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Abstract

A method to optimise the fibre angle distribution of variable stiffness laminates is proposed. The proposed
method integrates a fibre angle retrieval step with a fibre angle optimisation procedure. A multi-level approxima-
tion approach is used in combination with the method of successive approximations. First, fibre angle retrieval is
done by approximating the structural responses based on the optimal stiffness distribution found using lamination
parameters. The full fibre angle optimisation is done by updating the approximations based on the current stack-
ing sequence. It is shown for a bucking optimisation with a stiffness constraint that the number of finite element
analyses reduces significantly by starting the optimisation from the optimal stiffness distribution rather than from
a user-specified stacking sequence. Next, it is shown that updating the approximations also leads to considerable
improvements over fibre angle retrieval. Similar promising results are obtained for a stress optimisation problem.

1 Introduction
Today, composite materials are frequently used in the aviation industry and the first composite-dominated

planes like the B-787 or A400M are being built. Traditionally, fibres within a layer have the same orientation,
leading to constant stiffness properties. As manufacturing technology has evolved, for example the advent of
automated fibre placement machines, the fibre orientation of a layer can be varied continuously leading to varying
stiffness properties that can be best tailored for the applied loads. These composites are called variable stiffness
laminates (VSL).

To exploit the possibilities of VSL fully, a three-step approach has been developed. The first step is to find
the optimal stiffness distribution in terms of the lamination parameters. This is discussed in detail in Ijsselmuiden
[1, 2]. The second step is to find the optimal manufacturable fibre angle distribution, the focus of this paper [3, 4, 5].
The third step is to retrieve the fibre paths, discussed in Blom [6]. A schematic overview of this approach is shown
in Figure 1.

Figure 1. schematic overview of the three-step approach [1]

One of the largest problems in optimising VSL, is taking manufacturability into account. To do this, linearly
varying fibre angles are used which has given promising, manufacturable, results [7, 8, 9, 10, 11, 12]. The use of
linearly varying fibre angle per bay, for stiffened plates, has also been investigated, and again it has been shown
that varying the fibre angles leads to better performance [13, 14]. Direct parametrisation of the tow paths using
Lagrangian polynomials, splines or NURBS (Non -Uniform Rational B - Splines) has also been used. Large,
manufacturable, improvements in buckling load were found, but the result is dependant of the basis functions you
chose to incorporate [15, 16, 17]. Hence, the total potential of VSL has not been exploited due to the pre-specified
set of possibilities. Furthermore, most methods assume that the fibres are shifted, meaning a choice had to be made
whether gaps or overlaps will be allowed during manufacturing [18].

Another approach that leads to manufacturable designs is to align the fibres in the direction of principal stress.
This has been shown to reduce stress concentrations, and can also lead to reduced weight using the tailored fibre



D. Peeters and M. Abdalla

placement method [19, 20]. Using the load paths, or a hybrid combination of load paths and principal stress
direction has also been used to design VSLs [21]. Continuous tow shearing is a new manufacturing method,
leading to varying fibre angles without any gaps or overlaps, but with a thickness variation that is coupled with
the change in fibre angle [22, 23]. Using a genetic algorithm, coupled with a pattern-search algorithm, or using
the infinite strip method large improvements in structural performance have been shown to be possible [24, 25]. A
more comprehensive review of optimisation strategies can be found in Ghiasi et al. [26]

The lamination parameters are optimised in step one of the three-step optimisation approach, which has the
disadvantage that a fibre angle retrieval step is needed. Enumeration has been used for constant stiffness laminates
to match lamination parameters in terms of fibre angles [27]. If the number of layers gets too high, a layer-wise
optimisation approach is used: first, the outer layer(s) are optimised, then the optimisation moves inward [28]. A
genetic algorithm (GA) is sometimes used for variable stiffness laminates to retrieve fibre angles from the optimal
lamination parameter distribution. Due to the computational cost of a GA, this is limited to a reasonably small
number of variables [29, 30]. Another approach is to try to match the in- and out-of-plane matrices as closely as
possible using a combination of a GA and a modified Shepard’s interpolation [31]. In other work, a real retrieval
step was performed: the fibre angles were optimised using a combination of a GA and a gradient based optimiser
to match the optimal stiffness distribution as closely as possible, while obeying a steering constraint [10].

In this paper, a method is discussed which combines fibre angle retrieval and fibre angle optimisation. First,
the angles are retrieved based on the optimal stiffness distribution, next, starting from this fibre angle distribution,
fibre angle optimisation is done. The paper is organised as follows: the optimisation approach is explained in
section 2, after which the solution procedure is explained in section 3. Then, two examples are worked out in more
detail: a buckling optimisation example in section 4 and a stress optimisation in section 5. The paper is concluded
in section 6.

2 Optimisation approach
In structural optimisation, the minimisation of an objective response (e.g., weight or compliance) subject to

performance constraints (e.g., on stresses or displacements) is studied. More generally, the worst case response, for
example in the case of multiple load cases, is optimised. Additional constraints not related to structural responses
may also be imposed to guarantee certain properties of the design such as manufacturability. The following general
problem formulation is considered:

min
x

max( f1, f2, ..., fn)

s.t. fn+1, ..., fm ≤ 0
xi ∈Di

(1)

The functions fi depend on the design variables; f1 to fn denote structural responses that are optimised and fn+1
to fm denote structural responses that are constrained. The feasible region is denoted by D . This problem will be
solved using successive approximations: one starts from a certain fibre angle distribution, constructs the approxi-
mations based on the optimal stiffness distribution, optimises the approximations and updates the approximations
based on the new fibre angles. This is repeated until convergence is reached.

Structural responses, such as buckling loads, stiffness, and strength, are calculated using a finite element (FE)
analysis. Since each FE analysis is computationally expensive, greater efficiency can be achieved by using struc-
tural approximations to reduce the required number of FE analyses [32, 33]. The exact FE response f is approxi-
mated in terms of the in- and out-of-plane stiffness matrices A and D and their reciprocals [1]:

f (1) ≈
N

∑
n=1

φ m : A−1 +φ b : D−1 +ψm : A+ψb : D+ c (2)

where the : operator represents the Frobenius inner product, A : B= tr(A ·BT ); φ and ψ are calculated from sensitiv-
ity analysis [34, 35]. Subscripts m and b denote the membrane and bending parts respectively. This approximation
is a generalisation of the linear-reciprocal approximations used in the convex linearisation method [36]. The ap-
proximations are convex functions in stiffness space provided that φ ≥ 0, a condition that is always satisfied by
construction. The free term c equals zero for many types of responses that enjoy homogeneity properties.

In the first step of the three-step approach, the approximations in (2) are parametrised in terms of the lami-
nation parameters. The details of the lamination parameters optimisation are omitted here, they can be found in
IJsselmuiden [1].

The fibre angles are the design variables for the second step of the three-step approach. Seen as a function
of the fibre angles, the level one approximation, eq. (2), no longer has a simple mathematical form and is not
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generally convex, hence, a level two approximation is constructed based on the level one approximation in terms
of the fibre angles:

f (2) ≈ f (1)0 +g ·∆θ +∆θ
T ·H ·∆θ (3)

where f (1)0 denotes the value, g the gradient and H the Gauss-Newton part of the Hessian of the level one approxi-
mation at the approximation point.

While optimising this second level approximation, a steering constraint is also taken into account to make sure
the found laminate is manufacturable. The steering is defined as

ς
2 =

2
Ω
·θ T ·L ·θ (4)

where L is the standard FEM discretisation of the Laplacian. If this is taken to be the Laplacian of the complete
layer, a global steering constraint is imposed, if the element Laplacian is used, a local steering constraint is imposed.
The global steering constraint limits the number of gaps and overlaps, while the local steering makes sure the radius
of curvature is not too small for the machine to lay down the fibre without wrinkling. The bound on the local
steering ςU is the inverse of the minimal steering radius needed; for example: a maximal steering value of 2m−1,
corresponds to a minimal steering radius of 500mm. The exact details on the fibre angle optimisation, including
the steering constraints, can be found in Peeters et al. [33].

3 Solution Procedure
The sensitivities in the first iteration are calculated from this optimal stiffness distribution to incorporate the

information about the optimum in terms of the stiffness matrices from step one of the three-step optimisation
approach. This is the fibre angle retrieval step. The fibre angle optimisation does not stop after one iteration: the
sensitivities are updated based on the current design to create a new level one approximation which is consequently
optimised. The process is repeated until convergence, and is a full fibre angle optimisation. Convergence is defined
in terms of the change in objective function. Unless specifically mentioned, a 1 ·10−3 change in objective function
is used as the convergence criterion. It is expected that the fibre angle optimisation will improve the structural
performance: in regions where the stiffness distribution cannot be matched exactly, it is probably advantageous to
find an optimal fibre angle distribution rather than approximating the optimal stiffness distribution.

The approximation used for fibre angle optimisation is guaranteed to be convex and separable, meaning every
approximation has an optimum and the problem is not computationally expensive. To ensure convergence to a
(local) optimum, every step needs to be an improvement (i.e., reduced objective and feasible constraints). One
possibility to guarantee this is to make each approximation conservative, meaning it is strictly greater than the
function it approximates at the new iterate. To achieve this, Svanberg proposed to add a positive function to the
approximations, referred to as damping function in the remainder [37]. This damping function is scaled with a
damping factor which is adjusted to make the approximations conservative. The damping factor is updated after
each iteration: it is reduced if the new iterate is conservative with respect to the function it approximates, otherwise
it is increased. The details of the damping function and damping factor can be found in Peeters et al. [33].

The solution procedure is shown in Figure 2, and is explained in algorithm 1.

Algorithm 1 Solution Procedure

1: start from an initial fibre angle distribution.
2: perform an FEA and calculate the sensitivities for the first level approximation f (1).
3: add the damping function ρ(1) ·d(1) to the first level approximation.
4: calculate the gradient and Hessian for the second level approximation f (2).
5: add the damping function ρ(2) ·d(2) to the second level approximation.
6: apply the steering constraint, build the Lagrangian L and solve the system.
7: calculate first level approximation f (1) and update damping factor of level two d(2).
8: decide if the new point is accepted: if the first level approximation f (1) is improved, the point is accepted. If

the point is not accepted, continue, else go back to step 5.
9: check whether the first level approximation f (1) has converged, or the maximum number of iterations is

reached. If either of these conditions is met, continue, else return to step 4.
10: perform an FEA and update the damping factor of first level approximation d(1).
11: decide if the new point is accepted: if the FE response has improved, the point is accepted. If the point is not

accepted, continue, else go back to step 3.
12: if FEA has converged, the optimal fibre angle distribution is found, else return to step 2.
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Figure 2. schematic overview of the code for a single optimisation step

4 Buckling optimisation
The first example is a singly-curved plate under compression. The buckling load of the plate is optimised

with the constraint that the axial stiffness should be at least as much as that of a quasi-isotropic laminate of the
same thickness. To take care of mode convergence and possible mode jumping, the lowest two buckling loads
are simultaneously considered in the min-max formulation. The compliance constraint is set to avoid unstable
post-buckling behaviour, which is dependent on the in-plane stiffness, while the buckling performance is mainly
dependant on the out-of-plane stiffness. The plate is 600 by 400 mm, with a sine-shaped height difference, which
is maximal 75 mm in the middle. The left and right edge are constrained to remain straight, the left edge cannot
move in x-direction, while the right edge is loaded with a unit compressive force. All edges are constrained to not
move out-of-plane, and one node is extra constrained in y-direction to suppress rigid body modes. The material
properties are as follows: E1 = 154GPa, E2 = 10.8GPa, G12 = 4.02GPa and ν12 = 0.317. The balanced layers are
assumed to be next to each other, no thickness variation is taken into account. The physical laminate has 36 layers
in total, but since symmetry and balance are imposed, only 9 design layers are part of the optimisation problem.

A mesh convergence study indicated that a sufficiently fine mesh is to use 24 elements in y-direction, and 36
in x-direction, leading to 1728 triangular elements and 925 nodes in the model used during optimisation. Due to
the symmetry of the problem, only a quarter of the plate will be used during the optimisation, reducing the number
of nodes in the optimisation to 247, and the number of elements to 432. The complete model is used for the FE
analysis and sensitivity calculation.

When performing the optimisation in stiffness space, the optimal buckling loads found are 2.2432 and 2.4656
times the lowest QI buckling load while the stiffness is 1.0001 times the QI stiffness.

4.1 Influence of initial fibre angle retrieval
The optimisation will be performed twice to assess the computational advantages of the fibre angle retrieval

step. The first time, the initial approximations are calculated at a user-specified initial fibre angle distribution. The
second time, the initial approximations are calculated at the optimal stiffness distribution produced by lamination
parameters optimisation. When starting from the sensitivities of the optimal stiffness distribution, the first iteration
is a fibre angle retrieval step. Five level one iterations are allowed, following previous work done by the authors
[33]. Only a local steering constraint of 3m−1, corresponding to a minimal turning radius of 333mm, is used
for this investigation. In the following, the buckling load and stiffness values are normalised with respect to the
corresponding values of a quasi-isotropic laminate of the same thickness.
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Table 1. Overview of the results using different initial sensitivities

initial optimal number of optimal number of difference difference
fibre buckling load FEAs without buckling load FEAs with in FEAs

angles [deg] without fibre fibre angle with fibre fibre angle buckling load used
angle retrieval [-] retrieval angle retrieval [-] retrieval

0.1 1.7574 14 1.7696 8 + 0.7 % - 6
1 1.7620 21 1.7671 5 + 0.3 % - 16

10 1.7608 13 1.7486 8 - 0.7 % - 5
20 1.7628 11 1.7645 5 + 0.1 % - 6

Figure 3. convergence history with and without initial fibre angle retrieval step

The results are shown in Table 1. The initial fibre angle distribution is assumed to be uniform for all layers and
nodes. The initial angle is shown in the first column. The optimal buckling load, and number of FEAs used when
no retrieval step is applied are shown in the second and third columns. The optimal buckling load, and number of
FEAs used with fibre angle retrieval activated are shown in the fourth and fifth columns. The difference in optimal
buckling load and FEAs used between the two optimisation strategies are shown in the last two columns. The
stiffness is not shown in Table 1 to save space, but it was always equal to the QI stiffness, or slightly higher, also
only the critical buckling load is shown; the second buckling load was always close to it but not identical. It can be
seen from Table 1 that the influence of the initial fibre angles is limited: a maximum change of 1.2 % is observed.
The solution procedure seems to be robust to initial conditions. When using fibre angle retrieval, the number of
FEAs is always decreased, in most cases it is halved. The difference in optimal buckling load due to the different
initial sensitivities is negligible, less then 1%, and may be explained by the stopping criterion in a gradient-based
algorithm.

Observing the convergence history, shown in Figure 3, the largest improvement is seen to be made in the first
level one step. When fibre angle retrieval is used, less iterations are needed to ’fine-tune’ the design. This could
be because in the firs step the stiffness distribution is already getting to the best one based on the optimal stiffness,
while when starting from the initial fibre angle distribution, there is more fine-tuning to be done.

It is interesting to inspect the convergence of the level two optimisation. To check this, an FEA is done after
each level two update until convergence is reached. This is done for an initial fibre angle of 1,10 and 20◦. For some
cases convergence is established fairly quickly and the 5 inner iteration limit imposed earlier is adequate. For the
case of a 10◦ initial angle the convergence is slower and it is possible that more inner iterations are beneficial. The
reason the convergence is not monotonous (i.e., constantly decreasing response) is that during level two updates,
level one approximations are monitored and are guaranteed to decrease. It can happen that the level two updates
wander out of the range of validity of level one approximations leading to non-monotone convergence of the FEA
results.

A maximum improvement over QI of 60% is found when fibre angle retrieval is used on its own. After updating
the approximations and converging the full fibre angle optimisation, a 76% improvement is found. Thus, the best
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Figure 4. FE response after each level 2 optimisation (during fibre angle retrieval)

Table 2. Overview of the results using different local steering constraints

maximum optimal optimal optimal optimal number difference difference
local buckling buckling buckling stiffness of FEAs w.r.t. w.r.t. optimal

steering load after load 1 load 2 [-] optimum stiffness
[m−1] fibre angle [-] [-] after fibre angle distribution

retrieval [-] retrieval
1 1.1210 1.3731 1.3735 1.0012 4 + 22.5 % - 38.8%
2 1.2894 1.5749 1.5752 1.0005 5 + 22.1 % - 29.8%
3 1.4867 1.7474 1.7474 1.0008 5 + 17.5 % - 22.1%
4 1.6024 1.8846 1.8852 1.0010 4 + 17.6 % - 16.0%
5 1.7550 1.9830 1.9835 1.0007 5 + 13.0 % - 11.6%

optimisation strategy seems to be to combine the fibre angle retrieval and angle optimisation. This way a better
performance is achieved while keeping the cost, in terms of number of FEAs, low.

4.2 Influence of manufacturing constraints
The influence of manufacturing constraints on how close the optimal stiffness response can be approached is

investigated. First, the optimisation is performed for different levels of the maximum local steering, there is no
constraint on the global steering. The results, for a local steering of 1m−1 up to 5m−1, are shown in Table 2, where
the maximum local steering is shown in the first column, the optimal buckling load with only fibre angle retrieval
is shown in the second column, the optimal buckling loads and stiffness are shown in columns three to five. The
sixth column lists the number of FEAs needed, the seventh column indicates the improvement obtained by full
angle optimisation over only angle retrieval, and the last column lists the difference in performance with respect to
the stiffness optimum. Note that the level two optimisation in the fibre angle retrieval step was allowed to converge
fully to ensure a fair comparison between the results with and without full fibre angle optimisation.

The higher the allowed steering, the higher is the improvement in buckling load. Furthermore, it seems that the
difference obtained by performing fibre angle optimisation after the retrieval step diminishes. This is due to the
better fit that can be obtained at higher steering values.

The Pareto front trading off manufacturability versus structural performance is shown in Figure 5, here, the
minimum turning radius represents manufacturability and the buckling load represents performance. The Pareto
front is not convex which is typical of the highly non-convex buckling optimisation problem. It seems that ini-
tially large performance improvements can be made by decreasing the minimum steering radius of curvature; the
improvements becoming gradually less siginficant for tighter radii. The response does seem to converge to the
stiffness optimum as expected.

As discussed earlier, the local steering constraint is imposed to guarantee a minimum turning radius. This is not
the only manufacturing consideration; gaps/overlaps due to fibre divergence/convergence may develop. These are
considered manufacturing defects and it is desirable to minimise them. Detailed prediction of gaps and overlaps
requires full simulation of the fibre-placement process. Embedding a full simulation in the optimisation process
would not be feasible especially since additional geometric freedom, not related to the fibre angle distribution, is
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Figure 5. normalised buckling load versus the minimal steering radius

Table 3. Overview of the results using different global steering constraints

maximum optimal optimal optimal optimal number difference difference
global buckling buckling buckling stiffness of FEAs w.r.t. w.r.t. optimal

steering load after load 1 load 2 [-] optimum stiffness
[m−1] fibre angle [-] [-] after fibre angle distribution

retrieval [-] retrieval
0.01 1.0307 1.2132 1.2132 1.1067 6 + 17.7% - 45.9%
0.5 1.0519 1.2888 1.2888 1.0011 5 + 22.5% - 42.6%
1 1.1274 1.3992 1.3999 1.0011 4 + 24.1% - 37.6%

1.5 1.2292 1.5192 1.5196 1.0007 5 + 23.6% - 32.3%
2 1.3532 1.6330 1.6333 1.0007 5 + 20.7% - 27.2%

2.5 1.4819 1.7436 1.7441 1.0006 6 + 17.7% - 22.3%
3 1.5724 1.8034 1.8046 1.0005 4 + 14.7% - 19.6%

3.5 1.0181 1.8467 1.8481 1.0013 8 + 81.4% - 17.7%
4 1.6024 1.8846 1.8852 1.0010 4 + 17.6 % - 16.0%

available to the designer to space the fibres in a way that best avoids gaps and overlaps. We propose to use the
global steering as a surrogate measure of the extent of local defects in the laminate. A reasonable value for the
local steering, 4 m−1 corresponding to a minimal turning radius of 250mm, is selected and fixed. The upper bound
on global steering is varied to investigate the effect on optimal performance.

The results are shown in Table 3, where the global steering constraint is shown in the first column, the optimal
buckling load after fibre angle retrieval is shown in the second column. The optimal buckling loads and stiffness
are shown in columns three to five. The number of FEAs is shown in the sixth column, the difference obtained by
full angle optimisation is shown in the seventh column while the last column indicates the difference with respect
to the optimal stiffness design. The lowest value used for global steering is small enough to be considered as the
optimal straight-fibre, constant stiffness, laminate. Up to 55% improvement in the buckling load can be achieved
by manufacturable steered laminates. The difference between fibre angle retrieval and full optimisation is mostly
around 20% supporting our earlier observations.

5 Strength optimisation
The second example problem is the taken from Khani et al. [38]. A plate with a circular cut-out loaded in

tension is optimised for strength. The plate is 400 by 400 mm, with a large circular cut-out with a diameter of
200 mm at the centre. The plate is simply supported all around, with all edges constrained to remain straight.
After taking the symmetry into account, the plate was discretised into 217 triangular elements with 132 nodes. The
material stiffness properties are as follows: E1 = 142.9GPa, E2 = 10.3GPa, G12 = 7.2GPa and ν12 = 0.27. The
failure is defined using the conservative omni-strain envelope [39, 38, 40]. The total laminate has a thickness of
4.6mm, meaning there are 24 layers. As in the previous example, the laminate is assumed the be balanced and
symmetric, leading to 6 design layers.
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Table 4. Overview of the results using different local steering constraints using 1 ·10−3 as stopping criterion

maximum minimum optimal number difference difference
local factor of factor of of FEAs w.r.t. w.r.t. optimal

steering safety after safety optimum stiffness
[m−1] fibre angle [-] after fibre angle distribution

retrieval [-] retrieval
0.01 1.288 1.578 4 + 22.5 % - 18.8 %

1 1.345 1.811 10 + 34.6 % - 6.8 %
2 1.357 1.830 12 + 34.9 % - 5.9 %
3 1.395 1.869 15 + 34.0 % - 3.9 %

Table 5. Overview of the results using different local steering constraints using 3 ·10−3 as stopping criterion

maximum minimum optimal number difference difference difference
local factor of factor of of FEAs w.r.t. w.r.t. optimal w.r.t. tighter

steering safety after safety optimum stiffness convergence
[m−1] 1 step [-] [-] after 1 step distribution criterion

1 1.345 1.688 5 + 25.5 % - 13.2 % - 6.8 %
2 1.357 1.709 5 + 25.9 % - 12.1 % - 6.6 %
3 1.395 1.746 5 + 25.2 % - 10.2 % - 6.6 %

The load is chosen such that the QI design has a minimum factor of safety of 1. When performing the optimi-
sation in terms of the lamination parameters, the optimal design has a minimum factor of safety of 1.944. Only the
effect of the local steering constraint will be investigated. The optimisation will be performed for straight fibres,
by setting the maximum local steering to 0.01m−1, and for local steering bounds from 1 to 3 m−1. The results are
shown in Table 4, where the local steering constraint is shown in the first column. The maximum failure index
after angle retrieval and at the full optimisation optimum are shown in the second and third column, the fourth
column gives the number of FEAs needed to get to the optimum, the difference from angle retrieval due to full
optimisation is shown in column six, the last column indicates the difference with respect to the optimum stiffness
distribution.

The small number of FEAs needed for the straight-fibre laminate stands out: only 4. Although the approxima-
tions are only updated four times, there is a clear advantage in updating them. The large increase in safety factor
after the fibre angle retrieval is due to the bad matching in the vicinity of the hole: updating the approximations
makes sure the optimal fibre angle is found, as opposed to a suboptimal lamination parameter match. The number
of FEAs is low due to the limited design space: no steering is allowed, thus not much ’fine-tuning’ can be done.

When steering is allowed, the increase in safety factor is more significant. This comes at the cost of significantly
more FEAs. Since steering is allowed, a wider design space is available to the optimiser, and a lot of ’fine-tuning’
can be done. If the convergence criterion is chosen to be 3 ·10−3 instead of 1 ·10−3, fewer FEAs will be needed,
but at the expense of reduced optimal performance. The results are shown in Table 5. This table has the same
layout as Table 4 with one column added where the difference with respect to the tighter convergence criterion is
given.

What really stands out is that even with a relatively limited steering of 3m−1, one can already get within 4%
of the optimal stiffness distribution. This can be explained by the relatively low load redistribution that has to be
done for the stress optimisation. For buckling optimisation, all the load is redistributed to the sides, while for the
strength, the load is gently nudged away from the cut-out, possibly because of the geometry: the cut-out is large
compared to the total size of the plate.

To see what is happening in terms of the stiffness distribution, the V1 and V3 distribution are shown in Figure
6. The optimal stiffness distribution found is shown at the top, the lamination parameters after the fibre angle
retrieval step are shown in the middle, and the optimal fibre angle distribution is shown in the bottom. A local
steering constraint of 3m−1 is used for the fibre angle retrieval and optimisation. In the top figures, it can be seen
there is a lot of difference in stiffness from one point to the next, which causes the stiffness distribution after the
fibre angle retrieval step to be very far away from the optimal, not knowing what places should be matched more
accurately. When looking at the stiffness distribution for the fibre angle optimum, it can be seen that the stiffness
change is smoother, and the sides and middle are matched exactly, while the part in between looks completely
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different. Although the difference in stiffness distribution is very large, the factor of safety only differs by 3%:
the stiffness optimisation allows very large changes in stiffness from one point to the next for a small increase in
performance, while this is constrained in the fibre angle optimisation.

6 Conclusion
A method to optimise the fibre angle distributions of variable stiffness laminates is proposed. The proposed

method integrates a fibre angle retrieval step with the fibre angle optimisation procedure. The fibre angles are
retrieved using the approximation based on the optimal stiffness distribution. Due to a steering constraint, which
limits the rate of change in fibre angles, the stiffness distribution cannot, in general, be matched exactly. Hence,
fibre angle optimisation is performed, using successive approximations, after the fibre angle retrieval step, until
convergence is reached. Two examples are used to demonstrate the approach. The first example shown is a single
curved plate under compression, optimised for buckling with a stiffness constraint. The second example is a square
plate with a circular hole in the centre under tension, optimised for maximum strength. The results indicate a strong
trade-off between manufacturability, measured by the bound on steering, and performance.

The results show that by incorporating a fibre-angle retrieval step, the number of FEAs goes down significantly,
usually it is halved, compared to starting from a user-specified initial stacking sequence. While the fibre angle
retrieval leads to improved numerical efficiency, the results indicate that fibre angle retrieval in itself is not sufficient
to obtain the best performance. Further full fibre angle optimisation steps, in the buckling example, led on average
to 15-20% improvement in performance over fibre angle retrieval. The strength optimisation example showed that
even larger improvements are possible by performing full fibre angle optimisation, almost 35% on average. The
best strategy seems to be to combine fibre angle retrieval and angle optimisation. This way a better performance is
achieved while limiting the number of FE analyses.

Overall, integration of fibre-angle retrieval in the full fibre angle optimisation process reduces the compu-
tational cost. This gain in efficiency will allow designers to study the trade-off between manufacturability and
performance carefully and to select the most promising design(s) depending on the relative importance of both
considerations.
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[6] Blom, A. W., Abdalla, M. M., and Gürdal, Z., “Optimization of course locations in fiber-placed panels for
general fiber angle distributions,” Composites Science and Technology, Vol. 70, No. 4, 2010, pp. 564 – 570.
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