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Their Application to Power Network Calculations
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Abstract—Although the Symmetrical Component Transforma-
tion has existed for 80 years, its application in the time-depen-
dent form is practically restricted to the electric-machine theory.
In the Power Systems field one uses the transformation applied to
gteady-state ginusoidal phasors in a nonunitary form for fault cal-
culations. For time-domain calculations the real equivalat, 0, , ,
is preferred, usually extended to 0, , -components. In network
calculations, however, the application of time-dependent symmet-
rical components makes sense, since many net-component parame-
ters are already available in this form. In this paper a short histor-
ical overview of the symmetrical-component transformation and
the application of unitary and orthogonal transformations are pre-
sented. From these general transformations logic choices for base
quantities necessary in per unit calculations will be derived. The
relations between real and complex transformations, steady-state
phasors and well-known sequence networks are given and illus-
trated through the use of some examples with asymmetrical faults.

Index Terms—Power-invariant Complex and Real Trans-
formations, Time Domain, Asymmetries, Complex Phasors,
Instantaneous and Average Power, Per Unit calculation.

I. INTRODUCTION

T HE application of Symmetrical Components dates from
1918 when Fortescue [1] introduced them as a decomposi-

tion of complex steady-state phasors. Although they were intro-
duced for three-phase phasors of sinusoidal time functions, they
are the basis for the transformation of arbitrary instantaneous
variables. The first application of the Symmetrical Components
to time-dependent variables was introduced by Lyon [2]. He no
longer called it a decomposition but a transformation and used
the transformation matrix that follows from the decomposition
introduced by Fortescue:

where

is the complex number [0, 1].

White and Woodson [3] extended this transformation to-
winding machines and used the unitary form, which, from the
point of view of electrical machines, offers the advantage that
power and torque need no back transformation, since a unitary
transformation is power invariant.

In [4], where transfomtations and per-unit (pu) systems are
discussed in detail, it is concluded that the use of nonunitary
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transformations is preferable in electrical-machines theory. This
thesis is still cited by many authors [5]–[7] today and its princi-
ples extended to the calculations of power systems. The main
advantage is that, after transformation, the physical structure
of machines, e.g., the winding turns and flux relationships, are
unchanged. However, in network calculations the intemal rela-
tions of magnetic-field quantities and currents in the separate
machines are of less importance. The proper relations between
terminal voltages, currents and power may prevail. To maintain
these proper relations between power, voltage and current, uni-
tary and orthogonal transformations are used in this paper. Line,
transformer, static load and asynchronous machine load models
are implemented by their symmetrical components, while syn-
chronous machines are represented in, -coordinates. To link
rotating machines onto the grid, interfaces are used that bridge
the difference in base quantities and usual pu parameters. The
use of interfaces makes it possible to employ machine models
with their usual (pu) data delivered by the manufacturer.

In the unitary fomn, the symmetrical-component transforma-
tion matrix is:

with (1)

The transformation is applied to both voltages and currents. The
new variables and are connected to the old ones by:

and (2)

In electrical machine theory, where the transformation was
applied to both 3-phase and-phase systems, many applica-
tions can be found [8]–[10]. [8], [9] show, for example, the
remarkable property of this transformation in decomposing
higher space harmonics into special groups.

II. TRANSFORMATION OFTIME-DEPENDENTSIGNALS

Although the transformation can be applied to arbitrary time
functions we start with the application of the symmetrical com-
ponent transformation on a single-frequency sinusoidal func-
tion. Let be a general asymmetrical three-phase voltage:

(3)

where denotes the instantaneous value andthe rms value
of the phase voltage. Before it is transformed into symmetrical
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components (3) is written as the sum of 2 complex conjugated
terms:

with

(4)
denotes the phasor of. Transformation into symmetrical

components by using yields:

(5)

where the phasors

(6)

In literature the time-dependent components are usually
expressed as , , , [3], [8], [9], while the steady-state
phasors are written as , , , [5]–[7]. From the result in
(5) and (6) the following conclusions can be drawn:

• The zero-sequence componentis always real.
• The negative-sequence component is the complex

conjugate of the positive-sequence componentand is
therefore superfluous. However, the negative component
phasor is completely independent of .

• Starting with three real variables , , , we obtain
after transformation three new real variables:,
and .

• The steady-state sequence-component phasors are already
incorporated in the time function , which contains all
the information of the phasors and .

• The same transformation also holds for phasors.
For a symmetrical three-phase voltage, where

with

(7)

we obtain

(8)

Eq. (8) clearly shows that only positive phasors exist for
symmetrical three-phase signals with phase sequence- - .
When the phase sequence is- - only negative sequence
phasors exist. Of course, the expressions (3)–(8) also hold for
currents, where is exchanged by and by .

A widely used transformation for time-dependent signals is
the Park transformation [3], [7], [11], being the product of a
phase transformation , the orthogonal Clarke transformation
[12], and an angle transformation (see Fig. 1).

Fig. 1. Overview of transformations.

The transformation matrices and are:

with and

The orthogonal Park transformation is:

with (9)

is an arbitrary time-dependent angle. In electric-machine
equations is usually chosen as the electric rotor-position
angle. The relation between, , and -variables is
given by:

and (10)

This transformation is the real equivalent of a complex trans-
formation, which is the product of the symmetrical component
transformation and the forward–backward transformation:

with (11)

and related to the Park transformation, see Fig. 1, through:

(12)

where the complex transformation is:

with (13)

In Fig. 1 the relations between the and the other trans-
formed variables are depicted. These relations enable the con-
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struction of an interface between the network in 0,, vari-
ables and synchronous generators in components.

Applying the Park transformation to a symmetric voltage (3),
where and , yields:

with and

we obtain
(14)

where is the rotor angle of the concerned synchronous gener-
ator. After the Clarke transformation the new variables become:

Since the angle transformation has no influence on the am-
plitudes, the and - -variables have the same amplitudes.

III. I NSTANTANEOUS AND AVERAGE POWER

The general expression for instantaneous power related to an
arbitrary voltage and current is:

(15)

and after transformation into symmetrical components:

(16)

or with (5) expressed in phasors:

(17)

The average power, , is the time-independent part in (17) and
can directly be calculated from the phasors.

(18)

For a symmetrical three-phase voltage and current, see (8),
where and , the instantaneous power becomes:

(19)

The instantaneous power is the same as the one that would be
obtained from the , , -quantities since the transformation is
power invariant. For a steady-state symmetrical case the instan-
taneous power is identical to the average power. The
expressions for the instantaneous power in and
components are:

(20)

which yields, for a symmetrical three-phase voltage and current,
the same result as calculated in (19).

Fig. 2. Simple faulted network.

Example 1: Fig. 2 depicts an arbitrary three-phase voltage
source connected to a symmetric three-phase line, which is rep-
resented by its series resistance and inductance only. The resis-
tance and inductance matrices are given by:

(21)

At the terminals, , of the line in Fig. 2, a disturbance in the
form of a short circuit between the phasesand is applied.

The voltage equations of the undisturbed network are:

(22)

Applying the symmetrical-component transformation (1) yields
respectively:

(23)

where

with

(24)

Because the transformation is time independent it is al-
lowed that is placed in front of the operator in the
term . The final equation has, in this case, the same
form as the original one (22). As the line is symmetrical, the
transformed voltage equations are disconnected, which means
that the 0 and components can be solved separately.

Note that the transformed parameters are the same as those
obtained from the nonunitary transformation.

In components (23) can be written as:

(25)
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Note that the third equation is superfluous!
The two-phase short circuit can be introduced by the fol-

lowing constraints at place :

After transformation we obtain for the instantaneous variables:

or

or
(26)

As no other load is connected to the network it holds that

Combining (25) and (26) yields the voltage equations for the
faulted case:

(27)

For a short circuit between phasesand , the equation for the
positive-sequence component splits up into a real part which is
not disturbed, and an imaginary part that faces the short circuit.
These separation into a disturbed and not disturbed part appears
for all kinds of asymmetric faults.

The steady-state phasor solution can be obtained by substi-
tution of the general expressions (5) in (27), but whereas (27)
is very suitable for numerical calculations, the determination of
the steady-state solution by hand is easier when using the equa-
tions in (25) together with the constraints in (26). We obtain:

(28)

When the voltages and the current as depicted in their general
form in (5) are substituted into (28) it yields, after splitting up
into frequencies:

(29)

which is the same result as would be obtained with a steady-state
phasor approach. The sequence networks for the transformed
time and phasor solutions are depicted in Fig. 3.

For a simple calculation of the instantaneous and average
power, the inductance in the circuit is ignored while the source
voltage is supposed to be symmetrical as in (7)–(8) with .
From (28) and (29) the time-domain current and current phasor
are calculated respectively as:

The time-domain current is imaginary as also followed from
(26). With the relations for a symmetric source voltage:

Fig. 3. Time-domain and phasor-sequence networks.

the instantaneous power is:

while the average power calculated from the phasors yields:

which is the constant part of the instantaneous power.

IV. PER-UNIT CALCULATIONS

The use of per-unit quantities offers several well-know ad-
vantages which are described in [4]. The choice of base units is
arbitrary. However, in calculations, it is preferable to choose the
base units in such a way that simple relations exist between pu
and physical units; for example, 1 pu corresponds to the rated
value. This requirement can be satisfied for single components.
For networks containing lots of components with various power
rates it is impossible to meet this constraint. One base power
is chosen for the whole network, while rated base voltages are
taken for circuits with different voltage levels.

In steady-state phasor calculations the rated rms values are
a logical choice, while in the time domain peak values could
make sense. However, in network calculations where the, ,
-variables are transformed into positive-sequence components

( or 1) and synchronous machines into- components, also
logical choices for base quantities can be made in such a way
that the pu values of the transformed variables have a simple
relation with the physical values in the, , -domain.

0, 1, 2 Components:After transformation the steady-state
voltage and current phasors become and ,
where is the rms-phase voltage andthe rms-line current. The
apparent power , which is the three-phase
apparent power.

In this domain it makes sense to take the voltage between lines
as base voltage. With the rated three-phase base power

the base current will be , where is the rated-line current.
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In this case the apparent power is 1 pu whenand are 1 pu.
See (18).

and Components:In and
components it makes sense to choose also and as
base units. In that case the power relation is fulfilled. The
power is 1 pu when the voltage and current are 1 pu. See (20).

0, , Components:In complex time-domain calculations
we are not able to meet the former power relation when main-
taining the proper power-voltage-current relation.

When we take the rated apparent power and

as base units, we obtain pu, pu, but the rated-
circuit current is pu because we need to fulfill (16):

(30)

In a network simulation program, synchronous generators
can be modeled in their own (factory) base units. Through an
interface the generator models are connected to the network
described in time-dependent symmetrical components. In the
transformed network one should note, because of (30), the fact
that:

A current of 0.5 pu corresponds to therated-circuit current
belonging to thesystem base MVAand to rated-terminal
voltageof the circuit concerned.

The pu values for power and voltage correspond to the base
unit values.

In time-domain calculations it is fruitful to introduce a time
base to obtain system equations which are dimension-
less. This option will not be clarified further in this context.

V. SYNCHRONOUSMACHINE NETWORK INTERFACE

To maintain the generator base units with the associated pu
parameters provided by the factory data, it is necessary to intro-
duce an interface between the generator and the network equa-
tions. The relation between and variables is
given, see Fig. 1, by which yields:

and the back transformation:

Upon introducing the rotor angle, which appears in the equa-
tions of the synchronous machine, the relations become:

Fig. 4. Generator interface.

For currents the same relations hold. Besides the relations be-
tween the different transformed variables, the difference in base
units has to be taken into account. Defining the machine and net-
work base units with subscript “mach” and “grid” respectively,
we can write:

where

and

where is the number of coherent generators.
With these relations the interface can be depicted in Fig. 4.

VI. A PPLICATION TO A SIMPLE NETWORK

In the next example the use of the earlier introduced pu values
and their simple relation with physical units is demonstrated.

In Fig. 5 a simple network is depicted consisting of a slack
node feeding a 10MW, 10kV load and connected to five 1.125
MW, 0.4 kV synchronous generators through a transformer and
a cable. At node 2 an additional load “SCLOAD” is placed
to simulate an asymmetric or symmetric short circuit, but it is
switched off in the load-flow calculation. Below Fig. 5 the input
data and output results of the simulation program SIMNET are
given.

The input data are depicted in physical values and in pu. The
network components such as lines and transformers, but also
static and motor loads, are modeled in symmetrical components,
synchronous machines in variables. For transformers the
variables at the primary side are depicted. The second part gives
the result of the load-flow calculation in transformed variables.
The generator produces about rated power at rated MVA.

, pu.
and pu (Base 1,125MVA) The

negative values appear since synchronous machines are mod-
eled as loads. As voltage and power are simply related to their
physical values, 1 pu voltage is rated voltage and 1 pu power is
rated power, we will focus on the currents:

The generator rated current is 1.624 kA, which yields the ac-
tual current kA. As five coherent
generators are connected to the bus, the total current is 7.7 kA.

The current in line 3 is 0.267 pu. As for all components ex-
cept for synchronous machines it holds that 0.5 pu corresponds
with the rated-circuit current, we find: rms

kA. This is equal to the current provided by the
generators.

The load current is about 0.5 pu, so it is equal to the rated-
circuit current (0.577 kA), and it is also equal to the rated load
current in this case.
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Fig. 5. One-line diagram.

Fig. 6. Node voltagesju j in pu.

Fig. 7. Line currentsji j in pu.

Note that we refer to therated-circuit currentand not to the
base currentin these relations between pu and kA.

Of course the network and load currents can also be obtained
through back transformation and multiplication with their base
currents.

The use of time-domain symmetrical components suggests
transient calculations. The exernple in Fig. 5 is therefore used
to calculate the application of a two-phase short circuit initiated
at sec at node 2 between the phasesand , leading to
an ungrounded three-phase short circuit at sec.

At sec the short circuit is isolated. The steady-state
load-flow calculation, which already includes the 7-order gen-
erator model, is used to provide the initial values.

The node voltages and line currents are depicted in Figs. 6
and 7. In these graphs the absolute value of theand com-
ponents are depicted. They represent the magnitude of the ro-
tating phasor. See Fig. 8 where the in time rotating phasor
is depicted in the complex plane. If the three-phase voltage or
current are symmetrical, the curves are smooth, while oscilla-
tions appear if they are asymmetrical. The latter appears during
the two-phase short circuit, , where a big inverse
component is present.

In Fig. 8 the real part of the phasor is about zero in this time
interval and the phasor only moves along the imaginary axis,
which is in accordance with example 1. The initial magnitudes
of the voltage and the current curve correspond to the values ob-
tained from the load flow. The advantage of working with com-
plex variables is that the magnitude of the phasors can easily be
depicted. They are representative for the instantaneous maximal
value of the three-phase currents or voltages and in steady-state
and symmetric conditions they are constant, which yields a per-
fect circle in the complex plane.
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Fig. 8. Time phasori in pu.

Fig. 9. Line current 1 in pu.

Fig. 10. Stator currents and torque of GEN 1 in pu.

In Fig. 9 the , , currents in line 1 are depicted. The back
transformation is performed via , etc., without multi-
plication with the usual numerical factor, to maintain the simple
relation between pu and physical values in the, , domain as
well.

In Fig. 10 the stator currents and and the electromagnetic
torque of GEN 1 are depicted to illustrate the response of the
generator to the two-phase and the subsequent three-phase short
circuit. The difference between a symmetric and asymmetric
short circuit is clearly observable.

VII. CONCLUSIONS

Power-independent transformations are useful tools for
network calculations, where many components with different

power ratings are involved. Their advantage is that in all trans-
formed stages the power is the same. Application of proper
base values facilitate the introduction of transformed variables
in pu which are simply related to physical values in the, ,
domain.

The use of time-dependent symmetrical components in net-
work calculations has several advantages:

• Network-component data are usually available in these co-
ordinates.

• The simple relation with their steady-state phasors facili-
tates the interpretation of calculation results by the well-
known steady-state phasor theory, for example, in case of
asymmetric faults.

• The use of time-dependent complex phasors in equations
and results provides a simple relation to their rms values
in the , , domain, which, for example, can be used for
perusal and for graphical output.
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