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ABSTRACT
In this paper, we propose a hybrid Neural Collaborative Filtering
(NCF) model trained with a multi-objective function to achieve a
music playlist generation system. The proposed approach focuses
particularly on the cold-start problem (playlists with no seed tracks)
and uses a text encoder employing a Recurrent Neural Network
(RNN) to exploit textual information given by the playlist title. To
accelerate the training, we first apply Weighted Regularized Matrix
Factorization (WRMF) as the basic recommendation model to pre-
learn latent factors of playlists and tracks. These factors then feed
into the proposed multi-objective optimization that also involves
embeddings of playlist titles. The experimental study indicates that
the proposed approach can effectively suggest suitable music tracks
for a given playlist title, compensating poor original recommenda-
tion results made on empty playlists by the WRMF model.
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1 INTRODUCTION
Inspired by the 2018 RecSys Challenge [2], in this paper, we propose
an approach for automatically suggesting tracks to be included in
a given playlist. For this problem, various amounts of information
may be present: in many cases, the playlists will already be popu-
lated with several music tracks (further referred to as "seed tracks"),
and new tracks for music playlist continuation should be suggested.
However, in this paper, we are interested in the most extreme com-
pletion case, in which a playlist is identified by a title, but contains
no seed tracks. This “seedless” empty playlist condition can be seen
as a variant of the cold-start problem, well-known in the domain
of Recommender Systems (RS), which especially is challenging for
Collaborative Filtering (CF)-based approaches [10, 13, 15].

To solve this problem, we employ the playlist title as external
information to transform the playlist into a latent factor vector
representation, which is used to allow the system to give track
suggestions. However, due to the noisiness of the given titles, ap-
plying common word-level approaches such as Word2Vec [12] will
be challenging. Alternatively, as a simpler solution, we employ
character-level N -grams, which are well-known for their effective-
ness in text processing [1, 8].

Further, to encode the N -gram feature, we apply Neural Col-
laborative Filtering (NCF), which has been attracting attention of
researchers recently mostly for its effectiveness, as reported in var-
ious RS works [17, 18]. More specifically, we employ a Recurrent
Neural Network (RNN) with Long Short-Term Memory (LSTM)
cells [4], which is inherently designed for sequential data such as
textual data [6, 16].

In the rest of the paper, we first shortly describe the empirical
rationale behind our current approach, based on preliminary data
analysis (Section 2). Then, we present the details about the pro-
posed approach (Section 3) and the experimental setup for internal
evaluation (Section 4), followed by the obtained results (Section 5).
Finally, we discuss the results and future work in the conclusion of
the paper (Section 6).

2 PRELIMINARY APPROACH & DATA
ANALYSIS

2.1 Simulation of Testing Condition
In the RecSys challenge, the Million Playlist Dataset (MPD) is the
official data offered for training and validation. For final evaluation

https://doi.org/10.1145/3267471.3267485
https://doi.org/10.1145/3267471.3267485
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of challenge submissions, a so-called Challenge Set is released, offer-
ing playlists to be completed according to 10 “challenge categories”,
ranging from playlists with a title, but without any seed, up to
playlists with a title and 100 random tracks. A full definition of the
10 challenge categories can be found on the challenge website 1.

As the ground truth for the Challenge Set is unknown during
the challenge’s running time, during development, we could not
directly evaluate our system on this set. Instead, we drew internal
training/validation splits from the MPD, where the test data was
modified to meet the characteristics of the Challenge Set.

Variable Description Value
I tr number of training playlists 500,000
Ivl number of validation playlists 5,000
J number of tracks ∼1,600,000
L number of unique N -grams ∼31,000

Table 1: Details on the data used for the experiments. The
numbers of tracks J and unique N -gram tokens L is approx-
imate, due to randomization effects across the splits.

The split process starts with the random selection of a desired
amount of playlists for training and validation out of the MPD. Sim-
ilar to the challenge’s original setup, we keep the ratio between the
size of training and validation set as 100:1. Especially, the playlists
for validation are chosen and processed to mimic characteristics of
the Challenge Set’s various categories in terms of the number of
hold-out tracks and the number of seed tracks per category. More
details can be found in the Table 1. This process is repeated for
three random folds.

For our challenge submission, we combined the MPD and the
Challenge Set to build a total assignment matrix that contains all
the playlists and the tracks for the training of submitted system.

2.2 Matrix Factorization Performance
Using the data as described in the previous section, we performed a
preliminary analysis of how successful a baseline approach would
be on the various challenge categories. For this, we employed sev-
eral Matrix Factorization (MF) techniques such as Singular Value
Decomposition (SVD) and Weighted Regularized Matrix Factoriza-
tion (WRMF) [5]. MF is known as one of the most popular and
effective solutions in the RS problem domain, with relatively little
computational overhead [10]. After an initial experiment compar-
ing the various factorization options, we decided to use WRMF
for further development. The detailed result for this preliminary
comparison can be found in Section 5.1.

WRMF is simple and well-developed for recommendation tasks
in which the user-item interaction is implicitly given, such as users’
listening counts or track playing time [5, 7, 10]. While playlist-track
membership is rather explicit compared to “true” implicit feedback,
we applied this algorithm, considering the fact that unselected items
are still ambiguous: unselected tracks should not necessarily be
considered as negative tracks. We trained and validated WRMF
according to the setup as specified in Section 2.1.

Figure 1 visualizes the average NDCG@500 performance for
WRMF over the three folds mentioned in Section 2.1. As can be
1https://recsys-challenge.spotify.com/challenge_readme
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Figure 1: NDCG@500 over the 10 challenge categories using
WRMF.We applied the best hyper-parameter setup as found
through the procedure discussed in Section 5. It indicates the
first case, where there is no seeds shows significantly worse
performance compared to other cases.

seen, challenge category 1 (the “no-seed” case) yields substantially
worse performance than other cases. However, this is expected, as
the current factorization setup did not learn any playlist factors for
empty playlists.

2.3 Title-Based Opportunities
To alleviate the problem of missing information in an empty playlist,
one of the most straightforward ways is to exploit external infor-
mation to characterize the playlist. The challenge data offers two
additional information sources of potential use: the playlist title
and the number of tracks that are held out for the validation. In our
approach, we intentionally only choose the playlist title, as in real-
world applications, it would be unrealistic for users to explicitly
indicate the number of held-out tracks, while it would seem logical
a user would indicate a playlist title before filling the playlist.

Initial inspection of actual titles in the MPD reveal a few key
characteristics of the data, which makes it non-trivial to employ
standard word-level approaches such as WordNet or Word2Vec:

• more than 60% of titles only contain single words and about
92% of them contain less than two words, which reflects
that playlist titles should be treated as words rather than
sentences

• special characters (music!!! _**, //happy place//)
• repeated characters (yaaaas, summerrrr)
• shortened or abbreviated words (biebs!!!!, favss, loml)
• symbolic expressions such as emojis (,,,)
• multiple languages appear (otoño, 電台收藏, アニメ)

For these reasons, we decided to employ a character-level ap-
proach to exploit the textual information. More specifically, we
employ the character N -gram, which uses a short sequence of N
successive characters as a low-level token.

2.4 Learning Playlist Factors From Title
Information

Ideally, for the challenge, we want to find a recommender f that
can be defined as follows:

https://recsys-challenge.spotify.com/challenge_readme
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s̃i, j = f (‘information on the track j’, ‘information on the playlist i’)
(1)

where s̃i, j is the approximated membership score of track j given
playlist i . MF models can be considered as a realization of this
model, using only the integer index of playlist and track entities,
and finding latent embeddings corresponding to these indices:

s̃i, j = f (vj ,ui ) (2)
where ui and vj refer to the latent factors for playlist i and

track j, respectively. As discussed in Section 2.2, however, this
framework is incapable of dealing with “seedless” playlist entities,
which substantially degrades the overall performance.

As mentioned earlier, one can use the title of the playlist as
external information to the playlist i to deal with such cases, while
latent track factors v are kept as-is:

s̃i, j = f (vj ,Ti ) (3)
whereTi is the title of the playlist i . Ultimately, f is expected to ef-

fectively encodeTi into a certain representation allowing inference
of the relationship between two given entities i and j. Intuitively,
there are a few ways to find f , as described below.

Direct learning of the entity factor. Here, one tries to find a
transformer д approximating an ui that is pre-derived from other
algorithms such as MF, with use of external information of i , being
Ti in our case:

ui ≈ д(Ti ). (4)
Recommendation criterion optimization.Alternatively, one

can directly find f by optimizing a relevant criterion which maxi-
mizes the recommendation performance. Related to the music data
domain, such approaches employing external information of the
entity are discussed mostly for the item domain [17, 18].

In [17], the authors tested these approaches (in other words:
finding either д in (4), or f in (3) directly). The authors discuss that
the former case in general works decently, while the latter setup
may not give a better result. On the other hand, [18] analytically
proved the former case should be inferior to the latter case, as it
does not optimize the model to give better recommendations.

Considering these previous works and insights, we hypothesized
that learning a model from scratch using recommendation criteria
is fundamentally better, but might slow down the learning pro-
cess. On the other hand, letting the model learn an approximation
of pre-trained factors will achieve decent performance faster, but
might lead to an irrelevant solution, since no actual recommenda-
tion criteria are incorporated. Balancing the trade-offs, in order to
get reasonable and sensible performance within a relatively short
training time, we set up a multi-objective loss function, as will be
described in the next section.

3 IMPLEMENTATION
3.1 Model

3.1.1 Weighted RegularizedMatrix Factorization. The basemodel
of the proposed approach is the WRMF algorithm [5], which is
learned by solving the following optimization problem:

min
u∗,v∗

∑
i, j

ci, j (si, j − u
⊺
i vj )

2 + λ(
∑
i

∥ui ∥2 +
∑
j

∥vj ∥2) (5)

where si, j refers to the binary membership function between
playlist i ∈ {1, 2, ..., I } and track j ∈ {1, 2, ..., J }, and ui ∈ Rd and
vj ∈ Rd are the latent factors for the ith playlist and the jth track,
respectively. λ is the coefficient controlling the regularization of
the model. ci, j is the confidence that controls the belief regarding
reliability of the membership function, given by:

ci, j = 1 + αsi, j (6)
where α is the coefficient controlling the confidence of the mem-

bership assignment. If α is high, it means the algorithm will rely
more on the tracks that are already assigned in the playlist, which
implies the model ultimately will treat unseen tracks as “negative”
tracks. On the contrary, if α is small, the algorithm depends less
on the given assignment, causing the model to give more general
suggestions.

3.1.2 Multi-Objective Optimization for Recurrent NCF. After the
initial base model is trained as above, we train a RNN model that
maps the sequence of N -gram tokens into the same space as the
pre-trained factors. Among several options to achieve this [17], we
choose to use a multi-objective approach to accelerate the learning
process while not losing accuracy:

min
Θ∗

λLSGNS(ũi ,vj+ ,vj− ) + (1 − λL)MSE(ũi ,ui ) + λΘ∥Θ∥2 (7)

where λΘ controls the amount of L2 regularization of the set of
model parameters Θ of the neural network, and λL is the mixing
coefficient between the two main learning objectives. These objec-
tives are the Mean Squared Error (MSE) between the pre-trained
playlist factor u and the approximated playlist factor ũ, and Skip-
Gram Negative Sampling (SGNS) ensuring that ũ gives reasonable
recommendations.

3.1.3 Title Encoder. Further, ũi in (7) is the ith playlist factor
conditioned by the playlist title, which is derived from the Long
Short-Term Memory (LSTM) based RNN[4] as follows:

ũi = LSTM(ETi ;Θ) (8)
where ETi =

〈
Et1 ,Et2 , ...,EtL

〉
is a sequence of learnable embed-

ding vectors Etl ∈ Rd
E
representing Ti , and Ti =

〈
t1, t2, ..., tL

〉
is

the title of the ith playlist, which is represented as a sequence of
integer indices tl corresponding to each unique character N -gram.
In this work, we use a standard 1-layer LSTM which has dh dimen-
sional hidden states hl that correspond to N -grams at each step l
to encode sequential dependency. Note that for simplicity, we set
the dimensionality dh to be equal to d .

The detailed process is illustrated in Figure 2. The green boxes
indicate the states relevant to the text encoder, which are used for
the processing of playlist titles. They contain the embeddings of the
N -gram tokens corresponding to the ith playlist title (lowest row),
hidden states of each token input over sequential steps (middle
row), and the playlist embedding ũi that summarizes the textual
input data (top row). The blue box refers to the latent factor v of
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Figure 2: Illustration of the proposed approach.

the jth item, which is multiplied by ũi to get the score s̃i, j . For the
rest of the paper, we refer to this model as RNCF , as abbreviation
for Recurrent NCF. In the following subsections, we will focus in
more detail on the two objectives.

3.1.4 Mean Squared Error. TheMSE objective is used to approx-
imate the pre-trained playlist factors u as follows:

MSE(ũi ,ui ) =
1
m

m∑
i

∥ui − ũi ∥2 (9)

wherem is the number of observations in a mini-batch. As dis-
cussed in [17], it is not directly optimizing the model to maximize
its recommendation performance. To compensate for this potential
problem, as discussed in the previous subsection, we introduced
SGNS as another main objective.

3.1.5 Skip-Gram Negative Sampling. SGNS is a loss function
originally developed for the learning of a word embedding model,
which is also often used for learning a recommender system [11, 12].
It maximizes the likelihood of the model while minimizing the
likelihood of “negative” item suggestions for corresponding users
(where in our setup, we consider playlists rather than users). It can
be formulated as follows:

SGNS(i, j+, j−) = − 1
m

m∑
i

[
loдP(si, j+ = 1|i, j+,Θ)+∑

j−
loдP(si, j− = 0|i, j−,Θ)

]
(10)

where P(si, j+ = 1|i, j+,Θ) refers to the likelihood that the playlist
i contains track j+ given model parameter Θ, where j+ indicates
a track that are already was assigned to the playlist i . P(si, j− =
0|i, j−,Θ), on the other hand, is the likelihood that the playlist i
does not have tracks j− ∈ {j−1 , ..., j

−
K }, which are sampled from the

tracks unassigned to the playlist i . Eventually, this objective gives a
higher score on the positive tracks and lower score on the negative
tracks, given playlist i . This can be re-written as follows:

SGNS(ũi ,vj+ ,vj− ) = − 1
m

m∑
i

[
loд(σ (ũ⊺i vj+ ))+

∑
j−

loд(σ (−ũ⊺i vj− ))
]

(11)
where σ is the sigmoid function.

3.2 Training
As for the training of WRMF, the solution for the model is derived
by the Alternating Least Square (ALS) algorithm which is described
in the original paper [5]. There are twomain advantages of this algo-
rithm: easier parallelism and less hyper-parameters. [5] introduced
how the algorithms can easily be distributed, which is preferable for
modern computing environments with multi-core CPUs or GPUs.
Also, this algorithm updates each iteration’s solution by a least
square approach, which means that learning hyper-parameters
such as the learning rate is not necessary. We used the implicit2
library to accelerate experiments. We run 15 iterations for the pre-
training.

The RNN is trained by a standard mini-batch stochastic gradient
algorithm, using the ADAM [9] optimization technique. Within
the training loop, we uniformly sampled K negative samples j−
corresponding to the given triplet of (i, j+, si, j ), which is randomly
selected from the dataset.

3.3 Aggregation
After the learning of the RNN, one can combine the approximated
playlist factors ũ and the original u in several way. In this paper,
we simply replaced the playlist factors without seed tracks by ũ:

s̃i, j =

{
u
⊺
i vj if |j+ | > 0

ũ
⊺
i vj if |j+ | = 0

(12)

where |j+ | indicates the number of positive samples already
assigned to the playlist i . In the testing phase, it refers to the number
of seed tracks given to the playlist. After the above aggregation, we
refer to the system as Hybrid RNCF (HRNCF), to distinguish the
final stage of the system from standard RNCF.

4 EXPERIMENTAL SETUP

Variable Description Value
d dimensionality of latent factors 1,000
dE dimensionality of N -gram embedding 300
N number of characters for the N -gram 3
α WRMF confidence coefficient 100
λ WRMF regularization coefficient 0.001
λL mixing coefficient between MSE and SGNS 0.5
λΘ L2 regularization coefficient for NCF model 0.0001
m size of the mini-batch 1,024
K number of the negative samples sampled 4

Table 2: Detailed setup of the hyper-parameters that are
used for the proposed approach.

A series of experiments was conducted to determine the optimal
hyper-parameter setting for the approach. The detailed final hyper-
parameter setup is described in Table 2; Section 5 describes how
these parameters were chosen. In addition, we set the learning rate
of the NCF model as 0.0005 and the number of maximum iterations
r for early stopping as 50,000, to prevent the RNCF model from
overfitting. For evaluation, we used themain threemetrics proposed
by the challenge: Normalized Discounted Cumulative Gain (NDCG),
2https://github.com/benfred/implicit

https://github.com/benfred/implicit
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R-precision (RPREC), and the Recommended Songs clicks (CLICKS).
The details on the metrics can be found at the challenge overview
web site3. All the metrics are calculated with a cut-off at 500.

4.1 Baselines
We also compare the proposed approach with several baselines.
First, we employed a random recommendation (Rand) and the most
popular recommender (MP) as the most naive baselines to show the
lower bound of the performance. Also, we applied the SVD algo-
rithm as a baseline for the matrix factorization method, comparing
with the WRMF.

We also introduce a naive text similarity based system. This sys-
tem uses the same character N-grams as the proposed system, which
are then used to build a bag-of-N-grams representing a playlist title.
For each query playlist, the title representation is built, and the top-
M closest playlists are retrieved from the training set employing
the cosine similarity. Based on these, the 500 most frequent tracks
are used for the recommendation.

5 RESULTS & DISCUSSION
5.1 Overall Results

Model Category NDCG CLICKS RPREC
Rand No-Seed 0.0001 50.8413 0.0000
Rand Only-Seed 0.0002 50.4310 0.0000
Rand All 0.0002 50.4720 0.0000
MP No-Seed 0.0242 34.2987 0.0072
MP Only-Seed 0.0279 26.7686 0.0101
MP All 0.0275 27.5218 0.0098
SVD200 No-Seed 0.0422 25.9233 0.0115
SVD200 Only-Seed 0.2743 3.9010 0.1365
SVD200 All 0.2511 6.1345 0.1240
WRMF200 No-Seed 0.0245 33.552 0.0057
WRMF200 Only-Seed 0.3353 1.9492 0.1647
WRMF200 All 0.3040 5.1646 0.1488
NGRAM100 No-Seed 0.1796 11.3213 0.0744
NGRAM100 Only-Seed 0.1808 8.3688 0.0852
NGRAM100 All 0.1807 8.6641 0.0841
WRMF1k No-Seed 0.0215 31.1713 0.0049
WRMF1k Only-Seed 0.3331 1.8723 0.1694
WRMF1k All 0.3019 4.7992 0.1529
RNCF1k No-Seed 0.1866 11.2493 0.0760
RNCF1k Only-Seed 0.1901 7.8312 0.0902
RNCF1k All 0.1897 8.1699 0.0888
HRNCF1k No-Seed 0.1866 11.2493 0.0760
HRNCF1k Only-Seed 0.3331 1.8723 0.1694
HRNCF1k All 0.3185 2.8100 0.1601
HRNCF ∗1k All 0.3394 2.2665 0.1924

Table 3: Comparison between the baseline models and the
proposed HRNCF model.

The overall results are described in Table 3. Rand refers to the
results from random suggestion, and MP to the most popular rec-
ommendation. SVD200 andWRMF200 are baseline MF models we
3https://recsys-challenge.spotify.com/rules

tested in the preliminary experiment, with a dimensionality of
d = 200. NGRAM100 is the text based baseline recommendation
system introduced in section 4.1.

Further,WRMF1k refers to the baseline WRMF with d =1,000.
The RNCF1k model uses WRMF as a pre-trained model. HRNCF
is the proposed system, which is the solution we submitted to the
RecSys 2018 Challenge’s Creative Track. The last row of the table
is the final result of our actual submission, ranked 10th ultimately
as known from the public leaderboards. Finally, No-Seed and Only-
Seed refers to the performance when only taking account the case
in which no playlist seeds are provided, and when considering all
other cases, respectively.

As described, the proposed approach (HRNCF) achieves best
performance in the All case. This is expected, as HRNCF combines
the better aspects of bothWRMF and RNCF. Note that the HRNCF’s
performance on the No-Seed and Only-Seed cases are exactly the
same as the performance of the RNCF and the WRMF, due to the
aggregation strategy described in Section 3.3.

In comparison to the Rand or the MP based suggestions, WRMF
generally shows substantially better performance. However, on the
No-Seed case, WRMF performance only marginally outperformsMP.
This is anticipated, since only random factors are used as playlist
factors. As a consequence, suggestions are highly dependent of the
size of the track factors, which largely follow occurrence frequency
in the dataset.

Regarding the NGRAM100, we choose the number of nearest
playlist M as 100, which is shown as the best within our search
rangeM ∈ {50, 100, 250, 500}. Notably, while it is indicated that the
RNCF approach is better than the NGRAM100, the gap between the
two is not substantial despite the simplicity of the NGRAM100. It
implies that the sequential dependency between the N -grams can
be either trivial information for given task or sub-optimally learned
from the training process of the RNN.

5.2 WRMF
To select the best hyper-parameters, we conducted a grid search on
the important parameters. As for the dimensionality of the latent
factor d , we verified 6 different setups {20, 50, 100, 200, 500, 1000}.
As illustrated in Figure 3, in our current experiments, major per-
formance gains are found until d = 500. However, due to computa-
tional limitations, it was infeasible for us to investigate d > 1000.
Further research will be needed to verify performance for larger
choices of d . It turned out that α also affects the performance sub-
stantially, as shown in Figure 4. We tested α ∈ {100, 101, 102, 103},
where α = 102 turned out the best choice.

5.3 Multi-Objective RNCF
We also investigated the effect of mixing coefficient λL between
the losses. For the search range, we tried λL ∈ {0, 0.25, 0.5, 0.75, 1}.
As shown in Figure 5, λL = 0.75 or λL = 0.5 are tentatively better
than the other options. We decided to use 0.5, as it yields better
performance on the No-Seed case, which is our main reason for
employing the RNCF model. However, considering that the curve
shows sharp changes between the tried values, more research is
needed to find a truly optimal λL .

https://recsys-challenge.spotify.com/rules
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Figure 3: Performance of WRMF with respect to d .

100 101 102 103
0.0

0.1

0.2

0.3

ND
CG

@
50

0 
(d

=
1,

00
0)

100 101 102 103
0

10

20

30

40

50

CL
IC

KS
@

50
0 

(d
=

1,
00

0)

100 101 102 103
0.00

0.05

0.10

0.15

RP
RE

C@
50

0 
(d

=
1,

00
0)

All
OnlySeed
NoSeed

Figure 4: Performance of WRMF with respect to α .
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Figure 5: Performance of RNCF with respect to λL .
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Figure 6: Effect of the pre-trained factors in RNCF learning.

We also tested a RNCF model that does not employ pre-trained
MF factors. In this case, one also needs to find track factors v
that minimize the SGNS loss. As [18] pointed out, this approach
is fundamentally better in terms of minimizing recommendation
error. However, as shown in Figure 6, within our current empirical
investigations, learning progress for this approach appears much
slower than in the other approaches we tested.

6 FUTUREWORK
In this work, we introduced a hybrid approach that employs playlist
title information for “seedless” music playlist generation. Our em-
pirical investigations indicate that employing a hybrid RNCF model
can indeed help in solving the problem.

In addition to the proposedmethod, one can also examine content-
based approaches. Although CF-based recommender systems are
powerful and generally surpass the content-based approaches [14],
they can miss items in the long tail due to the scarcity of usage data.
To this end, previous research attempted to learn latent factors of

CF from audio content [17]; other previous work demonstrated the
versatility of pre-trained convnet features which were transferred
from an automatic music tagging network [3].

As the given data for the challenge (playlist title and seed tracks),
can be directly related to audio content, one can exploit their cor-
relation for the music playlist generation. Though we did not deal
with content-based approaches in this paper, an audio crawling
method will be shared on our repository4.
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