<]
TUDelft

Delft University of Technology

Linking Visual Perception of Urban Greenery to Resident Preference in High-Density
Residential Areas Through Mobile Point-Cloud-Based Assessment

Zhang, Guanting; Wang, Yifei ; Peng, Y.

DOI
10.3390/buildings 15234275

Publication date
2025

Document Version
Final published version

Published in
Buildings

Citation (APA)

Zhang, G., Wang, Y., & Peng, Y. (2025). Linking Visual Perception of Urban Greenery to Resident
Preference in High-Density Residential Areas Through Mobile Point-Cloud-Based Assessment. Buildings,
15(23), Article 4275. hitps://doi.org/10.3390/buildings 15234275

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.3390/buildings15234275
https://doi.org/10.3390/buildings15234275

ﬂ buildings

Article

Linking Visual Perception of Urban Greenery to Resident
Preference in High-Density Residential Areas Through Mobile
Point-Cloud-Based Assessment

Guanting Zhang *, Yifei Wang !, Yijing Wang ! and Yuyang Peng 2

Academic Editor: Adrian Pitts

Received: 7 November 2025
Revised: 20 November 2025
Accepted: 23 November 2025
Published: 26 November 2025

Citation: Zhang, G.; Wang, Y;
Wang, Y.; Peng, Y. Linking Visual
Perception of Urban Greenery to
Resident Preference in High-Density
Residential Areas Through Mobile
Point-Cloud-Based Assessment.
Buildings 2025, 15, 4275. https://
doi.org/10.3390/buildings15234275

Copyright: © 2025 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license
(https://creativecommons.org/license

s/by/4.0/).

1 College of Architecture, Nanjing Tech University, Nanjing 211816, China; wangyifei@njtech.edu.cn (Y.W.);
yijingwang@njtech.edu.cn (Y.W.)

2 School of Architecture & Built Environment, Delft University of Technology,
2628 CD Delft, The Netherlands; y.peng-1@tudelft.nl

* Correspondence: gtzhang@njtech.edu. cn

Abstract

Urban greenery is essential for environmental quality, visual comfort, and residents’ well-
being, and it becomes especially critical in high-density residential compounds where out-
door space is limited. This study proposes a pedestrian-scale visibility framework that
integrates solid 3D models (DEM, extruded buildings, water) with voxelized LiDAR point
clouds to reconstruct fine-resolution outdoor scenes and to quantify visual perception in-
dicators, including green view factor (GVF), sky view factor (SVF), and average green
distance (AGD). A residential community in Nanjing is used as the case study. Line-of-
sight sampling was performed on 223 viewpoints distributed across three empirically
identified activity zones, and a resident questionnaire was conducted in parallel (279 valid
responses). The results show that the visually open zone, characterized by relatively high
SVF, moderate GVF, and larger vegetation setback (higher AGD), is also the zone most
preferred by residents, whereas the zone with the highest GVF but strong enclosure is
least preferred. This consistency between modeled indicators and survey responses con-
firms that excessive, close-range planting may reduce usability, while a balanced combi-
nation of greenery and openness better supports everyday outdoor activities. The pro-
posed Point-Cloud-Based approach, therefore, provides a data-driven basis for planning,
evaluating, and managing outdoor environments in dense urban residential areas, and
ultimately reaching the purpose of more livable urban communities in the era of intelli-
gent and sustainable cities.

Keywords: urban greenery; LiDAR point cloud; visual preference; healthy built
environment; sustainable city

1. Introduction

Urban greenery plays a vital role in shaping environmental quality, visual comfort,
and residents’ well-being, serving as a key component of sustainable and health-oriented
urban design. In China, the process of rapid urbanization has reshaped the spatial struc-
ture of cities and increased the prevalence of high-density built environments. According
to publicly available data, China’s urbanization ratio (i.e., the share of population living
in urban areas) reached 67% by the end of 2024 [1]. In rapidly urbanising cities, high-
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density built environments may harm residents” mental health and emotional well-being
[2-4], but empirical and epidemiological studies show that sufficient exposure to urban
greenery can mitigate these psychological impacts [5,6]. Urban greenery is one of the ef-
fective pathways to achieving healthy and sustainable cities, and it is particularly critical
in high-density urban environments where greenery strongly influences residents” out-
door activities and their physical and mental health.

The importance of residential vegetation lies in its multifaceted benefits for resident
well-being and neighborhood environments. Ecologically, vegetation improves microcli-
mates through canopy shading and transpiration, lowers temperatures, captures airborne
particulates, and reduces noise, thereby improving thermal and environmental comfort
[7-10]. Besides, seeing more greenery in urban areas can help people enhance cooling,
improve perceived thermal comfort in warm environments [11]. Socially, urban greenery
provides shaded, activity-friendly settings for neighborly interaction, fostering commu-
nity cohesion and a sense of belonging for neighborhoods [12-14]. From a health perspec-
tive, convenient access to nature promotes outdoor physical activity and, by relieving psy-
chological stress and supporting attention restoration, leads to positive impacts on mental
and physical health [15,16]. Specifically, the Attention Restoration Theory (ART) suggests
that certain visual complexity and coherence in landscapes support cognitive restoration
[17]. Various pieces of evidence show that residential greenery can bring multiple positive
outcomes for residents through visual perception.

In urban residential areas, greenery affects people through its size, type, spatial con-
figuration, and morphological attributes [18,19]. Recent studies typically quantify neigh-
borhood greenery using spatial or image-based analytics, then relate these metrics to ac-
tivity patterns or health outcomes to identify features with positive impacts [20]. Most
existing indicators are derived from geospatial or spatial-analysis techniques that capture
two-dimensional (2D) attributes of urban greenery. Common measures include Normal-
ized Difference Vegetation Index (NDVI), Leaf Area Index (LAI), and Green View Index
(GVI) obtained from satellite imagery or street-view images [21-23], defined as 2D data.
These 2D metrics are useful for mapping general patterns of greenery, but they do not
fully capture the three-dimensional structure of vegetation or the subjective visual expe-
rience of residents. These 2D metrics, while useful, fail to describe the visual experience
of greenery precisely and comprehensively. Indicators such as NDVI and green-space ra-
tio, typically derived from satellite remote sensing [24,25], capture only surface-level veg-
etation characteristics. Their spatial resolution is also limited compared with centimetre-
scale 3D data. Image-based GVI, which relies on photographs, 360° panoramas, or human-
rated images [26], is constrained by camera placement, sampling bias, and simplified
depth modelling. These limitations suggest that 2D indicators should be complemented
by three-dimensional representations. Three-dimensional indicators can describe the ac-
tual spatial characteristics in a more detailed and comprehensive way. This makes it easier
to identify which specific spatial features may underlie people’s experiences when they
use outdoor spaces.

There is growing recognition that linking geometric visibility analysis with human
preference data is essential to support human-centered design in dense urban contexts.
However, traditional 2D methods can not describe the visual characteristics of the green-
ery in dense urban contexts with increasingly complex environments [27]. Recent ad-
vances in Light Detection and Ranging (LiDAR) and 3D modeling offer a promising path-
way to better quantify visual exposure to greenery [28,29]. LiIDAR technology enables rich
3D representation of urban scenes, providing point clouds that encode spatial positions,
heights, and surface reflectance [30]. This capability supports visibility and visual expo-
sure analyses that go beyond 2D, image-based methods. LiDAR point clouds capture mil-
limeter-level structural detail for vegetation, buildings, and terrain [31,32]. These features
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of point-cloud data make it possible to model line of sight, occlusion, and visual-field met-
rics from a realistic human perspective [33]. As the vegetation is hard to represent, recent
studies have integrated vegetation point clouds into urban scenes for capturing a real ur-
ban form to get real urban characteristics, considering vegetation [34-36]. By integrating
point clouds with solid 3D models, one can compute indicators describing the visual and
spatial features of highly dense urban environments from a pedestrian-level perspective
[37-39]. These methods employing LiDAR point clouds collectively demonstrate that
point-cloud approaches can more accurately simulate the visual interface between human
observers and complex urban vegetation and built features, accounting for occlusions,
layering, and depth, which are difficult to capture with traditional 2D methods.

Most existing 2D, image-based metrics and conventional visibility analyses fail to
represent pedestrian-level 3D visibility or the distance to visible vegetation. Despite the
methodological advances, relatively few empirical studies have fully combined point-
cloud-derived visual metrics reflecting precise 3D spatial characteristics with direct resi-
dent preference data in high-density residential neighborhoods. It remains unclear which
vegetation configurations most strongly align with residents’ perceptual judgments in
such contexts. Besides, 3D visibility methods are rarely linked to residents’ stated prefer-
ences in dense urban residential areas.

To fill this gap, the present study proposes an integrated analytical framework that
quantifies the visual characteristics of urban greenery via point-cloud-based modeling
and links visual perception assessments and resident preference. This study applies the
proposed framework to a residential area in Nanjing as a case study. Guided by our ex-
pectations for dense settings, we test whether preference is positively associated with vis-
ible greenery (H1) and whether residents favor spaces where vegetation is closer to them
(H2). First, we reconstruct fine-scale 3D scenes and compute vegetation-related visibility
metrics from pedestrian viewpoints to evaluate H1 and H2. Then we gather survey data
on residents’” perceptions of visual greenery and environmental preference. Finally, we
use multiple statistical analyses to identify which vegetation features most influence per-
ceptual preference, and to evaluate how alternative greenery configurations in a dense
residential setting align with those preferences. The results not only deepen understand-
ing of human-environment interaction in dense residential settings, but also provide data-
driven guidance for designing and managing healthier, greener, more livable urban com-
munities.

2. Materials and Methods

2.1. Study Area and Viewpoint Generation

Aifei residential community (ARC) is located in Pukou District (Nanjing, China),
north of Lixin Road, and was completed around 2017. It comprises 15 residential buildings
with approximately 800 households. The internal building stock is predominantly high-
rise. There are 8 buildings in ARC with 22-26 stories (Figure 1), considered as a dense
residential area. The site area is about 75,777.5 m?, and the total building floor area is about
19,497.3 m2. The building coverage is approximately 22%, and the greening coverage is
about 40%.

To characterize pedestrian-level visibility in a high-rise residential compound, view-
points were sampled every 5 m along road centerlines, along plaza edges, and within
plaza interiors, for a total of 223 viewpoints. In areas where finer detail was needed to
represent walkable space, the spacing was locally reduced below 5 m. A 5-m step is suffi-
ciently fine-grained to register significant alterations in the visual field caused by urban
elements [40]. The viewpoints were elevated by 1.6 m above the ground surface to simu-
late eye height.
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Nanjing city
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Figure 1. Study area and viewpoint allocation: Numbers 14#-8# denote the corresponding residen-
tial buildings.

Preliminary on-site surveys show that the ARC residential landscape consists of three
zones (Figure 2), each offering open areas for outdoor activities with distinct spatial char-
acteristics. Zone A is the activity space near the main entrance. The main plaza is located
to the north of the community service center, and the internal road loops around this cen-
ter. The entire zone is shaded by relatively abundant vegetation. Zone B constitutes the
main internal landscape, centered on small plazas, garden paths, and a central pond, with
relatively dense planting. Zone C is the open space on the southeast side ARC, north of
Buildings 7 and 8, characterized by broad roads and plazas with comparatively abundant
vegetation. A total of 223 viewpoints were assigned to the three zones. Zone B contained
the largest number of viewpoints, with 95 points (42.60%); Zone A contained the fewest,
with 54 points (24.22%); and Zone C contained 74 points (33.18%). There are seven squares
in ARC, designated according to the zoning as SA1 and SA2 in Zone A, SB1, SB2, and SB3
in Zone B, and SC1 and SC2 in Zone C.

Community Service Center

Figure 2. The three principal activity spaces in the Aifei residential community and corresponding

status-quo photographs: Zone A is the main entrance and plaza area (SA1, SA2), broadly shaded;
Zone B is the internal landscape with small plazas (SB1-SB3), garden paths, and a central pond,
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with denser planting; Zone C is the southeast open area with broad roads and plazas (SC1, SC2).

Colored dots indicate viewpoints and match the zone legend.

2.2. Resident Questionnaire Survey

This study administered a structured questionnaire to assess residents’ perceptions
and use of outdoor spaces in a high-density residential community. The full questionnaire
is provided in Appendix A.1. The instrument comprised two sections with 10 questions:
(i) basic demographics (4 questions) and (ii) evaluations of outdoor space quality and
health-related experiences (6 questions). The second section included items on preferred
outdoor activities, typical time of day, visit frequency, and duration, perceived im-
portance of outdoor spaces for mental and physical restoration, recent experiential out-
comes, including stress relief, increased energy, improved sleep, and location preferences
within three mapped zones (A, B, C). Respondents also identified perceived environmen-
tal features of the outdoor spaces, for instance, vegetation richness, seating availability,
spaciousness, quietness, privacy, etc. All items used closed-ended response formats with
single- or multiple-choice options and clearly defined time bands. The instrument was
developed based on prior literature on restorative environments and urban outdoor ac-
tivity, then adapted to the local context through site reconnaissance and pilot checks. We
collected 310 questionnaires. To reduce selection bias, the initial sample balanced sex with
155 men and 155 women, and more than 90% participants are adults. After preliminary
screening and data cleaning, 279 questionnaires (90%) were deemed valid.

2.3. Hybrid-Model-Based Visibility Analysis

A hybrid spatial model integrating voxelized point clouds and solid 3D models (in-
cluding terrain surface, water body, and buildings) is applied in this study [38]. The visi-
bility analysis was conducted in ArcGIS Pro (version 3.3.0) for the solid models and in
Python (3.11.7) for the point-cloud data.

2.3.1. LiDAR Point Cloud Collection and Voxelization

The point cloud data were acquired using a ZEB-HORIZON handheld 3D laser scan-
ner (GeoSLAM, Nottingham, UK). For a fuller assessment of how residential greenery in-
fluences people, data collection was conducted in summer when vegetation is most de-
veloped. The raw point cloud contained all scene information and was classified into
ground, vegetation, buildings, and other objects on Trimble Realworks with auto and
manual classification. The original data were stored in LAZ format, with a file size of
about 2.52 GB and approximately 1.358 billion points in total, of which vegetation points
accounted for about 1.194 billion. The positional accuracy was approximately 1 cm. Veg-
etation points were extracted and converted into 100 mm voxels; after voxelization, the
vegetation dataset was reduced to 493 MB (LAZ) with 15,263,664 points. Ground points
were used to generate the digital elevation model (DEM), and building footprints were
extracted from the point-cloud outlines of individual buildings.

2.3.2. 3D Hybrid Model Construction

The hybrid model in this study is composed of a solid model and a voxel model of
vegetation point clouds. The solid model built consists of DEM, building masses, and wa-
ter surfaces. As described in Section 2.3.1, we voxelized the vegetation points at a resolu-
tion of 100 mm, so that the resulting vegetation voxel model could better represent canopy
volume and occlusion relationships. Using a 3D hybrid model for visibility analysis in
high-density urban areas not only takes full advantage of the detailed information in point
cloud data, but also helps overcome some LiDAR acquisition limitations, such as missing
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information on surfaces that laser beams penetrate or poorly capture, including water and
glass.

As shown in Figure 3, we constructed the hybrid model in four steps. First, we clas-
sified the point cloud in Trimble RealWorks 10.4 using automatic processing with manual
editing, assigning points to buildings, ground, vegetation, and others. Second, we re-
moved non-target objects such as parked vehicles and pedestrians. Third, ground points
were used to generate the terrain DEM, while building points were used to extract the
footprint and maximum height of each building based on classified point clouds. Because
the original point clouds were relatively sparse in upper stories and often missed facade
details such as windows, we extruded the building footprints in ArcGIS Pro to create con-
tinuous 3D building blocks, compensating for those gaps. At the same time, we verified
the water boundaries in Zone B through field surveys and satellite imagery, and created
a corresponding 3D multipatch in ArcGIS Pro to represent the water surface. Finally, the
DEM, building blocks, and water surface formed the solid model, which we overlaid with
the voxelized vegetation model to produce the complete 3D hybrid scene for subsequent
visibility analysis.

Others
—

Solid model

i e Buildings \ ’
Classified point clouds ? ¢ Hybrid model
o<
Voxel model
Ground Voxel mode

3
1
1
1
1
1
1
1
1
1
1
I
1
1
1
1
1
1
I
1
]

Vegetation
—_—

e e

STEP 1 STEP 2 STEP 3 STEP 4

Figure 3. The workflow of 3D hybrid model construction. Step 1: Classify the point cloud; Step 2:
Clean the classified points; Step 3: Build the solid model from ground and building points; Step 4:
Build the vegetation voxel model and integrate both to form the hybrid model.

2.3.3. Line-of-Sight Analysis

Viewpoint locations were first defined and set to eye level (1.6 m), as described in
Section 2.1. Human vision was simulated with a 360° horizontal field of view and a verti-
cal field of view from -30° to 60° (0° = eye plane), as depicted in Figure 4a. From each
viewpoint, a spherical set of 3D rays was generated with a maximum line-of-sight (LoS)
length of 100 m (Figure 4b). The angular step was 3° in both azimuth and elevation, so
each viewpoint produced 3388 rays. These rays discretize the pedestrian visual field and
serve as “pixels” for computing visual perception indicators and for visualizing the scene.

Restricting the vertical range reduces low-value ground hits and aligns the simulated
view with natural perception. The 3° sampling was chosen to balance computational load
and the ability to capture fine elements such as tree canopies and building edges. All vis-
ibility computations were run in a single Python (v3.12) workflow. ArcGIS Pro was in-
voked through the arcpy library to perform LoS analysis on the solid model (Figure 4c).
The resulting visible rays were then rechecked in Python against the vegetation voxel
model with a size of 100 mm. Using 100 mm voxels provides sufficiently accurate esti-
mates within tree canopies. [41]. If a ray intersected a voxel first, it was marked as blocked
by vegetation and the hit point was recorded.
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In the analysis, the object type at the first ray—object intersection is recorded. In other
words, the feature that blocks the line of sight is stored as an attribute of that ray, so it can
be used later for computing the visual exposure indicators. And any ray that encounters
no obstruction within the set range is classified as sky.

(a) (b) (d)

Figure 4. Line-of-Sight analysis based on 3D hybrid model. (a) Hemispherical modeling of the hu-
man visual field; (b) 3D sight lines simulating pedestrian visual space; (c) calculation of visible sight
lines on the solid model using the Line of Sight function in ArcGIS Pro; (d) refinement of visible

sight lines with vegetation voxels based on the ArcGIS Pro results.

2.3.4. Visual Perception Indicators

To characterize how residents perceive outdoor space in a dense residential com-
pound, three visual perception indicators were defined at the pedestrian level. Based on
the literature review in Section 1, SVF and GVF are considered important indices relating
to human perception. Therefore, these two indicators are considered in this study. Besides,
for fully using the advantage of point cloud data, a spatial indicator is proposed for eval-
uating the visual enclosure [42], which is hard to compute in 2D images. Each indicator is
calculated from the classified first-hit results of the LoS rays, so every value directly re-
flects what a person standing at that viewpoint is most likely to see. Furthermore, tempo-
rary objects such as parked vehicles and moving pedestrians were identified as noise and
removed, so that the indicators reflect stable built and vegetated structures.

(1) Sky View Factor (SVF)
SVF is the proportion of the sky hemisphere visible from a given point near the
ground and a standard descriptor of openness/enclosure at the pedestrian level [9,43]. In

this study, it can be measured as the proportion of rays that reach the sky without being
blocked. It is computed as

N, sky

SVF = (1)

total

where N;yq is the total number of LoS rays generated from a viewpoint, which equals
3388 in this case; Ny, is the number of rays unobstructed by any object, which terminate
at the sky. A higher SVF indicates a more open, less enclosed space, which is often associ-
ated with better daylight access and a weaker sense of confinement. In dense estates, SVF
helps distinguish between highly enclosed courtyard spaces and more open plazas or
road corridors.

(2) Green View Factor (GVF)

In urban studies, GVF (or green view index, GVI) is a common concept. It quantifies
the proportion of a pedestrian’s visual field occupied by vegetation [22,44]. Conceptually,
it is the share of the observable scene covered by green elements (trees, shrubs, lawns).
GVF ranges from 0 to 1 and reflects perceived greenness. It is calculated as

NI‘ n
GVEF = &= )

total
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where Ngreen is the number of rays intercepted by vegetation. Higher GVF values mean
that trees, shrubs, or other green elements are closer to the observer or occupy a larger
part of the view. GVF is useful for identifying places with stronger biophilic qualities and
for comparing how planting layouts affect perceived greenness.

(3) Average Green Distance (AGD)

To measure the degree of green enclosure, we introduce Average Green Distance
(AGD), a 3D visibility metric that captures the average distance between the viewpoint
and all vegetation intercepted by first-hit rays. While GVF reflects “how much” greenery
is visible, AGD reflects “how near” that greenery is. It is defined as

Ngreen

1
AGD = Z I 3)
i=1

N, green 4=

where [; denotes the length of the i-th ray that terminates at vegetation, that is, the dis-
tance between the viewpoint and the vegetation voxel that blocks the line of sight. A
smaller AGD means vegetation is distributed closer to the observer and produces a
stronger sense of green enclosure. This indicator compensates for the limitation of purely
percentage-based metrics, which cannot distinguish near greenery from far greenery.

2.4. Statistical Analysis

Three spatial zones (Zone A, Zone B, and Zone C) were delineated a priori on the
basis of field investigation, observed activity patterns, and the current functional organi-
zation of the site. These zones represent empirically defined usage areas, and the subse-
quent statistical analysis was intended to examine whether they also differ in terms of
visual perception indicators.

Spearman correlation analysis was applied to investigate the relationship among
three indicators. For each usage-based zone, descriptive statistics (mean, standard devia-
tion, and number) were first calculated for the three visual indicators. Group differences
were examined using a f-test and one-way analysis of variance (ANOVA). When the
ANOVA indicated a significant overall effect (p < 0.05), pairwise comparisons between
zones were performed using two-sample t-tests. To assess the magnitude of the observed
differences, eta squared (1)2) was computed for each ANOVA as the sum of squares be-
tween groups (SSB) divided by the total sum of squares (SST), representing the proportion
of variance in the indicator explained by the zoning scheme. Following Cohen [45], n?
values of approximately 0.01, 0.06, and 0.14 were interpreted as small, medium, and large
effects, respectively. All statistical analyses were performed in R (version 4.5.2). The sig-
nificance level was set at p = 0.05, and statistical significance was reported as * p < 0.05,
**p < 0.01, and **p < 0.001.

3. Results

3.1. Residential Landscape Preference

We randomly sampled 310 residents living in ARC, each from a different household.
To base evaluations on substantial first-hand experience and enhance ecological validity,
the questionnaire was distributed to long-term residents of the study area, over 94% of
whom had resided there for more than one year (Figure 5d). A total of 310 questionnaires
were distributed and collected, of which 279 were valid (90%). The descriptive statistics
of 279 questionnaires reveal a relatively homogeneous and active user group (Appendix
A.2). Survey-based profiles of users and their outdoor spatial preferences can be found in
Figure 5. Females slightly outnumber males, and most respondents are working-age
adults, with the largest share in the 31-45 group, followed by 18-30 and 46-65 years.
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From Figure 5f,g, it is clear that the residential outdoor space is a primary place for
daily activities. Nearly 60% of respondents reported going outdoors almost every day in
the community, and 47.3% stayed outside for 1-2 h each time. Importantly, outdoor space
is widely regarded as restorative. It is reported that close to 80% rated it as “important”
or “very important” for mental and physical recovery. These items together show that
residential outdoor spaces are both frequently used and regarded as highly important by
residents.

(b) Age (c) Employment status (d) Length of residence

18-30 27.2% .
Retired 10.8% 2-3 years 35.8%
46-65

25.1%

<1lyear 6.1%

Student 10.4% 1-2 years 15.8%
66 and above 9.3% ° ’ '
Male Self loyed/
elf-employe
Under 17 43% fre‘;gnce 7.5%

0% 25% 50% 75% 0% 25% 50% 75% 0% 25% 50% 75%

(e) Outdoor activity time (f) Frequency of using outdoor spaces (g) Duration of outdoor activities

0%

25%

50%

75%

(h) Importance of outdoor spaces
for mental and physical restoration

12:00-14:00 2.5%

(i) Preferred area

Zone B _ TR

Almost every day _ 59.5% > 120 minutes - 47.3% Important _ 58.1%

) — Very important 20.1%
s 31.9% 60-120 minutes - 36.2%
I— 115%

Neutral
o 9 .
Once per week  5.7% 30-60 minutes 12.9% Not important 9.0%
Occasionally  2.9% <30 minutes ~ 3.6% Not sure  1.4%
0% 25% 50% 75% 0% 25% 50% 75% 0%  25% 50% 75%
j) Preferred environmental features
0 Percentage
More vegetation 28.7% 80%
Open views 20.4%
Quiet atmosphere 15.3% 60%
Rich vegetation colors 11.5%
Large activity area 10.4% 40%
Well-equipped fitness 9.3%
Sufficient seating ~ 2.7% 20%
Strong sense of privacy  1.5%
Other 0.4% 0

0% 25% 50% 75%

Figure 5. Percentage distribution of questionnaire responses: (a) gender; (b) age; (c) employment
status; (d) length of residence; (e) outdoor activity time; (f) frequency of using outdoor spaces; (g)
duration of outdoor activities; (h) importance of outdoor spaces for mental and physical restoration;

(i) preferred area; and (j) preferred environmental features.

A clear spatial preference emerges. Among the three activity zones, Zone B was over-
whelmingly preferred at nearly 80%, Zone C received a moderate share, and Zone A was
chosen by only a small number of users. Preference for environmental features further
supports this interpretation: respondents most often selected items such as “more vegeta-
tion” and “open view,” while more detailed or facility-oriented attributes were chosen
less frequently.

3.2. Mapping Visual Perception Indicators

In the calculation, six outliers were identified. At these viewpoints, the rays were
completely wrapped by vegetation voxels, resulting in SVF =0, GVF =1, and AGD < 0.1
m. These points represent highly occluded edge positions that are not typical of general
pedestrian viewpoints, and removing them prevents distortion of the descriptive statistics
while exerting only a minor influence on the overall patterns reported in the Results. After
removing these points, 217 valid viewpoints remained. Figure 6 illustrates the spatial pat-
tern of the three visual perception indicators along the walking routes, and the descriptive
statistics (Table 1) confirm that the three usage-based zones correspond to different vis-
ual-spatial conditions. Focusing on the square spaces across the three zones, most of them
exhibit a common pattern of relatively high SVF and low GVF, indicating generally open
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views with limited close-range greenery. This is especially true for SB2 and SB3, where
vegetation is set back from the main activity area, resulting in better openness and a
stronger sense of spatial freedom. In contrast, SB1 in Zone B shows more moderate values
of SVF, GVF, and AGD, suggesting that Zone B contains a mix of square types and thus

offers more diverse spatial experiences.

Figure 6. Spatial distribution of visual perception indicators along the pedestrian network. (a) Sky
View Factor (SVF): higher values cluster in the squares (SA1, SB1, SB2), while lower values are
mostly along the roads.; (b) Green View Factor (GVF): high values concentrate along the roads in
Zone A; (c) Average Green Distance (AGD): squares in Zone B show the greatest distances to sur-

rounding greenery.

Table 1. Descriptive statistics of visual perception indicators by zone.

Indicator Value Zone A Zone B Zone C Total
(n=>54) (n=90) (n=73) (n=217)

Min 0.005 0.007 0.002 0.002

SVF Max 0.357 0.378 0.321 0.378
mean (SD)  0.127 (0.091)  0.162 (0.058) 0.131 (0.068) 0.143 (0.072)

Min 0.016 0.083 0.093 0.016

GVF Max 0.931 0.924 0.906 0.931
mean (SD)  0.598 (0.241) 0.507 (0.173) 0.524 (0.200) 0.535 (0.203)

Min 1.370 1.033 0.519 0.519

AGD Max 11.395 13.785 17.721 17.721

mean (SD)  5.380 (2430)  6.810 (3.010) 6.600 (3.010) 6.380 (2.923)

Note: SD = standard deviation. Bold values indicate the highest mean within each row.

SVF values are mainly higher along the central and eastern paths, which are largely
located in Zone B. This is consistent with the statistics: Zone B records the highest mean
SVF (0.162 + 0.058), whereas Zone A (0.127 + 0.091) and Zone C (0.131 + 0.068) show lower
and very similar averages. Zone B also reaches the global maximum (0.378), indicating
that this zone contains the most open viewpoints with limited vertical obstruction. The
larger SD in Zone A suggests that this zone mixes locally open and locally shaded seg-
ments.

The GVF map shows an almost opposite pattern. High green visibility is concentrated
in the northern and inner landscaped strips, which are mainly assigned to Zone A. Zone
A has the highest mean GVF (0.598 + 0.241) and also the overall maximum (0.931), mean-
ing some viewpoints are strongly enclosed by vegetation. Zone B has the lowest mean
GVF (0.507 + 0.173), and Zone C is intermediate (0.524 + 0.200), indicating that Zones B
and C are visually less dominated by vegetation than Zone A. According to previous stud-
ies, a GVF greater than 0.35 is already considered very high [46,47]. In our case, the GVF
across the entire study area exceeds 0.50, indicating that the ARC residential community
is highly and uniformly greened.
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AGD is greater along the southern belt and parts of the central route, corresponding
mainly to Zones B and C. Statistically, Zone B shows the largest mean AGD (6.81 + 3.01
m), followed by Zone C (6.60 + 3.01 m), while Zone A has the smallest value (5.38 + 2.43
m). Since a larger AGD means that vegetation is, on average, farther away from the view-
point, this pattern confirms that Zones B and C are visually more open toward surround-
ing greenery, whereas Zone A is closer to, and more frequently surrounded by, vegeta-
tion.

Overall, the spatial maps and numerical summaries tell a coherent story: Zone B rep-
resents the most open visual environment, Zone A represents a vegetation-enclosed envi-
ronment, and Zone C functions as an intermediate type that shares part of the openness
of Zone B but does not reach its sky visibility. This spatial-numerical consistency supports
the validity of the usage-based zoning.

3.3. Differences of Visual Perception Indicator Between Zones

The results show that the empirically defined zones are also statistically distinguish-
able in terms of visual perception. As illustrated in Figure 7a, the three indicators are
strongly and systematically related. SVF is negatively correlated with GVF and positively
correlated with AGD, while GVF is strongly and negatively correlated with AGD (all p <
0.001). This pattern is consistent with actual spatial visual experience: the way vegetation
is arranged directly affects how large or enclosed a space feels. When vegetation is dense
and located close to the observer, GVF tends to be high, while SVF and AGD are corre-
spondingly low. This confirms that the indicators jointly describe an openness—enclosure
gradient, where high sky visibility coincides with low green enclosure and vegetation lo-
cated farther from the viewpoint.

SVF GVF AGD Anova, p = 0.004
(a) (b) o5 ° i
ns
*
SVF 04
.
03 H . Zone
: . f
L . . B A
@ BB
c
GVF 0.2 -
0.1
.
AGD 0o
A B Cc
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(C) 128 Anova, p = 0.028 ns (d) Anova, p =0.012 ns
1
ns 20 L
* ! T - 1
1.00 — | —
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Figure 7. Statistical analysis of the three indicators: (a) Correlation heatmap showing a strong neg-
ative correlation between GVF and both SVF and AGD, and a positive correlation between SVF and
AGD; (b) boxplots and t-test results for SVF, with Zone B showing the highest values and Zone A
the lowest; (c) boxplots and ¢-test results for GVF, with Zone A having the highest values and Zones
B and C at lower, similar levels; (d) boxplots and ¢-test results for AGD, with the shortest distances
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in Zone A and longer distances in Zones B and C, and significant differences between Zone A and
the other two zones. Note: * p < 0.05, ** p < 0.01, and ***p < 0.001.

When this gradient is examined by zone (Figure 7b-d), clear distributional differ-
ences emerge. Zone B tends to occupy the more visually open space of the distribution,
showing higher SVF and larger AGD, whereas Zone A is characterized by higher GVF
and shorter AGD, indicating a vegetation-enclosed condition. Zone C generally lies be-
tween the other two zones. Pairwise t-tests displayed on the boxplots further clarified the
differences between zones. The open-use zone (Zone B) had significantly higher SVF and
greater vegetation distance than at least one of the other zones, while the vegetation-dom-
inated zone (Zone A) had significantly higher GVF than Zone B. Together, these results
demonstrate that the field-based zoning is consistent with quantitative visual perception
measures and that the three indicators converge to describe the same spatial structure.

These visual patterns are supported by the one-way ANOVA (Table 2). SVF, GVF,
and AGD all differed significantly among zones. The corresponding effect sizes were
small to moderate (n? = 0.033-0.050), meaning that the zoning scheme explains about 3-
5% of the variance in these indicators. Overall, the ANOVA results and the patterns in
Figure 6 show that the three zones differ in both behavior and visual form. Zone B is the
most open. Zone A is more enclosed by vegetation. Zone C falls in between.

Table 2. One-way ANOVA results for visual perception indicators.

Indicator SSB SST F p-Value 1?2 =SSB/SST
SVF 0.057 1.132 5.668 0.004 0.050
GVF 0.293 8.902 3.639 0.028 0.033
AGD 74.515 1845.492 4.502 0.012 0.040

4. Discussion
4.1. Implications and Potential Applications

This study combined street-level visual indicators with on-site behavioral data to test
whether usage-based zoning in a high-density residential compound is also legible in vis-
ual-spatial terms. Methodologically, three layers of analysis were integrated: (1) objective
indicators derived at viewpoint level, sky view factor (SVF), green view factor (GVF), and
average green distance (AGD), which together describe an openness—enclosure gradient
similar to what has been reported for visual greenery and perceived comfort in residential
settings [26,48]; (2) statistical tests to verify whether the three empirically defined zones
differ in these indicators; and (3) a resident survey that profiled users’ socio-de-
mographics, outdoor-use patterns, and preferences for zones and environmental features.
This mixed strategy allowed us to link what space looks like to how it is actually chosen
and used.

Taken together, survey results with visibility analysis results, a clear spatial prefer-
ence emerges. Based on the results, we found that all three indicators differed significantly
among zones, with small-to-moderate effect sizes, and the most open zone (Zone B) was
also the most preferred one. Regular users tend to choose outdoor spaces that offer both
greenery and good visual openness, and under the current layout Zone B fits this condi-
tion best. Among the three activity zones, about 79% of respondents preferred Zone B,
while Zone C received a moderate share and Zone A was selected by only a few users.
This pattern is consistent with the visual-spatial analysis, which shows that Zone B pro-
vides a more open and comfortable environment. Zone B scored higher in SVF and AGD
and lower in GVF, which offered a more spacious, visually permeable setting with vege-
tation. The evidence does not support H1 or H2 in this context. However, this
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configuration aligns well with residents’ stated preferences for “open view” and with re-
storative-environment theory, which argues that visual access, depth, and moderate nat-
ural elements support restoration and lingering [49,50]. In this study, Average Green Dis-
tance (AGD) emerges as a key predictor of resident preference—an eye-level proximity
metric that image-based approaches cannot readily quantify. Our finding echoes Saadati-
vaghar et al., who reported that the indirect effect of vegetational variables on restoration
through the mediator variable of being away was confirmed [51], consistent with atten-
tion-restoration pathways. In short, the findings imply that not only how much greenery
is visible (measured by GVF), but also how far it sits from the observer, helps explain
preference.

By contrast, Zone A showed the opposite visual signature, higher GVF, lower SVF,
shorter green distance, corresponding to a more vegetated but more enclosed experience,
and it was chosen far less often in the survey. Although 28.73% of respondents said they
prefer outdoor spaces with more vegetation, our analysis shows that Zone A, with the
highest GVF, was the least preferred. The finding implies that “more green” is not gener-
ally preferable, which accords with earlier work showing a negative relationship between
GVF and Physiological Equivalent Temperature (PET) [52]. When vegetation becomes too
dense and too close, it can create excessive visual enclosure and even block desired views,
which in turn reduces people’s willingness to use this space. Only 1.5% of residents pre-
ferred more private, highly enclosed spaces. This suggests that most residents do not want
outdoor areas in the community to be too closed. Zone A shows the lowest AGD, which
means vegetation is very close to the viewpoints and the space is more enclosed. This may
explain why Zone A was the least frequently chosen. Zone C, with intermediate values,
also attracted intermediate levels of preference.

For high-density residential environments, there are two practical implications. First,
not all outdoor space has to be equally greened; what users rewarded here was structured
openness with accessible greenery, not maximal enclosure. Designers and managers can
therefore purposefully reserve some circulation spines or central lawns as high-SVF, long-
distance views, while locating denser planting, seats, or semi-private corners in secondary
zones. Second, residents of different ages may prefer different types of outdoor spaces.
Design strategies can therefore be tailored to specific age groups to create an age-friendly
residential outdoor environment. For example, open, view-rich areas for everyday, cross-
age use, and more vegetated, sheltered pockets for older or quieter users, echoing age-
sensitive open-space recommendations in dense Asian residential areas [53,54]. This sug-
gests that viewpoint-level visual indicators are not only analytic tools but can be embed-
ded in design guidelines to check whether planned spaces will reproduce the resident-
favored pattern observed here.

4.2. Limitations and Future Work

At the same time, several limitations point to directions for further work. First, the
present preference analysis was linked to administratively/empirically defined zones; in
future studies, preferences could be mapped directly onto clusters derived from the visual
perception indicators themselves. For instance, clustering viewpoints by SVF-GVF-AGD
and then testing which clusters users favor. That would tell us whether people are re-
sponding to our planning units or to finer-grained visual patterns. Second, the indicator
set was intentionally concise; high-density outdoor space could be described more fully
by adding facade enclosure, ground permeability, or even semantic/image features, which
would allow a more nuanced guidance for design. Third, our analysis draws on one resi-
dential community and a context of high density with ample greenery; these conditions
may limit how broadly the results apply. Applying the same workflow to more cases with
different building layouts, greening ratios, and resident profiles would help establish how
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generalizable the residence-favored pattern really is, and whether demographical context
shifts the optimum.

Future studies will include seasonal variation in vegetation, with multi-season spa-
tial and survey campaigns to better capture the spatiotemporal dimensions of residents’
green-space perception. While this study examined associations between outdoor green-
ery morphology and stated preferences, it did not unpack the underlying mechanisms. As
a next step, we will test potential mediators, including microclimatic conditions (for in-
stance, air radiant temperature and wind distribution) and environmental-psychology
constructs (for instance, stress recovery, attention restoration and comfort), using media-
tion, structural equation or multilevel models to clarify how greenery shapes preference.

5. Conclusions

This study set out to verify whether a usage-based spatial subdivision in a high-den-
sity residential compound is also legible in quantitative visual terms, and whether such
visual patterns are consistent with residents’ stated preferences. We combined three levels
of evidence: (i) visual perception indicators, including sky view factor (SVF), green view
factor (GVF), and average green distance (AGD), to describe an openness—enclosure gra-
dient, following earlier work on street-level greenery and visual comfort; (ii) one-way
ANOVA with effect sizes to test whether the three empirically defined zones actually dif-
fer; and (iii) a questionnaire capturing socio-demographics, outdoor-use rhythms, and
preferences for zones and environmental features. This multi-source design made it pos-
sible to connect how spaces look, how they are structured, and what residents report they
prefer. Based on the questionnaire and the quantitative visual analysis, this study found
a preliminary preference pattern for outdoor space in high-density residential areas.
When overall greening is high, residents tend to favor spaces with greater visual openness
rather than spaces that are heavily wrapped by vegetation.

Beyond the case itself, the workflow we developed, integrating solid 3D models with
voxelized LiDAR point clouds and linking them to resident survey data, offers a technical
path that fits well with the vision of future, intelligent cities. It shows how fine-grained
spatial data can be used to “see” urban space from the pedestrian’s perspective and to test
design options digitally before implementation. Such data-driven visibility analysis can
be embedded in smart planning platforms, support low-carbon community renewal by
optimizing existing greenery instead of overplanting, and help reconfigure public inter-
action spaces, green courtyards, and linear parks to better serve health-oriented urban life.
As cities move toward intelligent management, 3D scene reconstruction and point-cloud-
based assessment can become routine tools for evaluating livability, micro-scale walkabil-
ity, and visual comfort.

This study offers direct guidance for outdoor landscape design in high-density resi-
dential areas. The results suggest configuring vegetation with an appropriate setback from
pedestrian paths so that people experience adequate openness while still perceiving
greenery. Designers should avoid dense, close plantings that create excessive enclosure.
The framework links 3D, pedestrian-level visual indicators to resident preference and
helps identify spatial configurations that better meet user needs. It can support sustainable
urban planning and smart-city workflows by testing planting layouts, spatial configura-
tion for greenery, and view management before implementation. In this sense, the pro-
posed framework is not only a method for one residential community, but also a transfer-
able component for future-city toolkits to identify urban spatial morphologies that better
meet people’s needs, supporting sustainable land use, healthy-city goals, and human-cen-
tered urban renewal in increasingly dense environments.
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Appendix A
Appendix A.1.

Presented below is the Questionnaire on the Quality of Outdoor Spaces in High-Den-
sity Residential Communities, consisting of two parts and 10 questions.
Section I. Basic Information

1. Gender:
[0 Male 0 Female
2. Age:

O Under 17 O 18-30 O 3145 [0 46-65 [ 66 and above
3. Employment status:
O Student O Employed O Self-employed/Freelance [ Retired

4.  Length of residence in this community:
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O <1 year [0 1-2 years [ 2-3 years [1 34 years
Section II. Evaluation of Outdoor Spaces

1. Typical time of day for outdoor activities:
00 08:00-10:00 O 10:00-12:00 O 12:00-14:00 O 14:00-16:00 O 16:00-18:00 O 18:00-
20:00
2. Frequency of using outdoor spaces in the community:
O Almost every day [0 At least twice per week I Once per week [1 Occasionally
3. Typical duration of each outdoor visit:
0 <30 min 0 30-60 min [0 60-120 min [0 >120 min
4. Importance of outdoor spaces in residential community areas for your mental and
physical restoration:
O Very important [0 Important (I Neutral [J Not important [I Not sure
5. If you often engage in outdoor activities in the community, which area do you prefer

(single choice; please refer to the community map and tick one):

O Zone A OO Zone B [0 Zone C
(Provide a printed community map (Figure 2) so that respondents can indicate their

selection.)

6.

Environmental features most frequently experienced in recent visits in the residential
community (select all that apply):

[ More vegetation

O Sufficient seating

O Rich color in vegetation

O Well-equipped fitness/recreation facilities
O Strong sense of privacy

O Quiet atmosphere

O Open views

O Large activity area

O highly enclosed/with strong spatial privacy
O Other:

Appendix A.2. The Descriptive Statistics of Questionnaire Results (N =279)

The following table presents the descriptive statistics for the 279 questionnaires col-

lected.
Question Option Number Percentage

1. Basic information
Gender Female 153 54.84%
male 126 45.16%
31-45 95 34.05%
18-30 76 27.24%
Age 46-65 70 25.09%
66 and above 26 9.32%
Under 17 12 4.30%
Employed 199 71.33%
Employment status Retired 30 10.75%
Student 29 10.39%
Self-employed/freelance 21 7.53%

Length of residence <1 year 17 6.09%
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1-2 years 100 35.84%
2-3 years 44 15.77%
3—4 years 118 42.29%
2. Evaluation of Outdoor Spaces
8:00-10:00 86 21.39%
10:00-12:00 58 14.43%
Outdoor activity time 12:00-14:00 10 2.49%
14:00-16:00 25 6.22%
16:00-18:00 108 26.87%
18:00-20:00 115 28.61%
Almost every day 166 59.50%
Frequency of using At least twice per week 89 31.90%
outdoor spaces Once per week 16 5.73%
Occasionally 8 2.87%
<30 min 10 3.58%
Duration of outdoor ac- 30-60 min 101 36.20%
tivities 60-120 min 132 47.31%
>120 min 36 12.90%
Very important 56 20.07%
Importance of outdoor Important 162 58.06%
spaces for mental and Neutral 32 11.47%
physical restoration Not important 4 1.43%
Not sure 25 8.96%
A 16 5.73%
Preferred area B 220 78.85%
C 43 15.41%
More vegetation 158 28.73%
Open views 112 20.36%
Quiet atmosphere 84 15.27%
Rich color in vegetation 63 11.45%
Preferred environmen- Wel l—tzlli;;zzvfli?rll::;iecre— 57 10.36%
tal features . s 51 9.27%
ation facilities
Sufficient seating 15 2.73%
Highly encl.osed(with 8 1.45%
strong spatial privacy
Other 2 0.36%

References

Bai, X.; Shi, P. China’s urbanization at a turning point—Challenges and opportunities. Science 2025, 388, eadw3443.

Wang, F.; Liu, S.; Chen, T.; Zhang, H.; Zhang, Y.; Bai, X. How urbanization affects residents” health risks: Evidence from China.

Environ. Sci. Pollut. Res. 2023, 30, 35554-35571.

3. Liu, Z,; Chen, X,; Cui, H.; Ma, Y.; Gao, N.; Li, X.; Meng, X.; Lin, H.; Abudou, H.; Guo, L.; et al. Green space exposure on depres-

sion and anxiety outcomes: A meta-analysis. Environ. Res. 2023, 231, 116303.

4. Ventriglio, A.; Torales, ].; Castaldelli-Maia, ].M.; De Berardis, D.; Bhugra, D. Urbanization and emerging mental health issues.

CNS Spectr. 2021, 26, 43-50.

5. Huang, W,; Lin, G. The relationship between urban green space and social health of individuals: A scoping review. Urban For.

Urban Green. 2023, 85, 127969.

6. He, D,;Miao, J.; Lu, Y.; Song, Y.; Chen, L.; Liu, Y. Urban greenery mitigates the negative effect of urban density on older adults’

life satisfaction: Evidence from Shanghai, China. Cities 2022, 124, 103607.



Buildings 2025, 15, 4275 18 of 19

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Peng, Z.; Bardhan, R.; Ellard, C.; Steemers, K. Urban climate walk: A stop-and-go assessment of the dynamic thermal sensation
and perception in two waterfront districts in Rome, Italy. Build. Environ. 2022, 221, 109267.

Zhang, S.; Zhao, X.; Zeng, Z.; Qiu, X. The Influence of Audio-Visual Interactions on Psychological Responses of Young People
in Urban Green Areas: A Case Study in Two Parks in China. Int. |. Environ. Res. Public Health 2019, 16, 1845.

Junsik, K; Dong-Kun, L.; Robert, D.B.; Saehoon, K.; Jun-Hyun, K.; Sunyong, S. The effect of extremely low sky view factor on
land surface temperatures in urban residential areas. Sustain. Cities Soc. 2022, 80, 103799.

Xiong, W.; Wu, Q.; Qi, J; Li, J.; Zhu, S.; Qiu, B. Spatiotemporal dynamics of land surface temperature and its drivers within the
local climate zone framework. Sustain. Cities Soc. 2025, 133, 106859.

Gao, S.; Ma, Y.; Wang, C.; Xue, H.; Zhu, K,; Hou, S.; Feng, C. Assessing urban greenery impact on human psychological and
physiological responses through virtual reality. Build. Environ. 2025, 272, 112696.

Macintyre, V.G.; Cotterill, S.; Anderson, J.; Phillipson, C.; Benton, ].S.; French, D.P. “I Would Never Come Here Because I've
Got My Own Garden”: Older Adults” Perceptions of Small Urban Green Spaces. Int. |. Environ. Res. Public Health 2019, 16, 18.
Elsadek, M.; Sun, M.; Sugiyama, R.; Fujii, E. Cross-cultural comparison of physiological and psychological responses to different
garden styles. Urban For. Urban Green. 2019, 38, 74-83.

Schmidt, T.; Kerr, J.; Schipperijn, J. Associations between Neighborhood Open Space Features and Walking and Social Interac-
tion in Older Adults-A Mixed Methods Study. Geriatrics 2019, 4, 18.

Mohr-Stockinger, S.; Sanft, S.J.; Biittner, F.; Butenschon, S.; Rennert, R.; Sdumel, I. Awakening the sleeping giant of urban green
in times of crisis-coverage, co-creation and practical guidelines for optimizing biodiversity-friendly and health-promoting res-
idential greenery. Front. Public Health 2023, 11, 14.

Aerts, R.; Vanlessen, N.; Dujardin, S.; Nemery, B.; Van Nieuwenhuyse, A.; Bauwelinck, M.; Casas, L.; Demoury, C.; Plusquin,
M.; Nawrot, T.S. Residential green space and mental health-related prescription medication sales: An ecological study in Bel-
gium. Environ. Res. 2022, 211, 8.

Kang, Y.; Kim, E.J. Differences of Restorative Effects While Viewing Urban Landscapes and Green Landscapes. Sustainability
2019, 11, 2129.

Krekel, C.; Kolbe, J.; Wiistemann, H. The greener, the happier? The effect of urban land use on residential well-being. Ecol. Econ.
2016, 121, 117-127.

Chen, K.; Zhang, T.; Liu, F.; Zhang, Y.; Song, Y. How Does Urban Green Space Impact Resid. Ment. Health: A Literature Review
of Mediators. Int. |. Environ. Res. Public Health 2021, 18, 11746.

Bahr, S. The relationship between urban greenery, mixed land use and life satisfaction: An examination using remote sensing
data and deep learning. Landsc. Urban Plan. 2024, 251, 105174.

Martinez, A.d.1L; Labib, S.M. Demystifying normalized difference vegetation index (NDVI) for greenness exposure assess-
ments and policy interventions in urban greening. Environ. Res. 2023, 220, 115155.

Zhu, H.; Nan, X; Yang, F.; Bao, Z. Utilizing the green view index to improve the urban street greenery index system: A statistical
study using road patterns and vegetation structures as entry points. Landsc. Urban Plan. 2023, 237, 104780.

Ren, Z.; Du, Y.; He, X,; Pu, R.; Zheng, H.; Hu, H. Spatiotemporal pattern of urban forest leaf area index in response to rapid
urbanization and urban greening. J. For. Res. 2018, 29, 785-796.

Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.-M.; Tucker, C.J.; Stenseth, N.C. Using the satellite-derived NDVI to assess
ecological responses to environmental change. Trends Ecol. Evol. 2005, 20, 503-510.

Susaki, J.; Kubota, S. Automatic Assessment of Green Space Ratio in Urban Areas from Mobile Scanning Data. Remote Sens.
2017, 9, 215.

Li, X.; Zhang, C.; Li, W; Ricard, R.; Meng, Q.; Zhang, W. Assessing street-level urban greenery using Google Street View and a
modified green view index. Urban For. Urban Green. 2015, 14, 675-685.

Herbert, G.; Chen, X. A comparison of usefulness of 2D and 3D representations of urban planning. Cartogr. Geogr. Inf. Sci. 2015,
42,22-32.

Wu, B.; Yu, B,; Shu, S,; Liang, H.; Zhao, Y.; Wu, J. Mapping fine-scale visual quality distribution inside urban streets using
mobile LiDAR data. Build. Environ. 2021, 206, 108323.

Zhou, L,; Li, X,; Zhang, B.; Xuan, J.; Gong, Y.; Tan, C.; Huang, H.; Du, H. Estimating 3D Green Volume and Aboveground
Biomass of Urban Forest Trees by UAV-Lidar. Remote Sens. 2022, 14, 5211.

Urech, P.R.; Dissegna, M.A; Girot, C.; Grét-Regamey, A. Point cloud modeling as a bridge between landscape design and plan-
ning. Landsc. Urban Plan. 2020, 203, 103903.



Buildings 2025, 15, 4275 19 of 19

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.
41.

42.
43.

44.

45.
46.

47.

48.

49.
50.

51.

52.

53.

54.

Jaalama, K.; Kauhanen, H.; Keitaanniemi, A.; Rantanen, T.; Virtanen, J.-P.; Julin, A.; Vaaja, M.; Ingman, M.; Ahlavuo, M,;
Hyyppa, H. 3D Point Cloud Data in Conveying Information for Local Green Factor Assessment. ISPRS Int. . Geo-Inf. 2021, 10,
762.

Weinmann, M.; Urban, S.; Hinz, S.; Jutzi, B.; Mallet, C. Distinctive 2D and 3D features for automated large-scale scene analysis
in urban areas. Comput. Graph. 2015, 49, 47-57.

Zhao, Y.; Wu, B.; Wu, J; Shu, S.; Liang, H.; Liu, M.; Badenko, V.; Fedotov, A.; Yao, S.; Yu, B. Mapping 3D visibility in an urban
street environment from mobile LiDAR point clouds. GIScience Remote Sens. 2020, 57, 797-812.

Miinzinger, M.; Prechtel, N.; Behnisch, M. Mapping the Urban forest in detail: From LiDAR point clouds to 3D tree models.
Urban For. Urban Green. 2022, 74, 127637.

Zhang, G.; Verbree, E.; Wang, X. An Approach to Map Visibility in the Built Environment From Airborne LiDAR Point Clouds.
IEEE Access 2021, 9, 44150-44161.

Liu, X.; Li, J.; Nazeer, M.; Wong, M.S. Advanced point cloud completion for urban trees: A novel approach using enhanced
SnowflakeNet. Urban For. Urban Green. 2025, 113, 129107.

Klingberg, J.; Konarska, J.; Lindberg, F.; Johansson, L.; Thorsson, S. Mapping leaf area of urban greenery using aerial LIDAR
and ground-based measurements in Gothenburg, Sweden. Urban For. Urban Green. 2017, 26, 31-40.

Zhang, G.; Yang, D.; Cheng, S. Voxelized Point Cloud and Solid 3D Model Integration to Assess Visual Exposure in Yueya Lake
Park, Nanjing. Land 2025, 14, 2095.

Orozco Carpio, P.R.; Vifials, M.].; Lopez-Gonzalez, M.C. 3D Point Cloud and GIS Approach to Assess Street Physical Attributes.
Smart Cities 2024, 7, 991-1006.

Benedikt, M.L. To take hold of space: Isovists and isovist fields. Environ. Plan. B 1979, 6, 47-65.

Zong, X.; Wang, T.; Skidmore, A.K.; Heurich, M. The impact of voxel size, forest type, and understory cover on visibility esti-
mation in forests using terrestrial laser scanning. GIScience Remote Sens. 2021, 58, 323-339.

Stamps, A.E. Isovists, enclosure, and permeability theory. Environ. Plan. B-Plan. Des. 2005, 32, 735-762.

Liu, Y.; Yu, Z,; Song, Y.; Yu, X,; Zhang, J.; Song, D. Psychological influence of sky view factor and green view index on daytime
thermal comfort of pedestrians in Shanghai. Urban Clim. 2024, 56, 102014.

Yin, D.; Hirata, T. Comprehensive Comparative Analysis and Innovative Exploration of Green View Index Calculation Meth-
ods. Land 2025, 14, 289.

Cohen, ]. Statistical Power Analysis for the Behavioral Sciences; Routledge: New York, NY, USA, 2013.

Huang, J.; Liang, J.; Yang, M.; Li, Y. Visual Preference Analysis and Planning Responses Based on Street View Images: A Case
Study of Gulangyu Island, China. Land 2023, 12, 129.

Li, T.; Zheng, X.; Wu, J.; Zhang, Y.; Fu, X; Deng, H. Spatial relationship between green view index and normalized differential
vegetation index within the Sixth Ring Road of Beijing. Urban For. Urban Green. 2021, 62, 127153.

Zhang, Y.; Dong, R. Impacts of Street-Visible Greenery on Housing Prices: Evidence from a Hedonic Price Model and a Massive
Street View Image Dataset in Beijing. ISPRS Int. . Geo-Inf. 2018, 7, 104.

Ulrich, R.S. View through a window may influence recovery from surgery. Science 1984, 224, 420-421.

Kaplan, R.; Kaplan, S. The Experience of Nature: A Psychological Perspective; Cambridge University Press: New York, NY, USA,
1989.

Saadativaghar, P.; Zarghami, E.; Ghanbaran, A. Measuring restoration likelihood of tall building scapes: Physical features and
vegetation. Landsc. Ecol. Eng. 2024, 20, 363-395.

Wang, Q.; Sun, W.; Tang, S.; Zhou, X. SVI-GVI integration for thermal comfort in urban parks: A case study of Changchun in
cold regions. Theor. Appl. Climatol. 2025, 156, 318.

Shao, Y.; Yin, Y.; Xue, Z.; Ma, D. Assessing and Comparing the Visual Comfort of Streets across Four Chinese Megacities Using
Al-Based Image Analysis and the Perceptive Evaluation Method. Land 2023, 12, 834.

Jim, C.Y.; Chan, M.W.H. Urban greenspace delivery in Hong Kong: Spatial-institutional limitations and solutions. Urban For.
Urban Green. 2016, 18, 65-85.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-
thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.



