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Machine Learning as enabler of Design 
-to-Robotic -Operation 		

Alexander Liu Cheng 

Abstract
This essay promotes Artificial Intelligence (AI) via Machine Learning (ML) as a fundamental en-
abler of technically intelligent built-environments. It does this by detailing ML’s successful ap-
plication within three deployment domains: (1) Human Activity Recognition, (2) Object as well 
as Facial-Identity and -Expression Recognition, and (3) Speech and Voice-Command Recogni-
tion. With respect to the first, the essay details previously developed ML mechanisms imple-
mented via Support Vector Machine and k-Nearest Neighbor classifiers capable of recognizing 
a variety of physical human activities, which enables the built-environment to engage with the 
occupant(s) in a highly informed manner. With respect to the second, it details three previously 
developed ML mechanisms implemented individually via (i) BerryNet—for Object Recognition; 
(ii) TensorFlow—for Facial-Identity Recognition; and (3) Cloud Vision API—for Facial-Expression 
Recognition; all of which enable the built-environment to identify and to differentiate between 
non-human and human objects as well as to ascertain the latter’s corresponding identities and 
possible mood-states. Finally, and with respect to the third, it details a presently developed 
ML mechanism implemented via Cloud Speech-to-Text that enables the transcription of spo-
ken speech—in several languages—into string text used to trigger pertinent events within the 
built-environment. The sophistication of said ML mechanisms collectively imbues the intelli-
gent built-environment with a continuously and dynamically adaptive character that is central 
to Design-to-Robotic-Operation (D2RO), which is the Architecture-informed and Information 
and Communication Technologies (ICTs)-based component of a Design-to-Robotic-Produc-
tion & -Operation (D2RP&O) framework that represents an alternative to existing intelligent 
built-environment paradigms. 

Keywords
Design-to-Robotic-Operation, Machine Learning, Human Activity Recognition, Computer Vision, 
Voice Recognition
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	 Introduction 

Intelligence in the built-environment as a discourse began in the late 60s and early 70s (Cook, 1970, 
1972; Eastman, 1972; Negroponte, 1969, 1975; Pask, 1975a, 1975b). Due to the rudimentary state 
and forbidding costs of Information and Communication Technologies (ICTs) during this period, 
explorations were principally limited to theoretical and/or hypothetical. But over the next two de-
cades, and driven by increasingly sophisticated and accessible ICTs, explorations gradually produced 
physical implementations. From said nascent period throughout early physical implementations, two 
main emphases emerged within the same discourse: one centered around the technical context and 
the other around the architectural. 

With respect to the technical, Ambient Intelligence (AmI) was coined in the late 90s to describe a 
vision of a future digital living room, a built-environment whose ICTs imbued its dwelling space with 
serviceable intelligence to the benefit of its occupant(s) (Zelkha et al., 1998). Within AmI a further 
specialized domain developed, i.e., that of Ambient Assisted Living—or Active and Assisted Living—
(AAL), which framed its inquiry around the promotion of quality of life as well as the prolongation 
of independence with respect to Activities of Daily Living (ADLs) among the elderly via technical 
assistance. By the first decade of the 21st century, AmI and AAL were established and proliferating 
topics within the fields of Computer Science and related Engineerings (Lindgren et al., 2016; Paz 
Santana et al., 2017), Architectural Engineering (Bock et al., 2015; Georgoulas et al., 2014), and—in-
directly—in the Medical Sciences (Acampora et al., 2013). 

With respect to the architectural, and beginning with Cedric Price’s pioneering Generator Project 
and corresponding programs by John and Julia Frazer (Steenson, 2014) in the late 70s, notions of 
interaction between non-human and human agents in the built-environment began to be envisioned. 
For example, in Price’s project, architecture was conceived as a set of interchangeable subsystems 
integrated into a unifying computer system, which enabled a reconfigurability sensitive to function. 
More importantly, both Price and the Frazers intended for the system itself to suggest its own 
reconfigurations, denoting non-human agency in the built-environment. Although the Generator 
Project was never realized, it became the de facto first instance of a subset field in Architecture con-
cerned with bi-directional communication and interaction between non-human and human agents 
in the built-environment, viz., Interactive Architecture (IA) (Fox, 2010; Oosterhuis, 2012) first and 
Adaptive Architecture (AA) (Jaskiewicz, 2013; Kolarevic, 2014) later, which—like AmI—have also 
proliferated in the 21st century. 

The proliferation of intelligence in the built-environment with respect to AmI/AAL surpasses that 
of IA/AA in terms of technical complexity, reliability, and performance. This is due to their differing 
emphases, with the technical focusing on ICTs and corresponding services and the architectural on 
spatial experience, materiality, function, and form. That is, the technical proliferated alongside sus-
tained development of ICTs over decades in ways that the architectural could not, at least not with 
the same affinity and immediacy. Nevertheless, technical sophistication or lack thereof alone has not 
necessarily guaranteed or disqualified contributions in the discourse. Indeed, principally technical 
as well as principally architectural explorations have both independently identified key effective as 
well as affective desiderata common to built-environments—intelligent or otherwise—construed 
as successful with respect to function as well as to spatial experience. This consideration includes a 
caveat: while both the technical as well as the architectural have yielded independent contributions, 
these have been otherwise limited by the lack of mutually provided input and/or feedback. However, 
the promise of solutions yielded by both principally technical AmI/AAL and principally architectural 
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IA/AA explorations have been unwittingly and invariably limited by the rigid and increasingly out-
dated character of their complementing frameworks. This is because the sophistication of a system 
depends on that of its mutually complementing subsystems; and two or more subsystems may not 
mutually complement, sustain, and/or support one another adequately if their levels of development 
and sophistication do not correspond (Milgrom, 1990). More succinctly expressed: at present, the 
architectural does not correspond to the technically superior AmI/AAL, while the technical does 
not correspond to the architecturally superior IA/AA. Consequently, a different design paradigm / 
framework is required in order to enable comprehensively and cohesively intelligent built-environ-
ments with corresponding levels of technical and architectural sophistication.  
The work detailed in this essay belongs to the Design-to-Robotic-Operation (D2RO) component 
of the Design-to-Robotic-Production & -Operation (D2RP&O) framework. D2RP&O considers the 
technical as well as the architectural in conjunction from the early stages of the design and develop-
ment processes, where the built-environment is construed as a highly sophisticated and integrated 
Cyber-Physical System (CPS) (Rajkumar et al., 2010) consisting of mutually informing computational 
and physical mechanisms that operate cooperatively and continuously via a highly heterogeneous, 
partially meshed, and self-healing Wireless Sensor and Actuator Network (WSAN) (Yang, 2014). Via 
a series of limited and progressively complex proof-of-concept implementations (Liu Cheng, 2016; 
Liu Cheng et al., 2018; Liu Cheng and Bier, 2016a, 2016b, 2018; Liu Cheng, Bier, Latorre et al., 2017; 
Liu Cheng, Bier, Mostafavi, 2017), the feasibility and promise of D2RP&O in general and D2RPO in 
particular have been demonstrated. In this essay, two previously and one presently developed core 
Machine Learning (ML) mechanisms are detailed in order to assert the promise of Artificial Intel-
ligence (AI) as a fundamental enabler of intelligent built-environments: (I) ML and Human Activity 
Recognition (HAR), (II) ML and Object as well as Facial-Identity and -Expression Recognition, and 
(III) ML and Speech and Voice-Command Recognition. These mechanisms are part of a prescriptive 
System Architecture intended to serve as the technical backbone of highly sophisticated (i.e., artifi-
cially intelligent, intuitively adaptable, and continuously evolving, etc.) intelligent built-environments. 

 	 Machine Learning and Human Activity Recognition

HAR enhances the built-environment’s ability to respond adequately to the daily habits of the oc-
cupant(s). It enables said environment to build an accurate activity profile that informs proactive 
intervention routines intended to promote well-being. For example, via HAR a built-environment 
may prompt the occupant(s) to engage in physical activity when prolonged periods of inactivity have 
been detected. Furthermore, ventilation systems may be engaged whenever HAR and temperature 
/ humidity sensors integrated in the built-environment detect an increase of interior temperature 
correlated with high physical activity. As with all other mechanisms within the System Architecture, 
HAR increases the resolution of the information that the built-environment receives as sensed 
input, which is directly correlated with the quality and pertinence of the actuated output. 

In this section, previously developed (see Liu Cheng, Bier, Latorre et al., 2017) HAR mechanisms are 
detailed. These mechanisms integrate both cloud-based as well as localized ML capabilities in order 
to ascertain robustness and resilience. Whenever possible, ML processes are locally and dynami-
cally executed via ad hoc node-clustering. But should this prove impossible either due to failure or 
unavailability of adequate resources, cloud-based ML services are used. More specifically, two ML 
mechanisms are integrated into the prescribed System Architecture: (1) a localized ad hoc cluster 
system based on open-source and purpose-written Python scripts, and (2) a simulated cloud-based 
analytics service using MathWorks® MATLAB™. Both mechanisms in this system use accelerom-
eter data streamed from a smartphone and each uses polynomial programming of Support Vector 
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Machine (SVM) and k-Nearest Neighbor (k-NN) classifiers. 

Due to their evolving and resilient characters, ML classifiers have been implemented in a variety of 
applications built on WSANs (Alsheikh et al., 2014). HAR, as one such application, has successfully 
exploited said classifiers in the last five years (see, for example, Andreu and Angelov, 2013; Villa, 2012; 
Xiao and Lu, 2015). However, due to the cost-effective and low energy-consumption character typ-
ical of WSAN nodes, computational processing with respect to feature extraction has been consid-
erably limited (Salomons et al., 2016). The implementation in question overcomes this limitation by 
instantiating ad hoc clusters consisting of a variety of high-performance nodes. Furthermore, several 
clusters may be instantiated simultaneously in order to enable parallel high-performance informa-
tion processing activities. The system’s clustering mechanism uses the Message Passing Interface 
(MPI) standard via MPI for Python (mpi4py) (Dalcin et al., 2011). Another way to overcome this lim-
itation—and one also implemented—is to avoid it altogether by outsourcing all high-performance 
information processing to cloud-based ML services. But there are a number of limitations with 
this approach. The first, and perhaps the most salient, is the cost incurred by including proprietary 
services in any proposed intelligent built-environment solution. A second yet no less important lim-
itation may be the impact to the solution’s resilience. That is to say, should said built-environment 
lose access to the Internet, it would be incapable of generating classification models. 

In the local mechanism, a script based on pyOSC (V2_Lab, 2008) is first written to receive OSC 
data from any device and application capable of broadcasting in said protocol. While all the WiFi-en-
abled nodes in the system’s WSAN have the capacity to receive this data-streaming, only one of 
the nodes of the cluster instantiated to generate classification models stores it locally and streams 
it to a cloud-based data visualization service. Should the receiving node fail, another high-perfor-
mance node replaces it automatically. The proposed solution uses a smartphone (ML for HAR has 
typically used gyroscopic / accelerometer data collected via portable devices—see Anguita et al., 
2013; Ortiz, 2015—or via sensor-fusion—see Palumbo et al., 2016), and the script in question pro-
ceeds to parse and to reduce the noise in the received data in order to generate a robust dataset. 
At this point the dataset is processed through two ML scripts based on scikit-learn (Buitinck et 
al., 2013; Pedregosa et al., 2017), one for SVM and another for k-NN classification models. In this 
particular implementation, the SVM model attained a 95.71% HAR prediction success rate and the 
k-NN model a 97.85%. The success rate attained by the local k-NN model was 2% higher than its 
counterpart model generated externally with MATLAB (i.e., 95.9%), while the local SVM model was 
2% less successful than its MATLAB counterpart (see figure 1). This is a strong argument to prefer 
the open-source alternative.

	 Machine Learning and Object as well as Facial-Identity and -Expression 
Recognition

Computer Vision enables the built-environment to recognize the object and persons within it, 
which is a pertinent prerequisite for actuations that involve interaction with them. For example, if 
an object has collapsed within the built-environment, whether emergency intervention and noti-
fication protocols be initiated or not would depend on whether said object was a person or not. 
Object Recognition enables the built-environment to do this. Moreover, if the collapsed object has 
been detected to be a person, perhaps the identity and facial expression of the person would serve 
as indicators of the nature (e.g., intentional, accidental, etc.) of this fall. This is where Facial-Identity 
and -Expressions recognition plays a crucial role. These three Computer Vision features combined 
enable the built-environment so see its context and to corroborate phenomena as perceived by 
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Figure 2. 

Left: Receiving 

OSC-data; bottom: 

95.71% prediction 

success with respect 

to HAR via SVM (left) 

vs. 97.85% via k-NN 

(right). Right: MAT-

LAB ML results

other sensing mechanisms. 
In this section, three previously developed mechanisms are detailed. The first pertains strictly to 
Object Recognition (see Liu Cheng, Bier, Mostafavi, 2017); the second and third to Facial-Identity 
and -Expression Recognition (forthcoming publication—see Notes), respectively. The first mech-
anism is implemented with open-source BerryNet® (DT42©, Ltd., 2017), which is built with a 
classification model—viz., Inception® ver. 3 (Szegedy et al., 2015)—as well as a detection model 
–viz., TinyYOLO® (Redmon and Farhadi, 2016). The classification model uses Convolutional Neural 
Networks (CNNs), which are at the forefront of ML research (Szegedy et al., 2015). An advantage 
of BerryNet® is that it is a fully implementable gateway on a cluster of RPi3s. On an individual RPi3, 
the inference process is slow, requiring a delay between object-recognition sessions. This situation is 
ameliorated by the dynamic clustering feature of the WSAN. Another benefit-cum-limitation is that 
BerryNet®’s classification and detection models are pretrained, which avoids the need to generate 
said models locally.

The Object Recognition mechanism (see figure 2) in the D2RO System Architecture is intended 
to be deployed across a variety of cameras in the overall built-environment, and that instances of 
detection were to be cross-referenced to minimize false positives. In order to implement this setup, 
each RPi3 node in the WSAN is equipped with a low-cost Raspberry Pi Camera® V2.1, then Ber-
ryNet® is installed in every node and the inference mechanism tested individually. The next step is 
to enable the nodes to share their detection results, which could be done via WiFi. Nevertheless, in 
order to reduce energy-consumption for every object-detection cross-referencing instance, ZigBee 
is preferred. In order to enable ZigBee on BerryNet®’s detection_server.py and classify_server.py 

Figure 2. 

Multiple-object de-

tection via BerryNet 

(DT42©, Ltd., 2017); 

Left: ‘person’, ‘cup’; 

Right: ‘books’



were modified and made compliant with python-xbee (n.io Innovation©, LLC, 2017).
The second and third mechanisms—i.e., Facial-identity and -Expression Recognition—are imple-
mented via two independent yet interrelated components. The first is implemented locally via Goo-
gle Brain®’s TensorFlow™ (TensorFlow™, 2018): while the second via Google Cloud Platform®’s 
Cloud Vision API (Google Cloud Platform®, 2018b). In the implementation of the first component, 
TensorFlow™ is installed on a Linux (Ubuntu) virtual environment and executed in Python. During 
execution of its Multi-Task Convolutional Neural Network (MTCNN) face detection model, Ten-
sorFlow™ requests the user to capture images of his/her face from a variety of positions, orien-
tations, and angles. After completing this phase, facial identity recognition is successfully tested 
real-time (see figure 3, Top). In the implementation of the second component, Python is used to in-
tegrate the services of Cloud Vision API into the inherited WSAN. The same visual input is provided 
to both components to yield a correlated recognition of an identity as well as of a facial expression 
(see figure 3).

	 Machine Learning and Speech and Voice-Command Recognition

Speech and Voice-Command Recognition enable the built-environment to listen to the occupant(s). 
Perceived speech and subsequent processing of command may serve to override and/or to adjust-
ment automatic actuations effected by the built-environment according to the preferences suggest-
ed by occupant-profiles. They may also serve to explicitly engage an actuation or to feed informa-
tion to the system. For example, should the mechanism that ascertains comfortable temperature 
and humidity conditions within the built-environment actuate against the occupants wishes for that 
particular moment, he/she could verbally command the built-environment to stop. In a different 
scenario, one where the occupant is in a state of emergency, he/she could verbally ask the built-en-
vironment to call for help (see figure 4, Top). 

In this section, a purpose-built implementation of this mechanism is detailed. This mechanism is 
designed to work in tandem with but independent of a previously implemented Alexa Voice Service 
(Amazon®, 2017b) (AVS) mechanism (see Liu Cheng and Bier, 2018). The AVS mechanism enabled 
the built-environment to access an array of preset voice commands made available by Amazon®, and 
to connect the former’s services to the Internet. However, the usefulness of AVS centered around 
consumer-based services online, not within the local built-environment. Admittedly, AVS may be 
extended to work with customized commands within local built-environments via Alexa Skills Kit 
(Amazon®, 2017a), but these must rely on Amazon®’s developer and cloud services. Although AVS 
does provide advantages to the services provided by the local built-environment, a more flexible 
and easy to customize Speech and Voice-Command Recognition mechanism is preferred for the 
control of local actuations. Via a Python script, this mechanism first uses PyAudio (Pham, 2017) to 
listen to an initial key trigger command and to process following spoken speech locally (compare to 
AVS’s remote processing), and then sends the result to Google Cloud Platform®’s Cloud Speech-
to-Text (Google Cloud Platform®, 2018a) to generate a string text in return. This text—now effec-
tively a local variable—is then used to trigger particular events in the local built-environment. Since 
the trigger mechanism is locally programmed, there is no limit—beyond that of the system’s storage 
capacity—as to how many new speech-to-actuation correlations may be configured (see figure 4). 

	 Conclusions

The purpose of this essay is to promote AI’s role in the realization of highly sophisticated intelligent 
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Figure 3. 

Top: Facial-Identity 

Recognition via 

TensorFlow (Tensor-

Flow™, 2018). Bot-

tom: Facial-Expression 

Recognition via Cloud 

Vision API’s (Google 

Cloud Platform®, 

2018b).

Figure 4. 

Speech and 

Voice-Command 

Recognition via Cloud 

Speech-to-Text (Goo-

gle Cloud Platform®, 

2018a)



built-environments by illustrating three fundamental ML mechanisms in D2RO’s prescriptive System 
Architecture. Each of the described mechanisms highlights the sophisticated way via which ML pro-
cesses seemingly random high-volume data to yield meaningful results. These mechanisms are also 
highlighted because no viable non-ML counterparts exist, at least not ones capable of inherent evo-
lution and increase in precision over time. AI via ML enables the built-environment to detect pat-
terns otherwise undetectable, patterns that mean the difference between an intuitive solution and 
a cumbersome imposition. Especially in the context of intelligent built-environments, this difference 
and the likes determine user acceptability as well as system effectiveness with respect to promotion 
of occupant well-being. The intelligent built-environment without AI is simply not intelligent enough.
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