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Abstract

Over time, the width-averaged depth of estuaries changes due to a complex interaction of hydrodynamics
and suspended sediment transport. In many estuaries one specific location with a suspended sediment
concentration (SSC) higher than in the sea or in the upstream river, is found, which is called sedi-
ment trapping. The location of the maximum SSC is called the estuary turbidity maximum (ETM).
Understanding the dynamics is important to maintain a healthy ecosystem while making anthropogenic
changes. To investigate such changes, a two-dimensional model is developed, considering the Ems estuary
as a case study. The model equations consist of the width-averaged shallow water equations and a SSC
equation. Assuming a morphodynamic equilibrium, these equations are solved mostly analytically by
making a regular expansion of each physical variable in a relatively small parameter. Using this method,
we are able to gain insight into the fundamental physical processes resulting in sediment trapping in
an estuary by studying the influence of various forcings separately. One of the hydrodynamic forces is
vertical mixing. This force has been assumed to be constant over time in previous studies [1]. In this
thesis vertical mixing as a function that varies on the tidal timescale has been added to the model and
is analysed. As a result of the salinity gradient in the estuary the mixing is stronger during flood and
weaker during ebb. Using the model it is found that time variations in vertical mixing result in tidally
averaged non-zero, and therefore contributing, transports. They cause a narrowing of the location where
sediment is trapped. If vertical mixing is exactly maximal when the flood is maximal and minimal when
ebb is maximal, the ETM shifts downstream. But if the vertical mixing is lagging the tidal stream, which
is more plausible, the ETM will stay or shift upstream.
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Chapter 1

Introduction

In many estuaries one specific location is found with a higher concentration of suspended sediment (SS)
than in the sea or upstream in the river. The exact location of the maximum concentration, called the
estuarine turbidity maximum (ETM), is a result of a complex interaction of water motions and sediment
dynamics in the estuary; caused by anthropogenic and natural changes, the location of the ETM can
change with possible consequences for the quality of live in the estuary: at the ETM less light penetrates
in the water column, resulting in less phytoplankton growth and therefore less oxygen in the water. An
example of an ETM is shown in figure 1.1 for the Humber estuary, UK. Here, especially in figure (C),
but also in figure (A), an ETM is measured at approximately 30 km from the tidal limit, since the SSC
is higher at this point than upstream the river or downstream at sea.

Figure 1.1: A cross section of the Humber estuary, UK. At the right side the entrance to the
sea is located, and at the left side is the most upstream location where the river is affected
by tidal fluctuations, called the tidal limit. Measured suspended particulate matter (SPM)
concentration is plotted in figure (A) and (C) for tow different moments in the year. [6]
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2 CHAPTER 1. INTRODUCTION

Because of its high environmental and economical impact, it is important to understand the physical
mechanisms of water motions and sediment dynamics in estuaries. Employing numerical models it is
possible to simulate most of the processes (baroclinic circulation, tidal straining, tidal pumping, floccula-
tion, settling and scour lag, non-linear reactions, etc). However, these models require high computational
capacity to calculate the evolution of the physical equations in time. Another problem with these models
is that it is hard to understand which processes are most significant. In more idealized models, methods
like scale analysis and expansions of the physical parameters are used to obtain solutions that can largely
be found analytic. This results in a much faster model and the different processes can be analysed sepa-
rately due to the linearity, what makes it possible to compare their relative importance.

An idealized model as described above has been developed in 2010 [1], with the Ems estuary, Germany,
as a reference case. One of the processes related to the trapping of suspended sediment is vertical mixing,
i.e. the eddy diffusion. In this work [1], it was assumed that the quantity of the mixing term was constant
over time. However, this is not realistic since the mixing is influenced by the water motions and salinity
gradient. In this thesis we will add the dependency of time of the vertical mixing to the model from 2010
[1] and analyse the influences. The Ems estuary will be used as a reference case again.

In chapter 2 we will derive the set of equations describing the water motions and suspended sediment
balance including the time dependent mixing term, then we will rewrite them in chapter 3 with a scaling
method to obtain differential equations which can be solved mostly analytically. In chapter 4 the results
of the model will be presented, followed by a discussion and conclusion in chapter 5.



Chapter 2

Model formulation

2.1 Geometry

The estuary is considered to have length L, with a width that is allowed to vary in the along-estuary
direction. The seaward side of the estuary is located at x = 0. At x = L, the most upstream side of the
estuary, a weir is found. The width is assumed to be constant over time, and vary exponentially as

B(x) = B0e
−x/Lb , (2.1)

with B0 the width at the seaward side and Lb the exponential convergence length. As sketched in figure
2.1 the vertical direction is denoted by z, where z = 0 is the undisturbed surface. z = −H(x) describes
the location of the bed at location x, and H0 is the depth at the seaward side. The surface elevation is
denoted by z = ζ(x, t), and deviates from zero because of tides, wind, etc.. The central axis of the estuary
is denoted by y = 0, and the shores of the estuary are located at y = 1

2B and y = − 1
2B. Furthermore

u = (u, v, w) describes the velocity in the x, y and z direction respectively. All the velocities are functions
of x, y, z and the time t.

Figure 2.1: Scetch of the model geometry[1].

2.2 Time dependent mixing

Consider a tank filled with water, see figure 2.2. In the middle of the tank is a barrier, the left side of
the tank is filled with salt water the right side with fresh water. When the barrier is removed, first the
lighter fresh water will flow over the heavier salt water. Next, due to turbulent motions the fresher upper
layer will mix with the salty layer. In the estuary the fresh water from the river meets the salt sea water,
resulting in similar movements.

The eddy diffusion coefficient Kv describes the efficiency of vertical mixing of the sediment, due to
turbulent motions. In the model described in [1] it has been assumed that the vertical eddy diffusion

3



4 CHAPTER 2. MODEL FORMULATION

(a) (b) (c)

Figure 2.2: A tank filled with salt and sweet water. Removing the barrier results in turbulent
motions.

coefficient Kv equals the time independent eddy viscosity coefficient Av. However it is possible to argue
that both Av and Kv should be time dependent.

To illustrate the plausibility of time dependent eddy viscosity and diffusivity, consider an estuary
which is well-mixed in the vertical, with high salinities at the seaward side and low salinities at the land-
ward side, as illustrated in figure 2.3. Since the water contains more salt at the seaside of the estuary, it is
heavier than the fresh river water. Also the amount of sediment concentration in the water is dependent
of z, as a result of gravity. The closer to the bottom the higher the concentration of sediment. The SS
profile is indicated by the yellow line in figure 2.3.

Figure 2.3: Sketch of the estuary with no current. Vertical is the z-direction and horizontal
the x-direction. Left is the seaside of the estuary and right the weir. The yellow line gives
an indication of the amount of sediment in the river plotted against the z-axis. The darker
blue columns indicate higher salinity of the water. Closer to the sea the water contains more
salt, indicated with the darker colour.

During flood water is transported into the estuary. Because of the friction with the bottom the
velocity is lower near the bottom than higher up in the water column. As a result the heavier salty
water moves over the lighter fresh water, see figure 2.4. This is an unstable situation, resulting in an
enhanced vertical mixing. The sediment - which was first generally at the bottom - will now mix higher
in the water column. Since both the velocities and sediment concentrations are enhanced due to stronger
vertical mixing, there is enhanced transport of suspended sediments in the landward direction.

During ebb the water flows back to the sea, in this case the lighter water will move over the heavy
water, sea figure 2.5. This is a stable situation, resulting in suppression of mixing and therefore the
sediment will stay closer to the bottom. This means that the transport of SS in the direction of the sea
during ebb is smaller than the transport in the landward direction during flood. Hence, a tidally averaged
transport of SS in the upstream direction is expected.

To describe this tidal mixing asymmetry, the eddy diffusion coefficient will be prescribed as

Kv = K0
v (x) + K̂1

v (x, t), (2.2)
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Figure 2.4: Sketch of the estuary during flood. The red arrows represent the current,
the round arrows indicate the mixing and the yellow arrows represent suspended sediment
transport.

Figure 2.5: Sketch of the estuary during ebb. The size and direction of some arrows has
changed compared to the situation during flood, which means velocities, transport and/or
mixing have increased or decreased.

where K0
v is the tidally average mixing coefficient and the variation in mixing is denoted by K̂1

v , that is
a tidally periodic function. Since the mixing during flood is related to the salinity gradient we assume
K̂1
v to be proportional to the gradient of salinity. It seems plausible that Kv has the same period as the

period T of the main tidal component with T ≈ 12.5h. Probably the mixing is not at a maximum at
maximal flood but a bit later, because the mixing is not instantaneous. Therefore the temporal part of
the eddy diffusivity has a phase difference ∆φ with the horizontal velocity, hence

K̂1
v = K1

v cos(σt− φu −∆φ), (2.3)

with K1
v ∼ ds

dx where ds
dx is the salinity gradient, σ = 2π/T = 1.4 ·10−4s−1, and φu the phase of horizontal

velocity of the water motion. For simplicity define φK1
v

:= φu+∆φ. Assuming ∆φ = 0◦ physically means
that the mixing is maximal during maximal flood, and minimal during maximal ebb. If ∆φ = 20◦ is
chosen, the maximal mixing happens 20

360 · T ≈ 40 minutes after the flood is maximal. In this case the
mixing needs some time to get started. The correct value for ∆φ is unknown and can be determined
from measurements.

2.3 Equations governing the water motion

The width-averaged water motion in the estuary is described by the continuity and momentum equation,
see appendix A for a more detailed derivation,

ux + wz −
u

Lb
= 0, (2.4)

ut + uux + wuz + gζx −
gρx
ρ0

(z − ζ)− (Avuz)z = 0, (2.5)

where g ∼ 10 m2/s is the gravitational acceleration, ρ(x, z, t) the water density, ρ0 ∼ 1, 020 kg m3 the
reference density and Av is the vertical eddy viscosity coefficient that parameterizes the strength of
(unresolved) small scale turbulence. Following previous study [4], we assume that

Av(x) = Av0
H(x)

H0
, (2.6)
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with Av0 the eddy viscosity at the seaside. This means that the viscosity is linearly proportional to the
depth of the estuary.

It is assumed that density only depends on salinity, thus neglecting e.g. temperature or suspended
sediment concentration (SSC). This results in the following expression for the density

ρ(s) = ρ0(1 + β < s(x) >), (2.7)

with β ∼ 7.6 · 10−4psu−1 which converts salt to density. The tidal average is denoted by < . >. Hence
the density in equation (2.7) depends on 〈s(x)〉, the observed along-channel, time and depth-averaged
salinity profile which describes the gradual decrease of the salinity from the sea to the river.

At the free surface z = ζ no water will leave the system:

d

dt
(z − ζ) = 0 at z − ζ = 0, (2.8)

with d
dt the total derivative. Using the chain rule, the kinematic boundary condition

w =
∂ζ

∂t
+ u

∂ζ

∂x
at z = ζ. (2.9)

is derived from equation (2.8)
Furthermore, a no stress condition is imposed:

Avuz = 0 at z = ζ. (2.10)

At the bottom z = −H(x) the water does not penetrate the sand, which means we have to prescribe
an impermeability condition (2.11). Furthermore, the partial slip condition (2.12) is imposed

w = −u∂H
∂x

, (2.11)

τb ≡ ρ0Avuz = ρ0su. (2.12)

Here, τb is the bottom shear stress. The latter condition gives a (linear) relation between the bed shear
stress and the velocity at the top of the bottom boundary layer [7], with s the stress or slip parameter,

which is assumed to be s = s0
H(x)
H0

. If s → 0, this condition reduces to a free slip boundary condition,
for s→∞ a no-slip boundary condition is found.

The water motion is forced both at the sea and riverine side. At the seaward side, a tidal elevation is
prescribed that consists of two tidal frequencies, the semi-diurnal tide (M2) and its first overtide (M4)

ζ(t) = AM2 cos(σt) +AM4cos(2σt− φ) at x = 0, (2.13)

where φ is the relative phase difference in the phases of the M2 and the M4 tidal constituents and AM2

and AM4
the amplitudes of respectively the semi-diurnal and its first overtide.

At the upstream side we prescribe a constant inflow of water Q from the river,

B(x)

∫ ζ

−H
udz = Q at x = L. (2.14)

2.4 Suspended sediment concentration (SSC) equation

The equation describing the width averaged SSC reads:

ct + ucx + wcz = wscz + (Khcx)x + (Kvcz)z −
1

Lb
Khcx, (2.15)

where c(t, x, z) denotes the SSC, ws ∼ 0.2− 5 mm s−1 the settling velocity, Kh the horizontal turbulent
eddy diffusion coefficient and Kv the vertical one. A derivation of this expression can be found in appendix
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B. The tidally average vertical turbulent eddy diffusion K0
v , see equation (2.2), is assumed to be equal to

Av.
At the surface it is required that no sediment particles can leave the water,i.e. the normal component

of the diffusive and the settling flux must vanish:

〈(
−ζx

1

)
,−cws

(
0
1

)
−Kh

(
cx
0

)
−Kv

∂c

∂z

(
0
1

)〉
= 0 at z = ζ,

⇒ wsc+Kvcz −Khcxζx = 0 at z = ζ. (2.16)

Sediment will be suspended form the bed due to erosion. This is described by

Es ≡ −Kvczn
z −Khcxn

x = wsc∗ at z = −H(x), (2.17)

where n = (nx, nz) = (Hx,−1) is the downward pointing vector on the bottom. The concentration c∗ is
the reference concentration, defined as

c∗(t, x) = ρs
|τb(t, x)|
ρ0g′ds

a(x). (2.18)

Here, ρs is the density of sediment, |τb(t,x)|ρ0g′ds
is the dimensionless bed shear stress in which τb is the

bottom stress as defined in equation (2.12), g′ = g(ρs − ρ0)/ρ0 is the reduced gravity and ds is the the
average grain size of the sediment. The erosion coefficient a(x) models the along-channel distribution of
easily erodible sediment, available in mud reaches [1]. The greater this variable, the more sediment can
be eroded and contribute to concentration, and sediment transport.

Following studies by Friedrichs et al. [3] and Huijts et al. [5], the model considers the system to be in
morphodynamic equilibrium, which means that there is no evolution of the bed over a tidal period. This
is a valid assumption when the the duration of redistribution of easily erodible sediment is much smaller
than the typical timescale at which external forces change significantly. Hence, there exists a balance
between erosion and deposition of the sediment at the bed. The erosion flux is defined in equation (2.17)
and the deposition flux has been defined as

~Fs = −cws~ez, (2.19)

(also see Appendix B, equation (10b)). The morphodynamic equilibrium imposes

〈E〉 − 〈D〉 = 0. (2.20)

Integrating the sediment mass balance equation (2.15) over depth, using boundary conditions (2.9),
(2.11) and (2.16) the following equilibrium is obtained after tidally averaging:〈∫ ζ

−H
(uc−Khcx)dz

〉
= 0, (2.21)

where we assumed that there is no residual sediment flux at the weir.
The morphodynamic equilibrium condition still dependents on the unknown erosion coefficient a(x).

Later will be derived that the sediment concentration depends linearly on the coefficient. Hence we can
rewrite the equilibrium condition as a first order differential equation for a(x):

〈∫ ζ

−H

(
au
c

a
− aKh

( c
a

)
x
−Khax

c

a

)
dz

〉
= 0, (2.22)

⇒ Fax + Ta = 0, (2.23)

where

F =

〈∫ ζ

−H
−Kh

c

a
dz

〉
, (2.24)

T =

〈∫ ζ

−H

(
u
c

a
−Kh

( c
a

)
x

)
dz

〉
. (2.25)
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Prescribing the average amount of sediment available for resuspension a∗, the integration constant
can be determined by requiring ∫ L

0
B(x)a(x)dx∫ L
0
B(x)dx

= a∗. (2.26)



Chapter 3

Scaling

In this section we will find semi-analytic solutions for the water motion and SSC equations using a scaling
technique, which allows for a systematic way to assess the relative importance of the different terms in
the equations. As a first step the variables are made dimensionless, i.e. by dividing them by their typical
unit value. For example for the vertical variable z = H0z̃, where the tilde indicates that the variable is
dimensionless. An overview for al the variables can be seen in table 3.1 based on the article by Chernetsky
et al.[1].

Scaling
Physical quantity Typical scale Symbol Variable

Time M2 tidal frequency σ t = σ−1t̃

Sea surface eleva-
tion

M2 tidal amplitude AM2
ζ = AM2

ζ̃

Local water depth Water depth at entrance H0 H = H0H̃
Vertical coordinate Water depth at entrance H0 z = H0z̃
Horizontal coordi-
nate

Minimum of the estuary length
or convergence length

l x = lx̃

Vertical velocity Obtained from the width-
averaged continuity equation
(2.4) by requiring an approxi-
mate balance between the first
and second term

W = H0

l U w = Ww̃

Horizontal velocity Follows from the integration of
the continuity equation (2.4)
over depth and requiring an ap-
proximate balance between the
resulting contributions

U =
σAM2

l

H0
u = Uũ

Sediment concen-
tration

Typical magnitude of the quan-
tity under consideration

C = ρsAvUa∗
H0g′ds

c = Cc̃

Salinity gradient Sx 〈s〉x = Sx〈̃s〉x
Erosion coefficient The average amount of sediment

avalable for resuspension
a∗ a = a∗a

Table 3.1: Scaling of variables

Using the relations between the dimensional and dimensionless variables, equations (2.4) and (2.5)
can be rewritten as

{
U
l ũx̃ + U

l w̃z̃ −
Uũ
Lb

= 0,
U
L ũt̃ + U2

l (ũũx̃ + w̃ũz̃) +
gAM2

l ζx − gβSx〈̃s〉x(H0z̃ −AM2
ζ̃)−

(
AvH
H2

0
ũz̃

)
z̃

= 0,
(3.1)

⇒

{
ũx̃ + w̃z̃ − lũ

Lb
= 0,

ũt̃ + U
σl (ũũx̃ + w̃ũz̃) + λ−2ζx − Ud

U 〈̃s〉x(z̃ − AM2

H0
ζ̃)−

(
Av
σH2

0
ũz̃

)
z̃

= 0,
(3.2)

9
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where λ := l/Lw, in which Lw is the frictionless tidal wavelength and Ud := gH0βSx
σ is the typical velocity

scale for the density driven residual circulation.
Similarly all the boundary conditions have to be written in terms of the dimensionless variables. The

prescribed forcing of the surface due to tide, equation (2.13), becomes

ζ̃ = cos(t̃) +
AM4

AM2

cos(2t̃− φ) at x̃ = 0, (3.3)

and the boundary condition at the riverine side, equation (2.14), is∫ εζ̃

−H̃
ũdz̃ =

Q

UH0B
at x̃ = 1, (3.4)

where ε =
AM2

H0
.

At the free surface z̃ = εζ̃, the boundary conditions described in equation (2.9) are

w̃ = ζ̃t̃ +
AM2

H0
ũζ̃x̃, (3.5)

Avũz̃ = 0. (3.6)

At the bottom z̃ = −H̃ equations (2.11) and (2.12) become

w̃ = −ũH̃x̃, (3.7)

ũz̃ =
sH0

Av
ũ. (3.8)

The equations for the SSC, (2.15), (2.16) and (2.17) become

c̃t̃ +
U

σl
(ũc̃x̃ + w̃c̃z̃)−

ws
σH0

c̃z̃ −
Kh

σl2
c̃x̃x̃ −

Kv

σH2
0

c̃z̃z̃ −
Kh

σlLb
c̃x̃ = 0, (3.9)

ws
σH0

c̃+
Kv

σH2
0

c̃z̃ −
KhAM2

σl2H0
c̃x̃ζ̃x̃ = 0 at z̃ = εζ̃, (3.10)

− Kv

σH2
0

c̃z̃ −
Kh

σl2
c̃x̃H̃x̃ =

ws
σH0

|ũz̃|ã at z̃ = −H̃. (3.11)

The morphodanymic equilibrium condition and the integral condition for preserving the available
amount of sediment for resuspension become〈∫ εζ̃

−H̃
(ũc̃− Kh

lU
c̃x̃)dz̃

〉
= 0, (3.12)

and ∫ 1

0
ãe
− l
Lb
x̃
dx̃∫ 1

0
e
− l
Lb
x̃
dx̃

= 1. (3.13)

Using the dimensionless equations it is possible to assess the relative importance of each term. In
most estuaries the amplitude of the semi-diurnal constituent AM2

is much smaller than the depth of
the estuary H0, which means that ε := AM2/H0 � 1. Comparing the other coefficients in the above
equations to this parameter, an estimate of their order of magnitude in terms of ε can be made, see
table 3.2. Notice that the dimensionless slip parameter sH0

Av
is allowed to vary from zero to a large value.

Furthermore we assume that Q
UH0B

is at most of order ε.

The time dependent part of the eddy diffusion coefficient Kv is assumed one order higher than the
average K0

v . In section 2.2 we defined Kv as

Kv(x, t) = K0
v (x) +K1

v (x) cos (σt− φK1
v
) (3.14)
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Non-dimensional parameter Value Order
ε := AM2

/H0 0.14 O(ε)
U/σl 0.14 O(ε)
l/Lb 1 O(1)
Ud/U 0.27 O(ε)

Av/σH0 = K0
v/σH

2
0 1.57 O(1)

ws/σH0 .14-3.57 O(1)
Kh/σl

2 7.9 · 10−4 O(ε3)
Kh/σlLb 7.9 · 10−4 O(ε3)
AM4/AM2 0.17 O(ε)
Kh/lU 0.006 O(ε2)

AM2
Kh/σl

2H0 1.1 · 10−4 O(ε4)

Table 3.2: The orders of the magnitude of the parameters and their exact values [1]
.

with K0
v the tidally averaged mixing, K1

v the amplitude of the time-varying diffusivity, and φK1
v

the
phase. Recall that the average mixing K0

v is assumed to be equal to Av. To make the time dependent
part of one order higher K1

v/σH
2
0 must be of O(ε). The parameters K1

v and are prescribed and will be
varied to assess their influence on the sediment trapping.

Next, the dimensionless physical variables are rewritten as power series of ε, i.e.

ũ = ũ0 + εũ1 + ε2ũ2 + . . . , (3.15)

w̃ = w̃0 + εw̃1 + ε2w̃2 + . . . , (3.16)

ζ̃ = ζ̃0 + εζ̃1 + ε2ζ̃2 + . . . , (3.17)

c̃ = c̃0 + εc̃1 + ε2c̃2 + . . . . (3.18)

The superscripts describe the order of the variable. Substituting these in the equations and collecting
terms of the same order results in systems of equations at each order in ε.

The system of differential equations will be solved at each different order of ε separately. First the
differential equations will be solved at the leading order (O(1)), since higher order terms are negligible
at this order. Knowing the solutions of the leading order, solutions at the first order can be derived. In
general, knowing solutions of the equations at order n, the solutions at order n+ 1 can be derived.

3.1 Leading order system of equations

In this section only the leading order system of equations for the water motion is considered. First we
transform the dimensionless equations on order O(1) back to dimension equation. The continuity and
momentum equation at leading order are

u02x + w02
z −

u02

Lb
= 0, (3.19a)

u02t + gζ02x − (Avu
02
z )z = 0, (3.19b)

where the first superscript describes the order of epsilon and the second the frequency the solution
contributes to. Because the water motion at leading order is only forced by an M2 tidal constituent at
the seaward side, all the variables have a 2 as second superscript (3.21).
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The boundary conditions at leading order are:

w02 = ζ02t at z = 0, (3.20a)

Avu
02
z = 0 at z = 0, (3.20b)

w02 = −u02Hx at z = −H, (3.20c)

Avu
02
z = su02 at z = −H, (3.20d)

ζ02 = AM2 cos(σt) at x = 0, (3.20e)∫ 0

−H
u02dz = 0 at x = L. (3.20f)

These differential equations allow solutions of the form

(u02, w02, ζ02) = <
{(
û02(x, z), ŵ02(x, z), ζ̂02(x)

)
eiσt

}
, (3.21)

where <{.} denotes the real part of the expression between the braces. Substituting these expressions in
equations (3.19) results in:

û02x + ŵ02
z −

û02

Lb
= 0, (3.22a)

iσû02 + gζ̂02x − (Avû
02
z )z = 0. (3.22b)

with boundary conditions:

ŵ02 = iσζ̂02 at z = 0, (3.23a)

Avû
02
z = 0 at z = 0, (3.23b)

ŵ02 = −û02Hx at z = −H, (3.23c)

Avû
02
z = sû02 at z = −H, (3.23d)

ζ̂02 = AM2
at x = 0, (3.23e)∫ 0

−H
<{û02eiσt}dz = 0 at x = L. (3.23f)

Notice that this set of differential equations can be solved as an ordinary differential equation with
respect to z, for a given ζ(x). First solve equation (3.22b) subject to the boundary conditions (3.23b) and
(3.23d). Using inspection a particular solution û02part = − gζxiσ can be found. The homogeneous solution is
of the form

û02hom = c1e
√
iσ/Avz + c2e

−
√
iσ/Avz, (3.24)

with c1 and c2 constants with respect to z. Define β(x) =
√
iσ/Av. Substituting equation (3.24) in the

boundary conditions gives the solutions for c1 and c2, resulting in

û02 = −gζx
iσ

(1− cosh(βz)α(x)), (3.25)

with α(x) = s/(s cosh(βH)+Avβ sinh(βH)). Now a solution for ŵ02 can be found using equation (3.22a)
with boundary condition (3.23a). This is a first-order ordinary differential equation, which can be solved
using an integration factor, resulting in

ŵ02 =− g

iσ

((
ζ̂02x
Lb
− ζ̂02xx

)(
z − α

β
sinh(βz)

)
+

sinh(βz)ζ̂02x
β

(
αx −

αβx
β

)
+
ζ̂02x αβxz

β
cosh(βz)

)
+ iσζ̂02.

(3.26)

To satisfy the boundary condition (3.23c), substitute û02 and ŵ02 in it. An ordinary differential
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equation for ζ̂02 is found:

ζ̂02xx

(
−H +

α

β
sinh(βH)

)
−

ζ̂02x

(
1

Lb
·
(
−H +

α

β
sinh(βH)

)
− sinh(βH)

β

(
αx −

αβx
β

)
−αβxH

β
cosh(βH) +Hx(1− cosh(βH)α)

)
− σ2

g
ζ̂02 = 0.

(3.27)

This ODE, subject to the boundary conditions (3.23e) and (3.23f), can be solved numerically. Notice that

boundary condition (3.23f) at the riverine side can be written as ζ̂02x = 0 since û02 is lineair proportional

to ζ̂02x .
The SSC equation at leading order reads

c0t − wsc0z = (K0
vc

0
z)z, (3.28)

with boundary conditions

wsc
0 +K0

vc
0
z = 0 at z = 0, (3.29)

−K0
vc

0
z = wsρs

s|u02(t, x)|
g′ds

a(x) at z = −H(x). (3.30)

As will be explained in section 3.3, only the residual and the M4 contribution of the leading order
SSC solutions need to be evaluated. Therefore the solution is of the form

c0 = c00 + c04 (3.31)

= c00(x, z) + <
{
ĉ04(x, z)e2iσt

}
. (3.32)

Substituting this expression the following system of equations is obtained to be solved for the residual
component 

wsc
00
z = (K0

vc
00
z )z,

wsc
00 +K0

vc
00
z = 0 at z = 0,

−K0
vc

00
z = wsρs

sa0
g′ds

a(x) at z = −H(x),

(3.33)

where a0 is a coefficient in the Fourier series of the absolute value of the M2 velocity at the bottom

|u02(t,−H)| = a0 + a1 cos(σt) + b1 sin(σt) + a2 cos(2σt) + b2 sin(2σt) + . . . . (3.34)

The solution of equations (3.33) is

c00 =
aρssa0
g′ds

e
−ws(H+z)

K0
v . (3.35)

To find the solution of the M4-contribution of the SSC at leading order the following set of equations
has to be solved: 

2iσĉ04 − wsĉ04z = (K0
v ĉ

04
z )z,

wsĉ
04 +K0

v ĉ
04
z = 0 at z = 0,

−K0
v ĉ

04
z = wsρs

s(a2−ib2)
g′ds

a(x) at z = −H(x),

(3.36)

with a2 and b2 defined in equation (3.34). The solution is

ĉ04 = a

(
A1e

λ1−ws
2K0
v
z

+A2e
−λ1−ws

2K0
v

z
)
, (3.37)

with λ1 =
√
w2
s + 8iσK0

v and A1 and A2 are constants with respect to z which can be determined using
the boundary condition, resulting in

A2 =
−2wsρss(a2 − ib2)(ws + λ1)

g′ds

(
(λ1 − ws)2e

(ws−λ1)H

2K0
v − (λ1 + ws)2e

(ws+λ1)H

2K0
v

) , (3.38)

A1 =
−A2(ws − λ1)

ws + λ1
. (3.39)
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3.2 First order system of equations

3.2.1 First order water motion equations

The water motion equations at first order read

u1x + w1
z −

u1

Lb
= 0, (3.40)

u1t + u02u02x + w02u02z + gζ1x − gβ〈s〉xz − (Avu
1
z)z = 0. (3.41)

For the boundary conditions at the surface z̃ = εζ̃ we write ũ and w̃ as Taylor expansions around 0. The
following result for w̃ is obtained:

w̃(x, εζ̃) = w̃(x, 0) + εζ̃w̃z(x, 0) +O(ε2), (3.42)

= w0(x, 0) + εw1(x, 0) + εζ02w02
z (x, 0) +O(ε2), (3.43)

and the same applies for ũ.

Using these expressions the boundary conditions (2.9)-(2.14) become

w1 + ζ02w02
z = ζ1t + u02ζ02x at z = 0, (3.44a)

Avu
1
z +Avζ

02u02zz = 0 at z = 0, (3.44b)

w1 = −u1Hx at z = −H, (3.44c)

Avu
1
z = su1 at z = −H, (3.44d)

ζ1 = AM4cos(2σt− φ) at x = 0, (3.44e)∫ 0

−H
u1dz =

Q

B
at x = L. (3.44f)

Using the leading order solution, it is found that first order solutions consist of a residual (i.e., a time
independent) contribution and a M4 contribution. For example the first order horizontal velocity can
be written as u1 = u10 + u14 = u10(x, z) + <{û14(x, z)ei2σt} and the same applies for w1 and ζ1. The
first order system of equations is solved for u10 and u14 separately in section 3.2.1 and in section 3.2.1
respectively.

Residual contributions of the water motion

Using averaging over a tidal cycle, the following equations are obtained for the residual contributions
(u10, w10, ζ10):

u10x + w10
z −

u10

Lb
= 0, (3.45)

〈u02u02x + w02u02z 〉+ gζ10x − gβ〈s〉xz − (Avu
10
z )z = 0, (3.46)

where the brackets 〈.〉 denote tidal averaging. The boundary conditions become

w10 = −〈ζ02w02
z − u02ζ02x 〉 at z = 0, (3.47a)

Avu
10
z + 〈Avζ02u02zz〉 = 0 at z = 0, (3.47b)

w10 = −u10Hx at z = −H, (3.47c)

Avu
10
z = su10 at z = −H, (3.47d)

ζ10 = 0 at x = 0, (3.47e)∫ 0

−H
u10dz =

Q

B
at x = L. (3.47f)

These equations can be solved analogously to the leading order system.
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M4 contributions of the water motion

For the M4 contributions we obtain the following equations.

u14x + w14
z −

u14

Lb
= 0, (3.48)

u14t + [u02u02x + w02u02z ] + gζ14x − (Avu
14
z )z = 0. (3.49)

where the braces [.] denote the M4-contribution.

w14 = ζ14t + [u02ζ02x − ζ02w02
z ] at z = 0, (3.50a)

Avu
14
z +Av[ζ

02u02zz] = 0 at z = 0, (3.50b)

w14 = −u14Hx at z = −H, (3.50c)

Avu
14
z = su14 at z = −H, (3.50d)

ζ14 = AM4 cos(2σt− φ) at x = 0, (3.50e)∫ 0

−H
u14dz = 0 at x = L. (3.50f)

To solve this system a solution of the form

(u14, w14, ζ14) = <
{

(û14, ŵ14, ζ̂14)ei2σt
}

(3.51)

is allowed. In this system of differential equations there are four inhomogeneities, in equations (3.49),
(3.50a), (3.50b), (3.50e). The problem has to be split into four systems of equations in which each
of the systems includes one forcing term (inhomogeneity). The sum of these four solutions will give

(û14, ŵ14, ζ̂14).

3.2.2 First order SSC equations

The system for the SSC on the first order equals

c1t − wsc1z = K0
vc

1
zz +

∂

∂z

(
K1
v cos(σt− φK1

v
)c0z
)

︸ ︷︷ ︸
I

,

wsc
1 +K0

vc
1
z +

(
K1
v cos(σt− φK1

v
)c0z
)︸ ︷︷ ︸

II

= 0 at z = 0,

−K0
vc

1
z −
(
K1
v cos(σt− φK1

v
)c0z
)︸ ︷︷ ︸

III

= wsρssu
1 u02

|u02|g′ds
a(x)︸ ︷︷ ︸

IV

at z = −H.

(3.52)

The solution of this problem is a sum of all the contributions on different frequencies:

c1 = c10 + c12 + · · · .

In section 3.3 it will be explained that only the M2 contribution (c12) needs to be solved. Since
the problem contains four different forcings terms (I, II, III and IV), the solution of c12 can be found
by deriving the solutions to the systems with only one of these forcing terms. The sum of these four
solutions will then be the total solution Hence,

c12 = cI(12) + cII(12) + cIII(12) + cIV (12) = <
{

(ĉI + ĉII + ĉIII + ĉIV )(x, z)eiσt
}
, (3.53)

where e.g. cI(12) is the solution of the system with only forcing term I. In the next paragraphs we will
derive these different

Solution of the first order SSC with constant mixing

The solution cIV (12) describes the SSC solution at first order when there is no variation in mixing, i.e.
K1
v = 0. The set of equations needed to solve this component of the solution is:

iσĉIV − wsĉIVz = (Kv ĉ
IV
z )z,

wsĉ
IV +Kv ĉ

IV
z = 0 at z = 0,

−Kv ĉ
IV
z = wsρss

p1−d1
g′ds

a(x) at z = −H.

(3.54)
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where p1 and d1 are the coefficients of the following Fourier series

û1(x,−H)
û02(x,−H)

|û02(x,−H)|
= p0 + p1 cos(σt) + d1 sin(σt) + p2 cos(2σt) + · · · .

The solution of this ODE is

ĉIV =
wsρssa(p1 − id1)

g′ds
(B1e

r1z +B2e
r2z) , (3.55)

where r1 = λ−ws
2K0

v
, r2 = −λ+ws2K0

v
and λ =

√
w2
s + 4Kviσ, and B1 and B2 constants defined as

B2 =
−2(ws + λ)

(λ− ws)2e−r1H − (ws + λ)2e−r2H
, (3.56)

B1 = −ws − λ
ws + λ

B2. (3.57)

Solution of the internal forcing due to the time dependent mixing term

To find the solution of cI(12) the following system needs to be solved
iσĉI − wsĉIz = K0

v ĉ
I
zz +

[
∂
∂z

(
K̂1
v cos(σt− φK1

v
)c0z

)]
,

wsĉ
I +K0

v ĉ
I
z = 0 at z = 0,

−K0
v ĉ
I
z = 0 at z = −H.

(3.58)

where [.] denotes the M2 contribution. Rewrite:

∂

∂z

(
K̂1
v cos(σt− φK1

v
)c0z

)
= K̂1

v cos(σt− φK1
v
)(c00zz + c04zz). (3.59)

Since the linearity in the leading order SSC solution (c0) it follows that the solution of ĉI can be
separated into two parts

ĉI = ĉ
I(12)
0 + ĉ

I(12)
4 , (3.60)

where ĉ
I(12)
0 is the solution depending on the residual part of the sediment concentration at leading order

and ĉ
I(12)
4 depending on the M4 contribution of the sediment concentration at leading order.

The calculation of the M2 contribution of the expression in equation (3.59) has been elaborated in
Appendix C, resulting in

[K1
v cos(σt− φK1

v
)c00zz] = K1

vc
00
zze
−iφK1

v , (3.61)

[K1
v cos(σt− φK1

v
)c04zz] = K1

v

1

2
c04zze

−iφK1
v . (3.62)

The resulting solutions are

ĉI0 =
K1
ve
−iφK1

v

iσ

(
C1e

r1z + C2e
r2z + c00zz

)
, (3.63)

(3.64)

where

C1 =
λ− ws
λ+ ws

C2 −
2
(
wsc

00
zz(x, 0) + K0

vc
00
zzz(x, 0)

)
(λ+ ws)

, (3.65)

=
λ− ws
λ+ ws

C2, (3.66)

C2 =
2(λ− ws)

(
wsc

00
zz(x, 0) + K0

vc
00
zzz(x, 0)

)
e−r1H − 2(λ+ ws)K

0
vc

00
zzz(x,−H)

(λ− ws)2e−r1H − (λ+ ws)2e−r2H
, (3.67)

=
−2(λ+ ws)K

0
vc

00
zzz(x,−H)

(λ− ws)2e−r1H − (λ+ ws)2e−r2H
, (3.68)
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and

ĉI4 = D1e
r1z +D2e

r2z + P1e
R1z + P2e

R2z, (3.69)

where P1 and P2 are defined

Pi =
1
2K

1
ve
−iφK1

v aAi

iσ − wsRi −K0
vRi

2 , with i ∈ {1, 2}, (3.70)

with A1 and A2 defined in equations (3.38) and (3.39), R1 = λ1−ws
K0
v

, R2 = −λ1+ws
K0
v

and λ1 =
√
w2
s + 8iK0

v .

The integration constants D1 and D2 are determined by substituting the solution into the boundary
conditions, resulting in

D1 =
λ− ws
λ+ ws

D2 −
2ws (P1 + P2) + 2K0

v

(
P1R1 + P2R2

)
λ+ ws

, (3.71)

D2 =
(λ− ws)

(
2ws (P1 + P2) + 2K0

v

(
P1R1 + P2R2

))
e−r1H − 2K0

v (λ+ ws)
(
P1R1e

−R1H + P2R2e
−R2H

)
((λ− ws)2e−r1H − (λ+ ws)2e−r2H)

.

(3.72)

Solution of the surface forcing due to the time dependent mixing term

For the solution of ĉII(12) the following set of equations needs to be solved:
iσĉII − wsvz = K0

v ĉ
II
zz,

wsĉ
II +K0

v ĉ
II
z +

[
K̂1
v cos(σt− φK1

v
)c0z

]
= 0 at z = 0,

−K0
v ĉ
II
z = 0 at z = −H.

(3.73)

Using the previous calculations to obtain the M2 contributions, the following results[
K̂1
v cos(σt− φK1

v
)c0z

]
=
[
K̂1
v cos(σt− φK1

v
)(c00z + c04z )

]
(3.74)

= K1
vc

00
z e
−iφK1

v +K1
v

1

2
c04z e

−iφK1
v (3.75)

The solution of this problem is

ĉII(12) = ĉII0 + ĉII4 , (3.76)

where

ĉII0 = K1
vc

00
z (x, 0)e

−iφK1
v (E1e

r1z + E2e
r2z) , (3.77)

ĉII4 =
1

2
K1
vc

04
z (x, 0)e

−iφK1
v (E1e

r1z + E2e
r2z) , (3.78)

with

E1 =
λ− ws
λ+ ws

E2 −
2

λ+ ws
, (3.79)

E2 =
2(λ− ws)e−r1H

(λ− ws)2e−r1H − (λ+ ws)2e−r2H
. (3.80)

Solution of the bottom forcing due to the time dependent mixing term

The differential equation to solve ĉIII is
iσĉIII − wsĉIIIz = K0

v ĉ
III
zz ,

wsĉ
III +K0

v ĉ
III
z = 0 at z = 0,

−K0
v ĉ
III
z −

[
K̂1
v cos(σt− φK1

v
)c0z

]
= 0 at z = −H.

(3.81)
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Notice that this system of equations is analogous to the equations (3.54). Hence the obtained solutions
are analogous:

ĉIII0 = K1
vc

00
z (x,−H)e

−iφK1
v (B1e

r1z +B2e
r2z) , (3.82)

ĉIII4 =
1

2
K1
vc

04
z (x,−H)e

−iφK1
v (B1e

r1z +B2e
r2z) . (3.83)

When having a closer look to the solution for equation (3.54), we see the slip parameter s is assumed
to be constant at the bottom. But since we take the mixing term time dependent at the bottom, this
slip parameter should be taken time dependent as well. We will assume that the time dependent part
of IV is equal to III and will therefore balance out in equation (3.52). This implies solution ĉIII is not
needed.

3.3 Transport

Our main interest is to obtain the suspended sediment transports (uc). For the morphodynamic equilib-
rium, equation (2.21), only residual transports (〈uc〉) contribute. When multiplying a Mi contribution
of the velocity field by an Mj contribution of the sediment concentration the frequencies of the obtained
transport are Mi+j and M|i−j|. This means only multiplications between sediment concentrations and
velocities of the same frequency will result a residual transport (M0).

For the horizontal velocity in leading order only a M2 contribution exists and in first order there are
only a residual and a M4 contribution.For the SSC the contributions for the leading order are M0, M4, M8

and all other contributions which are a multiplication of four. For the first order SSC the contributions
are M0, M2, M6 etc.. General they are M4n+2 with n ∈ N0. An overview can be viewed in table 3.3.

O(1) O(ε)
u M2 M0, M4

c M0, M4, M8,... M0,M2,M6,...

Table 3.3: Frequencies of the horizontal velocity u and sediment concentration c on different
orders of significance.

We see for the velocity field on order O(1) component only a multiplication with a sediment concen-
tration at first order will result in a residual transport, being of O(ε). The velocity field on first order
has a M0 and an M4 contribution which has a transport contribution of order ε when combined with
the M0 and M4 contribution of the sediment concentration of O(1). Since we are only interested in the
most important residual transports, the only frequencies of the sediment concentration that need to be
evaluated are M0 and M4 at leading order and M2 at first order. As a result from the morphodynamic
equilibrium, equation (3.12) and the fact that the transports with a resulting residual transports are at
least of order ε. The morphodynamic equilibrium is Oε2 reads∫ 0

−H
(u10c00 +

〈
u02c12

〉
+
〈
u14c04

〉
−Kh

〈
c00x
〉
)dz +

〈
ζ0[u02c0]z=0

〉
= 0. (3.84)

Note that the last contribution is a result of a Taylor expansion around z = 0 at the upper boundary.
The solutions of c are known, except for the unknown erosion coefficient a(x), i.e. c00 = a(x)c00a,
c04 = a(x)c04a, c12 = a(x)c12a. Substituting these expressions in equation (3.84), leads to the differential
equation

F
da

dx
+ Ta = 0, (3.85)

where

F =

〈∫ 0

−H
−Khc

00adz

〉
, (3.86)

T =

∫ 0

−H

(
u10c00a +

〈
u02c12a

〉
+
〈
u14c04a

〉
−Kh

〈
c00ax

〉)
dz +

〈
ζ0[u02c0a]z=0

〉
. (3.87)
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This linear first-order differential equation can be solved using the method of separation of variables.
The solution reads

a(x) = a0 exp

(∫
−T/Fdx

)
≡ a0I(x), (3.88)

where the integration constant is denoted by a0, which can be determined from the integral condition
(equation (2.26)), resulting in

a0 =
a∗
∫ L
0
B(x)dx∫ L

0
B(x)I(x)dx

. (3.89)
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Chapter 4

Results

4.1 Reference case

In this section the model obtained in section 3 is analysed to gain insight in the effect of adding the
time dependent vertical mixing term. As a case study we use the Ems estuary. The exact values of the
parameters can be found in table 4.1. The solutions of cI(12) and cII(12), as defined in equation 3.53 had
to be added to the model.

Parameter Symbol Value
Geometry
Length of estuary L 64 km
Width at the seaside B0 670 m
Exponential convergence length Lb 30 km
Depth at the seaside H0 10.85 m
Hydrodynamics
M2 tidal amplitude at entrance AM2

1.39
M4 tidal amplitude at entrance AM4

0.22
Relative phase at entrance between M2

and M4 tidal
φ -173◦

Inflow of water from the river Q 65 m3/s
Turbulence
Eddy viscosity at the seaside A0

v 0.019 m2/s
Stress parameter s0 0.05 m/s
Salinity
Along-estuary residual salinity gradient 〈s〉x 0.5 · 10−3 psu/m
Sediment
Average amount of sediment available
for resuspension

a∗ 1.0 · 10−5

Settling velocity ws 0.5·10−3 m/s
Horizontal diffusivity Kh 100 m2/s
Average vertical diffusivity K0

v 0.019 m2/s

Table 4.1: Values of the parameters regarding the Ems estuary.

Two different cases will be compared, one with a constant mixing term (Kv := K0
v ), describing the

model by Chernetsky et. al. [1], and one with a time dependent mixing term (Kv := K0
v +K1

v cos(σt−
φu02 − ∆φ)). Because the phase of the vertical mixing is assumed to be a slightly lagging the phase
of the horizontal velocity, the relative phase ∆φ is chosen to be 20◦. The salinity gradient is shown
in figure 4.1. Since we assumed the amplitude K1

v to be of one order lower than K0
v . This means

K1
v = C ds

dx ≈ εK0
v = 0.0028, where C is the proportionality constant, resulting in an estimate C = 2

m4/s/psu.

The absolute values of the residual contribution of the SSC at leading order (c00) for both cases are
shown in figure 4.2. The ETM has not significantly shifted as a result of the time dependent mixing term.
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Figure 4.1: Salinity gradient

The change we see is that the column of SS has narrowed. In section 2.2 we expected the ETM to move
upstream caused by an increase of upstream transport. Why are the results different?

(a) (b)

Figure 4.2: The width-averaged cross-section of the Ems. The soil profile is represented
with the white plane. The absolute value of c00 without (a) and with (b) mixing is shown
in the graphs. Remark that the scale for the SSC is different in both figures.

Perhaps an insight in the present transports can clarify the narrowing. The time dependent mix-
ing term only influences the first order sediment solution. This means the transport term T defined in
differential equation (3.85) is only effected on the M2 contribution (u02c12). Because we have split the
solutions of first order SSC in two parts, one depending on the M4 and one on the M2 contribution of
the SSC on leading order, what was done in equation (3.60), the results can be considered separately as
well. They are shown in figure 4.3. All the transports in figure 4.3a and 4.3b remain the same except
for the mixing term which is added in the latter. It can be seen in the figure that the mixing term due
to the M0 SSC on leading order is almost equal to zero. The transport due to the M4 contribution is
more present. At the seaward side of the estuary the transport is positive and upstream it is negative.
Where the transport changes sign (around x = 11 km) the ETM was found. Because al the transports
caused by vertical mixing point towards the ETM the SS column in figure 4.2 is squeezed. Increasing
the amplitude K1

v would increase the effect of time dependent vertical mixing and will therefore enhance
te narrowing of the column. We see the amplitude of the transport is greater at the seaward side of the
estuary. This is a result of the salinity gradient profile, to which the time dependent vertical mixing is
linear proportional. The gradient is higher close to the seaward side of the estuary than upstream.

The real part of the solutions ĉ
I(12)
0 (Eq. (3.63)), ĉ

I(12)
4 (Eq. (3.69)), ĉ

II(12)
0 (Eq. (3.77)) and ĉ

II(12)
4

(Eq. (3.78)) are plotted in figure 4.4. Again we see that the solutions have the most influence at the
entrance. We see that the solution of the equations with the internal forcing due to c04, that is ĉI4, has
the biggest influence on the system.
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(a)

(b)

Figure 4.3: Height-averaged transports of M2 frequencies (
〈
u02c12

〉
) without (a) and with

(b) mixing. The contribution caused by vertical mixing is indicated with ‘mix’, which is
pink and red in respectively the left and right graph in figure (b). The total transports are
marked by a black line. We are not interested in all the other occurring transports. TM2

indicates that the transports are due to M2 contribution of both the velocity and sediment
concentration. The figures with TM0

M2
and TM4

M2
represent the transports due to the M0 and

M4 contribution of the leading order sediment concentration in the processes respectively.
A positive transport represents an upstream transport, a negative represents a downstream
transport. Remark that the scales differ, the transport TM4

M2
is much more extreme than the

other transports.

(a) (b)

Figure 4.4: The real part of the solutions ĉ
I(12)
0 (Eq. (3.63)), ĉ

I(12)
4 (Eq. (3.69)), ĉ

II(12)
0 (Eq.

(3.77)) and ĉ
II(12)
4 (Eq. (3.78)). The solutions dependent on the M2 (M4) contribution of

SSC on leading order are show in figure a (b). The solutions to system I (II) are represented
in the plots with ‘Internal’ (‘Surface’).
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4.2 Sensitivity of the parameter φK1
v

In this section the consequences of varying the phase of the vertical mixing will be analyzed. We will vary
the value for ∆φ from 0◦ to 360◦. The proportionality constant has been lowered to C = 10−2 m4/s/psu,
such that the results are easier to observe. Varying ∆φ has consequences on the location of the ETM as
can be seen in figure 4.5.

Figure 4.5: Relation between the variation of ∆φ and the location of the ETM. On the x-axis
lies ∆φ and on the y-axis lies the x-coordinate of the ETM. The ETM for the model without
time dependent vertical mixing is plotted with the green line. The blue line represents the
location of the ETM when varying ∆φ. Here, C = 10−2 m4/s/psu.

The ETM shifts down stream when there is no phase difference between the vertical mixing and the
horizontal tidal velocity, compared to the model without time dependent vertical mixing. This is shown
in the figure, because the blue line is lower than the green line for ∆φ = 0. When the phase difference
∆φ is approximately 120 degrees, the ETM is maximally shifted upstream. For a phase difference of
approximately 270 degrees the ETM is shifted into the sea and there is no sediment trapping in the
estuary. We expected the ETM to move upstream when the phase of the horizontal velocity (u02) and
the mixing term were equal. However, in the figure it is observed that the ETM shifts slightly downstream
for a phase difference of 0◦. For the most realistic phase difference (∆φ = 20◦) the ETM will not shift at
all compared to the model without vertical mixing that varies on the tidal timescale. An upstream shift
occurs when the phase of the mixing term is lagging the horizontal velocity with more than 20◦. In the
solutions of the SSC on first order with a forcing term of vertical mixing in the internal partial differential
equation, equations (3.63) and (3.69), we see a deviation by i, since 1

i = e−
π
2 i this can be interpreted as

a phase shift of 90◦. Resulting in a phase shift of the SSC, which means the SSC is lagging behind the
horizontal velocity. This is why the resulting upstream transport happens when the mixing is lagging as
well.

In figure 4.6 the horizontal velocity, the SSC and the corresponding transports over one tide are shown
at the entrance of the estuary. If ∆φ equals 90◦, the ETM is more upstream inside the estuary, so that
explains why the concentration of SS is lower for this value of ∆φ than for the other ones plotted. If
∆φ = 270◦ the ETM has shifted out of the estuary which results in the higher amount of SSC at the
seaside of the estuary. Because the SSC are results of many complex effects, it is hard to understand why
they behave exactly as plotted in the second subplot of figure 4.6, which is left for further research. The
transports shown in figure (4.6) are a simple multiplication of the horizontal velocity in the first subplot
and the sediment concentrations in the second subplot. The average transports in the third subplot or
table 4.2 agree with the results in figure 4.5, since the transport for ∆φ = 0◦ is slightly negative the
transport for ∆φ = 90 is positive and the transport for ∆φ = 270 is the highest amount of negative
transport, which relates with the absence of trapping belonging to this phase difference. For ∆φ = 180◦

the transport caused by vertical mixing is negative at the entrance of the estuary, which can be seen in
figure 4.7. However, upstream the estuary vertical mixing results in an upstream transport, which still
induces an upstream shift of the ETM as was seen in figure 4.5.
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Figure 4.6: From the top down: the depth averaged tidal velocity, the depth averaged SSC
for different values for the phase difference ∆φ and the corresponding transports over one
tide T at the seaside of the estuary (x = 0 km). In the figure C = 0.01 m4/s/psu. The
average transports can also be found in table 4.2.

Phase difference ∆φ [◦] Average transport [10−4 kg/m/s]
0 -7.0451
90 4.3141
180 -9.536
270 -33.5282

Table 4.2: Average transports of SS at the estuary seaside for different values of ∆φ.

Figure 4.7: The height-averaged transports ofM2 frequencies with ∆φ = 180◦ and C = 10−2.
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Chapter 5

Discussion & conclusion

A model for the hydrodynamics and sediment transport in the estuary of a river consist of a complex set
of partial differential equations. These are solved by an idealized model where the equations are firstly
scaled, before solving them. In this thesis the model as described by Chernetsky et al. [1] has been
improved. In the model the vertical mixing had been assumed to be constant over time.

However, as a result from the salinity gradient in the estuary, an increase of vertical mixing is expected
during flood and a decrease during ebb, which would result in more SS in higher layers of the water column,
and therefore more transport during flood, resulting in a tidally averaged upstream transport. In this
thesis the vertical mixing has been redefined as a function that varies on the tidal timescale. Solving the
idealized model results in extra terms to be added to the original SSC solution.

In many estuaries, like the Ems estuary, trapping of suspended sediment is found. The original model
was already able to declare an appearance of an ETM. However, when adding the extra solutions, some
changes occur to the ETM. The results show that to the vertical mixing induces a squeezing of the column
of higher concentrations SS around the ETM. We assume the vertical mixing is lagging the horizontal
velocity slightly, which means that the mixing needs time to start up. The maximal mixing happens later
than the maximal flood and the minimal mixing happens later than the maximal ebb. This means the
phase of the vertical mixing is different from the phase of the horizontal velocities. Their phase difference
∆φ is assumed to be 20◦ on the tidal scale, which equals approximately 40 minutes. The ETM will not
shift to another location with this phase difference. If we vary the phase difference ∆φ the ETM will
shift. If ∆φ is more than 20◦ but less then 200◦ it will shift upstream. For the other phase differences the
ETM shifts downstream and for phases around 270◦, it will even leave the estuary, which means there is
no trapping of sediment in the estuary.

The results indicate that vertical mixing results in more stabilization of the ETM and even an upstream
shift if the mixing is lagging enough behind the horizontal tidal velocity. Determination of the exact value
for ∆φ is left for further research. To calculate effects of anthropogenic changes to remove the ETM, the
time dependent vertical mixing should be taken into account, since its effects are clearly present. The
addition of time dependent vertical mixing gives the model more accuracy.

In the model some assumptions have been made which could be improved in further research; in
section 3.2.2 the solution resulting from to the bottom forcing has been neglected. For a better model the
slip parameter s should be considered time dependent as well. In that case the solution to the bottom
forcing could also be taken into account, which would result in a more accurate model. Also external
factors like wind, rain and temperatures are neglected. Adding these factors would make the model more
accurate.

We can conclude that vertical mixing has non-negligible influences on the tidally average transport of
suspended sediment. It is recommended to take this process into account when using the model and in
further research.
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Appendices

A Derivation of the water motion equations

The width-averaged continuity equation (2.4) can be derived from the three dimensional mass conservation
equation, which reads [2, p. 704]

∂ρ

∂t
+
∂ρu

∂x
+
∂ρv

∂y
+
∂ρw

∂z
= 0, (1)

with ρ(x, y, z, t) the density of the water at time t and place (x, y, z). This equation describes changes in
density due to convergences of density. In most geophysical systems, the fluid density varies only slightly
from place to place and over time:

ρ(x, y, z, t) = ρ0 + ρ′(x, y, z, t), (2)

with ρ0 the average density and ρ′ the density variations with |ρ′| << ρ0.

Now, equation (1) becomes:

ρ0

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
+ ρ′

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
+

(
∂ρ′

∂t
+ u

∂ρ′

∂x
+ v

∂ρ′

∂y
+ w

∂ρ′

∂z

)
= 0. (3)

From geophysical literature [2, p.77] it follows that the third term is always of equal order or much
smaller than the second, because the total difference of density is much less or equal than the relative
variations in the velocity field. Using the assumption |ρ′| << ρ0, it follows that the second term is much
smaller than te first. So neglecting smaller terms, the mass conservation equation becomes a volume
conservation equation

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (4)

Because both shores are assumed impermeable, i.e. no water fluxes through the shores, the following
boundary conditions have to be imposed,{

v = − 1
2u

∂B
∂x at y = 1

2B,

v = 1
2u

∂B
∂x at y = − 1

2B.
(5)

The velocities can be decomposed as

u = ū(x, z) + u′(x, z, y), (6)

w = w̄(x, z) + w′(x, z, y), (7)

where ū and w̄ are the width averaged velocities and u′ and w′ the velocity variations in the lateral

direction. This means that
∫ 1

2B(x)

− 1
2B(x)

u′dy = 0 and
∫ 1

2B(x)

− 1
2B(x)

w′dy = 0. When integrating equation (4) in

the lateral-direction, using the Leibniz integral rule to interchange integration and differentiation and the
above boundary conditions it follows that
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∫ 1
2B(x)

− 1
2B(x)

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
dy = 0,

⇒ B
∂ū

∂x
(−u1

2
Bx|y= 1

2B
− u1

2
Bx|y=− 1

2B
+ [v]

1
2B

− 1
2B

) +B
∂w̄

∂z
= 0,

⇒ ∂ū

∂x
+
∂w̄

∂z
+
ū

B
Bx = 0,

⇒ ∂ū

∂x
+
∂w̄

∂z
− ū

Lb
= 0. (8)

where in the last derivation equation (2.1) has been used. In the following, the bars will be left out for
simplicity, resulting in equation (2.4).

A similar derivation can be made to obtain the width averaged momentum equation (2.5) from the
three dimensional shallow water equations [2]. Using the Navier-Stokes equations, neglecting the hori-
zontal viscosity, assuming a hydrostatic balance and using the Boussinesq approximation, the momentum
equation is found after width averaging.

B Derivation of the SSC equation

The SSC follows from the conservation law stating that the mass of the sediment is conserved. This
equation is described by[1]

∂c

∂t
+ ~∇ · ~F = 0, (9)

with c(x, y, z, t) the sediment concentration at (x, y, z) and time t, and ~F is the local sediment flux. This

flux is the sum of an advective flux ~Fa, a settling flux ~Fs and a diffusive flux ~Fd. The advective flux is the
flux due to the advection of the sediment by the water flow. The settling flux accounts for the settling
of sediment due to gravity, with the settling velocity given by ws. The settling velocity depends on the
SSC, on grain characteristics and settling conditions, e.g. size and shape of the settling volume, mixing
etc.. The diffusive flux is proportional to the suspend sediment concentration gradient. The fluxes are
given by

~Fa =c~u+ cw~ez, (10a)

~Fs =− cws~ez, (10b)

~Fd =−Kh
~∇c−Kv

∂c

∂z
~ez, (10c)

where ~u = (u, v) describes the horizontal velocities and ~ez is the unit vector in the z-direction. The
turbulent vertical eddy diffusion coefficient Kv is allowed to be time dependent, see section 2.2 for a
depth discussion. The horizontal eddy diffusion coefficient is denoted by Kh.

Since there is no sediment flux through the sides of the estuary, it follows that, using (10),

~n · (c~u+Kh
~∇c) = 0 at y = ±1

2
B. (11)

with ~n the normal outward pointing vector on the boundaries. For the boundary y = 1
2B, ~n = (− 1

2Bx, 1)
and for y = − 1

2B, ~n = −( 1
2Bx, 1).

Substituting (10) into equation (9), one finds

ct + (uc)x + (vc)y + (c(w − ws))z = (Khcx)x + (Khcy)y + (Kvcz)z. (12)

To get a width-averaged sediment model the above equation is integrated over the width:
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∂

∂t

∫ 1
2B(x)

− 1
2B(x)

cdy +

∫ 1
2B(x)

− 1
2B(x)

(uc)xdy + [vc]
y= 1

2B

y=− 1
2B

+
∂

∂z

∫ 1
2B(x)

− 1
2B(x)

(c(w − ws))dy

−
∫ 1

2B(x)

− 1
2B(x)

(Khcx)xdy − [Khcy]
y= 1

2B

y=− 1
2B
− ∂

∂z

∫ 1
2B(x)

− 1
2B(x)

Kvczdy = 0,

⇒ ∂

∂t

∫ 1
2B(x)

− 1
2B(x)

cdy +
∂

∂x

∫ 1
2B(x)

− 1
2B(x)

(uc)dy + [vc−Khcy − uc
1

2
Bx +Khcx

1

2
Bx]

y= 1
2B

y=− 1
2B

+
∂

∂z

∫ 1
2B(x)

− 1
2B(x)

(c(w − ws))dy −
∂

∂x

∫ 1
2B(x)

− 1
2B(x)

(Khcx)dy − ∂

∂z

∫ 1
2B(x)

− 1
2B(x)

Kvczdy = 0. (13)

In the second step the Leibniz rule has been used. Using the boundary conditions equation (13) can
be reduced to

∂

∂t

∫ 1
2B(x)

− 1
2B(x)

cdy +
∂

∂x

∫ 1
2B(x)

− 1
2B(x)

(uc)dy +
∂

∂z

∫ 1
2B(x)

− 1
2B(x)

(c(w − ws))dy

− ∂

∂x

∫ 1
2B(x)

− 1
2B(x)

(Khcx)dy − ∂

∂z

∫ 1
2B(x)

− 1
2B(x)

Kvczdy = 0. (14)

Similar to the decomposition of u and w in eqn. (6), the concentration c is decomposed as c = c̄+ c′,
with c̄ is the width averaged sediment concentration,

c̄ =
1

B(x)

∫ 1
2B(x)

− 1
2B(x)

cdy. (15)

and c′ is the deviation of c from the mean c̄ in the y direction. Now, equation (14) can be rewritten into

Bĉt + (Būc̄)x +B(c̄(w̄ − ws))z − (BKhĉx)x −B(Kv ĉz)z = 0. (16)

where we used the calculations:

∂

∂x

∫ 1
2B(x)

− 1
2B(x)

ucdy =
∂

∂x

∫ 1
2B(x)

− 1
2B(x)

ūc̄dy +
∂

∂x

∫ 1
2B(x)

− 1
2B(x)

ūc′dy +
∂

∂x

∫ 1
2B(x)

− 1
2B(x)

c̄u′dy +
∂

∂x

∫ 1
2B(x)

− 1
2B(x)

u′c′dy (17)

= (Būc̄)x +
∂

∂x

(
ū

∫ 1
2B(x)

− 1
2B(x)

c′dy

)
+

∂

∂x

(
c̄

∫ 1
2B(x)

− 1
2B(x)

u′dy

)
(18)

= (Būc̄)x. (19)

Here it is used that ū and c̄ are independent from y and it is assumed that the width-correlations, e.g.
∂
∂x

∫ 1
2B(x)

− 1
2B(x)

u′c′dy, behave as an effective diffusive flux in the x-direction, which cancels out. And

∂

∂x

∫ 1
2B(x)

− 1
2B(x)

Kv c̄xdy =
∂

∂x

∫ 1
2B(x)

− 1
2B(x)

Khc̄xdy +
∂

∂x

∫ 1
2B(x)

− 1
2B(x)

Khc
′
xdy (20)

= (BKhc̄x)x (21)

where the second term is neglected.
Using B(x) = B0e

−x/Lb , the width-averaged sediment concentration equation (16) can be rewritten
as

ct + ucx + wcz = wscz + (Khcx)x + (Kvcz)z −
1

Lb
Khcx, (22)

suppressing the bars for simplicity, resulting in equation (2.15). In this derivation the continuity equation
(8) has been used.
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C Calculation of the M2-contribution

The M2 contribution of equation (3.59) due to c00 is

[K1
v cos(σt− φK1

v
)c00zz] =

[
K1
vc

00
zz

(
cos(σt) cos(φK1

v
) + sin(σt) sin(φK1

v
)
)]

(23)

= K1
vc

00
zz(cos(φK1

v
)− i sin(φK1

v
)) (24)

= K1
vc

00
zze
−iφK1

v (25)

For the M2 contribution of equation (3.59) due to c04 a different calculation needs to be done. Write

<{ĉ04e2iσt} · cos(σt− φ) =<{ĉ04(cos(2σt) + i sin(2σt))} · cos(σt− φ)

=
(
<{ĉ04} cos(2σt)−={ĉ04} sin(2σt)

)
· cos(σt− φ)

=

(
r · e

i2σt + e−i2σt

2
−m · e

i2σt − e−i2σt

2i

)
ei(σt−φ) + e−i(σt−φ)

2

=
1

4

(
e2iσt(r − m

i
) + e−2iσt(r +

m

i
)
)(

ei(σt−φ) + e−i(σt−φ)
)

=
1

4

(
ei(3σt−φ)(r − m

i
) + e−i(3σt−φ)(r +

m

i
)+

ei(σt−φ)(r − m

i
) + e−i(σt−φ)(r +

m

i
)
)
,

where

r := <{ĉ04},
m := ={ĉ04}.

Only the contribution concerning the semi-diurnal frequencies are to be calculated, hence

1

4

(
ei(σt−φ)(r − m

i
) + e−i(σt−φ)(r +

m

i
)
)

=
r

2
cos(σt− φ)− m

2
sin(σt− φ)

= <{1

2
(r −mi)ei(σt−φ)}

= <{1

2
ĉ04e−iφeiσt}.

Which means

[K1
v cos(σt− φK1

v
)c04zz] = K1

v

1

2
c04zze

−iφK1
v . (26)
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