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1. Introduction

Particle image velocimetry (PIV) images are often affected 
by unwanted light reflections occurring when the laser light 
impinges on a solid surface. The intensity of those reflections 
can be one order of magnitude larger than that of the particle 
images, causing a high auto-correlation peak in the correlation 
function. Such a peak can be much higher than the particle 
image’s displacement cross-correlation peak, thus precluding 
accurate determination of the flow velocity in the proximity of 
a solid surface.

Several approaches have been devised to avoid laser light 
reflections when conducting the measurements. Whenever 

possible, it is good practice to cover the model with matt 
black paint, so that most of the laser light impinging on a sur-
face is absorbed instead of being reflected (Gui et al 2001). 
Fluorescent paint (e.g. rhodamine) can be applied to the model 
surface to change the wavelength of the reflected light from 
green to red (Depardon et al 2005). A bandpass filter mounted 
on the camera lens allows one to reject the red light from the 
surface, thus retaining only the green light scattered from the 
particles. However, in many cases the model cannot be painted, 
either because of the presence of wall tapping for pressure 
measurements, or so as not to alter the surface roughness and 
consequently the boundary layer properties. For flat surfaces, 
Kähler et al (2006) report that tangential model illumination 
allows a dramatic suppression of undesired wall reflections. 
Nevertheless, in the presence of more complex model geome-
tries, where the model surface presents a curvature, tangential 
illumination cannot be achieved on the entire surface, but only 
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Abstract
A novel approach is introduced that allows the elimination of undesired laser light reflections 
from particle image velocimetry (PIV) images. The approach relies upon anisotropic diffusion 
of the light intensity, which is used to generate a background image to be subtracted from 
the original image. The intensity is diffused only along the edges and not across the edges, 
thus allowing one to preserve, in the background image, the shape of boundaries as laser 
light reflections on solid surfaces. Due to its ability to produce a background image from a 
single snapshot, as opposed to most methods that make use of intensity information in time, 
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assessed on an experimental test case which considers the flow in front of a propeller, where 
the laser light reflections on the model’s surface preclude accurate determination of the flow 
velocity. Comparison of the anisotropic diffusion approach with conventional techniques for 
suppression of light reflections shows the advantages of the former method, especially when 
reflections need to be removed from individual images.
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at one specific location of the surface. The influence of the 
imaging angle was investigated by Lin and Perlin (1998). The 
authors report that, for measurements in water flows with a 
free surface, tilting the camera to the air–water Brewster angle 
has the effect of removing most of the reflections from the 
water-free surface. More recently, Kähler (2009) investigated 
the effect of the model material and surface treatment on the 
intensity of light reflections; the author found that aluminum 
models with highly polished surfaces have the minimum dif-
fusive reflectivity among the tested materials (steel, carbon 
fiber reinforced plastic, glass, PMMA).

Despite the efforts above, in many cases laser light reflec-
tions are still present in the PIV recordings and need to be 
treated in the pre-processing phase (image restoration). The 
objective of image restoration is to remove the unwanted 
background from the images while keeping the particle 
image’s signal. In some cases, the background removal is 
simply achieved by recording a background image without 
tracer particles, and then removing it from the PIV record-
ings. Even if the background image has not been acquired, in 
stationary problems (no moving interfaces or pulse-to-pulse 
light intensity variation) it is possible to generate such back-
ground images by image statistics, computing the minimum 
or the average of the light intensity at each pixel location 
(Adrian and Westerweel 2011). However, it is well known 
that the subtraction of time-average intensity may lead to 
removal of particle images from the recordings, especially 
in the low-velocity regions where the particles displacement 
is the minimum. For slowly moving light reflections or light 
intensity variations at a frequency much lower than the acqui-
sition frequency, subtraction of a time-varying background, 
generated by sliding-average or sliding-minimum light inten-
sity over a short kernel, can be employed. Theunissen et al 
(2008) assessed different pre-processing techniques for back-
ground reflection removal using Monte Carlo simulations. 
The authors reported that a combination of local minimum 
intensity subtraction and equalization of mean intensity is 
effective in removing reflections that are constant in time. 
Alternatively, Sciacchitano and Scarano (2014) proposed 
the use of a temporal high-pass filter to remove unsteady 
background reflections while retaining the particle image 
intensity. The approach is based on the decomposition of 
the signal in the frequency domain and the removal of the 
low-frequency content, representative of the unwanted light 
reflections. The underlying assumption of the approach is 
that the contribution of the reflection (low-frequency) is well 
separated in the frequency domain from the contribution of 
the particle images (high-frequency), meaning that the reflec-
tion must reside for a few time instants in a pixel location. 
Recently, Mendez et al (2017) proposed a proper orthogonal 
decomposition (POD)-based background removal, which 
can in principle also eliminate reflections on moving sur-
faces, provided that a sufficiently large ensemble of images is 
available for convergence of the POD modes. However, even 
this approach requires that the reflection resides for several 
recordings in the same pixel locations, which is often not the 
case in the presence of towed or moving models, flapping or 
rotating wings.

In the latter cases, background removal cannot rely upon 
image statistics, but must be conducted on individual raw 
images. Most approaches rely on the consideration that the 
particle images have a shorter length scale (typically 1–5 
pixels) than the background reflection, which may cover tens 
of pixels. Hence, the contribution of the particle images can 
be isolated from that of the background by applying a spatial 
high-pass filter, where the filter kernel should have a linear size 
at least as large as the particle image diameter. Several filters 
have been proposed in the past, including the top-hat sliding-
average filter, the Gaussian filter, the median filter (Adrian and 
Westerweel 2011) and the min/max filter (Westerweel 1993). 
Nevertheless, the use of an isotropic filter, which has the same 
effects in all directions, typically yields low performance in 
the proximity of sharp reflections, causing reduction of the 
signal level.

Honkanen and Nobach (2005) proposed a simple back-
ground extraction approach for double-frame PIV images, 
where the second frame of the image pair is subtracted from 
the first frame. The idea is that everything that stays stationary 
in the image pair, namely the background, is removed from 
the first image. However, this approach may lead to particle 
cancellation in cases of high source density or in regions 
where the flow velocity is the lowest. Another approach pro-
posed by Deen et al (2010) to eliminate moving reflections 
relies upon the combination of several image processing tech-
niques, such as intensity normalization, background subtrac-
tion and masking. The approach was successfully employed 
by the authors to remove the undesired correlation peak due 
to non-stationary bubbles in a two-phase flow. However, the 
requirement to use several techniques makes this approach 
computationally expensive for most practical applications. 
Mejia-Alvarez and Christensen (2013) modified the algo-
rithm proposed by Honkanen and Nobach (2005) by com-
puting the normalized local intensity with respect to the 
difference between sliding median and minimum intensities. 
Although this algorithm is able to suppress the residual back-
ground reflections which are not eliminated by Honkanen and 
Nobach’s approach, its performances have been demonstrated 
only for diffused reflections due to an irregular rough wall, 
and not in the presence of sharp reflections occurring: e.g. 
when the laser sheet impinges on a solid surface.

The discussion above shows that an effective methodology 
for the removal of the unwanted laser light reflections from 
individual PIV images, thus without making use of image sta-
tistics, is currently lacking. Such an approach would find its 
application in PIV measurements where the laser light reflec-
tion is unsteady, e.g. due to the presence of transiting objects, 
propellers, flapping or pitching wings.

In the image processing community, approaches for edge 
detection based on anisotropic diffusion have been widely 
used over the last three decades since the seminal paper of 
Perona and Malik (1990). The idea is to compute a sliding-
average of the intensity of an image on an anisotropic kernel, 
which accounts for the intensity gradient. The approach has 
been successfully employed to enhance edges with respect 
to background noise. Further improvements to the technique 
have been proposed by Chao and Tsai (2006) for restoration 
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of astronomical images. In their case, the image of the Henize 
70 nebula was obscured by sparking stars. The approach was 
employed to segregate the stars, which had a low length scale 
of the order of a few pixels, from the nebula characterized by 
a large length scale and low intensity gradient.

In PIV images, the light reflections are sharp and usu-
ally have higher intensity levels than the particle images, as 
opposed to nebula images. Hence, in this paper, we further 
develop the approach of Perona and Malik (1990) and Chao 
and Tsai (2006) for isolating the contribution of the particle 
images from that of unwanted light reflections.

2. Proposed methodology

To explain the technique, consider a raw image IR(x, y ) where 
both unwanted laser light reflections and tracer particle images 
are present. A background image IBG(x, y ), ideally containing 
only the unwanted laser light reflections and no tracer par-
ticle image, is often computed via the sliding-average of 
the  intensity of IR (Adrian and Westerweel 2011). The latter 
operation is typically conducted by convolution of IR with a 
kernel G, which is usually top-hat or Gaussian. As pointed out 
by Koenderink (1984) and Hummel (1987), IBG can also be 
interpreted as the solution I(x, y , t) of the diffusion equation:

∂I
∂t

= ∆I =
∂2I
∂x2 +

∂2I
∂y2 (1)

with the initial condition I(x, y , t  =  0)  =  IR(x, y ). Note that 
in equation (1) the intensity is diffused isotropically, with no 
preferential direction (i.e. diffusion occurs at the same speed 
in all directions). Also, equation  (1) treats in the same way 
particle images, which cover only a few pixels, and reflec-
tions, which typically affect several pixels. When equation (1) 
is applied to typical PIV images with reflections (figure 1(a)), 
a clear smoothing of the unwanted laser light reflection is 
noted (figure 1(b)). As a consequence, the solution of equa-
tion (1) is not a good estimate of the true background image.

Following Perona and Malik (1990), equation  (1) can be 
rewritten into the anisotropic diffusion equation, so that diffu-
sion occurs along the edges and not across the edges:

∂I
∂t

= ∇ · [c (x, y, t)∇I] = c (x, y, t)∆I +∇c · ∇I. (2)

Perona and Malik (1990) proposed to choose the diffusion 
coefficient c as a function of the magnitude of the intensity 
gradient:

c (x, y, t) = g [∇I (x, y, t)] (3)

with g being a suitable monotonic function. The authors used 
the following expression for g:

g (x, y, t) =
1

1 +
Ä
|∇I|

K

ä2 (4)

where K is a positive constant termed as a threshold parameter.
When g is chosen as a monotonically decreasing func-

tion, little diffusion occurs in the direction of the high 

intensity gradient, e.g. at the interface between the laser 
reflection and the fluid region. Conversely, the diffusion 
mainly occurs in the direction of low intensity gradients, i.e. 
along the light reflection. The approach proposed by Perona 
and Malik (1990) is very effective in avoiding smoothing of 
the edges, but it only considers the magnitude of the inten-
sity gradient, and not the local intensity. As a consequence, 
it does not cause diffusion of small intense particle images, 
which remain in the estimated background image (figure 
1(c)).

Modifications to equation (4) have been proposed by Chao 
and Tsai (2006, 2010) to account not only for the intensity 
gradient, but also for the local intensity variance. In the pre-
sent work, the diffusion coefficient is also computed as a 
function of the local normalized intensity In to enable the dis-
tinction between reflections, which cover several pixels in an 
image, and pointwise bright spots such as the particle images. 
In is evaluated as the local intensity normalized with respect 
to the local mean of the intensities (computed with respect to 
12 neighbors in a diamond shaped kernel; the neighbors are 
defined by D8 distance  =  1 and D4 distance  =  2, as described 
in Gonzalez and Woods (2002)):

c (x, y, t) = g [∇I (x, y, t) , In] (5)

g (x, y, t) =
1

1 +
Ä
|∇I|
K·In

ä2 . (6)

The particle images are typically characterized by large values 
of the normalized local intensity In compared to the magnitude 
of the intensity gradient |∇I|, whereas the reflections feature 
small values of In with respect to the corresponding |∇I|. It is 
to be noted that the normalized local intensity In and the mag-
nitude of the intensity gradient |∇I| can be compared directly, 
since |∇I| is defined in the discretized form as the difference 
between the intensities of the neighboring pixels. Thus, the 
diffusion coefficient is large for the particle images and small 
for the reflections, as shown in figure 2. This choice enables 
high diffusion for the particle images, and as a result, the par-
ticle images are no longer present in the background image 
(figure 1(d)).

2.1. Numerical implementation

Following Perona and Malik (1990), equation  (2) is dis-
cretized as follows:

It+1
i,j = It

i,j + λ [cN∇NI + cS∇SI + cE∇EI + cW∇WI]ti,j (7)

where (i, j ) are the pixel locations along the y  and x directions, 
respectively, 0  ⩽  λ  ⩽  0.25 for numerical stability, the sub-
scripts N, S, E and W represent North, South, East and West, 
and ∇ indicates the nearest-neighbor differences:

∇NI = Ii−1,j − Ii,j

∇SI = Ii+1,j − Ii,j

∇EI = Ii,j+1 − Ii,j

∇WI = Ii,j−1 − Ii,j.

 

(8)
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In this work, λ  =  0.2 is used in all analyses. The diffusion 
coefficients are updated at each time instant as a function of 
the local intensity gradient and normalized intensity level:

cN = g (∇NI, In)

cS = g (∇SI, In)

cE = g (∇EI, In)

cW = g (∇WI, In) .

 

(9)

2.2. Selection of the threshold parameter and number  
of iterations

To solve the anisotropic diffusion equation  (2), the value 
of two relevant parameters must be selected: the threshold 
parameter K and the number of iterations tf . A parametric 
study is conducted to determine which combination of K and 
tf  is the most effective for background removal in PIV images.

First, the effect of the threshold parameter is studied by 
considering different values of K for the same number of itera-
tions. Background and pre-processed images of a typical PIV 
raw image are illustrated in figure 3 for tf   =  300 iterations and 
K equal to 5, 10 and 50, respectively. It is observed that for 
small values of the threshold parameter (K  =  5), the particle 

images are not diffused sufficiently and therefore are still 
present in the background image (first column in figure  3). 
Conversely, a large value of K (K  =  50 in the example), 
causes diffusion of the sharp reflection along with the particle 
images. Hence, the reflection is not eliminated sufficiently in 
the pre-processed image obtained by subtracting the back-
ground image from the original raw image (last column in 
figure 3). The results can be explained based on the defini-
tion of the diffusion coefficient (equation (6)), where the large 
value of K makes the diffusion coefficient approach unity. In 
the latter case, the diffusion process becomes isotropic, as 
expressed in equation (1). It is observed that an intermediate 
value of K (K  =  10) yields better results than those for K  =  5 
and K  =  50, by diffusing the particles sufficiently and by 
retaining the sharp reflection in the background image (middle 
column in figure 3). The results in figure 3 thus suggest using 
an intermediate value (K  =  10) for the threshold parameter in 
the proposed anisotropic diffusion approach.

To investigate the effect of the number of iterations, dif-
ferent values of tf  are considered, keeping the threshold 
parameter constant (K  =  10). The background and pre-pro-
cessed images are shown in figure  4 for the three cases of 
tf  equal to 10, 300 and 1000. It is observed that for a small 
number of iterations (tf   =  10), the particle images are not dif-
fused completely in the background image (first column in 
figure 4), yielding a pre-processed image where the signal is 
strongly attenuated. Conversely, for a large number of itera-
tions (tf   =  1000), the reflection is diffused in the background 
image (last column in figure 4), and therefore remains partly 
present in the pre-processed image. When tf   =  300 iterations 
is employed, the reflection remains sharp in the background 
image, whereas the particle images are diffused, yielding 
better background removal without loss of signal from the 
tracer particles (middle column in figure  4). Based on the 
above, the combination (K, tf )  =  (10, 300) is more suitable 
than the other combinations in removing the background of 
the sharp reflections.

The effect of the number of iterations on the intensity 
levels of particle images and reflections is further illustrated 
in figure 5 for different values of K. Two windows of 10  ×  10 
pixels are considered representative of the reflections region 
and of the particle images region, respectively, as illustrated in 
figure 5 (left). After each iteration of the anisotropic diffusion 

Figure 1. A comparison of different approaches for retrieving the background image. (a) A raw image of a cavity flow measurement 
(Iannetta et al 2016); (b) a background image by isotropic diffusion (sliding-average intensity); (c) a background image by the Perona and 
Malik (1990) approach; (d) a background image by the proposed approach. The following parameter values are used for the evaluation of 
the background image: K  =  10 and tf   =  300, tf  being the number of iterations.

Figure 2. A plot of the diffusion coefficient function given by 
equation (6).

Meas. Sci. Technol. 30 (2019) 035204
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algorithm, the intensity in each of the two windows is com-
puted and plotted in figure 5 (right). The intensity of the reflec-
tion is calculated as the mean intensity in window 1, whereas 
the particle’s intensity is calculated as the maximum intensity 
in window 2, since the maximum intensity level represents the 
particle image peak intensity. Figure 5 (right) shows that the 
rate of diffusion is high for K  =  50, causing the reflection to 
diffuse along with the particle images, which is not desirable. 
Instead, for K  =  5 the diffusion is very slow and it takes more 
iterations to attenuate the particle image’s intensity compared 
to the other two values of K. Thus, K  =  10 is found to be a 
good choice for the threshold parameter. The plots for K  =  10 
show that the particles are removed sufficiently after about 
300 iterations; further increasing the number of iterations 
does not produce any improvement in the background image. 
In contrast, the reflection intensity reduces slightly with an 
increasing number of iterations. Hence, a larger number of 
iterations has the effect of causing diffusion of the laser light 
reflections, returning an output image that is not representative 
of the actual background. For this reason, the number of 300 
iterations in combination with a threshold parameter K  =  10 
is considered a good choice to generate the background image. 
It is to be noted that the values are not the optimum values, 

although they are shown to be effective. The reader is advised 
to plot curves, as in those of figure 5-right, for a pair of PIV 
images to find out the suitable values of K and tf . Then, the 
same values could be used for pre-processing all the images 
of a set. A rule of thumb is to select the value of K such that 
it provides a high slope for the curve of the particles’ intensi-
ties and a low slope for that of the reflections’ intensities; the 
number of iterations is selected as the minimum value of tf  for 
which the particles’ intensities are below a certain threshold 
(e.g. five counts).

It should be noted that the algorithm is not very sensitive to 
the choice of the processing parameters K and tf , in the sense 
that a variation in these parameters by 10%–20% would in 
practice yield the same background image. The computational 
time is proportional to tf  and is comparable to that of other 
standard filters.

3. Experimental assessment

The performance of the proposed anisotropic diffusion 
approach is assessed via PIV images acquired for the invest-
igation of the propeller blade vortex interaction (Yang et al 
2016, Yang 2017). This particular experimental test case is 

Figure 3. A comparison of a raw image (top row), background images obtained using the proposed anisotropic diffusion approach after 
300 iterations (middle row) and the pre-processed images for different values of the threshold parameter (K  =  5, 10, 50; bottom row).

Meas. Sci. Technol. 30 (2019) 035204
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Figure 4. A comparison of background and pre-processed images obtained using the proposed anisotropic diffusion approach with K  =  10 
after different numbers of iterations (tf   =  10, 300, 1000).

Figure 5. A plot of the intensity levels of particle images and reflection in the background image versus the number of iterations in the 
proposed anisotropic diffusion approach with different values of K (the areas where the reflections’ and particle images’ intensities are 
analyzed are the red squares 1 and 2 in the figure on the left, respectively).

Meas. Sci. Technol. 30 (2019) 035204
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chosen due to the presence of sharp and unsteady reflections 
of the propeller blade in the images. The experimental setup 
is shown in figure 6; the tests are carried out in the Open-Jet 
Facility (OJF) at Delft University of Technology. The pro-
peller has eight blades with 0.304 m diameter and a blade 
angle of 41° is set up at ¾ of the blade radius to reproduce 
take-off conditions. A truncated 2D DU96-W-180 airfoil is 
used as a vortex generator (span of 1 m and chord length of 
0.25 m) and is placed at 3.2 chord lengths upstream of the 
propeller. Stereoscopic PIV measurements are performed 
in an upstream plane (positioned at X/R  =  −0.20) perpend-
icular to the propeller axis, as shown in figure 6 (right). Two 
LaVision Imager Pro LX 16M cameras (CCD sensor of 
4870  ×  3246 pixels, 12 bit resolution, 7.4 m pixel pitch) and 
a Quantel Evergreen 200 laser (dual pulsed Nd:YAG laser, 
200 mJ energy per pulse) are used for the measurements. 
The flow is seeded with micron-sized water-glycol particles 
produced by a SAFEX Twin Fog Double Power smoke gen-
erator. A detailed description of the experimental setup can 
be found in Yang (2017).

Figure 7 shows a raw image pair and the corresponding 
displacement field (from a single camera) obtained in this 
experiment. As can be seen in figure 7-left, the raw images 
are affected by strong laser light reflections, especially at 
the leading edge of the propeller blade. Since the propeller 
is spinning at 2500 rpm, the propeller tip moves about 2 mm 
between the two image frames. Note that the measure-
ment plane is located about 12 mm upstream of the blade 
leading edge; as a consequence, the fluid displacement in 
the measurement plane differs from the blade displacement. 
The cross-correlation analysis on the raw images returns a 
displacement field (figure 7-right) that is highly affected by 
the laser light reflections. The flow displacement in front of 
the propeller blade is highly over-estimated due to the pres-
ence of the blade reflection, which moves between the two 
frames.

It should be noted that, since the PIV acquisition was not 
synchronized with the rotation of the propeller blade, the 
position of the latter varies among different recordings (see 
figure  8). As a consequence, standard background removal 

approaches based on the statistical analysis of the sequence 
of images (e.g. subtraction of the time-average or time-min-
imum intensity) fail in removing the background reflection. 
Furthermore, even more advanced approaches based on image 
statistics, such as the POD filter (Mendez et al 2017), are not 
effective in this specific case, due to the limited number of 
recordings (250) per set of images, which causes the POD 
modes to not reach statistical convergence.

When image pre-processing is performed, the relative 
intensity of the particle images with respect to the laser 
reflection can be highly enhanced. Figure 9 shows a com-
parison among the image pre-processing by sliding-average 
subtraction, median filter subtraction, median-based-nor-
malization subtraction and the proposed anisotropic diffu-
sion approach. In the first method, the background image 
(figure 9- first row- first column) is built as a sliding-average 
(i.e. isotropic diffusion) of the image intensity in a kernel of 
3  ×  3 pixels in 30 iterations. A Gaussian weighting is applied 
to the intensity within the kernel. In the second method, a 

Figure 6. The experimental setup of the propeller blade vortex interaction (left) and a top view of the PIV setup in the upstream plane 
perpendicular to the propeller axis (right). Figure reproduced from Yang (2017).

Figure 7. A raw image pair (left; red: first recording and green: 
second recording) and the corresponding displacement field (right). 
The interrogation windows where the cross-correlation analysis is 
conducted are shown in the raw image pair.

Meas. Sci. Technol. 30 (2019) 035204
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median filter of a kernel of 5  ×  5 pixels is applied to the raw 
image to generate the background image (figure 9- second 
row- first column), which is then subtracted from the raw 
image to get the pre-processed image (figure 9- second row- 
second column). The next method is based on Mejia-Alvarez 
and Christensen’s (2013) approach, where normalization is 
performed with respect to the local median and minimum 
intensities in a kernel of 9  ×  9 pixels. The two frames are 
then subtracted from each other to eliminate the background 
and further normalization is applied with respect to local 
maximum and minimum intensities. Finally, the intensity 
values are stretched according to the global maximum and 
minimum intensities in the original raw images. The back-
ground and pre-processed images obtained with this median-
based-normalization algorithm are shown in figure 9 in the 
third row, first and second columns, respectively. As can 
be seen in figure 9 (rows- 1, 2, 3), these three methods (i.e. 
pre-processing by sliding-average subtraction, median filter 
subtraction and median-based-normalization subtraction) 
yield background images where the particle image intensity 
is highly reduced. However, the light reflection on the pro-
peller blade is also diffused with respect to the raw images. 
As a consequence, when the pre-processed images are evalu-
ated from the difference between the raw images and back-
ground, they still feature laser light reflections, which yield 
erroneous vectors in the displacement field (figure 9- rows- 
1, 2, 3- last column). Instead, when the background image is 
built with the proposed anisotropic diffusion approach, the 
particle image intensity is strongly diffused, whereas no sig-
nificant diffusion occurs in the light reflections on the pro-
peller blade (figure 9- last row- first column). As a result, 
the background image by anisotropic diffusion is much more 
representative of the true background. In the pre-processed 
image, the intensity of the laser light reflections on the pro-
peller blade becomes lower than that of the particle images 
(figure 9- last row- second column). Hence, the computed 
displacement field does not feature any erroneous vector 
associated with unwanted laser light reflections on the solid 
surface (figure 9- last row- last column).

For a quantitative assessment of the performance of the 
anisotropic diffusion filter, the cross-correlation analysis is 

conducted in two interrogation windows of 65  ×  65 pixels, 
shown in figure 7 (left). The interrogation window 1 is located 
in front of the blade and features strong laser light reflec-
tions, whereas interrogation window 2 is in a region free of 
any unwanted reflections. The results of the cross-correlation 
analysis are illustrated in figures  10 and 11, and the corre-
sponding pixel displacements and cross-correlation signal-to-
noise ratios (SNR) are reported in table 1.

In interrogation window 1, the strong reflection on the 
propeller blade yields a high peak in the cross-correlation 
functions obtained from raw images and pre-processing by 
sliding-average subtraction or median filter subtraction (fig-
ures 10(a)–(c)). The position of the peak corresponds to the 
displacement of the propeller blade between frame 1 and 
frame 2. As mentioned before, such displacement is not the 
same as the fluid displacement, because the plane of the pro-
peller does not coincide with the measurement plane. Such a 
peak is much larger than the true particle displacement peak 
(which can be seen around Δx  =  6 pix, Δy   =  4 pix) yielding 
a correlation SNR smaller than one. As a consequence, an 
erroneous displacement vector is estimated. Conversely, in 
the case of pre-processing by median-based-normalization 
or anisotropic diffusion, the correlation peak due to the blade 
movement is considerably attenuated or not even visible (fig-
ures 10(d) and (e)). Hence, the particle image’s displacement 
peak is correctly identified, yielding a valid vector estimation. 
However, a comparison of the correlation SNRs from table 1 
shows that the particle’s signal is attenuated more with the 
median-based-normalization algorithm (SNR  =  1.5) than 
with the anisotropic diffusion approach (SNR  =  4.0).

When the cross-correlation analysis is conducted in a 
region free of any reflections (i.e. interrogation window 2), 
all pre-processing methods correctly identify the displace-
ment peak (figure 11), leading to a displacement estimate 
accurate within 0.1 pixels. However, it is noted that the image 
pre-processing with the median-based-normalization algo-
rithm strongly attenuates the particle’s signal, returning a 
relatively low SNR which results in slightly inaccurate dis-
placement measurements. On the contrary, the SNR obtained 
with the anisotropic diffusion filter is approximately the same 
as that achieved with the raw images, which indicates that the 

Figure 8. Examples of instantaneous PIV recordings showing the blade’s reflections, phase angle Ψ  =  6.0° (left) and Ψ  =  34.5° (right). 
Figure reproduced from Yang (2017).
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Figure 9. A comparison among image pre-processing by sliding-average subtraction (kernel of 3  ×  3 pixels and 30 iterations), median 
filter subtraction (kernel of 5  ×  5 pixels), median-based-normalization subtraction (kernel of 9  ×  9 pixels) and the proposed anisotropic 
diffusion approach (diamond shaped kernel, K  =  10 and 300 iterations). Background images (first column; red: first recording and green: 
second recording), pre-processed images (second column) and corresponding displacement fields (third column).
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Figure 10. A comparison among cross-correlation functions in interrogation window 1 (with light reflections). (a) Raw images; (b) image 
pre-processing by subtraction of the sliding-average intensity; (c) image pre-processing by subtraction of the background by median filter; 
(d) image pre-processing by subtraction of the background by median-based-normalization; (d) image pre-processing by subtraction of the 
background by anisotropic diffusion. The black cross indicates the center of the cross-correlation window. For sake of clarity, figures (b) to 
(e) only show the smaller region represented by the red square in figure (a).

Figure 11. A comparison among cross-correlation functions in interrogation window 2 (without light reflections). (a) Raw images; (b) 
image pre-processing by subtraction of the sliding-average intensity; (c) image pre-processing by subtraction of the background by median 
filter; (d) image pre-processing by subtraction of the background by median-based-normalization; (d) image pre-processing by subtraction 
of the background by anisotropic diffusion. The black cross indicates the center of the cross-correlation window. For sake of clarity, 
figures (b) to (e) only show the smaller region represented by the red square in figure (a).
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approach has no detrimental effect in regions where no reflec-
tions are present.

4. Conclusions

A novel approach is proposed to suppress undesired light 
reflections from PIV images. The approach relies upon gen-
erating a background image by anisotropic diffusion of the 
intensity distribution of the raw image. The principle is that, by 
means of anisotropic diffusion, the image intensity is diffused 
only along the edges and not across the edges, maintaining 
sharp reflections in the background image. The latter is then 
subtracted from the original image, yielding a pre-processed 
image where no reflection is present and only the contrib-
ution of the particle images is retained. Contrary to most 
approaches for background removal that require the analysis 
of an image sequence (e.g. subtraction of time-average or 
time-minimum image intensity, POD filter, high-pass filter in 
the frequency domain), the proposed approach is applicable to 
individual images, and is therefore suitable for all cases where 
the reflection is unsteady, or when a short image sequence has 
been acquired, yielding lack of convergence in the statistical 
analysis.

A parametric study has been conducted to evaluate the effect 
of two key parameters of the approach, namely the threshold 
parameter K and the number of iterations tf . The threshold 
parameter K governs the rate of diffusion: high values of K 
yield isotropic diffusion, typically over-smoothing the reflec-
tions; conversely, low values of K slow down the diffusion 
process. The number of iterations tf  determines the number 
of neighboring pixels involved in the diffusion process. It is 
found that values of K  =  10 and tf   =  300 are effective for the 
PIV images used in this work. Readers are advised to perform 
the parametric study for a pair of images to determine the suit-
able values of K and tf . An automatic estimation of the optimal 
value of these parameters goes beyond the aim of this invest-
igation, and is left for future work.

The proposed approach is applied to real PIV images 
acquired for the study of the blade vortex interaction, char-
acterized by sharp and unsteady reflections of the propeller 
blades. Due to the unsteady character of the reflections, back-
ground removal approaches based on statistical analysis of 
the entire sequence of images are not effective. The results of 
the anisotropic diffusion background removal are compared 
with the conventional pre-processing methods of isotropic 
diffusion (sliding-average) filter, median filter subtraction 

and median-based-normalization filter. The comparison 
shows that the proposed approach is effective in removing the 
unsteady reflections, allowing the estimation of the particle’s 
displacement, even in close proximity to the reflection region. 
In regions of the image not affected by reflections, the use of 
the anisotropic diffusion filter retains approximately the same 
image quality as in the raw images.

In the present work the performance of the method has 
been demonstrated for the case of sharp reflections, occur-
ring e.g. when the laser light impinges on a solid surface. In 
the presence of diffused reflections, the anisotropic diffusion 
coefficient assumes approximately the same value in all direc-
tions, and the anisotropic filter behaves in practice as an iso-
tropic filter (sliding-average).
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