh)
N + δ(j, Xk, Xm)

N
end

end
end

end

11

2. BACKGROUND

2.3.2 Ranking Algorithm

The pseudo-code in Algorithm 2 illustrates how the ranking of components is obtained using
the Relief method. The program under investigation has P components and N transactions
as aggregates of the activity matrix X . The activity matrix is collect as in SFL and is then
transposed such that the rows of X become transactions, while its columns become the
components. Thus, X [i, j] = 0, implies that during the ith transaction, the jth component
was not covered. The size of X is represented by the number of transactions and the number
of components, N×P. The outcome of the transactions is held in a list R. Each transaction
is represented by either a pass (0) or a fail (1) in the class labels or error vector. The ranking
process commences as follows:

1. Computing the relevance weights (list W) for each component using Relief.

2. Normalizing the relevance weights to lie in the set [0.0..1.0] (list Z).

3. Translating the normalized weights using a floor function into intermediate ranks
between 1 and P (list Q).

4. Finally, computing the score (final ranking) for each component i using list Q as
follows:

scorei =

(
1− Q[i]

P

)
×100,

For situations whereby multiple components have the highest score the score is com-
puted using:

scorei =

((
1− Q[i]

P

)
×CW

)
×100,

where

CW =
P+1−|Q#1|

P
,

with Q#1 denoting the cardinality of the highest ranked components.

2.3.3 Example of Relief Diagnosis

In this section we show how Relief diagnosis is performed in practice. Table 2.3 is the
activity matrix used earlier in the section about SFL as depicted in Figure 2.3, by transposing
this activity matrix we get a new activity matrix with transactions as rows and components
as columns in Table 2.4. The table comprises the input date for Relief, 6 transactions each
denoted by ti = {i | 1 ≤ i ≤ 6}, 11 components each denoted by c j = { j | 0 ≤ j ≤ 10}
and an error vector or the transaction outcomes E. We feed the the transposed coverage
matrix and error vector to the Relief method to produce the results in a list D. The row
D in Table 2.4 holds the diagnosis results and the component C2 is ranked as highest and
is, therefore, identified as the faulty component by Relief. Note that in Figure 2.3 Ochiai
ranked C3 correctly as faulty. In this example, we can see that Ochiai has a better accuracy
than Relief.

12

Feature Selection based Relief Approach (Relief)

Algorithm 2: Ranking Algorithm
Data: X : Activity Matrix
Data: R: Result list
Result: Q: Returns a list of ranks
begin

// Use a feature selection method: RELIEF and compute relevance values Wi

for i←− 1 to N do
Y [i]←−Wi

end
// Normalize Y to capture the ranks; the line number with highest relevance value
will be ranked 1.
for i←− 1 to N do

Z[i]←−

{
Y [i]

max(Y) if Y [i]≥ 0,

0 if Y [i]<0,

end
// At this point values a Z ∈ [0..1]. Translate them to ranks using weighted
interpolation. The ranks are stored in the list Q.
for i←− 1 to N do

Q[i]←− ⌊Z[i]+N× (1−Z[i])⌋

end
end

t1 t2 t3 t4 t5 t6
c0 1 1 1 1 1 1
c1 1 1 1 1 1 1
c2 1 1 1 1 0 1
c3 1 1 1 1 0 0
c4 1 1 1 1 0 1
c5 1 1 0 0 0 0
c6 1 1 1 1 0 1
c7 0 1 0 1 0 0
c8 1 0 1 0 0 1
c9 1 0 1 0 0 1
c10 1 1 1 1 1 1
E 1 1 1 1 0 0

Table 2.3: Activity Matrix extracted from Figure 2.3.

13

2. BACKGROUND

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 E
t1 1 1 1 1 1 1 1 0 1 1 1 1
t2 1 1 1 1 1 1 1 1 0 0 1 1
t3 1 1 1 1 1 0 1 0 1 1 1 1
t4 1 1 1 1 1 0 1 1 0 0 1 1
t5 1 1 0 0 0 0 0 0 0 0 1 0
t6 1 1 1 0 1 0 1 0 1 1 1 0
D 0.0 0.0 0.248 0.0 0.0 0.0 0.0 0.124 0.0 0.0 0.0

Table 2.4: Transposed Activity Matrix with Relief diagnosis results.

14

Chapter 3

SFL-Simulator

SFL-Simulator [14] is a tool developed using the programming language Ruby. Its main
aim is to assist research in Spectrum-based Fault Localization. With the tool, a system
component topology can be generated and its activations simulated to produce activity ma-
trices1. An activity matrix can then be used as input for computing a diagnosis using the
SFL technique of choice. The simulator already houses several SFL methods among others
the similarity coefficients Ochiai, Jaccard and Tarantula. The simulator is extensible, for
instance, for fault localization diagnosis methods that are not part of the tool, it can be used
as a generator for the activity matrix input which can be fed into the new method to produce
diagnosis results. Additionally, the system topology creation process can be performed us-
ing an input file containing the required system components. Another useful feature is the
generation of pictures of a system topology as well as its activations.

3.1 Requirements

For the correct functioning of the SFL-Simulator tool, the machine under which the tool is
run should have beforehand the following softwares installed:

• Ruby version 1.9.3 [22]: A dynamic, open source programming language with an
elegant syntax that is easy to write and read. Its main focus is to foster simplicity and
productivity.

• GraphViz [23]: An open source graph visualization software.

• Ruby-Graphviz gem [24]: Using GraphViz, it provides an interface to layout and
generate images of directed graphs in a variety of formats such as PostScript and
PNG.

• Colorize gem [25]: An extension of the string class in Ruby that adds some methods
to easily set color and text effect on console output.

1”Activity matrix” implies ”Activity matrix with its error vector”.

15

3. SFL-SIMULATOR

3.2 Structure

The tool consists of 15 classes and modules as depicted in Figure 3.1. Some of these are
core classes and others are utility classes also known as modules in the Ruby language.

• Component: Represents a component or link in a system.

• Trace: Represents the traces of the activation of a component or a link.

• TraceNode: Represents a node (component or link) in a trace.

• Topology: Maintains components and links as well as their traces.

• Activity: Represents an activity matrix.

• Actop: Maintains topology activations.

• Diagnosis: Maintains the diagnosis results.

• Similarity: Contains utility operations for computing similarity coefficients.

The rest of the modules all serve as utility modules and their main function is to display the
output of their corresponding classes and in some cases generate pictures of topologies.

Figure 3.1: A high level class (modules) structure of the SFL-Simulator

16

Usage

3.3 Usage

3.3.1 System Topology Creation

A system topology comprises components and links. A new topology is created by instan-
tiating the Topology class in the following fashion:

require ’./sfl_actop.rb’
require ’./sfl_diagnosis.rb’
t = Topology.new()

Following the creation of the system topology, components are added to it as shown in the
ensuing snippet. Each component has a distinct name, health value and a failure probability.
A component is added to the topology using the method add(name, health value, failure
probability). The health value is a value that denotes the probability of a component to
produce a fault when it is activated during simulation and is in the range of [0.0..1.0]. A
component that is absolutely faulty carries a health value of 0.0 while an absolutely non-
faulty one has a value of 1.0. Any health value in between 0.0 and 1.0 represents the
probability of the component being intermittently faulty, for example, a component with a
0.3 health value has a 70% chance of being intermittenly faulty at its activation. The failure
probability [0.0..1.0] represents the probability on whether a fault is detected, leading to a
failure. In a topology with components that have 0.0 failure probability values, a fault or
faults are detected at the end of an activation. Addition of components to a topology takes
the following form:

t.add("C0", 1.0, 1.0)
t.add("C1", 1.0, 1.0)
t.add("C2", 0.0, 0.0)
t.add("C3", 0.5, 1.0)
t.add("C4", 1.0, 1.0)

The components added to the topology interact with each other through links. Links func-
tion as connectors or communication channels connecting components with each other and
similarly to components each link has a distinct name, as well as the adjacent components
it connects and invocation probability which determines the likelihood of a link to be exe-
cuted during a simulation. A link connects two components to each other or itself to a single
component using the function add(name, start component’s name, destination component’s
name, link probability). The code snippet below shows how the components are linked in a
topology.

t.link("L0", "C0", "C1", 1.0)
t.edge("L0", "C2")
t.link("L1", "C1", "C3", 0.8)
t.link("L2", "C2", "C3", 0.5)
t.link("L3", "C2", "C4", 0.3)

17

3. SFL-SIMULATOR

3.3.2 System Topology Picture

The next snippet shows how we can generate the pictorial representation of a system topol-
ogy and Figure 3.2 depicts the picture of the system we have discussed in the preceding
code snippets and section. Additionally, as shown in Figure 3.2, in the picture a system
component is represented by a rectangular shape. The rectangular representation of the
component contains four smaller compartments, the first is the name of the component e.g.
C0, the second the health value h=1.0, the third is the failure probability f=1.0, and the last
is for extra optional features and variables that can be assigned to the component. The link
between the components is represented with a line with a circle in the middle. Inside the
circle are the constructs, e.g. L0=1.0 and 100 if the system is simulated, L0 is the name of
the link and 1.0 its link probability while the number 100 is the number of times the links is
executed.

TopologyOutput.graph(t, :png, "ex_readme.png")

Figure 3.2: A system topology picture generated by SFL-Simulator.

3.3.3 Simulation Types

The execution of the components of the system can be simulated using several types of
simulations:

• Using fixed number of executions or transactions. In this snippet 20 transactions are
simulated starting from a single component C0.

t.activate_often(["C0"], 20)

• Using several components designated as starting components which means many
components will probably be activated simultaneously. The snippet shows two com-
ponents C0 and C4 both which may be activated at the same time.

18

Usage

t.activate_often(["C0", "C4"]){}

• Running the simulation until a component fails which is useful for simulating cases
when the faulty component has very low fault intermittency.

t.activate_until_error(["C0"]){}

3.3.4 Traces

When components are activated in a system topology traces are produced and these traces
can be displayed using the call:

TopologyOutput.traces(t)

This results in an output like in the next snippet. Each activation results in one line with
the component executed, the link invoked, plus [fault, error, failure] information. The curly
brackets indicate invocation nesting as the next snippet illustrates.

C0[0,0,0]{L0[0,0,0]{C1[0,0,0]}{C2[1,1,0]{L2[0,1,0]{C3[0,1,1]}}}}[fail]
C0[0,0,0]{L0[0,0,0]{C1[0,0,0]{L1[0,0,0]{C3[1,1,1]}}}{C2[1,1,0]}}[fail]
C0[0,0,0]{L0[0,0,0]{C1[0,0,0]{L1[0,0,0]{C3[0,0,0]}}}{C2[1,1,0]}}[fail]
C0[0,0,0]{L0[0,0,0]{C1[0,0,0]}{C2[1,1,0]}}[fail]
C0[0,0,0]{L0[0,0,0]{C1[0,0,0]}{C2[1,1,0]{L2[0,1,0]{C3[0,1,1]}}}}[fail]
C0[0,0,0]{L0[0,0,0]{C1[0,0,0]{L1[0,0,0]{C3[0,0,0]}}}{C2[1,1,0]}}[fail]

3.3.5 System Topology Activations

An activated system topology can be utilized for diagnosis experiments. First, the system
topology activation is created and we can generate a picture to show the activations as in
Figure 3.3 and the activity matrix as shown in the second snippet:

actop = Actop.new(t)
ActopOutput.screen(actop)
ActopOutput.graph(actop, :png, "ex_readme_actop.png")

C0 11111111111111111111
C1 11111111111111111111
C2 11111111111111111111
C3 01111110110010111111
C4 10100010001011101111
L0 11111111111111111111
L1 01111110010000111111
L2 01011000100010000111
L3 10100010001011101111
E 11111111111111111111

19

3. SFL-SIMULATOR

Figure 3.3: A system topology activation picture generated by SFL-Simulator

3.3.6 Diagnosis Results

Using the system topology activation data, diagnosis results can be computed (first snippet)
and produce output (second snippet) as follows:

diagnosis = Diagnosis.new(actop)
DiagnosisOutput.screen(diagnosis, {:sort => :ochiai}, :ochiai, :jaccard)

Underneath are the diagnosis results of two similarity coefficient based methods namely
Ochiai and Jaccard.

|:ochiai|:jaccard|
C0 | 1.000 | 1.000 |
C1 | 1.000 | 1.000 |
C2 | 1.000 | 1.000 |
L0 | 1.000 | 1.000 |
C3 | 0.975 | 0.950 |
L1 | 0.806 | 0.650 |
L2 | 0.707 | 0.500 |
C4 | 0.387 | 0.150 |
L3 | 0.387 | 0.150 |

3.3.7 Contribution

As part of the work performed in this study, our contribution to the tool is the implementa-
tion (in Ruby language) of the Feature Selection based fault localization method Relief, see
Appendix A. In the implementation, we use the same input data as in SFL. However, the
activity matrix has to be transposed before it is fed into Relief. So using the same coverage
matrix used in Section 3.3.5 but transposed, we can compute the diagnosis results for Relief
as follows:

20

Usage

matrix = transpose of activity matrix
error_vector = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
components_array = ["C0", "C1", "C2", "C3", "C4", "L0", "L1", "L2", "L3"]
scores = compute_relief_scores(matrix, error_vector, components_array)

The resulting diagnosis table is:

C0 | 0.0
C1 | 0.0
C2 | 0.0
C3 | 0.0
C4 | 0.0
L0 | 0.0
L1 | 0.0
L2 | 0.0

The Relief diagnosis results depicted in this example show no suspicion information about
the possible faulty components. This can be attributed to the way the ranking algorithm is
designed. It does not consider negative weights, all components with negative relevance
weights receive zero scores. This happens mostly when the outcomes of the tests or trans-
actions are all of the same class either all pass or fail and in this particular example the
outcomes were all fail.

21

Chapter 4

Experimental Setup

In this chapter we describe the setup of our experiments and define how the fault localization
diagnostic performance or effectiveness is measured. The chapter is organized as follows.
First, Section 4.1 presents the systems we use in the experiments. Then Section 4.2 lists
the parameters that can have influence on the results of the experiments followed by how
the parameters interact with each other in Section 4.3. In Section 4.4 we explain the experi-
mental design. Finally, Section 4.5 discusses which performance metric we use to measure
the diagnosis accuracy of the fault localization methods to be compared.

4.1 Systems

In our experiments we simulate 8 different basic systems. The systems contain disparate
number of components connected with each other through links in various ways. The 8
basic systems produce roughly about 512 simulated systems. Table 4.1 contains details
about the number of components and links per a basic system used and Figure 4.1 illustrates
a pictorial representation of the topology of one of the 8 systems, for rest of the systems
check Appendix B.

Topology Number of components Number of links
1 6 7
2 6 11
3 8 7
4 14 18
5 8 16
6 16 27
7 8 11
8 8 21

Table 4.1: Systems and their constituent components and links used in the experiments.

23

4. EXPERIMENTAL SETUP

Figure 4.1: System 7 with 8 components and 11 links.

24

Parameters

4.2 Parameters

The experiments involve many parameters and an uncontrolled interaction between two or
more of these parameters may have undesirable effects on the experimental results. There-
fore, it is of paramount importance to identify those parameters that influence the diagnos-
tic accuracy of the methods to be compared during the experimental design stadium. The
following subsections describe the parameters that we consider in our experimental proce-
dures.

4.2.1 Faults

Faults describe which components are set as faulty in a system using their health values.
The number of faults is directly equivalent to the number of faulty components in a system.
In our experiments, each system is simulated with a single fault, two faults and three faults.
Additionally, two randomly chosen systems are executed with all components designated
as faulty.

4.2.2 Health Value (h)

The health value (h) denotes the probability of a component to be faulty during its activation.
The experiments use 7 different health values h = {0.0, 0.2, 0.4, 0.5, 0.6, 0.8, 0.9} per a
faulty component. In case of multiple faults, the faulty components are assigned identical
health values. For example, if we have an experiment involving 2 faulty components and
the heath value 0.6, each of the faulty components has its health value set as h = 0.6. For
all non-faulty components h = 1.0 throughout all experiments.

4.2.3 Link Probability (lp)

We use in the experiments 5 values, {0.2, 0.4, 0.5, 0.6, 0.8}, to designate the link prob-
abilities (l p) between components. Like the health values, the links in a system are itera-
tively assigned the same probability value except for the starting link (from where execution
starts). The starting link is connected to a single component as an incoming link and is al-
ways assigned a probability value 1.0.

4.2.4 Transactions

Each system is executed using 25, 100 and 200 transactions. However, in case of experi-
ments where a system is run up to until the point where an error is detected, the number of
transactions are simulation-dependent and are determined only after the simulation termi-
nates.

4.3 Interaction between parameters

The parameters identified in the previous sections certainly interfere with each other during
the experiments. It is therefore important to vary the value of only one of these parameters

25

4. EXPERIMENTAL SETUP

while keeping the rest unaltered during any given experiment. In our experiments, the
emphasis is on the effects of the number of faults, health probability and link probability on
the experimental results. Thus, these three parameters are our primary factors, whereas the
transactions are secondary.

4.4 Experimental Design

In Figure 4.2 we depict the design of the experimental procedure in our study using the
parameters discussed in the previous section. The steps are as follows:

Figure 4.2: Experimental design steps.

1. System Topology Creation
We create for each of the 8 basic systems several system instances using the corre-
sponding values for health and link probabilities as well as the number of faults, as
shown in Table 4.2. Each system instance or topology is created using one, two and
three faults respectively by assigning the faulty components identical health values.
In 2 randomly chosen systems we set all the components as faulty. For each of the
three transactions types, 25, 100 and 200, each system instance is executed 500 times
resulting in 500 individual diagnoses. In addition, the instances from 7 systems are
simulated with a single fault using executions that terminate as soon as an error is
detected.

2. Acquisition of Activity Matrices and Error Vectors The activity or coverage ma-
trix produced from a system instance execution consists of spectra obtained using the
block hit program spectra method. The components are represented by binary values,
1 if a component has been activated during an execution and 0 otherwise. The system
instances each produce 500 activity matrices for each of the 25, 100 and 200 number
of transactions. The number of transactions is excluded in the simulations that run
until a single error is detected because their transactions are simulation-dependent.
Each matrix has its corresponding error vector which holds the outcomes of the trans-
actions.

26

Experimental Design

Number of faults Health Values(h) Link Probability(lp) Transactions
1 0.0 0.2 25
2 0.2 0.4 100
3 0.4 0.5 200

0.5 0.6
0.6 0.8
0.8
0.9

Table 4.2: System topology creation variables.

3. Acquisition of Diagnosis Results The generated activity matrices and their corre-
sponding error vectors are used as input and fed to Ochiai to yield diagnosis results.
Furthermore, we use the same matrices but in the transposed position together with
the error vectors to produce Relief diagnosis results.

4. Diagnosis Results Analysis Both Ochiai and Relief rank components according to
their likelihood of being faulty. Thus, the results obtained from both methods are an-
alyzed by looking at the highly ranked components in correspondence to components
that are presumably faulty in the system. The diagnosis results are classified into
four categories: UNIQUE, INCORRECT, AMBIGUOUS and UNDIAGNOSED. A
UNIQUE diagnosis represents a result in which the faulty components are correctly
identified. An INCORRECT diagnosis characterizes a diagnosis result in which the
faulty components are partial or wholly not detected. An AMBIGUOUS diagnosis is
one in which more components are identified as faulty than there are faulty compo-
nents. To explain these concepts, we use Tables 4.3 and 4.4 which depict diagnosis
results of Ochiai and Relief side by side. The diagnosis results are from a system in
which three components namely S2, S3 and S6 are faulty. The results list the com-
ponents in their likelihood of being faulty in descending order. Since the system
has three faulty components, we are interested in the top three highest ranked com-
ponents. Therefore, we inspect whether the faulty components are actually ranked
as the three highest components in the diagnosis results. In case of Table 4.3, Re-
lief identifies the three components correctly while Ochiai only identifies two faulty
components out of three. Thus, we categorize the Relief diagnosis as UNIQUE and
Ochiai as INCORRECT. In Table 4.4 Ochiai diagnosis is this time UNIQUE, whereas
Relief has four components ranked as highest (S3 and S4 share same ranking) which
equates to an AMBIGUOUS diagnosis as S4 is not one of the three faulty compo-
nents. In situations where experiments produce an error vector with all transactions
outcomes as passed, we categorize the diagnosis as UNDIAGNOSED.

27

4. EXPERIMENTAL SETUP

Ochiai Relie f
S2 0.725 S2 0.781
S1 0.7 S6 0.521
S3 0.674 S3 0.26
S5 0.621 S4 0.195
S4 0.583 S5 0.065
S6 0.523 S1 0.0

Table 4.3: INCORRECT Ochiai and UNIQUE Relief diagnosis in a system with 3 faulty
components.

Ochiai Relie f
S2 0.725 S2 0.781
S6 0.7 S6 0.521
S3 0.674 S3 0.26
S5 0.621 S4 0.26
S4 0.583 S5 0.065
S1 0.523 S1 0.0

Table 4.4: UNIQUE Ochiai and AMBIGUOUS Relief diagnosis in a system with 3 faulty
components.

4.5 Performance Metric (PM)

The performance metric (PM), also known as the quality metric, measures the diagnosis
accuracy or effectiveness of a fault localization technique (in this study Ochiai or Relief) to
uniquely identify faulty components in a system. We measure the performance metric as the
percentage of the number of UNIQUE diagnoses against the total number of diagnoses sim-
ulations, 500 in most of our experiments. A diagnosis that falls under the UNDIAGNOSED
category is excluded from the computation. In equation 4.1 unique represents the number of
correct diagnoses, diagnoses is the number of simulations (activity matrices) which is 500
in most of our experiments and undiagnosed is the number of diagnoses that are designated
as UNDIAGNOSED.

Per f ormance Metric(PM) =
unique∗100

diagnoses−undiagnosed
(4.1)

28

Chapter 5

Experimental Results

In the ensuing sections of this chapter, we present the findings from the experiments per-
formed using the SFL-Simulator. This chapter commences with the experimental results
from systems with single faults in Section 5.1, followed by Section 5.2 which deals with
systems comprising two faults. Section 5.3 presents results from systems with three faults.
Finally, experiments where all the components in a system are set as faulty is discussed in
Section 5.4.

5.1 Systems with one fault

Two different simulation approaches have been used in experiments for single faults. This
section explores these two different sets of experiments.

5.1.1 Experiments with predetermined number of transactions

The experiments were performed using 8 systems and each system was executed using 7
health probability values (h), 5 link probability values (l p) and 3 types of transactions with
25, 100 and 200 number of transactions respectively. The aforementioned values created
840 combinations or system instances1 which were simulated 500 times each. Thus, the
total number of simulations2 realized in these experiments were 420,000. All the plots
presented in this chapter express the results obtained using a specific health value and a
number of transactions. Furthermore, the x-axis embodies the link probability values and
the y-axis represents the percentage of the correct diagnoses.

As can be seen from the graph, Figure 5.1, regardless of the link probability and the
number of transactions used, at h = 0.0 both Ochiai and Relief exhibit the same diagnosis
effectiveness.

25 transactions and h > 0.0: Results from the majority of the systems show that Relief
is either better than or comparable to Ochiai at l p≤ 0.3. Relief performance diminishes as

1A system instance is a system configuration with a specific number of faults with a specific health proba-
bility value and links with a specific link probability value.

2Simulation is used here to also mean diagnosis result

29

5. EXPERIMENTAL RESULTS

l p increases and at l p > 0.4 Ochiai performance starts to improve and around l p ≥ 0.5 it
starts to significantly outperform Relief as depicted in Figure 5.2. In a few cases the results
illustrate a comparable Ochiai and Relief performance at higher h or l p values or both.
Only one system shows results where Ochiai is better than Relief at h = 0.2 under almost
all l p values. In the same system at h > 0.2, Relief shows better diagnosis performance than
Ochiai, however, in a few cases at a higher link probability (l p≥ 0.8) and health probability
values (0.8 ≤ h ≤ 0.9), Ochiai does better than Relief and an example of that is shown in
Figure 5.3.

100 transactions and h > 0.0: When the systems are executed with 100 transactions
and h > 0.0, as Figure 5.4 depicts, in most cases at lower link probabilities, Ochiai starts
with a poorer performance than Relief. At 0.2 ≤ l p ≤ 0.5 Ochiai gradually improves and
from l p≥ 0.5 it shows relatively better diagnosis effectiveness over Relief. Furthermore, in
most cases with 0.8≤ h≤ 0.9 Ochiai is more effective compared to Relief. Similarly as in
the case of 25 transactions, one system as shown in Figure 5.5 presents Relief as superior
to Ochiai with h > 0.2 under all link probabilities.

200 transactions and h > 0.0: Like in the case of 100 transactions, results from one
system always show that Relief outperforms Ochiai from h > 0.2. Also in most cases the
two methods are comparable or Ochiai does worse than Relief at lower l p values, but Ochiai
starts showing a better diagnosis effectiveness than Relief at higher link probabilities from
around l p ≥ 0.5, and this can be seen in Figure 5.6 which shows Ochiai having better
performance from l p≥ 0.6.

5.1.2 Experiments with single error detection

Experiments under this simulation type differ from the one with planned number of transac-
tions only in the fashion in which the number of transactions is determined. The three types
of transactions are excluded and the simulations are run until an error is detected. Specif-
ically, this means that the error vector produced from each simulation comprises at most a
single failed outcome while the rest are pass. The total number of simulations was lower
compared to its planned transactions counterpart, 140,000 simulations from 7 systems.

As illustrated in Figures 5.7 and 5.8, the results from all the involved systems show that
Ochiai consistently outperforms Relief. In a very few cases, Relief showed a slightly3 better
performance than Ochiai at low link probability with l p≤ 0.2.

5.2 Systems with two faults

Experiments using 8 systems with two faults yielded 420,000 simulations. For 25, 100
and 200 transactions at h = 0.0, 7 out of 8 systems yield results where Relief considerably
outperforms Ochiai as displayed in Figure 5.9. In only 1 system we have seen results that
show a comparable performance between the two methods and in another Ochiai performs
better than Relief at l p < 0.4.

3In our results interpretation ”slightly” is used to denote a difference of ≤ 1.0% in diagnosis performance.

30

Systems with two faults

Figure 5.1: Comparison of 500 diagnosis results between Ochiai and Relief from System 3
with single fault (h = 0.0) and 25 transactions.

Figure 5.2: Comparison of 500 diagnosis results between Ochiai and Relief from System 6
with single fault (h = 0.5) and 25 transactions.

31

5. EXPERIMENTAL RESULTS

Figure 5.3: Comparison of 500 diagnosis results between Ochiai and Relief from System 3
with single fault (h = 0.8) and 25 transactions.

Figure 5.4: Comparison of 500 diagnosis results between Ochiai and Relief from System 4
with single fault (h = 0.8) and 100 transactions.

32

Systems with two faults

Figure 5.5: Comparison of 500 diagnosis results between Ochiai and Relief from System 3
with single fault (h = 0.6) and 100 transactions.

Figure 5.6: Comparison of 500 diagnosis results between Ochiai and Relief from System 6
with single fault (h = 0.9) and 200 transactions.

33

5. EXPERIMENTAL RESULTS

Figure 5.7: Comparison of diagnosis results between Ochiai and Relief from System 4 with
single fault (h = 0.5) and simulation until error is detected.

Figure 5.8: Comparison of diagnosis results between Ochiai and Relief from System 2 with
single fault (h = 0.9) and simulation until error is detected.

34

Systems with three faults

25 transactions and h > 0.0: As shown in Figure 5.10, at lower link probabilities
0.2 ≤ l p ≤ 0.5 and 0.2 ≤ h ≤ 0.4 Ochiai is reasonably better than Relief. In a case or
two Ochiai does slightly better until l p < 0.6 and then as l p further increases Relief im-
proves over Ochiai. For h > 0.4, in more than half of the systems the results show that
Ochiai outperforms its counterpart, while in the other cases Relief outperforms Ochiai. In a
few cases the two methods perform equally.

100 transactions and h > 0.0: In the majority of the systems Ochiai consistently out-
performs Relief at h≤ 0.4 and l p≤ 0.2. While at l p > 0.2 Relief yields better performance
than Ochiai. However, in one system Ochiai was superior to Relief at h = 0.4 under all l p
values. Generally, as h increases, h≥ 0.5, Ochiai performs better than Relief in the majority
of the results, this is depicted in Figure 5.11. In a few cases Ochiai does better at lower l p
while Relief at higher l p values.

200 transactions and h> 0.0: The results at 0.2≤ h≤ 0.4 are similar to those discussed
in the preceding section about 100 transactions. In addition, one system shows alternating
results between the two methods. Similarly to the results in 100 transactions at h > 0.4,
Ochiai outperforms Relief in a majority of the cases with increase in h as can be seen in
Figure 5.12. In a number of cases Ochiai performs well at lower l p values (l p ≤ 0.4) then
as the l p values increase it begins to do worse than Relief.

5.3 Systems with three faults

Similarly to experiments using two faults, experiments with 8 systems comprising three
faults produced 420,000 simulations. For all three types of transactions namely 25, 100 and
200 the results show a reasonable consistent trend. Up to until h≤ 0.4 as in Figure 5.13, in
majority of the results Relief outperforms Ochiai. In a few cases Ochiai shows better results
than Relief at l p ≤ 0.2 and in some cases the two perform equally. From h ≥ 0.5 only a
single system produces results that exhibit Ochiai as superior to Relief as demonstrated in
Figure 5.14, and the rest of the results are dominated by the Relief method.

5.4 Systems with all components faulty

We performed experiments on only two randomly chosen systems that collectively produced
105,000 simulations where all components are designated as faulty. For all types of trans-
actions namely 25, 100 and 200 and health values as well as all link probabilities, Ochiai
outperforms Relief. Figures 5.15 and 5.16 depict a subset of these results where you can
see how Relief undoubtedly performs worse than Ochiai.

35

5. EXPERIMENTAL RESULTS

Figure 5.9: Comparison of 500 diagnosis results between Ochiai and Relief from System 2
with two faults (h = 0.0) and 200 transactions.

Figure 5.10: Comparison of 500 diagnosis results between Ochiai and Relief from System
7 with two faults (h = 0.4) and 25 transactions.

36

Systems with all components faulty

Figure 5.11: Comparison of 500 diagnosis results between Ochiai and Relief from System
3 with two faults (h = 0.6) and 100 transactions.

Figure 5.12: Comparison of 500 diagnosis results between Ochiai and Relief from System
6 with two faults (h = 0.6) and 200 transactions.

37

5. EXPERIMENTAL RESULTS

Figure 5.13: Comparison of 500 diagnosis results between Ochiai and Relief from System
5 with three faults (h = 0.4) and 100 transactions.

Figure 5.14: Comparison of 500 diagnosis results between Ochiai and Relief from System
3 with three faults (h = 0.8) and 200 transactions.

38

Systems with all components faulty

Figure 5.15: Comparison of 500 diagnosis results between Ochiai and Relief from System
7 with all components faulty (h = 0.6) and 25 transactions.

Figure 5.16: Comparison of 500 diagnosis results between Ochiai and Relief from System
8 with all components faulty (h = 0.0) and 200 transactions.

39

Chapter 6

Discussion of Results

In the previous chapter, we presented the results from our experiments. Our next task is
to give an interpretation of these results. We start with single faults in Section 6.1 and
then multiple faults in Section 6.2. Finally, in Section 6.3 we explain the time and space
complexity of Ochiai and Relief.

6.1 Single faults

When the health probability of a faulty component is notably low, i.e. h = 0.0, this means
that the component is 100% faulty. Under this condition, both Ochiai and Relief identify
the faulty components correctly with the same effectiveness. At such a low h value any
involvement of a faulty component in a transaction leads to an eminent failed transaction
and as a result the spectrum of the faulty component largely resembles the corresponding
error vector. Ochiai tends to deliver highly accurate diagnoses in such conditions and based
on our observations, we can affirm that at h = 0.0 Relief behaves precisely like Ochiai. For
Ochiai, this phenomenon has also been confirmed by Abreu et al. [4].

Observation 6.1.1. Components with spectra that most resemble the error vector are most
likely to be ranked the highest by Ochiai.

Observation 6.1.2. In systems with single faults without fault intermittency (h = 0.0), Relief
acts precisely like Ochiai in Observation 6.1.1

In cases where h > 0.0 combined with a few1 transactions, we have seen fluctuating re-
sults. With low link probability values, l p≤ 0.3, Relief performs reasonably well compared
to Ochiai. Due to low l p combined with higher h, many components are hardly involved
in transactions and this leads to sparsity in activity matrices and error vectors. The im-
plications for Ochiai is that non-faulty components with the least activations but largely
involved in failed transactions, can mistakenly be ranked as highest as established in Obser-
vation 6.1.1, while concurrently exonerating faulty components that have many activations
that lead to fewer failed transactions. Evidently, in Relief the highest ranked components

1Not more than 25 transactions.

41

6. DISCUSSION OF RESULTS

are those that are largely activated in the nearest miss transactions and hardly in nearest hit
transactions. This confirms the fact that the nearest miss transactions contribute to increase
in the relevance weights of components because they denote the frequent involvement of
the component in change of classes or involvement in failed transactions. As l p increases
components become regularly activated yielding coverage matrices that are densely popu-
lated with 1s and the corresponding error vectors are more likely to comprise more 1s than
in case of lower l p values. Under these conditions, we observed that Ochiai usually ranks
the faulty components correctly. Intuitively, these components are often the ones that have
the highest LexicoRat values ordered lexicographically. LexicoRat denotes a combination
of the number of failed transactions that components are involved in and their Rat values,
where for a component j

Rat(j) =
Number o f f ailed transactions involving j

Total number o f activations o f j
(6.1)

LexicoRat(j) = [Number o f f ailed transactions involving j,Rat]. (6.2)

The poor performance of Relief can be ascertain to the dense activity matrices and error
vectors. Diagnosis results are more likely to produce ambiguous diagnoses or non-faulty
components are frequently awarded higher relevance weights because many components
will probably be involved in transactions that resemble each other.

Observation 6.1.3. Low link probabilities are likely to produce sparsely populated activity
matrices. While high link probabilities are likely to generate dense activity matrices.

Observation 6.1.4. At h > 0.0, fault intermittency is introduced and the activation of faulty
components does not necessarily lead to failed transactions.

Observation 6.1.5. For Relief, the components that are ranked the highest are mostly acti-
vated in the nearest miss transactions and rarely in the nearest hit transactions.

At l p ≥ 0.8 and 0.8 ≤ h ≤ 0.9 the interactions are producing densely populated activ-
ity matrices but due to high fault intermittency the error vector contains hardly any errors
as mentioned in Observation 6.1.4. This increases the chance of Relief upweighing the
relevance values of components that are non-faulty because both nearest hit and miss trans-
actions are so densely populated they start to resemble each other and this in turn causes
many ambiguous results in which many components are identified as faulty.

At 100 and 200 transactions and h > 0.0, if we looked into why Ochiai exhibits poor
performance at 0.2≤ l p ≤ 0.5, we observe that the components that are activated the least
but have the most involvement in failed transactions are ranked highest, and as a result
usually the wrong components are highly ranked or there are many ambiguous results. In the
same case, looking at Relief, the correctly ranked components are consistently involved in
the nearest miss transactions and hardly in the hit ones which explains why the components
will end up with a higher likelihood of being marked as faulty. In the situations where
Ochiai is better than Relief from l p ≈ 0.5, the highest ranked components also have the
highest LexicoRat values ordered lexicographically. Concurrently, many components or

42

Multiple faults

the wrong components are highly activated in the nearest miss and hit transactions causing
incorrect or ambiguous diagnoses in Relief.

For single faults simulated until error detection, Ochiai constantly yields diagnosis re-
sults that are superior to those of its counterpart, Relief. Again here the components with
the highest LexicoRat values ordered lexicographically are correctly identified as faulty. In
Relief, the transactions that lead to error have no corresponding nearest hit transactions from
the same failed class since there is only a single transaction with a failed class and the faulty
component is always involved in it. Moreover, the faulty component is rarely activated as
most of its activations are likely to cause an error and eventually terminate the simulation.
As a result this causes the decrease in the relevance values of the faulty components and
intrinsically its suspicion ranking in Relief.

6.2 Multiple faults

6.2.1 Two Faults

For all types of transactions at h = 0.0, Relief performs reasonably better in comparison to
Ochiai. In Ochiai the topmost ranked components are also the top two highly placed lexico-
graphically based on their LexicoRat values. The problem with that is that components that
are highly activated and involved in the same failed transactions as components with low
activation are usually ranked higher. This implies that faulty components with lesser activa-
tions than others will be lowly ranked resulting in incorrect or ambiguous diagnoses. While
for Relief components highly involvement in either nearest miss or hit but not in both in-
crements the relevance weights of components. In the cases where Ochiai is more effective
at l p < 0.4, the matrices in those results are sparse and this causes the faulty components
to be identified correctly because they are likely to be involved in the few failed transaction
outcomes in the error vector. Thus, the spectra for these components resemble the error
vector the most. On the other hand, Relief at most identifies 1 out of 2 faulty components
and the an unidentified faulty component is often hardly involved in the nearest miss and hit
transactions implying a low relevance weight and consequently a low suspicion ranking.

At 25 transactions and h> 0.0, with lower probabilities 0.2≤ l p≤ 0.5 and 0.2≤ h≤ 0.4
Ochiai is better than Relief and the two highly ranked components have spectra that highly
resemble the error vector. Due to low probability as explained in Observation 6.1.3 the
spectra of the faulty components are notably bound to resemble the error vector. Relief is
only capable of locating in most cases 1 out of the 2 faulty components, and the correctly
identified component is usually the one that is most activated and has its most activations
leading to failed transactions. If you look in the nearest miss and hit transactions of Relief,
you will always find that this component is highly activated in the miss transactions which
explains why its relevance weight is high. For the other component that is not correctly
identified, it is always the one with fewer activations and its miss transactions are bound to
be full of zeros leading to low relevance weight.

As l p increases while h is kept the same the frequency at which the components are
involved in transactions increases and at low h values more transactions lead to more failed
transaction outcomes. So for Ochiai this means that many components have spectra that re-

43

6. DISCUSSION OF RESULTS

semble the error vector and one of the two faulty components might not be ranked as one of
the top two highest components. For Relief since it is more sensitive to the components with
most activations in relations to their involvement in failed transaction outcomes, it performs
well under this conditions. For those results where Relief outperforms Ochiai because of
higher l p, the components are activated more often and the transactions create more failed
outcomes, so more components have spectra that are similar to the error vector and these are
mostly non-faulty components. In the other cases, Ochiai is better than Relief because there
are a lot of activations and a lot of components involvement in failed transactions and dense
error vector, so most of the components get weighed highly causing some components other
than the faulty ones to be highly ranked. While Ochiai at the same time does better because
the faulty components get ranked higher based on the using the LexicoRat values.

With 100/200 transactions at h ≤ 0.4 and l p ≤ 0.2, the cases in which Ochiai does
better than Relief can be explained by the fact that the components are mostly involved
in transactions that resemble the error vector and are, therefore, ranked as highest. The
reason is that at low h values usually when a faulty component is involved in a transaction,
it is bound to cause a failed transaction outcome. So in this case the faulty components all
get high LexicoRat values. Due to the sparsity of the matrices, Relief ranks higher those
components that are involved in a few activations with most of them being part of the failed
transactions. The other cases in which Relief is better compared to Ochiai are caused by
the fact that numerous spectra that resemble error vector are generated and consequently
components other than the faulty ones maybe inccorectly ranked high.

6.2.2 Three Faults

In most cases the behavior of Ochiai and Relief in three faults systems is similar as in those
of two faults. However, in cases where h ≤ 0.4, Relief outperforms Ochiai, and mostly
Ochiai ranks those components with the lexicographically highest LexicoRat values the
highest which means the components that most resemble the error vector and have the most
activations are the ones denoted as suspicious even when they are not faulty.

6.2.3 All components faulty

The error vector is more likely to be densely populated since each transaction might lead
to an error. In Ochiai this means more components are ranked high since their spectra will
be resembling the error vectors. While in Relief most of the ones that resemble the vector
will be densely populated themselves and this allows no variation in opposite class which
in turn decreases relevance weights to the point that they might be zero which exonerates
them from being faulty.

6.3 Computational Complexity

In this section we compare the time/space complexity of Relief and Ochiai. The Relief
method comprises two computation steps. In the first, we compute the relevant weights
for the components using Relief algorithm which has a time/space complexity of O(kNC)

44

Statistical Significance of Experimental Results

where N denotes the number of transactions, C the number of components and k is the
number of iterations. Since in our case k = N, the complexity of the first step is O(N2C).
The most complex operation of this step is the selection of the nearest hit and miss trans-
actions because we have to calculate the distance between each transaction and all the rest
which takes O(C) comparisons per a transaction. During the second step which involves
the suspicion ranking of the components, O(C)+O(C)+O(C) operations are required for
normalization of weights, intermediate ranking and final ranking. As a result the total com-
plexity for the Relief method is O(N2C)+O(C)+O(C)+O(C). However, since O(N2C)
is dominant the computational complexity of this method is O(N2C).

In Ochiai, the ranking for each component is computed using its spectrum and the cor-
responding error vector. O(N) comparison operations are required for each component.
Therefore, for a C number of components the complexity is O(NC). Looking at the two
methods, Ochiai is absolutely faster than Relief. Table 6.1 illustrates the complexity supe-
riority of Ochiai compared to Relief.

Diagnosis Duration (in seconds)
No. of transactions 3132 3513 3288 2874 2991 2397 2387 2329 2351 2784

Ochiai 0 0 0 0 0 0 0 0 0 0
Relief 68 83 73 60 63 45 46 44 112 57

Table 6.1: Computational duration (in seconds) for Ochiai and Relief from 10 random ac-
tivity matrices.

6.4 Statistical Significance of Experimental Results

To test the significance of our experimental results, we use the Student’s t Test [26]. Let us
optimistically assume that at their best performance, both Ochiai and Relief can diagnose
a system and yield results with a 100% fault localization accuracy all the time. Therefore,
the population mean for overall diagnoses will be 100% for each of the two methods. Our
experimental results comprise two independent samples for Ochiai and Relief diagnoses
and we want to compare each of them with the diagnoses population. Each sample contains
315 individual diagnoses and each system consists of an Ochiai and Relief sample. We will
use the Single-Sample t Test and the computation is as follows:

1. Null and Alternative Hypotheses
Null hypothesis: Ochiai/Relief diagnoses mean is not different from population mean.
(H0) : µ = 100
Alternative hypothesis: Ochiai/Relief diagnoses mean is different than the population
mean.
H1 : µ ̸= 100

45

6. DISCUSSION OF RESULTS

2. Alpha Level
The alpha level specifies a threshold value used to judge whether a test statistic is
statistically significant.
α = 0.05

3. Degrees of Freedom (df)
Our samples are 315 large, i.e. N = 315.
d f = N−1 = 315−1 = 314

4. Decision Rule
Using α = 0.05 and two-tailed Single-Sample t Test, t critical value = 1.9719.
Our decision rule is:
If t ≤−1.9719 or if t ≥ 1.9719, reject H0.
If −1.9719 < t < 1.9719, fail to reject H0.

5. Test Statistic Computation
t = x−µ

s√
N

, where x, s and N are the mean, the standard deviation and the size of the

sample respectively.
The t values for diagnoses from 8 systems used in our experiments are:

Systems t values
Ochiai Relief

1 -25.197 -23.628
2 -25.924 -27.129
3 -33.039 -31.116
4 -29.471 -26.887
5 -31.278 -29.490
6 -30.246 -30.162
7 -28.243 -28.758
8 -31.333 -30.601

Table 6.2: t values for Ochiai and Relief samples from 8 systems used in the experiments.

6. Results
The decisions rule was: If the t value is less than −1.9719 or greater than 1.9719,
we will reject the null hypothesis. Otherwise fail to reject the null hypothesis.
Based on the t values in Table 6.2, we reject the null hypothesis, H0.

46

Statistical Significance of Experimental Results

7. Conclusion
Our conclusions is that the diagnoses mean of Ochiai and Relief from our experimen-
tal results is different than the 100% diagnoses mean for general population. Table 6.3
depicts the mean values for the samples per a system. By comparing the mean val-
ues of the samples to the population mean (100%), we can conclude that the Relief
and Ochiai fault localization performance in our experiments is lower than overall
diagnoses performance in general.

Systems Mean Values
Ochiai Relief

1 39.65 50.33
2 38.36 41.06
3 29.02 28.26
4 32.70 40.66
5 28.89 37.89
6 32.94 34.35
7 31.78 33.0
8 31.78 33.0

Table 6.3: Mean values (percentages) for Ochiai and Relief samples from 8 systems used in
the experiments.

47

Chapter 7

Threats to Validity

This section discusses the threats to validity that can affect our empirical study and the
results described in the previous chapters.

7.1 Systems

The systems that we used in our experiments are arbitrarily created and they do not necessar-
ily represent some real existing systems. Consequently, we cannot affirm that reproducing
our experiments using existing systems that are identical to one or more of our systems will
exhibit comparable conclusions. Another threat to our use of the systems is the number of
components and links. Our largest system comprises 16 components and 27 links. How-
ever, systems in real life may contain hundreds if not thousands of components and links.
So our findings may not be representative for such large systems but they may be a good
indication on what to expect from such systems.

7.2 Simulations

As our experiments are solely based on simulations using the SFL-Simulator, performing
a case study on a real system may produce empirical results that are not existent in our
study. In all our simulations, the inception of the simulation starts from a single point.
However, the SFL-Simulator allows having several simulation starting points. Performing
our experiments using more than one simulation starting point may yield different results
than what we obtained. Furthermore, in experiments with simulations using single faults
until error detection, we observed that many simulations produced diagnoses with merely
a few transactions, in most extreme cases only a single transaction. Such diagnoses may
affect the overall diagnosis performance because a single transaction will probably contain
insufficient information to produce a good fault localization diagnosis.

49

7. THREATS TO VALIDITY

7.3 System granularity

In our work we use system topologies to model the systems at a higher component gran-
ularity level, specifically at classes or service-oriented systems level. However, working
with functions and statements needs a finer component granularity. It is possible to model
functions and statements into system topologies too as a topology is nothing but a struc-
ture to hold program constructs and how they communicate or are interconnected with each
other. Nonetheless, our experiments and findings can only be generalized for systems with
a granularity at the level of classes and services. For systems with a granularity lower than
in our work, we cannot confirm that our findings will hold.

7.4 Transactions

From our findings, it is obvious that the number of transactions affect the diagnosis perfor-
mance of the methods we compared. We have used a maximum number of 200 transactions
in our experiments excluding the experiments with singles faults and single error detection
because the number of transactions in these cases are simulation-dependent. Using a num-
ber of transactions greater than what we experimented with may yield results which we
cannot defend in our work. Therefore, our work specially with multiple faults is limited to
a maximum of 200 transactions as per a system configuration.

7.5 Faults, Health Probability, Link Probability

In our experiments we only set predetermined components as faulty and not every compo-
nent in turn. Performing experiments whereby all faulty permutations of components are
investigated may yield results different than what we observed. For health and link probabil-
ity values we also chose certain intervals from 0.0 to 1.0. However, using different intervals
may produce results different than ours.

7.6 Relief Algorithm

In cases where the transaction outcomes are all pass or contain a single fail outcome, some
transactions may not have a corresponding nearest hit/miss transaction. This condition is not
considered by the Relief Algorithm 1. We have circumvented this condition by setting the
δ(i, Xk, Xh) and δ(i, Xk, Xm) values in Equation 2.9 to zero when computing the relevance
weights. Although this applies to all components when calculating their weights, without a
thorough validation, we are not completely sure what effect this has on Relief.

Another treat concerning Relief is that we have slightly diverted from the fashion in
which normalization is performed as stated in the Ranking Algorithm 2. In the step of
normalization Y [i]≥ 0 is used, but we use Y [i]> 0 instead because we are of opinion that if
the value of Y [i] = 0 then the corresponding normalized weight will be zero (already handled
by the else block in the algorithm) and that extra computation step Y [i] = 0 is redundant.
Also in the step of translating the weights into intermediate ranks there is a little confusion in

50

Statistical Significance of Experimental Results

the original paper by Roychowdhury and Khurshid [6], they mention using both the number
of transactions and the number of components. However, in their calculations they used
the number of transactions which sometimes produces negative scores for lowly ranked
components. We have opted for the number of components because it produces positive
scores and makes it easier for visual comparison with Ochiai scores. Whichever approach
you take the components will still have the same order in the ranking. But this might be a
point to take note of when reproducing our work.

In addition to the preceding point, another concern about the normalization step is that
it does not encompass negative weights. All negative weights are automatically normal-
ized to zero. There may be a situation whereby all the components have negative relevance
weights, this condition is not considered in the normalization step of the Ranking Algo-
rithm 2. So considering normalization of negative weights may have some effect on the
overall relevance weights.

7.7 Statistical Significance of Experimental Results

In our computation of t-Test we have aggregated the diagnosis results from all results per-
mutations into a single sample for each system. Creating samples separately for each of
these variables may yield tests that are different than what we have obtained. Also for the
computation of the t value, our sample size is large, 315 with 314 degrees of freedom (d f),
and cannot be found in most critical t values tables. Most critical t value tables have a list
with critical t values corresponding up to 200 d f . However, we are allowed to take the
nearest biggest d f in the table that is smaller than 314, like e.g. 200. This may affect the
tests computation slightly and mostly without serious implications.

51

Chapter 8

Related Work

This chapter is devoted to the related work. Considering the fact that the work in this thesis
comprises comparing two different fault localization methods namely Ochiai and Relief, we
give each method a related work section. The first section presents studies about Ochiai,
whereas the following section discusses previous research in Relief. The last section is for
other relevant studies.

8.1 Ochiai

Abreu et al. [4] in their article about the accuracy of spectrum-based fault localization,
studied the effectiveness of different SFL similarity coefficients. They presented results
that demonstrated that for the Siemens set with single-site faults, Ochiai has improved di-
agnostic accuracy over other eight SFL methods. In another study by Abreu et al. [8] where
they researched using Siemens set in the utility of low-cost, generic invariants known as
screeners to detect errors in online SFL, the results showed how screeners can be used in
online diagnosis with reasonable overhead and also Ochiai was repeatedly seen to outper-
form Tarantula and Jaccard. The toolset, Zoltar, talked about in the study by Janssem et
al. [11] which is used for automatic fault localization also produced diagnostic results that
illustrate that Ochiai is better than its counterparts. Naish et al. [12] used several coefficients
to evaluate their SFL approach and for single-fault programs their results demonstrated that
Ochiai performed better than the rest. Wang et al. [27] used 22 different SC measures
including Tarantula and Ochiai in their approach to build composite measures. The com-
posite measure performed better than the constituent SC measures. Yu et al. [28] and Piel et
al. [2,9] used Ochiai in their respective methods for SFL diagnosis all producing promising
results. Bandyopadhyay [29] described in his article an approach that enhances effective-
ness of SFL by incorporating the relative importance of different test cases to compute the
SC scores. The paper stated that SFL techniques such as Tarantula and Ochiai consider each
test case equally important with respect to SC scores computation. However, according to
Bandyopadhyay, research on test case generation and selection techniques has indicated that
utilizing a select number of test cases can enhance the effectiveness of fault localization, in
other words its SC scores. In his proposed approach, Bandyopadhyay used a SC which

53

8. RELATED WORK

is an adaptation of Ochiai. Based on his work, the new SC had a slight improvement in
effectiveness in comparison to Ochiai. In their paper about spectrum-based multiple fault
localization, Abreu et al. [30] presented new framework known as BARINEL in which a
program is modeled using abstractions of program traces (as in SFL) while Bayesian rea-
soning is used to deduce multiple-fault candidates and their probabilities. According to
their experimental results BARINEL typically outperformed current SFL approaches such
as Ochiai at a cost complexity that is only marginally higher.

Generally, the work in this thesis differs from the above mentioned studies in that we
model the systems under investigation with larger component granularity and use that for
the experiments instead of test sets such as the Siemens set. Furthermore, we study the effect
of multiple faults in our experiments which is hardly the case in most of the aforementioned
studies. Also, none of the studies mentioned have compared Ochiai to Relief.

8.2 Relief

Roychowdhury et al. [6] performed a study to apply Feature Selection based Relief tech-
nique to SFL, and compared the diagnosis performance of Relief with Ochiai and other
algorithms. In their research they only assessed those algorithms in single-fault cases with
the Siemens Test Suite, while our work explores the diagnostic performance of Ochiai and
Relief for both single and multiple faults in several different systems. In addition, the assess-
ment metrics they used are different than the ones we employ. They check the percentages
of examined code before the fault is localized for each algorithm, whereas we compare how
many times the algorithms are able to correctly and uniquely identify the faulty compo-
nent(s).

In other studies about Relief: Guyon et al. [17], Kira et al. [18], Hum et al. [31], Sunet
et al. [20] and Blum et al. [19] all talk about Feature Selection algorithms including Relief.
In some of these articles, Relief has been acclaimed as a good algorithm for datasets with
many features. Our works differs from these papers based on the fact that they only consider
Relief without any mention of fault localization.

8.3 Others

Cotroneo et al. [32] addressed problems of online software fault diagnosis in complex safety
critical software systems. Their approach combined both error detection and fault location
processes. Yu et al. [33] in their paper, Towards Practical Debugging for Regression Faults,
proposed an automated technique to locate failure-inducing changes based on Delta Debug-
ging, which systematically searching for failure-inducing changes by patching a subset of
changes and observing execution results. Ali et al. [34] developed a new program called
Concordance for conducting fault localization experiments. They evaluated several fault
localization techniques and according to them Tarantula performed well. In another sur-
vey about fault localization done by Wong et al. [35], they investigated program spectrum-
based, static dynamic and execution sliced-based, machine learning-based and model-based
and data mining-based methods. Debroy et al. [36] talked about the equivalence of some

54

Others

fault localization techniques in their paper. Their evaluation approach defines equivalence
relation as the virtue by which two or more fault localization techniques may be considered
equivalent if they produce identical rankings of program components. Abreu et al. [37]
proposed a framework known as DEPUTO to improve the effectiveness of SFL techniques.
Their approach combines spectrum-based fault localization with a model-based debugging
approach which refines the ranking obtained from the spectrum-based method by filtering
out those components that do not explain the observed failures when the program semantics
is considered. Perez et al. [13] discussed in their paper a lightweight, topology-based anal-
ysis approach to diagnose a system based on the source code structure. The approach uses
both SFL and Dynamic Code Coverage (DCC) techniques and the approach makes a choice
which fault localization technique to use by creating an hierarchical model of the system.

Again, our work differs from these studies because they have not considered fault local-
ization using Relief and in most cases have no mention of Ochiai or the comparison of the
two methods.

55

Chapter 9

Conclusions and Future Work

To bring this thesis to a close, we summarize the reflections on our findings and draw some
conclusions. Finally, we present some ideas for future work.

9.1 Conclusions

In this thesis, we have compared the performance of two spectrum-based fault localization
techniques namely Ochiai and Relief. Ochiai stems from statistical approaches and uses a
similarity coefficient to order the components of a system according to their likelihood of
being faulty, while Relief as a machine learning approach uses feature selection to narrow
down the search space for the components that are likely to be faulty by assigning them
higher relevance weights.

To address the research questions in this thesis, several experiments have been con-
ducted with different systems and system configurations using the SFL-Simulator (Chap-
ter 4 and 5). The research questions as stated in the introduction of this thesis have been
answered thoroughly through the evaluation and interpretation (Chapter 6) of the experi-
mental results (Chapter 5). We have observed that there is no clear-cut winner in regard to
the comparison of the performance of the two methods. The diagnosis effectiveness does
not only depend on a fault localization method but also on many other factors such as the
system under investigation, the components in the system and links between them, the num-
ber of faults in the system, the health state of the components, the link probabilities and the
number of transactions used. The summation of the answers to the research questions are
as follows:

Research Question 1:
Considering the two techniques Ochiai and Relief: Which one has a better fault localization
performance or accuracy?

Systems with Single Faults In systems with predetermined number of transactions and
single faults with no fault intermittency1, i.e. h= 0.0 for faulty components, both Ochiai and

1Fault intermittency is when the health value of the faulty component is h > 0.0.

57

9. CONCLUSIONS AND FUTURE WORK

Relief exhibited identical diagnosis performance. Using very few transactions (≤ 25) with
high fault intermittency (h > 0.0) and low link probability between the components, Relief
performed reasonably well in comparison to Ochiai. However, with high link probability
values Ochiai was more effective than Relief under fault intermittency. With a high number
of transactions (≤ 200) and fault intermittency, Ochiai showed poorer performances than
Relief at low link probability values. As the link probability increased Ochiai performed
better than Relief. In cases whereby the system simulations were run until an error was
detected, Ochiai repeatedly outperformed Relief.

Systems with Multiple Faults In systems with up to three faults without fault intermit-
tency, in most cases Relief had a better fault localization diagnosis accuracy than Ochiai. In
some cases under the same condition, Ochiai was more effective than Relief with low link
probability. With fewer transactions, low fault intermittency (h ≤ 0.4) and link probability
(l p≤ 0.5) Ochiai is better than Relief. But under high link probability in some cases Relief
performed well in comparison to Ochiai. When a large number of transaction is used with
fault intermittency in most cases Ochiai did better than Relief under low link probability
values combined with low fault intermittency. When all the components are set as faulty,
Ochiai clearly produced better fault localization performance than Relief.

Research Question 2:
Are there characteristics of systems that support the application of: Ochiai or Relief?

The most important characteristics of a system that affect the performance of both Ochia
and Relief are: the number of faults, the links between the components of the system and
the number of transactions executed by the system. These characteristics are not mutually
exclusive and their combined effect is what influences the fault localization accuracy of the
two techniques. The influence of these factors have already been discussed thoroughly in
our discussions in Chapter 6 and in the summation of the answers to Research Question 1.

In regard to the performance of Ochiai and Relief, another factor that is important in
the comparison of the two methods is computational complexity. It is not only important to
consider the fault localization accuracy of a method but also the time and space efficiency
by which the method performs its diagnosis. The results show clearly that Ochiai is faster
than Relief in all cases investigated.

9.2 Future work

The results attained in this thesis are promising and are a good step towards finding and
choosing the appropriate diagnosis technique based on the characteristics of the system
under investigation. Based on the results of our study, we suggest a number of possible
future works:

• Performing a study of comparison of Ochiai with other variants of the Relief Algo-
rithm such as Relief-(A to F).

58

Future work

• Performing a study similar to ours using systems consisting of larger numbers of
components and links, maybe in the order of hundreds as well as larger numbers of
transactions.

• Performing our study but with multiple faults using single error detection simulations.

• Adding automatic system topology generation features to the SFL-Simulator.

59

Bibliography

[1] J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula automatic fault lo-
calization technique,” In Proceedings of the 20th IEEE/ACM international Conference
on Automated software engineering, pp. 273–282, 2005.

[2] E. Piel, A. Gonzalez-Sanchez, H.-G. Gross, A. J. van Gemund, and R. Abreuy, “On-
line spectrum-based fault localization for health monitoring and fault recovery of self-
adaptive systems,” ICAS 2012 : The Eighth International Conference on Autonomic
and Autonomous Systems, pp. 64–73, 2012.

[3] S. Yoo, “Evolving human competitive spectra-based fault localisation techniques,” 4th
Symposium on Search Based Software Engineering, 2012.

[4] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “On the accuracy of spectrum-based
fault localization,” TAICPART-MUTATION ’07 Proceedings of the Testing: Academic
and Industrial Conference Practice and Research Techniques - MUTATION, pp. 89–
98, 2007.

[5] K. Yin, R. Rengaswamy, S. N. Kavuri, and V. Venkatasubramanian, “A review of pro-
cess fault detection and diagnosis part i: Quantitative model-based methods,” Com-
puters and Chemical Engineering, pp. 293–311, 2003.

[6] S. Roychowdhury and S. Khurshid, “Software fault localization using feature selec-
tion,” Proceeding MALETS ’11 Proceedings of the International Workshop on Ma-
chine Learning Technologies in Software Engineering, pp. 11–18, 2011.

[7] R. Abreu, P. Zoeteweij, and A. J. V. Gemund, “A new bayesian approach to multiple
intermittent fault diagnosis,” Proceeding IJCAI’09 Proceedings of the 21st interna-
tional jont conference on Artifical intelligence, pp. 653–658, 2009.

[8] R. Abreu, A. Gonzalez, P. Zoeteweij, and A. J. van Gemund, “Automatic software
fault localization using generic program invariants,” SAC ’08 Proceedings of the 2008
ACM symposium on Applied computing, pp. 712–717, 2008.

61

BIBLIOGRAPHY

[9] E. Piel, A. Gonzalez-Sanchez, H.-G. Gross, and A. J. van Gemund, “Spectrum-based
health monitoring for self-adaptive systems,” Self-Adaptive and Self-Organizing Sys-
tems (SASO), 2011 Fifth IEEE International Conference on, pp. 99–108, 2011.

[10] R. Abreu, A. Gonzalez-Sanchez, and A. J. van Gemund, “Exploiting count spectra
for bayesian fault localization,” PROMISE ’10 Proceedings of the 6th International
Conference on Predictive Models in Software Engineering, pp. –, 2010.

[11] T. Janssem, R. Abreu, and A. J. van Gemund, “Zoltar: A toolset for automatic fault
localization,” 2009 IEEE/ACM International Conference on Automated Software En-
gineering, pp. 662–664, 2009.

[12] L. Naish, H. J. Lee, and K. Ramamohanarao, “A model for spectra-based software
diagnosis,” 2011 ACM Transactions on Software Engineering and Methodology, 2011.

[13] A. Perez, A. Riboira, and R. Abreu, “A topology-based model for estimating the di-
agnostic efficiency of statistics-based approaches,” Software Reliability Engineering
Workshops (ISSREW), 2012 IEEE 23rd International Symposium, pp. 171–176, 2012.

[14] SERG-Delft, “Spectrum-based fault localization (sfl) simulator.” https://github.
com/SERG-Delft/sfl-simulator , 2013.

[15] M. J. Harrold, G. Rothermel, R. Wu, and L. Yi, “An empirical investigation of pro-
gram spectra,” In Proceedings of the ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering (PASTE 1998), pp. 83–90, 1998.

[16] A. Gonzalez-Sanchez, R. Abreu, H.-G. Gross, and A. J. van Gemund, “An empirical
study on the usage of testability information to fault localization in software,” SAC
’11 Proceedings of the 2011 ACM Symposium on Applied Computing, pp. 1398–1403,
2011.

[17] I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,” Journal
of Machine Learning Research, pp. 1157–1182, 2003.

[18] K. Kira and L. A. Rendell, “A practical approach to feature selection,” Proceeding
ML92 Proceedings of the ninth international workshop on Machine learning, pp. 249–
256, 1992.

[19] A. L. Blum and P. Langley, “Selection of relevant features and examples in machine
learning,” Artificial Intelligence - Special issue on relevance, pp. 245–271, 1997.

[20] Y. Sun and J. Li, “Iterative relief for feature weighting,” Proceeding ICML ’06 Pro-
ceedings of the 23rd international conference on Machine learning, pp. 913–920,
2006.

[21] A. Smola and S. Vishwanathan, Introduction to Machine Learning. Cambridge Uni-
versity Press, 2008. (ISBN 0 521 82583 0).

[22] Ruby, “Ruby version 1.9.3.” http://www.ruby-lang.org/en/downloads .

62

[23] GraphViz, “Graphviz.” http://www.graphviz.org .

[24] RubyGems, “Ruby-graphviz gem.” http://rubygems.org/gems/ruby-graphviz .

[25] RubyGems, “Colorize gem.” http://rubygems.org/gems/colorize .

[26] Wikipedia, “Student’s t-test.” https://en.wikipedia.org/wiki/Student’s_
t-test .

[27] S. Wang, D. Lo, L. Jiang, Lucia, and H. C. Lau, “Search-based fault localization,” ASE
’11 Proceedings of the 2011 26th IEEE/ACM International Conference on Automated
Software Engineering, pp. 556–559, 2011.

[28] K. Yu, M. Lin, Q. Gaoy, H. Zhangy, and X. Zhangy, “Locating faults using multi-
ple spectra-specific models,” SAC ’11 Proceedings of the 2011 ACM Symposium on
Applied Computing, pp. 1404–1410, 2011.

[29] A. Bandyopadhyay, “Improving spectrum-based fault localization using proximity-
based weighting of test cases,” ASE ’11 Proceedings of the 2011 26th IEEE/ACM
International Conference on Automated Software Engineering, pp. 660–664, 2011.

[30] R. Abreu, P. Zoeteweij, and A. J. van Gemund, “Spectrum-based multiple fault lo-
calization,” 2009 IEEE/ACM International Conference on Automated Software Engi-
neering, pp. 88–99, 2009.

[31] Q. Hu, P. Zhu, J. Liu, Y. Yang, and D. Yu, “Feature selection via maximizing fuzzy
dependency,” Fundamenta Informaticae, pp. 167–181, 2010.

[32] D. Cotroneo, G. Carrozza, and S. Russo, “Software faults diagnosis in complex ots
based safety critical systems,” Seventh European Dependable Computing Conference,
pp. 25–34, 2008.

[33] K. Yu and M. Lin, “Towards practical debugging for regression faults,” 2012 IEEE
Fifth International Conference on Software Testing, Verification and Validation,
pp. 487–490, 2012.

[34] S. Ali, J. H. Andrews, T. Dhandapani, and W. Wang, “Evaluating the accuracy of fault
localization techniques,” ASE ’09 Proceedings of the 2009 IEEE/ACM International
Conference on Automated Software Engineering, pp. 76–87, 2009.

[35] W. E. Wong and V. Debroy, “Survey of software fault localization,” Technical Report
UTDCS-45-09, 2009.

[36] V. Debroy and W. E. Wong, “On the equivalence of certain fault localization tech-
niques,” SAC ’11 Proceedings of the 2011 ACM Symposium on Applied Computing,
pp. 1457–1463, 2011.

[37] R. Abreu, W. Mayer, M. Stumptner, and A. J. van Gemund, “Refining spectrum-based
fault localization rankings,” SAC ’09 Proceedings of the 2009 ACM symposium on
Applied Computing, pp. 409–414, 2009.

63

Appendix A

Ruby Implementation of Relief

Retrieves nearest hit and nearest miss for a given observation/row
Param(s) => index: the index of the observation
observations: list of list of observations
error: error vector
Return => hit: nearest hit (observation)
miss: nearest miss (observation)
def retrieve_neighbors(index, observations, error)
sample = observations[index]
hitHash = Hash.new
missHash = Hash.new

observations.each_index do |i|
next if index == i
neighbor = observations[i]
euclideanDistance = retrieve_euclidean_distance(sample, neighbor)
if error[index] == error[i]
hitHash[i] = euclideanDistance

else
missHash[i] = euclideanDistance

end
end

Sort and take hit the with the first/with smallest distance
hitArr = hitHash.sort_by{|k,v| v}.first
Sort and take the miss with the first/with smallest distance
missArr = missHash.sort_by{|k,v| v}.first
hit = (hitArr.nil?) ? [] : observations[hitArr.first]
miss = (missArr.nil?) ? [] : observations[missArr.first]
return hit, miss

end

65

A. RUBY IMPLEMENTATION OF RELIEF

Retrieves the Euclidean distance of two lists
Param(s) => array1: a list or observation
=> array2: a list or observation
#
Return => Euclidean distances between the two lists
def retrieve_euclidean_distance(array1, array2)
distance = 0
array1.each_index do |i|
distance += (array2[i] - array1[i])**2

end
return Math.sqrt(distance)

end

Normalizes components’ relevant weights in the range of 0.0..1.0
Param(s) => weights: list of relevant weights for components involved
#
Return => normWeights: list of normalized relevant weights for components involved
def normalize_weights(weights)
normWeights = Array.new(weights.length); maxValue = weights.max
weights.each_index do |i|
value = weights[i]
if value > 0.0
normWeights[i] = value / maxValue

else
normWeights[i] = 0.0

end
end
return normWeights

end

Normalizes components by ranking them in range of 1.0..nr of components involved
Param(s) => norm_weights: list of normalized relevant weights for components
#
Return => ranked_weights: list of relevant weights for components involved
def translate_weights_to_ranks(norm_weights)
rankedWeights = Array.new(norm_weights.length)
lines = norm_weights.length
norm_weights.each_index do |i|
value = norm_weights[i]
rankedWeights[i] = (value + lines * (1 - value)).floor

end
return rankedWeights

end

66

Retrieves relevant weights for components/links using RELIEF Algorithm
Param(s) => observations: list of observations/tests
error: list of observation outcomes
#
Return => a list with relevant weights for each component/link
def retrieve_relief_weights(observations, error)
rows = observations.length
cols = observations[0].length
weights = Array.new(cols, 0.0)
for i in 0..(rows - 1)
hit, miss = retrieve_neighbors(i, observations, error)
hitLength = hit.length; missLength = miss.length
for j in 0..(cols - 1)
obsValue = observations[i][j].to_f
diffHit = (hitLength == 0) ? 0 : ((obsValue - hit[j].to_f)**2)
diffMiss = (missLength == 0) ? 0 : ((obsValue - miss[j].to_f)**2)
weights[j] = weights[j] + (diffMiss - diffHit) / rows.to_f

end

end

Normalize weight to the range of 0.0..0.1
normWeights = normalize_weights(weights)
Rank weights to the range of 1..nr of components
rankWeights = translate_weights_to_ranks(normWeights)
return rankWeights

end

Computes the similarity/relevance score of the components based on the fact
whether they are faulty or not
Param(s) => observations: list of observations/tests
error: list of observation outcomes
comps: list of components’ names
#
Return => a list components with their corresponding relevance scores
def compute_relief_scores(observations, error, comps)
scores = Hash.new
weights = retrieve_relief_weights(observations, error)
linesCount = weights.length
maxVal = weights.max
maxCardinality = weights.count(maxVal)
weightFactor = (linesCount + 1.0 - maxCardinality) / linesCount.to_f
weights.each_index do |i|

67

A. RUBY IMPLEMENTATION OF RELIEF

scores[comps[i]]=(((1-(weights[i]/linesCount.to_f))*weightFactor.to_f)).round(3)
end
return scores.sort_by{|k,v| v}.reverse

end

68

Appendix B

Systems

Figure B.1: System 1 with 6 components and 7 links.

69

B. SYSTEMS

Figure B.2: System 2 with 6 components and 11 links.

70

Figure B.3: System 3 with 8 components and 7 links.

71

B. SYSTEMS

Figure B.4: System 4 with 18 components and 21 links.

72

Figure B.5: System 5 with 8 components and 16 links.

73

B. SYSTEMS

Figure B.6: System 6 with 16 components and 27 links.

74

Figure B.7: System 7 with 8 components and 11 links.

75

B. SYSTEMS

Figure B.8: System 8 with 8 components and 21 links.

76

