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Abstract
The introduction of artificial teammates in the form of autonomous social robots, with fewer social abilities compared to
humans, presents new challenges for human–robot team dynamics. A key characteristic of high performing human-only teams
is their ability to establish, develop, and calibrate trust over long periods of time, making the establishment of longitudinal
human–robot team trust calibration a crucial part of these challenges. This paper presents a novel integrative model that takes
a longitudinal perspective on trust development and calibration in human–robot teams. A key new proposed factor in this
model is the introduction of the concept relationship equity. Relationship equity is an emotional resource that predicts the
degree of goodwill between two actors. Relationship equity can help predict the future health of a long-term relationship. Our
model is descriptive of current trust dynamics, predictive of the impact on trust of interactions within a human–robot team,
and prescriptive with respect to the types of interventions and transparency methods promoting trust calibration. We describe
the interplay between team trust dynamics and the establishment of work agreements that guide and improve human–robot
collaboration. Furthermore,we introducemethods for dampening (reducing overtrust) and repairing (reducing undertrust)mis-
calibrated trust between team members as well as methods for transparency and explanation. We conclude with a description
of the implications of our model and a research agenda to jump-start a new comprehensive research program in this area.

Keywords Relationship equity · Social autonomy · Trust repair · Trust calibration · Work agreements · Agents · Social
abilities · Human–robot interaction · Collaboration · Team

1 Trust in Human–Robot Teams

The possibility of mature human–robot teams (HRTs) seems
within reach with recent advances in unmanned systems,
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self-driving cars, and similar applications of artificial intel-
ligence [50,132]. We define an HRT as a team consisting of
at least one human and one robot, intelligent agent, and/or
other AI or autonomous system. Strictly speaking, a robot is
an intelligent system with a physical embodiment, yet in the
context of this paper, we choose to use the term human–robot
teaming to encompass a broader range of human-autonomy
teaming constellations (see Table 1). Even as artificial intel-
ligence and robotics mature to the point of ubiquitous
use, the question remains how to create high perform-
ing HRTs [4,12,31,32,55,98,108,117,124,137,148,154]. A
recent study showed that a key predictor of good team-
work is not about having good (technical) capabilities, but
about having a way to allow for vulnerable communication
in casual and non-work related interactions [37,39]. Such
communication is a major facilitator of positive trust devel-
opment within the team and ultimately, as the study showed,
a major predictor of a team’s success. On the flip side of
promoting healthy trust relationships is avoiding unhealthy
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trust relationships. Decades of industrial psychology, human
factors and robotics research have shown that inappropri-
ate or insufficient trust in another team member can have
costly consequences [53,59,113,120,122,125]. Trusting too
much (“overtrust”) can condition operators into complacent
states and misuse which can lead to costly disasters with the
loss of human lives and destruction of expensive equipment
[58,111,121,127]. Trusting too little (“undertrust”) can cause
inefficient monitoring and unbalanced workload, leading to
disuse of a machine or the avoidance of a person (see Fig. 1).

Mutual trust is thus a fundamental property and predic-
tor of high performing teams. During collaboration, team
members continuously engage in a process of establishing
and (re)calibrating trust among each other. We define trust
as “the willingness of a party to be vulnerable to the actions
of another party based on the expectation that the other will
perform a particular action important to the trustor, irrespec-
tive of the ability to monitor or control that other party” [96].
Since the establishment andmaintenance of trust is crucial for
team performance and given the projected dramatic increase
in robots that support teamwork it is crucial to understand
how the introduction of such systems affects team trust devel-
opment and maintenance, and ultimately team performance.

1.1 The Research Challenge

While robotic systems that support teamwork have improved
tremendously in the last decade, creating functioning social
abilities in a robot is one of the most difficult remaining
challenges [70]. A key question in the next decade will be
how artificial team members can be tightly integrated into
the social structure of hitherto human-only teams.

Previous research on trust in HRTs has primarily focused
on identifying initial trust states and potential determinants
[9,53,126]. A new approach is needed to identify what
aspects of a robot’s design and behavior determine the adjust-
ment of overtrust and undertrust states over longer periods
of time by analyzing the trust process within a broader per-
spective of longitudinal teaming. By examining trust as a
calibration process between team members collaborating
in various constellations throughout a range of tasks, we
will understand the crucial role of trust calibration for the
incremental refinement of task division, communication, and
coordination among the team members.

With few exceptions (e.g. [59,87,157]), we have little
understanding of the temporal dynamics of trust formation
and maintenance, nor of how trust increases or decreases
over time as a result of moment-to-moment interactions
among HRT members. New approaches to understanding
trust are therefore needed and especially those that are affec-
tively grounded [73,128]. Tounderstandhow the introduction
of social robots in a team might affect trust development
and maintenance, we examine trust development in human–

human teams [108,152]. Even though trust between humans
and robots may not be tantamount to trust among humans
[87], we may still draw insights from human–human trust
development frameworks [29]. In this paper, we draw inspi-
ration from the work by Gottman on identifying healthy and
unhealthy relationship patterns [67,68]. Gottman’s research
charted the dynamics of trust in couples by analyzing
moment-to-moment interactions over longer periods of time,
and identified specific trust repair strategies to be used when
trust was too low, and trust dampening strategies when trust
was too high. We believe a similar approach could be fruit-
fully applied to HRTs when investigating how relationships
with artificial teammates can evolve over longer periods of
time. This is particularly relevant given recent evidence that
points to similarities in how humans establish relationships
with machines via the hormone oxytocin [27].

1.2 Paper Overview

1.2.1 Main Contributions

The conceptual and computational modeling of trust is a
research topic that has been thoroughly researched in the past
and is currently receiving much attention in various research
communities. To distinguish our approach from others and
to acknowledge some of the limitations of our approach we
describe herewhat our paper does and does not address. First,
and foremost, our model concerns the future autonomous
social capabilities of robots. Several other approaches focus
on task-specific trust or adaptive trust calibration approaches
that measure trust passively and then adjust to the operator.
Our approach is unique in the sense that it proposes a future
where robots function with social human-like abilities. Sec-
ond, our model serves as a of meta model to a number of
isolated trust process models previously proposed. This has
the advantage of allowing for a broader outlook of trust in
human–robot teams and allows for a scalable approach that
can describe longer-term human robot interactions. Third,
although our model as it stands is not ready for computa-
tional implementation, it may be amenable to a variety of
computational approaches that can be implemented. There
are many models available that specify the formulas and
computational models required from possible or existing
implementation. Fourth, we deliberately did not specify the
measurement of trust for this model. Trust is a multi-faceted
concept and measurement approaches vary greatly between
disciplines. The concepts proposed here are theoretical and
could be interpreted and measured in a variety of ways. The
strength of this approach is that our model allows for flexible
and diverse application and implementation. Lastly, trust in
robots involves a number of different variables. The work
described in this paper focuses on relationship equity and
those variables believed to affect longitudinal trust develop-
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Table 1 Concept definition Concept Definition

Actor An entity capable of acting, e.g. a human, robot, or agent

Team An interdependent social group with a shared identity and common goal [123]

Human–robot team A team of actors consisting of at least one human and one robot, intelligent
agent, or autonomous system

Longitudinal teaming Forming and developing a team over time (months to years), by engaging in
continuous adaptations of the collaborative process to improve team
performance

Relationship equity An emotional resource that predicts the degree of goodwill between two
actors. The resource is accumulated throughout the interaction history
between the actors, referring to the cumulative positive or negative
assessment of relationship acts performed by each actor

Relationship (regulation) act An act, performed by an actor, that affects the relationship equity, either
positively or negatively. A relationship regulation act is an act performed
deliberately by an actor with the intent to affect the relationship equity in a
certain manner, either positively or negatively

Formal work agreement A formal and explicit agreement between two actors on how they collaborate

Informal collaboration An informal and implicit agreement between two actors on how they
collaborate

Trustworthiness The extent to which an actor has the ability to execute relevant tasks,
demonstrates integrity, and is benevolent towards fellow team members [96]

Reliance The extent to which an actor delegates certain tasks -deemed important by
said actor- to another actor expecting that actor to perform that action timely
and effectively

Trust The willingness of a party to be vulnerable to the actions of another party
based on the expectation that the other will perform a particular action
important to the trustor, irrespective of the ability to monitor or control that
other party [96]

Trust stance An actor’s attitude to (dis)trust another actor with regard to a particular task
or situation

Trust violation An (in)action by an actor representing a misalignment between the observed
trustworthiness and current trust stance

Open trust stance A trust stance that is open to the other actor performing a given task,
representing a high level of trust. With this attitude, trustors may, for
example, reveal intimate information about themselves, allow access to
themselves, or comply with advice provided

Closed trust stance A trust stance that is closed to the other actor performing a given task,
representing a low level of trust. With this attitude, trustors may, for
example, protect information about themselves, do not allow access to
themselves, and do not comply with advice provided

Trust calibration The process of updating the trust stance by aligning the perception of an
actor’s trustworthiness with its actual trustworthiness so that the prediction
error is minimized [18,87]

Trust repair Performing a behavior aimed at increasing trustworthiness and opening up
another actor’s trust stance toward oneself

Trust dampening Performing a behavior aimed at reducing trustworthiness and closing down
another actor’s trust stance toward oneself

Mental model An internal representation in the mind of one actor about the characteristics of
another actor

Self-confidence An actor’s estimation of their own performance and capabilities

Theory of mind An actor’s (e.g. actor A) estimation of another actor’s (e.g. actor B) mental
model of that actor (e.g. actor A).

Miscalibration (1) A prediction error between an actor’s perceived trustworthiness of another
team member and the other team member’s actual trustworthiness. (2) A
prediction error between an actor’s self-confidence and an actor’s actual
trustworthiness
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Fig. 1 Overtrust, undertrust, and calibrated trust as a function of per-
ceived trustworthiness versus actual trustworthiness

ment.We have excluded a number of other variables that may
be important in non-social situations.

1.2.2 Overview

We start by presenting the human–robot team (HRT) trust
model, to describe how iterative collaboration helps team
mates to incrementally construct accurate models of one
another’s ability, integrity, and benevolence, and how trust
calibration can contribute to this process.Thereafter, through-
out the rest of this paper, we go through the various elements
in the HRT trust model to describe a thorough and inte-
grated theory of how trust develops over time as a result of
a series of one-shot interactions. During each one-shot inter-
action, the robot determines whether or not it might cause
a trust violation, i.e. behave in a way that is not in line
with its team member’s trust stance. This allows the robot
to engage in active trust calibration by using a social signal
detection theory. Through the application of our presented
design guidelines, the designer of the robot may determine
what type of behaviour the robot should use to calibrate trust
either in advance of the potential trust violation, or afterwards
in case of a false detection or a miss. Long-term interaction
is described as a repeated series of one-shot interactions,
the outcomes of which are stored in a relationship equity
bank that builds up (or breaks down) depending on whether
trust is either violated or complied to. The theory presented
in this paper allows for a range of propositions that can be
tested and validated by implementing the proposed model
and investigating the effects observed when humans team

with trust-calibrating robots. We state each of these proposi-
tions at the end of each described theoretical component of
the model.

2 AModel for Longitudinal Trust
Development in Human–Robot Teams

Figure 2 presents a newmodel explaining the role and process
of establishing longitudinal social trust calibration through-
out the life cycle of an HRT. The HRT Trust Model describes
the development and role of trust calibration in HRT collab-
oration. HRT consists of four parts including 1) Relationship
Equity, 2) Social Collaborative Processes, 3) Perceptions of
Team Partner, and 4) Perceptions of Self.

2.1 Relationship Equity (Light Blue)

Central to our model is the idea of relationship equity
which describes the cumulative result of the cost and benefit
relationship acts that are exchanged during repeated col-
laborative experiences (including social and/or emotional
interactions) between two actors. The concept is somewhat
similar to the notion of social capital [11] and goodwill
[41]. It is also somewhat inspired by equity theory as part
of social exchange and interdependence theory [61]. While
our concept of relationship equity is primarily the differ-
ence between the cumulative costs and benefits between two
partners, equity in this theory refers to whether the ratio of
relationship outcomes and contributions is equal between
partners. Unbalanced ratios cause relationship distress.

2.2 Social Collaborative Processes (Red and Green)

The middle part of the model describes the collaborative task
performance between the teammates. Together, they perform
a joint activity with the purpose of achieving a common goal.
Collaboration is risky: actions may fail and circumstances
may change. Therefore, the individual actors monitor the
behavior and collaboration of themselves and their team-
mates. Based on their observations, they aim to establish
appropriate trust stances towards one another, so as to mit-
igate the potential risks involved in accomplishing the joint
task (also see Sect. 2.3). This trust stance allows actors (both
human and robot) to decide on safe and effective ways to col-
laborate on the current task with the current team constella-
tion. Based on the trust stance, a teammatemay decide to rely
on a combination of formal, explicit work agreements (espe-
cially in caseswhere relationship equity is low) and informal,
implicit collaborative agreements (especially in cases where
the relationship equity is high). Both types of collabora-
tive agreements aim to improve the team performance, for
instance, by mitigating risk, compensating for one another’s
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Fig. 2 The Human–robot team (HRT) trust model. The collaboration
itself is represented in the middle of the figure, describing how each
action from either of the team members adds to or takes from the rela-
tionship equity bank, and how the level of this bank influences the

preferred way of collaboration, i.e. through informal and implicit agree-
ments, or through formal and explicit agreements. The blue-grey boxes
represent the passive trust calibration process, whereas the yellow boxes
describe the active trust calibration process

limitations, coordinating parallel activities, or communicat-
ing information relevant to the team [20,21,84,92,150].

2.3 Perceptions of Team Partner (Grey)

The blue-grey boxes indicate the passive trust calibration
process:Basedon teammembers’ perceptions of one another,
actors predict one another’s trustworthiness. Taking into
account their current formal work agreements and infor-
mal way of collaboration, they then (sub)consciously assess
the risk involved in the collaboration as it currently is, and
decide upon a trust stance towards one another [16,90]. They
then may decide to adjust their collaboration to mitigate
the assessed risks, for example by proposing formal work
agreements or by relaxing the existing work agreements.
During the next collaborative occasion, the actors obtain
additional information concerning their teammember’s trust-
worthiness. This information may deviate from the original
prediction, resulting in a prediction error, or miscalibration.

Adequately calibrated trust stances among the teammem-
bers lead to more effective collaboration: Overtrust can

condition team members into complacent states and mis-
use, whereas undertrust can cause inefficient monitoring and
unbalanced workload. In other words, trust calibration is cru-
cial for optimal team performance. Through the feedback
loops described in the model, the HRT trust process leads
to continuous incremental updates of the team members’
trust stances towards one another and an overall reduction of
miscalibrations. We assume that, for team members that are
benevolent and sincere, the development of appropriate trust
stances will benefit their collaborative efforts; teammembers
can compensate for each others’ flaws, while relying on each
others’ strengths.

2.4 Perceptions of Self (Yellow)

The yellow boxes indicate the active trust calibration pro-
cess: This process is based on an actor’s awareness concern-
ing their involvement in team trust calibration. This aware-
ness enables both actors to engage in deliberate attempts to
influence, aid, or hamper the trust calibration process. This

123



464 International Journal of Social Robotics (2020) 12:459–478

is achieved first and foremost through the formation of a
theory of mind, allowing an actor to reason about the other
actors’ mental models. If the actor concludes, based on their
self-confidence and their theory of mind, that another team
member may be mistaken about their performance level, the
actor may decide to actively intervene in the trust calibra-
tion process, through a relationship regulation act, such as
an explanation or an apology.

The next few sections describe the various parts presented
by the HRT trust model in more detail.

3 Relationship Equity: Benefits of Building
Trust Over Time

Relationship equity represents the interactionhistorybetween
two actors and is the cumulative positive or negative assess-
ment with respect to the relationship between the actors.
Relationship equity affects future perceptions of trustwor-
thiness and the trust stance by functioning as a lens through
which future interactions are perceived and interpreted. Rela-
tionships that have accumulated a lot of positive equity may
be able to absorb trust violations, without stirring the rela-
tionship equity all that much. Alternatively, relationships
showing negative equity may be rattled even by small trust
violations compared to relations that have positive equity.We
believe relationship equity is a critical construct that is needed
to predict long-term human–robot interaction. The relation-
ship equity between teammates is influenced not only by the
collaborative experience itself but can also be actively and
deliberately affected through relationship regulation acts, as
we will see during the last two steps in the HRT trust model.

The feedback loops (passive and active trust calibration)
presented in Fig. 2 occur continuously while interacting with
other actors. The feedback obtained from these loops is
remembered and stored in what we propose as a new con-
struct known as relationship equity (also see Fig. 3).

Thefirst part of this section focuses on healthy human rela-
tionships that aremaintained by partnerswho actively engage
in relationship regulation acts to contribute to relationship
equity [67,68]. Research on human–robot interaction has
applied some of the core concepts related to this work to
HRTs to explore the similarities and differences [24–27].

3.1 Emotion Regulation as the Key Activity to Build
Relationship Equity in Human Relationships

Emotion and emotion regulation play an important role in
the formation of trust [33,151]. Expressions of emotion are a
crucial mechanism by which people determine how to relate
to each other and whether to trust each other. Social func-
tional accounts of emotion highlight this important role of
emotional expressions by conceptualizing them as “interper-

Fig. 3 The core of the HRT trust model is the relationship equity bank,
which accumulates the net result of repeated interactions over time

sonal communication systems that help individuals navigate
the basic problems that arise in dyadic and group relations”
[103]. Interactions thus involve a constant coordination on
affect as participants of an interaction jointly determine how
behavior should be interpreted and responded to [73]. Some
emotional expressions increase interpersonal trust while oth-
ers reduce it. For example, negative and especially hostile
expressions, such as anger and contempt, have been found
to impair trust formation [2,103], whereas positive expres-
sions, e.g. expressions of embarrassment, have been found
to facilitate trust formation [83].

Researchers on emotion expression in couples suggest that
in order to understand trust formation and maintenance, we
need to take the temporal dynamics of emotion expression
into account [66,68]. This important role of temporal dynam-
ics for our understanding of trust formation has also recently
been highlighted in the area of human–automation interac-
tion, e.g. [157]. A point graph method can be used to account
for different temporal dynamics of emotion expressions [48].
Point graphs plot the cumulative sum of positive minus nega-
tive expressions over time (see Fig. 4), describing emotional
interaction dynamics over time. An upwards directed point
graph (regulated) indicates an interaction in which partici-
pants are able to shape the emotional dynamics in such a way
that more positive than negative expressions are consistently
produced, whereas a downwards directed point graph (non-
regulated) indicates an inability to do so. While interactions
in couples exhibit different levels of intensity, research shows
that as long as a surplus of positive over negative behavior
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Fig. 4 Regulated and
non-regulated point graphs

can be maintained (regulated interaction) it has positive con-
sequences for short and long-term outcomes.

Evidence from several studies suggests that the ratio of
positive to negative behaviors assessed through the point
graphs generalizes as a predictor of outcomes from cou-
ples to teams. For example, one study showed that this ratio
predicted satisfaction with group membership and team per-
formance [75]. Further studies [43,72,89] all demonstrate the
importance of the ratio of positive to negative expressions for
team performance.

The point graphs also highlight that each positive or neg-
ative behavior exhibited by participants of an interaction has
a cumulative impact on the relationship. An interaction that
is characterized by mostly positive behaviors is likely more
resilient towards occasional negative or hostile behaviors
than an interaction that has been less positive over time. We
use the term relationship equity to refer to the idea that trust
is built up through moment-to-moment exchanges of posi-
tive and negative behaviors that accumulate over time. The
term “equity” highlights that the impact one negative behav-
ior has on the relationship depends on the equity accumulated
throughout prior exchanges. Operationally, as suggested also
by [157], relationship equity is best understood as the area
under the curve of a point graph as shown in Fig. 4 [157].

When integrating robots into teams it is crucial to under-
stand how their presence and behavior influences a team’s
exchange of positive and negative behaviors and, through
that, overall trust formation. Currently, only little is under-
stood about how robots influence the dynamics of the teams
they are embedded in [74,76]. Recent work, however, has
shown that robots can actively shape interaction dynamics
in teams through repair of negative behaviors [75], through
the expression of vulnerable behavior [135], or through the
expression of group based emotion [19]. It is thus important
to understand not only how robots influence the formation of

a team’s relationship equity through their behavior, but also
how robots might be used to actively regulate interpersonal
exchanges to promote relationship equity buildup and trust
formation.

Proposition 1 When designing a robotic team partner, it
should have access to a relationship equity bank that allows
the robot to maintain an understanding of the current rela-
tionship equity, rising with each positive relationship act,
and falling with each negative one.

3.2 Relationship Equity as a Predictor for Team
processes that Manage Risk

3.2.1 Formal and Informal Work Agreements

Based on their relationship equity and current knowl-
edge of one another’s capabilities, the team members
may jointly define a series of work agreements [102,107].
Work agreements ensure smooth collaboration between team
members by explicitly defining collaborative agreements,
such as communication, coordination, and task alloca-
tion between the team members. Work agreements evolve
over time as they are either learned implicitly through
training or collaboration, or formed explicitly through for-
malized rules in the form of obligations and permis-
sions/prohibitions. Scientific research on the formalization
of work agreements (in the literature often referred to as
“social commitments”) comes form the field of normative
multi-agent systems, where work agreements are used to
support robustness and flexibility [17]. According to this
framework, a work agreement is an explicit agreement
made between two parties, denoted as a four-place rela-
tion: 〈debtor , creditor , antecedent, consequent〉, where
the debtor owes it to the creditor to effectuate the conse-
quent once the antecedent is valid. Work agreements can, for
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instance, be used to specify the extent to which team mem-
bers monitor and check one another’s work and/or ask for
permission to continue with their next activity or task before
doing so. In sum, work agreements can be used to mitigate
the risks involved in collaboration (assessed based on the
actor’s current knowledge of its team members’ capabili-
ties), by introducing rules that restrict the team members in
their autonomy, especially when it comes to task allocation,
assessment, and completion. For more information, please
refer to related works, such as [22,82,102].

Proposition 2 Relationship equity will negatively predict the
degree to which formal work agreements will be constructed
as a method for reducing risk. Lower degrees of relationship
equity will predict more formal work agreements.

3.2.2 Collaboration

The team proceeds to collaborate in compliance with the
work agreements. During collaboration, the actors observe
one another’s capabilities and inspect one another’s deliv-
erables and performance. Based on their observations, the
agents continuously update their mental models and corre-
sponding trust stances. This potentially leads to revisions of
the work agreements.

Collaboration does not merely entail the team’s ability
to adequately perform the task. Collaboration is also char-
acterized by social interaction between team members, i.e.
non-task related peripheral interactions with team members
(jokes, humor, being able to honestly call each other out,
informal things). Being able to show vulnerability at work,
especially during non-work related interactions, has been
shown to increase team effectiveness, as it facilitates posi-
tive trust development [37,39].

Proposition 3 Relationship equity will positively predict the
degree to which informal collaboration will occur as the pri-
mary manner of interaction between team members. In a
team with a high relationship equity (through social inter-
action and successful past team performance) the need for
regulative formal agreements and corrections will decrease,
leading to a less controlling atmosphere in the team environ-
ment.

3.2.3 Team Trust Dynamics

Unique trust effects can occur within a team as a result of
feedback loops. For example, ripple effects can occur when
one behavior of a team member is copied by another. In a
striking example of this type of effect, a robot expressing vul-
nerability caused other human teammembers in the group to
express vulnerability as well [135]. Another example are spi-
raling effectswhen negative behaviors and especially hostile
behaviors have a tendency to be reciprocated and trigger a

spiral of increasing negativitywith detrimental consequences
for trust [2]. Finally, maladaptive feedback loops can occur
when teammembers are simply out of sync with one another.
For example, a teammate A may try to compensate for a per-
ceived failure that teammate B is not aware of. The lack of
reciprocation by teammate B may cause frustration by team-
mate A that leads to confusion in teammate B. The lack of
empathy by teammate Bmay inspire evenmore frustration in
teammate A.What started as aminor miscommunication and
ensuing adaptation strategy can cause maladaptive feedback
that further escalates the situation.

Proposition 4 In ourmodel, ripple andnegative spiral effects
can occur as a result of subsequent reactive tit-for-tat behav-
iors. We predict that these will be positive with higher
relationship equity and negative with lower relationship
equity. Maladaptive feedback loops may occur when there
is sustained miscalibration between the two actors.

4 Minimizing Social Calibration Errors as a
Way to Build Relationship Equity

This section presents a signal detection approach to social
trust calibration, proposing that trust violations can either
be correctly anticipated (hit), incorrectly anticipated (false
alarm), incorrectly unanticipated (miss), or correctly unan-
ticipated (correct rejection).

Whilemany of the terms described in our team trustmodel
have been researched extensively, the proposed concept of
social trust calibration is new. The focus of the current sec-
tion is to describe a signal detection approach for social
trust calibration with the goal to create intelligent systems
that can recognize when their social behavior may cause a
trust violation, e.g. when a machine performs unlike its usual
performance standards, orwhen it fails tomeet others’ expec-
tations.

4.1 Social Trust Calibration

When teammates collaborate, they engage in a constant
process of social trust calibration (see Fig. 1). Calibrated
trust between team members is defined such that some-
one’s perceived trustworthiness of a teammember matches
that teammember’s actual trustworthiness. When looking at
the passive trust clibration part of our model, depicted in
Fig. 5, perfectly calibrated trust would mean that the predic-
tion error (miscalibration) is 0. Undertrust is defined as the
situation inwhich the trustor has lower trust in the trustee than
the trustee deserves. In situations of undertrust, the trustor
fails to take full advantage of the trustee’s capabilities. In
teams, situations of undertrust can result in suboptimal solu-
tions to problems, a lack of communication, and increased
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Fig. 5 Passive trust calibration between team partners

workload for individual members (as opposed to distributed
workload). Undertrust can be detrimental to the effectiveness
and efficiency of the HRT, as it may lead to disuse or micro-
management. Actors can also trust each other too much.
Overtrust is defined as the situation in which the trustor trusts
the trustee to a greater extent than deserved given the trustee’s
true capabilities. In situations of overtrust, the trustor allows
the trustee to act autonomously, even in situations where
the trustee is not capable of performing the task adequately.
Overtrust is a dangerous condition that should be avoided
for all critical systems because it can lead to disastrous out-
comes.Many examples exist of accidents caused by overtrust
[6,45,111,133]. Overtrust can be hazardous as it may lead to
a lack of guidance and control for systems not fully capable
of performing a given task.

Proposition 5 Socially calibrated trust will increase rela-
tionship equity. Socially miscalibrated trust will decrease
relationship equity.

4.2 A Signal DetectionModel for Social Trust
Calibration

Trust (mis-)calibration may occur in any team situation with
a great potential for frustration. Since trust violations have a
detrimental effect on trust, it is vital to minimize their overall

impact. Early detection and accurate awareness of poten-
tial trust violations may allow team partners to engage in
active trust calibration (see Fig. 6), so as to prevent escala-
tion of minor issues into larger problems within the HRT.
Accordingly, we created a simple model of anticipated and
unanticipated trust violations with the use of trust repair,
dampening, and transparencymethods.Wemay imagine four
situations depending on whether a trust violation is antici-
pated and whether a trust violation occurred using a signal
detection classification approach (see Fig. 7). A “Hit” situa-
tion may be one where a trust violation is anticipated prior to
the occurrence of the trust violation and a trust violation also
occurs. A system may actively attempt to lower expectations
in anticipation of expected failures prior to the attempted
action. Such an action would effectively dampen trust and
may more appropriately calibrate trust. When the trust vio-
lation occurs, the robot can refer back to the lowered initial
expectations. A “False Alarm” situation is one where a trust
violation is anticipated, but does not occur. It may not be bad
overall to dampen expectations that are not borne out in an
actual trust violation. Lowering expectations may alert the
operator to guide the interaction more. However, dampening
without the trust violation occurring may result in the system
downgrading itself unnecessarily which may lead to reduced
trust over time. A “Miss” situation is one where no trust vio-
lation was anticipated, but one occurs. This is the situation
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Fig. 6 Active trust calibration between team partners

where trust repair activities are most needed since a trust
violation was not anticipated. This may also be the situation
that occurs most frequently in team interactions. The “Cor-
rect Rejection” situation is one where no trust violation is
anticipated and no trust violation occurs. No specific action
is required. General transparency methods can enhance this
baseline situation in a passive, but proactive manner.

The signal detectionmodel focuses on single-shot interac-
tions, yet when looking at longitudinal teaming, one should
actually be looking at a series of single-shot interactions, that
accumulate over time, as outlined in Sect. 3.1. Figure 4 dis-
plays how relationship equity may be constructed (or broken
down) as a result of repeated interactions. Ultimately, the
relationship equity bank, described in Sect. 3.1, serves as a
lens through which each subsequent interaction is reviewed,
and thereby mediates trust calibration and mental model
updating, as described by the HRT trust model presented
in Fig. 2.

Proposition 6 Social hits and correct rejectionswill decrease
the probability of mis-calibration. Social false alarms and
misses will increase the probability of mis-calibration.

5 Methods for Building Relationship Equity
through Social Trust Calibration

In the previous sections, we have outlined components of a
theory that describes social trust calibration in human–robot
teams. The theory assumes a number of calibration methods,
such as trust repair, trust dampening, transparency and expla-
nation. We describe each method in detail in Table 2 as well
as in the following subsections.

Recognizing that a potential trust violation is going to hap-
pen or that an actual trust violation has occurred is important
to determine whether trust calibrating acts are appropriate.
Please note that a trust violation can go both ways: either an
actor is lucky and performs unusually well, or it fails and
performs substantially worse than it normally would. In both
cases, trust calibrating acts are warranted. This section intro-
duces a range of actions and utterances an actor can perform
to calibrate trust either by mitigating a state of undertrust
through trust repair or a state of overtrust through trust damp-
ening. In addition we discuss methods of transparency and
explanation as viable options for trust calibration.
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Fig. 7 Over time, an actor can use its predictions about itself and its impact on the other actor’s trust stance to dampen or repair trust, or to prevent
breaking trust. Credit for illustration: USC Viterbi School of Engineering, with permission from Prof. M. Matarić [49]

5.1 Methods for Trust Repair

Trust repair is a reactive approach to restore undertrust after
themachine hasmade amistake, caused trouble, or displayed
unexpected or inappropriate behavior [7,29,94]. Trust repair
seeks to repair situations where trust is broken or where there
is an initial distrust bias, e.g. by explaining the cause and/or
situational nature of a mistake, or making promises about
future behavior.

Proposition 7 Trust repair activities will help to increase
trust if they are appropriately timed and commensurate with
the degree of trust violation.

5.2 Methods for Dampening Trust

Trust dampening is a reactive approach to quell overtrust
after a machine has made a lucky guess, or when a machine
makes a mistake that has not been noted by its collaborators
or users. Trust dampening approaches seek to lower expec-
tations when too much faith has been put into a machine.
Dampening methods may include showing a user what a sys-
tem failure looks like, showing a history of performance, and
providing likelihood alarms [88]. Dampening approaches
may need to be applied especially in the beginning of inter-
acting with a new machine. Often, people tend to have high
expectations of machines and robots known as automation
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Table 2 Methods for trust repair, trust dampening, transparency, and explanation

Methods for trust repair Description

\Apology Admission of fault and statement of remorse [85,105,131]

\Apology w/Improvement Apology and promise to improve in the future

\Apology w/Entity Attribution Apology and faulting another party

\Apology w/Process Attribution Apology and faulting a process

\Apology before next potential error Apology that only occurs when the actor next approaches a situation
similar to the one where a previous error occurred

\Denial Recognition of error and assertion that they are not at fault [85,131]

\Denial w/Entity attribution Denial and faulting another party

\Denial w/Process Attribution Denial and faulting a process

\Recognition Recognition of the error’s cause without acknowledging fault

\Explanation Explanation of the error’s cause without acknowledging fault

\Control Statement of control/awareness of situation

\Proficiency Statement of expertise or proficiency [65]

\Downgrading Acknowledging error, but downgrading severity

\Blaming Blaming of another entity, without denial or apology [71,93]

\Gas-lighting Stating that no error occurred

Methods for trust dampening Description

\Lowering expectations Warning that one may not perform well under current circumstances

\Expressing reduced confidence Express that one is not confident about executing the current task

\Providing caveats to behavior Conveying that one is unable to perform certain tasks

\Convey system limitations Provide information about the range of tasks and capabilities one is
able to perform, within which domain, and under what
circumstances, potentially explicitly pointing to one’s own
limitations

\Request for assistance Asking for assistance when one fails to figure out what to do or to
perform the task [69]

\Provide timely warnings Provide timely warnings about one’s own potential limitations,
enabling teammates to adapt and take over part of the task load
[105,119]

Methods for transparency Description

\Convey a history of performance Displaying errors directly and for specific situations [95]

\Provide performance feedback Adjusting feedback based on the biases of the operator [38]

\Convey uncertainty directly Conveying uncertainty directly by providing facial cues [8] or machine
confidence indicators [36,57,62,86,97,157]

\Provide verification methods Offering methods for detailed verification of the system’s behavior and
performance to reduce the number of commission errors [6]

\Enhance mode awareness Providing guidance on different system modes, decision-making, and
transparency of the algorithm [30]

\Show critical states Enhance an operator’s mental state by showing only the critical states,
situations that require immediate action, of an algorithm’s policy
[52,60,153]

\Explain why things fail Provide a way to know the nature of errors, why they occur, and what
they mean in the context of the designer’s intent and goals for the
automated aid [38]
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Table 2 continued

Methods for transparency Description

\Mimic the social behavior of a user Actively mimicking a human driver, for instance by matching the
goals of an autonomous driving system with the goals of the driver
[146] or making a virtual autonomous driver look and act like the
driver [146,147]

\Equip machine with social behaviors Designing automation that conforms to social norms, such as
politeness or etiquette [46,56,64,100,109,112], or adding
anthropomorphic features to an interface [1,26,54,110,118]

Methods for explanation Description

\Intuitive confidence measure Explaining the likelihood of a correct single prediction (output) based
on similarity and previous experiences [140,141]

\Contrastive explanations Explaining the current output (“fact”) in relation to an output of
interest (“foil”) [65,142,143]

bias [38]. When actual robotic behavior is observed, people
may punish machines more deeply than their human counter
parts [47].

Proposition 8 Trust dampening activities will help to stimu-
late trust resilience by appropriately adjusting expectations
in the face of anticipated errors.

5.3 Methods for Transparency

Some methods apply to facilitate both processes of repair
and dampening, such as making the internal processes and
processing steps more transparent or inspectable for other
team members. These methods revolve around the central
method of increasing the transparency of a system [13],
such as its performance, its process, and its intent and pur-
pose [3,13,14,99]. The benefits of increasing transparency
have been demonstrated through empirical research. Previ-
ous work has emphasized design approaches to increase the
transparency of the system to a user to promote trust calibra-
tion. Transparency design methods focus on conveying trust
cues which convey information about an agent’s uncertainty,
dependence, and vulnerability [25,136].

Proposition 9 Transparency activities will help to calibrate
trust by providing accurate meta-information about the
robotic partner.

5.4 Methods for Explanation

Recently, the research on explainable AI (XAI) has expanded
rapidly (e.g. see [23,51,104]). XAI refers to (1) the ability to
offer a meaningful explanation for a specific human actor
when needed, and (2) the ability to ask for an interpretable
explanation from a specific human actor when needed. So
far, research centered primarily on the first type of abil-
ity, often with a focus on a specific (classification) task or

machine learning model. However, more integrative meth-
ods are evolving, which include both bottom-up data-driven
(perceptual) processes and top-down model-based (cogni-
tive) processes ([106]; cf. dual process theories [79], [40]).
Such methods could help to assess the trustworthiness of AI
output (i.e. robot’s own task performance) and, subsequently,
explain the foundation and reasons of this performance to
establish an adequate trust stance.

At the perceptual level, the provision of an Intuitive Con-
fidence Measure (ICM) enhances human judgment of the
quality of the data processing and corresponding inferences
[140,141].The ICMexplains the likelihoodof a correct single
prediction (output) based on similarity and previous experi-
ences (e.g. “I am reasonably certain that there is a victim at
location A”). At the cognitive level, available models of the
user’s goals, beliefs, and emotions can be used to provide
explanations that provide the reasons of specific output (e.g.
advice) and behaviors (e.g. “It is important to drive around
this area, because there is an explosion risk”; cf. [81]). Per-
sonalization of these explanations is crucial to accommodate
a user’s goal and emotional state [80]. At the perceptual-
cognitive level, contrastive explanations provide the reasons
of a specific output (the “fact”) in relation to an alternative
output that is of interest (the “foil”) [142,143]. Humans often
use this type of explanation. Contrastive explanations narrow
down the amount of features that are included in the expla-
nation, making it more easy to interpret [101].

For the construction of meaningful explanations, chal-
lenges are to establish at run-time (1) an adequate level of
detail, specificity and extensiveness, (2) an effective dynamic
adaptation to the human and context, and (3) an appropriate
choice for allocating the initiative of an explanation dialogue.
The development of Ontology Design Patterns can help to
meet these challenges, particularly for an artificial actor’s
reasoning and communication [130]. Interaction Design Pat-
terns are being constructed for shaping mixed-initiative
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communicative acts of explanation [106]. Developing the
ability for a robot to ask for an interpretable explanation
from a specific human actor when needed, is yet a rather
unexplored area.

Proposition 10 Explanation activities will help to calibrate
trust by providing accurate meta-information about the
robotic partner.

6 Implications of the Framework

The HRT trust model describes the role and purpose of
trust calibrating acts, i.e. trust repair and trust dampening,
in improving HRT collaboration over longer periods of time.
Our model assumes that trust calibration benefits all actors
as long as they are sincere and benevolent in their collab-
oration. If accurately executed, trust calibration results in
optimized collaboration through the adoption of implicit and
explicit work agreements that appropriately benefit from the
strengths of the actors involved, while mitigating risk by
compensating for team members’ shortcomings and/or lim-
itations.

From our model, there are a number of different research
directions that can be explored given the longitudinal inter-
action between humans and artificial team members (e.g.
robots, agents, and other AI-based systems) that actively
employ trust calibration methods. Some of these topics have
been raised in other publications [27], each of which could
merit its own research program with a set of experiments.
We discuss several of these research directions as well as the
implications of our framework next.

6.1 A Common Framework for Mixed Human–Robot
Teams

The first implication of our model is that it presents a flex-
ible and common way of modeling relationship equity as it
relates to trust calibration in human–human, human–robot or
robot–robot teams. This is useful because currently the social
capabilities of robots are still limited, but expected to greatly
improve in the next few decades. For example, if a robot can
function as a human in this type of relationship, the robot
would be expected to have models and an understanding of
its own behavior, its teammate, and the process of collabo-
ration itself. Progress indeed has been made in each of these
areas, but work remains to build the types of teams that can
regulate emotion andmanage relationships in mixed human–
robot teams. Currently, these relationships are asymmetrical
where the human compensates for the lack of a robot’s social
abilities. For longer-term interaction to be sustained, those
deficiencies will have to be resolved.

6.2 Adaptive Trust Calibration Systems for Mixed
Human–Robot Teams

The second implication of our work is that it provides a
step in the direction of mutually adaptive trust calibration
systems (ATCS). These systems are a special form of adap-
tive automation [10,42,63,78,129] that can measure the trust
state of a human and then adapt their behavior accordingly
to provide a positive impact on team performance. When
implemented well, these systems have the potential to cal-
ibrate trust on the fly and provide immediate benefits for
human–robot team performance.

In recent pioneering work that exemplifies ATCS,
researchers designed and developed a robot that calibrates
trust through automatically generated explanations [149].
Especially when the robot had low capabilities, its expla-
nations led to improved transparency, trust, and team per-
formance. This important work shows how the impact of
expected trust violations can be mediated with the use of a
trust dampening strategy, i.e. explanations. Other pioneer-
ing work demonstrating the utility of ATCS has used various
modeling techniques to incorporate trust measures and adapt
team performance. For instance, Chen et al. (2018) [15] used
trust-POMDP modeling to infer a human teammate’s trust
and only engage in moving a critical object when a human
teammate has built up enough trust in a robot’s arm’s ability
to move objects carefully.

With the use of our model, researchers have a means to
place this work in a larger context of challenges related to
trust development in HRTs. This framework may therefore
serve as a guide by providing an overview of what parts the
research community currently understands and/or is able to
successfully implement in an artificial team mate, and which
parts still require additional research.

6.3 Towards Long-Term Interaction for
Human–Robot Teams

There is much to be learned about effective team behavior
in general, both in human-only teams and teams with a mix
of humans and artificial team members. By achieving a bet-
ter understanding of trust dynamics, researchers may learn
a great deal about the impact of particular team behaviors
on the trust relationships within a team, e.g. what behav-
iors contribute to team effectiveness and what behaviors are
detrimental.

More importantly, one might be able to recognize neg-
ative team behavior patterns, such as the ripple effect or
downward spiraling mentioned in Sect. 3.2.3. In this way,
artificial actors can be designed with a range of individual
behaviors serving as subtle interventions that help steer away
from such destructive patterns and simultaneously promote
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healthy, emotionally regulated, and effective team behavior
patterns [144].

In addition, the issues below are primary research chal-
lenges that researchers could address in the future.

6.3.1 Ontology andModel Development

There is a great need to develop a method that allows
for reasoning about humans, agents, and robots alike.
For this purpose, we are developing an ontology, that
provides the vocabulary and semantics of multi-modal
HRT communication and the foundation for automated
reasoning [5,77,114–116]. Furthermore, a computational
model of trust development and repair -providing quan-
titative predictions of potential trust violations and their
prospective impact- would help to focus and integrate
research within the HRI community. Progress towards
this goal has already been made by research that has
indicated how trust can modeled to extend across tasks
[134].

6.3.2 Trust Measurement andModeling Development

Trust measurement remains a key issue for HRT interaction
[34,35,44,53]. It is important to know how trust is initiated,
how it develops, how it breaks down, and how it recov-
ers. This requires a convergence of behavioral, self-report,
observational, and neuro-physiological measures and cor-
relates [28,53], as well as the development and validation
of new measurements specific to the process of HRT trust.
Recent work has demonstrated the multi-faceted nature of
trust as it relates to delegation decisions [155] as well as
the ability to model trust with dynamic Baysian models
[156].

6.3.3 Implementation and Experimentation

In addition to the conceptual and computational models, it is
important to develop software modules for robots and other
artificial team members enabling them to compute and/or
reason about trust and engage in trust calibrating acts where
needed or appropriate [138,139,145]. This will also allow
for hypothesis testing based on predictions and prescriptions
provided by our model.

6.3.4 Validation and Verification

Endeavors of implementation and experimentationwill facil-
itate theory development and refinement as we gather empir-
ical data on the actual effectiveness of trust calibrating acts,
as well as relationship equity models and predictions of
potential trust violations, all situated in field exercises with
prospective end users [91].

7 Conclusion

Future societieswill rely substantially onhuman–robot teams
(HRTs) in a wide variety of constellations. Enabling such
teams to effectively work together towards the achievement
of shared goals will be paramount to their success. The
theory, models, methods, and research agenda presented in
this paper will contribute to this endeavor, and may lead
to the design and implementation of artificial team mem-
bers and corresponding team behaviors that support healthy
trust development, in turn contributing to high performing
HRTs.
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