
 
 

Delft University of Technology

Linking Visual Perception of Urban Greenery to Resident Preference in High-Density
Residential Areas Through Mobile Point-Cloud-Based Assessment

Zhang, Guanting; Wang, Yifei ; Peng, Y.

DOI
10.3390/buildings15234275
Publication date
2025
Document Version
Final published version
Published in
Buildings

Citation (APA)
Zhang, G., Wang, Y., & Peng, Y. (2025). Linking Visual Perception of Urban Greenery to Resident
Preference in High-Density Residential Areas Through Mobile Point-Cloud-Based Assessment. Buildings,
15(23), Article 4275. https://doi.org/10.3390/buildings15234275

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.3390/buildings15234275
https://doi.org/10.3390/buildings15234275


 
 

 

 
Buildings 2025, 15, 4275 https://doi.org/10.3390/buildings15234275 

Article 
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Abstract 

Urban greenery is essential for environmental quality, visual comfort, and residents’ well-
being, and it becomes especially critical in high-density residential compounds where out-
door space is limited. This study proposes a pedestrian-scale visibility framework that 
integrates solid 3D models (DEM, extruded buildings, water) with voxelized LiDAR point 
clouds to reconstruct fine-resolution outdoor scenes and to quantify visual perception in-
dicators, including green view factor (GVF), sky view factor (SVF), and average green 
distance (AGD). A residential community in Nanjing is used as the case study. Line-of-
sight sampling was performed on 223 viewpoints distributed across three empirically 
identified activity zones, and a resident questionnaire was conducted in parallel (279 valid 
responses). The results show that the visually open zone, characterized by relatively high 
SVF, moderate GVF, and larger vegetation setback (higher AGD), is also the zone most 
preferred by residents, whereas the zone with the highest GVF but strong enclosure is 
least preferred. This consistency between modeled indicators and survey responses con-
firms that excessive, close-range planting may reduce usability, while a balanced combi-
nation of greenery and openness better supports everyday outdoor activities. The pro-
posed Point-Cloud-Based approach, therefore, provides a data-driven basis for planning, 
evaluating, and managing outdoor environments in dense urban residential areas, and 
ultimately reaching the purpose of more livable urban communities in the era of intelli-
gent and sustainable cities. 

Keywords: urban greenery; LiDAR point cloud; visual preference; healthy built  
environment; sustainable city 
 

1. Introduction 
Urban greenery plays a vital role in shaping environmental quality, visual comfort, 

and residents’ well-being, serving as a key component of sustainable and health-oriented 
urban design. In China, the process of rapid urbanization has reshaped the spatial struc-
ture of cities and increased the prevalence of high-density built environments. According 
to publicly available data, China’s urbanization ratio (i.e., the share of population living 
in urban areas) reached 67% by the end of 2024 [1]. In rapidly urbanising cities, high-
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density built environments may harm residents’ mental health and emotional well-being 
[2–4], but empirical and epidemiological studies show that sufficient exposure to urban 
greenery can mitigate these psychological impacts [5,6]. Urban greenery is one of the ef-
fective pathways to achieving healthy and sustainable cities, and it is particularly critical 
in high-density urban environments where greenery strongly influences residents’ out-
door activities and their physical and mental health. 

The importance of residential vegetation lies in its multifaceted benefits for resident 
well-being and neighborhood environments. Ecologically, vegetation improves microcli-
mates through canopy shading and transpiration, lowers temperatures, captures airborne 
particulates, and reduces noise, thereby improving thermal and environmental comfort 
[7–10]. Besides, seeing more greenery in urban areas can help people enhance cooling, 
improve perceived thermal comfort in warm environments [11]. Socially, urban greenery 
provides shaded, activity-friendly settings for neighborly interaction, fostering commu-
nity cohesion and a sense of belonging for neighborhoods [12–14]. From a health perspec-
tive, convenient access to nature promotes outdoor physical activity and, by relieving psy-
chological stress and supporting attention restoration, leads to positive impacts on mental 
and physical health [15,16]. Specifically, the Attention Restoration Theory (ART) suggests 
that certain visual complexity and coherence in landscapes support cognitive restoration 
[17]. Various pieces of evidence show that residential greenery can bring multiple positive 
outcomes for residents through visual perception. 

In urban residential areas, greenery affects people through its size, type, spatial con-
figuration, and morphological attributes [18,19]. Recent studies typically quantify neigh-
borhood greenery using spatial or image-based analytics, then relate these metrics to ac-
tivity patterns or health outcomes to identify features with positive impacts [20]. Most 
existing indicators are derived from geospatial or spatial-analysis techniques that capture 
two-dimensional (2D) attributes of urban greenery. Common measures include Normal-
ized Difference Vegetation Index (NDVI), Leaf Area Index (LAI), and Green View Index 
(GVI) obtained from satellite imagery or street-view images [21–23], defined as 2D data. 
These 2D metrics are useful for mapping general patterns of greenery, but they do not 
fully capture the three-dimensional structure of vegetation or the subjective visual expe-
rience of residents. These 2D metrics, while useful, fail to describe the visual experience 
of greenery precisely and comprehensively. Indicators such as NDVI and green-space ra-
tio, typically derived from satellite remote sensing [24,25], capture only surface-level veg-
etation characteristics. Their spatial resolution is also limited compared with centimetre-
scale 3D data. Image-based GVI, which relies on photographs, 360° panoramas, or human-
rated images [26], is constrained by camera placement, sampling bias, and simplified 
depth modelling. These limitations suggest that 2D indicators should be complemented 
by three-dimensional representations. Three-dimensional indicators can describe the ac-
tual spatial characteristics in a more detailed and comprehensive way. This makes it easier 
to identify which specific spatial features may underlie people’s experiences when they 
use outdoor spaces. 

There is growing recognition that linking geometric visibility analysis with human 
preference data is essential to support human-centered design in dense urban contexts. 
However, traditional 2D methods can not describe the visual characteristics of the green-
ery in dense urban contexts with increasingly complex environments [27]. Recent ad-
vances in Light Detection and Ranging (LiDAR) and 3D modeling offer a promising path-
way to better quantify visual exposure to greenery [28,29]. LiDAR technology enables rich 
3D representation of urban scenes, providing point clouds that encode spatial positions, 
heights, and surface reflectance [30]. This capability supports visibility and visual expo-
sure analyses that go beyond 2D, image-based methods. LiDAR point clouds capture mil-
limeter-level structural detail for vegetation, buildings, and terrain [31,32]. These features 
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of point-cloud data make it possible to model line of sight, occlusion, and visual-field met-
rics from a realistic human perspective [33]. As the vegetation is hard to represent, recent 
studies have integrated vegetation point clouds into urban scenes for capturing a real ur-
ban form to get real urban characteristics, considering vegetation [34–36]. By integrating 
point clouds with solid 3D models, one can compute indicators describing the visual and 
spatial features of highly dense urban environments from a pedestrian-level perspective 
[37–39]. These methods employing LiDAR point clouds collectively demonstrate that 
point-cloud approaches can more accurately simulate the visual interface between human 
observers and complex urban vegetation and built features, accounting for occlusions, 
layering, and depth, which are difficult to capture with traditional 2D methods. 

Most existing 2D, image-based metrics and conventional visibility analyses fail to 
represent pedestrian-level 3D visibility or the distance to visible vegetation. Despite the 
methodological advances, relatively few empirical studies have fully combined point-
cloud-derived visual metrics reflecting precise 3D spatial characteristics with direct resi-
dent preference data in high-density residential neighborhoods. It remains unclear which 
vegetation configurations most strongly align with residents’ perceptual judgments in 
such contexts. Besides, 3D visibility methods are rarely linked to residents’ stated prefer-
ences in dense urban residential areas. 

To fill this gap, the present study proposes an integrated analytical framework that 
quantifies the visual characteristics of urban greenery via point-cloud-based modeling 
and links visual perception assessments and resident preference. This study applies the 
proposed framework to a residential area in Nanjing as a case study. Guided by our ex-
pectations for dense settings, we test whether preference is positively associated with vis-
ible greenery (H1) and whether residents favor spaces where vegetation is closer to them 
(H2). First, we reconstruct fine-scale 3D scenes and compute vegetation-related visibility 
metrics from pedestrian viewpoints to evaluate H1 and H2. Then we gather survey data 
on residents’ perceptions of visual greenery and environmental preference. Finally, we 
use multiple statistical analyses to identify which vegetation features most influence per-
ceptual preference, and to evaluate how alternative greenery configurations in a dense 
residential setting align with those preferences. The results not only deepen understand-
ing of human–environment interaction in dense residential settings, but also provide data-
driven guidance for designing and managing healthier, greener, more livable urban com-
munities. 

2. Materials and Methods 
2.1. Study Area and Viewpoint Generation 

Aifei residential community (ARC) is located in Pukou District (Nanjing, China), 
north of Lixin Road, and was completed around 2017. It comprises 15 residential buildings 
with approximately 800 households. The internal building stock is predominantly high-
rise. There are 8 buildings in ARC with 22–26 stories (Figure 1), considered as a dense 
residential area. The site area is about 75,777.5 m2, and the total building floor area is about 
19,497.3 m2. The building coverage is approximately 22%, and the greening coverage is 
about 40%. 

To characterize pedestrian-level visibility in a high-rise residential compound, view-
points were sampled every 5 m along road centerlines, along plaza edges, and within 
plaza interiors, for a total of 223 viewpoints. In areas where finer detail was needed to 
represent walkable space, the spacing was locally reduced below 5 m. A 5-m step is suffi-
ciently fine-grained to register significant alterations in the visual field caused by urban 
elements [40]. The viewpoints were elevated by 1.6 m above the ground surface to simu-
late eye height. 
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Figure 1. Study area and viewpoint allocation: Numbers 1#–8# denote the corresponding residen-
tial buildings. 

Preliminary on-site surveys show that the ARC residential landscape consists of three 
zones (Figure 2), each offering open areas for outdoor activities with distinct spatial char-
acteristics. Zone A is the activity space near the main entrance. The main plaza is located 
to the north of the community service center, and the internal road loops around this cen-
ter. The entire zone is shaded by relatively abundant vegetation. Zone B constitutes the 
main internal landscape, centered on small plazas, garden paths, and a central pond, with 
relatively dense planting. Zone C is the open space on the southeast side ARC, north of 
Buildings 7 and 8, characterized by broad roads and plazas with comparatively abundant 
vegetation. A total of 223 viewpoints were assigned to the three zones. Zone B contained 
the largest number of viewpoints, with 95 points (42.60%); Zone A contained the fewest, 
with 54 points (24.22%); and Zone C contained 74 points (33.18%). There are seven squares 
in ARC, designated according to the zoning as SA1 and SA2 in Zone A, SB1, SB2, and SB3 
in Zone B, and SC1 and SC2 in Zone C. 

 

Figure 2. The three principal activity spaces in the Aifei residential community and corresponding 
status-quo photographs: Zone A is the main entrance and plaza area (SA1, SA2), broadly shaded; 
Zone B is the internal landscape with small plazas (SB1–SB3), garden paths, and a central pond, 
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with denser planting; Zone C is the southeast open area with broad roads and plazas (SC1, SC2). 
Colored dots indicate viewpoints and match the zone legend. 

2.2. Resident Questionnaire Survey 

This study administered a structured questionnaire to assess residents’ perceptions 
and use of outdoor spaces in a high-density residential community. The full questionnaire 
is provided in Appendix A.1. The instrument comprised two sections with 10 questions: 
(i) basic demographics (4 questions) and (ii) evaluations of outdoor space quality and 
health-related experiences (6 questions). The second section included items on preferred 
outdoor activities, typical time of day, visit frequency, and duration, perceived im-
portance of outdoor spaces for mental and physical restoration, recent experiential out-
comes, including stress relief, increased energy, improved sleep, and location preferences 
within three mapped zones (A, B, C). Respondents also identified perceived environmen-
tal features of the outdoor spaces, for instance, vegetation richness, seating availability, 
spaciousness, quietness, privacy, etc. All items used closed-ended response formats with 
single- or multiple-choice options and clearly defined time bands. The instrument was 
developed based on prior literature on restorative environments and urban outdoor ac-
tivity, then adapted to the local context through site reconnaissance and pilot checks. We 
collected 310 questionnaires. To reduce selection bias, the initial sample balanced sex with 
155 men and 155 women, and more than 90% participants are adults. After preliminary 
screening and data cleaning, 279 questionnaires (90%) were deemed valid. 

2.3. Hybrid-Model-Based Visibility Analysis 

A hybrid spatial model integrating voxelized point clouds and solid 3D models (in-
cluding terrain surface, water body, and buildings) is applied in this study [38]. The visi-
bility analysis was conducted in ArcGIS Pro (version 3.3.0) for the solid models and in 
Python (3.11.7) for the point-cloud data. 

2.3.1. LiDAR Point Cloud Collection and Voxelization 

The point cloud data were acquired using a ZEB-HORIZON handheld 3D laser scan-
ner (GeoSLAM, Nottingham, UK). For a fuller assessment of how residential greenery in-
fluences people, data collection was conducted in summer when vegetation is most de-
veloped. The raw point cloud contained all scene information and was classified into 
ground, vegetation, buildings, and other objects on Trimble Realworks with auto and 
manual classification. The original data were stored in LAZ format, with a file size of 
about 2.52 GB and approximately 1.358 billion points in total, of which vegetation points 
accounted for about 1.194 billion. The positional accuracy was approximately 1 cm. Veg-
etation points were extracted and converted into 100 mm voxels; after voxelization, the 
vegetation dataset was reduced to 493 MB (LAZ) with 15,263,664 points. Ground points 
were used to generate the digital elevation model (DEM), and building footprints were 
extracted from the point-cloud outlines of individual buildings. 

2.3.2. 3D Hybrid Model Construction 

The hybrid model in this study is composed of a solid model and a voxel model of 
vegetation point clouds. The solid model built consists of DEM, building masses, and wa-
ter surfaces. As described in Section 2.3.1, we voxelized the vegetation points at a resolu-
tion of 100 mm, so that the resulting vegetation voxel model could better represent canopy 
volume and occlusion relationships. Using a 3D hybrid model for visibility analysis in 
high-density urban areas not only takes full advantage of the detailed information in point 
cloud data, but also helps overcome some LiDAR acquisition limitations, such as missing 
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information on surfaces that laser beams penetrate or poorly capture, including water and 
glass. 

As shown in Figure 3, we constructed the hybrid model in four steps. First, we clas-
sified the point cloud in Trimble RealWorks 10.4 using automatic processing with manual 
editing, assigning points to buildings, ground, vegetation, and others. Second, we re-
moved non-target objects such as parked vehicles and pedestrians. Third, ground points 
were used to generate the terrain DEM, while building points were used to extract the 
footprint and maximum height of each building based on classified point clouds. Because 
the original point clouds were relatively sparse in upper stories and often missed façade 
details such as windows, we extruded the building footprints in ArcGIS Pro to create con-
tinuous 3D building blocks, compensating for those gaps. At the same time, we verified 
the water boundaries in Zone B through field surveys and satellite imagery, and created 
a corresponding 3D multipatch in ArcGIS Pro to represent the water surface. Finally, the 
DEM, building blocks, and water surface formed the solid model, which we overlaid with 
the voxelized vegetation model to produce the complete 3D hybrid scene for subsequent 
visibility analysis. 

 

Figure 3. The workflow of 3D hybrid model construction. Step 1: Classify the point cloud; Step 2: 
Clean the classified points; Step 3: Build the solid model from ground and building points; Step 4: 
Build the vegetation voxel model and integrate both to form the hybrid model. 

2.3.3. Line-of-Sight Analysis 

Viewpoint locations were first defined and set to eye level (1.6 m), as described in 
Section 2.1. Human vision was simulated with a 360° horizontal field of view and a verti-
cal field of view from −30° to 60° (0° = eye plane), as depicted in Figure 4a. From each 
viewpoint, a spherical set of 3D rays was generated with a maximum line-of-sight (LoS) 
length of 100 m (Figure 4b). The angular step was 3° in both azimuth and elevation, so 
each viewpoint produced 3388 rays. These rays discretize the pedestrian visual field and 
serve as “pixels” for computing visual perception indicators and for visualizing the scene. 

Restricting the vertical range reduces low-value ground hits and aligns the simulated 
view with natural perception. The 3° sampling was chosen to balance computational load 
and the ability to capture fine elements such as tree canopies and building edges. All vis-
ibility computations were run in a single Python (v3.12) workflow. ArcGIS Pro was in-
voked through the arcpy library to perform LoS analysis on the solid model (Figure 4c). 
The resulting visible rays were then rechecked in Python against the vegetation voxel 
model with a size of 100 mm. Using 100 mm voxels provides sufficiently accurate esti-
mates within tree canopies. [41]. If a ray intersected a voxel first, it was marked as blocked 
by vegetation and the hit point was recorded. 
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In the analysis, the object type at the first ray–object intersection is recorded. In other 
words, the feature that blocks the line of sight is stored as an attribute of that ray, so it can 
be used later for computing the visual exposure indicators. And any ray that encounters 
no obstruction within the set range is classified as sky. 

 

Figure 4. Line-of-Sight analysis based on 3D hybrid model. (a) Hemispherical modeling of the hu-
man visual field; (b) 3D sight lines simulating pedestrian visual space; (c) calculation of visible sight 
lines on the solid model using the Line of Sight function in ArcGIS Pro; (d) refinement of visible 
sight lines with vegetation voxels based on the ArcGIS Pro results. 

2.3.4. Visual Perception Indicators 

To characterize how residents perceive outdoor space in a dense residential com-
pound, three visual perception indicators were defined at the pedestrian level. Based on 
the literature review in Section 1, SVF and GVF are considered important indices relating 
to human perception. Therefore, these two indicators are considered in this study. Besides, 
for fully using the advantage of point cloud data, a spatial indicator is proposed for eval-
uating the visual enclosure [42], which is hard to compute in 2D images. Each indicator is 
calculated from the classified first-hit results of the LoS rays, so every value directly re-
flects what a person standing at that viewpoint is most likely to see. Furthermore, tempo-
rary objects such as parked vehicles and moving pedestrians were identified as noise and 
removed, so that the indicators reflect stable built and vegetated structures. 

(1) Sky View Factor (SVF) 

SVF is the proportion of the sky hemisphere visible from a given point near the 
ground and a standard descriptor of openness/enclosure at the pedestrian level [9,43]. In 
this study, it can be measured as the proportion of rays that reach the sky without being 
blocked. It is computed as 

SVF = 𝑁sky𝑁total
 (1)

where 𝑁௧௢௧௔௟ is the total number of LoS rays generated from a viewpoint, which equals 
3388 in this case; 𝑁௦௞௬ is the number of rays unobstructed by any object, which terminate 
at the sky. A higher SVF indicates a more open, less enclosed space, which is often associ-
ated with better daylight access and a weaker sense of confinement. In dense estates, SVF 
helps distinguish between highly enclosed courtyard spaces and more open plazas or 
road corridors. 

(2) Green View Factor (GVF) 

In urban studies, GVF (or green view index, GVI) is a common concept. It quantifies 
the proportion of a pedestrian’s visual field occupied by vegetation [22,44]. Conceptually, 
it is the share of the observable scene covered by green elements (trees, shrubs, lawns). 
GVF ranges from 0 to 1 and reflects perceived greenness. It is calculated as 

GVF = 𝑁green𝑁total
 (2)
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where 𝑁ீ௥௘௘௡ is the number of rays intercepted by vegetation. Higher GVF values mean 
that trees, shrubs, or other green elements are closer to the observer or occupy a larger 
part of the view. GVF is useful for identifying places with stronger biophilic qualities and 
for comparing how planting layouts affect perceived greenness. 

(3) Average Green Distance (AGD) 

To measure the degree of green enclosure, we introduce Average Green Distance 
(AGD), a 3D visibility metric that captures the average distance between the viewpoint 
and all vegetation intercepted by first-hit rays. While GVF reflects “how much” greenery 
is visible, AGD reflects “how near” that greenery is. It is defined as 

AGD = 1𝑁green
෍ 𝑙௜ேgreen

௜ୀଵ  (3)

where 𝑙௜ denotes the length of the 𝑖-th ray that terminates at vegetation, that is, the dis-
tance between the viewpoint and the vegetation voxel that blocks the line of sight. A 
smaller AGD means vegetation is distributed closer to the observer and produces a 
stronger sense of green enclosure. This indicator compensates for the limitation of purely 
percentage-based metrics, which cannot distinguish near greenery from far greenery. 

2.4. Statistical Analysis 

Three spatial zones (Zone A, Zone B, and Zone C) were delineated a priori on the 
basis of field investigation, observed activity patterns, and the current functional organi-
zation of the site. These zones represent empirically defined usage areas, and the subse-
quent statistical analysis was intended to examine whether they also differ in terms of 
visual perception indicators. 

Spearman correlation analysis was applied to investigate the relationship among 
three indicators. For each usage-based zone, descriptive statistics (mean, standard devia-
tion, and number) were first calculated for the three visual indicators. Group differences 
were examined using a t-test and one-way analysis of variance (ANOVA). When the 
ANOVA indicated a significant overall effect (p < 0.05), pairwise comparisons between 
zones were performed using two-sample t-tests. To assess the magnitude of the observed 
differences, eta squared (η2) was computed for each ANOVA as the sum of squares be-
tween groups (SSB) divided by the total sum of squares (SST), representing the proportion 
of variance in the indicator explained by the zoning scheme. Following Cohen [45], η2 
values of approximately 0.01, 0.06, and 0.14 were interpreted as small, medium, and large 
effects, respectively. All statistical analyses were performed in R (version 4.5.2). The sig-
nificance level was set at 𝑝 = 0.05, and statistical significance was reported as * 𝑝 < 0.05, 
** 𝑝 < 0.01, and *** 𝑝 < 0.001. 

3. Results 
3.1. Residential Landscape Preference 

We randomly sampled 310 residents living in ARC, each from a different household. 
To base evaluations on substantial first-hand experience and enhance ecological validity, 
the questionnaire was distributed to long-term residents of the study area, over 94% of 
whom had resided there for more than one year (Figure 5d). A total of 310 questionnaires 
were distributed and collected, of which 279 were valid (90%). The descriptive statistics 
of 279 questionnaires reveal a relatively homogeneous and active user group (Appendix 
A.2). Survey-based profiles of users and their outdoor spatial preferences can be found in 
Figure 5. Females slightly outnumber males, and most respondents are working-age 
adults, with the largest share in the 31–45 group, followed by 18–30 and 46–65 years. 
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From Figure 5f,g, it is clear that the residential outdoor space is a primary place for 
daily activities. Nearly 60% of respondents reported going outdoors almost every day in 
the community, and 47.3% stayed outside for 1–2 h each time. Importantly, outdoor space 
is widely regarded as restorative. It is reported that close to 80% rated it as “important” 
or “very important” for mental and physical recovery. These items together show that 
residential outdoor spaces are both frequently used and regarded as highly important by 
residents. 

 

Figure 5. Percentage distribution of questionnaire responses: (a) gender; (b) age; (c) employment 
status; (d) length of residence; (e) outdoor activity time; (f) frequency of using outdoor spaces; (g) 
duration of outdoor activities; (h) importance of outdoor spaces for mental and physical restoration; 
(i) preferred area; and (j) preferred environmental features. 

A clear spatial preference emerges. Among the three activity zones, Zone B was over-
whelmingly preferred at nearly 80%, Zone C received a moderate share, and Zone A was 
chosen by only a small number of users. Preference for environmental features further 
supports this interpretation: respondents most often selected items such as “more vegeta-
tion” and “open view,” while more detailed or facility-oriented attributes were chosen 
less frequently. 

3.2. Mapping Visual Perception Indicators 

In the calculation, six outliers were identified. At these viewpoints, the rays were 
completely wrapped by vegetation voxels, resulting in SVF = 0, GVF = 1, and AGD < 0.1 
m. These points represent highly occluded edge positions that are not typical of general 
pedestrian viewpoints, and removing them prevents distortion of the descriptive statistics 
while exerting only a minor influence on the overall patterns reported in the Results. After 
removing these points, 217 valid viewpoints remained. Figure 6 illustrates the spatial pat-
tern of the three visual perception indicators along the walking routes, and the descriptive 
statistics (Table 1) confirm that the three usage-based zones correspond to different vis-
ual–spatial conditions. Focusing on the square spaces across the three zones, most of them 
exhibit a common pattern of relatively high SVF and low GVF, indicating generally open 
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views with limited close-range greenery. This is especially true for SB2 and SB3, where 
vegetation is set back from the main activity area, resulting in better openness and a 
stronger sense of spatial freedom. In contrast, SB1 in Zone B shows more moderate values 
of SVF, GVF, and AGD, suggesting that Zone B contains a mix of square types and thus 
offers more diverse spatial experiences. 

 

Figure 6. Spatial distribution of visual perception indicators along the pedestrian network. (a) Sky 
View Factor (SVF): higher values cluster in the squares (SA1, SB1, SB2), while lower values are 
mostly along the roads.; (b) Green View Factor (GVF): high values concentrate along the roads in 
Zone A; (c) Average Green Distance (AGD): squares in Zone B show the greatest distances to sur-
rounding greenery. 

Table 1. Descriptive statistics of visual perception indicators by zone. 

Indicator Value Zone A  
(n = 54) 

Zone B  
(n = 90) 

Zone C  
(n = 73) 

Total  
(n = 217) 

SVF 
Min 0.005 0.007 0.002 0.002 
Max 0.357 0.378 0.321 0.378 

mean (SD) 0.127 (0.091) 0.162 (0.058) 0.131 (0.068) 0.143 (0.072) 

GVF 
Min 0.016 0.083 0.093 0.016 
Max 0.931 0.924 0.906 0.931 

mean (SD) 0.598 (0.241) 0.507 (0.173) 0.524 (0.200) 0.535 (0.203) 

AGD 
Min 1.370 1.033 0.519 0.519 
Max 11.395 13.785 17.721 17.721 

mean (SD) 5.380 (2.430) 6.810 (3.010) 6.600 (3.010) 6.380 (2.923) 
Note: SD = standard deviation. Bold values indicate the highest mean within each row. 

SVF values are mainly higher along the central and eastern paths, which are largely 
located in Zone B. This is consistent with the statistics: Zone B records the highest mean 
SVF (0.162 ± 0.058), whereas Zone A (0.127 ± 0.091) and Zone C (0.131 ± 0.068) show lower 
and very similar averages. Zone B also reaches the global maximum (0.378), indicating 
that this zone contains the most open viewpoints with limited vertical obstruction. The 
larger SD in Zone A suggests that this zone mixes locally open and locally shaded seg-
ments. 

The GVF map shows an almost opposite pattern. High green visibility is concentrated 
in the northern and inner landscaped strips, which are mainly assigned to Zone A. Zone 
A has the highest mean GVF (0.598 ± 0.241) and also the overall maximum (0.931), mean-
ing some viewpoints are strongly enclosed by vegetation. Zone B has the lowest mean 
GVF (0.507 ± 0.173), and Zone C is intermediate (0.524 ± 0.200), indicating that Zones B 
and C are visually less dominated by vegetation than Zone A. According to previous stud-
ies, a GVF greater than 0.35 is already considered very high [46,47]. In our case, the GVF 
across the entire study area exceeds 0.50, indicating that the ARC residential community 
is highly and uniformly greened. 
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AGD is greater along the southern belt and parts of the central route, corresponding 
mainly to Zones B and C. Statistically, Zone B shows the largest mean AGD (6.81 ± 3.01 
m), followed by Zone C (6.60 ± 3.01 m), while Zone A has the smallest value (5.38 ± 2.43 
m). Since a larger AGD means that vegetation is, on average, farther away from the view-
point, this pattern confirms that Zones B and C are visually more open toward surround-
ing greenery, whereas Zone A is closer to, and more frequently surrounded by, vegeta-
tion. 

Overall, the spatial maps and numerical summaries tell a coherent story: Zone B rep-
resents the most open visual environment, Zone A represents a vegetation-enclosed envi-
ronment, and Zone C functions as an intermediate type that shares part of the openness 
of Zone B but does not reach its sky visibility. This spatial–numerical consistency supports 
the validity of the usage-based zoning. 

3.3. Differences of Visual Perception Indicator Between Zones 

The results show that the empirically defined zones are also statistically distinguish-
able in terms of visual perception. As illustrated in Figure 7a, the three indicators are 
strongly and systematically related. SVF is negatively correlated with GVF and positively 
correlated with AGD, while GVF is strongly and negatively correlated with AGD (all p < 
0.001). This pattern is consistent with actual spatial visual experience: the way vegetation 
is arranged directly affects how large or enclosed a space feels. When vegetation is dense 
and located close to the observer, GVF tends to be high, while SVF and AGD are corre-
spondingly low. This confirms that the indicators jointly describe an openness–enclosure 
gradient, where high sky visibility coincides with low green enclosure and vegetation lo-
cated farther from the viewpoint. 

 

Figure 7. Statistical analysis of the three indicators: (a) Correlation heatmap showing a strong neg-
ative correlation between GVF and both SVF and AGD, and a positive correlation between SVF and 
AGD; (b) boxplots and t-test results for SVF, with Zone B showing the highest values and Zone A 
the lowest; (c) boxplots and t-test results for GVF, with Zone A having the highest values and Zones 
B and C at lower, similar levels; (d) boxplots and t-test results for AGD, with the shortest distances 
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in Zone A and longer distances in Zones B and C, and significant differences between Zone A and 
the other two zones. Note: * 𝑝 < 0.05, ** 𝑝 < 0.01, and *** 𝑝 < 0.001. 

When this gradient is examined by zone (Figure 7b–d), clear distributional differ-
ences emerge. Zone B tends to occupy the more visually open space of the distribution, 
showing higher SVF and larger AGD, whereas Zone A is characterized by higher GVF 
and shorter AGD, indicating a vegetation-enclosed condition. Zone C generally lies be-
tween the other two zones. Pairwise t-tests displayed on the boxplots further clarified the 
differences between zones. The open-use zone (Zone B) had significantly higher SVF and 
greater vegetation distance than at least one of the other zones, while the vegetation-dom-
inated zone (Zone A) had significantly higher GVF than Zone B. Together, these results 
demonstrate that the field-based zoning is consistent with quantitative visual perception 
measures and that the three indicators converge to describe the same spatial structure. 

These visual patterns are supported by the one-way ANOVA (Table 2). SVF, GVF, 
and AGD all differed significantly among zones. The corresponding effect sizes were 
small to moderate (η2 = 0.033–0.050), meaning that the zoning scheme explains about 3–
5% of the variance in these indicators. Overall, the ANOVA results and the patterns in 
Figure 6 show that the three zones differ in both behavior and visual form. Zone B is the 
most open. Zone A is more enclosed by vegetation. Zone C falls in between. 

Table 2. One-way ANOVA results for visual perception indicators. 

Indicator SSB SST F p-Value η2 = SSB/SST 
SVF 0.057 1.132 5.668 0.004 0.050 
GVF 0.293 8.902 3.639 0.028 0.033 
AGD 74.515 1845.492 4.502 0.012 0.040 

4. Discussion 
4.1. Implications and Potential Applications 

This study combined street-level visual indicators with on-site behavioral data to test 
whether usage-based zoning in a high-density residential compound is also legible in vis-
ual–spatial terms. Methodologically, three layers of analysis were integrated: (1) objective 
indicators derived at viewpoint level, sky view factor (SVF), green view factor (GVF), and 
average green distance (AGD), which together describe an openness–enclosure gradient 
similar to what has been reported for visual greenery and perceived comfort in residential 
settings [26,48]; (2) statistical tests to verify whether the three empirically defined zones 
differ in these indicators; and (3) a resident survey that profiled users’ socio-de-
mographics, outdoor-use patterns, and preferences for zones and environmental features. 
This mixed strategy allowed us to link what space looks like to how it is actually chosen 
and used. 

Taken together, survey results with visibility analysis results, a clear spatial prefer-
ence emerges. Based on the results, we found that all three indicators differed significantly 
among zones, with small-to-moderate effect sizes, and the most open zone (Zone B) was 
also the most preferred one. Regular users tend to choose outdoor spaces that offer both 
greenery and good visual openness, and under the current layout Zone B fits this condi-
tion best. Among the three activity zones, about 79% of respondents preferred Zone B, 
while Zone C received a moderate share and Zone A was selected by only a few users. 
This pattern is consistent with the visual–spatial analysis, which shows that Zone B pro-
vides a more open and comfortable environment. Zone B scored higher in SVF and AGD 
and lower in GVF, which offered a more spacious, visually permeable setting with vege-
tation. The evidence does not support H1 or H2 in this context. However, this 
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configuration aligns well with residents’ stated preferences for “open view” and with re-
storative-environment theory, which argues that visual access, depth, and moderate nat-
ural elements support restoration and lingering [49,50]. In this study, Average Green Dis-
tance (AGD) emerges as a key predictor of resident preference—an eye-level proximity 
metric that image-based approaches cannot readily quantify. Our finding echoes Saadati-
vaghar et al., who reported that the indirect effect of vegetational variables on restoration 
through the mediator variable of being away was confirmed [51], consistent with atten-
tion-restoration pathways. In short, the findings imply that not only how much greenery 
is visible (measured by GVF), but also how far it sits from the observer, helps explain 
preference. 

By contrast, Zone A showed the opposite visual signature, higher GVF, lower SVF, 
shorter green distance, corresponding to a more vegetated but more enclosed experience, 
and it was chosen far less often in the survey. Although 28.73% of respondents said they 
prefer outdoor spaces with more vegetation, our analysis shows that Zone A, with the 
highest GVF, was the least preferred. The finding implies that “more green” is not gener-
ally preferable, which accords with earlier work showing a negative relationship between 
GVF and Physiological Equivalent Temperature (PET) [52]. When vegetation becomes too 
dense and too close, it can create excessive visual enclosure and even block desired views, 
which in turn reduces people’s willingness to use this space. Only 1.5% of residents pre-
ferred more private, highly enclosed spaces. This suggests that most residents do not want 
outdoor areas in the community to be too closed. Zone A shows the lowest AGD, which 
means vegetation is very close to the viewpoints and the space is more enclosed. This may 
explain why Zone A was the least frequently chosen. Zone C, with intermediate values, 
also attracted intermediate levels of preference. 

For high-density residential environments, there are two practical implications. First, 
not all outdoor space has to be equally greened; what users rewarded here was structured 
openness with accessible greenery, not maximal enclosure. Designers and managers can 
therefore purposefully reserve some circulation spines or central lawns as high-SVF, long-
distance views, while locating denser planting, seats, or semi-private corners in secondary 
zones. Second, residents of different ages may prefer different types of outdoor spaces. 
Design strategies can therefore be tailored to specific age groups to create an age-friendly 
residential outdoor environment. For example, open, view-rich areas for everyday, cross-
age use, and more vegetated, sheltered pockets for older or quieter users, echoing age-
sensitive open-space recommendations in dense Asian residential areas [53,54]. This sug-
gests that viewpoint-level visual indicators are not only analytic tools but can be embed-
ded in design guidelines to check whether planned spaces will reproduce the resident-
favored pattern observed here. 

4.2. Limitations and Future Work 

At the same time, several limitations point to directions for further work. First, the 
present preference analysis was linked to administratively/empirically defined zones; in 
future studies, preferences could be mapped directly onto clusters derived from the visual 
perception indicators themselves. For instance, clustering viewpoints by SVF–GVF–AGD 
and then testing which clusters users favor. That would tell us whether people are re-
sponding to our planning units or to finer-grained visual patterns. Second, the indicator 
set was intentionally concise; high-density outdoor space could be described more fully 
by adding façade enclosure, ground permeability, or even semantic/image features, which 
would allow a more nuanced guidance for design. Third, our analysis draws on one resi-
dential community and a context of high density with ample greenery; these conditions 
may limit how broadly the results apply. Applying the same workflow to more cases with 
different building layouts, greening ratios, and resident profiles would help establish how 
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generalizable the residence-favored pattern really is, and whether demographical context 
shifts the optimum. 

Future studies will include seasonal variation in vegetation, with multi-season spa-
tial and survey campaigns to better capture the spatiotemporal dimensions of residents’ 
green-space perception. While this study examined associations between outdoor green-
ery morphology and stated preferences, it did not unpack the underlying mechanisms. As 
a next step, we will test potential mediators, including microclimatic conditions (for in-
stance, air radiant temperature and wind distribution) and environmental-psychology 
constructs (for instance, stress recovery, attention restoration and comfort), using media-
tion, structural equation or multilevel models to clarify how greenery shapes preference. 

5. Conclusions 
This study set out to verify whether a usage-based spatial subdivision in a high-den-

sity residential compound is also legible in quantitative visual terms, and whether such 
visual patterns are consistent with residents’ stated preferences. We combined three levels 
of evidence: (i) visual perception indicators, including sky view factor (SVF), green view 
factor (GVF), and average green distance (AGD), to describe an openness–enclosure gra-
dient, following earlier work on street-level greenery and visual comfort; (ii) one-way 
ANOVA with effect sizes to test whether the three empirically defined zones actually dif-
fer; and (iii) a questionnaire capturing socio-demographics, outdoor-use rhythms, and 
preferences for zones and environmental features. This multi-source design made it pos-
sible to connect how spaces look, how they are structured, and what residents report they 
prefer. Based on the questionnaire and the quantitative visual analysis, this study found 
a preliminary preference pattern for outdoor space in high-density residential areas. 
When overall greening is high, residents tend to favor spaces with greater visual openness 
rather than spaces that are heavily wrapped by vegetation. 

Beyond the case itself, the workflow we developed, integrating solid 3D models with 
voxelized LiDAR point clouds and linking them to resident survey data, offers a technical 
path that fits well with the vision of future, intelligent cities. It shows how fine-grained 
spatial data can be used to “see” urban space from the pedestrian’s perspective and to test 
design options digitally before implementation. Such data-driven visibility analysis can 
be embedded in smart planning platforms, support low-carbon community renewal by 
optimizing existing greenery instead of overplanting, and help reconfigure public inter-
action spaces, green courtyards, and linear parks to better serve health-oriented urban life. 
As cities move toward intelligent management, 3D scene reconstruction and point-cloud-
based assessment can become routine tools for evaluating livability, micro-scale walkabil-
ity, and visual comfort. 

This study offers direct guidance for outdoor landscape design in high-density resi-
dential areas. The results suggest configuring vegetation with an appropriate setback from 
pedestrian paths so that people experience adequate openness while still perceiving 
greenery. Designers should avoid dense, close plantings that create excessive enclosure. 
The framework links 3D, pedestrian-level visual indicators to resident preference and 
helps identify spatial configurations that better meet user needs. It can support sustainable 
urban planning and smart-city workflows by testing planting layouts, spatial configura-
tion for greenery, and view management before implementation. In this sense, the pro-
posed framework is not only a method for one residential community, but also a transfer-
able component for future-city toolkits to identify urban spatial morphologies that better 
meet people’s needs, supporting sustainable land use, healthy-city goals, and human-cen-
tered urban renewal in increasingly dense environments. 
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Abbreviations 
The following abbreviations are used in this manuscript: 

ARC Aifei residential community 
AGD Average Green Distance 
GVF Green View Factor 
SVF Sky View Factor 
LoS Line of Sight 
DEM Digital elevation model 
SSB Squares between groups  
SST Total sum of squares 

Appendix A 
Appendix A.1.  

Presented below is the Questionnaire on the Quality of Outdoor Spaces in High-Den-
sity Residential Communities, consisting of two parts and 10 questions. 

Section I. Basic Information 

1. Gender: 

☐ Male ☐ Female 

2. Age: 

☐ Under 17 ☐ 18–30 ☐ 31–45 ☐ 46–65 ☐ 66 and above 
3. Employment status: 

☐ Student ☐ Employed ☐ Self-employed/Freelance ☐ Retired 
4. Length of residence in this community: 



Buildings 2025, 15, 4275 16 of 19 
 

☐ <1 year ☐ 1–2 years ☐ 2–3 years ☐ 3–4 years 
Section II. Evaluation of Outdoor Spaces 

1. Typical time of day for outdoor activities: 

☐ 08:00–10:00 ☐ 10:00–12:00 ☐ 12:00–14:00 ☐ 14:00–16:00 ☐ 16:00–18:00 ☐ 18:00–
20:00 
2. Frequency of using outdoor spaces in the community: 

☐ Almost every day ☐ At least twice per week ☐ Once per week ☐ Occasionally 
3. Typical duration of each outdoor visit: 

☐ < 30 min ☐ 30–60 min ☐ 60–120 min ☐ >120 min 
4. Importance of outdoor spaces in residential community areas for your mental and 

physical restoration: 

☐ Very important ☐ Important ☐ Neutral ☐ Not important ☐ Not sure 
5. If you often engage in outdoor activities in the community, which area do you prefer 

(single choice; please refer to the community map and tick one): 

☐ Zone A ☐ Zone B ☐ Zone C 
(Provide a printed community map (Figure 2) so that respondents can indicate their 

selection.) 
6. Environmental features most frequently experienced in recent visits in the residential 

community (select all that apply): 

☐ More vegetation 
☐ Sufficient seating 
☐ Rich color in vegetation 
☐ Well-equipped fitness/recreation facilities 
☐ Strong sense of privacy 
☐ Quiet atmosphere 
☐ Open views 
☐ Large activity area 
☐ highly enclosed/with strong spatial privacy 
☐ Other: ___________________________ 

Appendix A.2. The Descriptive Statistics of Questionnaire Results (N = 279) 

The following table presents the descriptive statistics for the 279 questionnaires col-
lected. 

Question Option Number Percentage 
1. Basic information 

Gender 
Female 153 54.84% 

male 126 45.16% 

Age 

31–45 95 34.05% 
18–30 76 27.24% 
46–65 70 25.09% 

66 and above 26 9.32% 
Under 17 12 4.30% 

Employment status 

Employed 199 71.33% 
Retired 30 10.75% 
Student 29 10.39% 

Self-employed/freelance 21 7.53% 
Length of residence <1 year 17 6.09% 
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1–2 years 100 35.84% 
2–3 years 44 15.77% 
3–4 years 118 42.29% 

2. Evaluation of Outdoor Spaces 

Outdoor activity time 

8:00–10:00 86 21.39% 
10:00–12:00 58 14.43% 
12:00–14:00 10 2.49% 
14:00–16:00 25 6.22% 
16:00–18:00 108 26.87% 
18:00–20:00 115 28.61% 

Frequency of using 
outdoor spaces 

Almost every day 166 59.50% 
At least twice per week 89 31.90% 

Once per week 16 5.73% 
Occasionally 8 2.87% 

Duration of outdoor ac-
tivities 

<30 min 10 3.58% 
30–60 min 101 36.20% 
60–120 min 132 47.31% 
>120 min 36 12.90% 

Importance of outdoor 
spaces for mental and 
physical restoration 

Very important 56 20.07% 
Important 162 58.06% 

Neutral 32 11.47% 
Not important 4 1.43% 

Not sure 25 8.96% 

Preferred area 
A 16 5.73% 
B 220 78.85% 
C 43 15.41% 

Preferred environmen-
tal features 

More vegetation 158 28.73% 
Open views 112 20.36% 

Quiet atmosphere 84 15.27% 
Rich color in vegetation 63 11.45% 

Large activity area 57 10.36% 
Well-equipped fitness/recre-

ation facilities 
51 9.27% 

Sufficient seating 15 2.73% 
Highly enclosed/with 
strong spatial privacy 8 1.45% 

Other 2 0.36% 
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