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 A B S T R A C T

Iron oxidation is a complex process involving critical atomistic events, such as atomic adsorption, diffusion, and 
surface reconstruction, understanding of which is significant for both surface science and coating technology. 
Atomistic simulation serves as an useful tool to investigate the processes, where description of interatomic 
interactions is required. However, selecting appropriate force field or interatomic potential is not only difficult, 
but also essential for getting accurate result. In this work, we present a detailed benchmark of reactive force 
fields (ReaxFFs) and universal machine learning interatomic potentials (uMLIPs) against density functional 
theory (DFT) calculations of oxygen adsorption on various 𝛼-iron surfaces, which is the first yet crucial step 
towards oxidation. The comparisons show the coverage-dependent performance and improvable accuracy of 
both ReaxFFs and uMLIPs at reproducing DFT results, with ReaxFFs outperforming uMLIPs. Subsequently, iron 
oxidation is simulated using ReaxFF and uMLIP. The results reveal the strong capability of ReaxFF and poor 
stability of uMLIP for describing reactive process, i.e., the formation of iron oxide. This may be attributed to 
the suitable functional form of ReaxFF for the description of bond changes. The insights presented here not 
only provide an example of benchmarking force field or interatomic potential for system of interest, but also 
highlight the applicability of ReaxFF and scopes of improvement of uMLIP.
1. Introduction

With the rapid development of automobile industry, the demands 
for Advanced High Strength Steel (AHSS) are rapidly increasing due 
to its unique combination of high strength to weight ratio and good 
ductility [1]. To protect the AHSS from corrosion and oxidation during 
its service lifespan, hot-dip galvanizing technique is widely adopted 
to coat the AHSS surface with a zinc (Zn) layer [2]. In order to 
enhance the Zn layer adhesion on the steel surface, researchers have 
been working on a variety of methods for several years, such as pre-
metallic deposition before annealing [3,4], controlling of the dew point 
during annealing [5,6], and post-pickling treatment after annealing [7]. 
Despite these efforts, various defects, such as bare spots, dents, and 
scratches, can still be observed to be present in these coatings [8], 
which originate from the poor wettability. The defects are considered 
detrimental, as the quality of the surface will be degraded leading to 
inferior mechanical properties of the coating. In addition, they can 
oppose issues such as tool pollution at the customer when processing 
the steel. The poor wettability results from the added alloying elements, 

I This article is part of a Special issue entitled: ‘Women in SCT’ published in Surface & Coatings Technology.
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such as manganese (Mn) and chromium (Cr), which have the tendency 
to segregate at the steel surface during annealing and undergo selective 
oxidation [9]. Provided that the selective oxidation of alloying elements 
gets suppressed, the adhesion of Zn layer will be enhanced resulting in 
a better quality of the coating. Subsequently, the produced steel will be 
more robust against corrosion for longer time than when the selective 
oxidation of the alloying elements cannot be suppressed. Notably, it 
has been found that iron (Fe) oxidation could suppress the selective 
oxidation of Mn on the surface of the steel containing Mn and Si [10]. 
This can be achieved because after Fe pre-oxidation on the steel surface, 
the thickness of the solute Mn depletion zone in the subsurface of the 
steel becomes much larger than the outer diffusion distance of Mn from 
matrix to surface of the steel during annealing. Thus, understanding the 
Fe oxidation mechanism is crucial for achieving suppression of alloying 
element oxidation with high precision.

Generally, oxidation happens very fast, normally within a few sec-
onds; and the oxidation layer is quite thin, usually a few hundred 
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nanometers [11]. It is difficult for existing experiments, such as low-
energy electron diffraction and scanning electron microscopy (SEM), 
to capture this dynamical process in such a short time span with 
high space resolution, making it difficult to investigate the mecha-
nism. Additionally, the rapid initial reactions involves a variety of Fe 
oxides [12], such as wüstite (FeO), magnetite (Fe3O4), and hematite 
(Fe2O3), making the investigation of Fe oxidation even more com-
plex [13]. Oxidation stems from a series of atomistic processes, ranging 
from atomic oxygen (O) adsorption and diffusion to chemical bond 
changing (e.g., formation of new bonds of O with Fe) and surface recon-
struction [14]. It is worth to mention that, adsorption is the first step for 
O to bind with Fe, subsequently leading to the formation of oxides [15]. 
Though significant progress has been made, such as in situ environmen-
tal SEM and transmission electron microscopy, to study the reactivity of 
O on the surface [16–19], many adsorption properties, such as O cover-
age dependence and surface electronic structure, are still unclear [20]. 
Notably, first-principles method, especially density functional theory 
(DFT), is extremely insightful for studying adsorption behaviors and 
energetics because of the quantum accuracy of this atomistic technique. 
Up until now, several studies have employed DFT to investigate O 
adsorption on Fe surfaces [21–25]. However, these studies are mainly 
focused on Fe(100) and Fe(110) surfaces, within which DFT is either 
executed using different softwares such as Vienna Ab-initio Simu-
lation Package (VASP) [26,27] and CASTEP [28] or performed at 
varied accuracies using distinct exchange–correlation functionals such 
as Perdew–Burke–Ernzerhof (PBE) [29] and PW91 [30] (see Table 4 in 
Ref. [31]). Thus, thorough DFT calculations of O adsorption on various 
Fe surfaces using the same settings are currently lacking, which is of 
essential significance to obtain an in-depth insight into the initial step 
of Fe oxidation.

Although O adsorption could be well studied by DFT calculations, 
conventional DFT gives adsorption energies at 0 K and is limited to 
a few hundreds of atoms. Hence, it cannot be used to investigate 
oxidation, which is a dynamical process significantly influenced by the 
temperature and the O partial pressure. Remarkably, this can be better 
studied by molecular dynamics (MD) simulation, which is a method 
that uses force field or interatomic potential to describe the interactions 
between different atoms. It is suitable for investigating many dynamic 
processes at the atomistic level, such as surface tribological behav-
ior [32,33], nanoindentation [34,35], and atomic deposition [36,37], 
which usually contain hundreds of thousands of atoms. Additionally, 
it should be noted that oxidation constantly involves bond changing. 
It is worth mentioning that reactive force field (ReaxFF) is effective 
in describing the bond breaking and forming process, due to the ex-
plicit usage of bond order in its functional form [38,39], and hence 
has been successfully applied in many reactive systems, for instance 
alumina [34] and diamond-like carbon film [40]. Therefore, it is quite 
appropriate for the description of the interactions between Fe and 
O atoms during oxidation. However, there are several ReaxFFs for 
the Fe–O system [41–45], rendering the choice of the suitable one 
a challenge. Recently, Thijs et al. benchmarked several ReaxFFs on 
liquid Fe oxides [33]. Nevertheless, the focus was not on the oxidation 
case, leaving the problem of finding one suitable ReaxFF for oxidation 
unsolved, which requires the benchmark study of ReaxFFs for studying 
oxidation on Fe surface.

Traditionally, force fields or interatomic potentials are derived from 
empirical methods, such as Lennard-Jones [46], the embedded-atom 
method [47] and ReaxFF [38,39]. While being computationally effi-
cient, they often lack the necessary applicability and accuracy com-
pared to DFT [48]. Notably, machine learning interatomic potentials 
(MLIPs) have emerged as a promising counterpart trying to overcome 
the challenges of high computational costs in DFT and the relatively 
low accuracy in MD [49]. However, long development period and 
comprehensive dataset requirement hinder the applicability and trans-
ferability of MLIPs, as they are unable to extrapolate to new elements 
or structures that are not present in the specific training dataset [50]. 
2 
Recently, universal MLIPs (uMLIPs) have attracted lots of attention 
due to their universality and versatility [51]. Notably, uMLIPs can not 
only be applied to many elements on the periodic table directly, but 
also be utilized to perform geometry optimization or predict proper-
ties such as phonon related properties [52] and bulk properties [53]. 
Due to the increasing number and complexity of uMLIPs, there are 
a variety of benchmark studies of them, focusing on various mate-
rials and properties. For example, Focassio et al. assessed publicly 
available uMLIPs (MACE [54], CHGNet [55], and M3GNet [56]) for 
calculating the surface energies of 1497 surfaces comprising of 73 
chemical elements [57]. Recently, Mehdizadeh and Schindler presented 
the benchmark of 19 uMLIPs for cleavage energy prediction of 36,718 
surfaces of unary, binary, and ternary compounds [58]. Shuang et al. 
assessed the performance of 26 uMLIPs in modeling hydrogen (H)-
alloy interactions and general defects in metals and random alloys, 
revealing the exceptional accuracy of EquiformerV2 (eqV2) [59,60] 
models in predicting energies and forces [61]. However, the capability 
and transferability of uMLIPs for Fe–O system remain elusive and their 
comparison with ReaxFF is not uncovered as well.

In this paper, we systematically assess the performance of relevant 
ReaxFFs and state-of-the-art uMLIPs for Fe–O system. Section 2 details 
the selection of ReaxFFs and uMLIPs, the construction of atomistic mod-
els, and the simulation settings for both O adsorption and Fe surface 
oxidation. Section 3 first presents the DFT results for O adsorption on 
various 𝛼-Fe surfaces at different coverages; then shows the adsorption 
benchmark results of the chosen ReaxFFs and uMLIPs; subsequently re-
veals the performance of ReaxFF and uMLIPs on Fe oxidation to further 
investigate their effectiveness and stability on dynamical simulation. 
Section 4 and Section 5 close the paper by discussing the underlying 
reason for the distinct performance of ReaxFF and uMLIP and drawing 
the conclusions, respectively.

2. Methods

2.1. Simulation models

All simulation models were constructed using Python Materials Ge-
nomics (pymatgen) [62] and Atomic Simulation Environment (ASE) [63
Python libraries. The body-centered cubic (BCC) Fe unit cell was 
obtained from the Materials Project [64], upon which four slab models 
for Fe surfaces with different Miller indices were constructed, namely 
Fe(100), Fe(110), Fe(111), and Fe(211). The slab models consisted 
of six Fe layers and the bottom three layers were set to be fixed. 
The thickness of the vacuum layer was set to be 16 Å. To represent 
cases for low, medium and high O coverage, 19 , 

1
4 , and 

1
2  monolayer 

(ML) were considered, which is defined as a ratio of the number of 
adsorbate atoms (O) to the number of substrate atoms (Fe) in the 
surface layer [65]. The number of Fe atoms is the same for different 
surfaces but dependent on the coverage, which are 12, 24, and 54 for 
1/2 ML, 1/4 ML, and 1/9 ML, respectively. The O adsorption sites were 
found using the AdsorbateSiteFinder tool of pymatgen [62]. As shown 
in Fig.  1(a)–(d), various adsorption sites as marked by green circles 
and labeled with abbreviations were exhibited on four Fe surfaces at 
1
9  ML coverage. There are mainly three types: on top (OT), bridge (B), 
and hollow (H). For the bridge site, other variations exist, for instance 
LB stands for long bridge and SB for short bridge. Notably, on Fe(111) 
surface, bridge site could also be found between atoms positioned in 
different layers: sB represents shallow bridge between first and second 
layers, DB stands for deep bridge between second and third layers, and 
SP is a saddle point between first and third layers. In addition, there are 
also variations of hollow site: TH is three fold hollow, while fcc and hcp 
are another two kinds of adsorption sites depending on different depths 
from the surface.

The adsorption energy 𝐸ads of O on the Fe surface was calculated 
as: 
𝐸 = 𝐸 − 𝐸 − 1𝐸 , (1)
ads sys Fe 2 O2



Z. Wei et al. Surface & Coatings Technology 521 (2026) 133092 
Fig. 1. Simulation models for O adsorption and Fe surface oxidation. Various O adsorption sites are shown on (a) Fe(100) surface; (b) Fe(110) surface; (c)
Fe(111) surface; (d) Fe(211) surface. (e) Initial configuration of oxidation model of Fe(100) surface with O2.
where 𝐸sys is the total energy of the system (i.e., O atom adsorbed on 
Fe slab), 𝐸Fe is the total energy of the relaxed Fe slab without O, and 
1
2𝐸O2

 is equal to half of the O2 molecule energy. It should be noted that, 
the calculated 𝐸ads is a negative value according to the above definition 
(Eq. (1)), meaning that the adsorption is energetically favorable. Note 
that Eq. (1) strictly applies to isolated O-atom adsorption. In this work, 
different coverages are achieved by varying the numbers of surface 
layer Fe atoms.

2.2. Selection of ReaxFFs and uMLIPs

Three relevent ReaxFFs were chosen, including those developed by 
Aryanpour et al. [41] (ReaxFF-Aryanpour), Huang et al. [45] (ReaxFF-
Huang), and Liu et al. [44] (ReaxFF-Liu). ReaxFF-Aryanpour was 
trained on common Fe oxides and oxyhydroxides. Based on ReaxFF-
Aryanpour and water ReaxFF [66], ReaxFF-Huang was developed by 
optimizing the Fe–O, Fe–H, and Fe–O–H parameters. Combining param-
eters from nickel (Ni)-O-H [67,68], Fe–Ni [69], and Fe–Cr–O–H [42] 
systems, ReaxFF-Liu additionally developed Ni–Cr parameters to have 
full description of Ni–Cr–Fe–H–O system.

Based on the Matbench Discovery framework [70], two novel uM-
LIP architectures (i.e., different uMLIP network model) were firstly 
adopted, namely eqV2 [59,60] and equivariant Smooth Energy Net-
work (eSEN) [71]. For eqV2 architecture, four models were chosen, of 
which each has different training dataset. Specifically, OMat24 stands 
for Open Materials 2024 large-scale open dataset [60]. OAM represents 
the combination of OMat24, MPtrj (i.e., the dataset of Materials Project 
DFT relaxation trajectories [55]), and sAlex (i.e., subsampled Alexan-
dria dataset [72]). OC20 and OC22 stand for Open Catalyst 2020 [73] 
and 2022 Dataset [74], respectively. For eSEN architecture, two models 
were selected based on different training dataset as well.

Notably, based on the eSEN architecture, Meta FAIR recently pre-
sented a family of Universal Models for Atoms (UMA) in order to 
push the frontier of speed, accuracy, and generalization [75]. In ad-
dition to Omat24 and OC20 datasets, the training dataset for UMA 
also consists of OMol25 (Open Molecules 2025 [76]), OMC25 (Open 
Molecular Crystals 2025 [77]), and ODAC25 (OpenDAC 2025 [78]) 
datasets. Since UMA incorporates extra information and is trained on 
‘‘the largest training runs to date’’, it is beneficial to add those models 
for comparison as well.
3 
Additionally, to perform large-scale oxidation simulation, two uM-
LIPs were chosen, namely NEP89 [79] and GRACE-FS (OMAT) [80], 
which are based on neuroevolution potential (NEP) [81] and Graph 
Atomic Cluster Expansion (GRACE) [82], respectively. In total, four 
state-of-the-art architectures, encompassing a total of 12 models, were 
chosen in this study, as detailed in Table  1. 

2.3. Simulation settings for O adsorption and Fe surface oxidation

In order to obtain high-accuracy adsorption energies, collinear spin-
polarized DFT calculations were performed using VASP [26,27]. All 
DFT calculations are at 𝑇  = 0 K [83,84]. The interactions between the 
valence electrons and the ionic core were described using the projected 
augmented wave (PAW) method [85]. The generalized gradient approx-
imation (GGA) in the PBE form was adopted for exchange–correlation 
energy [29]. The Brillouin zone was sampled by the Monkhorst–Pack 
methodology [86]. The second order Methfessel–Paxton method was 
used to treat fractional occupancies with the Fermi surface smearing 
width of 0.2 eV [87]. The k-points was generated using VASPKIT [88], 
with a consistent density of 2𝜋×0.03Å−1. A cutoff energy of 520 eV was 
chosen for plane-wave basis set. The convergence criteria of the energy 
for the electronic self-consistency loop and force for the ionic relaxation 
loop were set to 10−6 eV and 0.01 eV/Å, respectively. All ReaxFF 
MD calculations were performed using Large-scale Atomic/Molecular 
Massively Parallel Simulator (LAMMPS) [89,90]. The charge equili-
bration (QEq) method for handling the electrostatic interactions is 
implemented in LAMMPS according to Aktulga et al. [91]. The QEq 
parameters were adopted from ReaxFF-Aryanpour. Conjugate gradient 
(CG) algorithm was applied for the energy minimization. The stopping 
tolerance for force was set to be 4×10−4 eV/Å. For uMLIPs, all structural 
relaxations were conducted by the FIRE optimizer [92] using the ASE 
calculator interfaced with all uMLIPs. Note that the uMLIPs used in our 
work do not explicitly include a dynamic charge equilibration during 
MD simulations. The convergence criterion 𝑓max was set to 0.1 eV/Å, 
which means that the force on all individual atoms should be less than 
𝑓max. This criterion was adopted by some other studies as well [55,93].

For the Fe surface oxidation simulation, Fe(100), Fe(110), and 
Fe(111) surfaces were selected. Taking Fe(100) surface as an example 
as shown in Fig.  1(e), a 6×6×24 supercell was created for each surface, 
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Table 1
The uMLIPs used in this work.
 uMLIP Training set Number of

parameters
 

 eqV2-31M-omat OMat24 31M  
 eqV2-31M-OAM OMat24 + MPtrj + sAlex 31M  
 eqV2-31M-S2EF-OC20 OC20 31M  
 eqV2-S2EFS-OC22 OC22 121M  
 eSEN-30M-omat OMat24 30M  
 eSEN-30M-OAM OMat24 + MPtrj + sAlex 30M  
 uma-s-1p1-oc20 OMat24 + OC20 + OMol25 + OMC25 + ODAC25 6.6M  
 uma-s-1p1-omat OMat24 + OC20 + OMol25 + OMC25 + ODAC25 6.6M  
 uma-m-1p1-oc20 OMat24 + OC20 + OMol25 + OMC25 + ODAC25 50M  
 uma-m-1p1-omat OMat24 + OC20 + OMol25 + OMC25 + ODAC25 50M  
 NEP89 OMat24 + MPtrj + SPICE + ANI-1xnr +

SSE-ABACUS + SSE-VASP + Protein +
UNEP-v1 + CH + CHONPS + Water

N/A  

 GRACE-FS-OMAT OMat24 N/A  
amounting to 864 Fe atoms. Then, 100 O2 molecules were randomly 
distributed on top of each Fe surface. During the oxidation simulation, 
periodic boundary conditions were adopted in both X and Y directions, 
while fixed boundary condition was applied along the Z direction, with 
both the top and bottom simulation box set to be reflective walls. As 
highlighted in Fig.  1(e), three bottom layers of the Fe slab were fixed 
to mimic the surface condition. Before the oxidation, the O molecules 
were relaxed at 300 K in the canonical ensemble (NVT) for 100 ps so as 
for the initial configuration to be reasonable and randomly distributed 
over each Fe surface. In the oxidation process, the timestep was set to 
0.25 fs and the temperature of the whole system was regulated at a 
constant 973 K by Nosé–Hoover heat bath method [94,95] for 1 ns. 
All oxidation simulations were performed using LAMMPS and Open 
Visualization Tool (OVITO) was utilized for all the visualizations [96].

3. Results

3.1. DFT study of adsorption

To probe the behavior of O adsorption on Fe surface, systematic 
DFT calculations using consistent set of parameters were performed. 
Fig.  2 shows the DFT obtained adsorption energy results for various 
adsorption sites on different Fe surfaces for the three coverages, whose 
detailed values are displayed in Table  2. It can be seen that the 
adsorption energies follow a trend: top > bridge > hollow for the 
Fe(100) and Fe(110) surfaces. This means that the hollow site is the 
most stable one, followed by the bridge site, with top site being the least 
energetically favored. Additionally, LB site is found to be more stable 
than the SB site on Fe(110) surface. When it comes to the difference 
between coverages, it can be observed that lower coverage is preferred 
over high coverage, while the difference between 19  ML and 

1
4  ML is 

observed to be negligible.
Notably, on the Fe(111) surface, there are more adsorption sites and 

the energetics is slightly different from the other surfaces. Specifically, 
in terms of site stability, hollow sites (i.e., fcc and hcp) are not the 
most favored ones. Instead, two bridge sites, namely sB and DB, are 
more stable than the rest. It is also worth to mention that for sB and 
DB sites the difference between all coverages are shown to be negligible 
compared to that of other sites. Despite small energy differences, 14  ML 
is slightly favored than 19  ML, which is contrary to Fe(100) and Fe(110) 
surfaces. Moreover, the energy difference between 12  ML and 

1
4  ML is 

quite large for fcc and SP sites. On Fe(211) surface, surprisingly, no 
hollow site is found to exist stably. SB and LB sites are quite close in 
energy values and unlike other surfaces all three adsorption sites are 
not sensitive to different coverages.
4 
Table 2
DFT adsorption energies of O on various Fe surfaces, for different adsorption 
sites and coverages. All energies are in eV.
 Surface Site 1/9 ML 1/4 ML 1/2 ML 
 
Fe(100)

top −1.89 −1.91 −1.62  
 bridge −2.77 −2.74 −2.44  
 hollow −3.35 −3.33 −3.14  
 
Fe(110)

top −1.77 −1.79 −1.57  
 short bridge −2.90 −2.83 −2.51  
 long bridge −3.33 −3.30 −2.86  
 3 fold hollow −3.35 −3.31 −3.01  
 

Fe(111)

top −1.85 −1.85 −1.75  
 hcp −2.58 −2.59 −2.40  
 fcc −2.11 −2.16 −1.71  
 shallow bridge −2.74 −2.82 −2.79  
 saddle point −2.39 −2.51 −1.81  
 deep bridge −2.95 −3.02 −3.03  
 
Fe(211)

top −1.95 −1.95 −1.92  
 short bridge −2.98 −2.99 −2.98  
 long bridge −2.95 −2.99 −2.98  

3.2. MD study of adsorption

3.2.1. ReaxFF adsorption results
After the DFT results had been obtained, simulation of O adsorption 

on four Fe surfaces using the three chosen ReaxFFs was conducted 
and then the corresponding adsorption energy was compared to the 
DFT results. The accuracy of ReaxFF and uMLIP adsorption energies 
is evaluated with two complementary error metrics. First, the mean 
absolute error (MAE), defined as: 

MAE = 1
𝑛

𝑛
∑

𝑖=1

|

|

|

𝐸DFT,𝑖
ads − 𝐸FF,𝑖

ads
|

|

|

, (2)

which measures the absolute deviation in energy. Second, the mean 
absolute percentage error (MAPE), defined as: 

MAPE = 100
𝑛

𝑛
∑

𝑖=1

|

|

|

|

|

|

𝐸DFT,𝑖
ads − 𝐸FF,𝑖

ads

𝐸DFT,𝑖
ads

|

|

|

|

|

|

, (3)

which measures the error relative to the magnitude of the DFT refer-
ence energy. Fig.  3 shows the parity plot of the comparison between 
ReaxFF and DFT, where the metrics (MAE and MAPE) for differ-
ent coverages are shown as well. The circle, square, and triangle 
shapes represent ReaxFF-Aryanpour, ReaxFF-Huang, and ReaxFF-Liu, 
respectively. In addition, the coefficient of determination (𝑅2) values 
for the parity plot of adsorption energy between DFT and ReaxFF 
are calculated (see Supplementary Table S1). It can be seen that all 
ReaxFFs perform poorly at reproducing the DFT results, as indicated by 
the negative 𝑅2. Interestingly, ReaxFF-Aryanpour and ReaxFF-Huang 
have similar distribution of data points. Despite that ReaxFF-Huang 
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Fig. 2. DFT adsorption energy for O adsorption at various sites on Fe surfaces for three different coverages. (a) Fe(100) surface; (b) Fe(110) surface; (c)
Fe(111) surface; (d) Fe(211) surface.
adopted the initial parameters for Fe–Fe from ReaxFF-Aryanpour, the 
Fe–Fe parameters were re-trained in ReaxFF-Huang. Thus, the ob-
served similarity cannot simply be attributed to inheritance from the 
ReaxFF-Aryanpour parameterization.

Despite the poor performance of the ReaxFFs, it is worthwhile to 
investigate and compare the different capabilities of the three ReaxFFs 
to study O adsorption on Fe surfaces. As shown in Fig.  3(a) and (b), 
both ReaxFF-Aryanpour and ReaxFF-Huang perform the best in the 
case of the 1

4  ML, followed by 
1
9  ML and then 

1
2  ML. ReaxFF-Huang 

explicitly includes O adsorption configurations in the parameterization 
of Fe–O parameters. However, ReaxFF-Aryanpour has overall better 
accuracy compared to ReaxFF-Huang. As indicated in Fig.  3(c), ReaxFF-
Liu performs the worst of all the three ReaxFFs. Its Fe–O parameters 
originate from the ReaxFF developed by Shin et al. [42], whose Fe–O 
parameters only come from the configurations of the sulfur-substituted 
Fe2O3 and FeO systems. This explains the poor performance of ReaxFF-
Liu and also indicates that if not trained explicitly on relevant structures 
which may appear in the actual simulation, ReaxFF would have reduced 
performance. In terms of the difference between coverages, ReaxFF-Liu 
performs the best in the case of 19  ML and the worst in 

1
4  ML. But in 

the case of 12  ML, it even predicts positive adsorption energy.

3.2.2. uMLIP adsorption results
Ten uMLIPs were utilized for the simulation of O adsorption on Fe 

surface, which are categorized into two sets: (1) eSEN-OAM, eSEN-
OMAT, OC20, OC22, eqV2-OAM, and eqV2-OMAT; (2) uma-s-OC20, 
uma-s-OMAT, uma-m-OC20, and uma-m-OMAT. The first set is focused 
on models based on the eqV2 and eSEN architectures, which were 
trained on the OAM, OMAT or OC datasets. The reason for this division 
is that the models in this set can be conveniently compared between 
the same or different architectures (e.g., eSEN vs. eqV2) or datasets 
(e.g., OAM vs. OMAT). Except for OC22 model, all models in the first 
set have similar number of trainable model parameters. The second set 
is focused on UMA models, which are divided according to the model 
sizes (i.e., total number of trainable parameters). Interestingly, various 
tasks can be chosen when using UMA models. Thus, for comparison, 
the OC20 and OMAT tasks were chosen in both small and medium 
UMA models. To quantify the stability of uMLIPs conducting geometry 
5 
optimization, the failure rate is defined, which specifically refers to the 
ratio of failure jobs to all calculations for O adsorption on Fe surface. 
A geometry optimization is considered to fail if the de-adsorption of O, 
the O adsorption site changing, and unreasonable configuration such 
as structure distortion were observed in the converged calculations. 
Fig.  4 shows the failure rate of the two uMLIP sets. It can be seen 
from Fig.  4(a) that, in the first set of uMLIPs, eSEN-OAM model has 
the highest failure rate, followed by the eSEN-OMAT model, with 
both eSEN-OAM and eSEN-OMAT models having higher failure rates 
than their respective eqV2 counterparts, namely eqV2-OAM and eqV2-
OMAT. Notably, though OC20 and OC22 were explicitly trained on a 
variety of surfaces and adsorbates, their performance is not always the 
best in all cases. Specifically, despite that OC20 model has the best 
success rate in 12  ML and 

1
4  ML cases, it loses its superior performance to 

eqV2-OAM model for the case of 19  ML. OC22 model not only has higher 
overall failure rate compared to eqV2-OAM model, but also performs 
worse than OC20 model regardless of the coverage. In addition to the 
comparison between different uMLIPs, it is also worth to notice that all 
uMLIPs have coverage-dependent failure rate. Particularly, eSEN-OAM 
and eSEN-OMAT models have totally opposite failure rate trend. For 
eqV2-OAM and eqV2-OMAT models, the failure rate follows a trend: 12
ML > 1

4  ML >
1
9  ML, with eqV2-OAM model performing slightly better 

overall. While for OC20 and OC22 models, the failure rate trend follows 
the order of 12  ML >

1
9  ML >

1
4  ML.

Fig.  4(b) shows the failure rate of the second set of uMLIPs. It can 
be clearly seen that, regardless of the model size, OC20 task has better 
performance than the OMAT task. It can also be seen that larger model 
size has higher success rate for the same task. Interestingly, both uma-
m-OMAT and uma-s-OMAT models have the same failure rate trends 
in different coverages as those appeared for the eqV2-OAM and eqV2-
OMAT models. Similarly, the pattern between various coverages of 
OC20/OC22 models also holds for uma-m-OC20/uma-s-OC20 models. 
Notably, uma-s-OC20 model successfully finished all the calculations 
for the 14  ML case.

To compare the accuracy of the uMLIPs, direct comparisons of 
adsorption energy between the two sets of uMLIPs and DFT are shown 
in Fig.  5 and Fig.  7, respectively. Fig.  5 shows the adsorption energy 
from all the successful calculations by the first set of uMLIPs, where the 
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Fig. 3. Comparison of the adsorption energy between ReaxFF and DFT for different coverages. (a) ReaxFF-Aryanpour; (b) ReaxFF-Huang; (c) ReaxFF-Liu. 
Note that in each coverage the data points are for all the four Fe surfaces.
Fig. 4. Failure rate of the geometry optimization by different uMLIPs. (a) First set of uMLIPs; (b) Second set of uMLIPs.
combination of various surfaces and coverages is labeled together with 
different adsorption sites. Since the failure rates of both eSEN models 
are high and the adsorption energy calculated by eqV2-OAM model is 
positive, only results from eqV2-OMAT, OC20, and OC22 models are 
displayed (see Supplementary Fig. S1 for the other three models). It can 
be seen that eqV2-OMAT model also gives positive adsorption energies 
for 14  ML for Fe(111) surface and 

1
9  ML case for all the four surfaces. 

In addition, the adsorption energies obtained by it are quite extreme 
compared to those by OC20 and OC22 models.

It should be noted that the performance of the first set of uMLIPs 
exhibits coverage-dependence. As shown in Fig.  5(a)–(c), on Fe(100) 
surface, both OC20 and OC22 models align well with DFT results. 
eqV2-OMAT model shows contradictory results between H and B sites 
compared to DFT, predicting B site to be more stable. On Fe(110) 
surface, OC20 still maintains a good match with DFT results. However, 
as can be seen in Fig.  5(d)–(f), both OC22 and eqV2-OMAT models 
exhibit conflicting results. Specifically, OC22 predicts OT site to be 
more stable than TH site for the 12  ML and 

1
4  ML cases and SB site to be 

more stable than LB site for the 19  ML case. eqV2-OMAT also makes the 
mistake between OT and TH site for 14  ML and 

1
9  ML cases. On Fe(111) 

surface, eqV2-OMAT model not only makes the wrong prediction about 
OT site for all coverages, but also gives positive adsorption energy of 
6 
other sites for the 14  ML and 
1
9  ML cases. Then, despite the accurate 

predictions for 12  ML shown in Fig.  5(g) and high success rates for 
1
4

ML and 1
9  ML shown in Fig.  5(h)–(i), OC20 and OC22 models have 

more tendency to make mistakes for the lower coverages. For example, 
as shown in Fig.  5(h)–(i), both models have wrong predictions of the 
fcc site stability. On Fe(211) surface as shown in Fig.  5(j)–(l), while 
eqV2-OMAT model has right prediction for 12  ML, it fails for other ML 
cases. Both OC20 and OC22 models have successfully predicted the 
energetics for all coverages. Overall, it can be deducted that describing 
O adsorption on Fe(111) surface is a difficult task for uMLIPs.

Fig.  6 shows the parity plot of the adsorption energy between DFT 
and the first set of uMLIPs. The results of eqV2-OMAT, OC20, and OC22 
models are displayed, along with the performance metrics for different 
coverages. Compared to the performance of ReaxFFs, it can be clearly 
seen that the uMLIPs are worse. Judging by the metrics, it can be seen 
that OC20 model performs the best, followed by OC22 model and then 
eqV2-OMAT model. Notably, the performance of these models is also 
coverage dependent. Specifically, OC20 and OC22 models follow the 
trend: 12  ML >

1
4  ML >

1
9  ML, while eqV2-OMAT model is in a totally 

opposite order with many wrong predictions. Moreover, the difference 
between various coverages is insignificant for OC22 model, which is 
contrary to the other two models.
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Fig. 5. Comparison of the adsorption energy between the first set of uMLIPs and DFT for different Fe surfaces. (a-c) Fe(100) surface for different coverages;
(d-f) Fe(110) surface for different coverages; (g-i) Fe(111) surface for different coverages; (j-l) Fe(211) surface for different coverages.
The comparison of adsorption energy between the second set of uM-
LIPs and DFT is shown in Fig.  7. In general, it can be seen that, similar 
to eqV2-OMAT model in the first uMLIP set, uma models using the 
OMAT task also gives positive adsorption energy. However, the main 
difference lies in the trend of the coverage-dependent accuracy. Specif-
ically, in contrary to the eqV2-OMAT model, both uma-s-OMAT and 
uma-m-OMAT models have better agreement with DFT with reducing 
coverage. As shown in Fig.  7(a)–(c), on Fe(100) surface, uma-s-OMAT 
model gives positive adsorption energy for the 12  ML and 

1
4  ML cases. 

Despite the negative adsorption energy given for the 19  ML case, the 
stability prediction is wrong between H and B sites as shown in Fig. 
7(c), which is the same mistake as that of eqV2-OMAT model as shown 
7 
in Fig.  5(a)–(c). For uma-m-OMAT model, it still gives positive energy 
for the 12  ML, however, it yields negative energy for the 

1
4  ML and 

1
9  ML 

cases. As shown in Fig.  7(b), the same error of predicting B site to be 
more stable than H site for the 14  ML is observed as that of uma-s-OMAT 
model for the 19  ML. It distinguishes the stability of various sites for the 
1
9  ML case. Both uma-s-OC20 and uma-m-OC20 models succeeded for 
all the calculations and yielded negative adsorption energies. However, 
in contrary to DFT, they failed to distinguish between H and B sites 
across all coverages, predicting B site to be more stable.

As shown in Fig.  7(d)–(e), on Fe(110) surface, wrong predictions are 
made by uma-s-OMAT and uma-m-OMAT models for both 12  ML and 
1  ML cases. But for the case of 1  ML, both models show reasonable 
4 9
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Fig. 6. Comparison of the adsorption energy between three uMLIPs of the first set and DFT for different coverages. (a) eqV2-OMAT model; (b) OC20 
model; (c) OC22 model.
results as shown in Fig.  7(f). Notably, both uma-s-OC20 and uma-m-
OC20 models show quite consistent result compared to DFT. As shown 
in Fig.  7(g)–(i), on Fe(111) surface, a notable distinction in success rate 
can be observed between high coverage (i.e., 12  ML) and low coverages 
(i.e., 14  and 

1
9  ML), indicating the poor performance of uMLIPs in this 

case. For the case of 14  and 
1
9  ML as shown in Fig.  7(h)–(i), uma-s-OMAT 

model shows bad performance and uma-m-OMAT model performs rel-
atively well except for the prediction of the fcc site. In addition, it is 
worthwhile to mention that both uma-s-OC20 and uma-m-OC20 models 
make errors in the prediction of hcp and fcc sites, underestimating 
and overestimating the stability, respectively. As shown in Fig.  7(j)–(l), 
on Fe(211) surface, uma-s-OMAT model still shows poor performance, 
while the performance of uma-m-OMAT model is better. In contrary, 
both uma-s-OC20 and uma-m-OC20 models exhibits agreeable results 
with respect to the DFT calculations.

Fig.  8 shows the parity plot of the adsorption energy between DFT 
and the second set of uMLIPs. It can be observed that totally differ-
ent trend of coverage-dependent performance exists in uma models 
on different tasks. For uma-s-OMAT and uma-m-OMAT models, the 
performance is the best for the case of 19  ML, followed by 

1
4  ML, with 

1
2

ML being the worst. It is also worthwhile to mention that larger model 
has better performance. While for the other two models, namely uma-
s-OC20 and uma-m-OC20, the trend is totally opposite. Both models 
perform the best for 12  ML and the worst for 

1
9  ML, with uma-s-OC20 

model performing better.

3.3. MD study of surface oxidation

3.3.1. ReaxFF oxidation results
To further investigate the effectiveness of both ReaxFF and uM-

LIP on the dynamical oxidation process, MD simulation of Fe surface 
oxidation was conducted, as exemplified in Fig.  1(e). It is known 
that the initial Fe oxidation is a rapid process, where different ox-
ides can form, such as FeO, Fe3O4, and Fe2O3 [12]. Normally, thick 
oxide layer has compositions of Fe:FeO:Fe3O4:Fe2O3, depending on 
the distance of the layer from the Fe/oxide interface [97]. The FeO 
forms first, which is stable above 843.15 K [98], and subsequently 
transforms to Fe3O4 or Fe2O3 [99]. Additionally, only FeO may be 
obtained in the much thinner Fe–Oxides produced during pre-oxidation 
in the galvanizing lines. Thus, in this study, the temperature of 973 
K is adopted in all the MD simulations, which is slightly above the 
formation temperature of FeO. It is shown in Section 3.2.1 that ReaxFF-
Aryanpour has overall better performance than ReaxFF-Huang, which 
should be chosen for Fe surface oxidation simulation. However, there 
are several studies available that have performed oxidation simulation 
using ReaxFF-Aryanpour [100,101], where three surfaces were chosen 
for comparison, namely Fe(100), Fe(110), and Fe(111). In order to 
enrich the comparison while keeping consistency with previous studies, 
8 
ReaxFF-Huang is adopted in this study for the Fe–O atomic interactions 
to investigate the surface oxidation of Fe(100), Fe(110), and Fe(111). It 
is worthwhile mentioning that, similar to ReaxFF-Aryanpour, ReaxFF-
Huang also includes the lattice constants and heats of formation of 
various Fe minerals in its parameterization.

Fig.  9 shows the final configurations of different Fe surfaces after 
1 ns oxidation simulation. It can be clearly seen that different surfaces 
have varied oxidation degree judging by the number of consumed O 
atoms, which follows the trend: Fe(111) > Fe(110) > Fe(100). This 
observation aligns well with the results of oxidation at 900 K in the 
study of Jeon et al. [100], despite that different ReaxFFs were used. 
In addition, the thicknesses of oxidation layer on three surfaces are 
measured, which are found to be 16 Å, 20 Å, and 15 Å for Fe(100), 
Fe(110), and Fe(111), respectively. Notably, it can be seen that oxi-
dation layers on Fe surfaces are quite ordered and exhibit crystalline 
structures. To probe the structure of oxidation layer, radial distribution 
function (RDF) 𝑔(𝑟) is obtained, which measures the probability of 
finding a particle at distance 𝑟 given that there is a particle at position 
𝑟 = 0. For comparison, FeO structure is constructed and then relaxed at 
973 K for 1 ns. Fig.  10 shows the comparison of the RDF between the 
final configuration of the relaxed FeO structure and various oxidation 
layers extracted from Fe surface oxidation. The RDFs of the oxidation 
layers show similar shapes in terms of the peak positions of different 
pairs, indicating the similar structures of the oxidation layers. Then, 
compared to the RDF of the FeO structure, it can be seen that the peaks 
of both Fe–O and Fe–Fe pairs match well between the FeO structure 
and oxidation layers. The only difference lies in the peaks of O–O 
pair. This may be attributed to the insufficient oxidation simulation 
time. Overall, ReaxFF-Huang is found to be effective for simulating Fe 
surface oxidation and could provide reasonable structural information. 
Additionally, it is worthwhile to mention that comparing classical MD 
oxidation results with ab initio MD (AIMD) would be ideal to validate 
the force field predictions. However, conducting AIMD for oxidation at 
finite temperature is computationally prohibitive given the system size 
and timescales needed for more realistic oxidation. Thus, future work 
could be done by focusing on much smaller model systems.

3.3.2. uMLIP oxidation results
The efficiency of various uMLIPs has been reported in the study of 

Shuang et al. [61]. It is shown that, despite the increased accuracy com-
pared to other uMLIPs, the eqV2 models are computationally intensive, 
almost one order of magnitude slower than the Orb model [102]. In 
addition, in the study of Wood et al. [75], the simulation speeds of 
UMA and eSEN-OAM models are also compared to the Orb model. The 
speed is tested on a periodic system of 1000 atoms and measured by 
steps per second, which is 3 and 1.7 for UMA and eSEN-OAM models, 
respectively. Still, the two models are one order of magnitude slower 
than the Orb model (i.e., 30 steps per second for 1000 atoms). Instead, 
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Fig. 7. Comparison of the adsorption energy between the second set of uMLIPs and DFT for different Fe surfaces. (a-c) Fe(100) surface for different 
coverages; (d-f) Fe(110) surface for different coverages; (g-i) Fe(111) surface for different coverages; (j-l) Fe(211) surface for different coverages.
the NEP89 [79] and GRACE-FS [80] foundation models are quite fast 
and have interfaces with LAMMPS, which is very convenient to perform 
the large-scale simulation. As shown in Table  3, we tested the computa-
tional speeds of various uMLIPs for NVE MD simulation of a 115-atom 
BCC Fe system using ASE on the AMD 9654 CPU. Thus, they are 
selected for the simulation of Fe surface oxidation. The same simulation 
models and conditions are adopted and applied as those in ReaxFF MD 
simulations. During the structural relaxations before oxidation, both 
uMLIP models have reasonable descriptions for O molecules and Fe 
surfaces (see Supplementary Fig. S2(a)–(b) and Fig. S3(a)–(b)), which 
indicates the stability of uMLIPs. However, under the same oxidation 
condition as that of ReaxFF MD simulations, no oxidation of the fully 
9 
relaxed system is observed (see Supplementary Fig. S2(c) and Fig. 
S3(c)). This may be attributed to the absence of related structures in 
the training dataset. In order to investigate the effectiveness of uMLIPs 
representing Fe–Oxide, the FeO structure is again considered. It is 
first geometrically optimized by the DFT calculation. Subsequently, the 
relaxation of the FeO structure using NEP89 and GRACE-FS models is 
conducted at 973 K for 1 ns. Then, the RDFs of the final configurations 
are compared, as shown in Fig.  11. It can be seen that the RDFs from 
both uMLIP models not only exhibit similar shapes, but also match well 
with that from DFT calculation. This means that both uMLIP models can 
provide reasonable description of the FeO structure. Notably, the RDF 
shapes from both uMLIP models are smoother than the one obtained 
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Fig. 8. Comparison of the adsorption energy between the second set of uMLIPs and DFT for different coverages. (a) uma-s-OMAT model; (b) uma-s-OC20 
model; (c) uma-m-OMAT model; (d) uma-m-OC20 model.
Fig. 9. Final configurations for different Fe surfaces after 1 ns ReaxFF-MD simulation of Fe surface oxidation. (a) Fe(100) surface; (b) Fe(110) surface;
(c) Fe(111) surface.
by DFT, which is due to the smooth potential energy surface generated 
by the foundation models. In addition, the computational speeds for 
the relaxation of the wüstite structure are calculated using LAMMPS, 
which are 2.79, 1.01, and 0.57 katom-step/s/core for NEP89, GRACE-
FS, and ReaxFF, respectively. Overall, despite the failure in describing 
the reaction between O molecules and Fe atoms of both uMLIP models, 
reasonable structural information could be obtained by them, showing 
their potential capability to describe the oxidation product.

4. Discussion

In this work, relevant ReaxFFs regarding the Fe–O system and 
advanced uMLIPs are benchmarked against DFT for the case of O 
10 
adsorption and Fe surface oxidation. It can be seen from the compar-
ison between ReaxFF and uMLIP that for the Fe–O system, ReaxFF 
outperforms uMLIP in terms of either the accuracy of reproducing 
DFT or the stability of describing the oxidation. This indicates that 
ReaxFF could be the first choice for the reactive systems. However, 
provided that several relevant ones exist, careful benchmarks need to 
be done on essential properties in order to make the final choice, for 
example benchmarking the adsorption energy for the case of oxidation. 
The rational behind this is that, if not explicitly trained on relevant 
structures which may appear in the actual simulation, ReaxFF can have 
poor performance, as exemplified in the comparison between ReaxFF-
Aryanpour/ReaxFF-Huang and ReaxFF-Liu in terms of the adsorption 
energy with regard to DFT.
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Fig. 10. Radial distribution function of the wüstite structure and oxidation layers for different Fe surfaces obtained from ReaxFF-MD simulation. (a)
the wüstite structure; (b) the oxidation layer on Fe(100) surface; (c) the oxidation layer on Fe(110) surface; (d) the oxidation layer on Fe(111) surface.
Fig. 11. Radial distribution function of the wüstite structure obtained by (a) DFT; (b) NEP89; (c) GRACE-FS.
Notably, the better performance of ReaxFF over uMLIP in describing 
O adsorption and Fe surface oxidation for the Fe–O system may be 
attributed to a few factors. First of all, ReaxFF has a functional form 
that explicitly include the bond order [38], which is appropriate for 
the description of the reactions [39]. Then, it is known that the Fe–
O system itself is a difficult one to study, owing to the challenge to 
accurately describe the electronic and magnetic properties, such as 
the electronic band gap and ground state magnetism of various Fe 
oxides [103]. Next, despite that uMLIPs are trained on millions of 
structures, they may sacrifice certain degree of accuracy (e.g., using 
lower convergence parameter) and consistency (e.g., mixed usage of 
11 
PBE and PBE+U) in order to get the converged DFT results for the 
structures as diverse as possible. Additionally, unlike in ReaxFF where 
charges are dynamically redistributed every time step, uMLIP runs are 
performed under a fixed-charge (or effectively neutral) assumption. 
The absence of explicit electrostatics/charge transfer likely impairs 
the ability of uMLIP to describe reactive adsorption and oxidation 
processes.

Nevertheless, uMLIP also has its unique advantages in both direct 
use and further development. In terms of its direct use, as shown in the 
study of Shuang et al. [61], uMLIP demonstrates the remarkable po-
tential for the static property predictions, particularly configurational 
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Table 3
Computational speed of various uMLIPs on the 115-atom 
BCC Fe system. All speeds are in atom-step/s/core.
 uMLIP Computational speed 
 eqV2-OAM 3.59  
 eqV2-OMAT 3.56  
 eSEN-OAM 1.18  
 eSEN-OMAT 1.13  
 OC20 3.85  
 OC22 1.31  
 uma-s-OC20 4.27  
 uma-s-OMAT 4.36  
 uma-m-OC20 0.68  
 uma-m-OMAT 0.68  
 NEP89 238.89  

energy and atomic forces. Hence, uMLIP could be a rough estimate 
for the energy and force of the structures for the Fe–O system. In 
addition, combined with the findings from the FeO RDF comparison 
between uMLIP and DFT, it can be deducted that uMLIP could also be 
adopted as pre-relaxation calculator if certain structures are difficult 
to directly get the converged results in DFT. Another advantage of the 
uMLIP that cannot be ignored is its universality, which is the conve-
nient applicability of including any elements of interest, for instance 
including Mn or Si for the study of the steel oxidation. It terms of 
the further development, notably, with the development of several 
techniques, such as the distillation [104] and fine-tuning [105], both 
the speed and accuracy of the uMLIP could be significantly enhanced, 
leading to the improved capability in the simulations such as geometry 
optimization. For example, in order to boost the applicability of uMLIP 
in the Fe surface oxidation, future work could be focused on fine-tuning 
the uMLIP using the structures sampled from the ReaxFF MD simulation 
of the Fe surface oxidation.

Last but not least, developing the system-specific MLIP (sMLIP) 
could also be a practical option for the Fe–O system, which is extremely 
helpful for the correct description of the physical property, for instance 
the formation mechanisms of interstitial Fe atoms and typical defect 
clusters in FeO [106]. Notably, in order to improve the sMLIP robust-
ness, uncertainty quantification (UQ) needs to be carefully considered, 
which assesses the reliability of the energies and forces predicted by the 
sMLIP [107]. UQ is significantly essential for the dataset generation in 
the sMLIP development cycle, as it helps detect the out-of-distribution 
configurations that needs to be included [107]. Moreover, given that 
UQ in the uMLIPs is quantified, the advantage of the uMLIPs could be 
better utilized, significantly speeding up the sMLIP development cycle. 
For example, in a recent study of Liu et al. [108], an uncertainty-aware 
model distillation framework was proposed using the heterogeneous 
uMLIP ensemble and then further applied to produce the sMLIPs. It 
has been verified that with less (e.g., less than 4%) or no DFT data, 
the produced sMLIPs achieve comparable accuracy to teacher models 
with significantly reduced computational cost.

5. Conclusion

Systematic DFT calculations using consistent settings were per-
formed to elucidate the O adsorption mechanism on various Fe surfaces 
for different coverages. On Fe(100) and Fe(110) surfaces, the adsorp-
tion energies of various sites follow a trend: top > bridge > hollow. 
While on Fe(111) and Fe(211) surfaces, the bridge sites are more stable 
with respective to the top and hollow sites. Then, the comparison 
of the adsorption energy between ReaxFFs and DFT reveals the good 
performance of ReaxFFs in reproducing the DFT results. In addition, 
ReaxFFs exhibits varied performance with regard to coverage. This is 
also observed in both sets of uMLIPs: (1) eSEN-OAM, eSEN-OMAT, 
OC20, OC22, eqV2-OAM, and eqV2-OMAT; (2) uma-s-OC20, uma-
s-OMAT, uma-m-OC20, and uma-m-OMAT. Next, the comparison of 
12 
the stability for uMLIPs performing geometry optimization highlights 
OC20, OC22, eqV2-OAM in the first set and uma-m-OC20, uma-m-
OMAT in the second set. Direct comparison of the adsorption energy 
in the first set of uMLIPs further shows the strength of OC20 and OC22 
models, with OC20 model outperforming OC22 model, while revealing 
numerous wrong predictions of eqV2-OAM model with regard to DFT. 
For the second set of uMLIPs, despite that uma-s-OC20 and uma-m-
OC20 models outperforming uma-s-OMAT and uma-m-OMAT models, 
they make obvious mistakes, predicting contradictory results about B 
and H sites on Fe(100) surface and hcp and fcc sites on Fe(111) surface 
with respect to DFT. Moreover, it is worthwhile to mention that all 
uMLIPs have poor performances for the Fe(111) surface. Finally, sur-
face oxidation simulation has been conducted for Fe(100), Fe(110), and 
Fe(111) surfaces using ReaxFF-Huang, NEP89, and GRACE-FS. ReaxFF-
Huang exhibits exceptional stability and is quite effective for providing 
rational structural information. However, both NEP89 and GRACE-FS 
fail to capture the reactive process, indicating their limited capability in 
modeling Fe–O system oxidation. Nevertheless, the comparison of the 
RDFs for the FeO structure obtained from these models and DFT reveals 
their potential to reasonably describe the final oxidation product.
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