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Symmetrical Components in the Time Domain and
Their Application to Power Network Calculations

Gerardus C. Paafsenior Member, IEEE

~ Abstract—Although the Symmetrical Component Transforma-  transformations is preferable in electrical-machines theory. This
tion has existed for 80 years, its application in the time-depen- thesis is still cited by many authors [5]-[7] today and its princi-
dent form is practically restricted to the electric-machine theory. ples extended to the calculations of power systems. The main

In the Power Systems field one uses the transformation applied to dvant is that. after t f fi the phvsical struct
gteady-state ginusoidal phasors in a nonunitary form for fault cal- advantage Is thal, after transtormation, theé physical structure

culations. For time-domain calculations the real equivalat, O, 3, Of machines, e.g., the winding turns and flux relationships, are
is preferred, usually extended to 0d, g-components. In network unchanged. However, in network calculations the intemal rela-

calculations, however, the application of time-dependent symmet- tions of magnetic-field quantities and currents in the separate
rical components makes sense, since many net-component parame 5 chines are of less importance. The proper relations between

ters are already available in this form. In this paper a short histor- ¢ inal volt ¢ d i T intai
ical overview of the symmetrical-component transformation and erminal voltages, currents and power may prevail. 10 maintain

the application of unitary and orthogonal transformations are pre-  these proper relations between power, voltage and current, uni-
sented. From these general transformations logic choices for basetary and orthogonal transformations are used in this paper. Line,
quantities necessary in per unit calculations will be derived. The transformer, static load and asynchronous machine load models
relations between real and complex transformations, steady-state are implemented by their symmetrical components, while syn-
phasors and well-known sequence networks are given and illus- chronous machines are represented, i coordinates’ To link
trated through the use of some examples with asymmetrical faults. ] ’ p o= o : .
o rotating machines onto the grid, interfaces are used that bridge
forlrr:gi)é ngergfnzpog’gr:gma”%;mcn?gt‘ﬁ'eesx g’;?np';‘;ia' P;;as'gsr; the difference in base quantities and usual pu parameters. The
Instantaneous and Average Power, Per Unit calculation. uge of |r_1terfaces makes it pQSS'b'e to employ machine models
with their usual (pu) data delivered by the manufacturer.
In the unitary fomn, the symmetrical-component transforma-

|. INTRODUCTION tion matrix is:
HE application of Symmetrical Components dates from 11 1
1918 when Fortescue [1] introduced them as a decomposi- S — 1 1 ol g2 with §~1 = §*T (1)
tion of complex steady-state phasors. Although they were intro- V3 1 a2 gt B

duced for three-phase phasors of sinusoidal time functions, they

are the basis for the transformation of arbitrary instantaneofe yransformation is applied to both voltages and currents. The
variables. The first application of the Symmetrical Components. variabledJ’ andT’ are connected to the old ones by:
to time-dependent variables was introduced by Lyon [2]. He no

longer called it a decomposition but a transformation and used U=SU and I=STI )
the transformation matrix that follows from the decomposition
introduced by Fortescue: In electrical machine theory, where the transformation was

applied to both 3-phase and-phase systems, many applica-
tions can be found [8]-[10]. [8], [9] show, for example, the
remarkable property of this transformation in decomposing
higher space harmonics into special groups.

1 1 o
Log2 wherea = exp |:J —}

1
S=|1 a
1 a2 -1 3

7 is the complex number [0, 1].
White and Woodson [3] extended this transformatiomnita
winding machines and used the unitary form, which, from the Although the transformation can be applied to arbitrary time

point of view of electrical machines, offers the advantage th&ctions we start with the application of the symmetrical com-
power and torque need no back transformation, since a unit@gnent transformation on a single-frequency sinusoidal func-

Il. TRANSFORMATION OF TIME-DEPENDENTSIGNALS

transformation is power invariant. tion. LetU be a general asymmetrical three-phase voltage:
In [4], where transfomtations and per-unit (pu) systems are
discussed in detail, it is concluded that the use of nonunitary Uq UaV/2 cos(wt + o)
U=|w | =| U2 cos(wt + a) 3)
Ue U2 cos(wt 4+ «
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components (3) is written as the sum of 2 complex conjugated B
terms: A 0, 0,d,q| Real )
: : . transformation
/3 [ Lt + Upemiet Uy = Ugelts
. . . A% v
U =3 | e 4 Uje™5! with U, = [/,eia a,b,c c c
Upedt 4 Ute™i+t Ue = Ul Complex
(4) S O+~ W Transformation
U denotes the phasor af. Transformation into symmetrical *e F
components by usiny’ = S~1U yields:
w0 \/Q Qoejwt + Q(’Se_j“’t Fig. 1. Overview of transformations.
1 + I 7 Jwt T —jwt ) .
v v 2 l—le, ‘ +Use L ©®) The transformation matrice& andB are:
U_ Qeru,t _i_QTC—Jwt
z N/ 0
where the phasors 2
211 1 1
1 A=,/2| = - = :
QOI%(Qa-l-Qb-l-QC) 3 2\/5 2 2\/3 ’
1 2 e 1 1A
leﬁ(ga"_agl;"’_agc) 9 9 9
1 ) 1 0 0
Y2 = % (Ua +a’Ue + alle) (©) B=|0 cos @ sin 6
0 —sinf® cosé@

In literature the time-dependent components are usually . 1 - 1 -
expressed asg, ut, v, [3], [8], [9], while the steady-state with A™" = A% andB™" = B

phasors are written 2o, Us, Uz, [5]-{7]. From the resultin orthogonal Park transformatith= AB is:
(5) and (6) the following conclusions can be drawn:

+ The zero-sequence componefitis always real. 1 V2 cos(6) — sin(6)

» The negative-sequence componett is the complex 2
conjugate of the positive-sequence componentand is 2 1 V2 cos <9 _ 2_”) _sin <9 _ 2_”)
therefore superfluous. However, the negative component = /3 3 3
phasorlU, is completely independent éf; . 1 A7 ] An

« Starting with three real variables,, w;, u., we obtain 3 V2 cos <9 - j) S <9 - §>
after transformation three new real variableg; $[u™] with P~ = PT )
and3fut].

* The steady-state seq.uence—cqmeronen.t phasors are alrgagly an arbitrary time-dependent angle. In electric-machine
incorporated in the time function™, which contains all equationsé is usually chosen as the electric rotor-position

the information of the phasofg, andUs. angle. The relation betweem, b, ¢ and 0, d, g-variables is
» The same transformation also holds for phasors. given by:

For a symmetrical three-phase voltage, where
Ua,b,c:PUO,d,q and Ia,b,c:PIO,d,q (10)

U, =Ue*=U
U, =U ) = 1 with U = U This trgnsformatipn is the real equivalent of a_complex trans-
U= _ g2 2 formation, which is the product of the symmetrical component
U.=Ue 0= ™ transformatior8 and the forward—backward transformatiBn
we obtain 1 0 0
_ 76 : —1 _ =T
W0 g 0 Uy =0 F= 8 C() 69j0 with F~" = F (1D
U=|ut|= 5 Ut | Ui =V3U (8)
u” Uteiet U, =0 and related to the Park transformation, see Fig. 1, through:
Eq. (8) clearly shows that only positive phasors exist for SF = ABC = PC (12)

symmetrical three-phase signals with phase sequerice. o
When the phase sequence ds-b only negative sequenceWhere the complex transformati@tiis:
phasors exist. Of course, the expressions (3)—(8) also hold for V32

. . 0 0
currents, wheré/ is exchanged by andw by . o 1 0 11 withc—t =T (13)
A widely used transformation for time-dependent signals is V2 0 —j

the Park transformatioR [3], [7], [11], being the product of a
phase transformatioA, the orthogonal Clarke transformationin Fig. 1 the relations between the b, ¢ and the other trans-
[12], and an angle transformatid® (see Fig. 1). formed variables are depicted. These relations enable the con-
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struction of an interface between the network intQ,— vari- <~ R L F
ables and synchronous generators. i, ¢ components. "
Applying the Park transformation to a symmetric voltage (3), Mz \M lra
wherel, = U, = U, = U anda, = ap — o, = 0, yields: ' L -
—_—
T
o =0, ug = U/3 cos(wt — ), u, = U+/3 sin(wt — ) M( j tr ?
- R L
With9:90+wtand6:g+90 —
chch

we obtainu, = U+/3 sin 8 ug = U3 cos 6§
(14)
whereé is the rotor angle of the concerned synchronous generg. 2.  Simple faulted network.
ator. After the Clarke transformation the new variables become:

Example 1: Fig. 2 depicts an arbitrary three-phase voltage
source connected to a symmetric three-phase line, which is rep-

Sj th le t f i@ h infl th resented by its series resistance and inductance only. The resis-
Ince the angle transtormatl as no Influence on th€ am-,. , -6 and inductance matrices are given by:

plitudes, thex, 5 andd-g-variables have the same amplitudes.

ug = 0, U = UV3 cos wt, ug = U3 sin wt

R 0 O L M M
[ll. | NSTANTANEOUS AND AVERAGE POWER R=|0 R 0]; L=|\M L M (21)
0 0 R

The general expression for instantaneous power related to an M ML

arbitrary voltage and current is: At the terminals ", of the line in Fig. 2, a disturbance in the

form of a short circuit between the phagesndc is applied.

p(t) = UL = ugta +usiy + ucte (15)  The voltage equations of the undisturbed network are:
and after transformation into symmetrical components: d
y P U=RI+ L (I)+Us 22)
p(t) =U""r . . : .
0" 0 et e Applying the symmetrical-component transformation (1) yields
sun v utet u e respectively:
=" + 2 R[ut*iT] (16) ;
. _ SU' =RSI + L— (SI') + SU,
or with (5) expressed in phasors: dt p
U=S'RSI'+S LS — (I')+ U}
p(t) =R[UsLo + Uil + UsI, p dt
+ (Uolo + Ualy + Unla) ™) (17) U'=RI'+L 2 (I')+Uf (23)

The average power;, is the time-independent part in (17) andvhere
can directly be calculated from the phasors.
R =R, L =85'LS=diag[Ly L, L]
P =R[Uglo + Uil + Uslo] (18)  with

. Lo =L+ 2M; Li=Ly=L-M
For a symmetrical three-phase voltage and current, see (8), o =Lt 2 tT (24)

wherel = U and] = I¢/%, the instantaneous power becomegecayse the transformatio is time independent it is al-

lowed thatS is placed in front of thed/dt operator in the
term d/dt(SI). The final equation has, in this case, the same

form as the original one (22). As the line is symmetrical, the

The instantaneous power is the same as the one that woulq D@t rmed voltage equations are disconnected, which means
obtained from thex, b, c-quantities since the transformation iShat the 0 and- components can be solved separately.

power invariant. For a steady-state symmetrical case the instang ot that the transformed parameters are the same as those

taneous powep(t) is identical to the average powgét. The obtained from the nonunitary transformation.
expressions for the instantaneous poweb, i, 3 and0, d, g In components (23) can be written as:

components are:

p(t) = RUIL] = 3UT cos ¢ (19)

di®
_ o 0
p(t) =UTT = ugio + waia +upis uo = Hi%+ Lo up
p(t) =UTT = ugio + ugia + u,i, (20) wt = Rit 1L, % ok
which yields, for a symmetrical three-phase voltage and current, - e de™ —
the same result as calculated in (19). uvo= R+ L o T (25)
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Note that the third equation is superfluous! R, L, F R, joL, F
The two-pha_lse short circuit can be introduced by the fol- f , iy f
lowing constraints at place’ @ tr g L U

tpe = 0; ipy +ipe = 05 Upy = UFec R, L R, JjoL,
After transformation we obtain for the instantaneous variables: i fu; I, fup,
i%=0; if+ip=0 or R[if]=0 " v
(26) R, L, R, joL,
ut =uzor S[u"'] =0 -
F F F — f i —_— f
As no other load is connected to the network it holds that " “ b Ur
=1

o . . Fig. 3. Time-domain and phasor-sequence networks.
Combining (25) and (26) yields the voltage equations for the

faulted case:
the instantaneous power is:

u% = ug; u; =R[uT]
dit — + 0+
Rit+ Ly 2F —3ut] 27) p(?) m[“ LF}
dt 3 . ejwt _ e—jwt
. . . _= U2 §R e—jwt - s
For a short circuit between phadeande, the equation for the 2 R
positive-sequence component splits up into a real part which is 3072
not disturbed, and an imaginary part that faces the short circuit. =2R [1 — cos(2wt)]
These separation into a disturbed and not disturbed part appears
for all kinds of asymmetric faults. while the average power calculated from the phasors yields:
The steady-state phasor solution can be obtained by substi-
tution of the general expressions (5) in (27), but whereas (27) P=RUL] = Uity 3U*
is very suitable for numerical calculations, the determination of T T TR T 2R

the steady-state solution by hand is easier when using the equa- = . _
tions in (25) together with the constraints in (26). We obtain: Which is the constant part of the instantaneous power.

Up =1 V. PER-UNIT CALCULATIONS

% (28) The use of per-unit quantities offers several well-know ad-

d vantages which are described in [4]. The choice of base units is
When the voltages and the current as depicted in their genetgtitrary. However, in calculations, it is preferable to choose the
form in (5) are substituted into (28) it yields, after splitting uppase units in such a way that simple relations exist between pu

ut —u” = 2Ri} + 21,

into frequencies: and physical units; for example, 1 pu corresponds to the rated
value. This requirement can be satisfied for single components.

Uro=Uyg For networks containing lots of components with various power
Uy —Us =2(R+ jwLi ) rates it is impossible to meet this constraint. One base power

is chosen for the whole network, while rated base voltages are
taken for circuits with different voltage levels.

which is the same result as would be obtained with a steady-staté" Steady-state phasor calculations the rated rms values are

phasor approach. The sequence networks for the transforrel@gical choice, while in the time domain peak values could
time and phasor solutions are depicted in Fig. 3. make sense. However, in network calculations whereathig

For a simple calculation of the instantaneous and averag¥ariables are transformed into positive-sequence components
power, the inductanckin the circuit is ignored while the source(+ or 1) and synchronous machines intg components, also
voltage is supposed to be symmetrical as in (7)—(8) wita 0. logical choices for base quantities can be made in such a way
From (28) and (29) the time-domain current and current phadbat the pu values of the transformed variables have a simple

Uy —Us=-2(R+jwl))Ips = Ipa=-Up1 (29)

are calculated respectively as: relation with the physical values in thg b, c-domain.
0, 1, 2 ComponentsAfter transformation the steady-state
. ut —u [y = Uy voltage and current phasors becothe= /3U andl; = V31,
F 2R - 2R wherel is the rms-phase voltage ahthe rms-line current. The

The time-domain current is imaginary as also followed frofgPParent powes = [Us|[L1] = UL, which is the three-phase

(26). With the relations for a symmetric source voltage: apparent power. _
Inthis domain it makes sense to take the voltage between lines

+ 3 et V3 U+/3 as base voltage. With the rated three-phase base gower
ut =5 U =V3U the base current will bé\/3, whereI is the rated-line current.
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In this case the apparent power is 1 pu whgrand/; are 1 pu. Node k
See (18). ] + —_—
Yia [ p | Umen U4 Y
P = RUTL] — — =\’
e AR | s
lgrid Lnach 14,14
0, o, 5 and 0, d, ¢ Components:in 0, «, 5 and 0, d, ¢

components it makes sense to choose &ls@ andIv/3 as _
base units. In that case the power relation is fulfilled. TH&9- 4. Generator interface.
power is 1 pu when the voltage and current are 1 pu. See (20).

0, +, — Components:in complex time-domain calculations For currents the same relations hold. Besides the relations be-
we are not able to meet the former power relation when maigiyeen the different transformed variables, the difference in base

taining the proper power-voltage-current relation. units has to be taken into account. Defining the machine and net-
When we take the rated apparent power and work base units with subscript “mach” and “grid” respectively,
3 we can write:
U'+ = \/j[]rated
2 Ugrid = Fuurnach; igrid = -Fiirnach
as base units, we obtafi = 1 pu,u* = 1 pu, but the rated- \ynere
4
circuit current isit = 0.5 pu because we need to fulfill (16): P, = Uy mact. and I, — Iy mach Nyen
p(t) = 2R[ut it (30) U, grid Iy, grid

In a network simulation program, synchronous generatofd€r€Vyen is the number of coherent generators.
can be modeled in their own (factory) base units. Through anWith these relations the interface can be depicted in Fig. 4.
interface the generator models are connected to the network

described in time-dependent symmetrical components. In the VI. APPLICATION TO A SIMPLE NETWORK
transformed network one should note, because of (30), the fact, the next example the use of the earlier introduced pu values
that: o and their simple relation with physical units is demonstrated.

A current of 0.5 pu corresponds to thated-circuit current |5 Fig. 5 4 simple network is depicted consisting of a slack
belonging to thesystem base MVAand to rated-terminal  poge feeding a 10MW, 10kV load and connected to five 1.125
voltageof the circuit concerned MW, 0.4 kV synchronous generators through a transformer and

The pu values for power and voltage correspond to the ba$@aple. At node 2 an additional load “SCLOAD” is placed
unit values. to simulate an asymmetric or symmetric short circuit, but it is

In time-domain calculations it is fruitful to introduce a timegyitched off in the load-flow calculation. Below Fig. 5 the input
baser = wt to obtain system equations which are dimensioRgaia and output results of the simulation program SIMNET are
less. This option will not be clarified further in this context.  gjyen,

The input data are depicted in physical values and in pu. The
V. SYNCHRONOUSMACHINE NETWORK INTERFACE network components such as lines and transformers, but also

To maintain the generator base units with the associated gatic and motor loads, are modeled in symmetrical components,

parameters provided by the factory data, it is necessary to intynchronous machines iy ¢ variables. For transformers the

duce an interface between the generator and the network eq(@fiables at the primary side are depicted. The second part gives
tions. The relation betweef, d, ¢ and o, +, — variables is the result of the load-flow calculation in transformed variables.

given, see Fig. 1, b¥/o 4 4 = CF‘1U07+7 _ which yields: The generator produces about rated power at rated MVA:
1.06, I = 0.95 pu.

Ug = Ea [u+@—J’9 + u—@ie] = \/§§R[u+e—j0] P = —0.79 and@ = —0.62 pu (Base= 1,125MVA) The
V2 negative values appear since synchronous machines are mod-
Uy = 1 [_ju+e—j0 +ju_ej9] _ \/§§R[—ju+e_j9] eled as loads. As voltage and_ power are simply related to the_ir
V2 physical values, 1 pu voltage is rated voltage and 1 pu power is
and the back transformation: rated power, we will focus on the currents:

1 The generator rated current is 1.624 kA, which yields the ac-

ut = — [ug + juyle® tual current/ (rms) = 0.95x1.624 = 1.54 kKA. As five coherent
V2 generators are connected to the bus, the total current is 7.7 KA.

Upon introducing the rotor anglg which appears in the equa- The current in line 3 is 0.267 pu. As for all components ex-
tions of the synchronous machine, the relations become:  cept for synchronous machines it holds that 0.5 pu corresponds
with the rated-circuit current, we findi(rms) = 0.267/0.5 =

Ug = ﬁ%[ju*e‘j(‘”“t)} 14.434 = 7.7 KA. This is equal to the current provided by the
B b itoher generators.
= \@%[“ e )} The load current is about 0.5 pu, so it is equal to the rated-

(5+4wt) circuit current (0.577 kA), and it is also equal to the rated load

+__J i L
urt = NG [ua + jugle current in this case.
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1.125 MVA
COSg = 0.8

Fig. 5. One-line diagram.

*4%x+ PROGRAM SIMNET VERSION (98.04.09) *#*%*k*x% 199809241001
sk Network #***%cage | b TXTH**krk%
BASE POWER= 10.00 (MVA) NOM.FREQU.= 50.00 Hz

LINE DATA
LINNOD NOD NAME Ul(kV)U2(kV) RK(ohm) XK(ohm) Icircuit (kA)
1 1 2 LINEIO 10.000 10.000 0.400E+00 0.400E+00 0.577
2 2 3 TRIO4 10000 0400 0.200E+00 0.114E+01 0.577
3 3 4 LINEO4 0400 0400 0.100E-03 0.100E-03 14434

LOAD DATA
LOADNODE NAME  UL(kV) S(MVA) COSphi I(kA) R(ohm) X(ohm}
1 2 SCLOAD 10.000 1000000 0999 57735 0.100 0.004
2 2  LOADl 10.000 10.000 0.999 0.577 9990 0447

SYNCHRONOUS MACHINES DATA
Gen Name Nod UL(kV) Tnom S(MVA) Cos(phi) Krated) (kA)
1 HC634K 4 0400 5730. 1.125 0.8 1.624
Xdh Xgh Xss Xfs XDs XQs r1s if D 10} H
2.472 1.432 0.0680 0.1507 0.1941 0.1576 0.0122 0.0025 0.0617 0.1687 2.0000

P.U. DATA
Ubase net components and ASYN.Motors = U(phase)*SQRT(3/2)
Ubase Synchr. Machines = U(phase)*SQRT(3)

LINE NAME UB(kV) IB(kA) ZB(ohm) RK XK

I LINE10 7.071 1.41421 0.500E+01 0.800E-01 0.800E-00
2 TRI104 7.071 1.41421 0.500E+01 0.400E-01 0.228E+00
3 LINEO4 0.283 35.35534 0.800E-02 0.125E-01 0.125E-01

P.U. LOAD DATA
LOADNODE NAME  UBL(kV) IBL(kA) ZBL(chm) RL XL FLI ON
1 2 SCLOAD 7.0711 14142 5.0000 0.0200 0.0009 1.000 1
2 2 LOADI  7.0711 14142 5.0000 1.9980 0.0894 1.000 1

GNODE NAME UBL(kV) IBL(kA) ZBL(ohm) FLI FLU Tnom numON
1 4 HC634K 0.4000 2.8125 0.1422 0.3977 1.4142 08000 5 1

result caselb.001 s used as input

Netvoltage is 102.000 % , phase angleis 0.000  *PI

LOAD 1ISOFF 0

STATICLOAD 1 is: 10000.00000 % with power factor  0.99900

STATICLOAD 2 is: 100.00000 % with power factor  0.99900
SYNCHR. GEN. 1: MECH. POWER -100.00 %, EXITATION 315.00 %

RESULTS LOADFLOW CALCULATION (PU)
REAL IMAG. MAGNITUDE
NODE 1 VOLTAGE= 1.02000 0.00000 1.02000
NODE 2 VOLTAGE= 1.00661 -0.03311  1.00715
NODE 3 VOLTAGE= 1.05206 0.00860 1.05209
NODE 4 VOLTAGE= 1.05673 0.00922 1.05677
REAL IMAG .MAGNITUDE
LINE 1 CURRENT= 0.29065 0.12321 0.31568 P= 0.59292 Q=-0.25135
LINE 2 CURRENT=-0.21141 0.16225 0.26650 P=-0.43636 Q=-0.31265
LINE 3 CURRENT=-0.21141 0.16225 0.26650 P=-0.44205 Q=-0.34503

LOAD1 VIPQ: 1.00715  6.00000 0.00000  0.00000

LOAD2 VJLPQ: L00715 0.50358 101334 0.04535

GEN 1 Vref,EFD,OMref, Tu: 0.00000 3.15000 0.00000 -0.80000
V,LP,Q,Delta,Deltag: 1.05677 0.94755 -0.78902 -0.61655 0.52929 0.52057

*****************DYNAMIC RESPONSE
Start calculation tl=  0.00000
End calculation t1=  0.04010
SCLOAD IS SWITCHED ASYM
Start calculation tl=  0.04010
End calculation tl=  0.10000
SCLOAD 1S SWITCHED SYM
Start calculation t1=  0.10000
End calculation t1=  0.15000
SCLOAD IS SWITCHED OFF
Start calculation tl=  0.15000
End calculation t1=  0.25008
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Fig. 6. Node voltagek: ™| in pu.
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Fig. 7. Line current$: ™| in pu.

Note that we refer to theated-circuit currentand not to the
base currentn these relations between pu and kA.

Of course the network and load currents can also be obtained
through back transformation and multiplication with their base
currents.

The use of time-domain symmetrical components suggests
transient calculations. The exernple in Fig. 5 is therefore used
to calculate the application of a two-phase short circuit initiated
att = 0.04 sec at node 2 between the phakeasdc, leading to
an ungrounded three-phase short circutt at0.1 sec.

At ¢ = 0.16 sec the short circuit is isolated. The steady-state
load-flow calculation, which already includes tH&-drder gen-
erator model, is used to provide the initial values.

The node voltages and line currents are depicted in Figs. 6
and 7. In these graphs the absolute value ofthand:*™ com-
ponents are depicted. They represent the magnitude of the ro-
tating phasor. See Fig. 8 where the in time rotating phéasor
is depicted in the complex plane. If the three-phase voltage or
current are symmetrical, the curves are smooth, while oscilla-
tions appear if they are asymmetrical. The latter appears during
the two-phase short circuid,04 < ¢ < 1, where a big inverse
component is present.

In Fig. 8 the real part of the phasor is about zero in this time
interval and the phasor only moves along the imaginary axis,
which is in accordance with example 1. The initial magnitudes
of the voltage and the current curve correspond to the values ob-
tained from the load flow. The advantage of working with com-
plex variables is that the magnitude of the phasors can easily be
depicted. They are representative for the instantaneous maximal
value of the three-phase currents or voltages and in steady-state
and symmetric conditions they are constant, which yields a per-
fect circle in the complex plane.
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10 power ratings are involved. Their advantage is that in all trans-
il = formed stages the power is the same. Application of proper
5 | \\ base values facilitate the introduction of transformed variables
= M in pu which are simply related to physical values in thé, ¢
= 0 k kr ] domain.
- The use of time-dependent symmetrical components in net-
-5 i work calculations has several advantages:
3L » Network-component data are usually available in these co-
-10 ordinates.
0 S R;’[i 1] 5 10 » The simple relation with their steady-state phasors facili-

Fig. 8. Time phasof] in pu.
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Fig. 9. Line current 1 in pu.
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tates the interpretation of calculation results by the well-
known steady-state phasor theory, for example, in case of
asymmetric faults.

» The use of time-dependent complex phasors in equations
and results provides a simple relation to their rms values
in thea, b, c domain, which, for example, can be used for
perusal and for graphical output.
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In Fig. 9 thegq, b, ¢ currents in line 1 are depicted. The back
transformation is performed vig = R[i;], etc., without multi-
plication with the usual numerical factor, to maintain the simple
relation between pu and physical values indhé, c domain as
well.

In Fig. 10 the stator currenig and:, and the electromagnetic
torque of GEN 1 are depicted to illustrate the response of t
generator to the two-phase and the subsequent three-phase
circuit. The difference between a symmetric and asymmet
short circuit is clearly observable.
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