<]
TUDelft

Delft University of Technology

Minimization of the Training Makespan in Hybrid Federated Split Learning

Tirana, Joana; Tsigkari, Dimitra; losifidis, George; Chatzopoulos, Dimitris

DOI
10.1109/TMC.2025.3533033

Publication date
2025

Document Version
Final published version

Published in
IEEE Transactions on Mobile Computing

Citation (APA)

Tirana, J., Tsigkari, D., losifidis, G., & Chatzopoulos, D. (2025). Minimization of the Training Makespan in
Hybrid Federated Split Learning. IEEE Transactions on Mobile Computing, 24(6), 5400-5417.
https://doi.org/10.1109/TMC.2025.3533033

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1109/TMC.2025.3533033
https://doi.org/10.1109/TMC.2025.3533033

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!’ - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

5400

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 24, NO. 6, JUNE 2025

Minimization of the Training Makespan in Hybrid
Federated Split Learning

Joana Tirana"”, Dimitra Tsigkari

Abstract—Parallel Split Learning (SL) allows resource-constr-
ained devices that cannot participate in Federated Learning (FL)
to train deep neural networks (NNs) by splitting the NN model
into parts. In particular, such devices (clients) may offload the
processing task of the largest model part to a computationally
powerful helper, and multiple helpers may be employed and work
in parallel. In hybrid federated and split learning (HFSL), on the
other hand, devices can participate in the training process through
any of the two protocols (SL and FL), depending on the system’s
characteristics. This could considerably reduce the maximum
training time over all clients (makespan), especially in highly
heterogeneous scenarios. In this paper, we study the joint problem
of the training protocol selection, client-helper assignments, and
scheduling decisions, to minimize the training makespan. We
prove this problem is NP-hard and propose two solution methods:
one based on the decomposition of the problem by leveraging
its inherent symmetry, and a second fully scalable one. Through
numerical evaluations using our testbed’s measurements, we
build a solution strategy comprising these methods. Moreover,
this strategy finds a near-optimal solution and achieves a shorter
makespan than the baseline schemes by up to 71%.

Index Terms—Federated learning, split learning, distributed
learning optimization.

I. INTRODUCTION

HE proliferation of devices that collect voluminous data
T through their sensors motivated the design of client-based
distributed machine learning (ML) protocols, like federated
learning (FL) [2]. In FL, the training process is organized in
training rounds that include local model updates at the devices
(that act as clients) and the aggregation of all the clients’ models
at a server (the aggregator). During this process, clients keep

Received 24 July 2024; revised 4 December 2024; accepted 16 January
2025. Date of publication 23 January 2025; date of current version 7 May
2025. This work was supported in part by the Horizon Europe research and
innovation program of the European Union under Grant 101092912, project
MLSysOps, in part by the EU Horizon Europe project under Grant 101093006
(TaRDIS), in part by the Spanish Ministry of Economic Affairs and Digital
Transformation and the European Union-NextGenerationEU through the project
6G-RIEMANN under Grant TSI-063000-2021-147, in part by the National
Growth Fund through the Dutch 6 G flagship project “Future Network Services”,
and in part by the European Commission under Grant 101139270 (ORIGAMI)
and Grant 101192462 (FLECON-6G). Part of this work appeared in the pro-
ceedings of IEEE INFOCOM 2024 [1]. Recommended for acceptance by L.
Guo. (Corresponding author: Joana Tirana.)

Joana Tirana and Dimitris Chatzopoulos are with the School of Com-
puter Science, University College Dublin, Dublin 4 Dublin, Ireland (e-mail:
joana.tirana@ucdconnect.ie; dimitris.chatzopoulos @ucd.ie).

Dimitra Tsigkari is with Telefénica Research, 28050 Madrid, Spain (e-mail:
dimitra.tsigkari @telefonica.com).

George losifidis is with the Department of Software Technology, Delft Univer-
sity of Technology, 2628 Delft, The Netherlands (e-mail: g.iosifidis @tudelft.nl).

Digital Object Identifier 10.1109/TMC.2025.3533033

, George losifidis

, and Dimitris Chatzopoulos

their dataset locally, while only sharing their model’s updates
with the aggregator.

Some of the main challenges in FL are: 1) system hetero-
geneity; 2) communication overhead; 3) constrained resources,
i.e., clients of limited memory and computing capacities [3].
As a result of these factors, the training time of some clients
might be prohibitively long, thus, slowing down this cross-
device distributed ML process. Indeed, these clients (stragglers)
increase the training makespan, i.e., the maximum training time
over all clients, which is a key metric in highly heterogeneous
systems because of the synchronous nature of FL [3], [4]. While
state-of-the-art FL approaches propose ways of alleviating this
phenomenon, e.g., via model pruning [5] or asynchronous pro-
tocols [6], they may compromise the accuracy of the produced
model. Moreover, clients with limited memory capacity (e.g.,
IoT devices) might be unable to participate in FL processes that
train large ML models.

In the cloud-edge computing schema, when the extreme-edge
devices (the clients in our case) cannot support the computing
or the memory demands that are required to keep up with the
system’s needs, a solution is to offload part of the computing
burden into the cloud, or into another (more powerful) edge
node device. In that context, split learning (SL) protocols have
been recently proposed to enable resource-constrained clients
to train neural networks (NNs) of millions of parameters [7]. In
SL, clients offload a part of their training task to a helper, which
could be a Virtual Machine (VM) on the cloud or a lightweight
container in a base station beyond 5 G networks. Formally, an
NN comprising L layers' (1,...,L) is split into three parts
(part-1, part-2, and part-3) of consecutive layers ([1,...,01],
[o1+1,...,09],[02+1,..., L)) using 2 cut layers{o1,02} €
o.Then, part-1 and part-3 are processed at the clients, and part-2
at the helper. This allows the resource-constrained clients to
offload computationally demanding processes to the helper.

In conventional SL, the clients share the same part-2, and
the helper collaborates with each client in a sequential or-
der to train the model parts. This can lead to long delays in
the training process depending on the number of participating
clients. Whereas, in parallel SL [8], [9], the helper allocates
a different version of part-2 for each client, allowing clients
to make parallel model updates. At the end of each training
round, all clients synchronize their model versions, and thus,
the training makespan remains a key metric. Parallel SL reduces

IThroughout this manuscript, a “layer” is the NN’s indivisible model part,
i.e., it cannot be further partitioned into more layers.

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0009-0009-2648-6735
https://orcid.org/0000-0001-8729-4475
https://orcid.org/0000-0003-1001-2323
https://orcid.org/0000-0002-4765-5085
mailto:joana.tirana@ucdconnect.ie
mailto:dimitris.chatzopoulos@ucd.ie
mailto:dimitra.tsigkari@telefonica.com
mailto:g.iosifidis@tudelft.nl

TIRANA et al.: MINIMIZATION OF THE TRAINING MAKESPAN IN HYBRID FEDERATED SPLIT LEARNING

the makespan (when compared to the conventional SL) without
compromising the model accuracy [8], [10], [11].

An even more practical approach is considering a hybrid
federated and (parallel)® split learning (HFSL) [12], [13] setting,
to manage both resource-constrained clients and more pow-
erful ones (capable of supporting on-device training). In this
setup, clients may train the NN model either through SL in
collaboration with a helper or through FL, i.e., train the entire
model locally. The motivation for the hybrid approach is that
clients with higher-end devices may train through FL without
increasing the makespan. Consequently, this will reduce the load
and alleviate the resource demands on the helpers which will
assist only the resource-constrained clients.

Also, in SL, the presence of multiple helpers working in
parallel can further reduce the training makespan [14]. Because
it can easily support a larger-scaled system while considering
managing clients in different geographical locations. Hence,
helpers are placed in multiple locations to serve clients by
providing faster communication links. But, orchestrating the
workflow of HFSL in this network of entities (as depicted in
Fig. 1) is one of the main challenges that the HFSL paradigm
faces, as discussed in [3]. In detail, the factors that one needs to
consider are the computation-memory resources of all entities
and the connectivity of the clients to the helpers.

Methodology & Contributions. Driven by the time measure-
ments of our testbed and the heterogeneity even among devices
of similar capabilities, we identify three key decisions: 1) the
training protocol employed by each client (FL or SL), and in
the case of SL, we further need to decide: 2) the client-helper
assignment, which is tied to the helpers’ memory and computing
capacities; 3) the scheduling, i.e., the order in which each helper
processes the offloaded tasks. These decisions can be crucial for
the training makespan by alleviating the effect of stragglers while
fully utilizing the available resources. Hence, we formulate
the problem of jointly making these decisions to minimize the
makespan.

We extend the model and the optimization problem we con-
structed in our previous work [1], which was solely focused
on the workflow of SL. Hence, modifications must be made
to support the combination of FL. and SL. To the best of our
knowledge, this is the first work that studies this joint problem.
We analyze this problem and its challenges both theoretically (by
proving it is NP-hard) and experimentally (by using measure-
ments from a realistic testbed). Therefore, we propose a solution
method based on an intuitive decomposition of the problem into
two subproblems, leveraging its inherent symmetry. The first
one involves the training protocol selection for each client, the
assignment, and the forward-propagation scheduling variables.
The second one involves the backward-propagation scheduling
variables. For the former, the Alternating Direction Method
of Multipliers (ADMM) is employed, while for the latter, a
polynomial-time algorithm is provided. Moreover, we propose
a second solution method based on load balancing, that is more
scalable, and thus, ideal for large problem instances. Finally, our

2This work focuses on parallel SL, as described above, and not on conventional
SL, thus, we drop the word parallel, unless otherwise specified.

5401

samples &

transmission
labels

L F, B como
kl, - m computing & memory

delay 1 capacities
— — —
processes . ==~ processes
Part-18& part-3 CLENTL — — _ _HELPER1 __ Part-2 9
ticipates ti SL) - - -
(participates through SL) — T~ _
J ; p B =
= ~ kl P (ii=o)
CLENT2 .~ m; -~ AGGREGATOR
. ~ =< =] - -
~ - 5 9
~ P aggregates the model’s
-~ \HE\LPER I updates received from all
~ - —= entities
CLIENT J t—_———— - -

processes
the entire model

(participates through FL)

Fig. 1. The hybrid federated and split learning setting considered in this work,
the considered network topology, its resources, and the processing tasks per
entity. Some clients, e.g., client 1, participate in the training through parallel SL,
by offloading part-2 to a helper, while others, e.g., client J, participate through
FL and perform on-device training.

numerical evaluations provide insights into the performance of
the proposed methods, as well as the achieved gains in makespan
in representative scenarios. The contributions of this work are
summarized below.

e Formulate the joint problem of training-protocol selec-
tion, client-helper assignments, and scheduling decisions
to minimize the training makespan in HFSL, and prove it
is NP-hard.

® Propose a solution method based on decomposing the
problem into two subproblems. For the first one, ADMM is
employed, while a polynomial-time algorithm is provided
for the second one.

® Propose a heuristic algorithm with minimal overheads.

e Extend our model in two different ways, to account for
(i) the preemption cost, and (ii) the energy consumption
cost.

e Perform numerical evaluations of the proposed methods
using collected data from our testbed.> These findings
shape a solution strategy based on the scenario at hand.

e Show that our solution strategy finds a near-optimal so-
Iution and achieves a shorter makespan than the baseline
schemes by up to 71%, and on average by 25%.

The rest of the paper is organized as follows. First, in
Section II, we provide an overview of related work. Then, in
Sections III and IV, we present the system model and the
formulation of the joint problem of training protocol selec-
tion, client-helper assignment, and scheduling decisions, respec-
tively. These are followed by the solution methods in Sections V
and VI-A. Then, we present extensions of our model that include
additional costs in the objective function; the preemption cost
in Section VI-B, and the energy consumption in Section VII.
Section VIII presents the numerical evaluations and, finally,
Section IX concludes the paper.

II. RELATED WORK

A. Client-Based Distributed ML

Research on FL mainly focuses on achieving good accuracy
while minimizing the wall-clock time, through client selection

3The evaluation code and the collected testbed’s measurements are publicly
available at https://github.com/jtirana98/SFL-workflow-optimization.

https://github.com/jtirana98/SFL-workflow-optimization

5402

strategies [15], or aggregation algorithms [16], [17], or by taking
into account the communication overhead [15], [18]. However,
some clients might be unable to support the computation de-
mands of such protocols (e.g., on-device training is not feasible
due to limited memory capacity, or clients miss aggregation
deadlines due to network delays of slow computing). This
has motivated the creation of SL [7], in which the computing
demands on the clients are relaxed by offloading a big part of
the model into a helper. Consequently, SL reduces the risk of
missed synchronization deadlines and enables the training of
deeper ML models.

Going a step further, SL combined with FL, i.e., SplitFed
or parallel SL [8], [19] can lead to further acceleration and
scalability. Like in FL, clients can train their model parts in
parallel while preserving the FL's convergence guarantees.

B. Optimizing SL

Usually, existing works model a system consisting of multiple
clients and a single helper. In particular, they focus on finding
the NN’s cut layers while trying to optimize the energy con-
sumption [20], [21], the training makespan [22], or privacy [10].
However, in the presence of multiple clients, the system may
need to be scaled up, in order to: (i) speed up the training
process; having a single helper will result in large queuing delays
which leads to the starvation of some clients, (ii) satisfy the
memory demands of SL; the helper’s memory demands increase
as the number of participants is increased [23], and (iii) provide
robustness because having one helper translates to having a
single point of failure. The first two points directly impact the
makespan, while the last point concerns fault tolerance.

To minimize the training makespan for systems with multiple
helpers requires careful workflow orchestration. Close to this
idea, the work in [14] jointly finds the cut layers and assignment
decisions without taking into account the scheduling decisions.
As our analysis shows, scheduling decisions are crucial in
systems of highly heterogeneous network resources. Hence,
it is clear that one needs to jointly optimize the client-helper
assignments and scheduling decisions in parallel SL.

C. Hybrid Federated and Split Learning (HFSL)

HFSL was firstintroduced in [12], [13] and was inspired by the
heterogeneity of devices participating in distributed ML training.
In the presence of high heterogeneity, the computational load of
helpers may be reduced if powerful devices run the training tasks
locally. Specifically, in [12], selected clients will employ the FL.
protocol or SL, while in [13], clients select between FL and the
SplitFed [8] protocol. This motivated us to expand and update
accordingly our original model [1] towards a hybrid setting,
where some clients may participate in the training through SL,
and others - typically fast devices- through FL.

The main objective in existing related work is minimizing
energy consumption without considering the makespan and
the effects of increased training delay. Therefore, we not only
expand the original model in [1] to consider the hybrid FL and
SL approach but we also propose an extension that considers
both makespan and energy consumption through a balanced

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 24, NO. 6, JUNE 2025

objective. Our analysis shows that, when targeting solely on
reducing the per-iteration energy, this can lead to a significant
increase in training time. In this case, clients need to be online
and available for a longer time which leads to a considerable
consumption of their battery capacity. Moreover, even though
the clients in [12] may train through SL, the model does not
consider the queuing delay at the helper (as our model does).

D. Workflow Optimization

Joint problems of assignment and scheduling decisions, such
as the parallel machine scheduling problem, are often NP-hard,
see, e.g., [24], [25], [26]. While a first approach would be to
rely on methods such as branch-and-bound or column or row
generation methods (like benders decomposition [27]), our ex-
periments show that such methods may lead to high computation
overheads, even for small problem instances. Different from this
approach or other existing approaches (e.g., for edge computing
policies [28], [29]), we decompose the problem based on the
inherent structure of the SL operations. Next, we solve one of
the resulting subproblems with ADMM from the toolbox of
convex optimization [30]. ADMM is an iterative method that can
converge to the optimal under mild assumptions and has been
employed in a variety of networking problems, e.g., [31], [32].
Moreover, it has been recently found to perform remarkably well
for non-convex or integer problems [33], [34], [35] with even
partial convergence guarantees in some cases. The advantage of
employing this method lies in its versatility, allowing us to use
techniques that may constrain the problem’s solution space or
tune its penalty parameters and stopping criteria [33], and thus,
we tailor it to leverage the nature of the subproblem at hand.

III. SYSTEM MODEL & WORKFLOW OF TRAINING

This section formally presents the entities of the HFSL system
and their role, as well as the main steps of the training work-
flow (i.e., the training phase). Further, it introduces the relevant
decision variables of the considered problem. Table I at the end
of this section summarizes the introduced problem parameters
and variables.

A. Network Topology & Entities

We consider a system with a set 7 of J = | 7| clients, e.g.,
ToT or handheld devices, that wish to collaborate and train an NN
model using their data. There is also a set Z of [=|Z| available
helpers, that are connected over a wireless bipartite network
G = (J,T,€&) with non-interfering links &, see Fig. 1. In the
HFSL setting, clients may train the model either locally (through
FL) or partially locally and partially offload part of the training
to helpers. Therefore, extending the model presented in [1], the
set of helpers in HFSL is updated to Z':= 7 U Z, where a node
withindex ¢ > [isin practice aclient (i.e., the client j with index
equal to ¢ mod|Z| has a corresponding index I + j in the set 7).
Similarly, £ is extended to &’ to contain the “loopback” links
for clients using their own devices. However, as is explained in

TIRANA et al.: MINIMIZATION OF THE TRAINING MAKESPAN IN HYBRID FEDERATED SPLIT LEARNING

TABLE I
SUMMARY OF NOTATION

Symbol | Definition
J Set of clients
Z | Set of helpers
7' | The union set of helpers and clients
L | Length of NN model (i.e., number of layers)
T | Time horizon, has length T’
First and last cut layer
n | Computing capacity of node n
my | Memory capacity of node n
Bandwidth of comm. link between client j and helper ¢
d; | Memory footprint of client j when offloading part-2
T fwd-prop for part-1
r’. | bwd-prop for part-1
l; | fwd-prop for part-3
I’ | bwd-prop for part-3
pij | Helper ¢ applying fwd-prop of part-3
p’. | Helper i applying bwd-prop of part-3
Sending activation of first and second cut layer
Sending gradients of first and second cut layer
yij | Variable for assignments & train. protocol selection
Variable for scheduling fwd-prop tasks
zijt | Variable for scheduling bwd-prop tasks
c; | Completion time of whole batch update
P¢ | Computing power consumption of client j
P! | Transmission power consumption of client j
PT | Receiving power consumption of client j

the following sections, the under-study system model does not
require established communication links between clients.*

The nodes are potentially heterogeneous in terms of hardware
and/or wireless connectivity. Namely, each node i € 7' has
computing capacity k; (cycles/sec) and memory capacity m;
Gbytes. Further, we denote by bw ;; the bandwidth of the network
link between client j and helper 4, V(j,7) € £, and, w.lLo.g.,
we assume symmetric links, i.e., bw;; =bwj;. All nodes are
connected to an aggregator, indexed n =0, which may collect
the necessary information and orchestrate the workflow using
the solution strategy we develop.

B. Workflow of HFSL

The clients can either collaborate with the helpers to train a
large NN through SL or train the model locally through FL, ifitis
allowed by the capabilities of their devices. This decision is made
individually for each client while minimizing the makespan.
Each client owns a dataset that is divided into batches of equal
size. During training every batch is iteratively propagated into
the model, to update the model weights; we refer to this operation
as batch update.

When SLis selected for a client, the NN is split into three parts,
where o1 and o5 are the cut layers and each client computes
part-1 and part-3, while it offloads part-2 to a helper. This SL
architecture [7] protects the privacy of the clients’ data since
the samples and labels are kept locally. Whereas, when FL is
selected, the client is in charge of the whole model; part-1,
part-2, and part-3. Also, our analysis is oblivious to a) the cut

4While device-to-device communications may offer high speed, which could
alleviate the communication delays in SL, they also come with technical chal-
lenges, e.g., privacy and security issues [36]. Moreover, such communications
are typically feasible only for devices within the same region. In contrast, we
consider a more general scenario where devices may be located anywhere.

5403

layers, which are decided in advance and may differ across the
clients, b) the ML application in question, and c) the training
hyperparameters (e.g., batch size, learning rate, etc.), ensuring
that the resulting model accuracy is unaffected.

Epochs & Aggregation. The batch processing workflow is
repeated for all batches. When the clients have applied a batch
update using all batches of data, a local epoch is completed.
Clients repeat the processing of a local epoch for a predefined
number of times until a training round (or global epoch) is
completed. Subsequently, the updated model parts from each
node (client or helper) must be sent to and aggregated at the
aggregator, using methods such as FedAvg [2]. Typically, such
training processes require hundreds of training rounds, each
consisting of multiple batch updates [8]. Hence, to minimize
the maximum training time across all clients, i.e., the training
makespan, we leverage the structural nature of the training
process and focus on the makespan of a single batch, see [14],
[21]. Moreover, transmitting model updates can even start before
all entities have completed a batch update, thus speeding up the
procedure. Further, note that in SL clients transfer only part-1
and part-3 to the aggregator.

Batch Processing Workflow. Fig. 2 depicts the steps of one
batch update for client j € 7 and helper i € Z, and introduces the
main time-related parameters of SL. We employ a time-slotted
model [37] with time intervals that, w.1.0.g., are of unit-length.’
The client applies fwd-prop of part-1 and transmits the acti-
vations of the first cut layer (o) to the helper. We denote by r;
and tr?jl , respectively the number of time slots required for these
two operations, which depends on k; and bw;;, respectively. The
helper needs p;; time slots to fwd-prop these activations into
part-2, which depend both on the capacity k; and the choice of
cut layers, i.e., the “size” of the task. The client receives the
activations of the last layer of part-2 (o3) from the helper and
completes fwd-prop by processing part-3 and computing the
loss. We denote by [; and tr?j, respectively the time required
for these operations, which depends on bw;, the data size, and
k;, respectively.

Then, the back-propagation of the training error starts. The
client updates the weights of part-3, computes the gradients,
and transmits them to the helper, consuming l’j and trfj” time
slots. The helper back-propagates these gradients into part-2, to
update its weights, spending p/, ; time to execute this bwd-prop
task. Afterwards, it transmits the gradients of o to the client,
who then back-propagates part-1. We denote by 7‘} and trigj”
time slots the time required for these final steps.

When the FL protocol is selected for a client, the only dif-
ference in the training workflow (when compared to SL) is the
absence of activation/gradient exchange with any helper, i.e.,
tri} = trsz = trffl = trfj” =0, fori > I.

Finally, the time-related parameters (or delays) r=(r;,j €

J), v'=(r,j € T), p=(pis. (i,)) € &), p'=(py;. (i,]) €
&N 1=(l;,5 € J), V=(},j € J) and tr=(trj},(i,j)€
Ekea)tr=(tr][",(i,j)€E k € o) represent average

SWe further discuss the choice of the time slot’s length in Sections IV and
VIIL

5404
Client participates in the training through SL
CLIENT’S SIDE HELPER'S SIDE CLIENT’S SIDE
A1
BATCH
PROCESSING .
BEGIN! processmg (fwd) |
L local proc. (fwd) J l at the helper J L local proc. (fwd) J :
L Y :
T j T Pij e a lij K
- FORWARD PROPAGATIQN =mmmmmmmoeeeees
processing (bwd)) \
END OF l local proc. (bwd) | | at the helper | | local proc. (bwd) |
BATCH €=] Y, Y, H
PROC. ij i i try li j
e BACKWARD PROPAGATION =-semememenn
Fig. 2.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 24, NO. 6, JUNE 2025

Client participates in the training through FL

CLIENT’S SIDE

BATCH

local proc. (fwd)

ntpitl

“~ FORWARD

local proc. (bwd)
! ! ’
it Pt

"BACKWARD

bwd
prop.
begins

PROPAGATION

ENDOF |
BATCH
proC. €
PROPAGATION

The workflow of the batch update for a single client-helper pair in the SL setting, and the corresponding times, i.e., processing and transmission (left).

The queuing delay that a client might experience at the helper is not depicted here. In contrast, in the FL setting (right), no helper is employed, and, thus, no

transmission and queuing delays occur.

quantities6 for these tasks, and are considered available through
profiling and other offline measurement methods [38], [39].

Itis important to stress the inherent coupling between forward
and backward propagation. When aclient j € J transmits part-1
activations to a helper ¢ € Z, the latter allocates d; Gbytes of
memory, where possibly d; # d; if j # j', in order to store and
process these activations. The helper stores this data during the
fwd-prop and reassigns the (same) memory to the gradients
received from the client during the bwd-prop. In practice,
a client cannot use a different helper for each propagation
direction.

C. Time Horizon & Decision Variables

We employ a time-slotted model with time intervals S;, where
So=10,1],S;=(t,t + 1], =1,...,T,and T'=|T|is the num-
ber of slots in time horizon 7. The parameter 1" upper-bounds
the batch makespan and is calculated as follows:

T := max

e, vl Uy (i) b+

keo

/ /
max ;I?EaIX {pij +pij} al}g};({p(1+j)j +p(1+j)j})
J

ey

where the first term finds the worst-case transmission and pro-
cessing times for part-1 and part-3. The second term measures
the worst-case for processing part-2, which can be implemented
by the helpers or by each client individually.

Based on this time-slotted model, we introduce variables that
inject tasks to helpers to minimize the makespan. In particular,
we introduce the binary variables y = (v;; € {0,1}, (4,7) €
&'), wherey;; = lifclient j is assigned to helper i. However, we

0As is common in scheduling literature and, w.l.0.g., we assume that these
quantities are integers. Fractions can be handled by multiplying by a proper
factor if this assumption is violated. Also, one could adopt a more conservative
approach where worst-case values are considered instead of the average ones.

Optimization steps
A

Clients training through SL protocol

| client; helper;

decisions

T

Orchestrator Implement assignments and scheduling decisions

(e.g., Aggregator)

©)

Run proposed algorithms
(ADMM-based or
balanced-greedy)

—
Input
parameters

Clients training through FL protocol (on-device)

client;_;

client;

Training for several epochs/rounds until:
* The NN model converges or
* Achange is triggered > steps 1 — 3 are repeated.

Fig.3. Overview of the workflow of our system model.

note that ¢ € 7, and hence, y not only defines the client-helper
assignment, it also implicitly determines the training protocol
for each client. In detail, if y;; = 1 with ¢« € Z or index-wise it
has a value smaller than
the SL protocol and model part-2 of client j will be offloaded
to helper i. However, if i = j + |Z| (i.e., i > |Z|), this implies
that the client does not offload the model part to any helper and
trains the entire model locally, as in FL. In the next section, the
problem constraints will be defined in a way that best reflects
the dual role of the variables y. Moreover, we define the slot-
indexed variables = (z;;; € {0,1}, (¢,j) € £',t€T), where
x5t = 1 if the fwd-prop task of client j is processed at
helper ¢ during slot S, and x;;; = 0 otherwise. Similarly, we
define z = (z;;; € {0,1}, (4,j) € &',teT) with z;;, = 1if the
bwd-prop task of client j is processed at ¢ during S;. These
vectors fully characterize the batch-processing workflow.

IV. PROBLEM FORMULATION

In this section, we formulate the optimization problem of
minimizing the training makespan in HFSL. The role of this
optimization in the training workflow in the HFSL setting is
depicted in Fig. 3 and is managed by the orchestrator (e.g.,
the aggregator). This section contains a detailed analysis of its
constraints and the definition of its objective function. Also, it
presents the proof that the problem is NP-hard.

TIRANA et al.: MINIMIZATION OF THE TRAINING MAKESPAN IN HYBRID FEDERATED SPLIT LEARNING

A. Problem Constraints Formulation

The scheduling and assignment decision variables (x, z, and
y) should be consistent with the HFSL operation principles.

Scheduling Constraints. Each fwd-prop task can be exe-
cuted only after its input becomes available, i.e., after activations
of 0 are transmitted to the helper. Hence,

wije =0, Vt<r;+tr{}, (i,5) € £ 2)

In scheduling parlance, r; + tr;‘jl is the release time of this task,
i.e., when it becomes “available” at the helper. Similarly, the
bwd-prop can start only after the gradients of o2 + 1 have
been received by the helper (see Fig. 2), and thus,

t—1
G 2 4?2y S Zfrzgn V(i,j)e&teT.

Pij 7=0

3)
Thatis, in order to assign the bwd-prop task of j to+ at (or after)
slot t +1; + l’ + tr“2 + trff?, as we need to allocate enough
processing tlme at ¢ (at least p;;) for fwd-prop until slot ¢.
Essentially, (3) are precedence constraints that ensure the bwd -
prop of a client’s part-2 strictly succeeds its fwd-prop. The
next constraints ensure that each helper will process a single task

during any time slot (assuming single-threaded computing):

S (@ijetzig) <1, VieT teT. o
JjeTJ
Training Protocol Selection and Assignment Constraints. Re-
garding the decisions vy, each client’s task is either assigned to
a single helper (i.e., the SL protocol is selected) or processed
locally at the client (i.e., the FL protocol is selected):

dou=1, Vied. (5)
ier
Further, the assignments are bounded by the helper’s memory:
> yijd; <mi, VieT, 6)
JjeJ
However, clients may offload the intermediate model part only
to helpers, and not to other clients (see footnote 4):

yij =0,i>Tandi # 1+ j @)

Also, the assignment and scheduling constraints are tightly
coupled. When an assignment is decided, we need to ensure
adequate processing time will be scheduled for the fwd-prop
and bwd-prop tasks. In other words, it should hold that:

injt:yijpija V(i,7) € & and (8)
teT
Z Zijt:yz‘jpgj» V(i j) € E.)
teT

Completion Times: Finally, we introduce additional variables
to measure some key delays. In particular, we define ¢ =
(¢;,j € J), where ¢; is the slot when the bwd-prop of client
7 € J is completed. These variables should satisfy:

¢j > (t + 1)Zijt; V(’L,]) S gl,t eT. (10)

5405

Similarly, we introduce the overall (batch) completion time
variable ¢;,Vj € J, which should satisfy:

qu—l—Zr —|—t7“g7"1 Jyi; VjeJ.

€’

(1)

Essentially, the vector ¢=(c;,j € J) contains the comple-
tion times of one batch update for all clients, and hence, its
maximum element dictates the makespan. Naturally, all ele-
ments of ¢ and c are upper-bounded by 7. Finally, we ob-
serve that the quantity ¢; — >, vij(rj +tri} +pij +tri? +
Lj + 1 +tr{j* 4+ pj;) is the total queuing delay that client j
might experience during fwd-prop and bwd-prop.

Preemption: A strong aspect of our model is that it allows
preemption, i.e., a task may be paused partway through its
execution and then resumed later if this improves the makespan.
Specifically, preemptions may occur at the end of each time
slot S;. Unlike preemptions in the scheduling literature [26], in
the SL context, a processing task can be resumed only on the
same helper due to the memory footprint of the task. Preemptive
schedules may prioritize the slowest client (straggler), thus
reducing the makespan. This is in contrast to previous work
that follows more rigid non-preemptive models [14], but in line
with related work on edge computing, e.g., [39], [40]. We further
discuss this point in Section VI-B. Finally, since the length of
S; determines the frequency of preemptions, a smaller length
implies a larger benefit from preemption, i.e., shorter makespan.
We investigate this point using our testbed’s measurements in
Section VIII.

B. Problem Definition and NP-Hardness

We can now formulate the joint scheduling and assignment
problem that minimizes the batch makespan of HFSL.
Problem 1 (Batch Training Makespan).

P : minimize max {c;}
z,z,y,¢,c jeJ

st. (2-(11),
x,ze {0, 1} ¢ cef{o.T}, (12)
y € {0,131, (13)

This min-max problem can be written as an Integer Linear
Program (ILP) using standard transformations [41, Sec. 4.3.1],
i.e., by introducing the worst-case makespan variable ¢ and
changing the objective to miny z 4, ~.¢ ¥ with additional con-
straints ¢ > c;, Vj € J. Albeit elegant, such transformations do
not alleviate the computational challenges in solving large, or
even medium-sized instances of P. To exemplify, for a sce-
nario with J =20 clients, I =5 helpers, and horizon T'=636,
state-of-the-art solvers, such as Gurobi [42], achieve only a 40%
optimality gap in 14 hours (off-the-shelf computer). Such long
delays are not surprising due to the following result [1].

Theorem 1: P (Problem 1) is NP-hard.

Proof: We first define a simpler instance of P: we assume
that all devices train through SL, e.g., due to their limited
capabilities, hence, y;; = 0 for all ¢ > Z. Further, we assume
that all helpers have enough memory for all tasks, i.e., we drop

5406

---ALGORITHM 1
fwd-prop Schedule

Feasibilit: * *:

ADMM —X 1

.) . Gorrecion W, Y i
Assignments & training

protocol selection

[P)f—’

decompo-
sition

NP-hard

Solution

>for P

opt. bwd-prop
Schedule

— | P,

1
“-ALGORITHM 2 ============= ’)

Fig. 4. The roadmap to our ADMM-based solution method.

the memory constraints in (6), and r =7’ =1l =1 =p' =0,
tr*t =tr*2 =tr9™ = tr9™ = 0, i.e., propagations and trans-
missions of part-1 and 3 and the backward propagation at the
helpers are instantaneous. Therefore, in this instance, only the
fwd-prop tasks need to be scheduled and they are released
at time 0. Moreover, we assume [= 2, i.e., the system con-
tains only 2 helpers, and p;; = p; Vj, i.e., the length of all
tasks is independent of the helper. We will show that there is
a polynomial-time reduction from the parallel (identical) ma-
chine scheduling problem of 2 machines, denoted P2 || Cpax,
see [24], [43]. The former is defined as follows: given a set of n
jobs and a set of 2 parallel identical machines, each job should
be assigned to a machine, while every machine can process at
most one job at a time, with the objective to find a schedule and
the job-machine assignments to minimize the makespan. The
reduction is shown by setting n = J, i.e., the fwd-prop tasks
are the jobs, J = 2, i.e., the helpers are the 2 identical machines,
hence p;; = p; Vj. Finally, we note that in this specific instance,
enabling preemption will not have any impact on the makespan,
since, by design, the preemption cannot be from one helper to
the other in our problem. Given this reduction and the fact that
the parallel machine scheduling problem is NP-hard [24], [43],
P is NP-hard as well. d

Given this result, we develop a multi-fold solution strategy
consisting of a decomposition algorithm (Section V) and an
informed heuristic (Section VI-A).

V. SOLUTION METHOD

The core idea of our solution method is to decompose P
into two subproblems (see Fig. 4): (i) Py, which minimizes the
forward propagation makespan by deciding variables o and y;
(ii) Py, which minimizes the backward-propagation makespan
by deciding z, ¢, c. We solve Py using ADMM (see discussion
in Section II), and, for PP, we prove it admits a polynomial-time
algorithm by leveraging its coupling with IP; (due to). As we
will see in Section VIII, this approach will lead to considerable
speedups (up to 16 x) when compared to exact solution methods.

A. Fwd-Prop Optimization

Before introducing Py, we need some additional notation.
First, we note that the time horizon that is related to fwd-prop
can be confined to the set 7y with

Tr:= max

ri+ 1 +trik
(i,j)eS’,kEo-{ J J K

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 24, NO. 6, JUNE 2025

+ max maxp(lﬂj,g maprij
S
JjeT

We denote by ¢§c the fwd-prop finish time for each client j €
J, which by definition has to satisfy the constraints (similarly
to (10)):

¢f > (t+ V)i, Vi€ Tt € Ts. (14)

Also, we define the fwd-prop completion time c; ,jej

which is determined by gbf and the times [}, i.e.,

¢f+Zl +tri?)y, Vi€ J.

eZ’

As before, ¢/ = (¢§,j € J) and cf:(cf,j € J). Collecting
the above requirements, we can now formulate P:
Problem 2 (Fwd-prop makespan).

5)

P; : minimize max {cf }
w’y’tﬁf’cf jeJ

st (2),(5)—(8),(13),(14),(15)

dwmp <1, VieT teT, (16)
jeJ
x € {0, 1€ pf ef e {0.1p} . (17)

Comparing the constraints of this reduced problem with P,
we observe that: IP; replaces constraints (10) and (11) with
(14) and (15); omits constraints (3) and (9); and replaces (4)
with (16). This yields a simpler problem, as Py has fewer vari-
ables (omits z and Ty < T') and less complicated constraints.
However, the solution of Py will not necessarily be consistent
with the bwd-prop operations. For this, we properly tune the
bwd-prop scheduling problem P, in Section V-B. Despite this
decomposition, there is not a known algorithm for Py. In fact,
arguments as the ones in the proof of Theorem 1 can lead to
a reduction from the unrelated machine scheduling problem
with release dates, preemption, and no precedence constraints to
P;. To the best of our knowledge, there is no polynomial-time
algorithm for this problem, except for some special cases, e.g.,
for a specific number of machines, see [24], [44], [45].

To that end, we employ ADMM to decompose [Py and obtain
smaller subproblems, which, it turns out, can be solved in a
reasonable time for many problem instances. Indeed, we observe
that by relaxing the constraints in (8), we can decompose Py into
a (forward-only) scheduling subproblem, involving (z, ¢/, ¢f),
and an assignment subproblem that optimizes y. Then, we can
solve these subproblems iteratively and penalize their solution
so as to recover the relaxed constraints gradually. The first step
is to define the Augmented Lagrange function:

Aij < Z Tijt — %jpij)

teTy

= max cf —+

L(w,y,L) s

(i,5)e€’

Z ‘ Z Lijt — YijPij|»

(i,4)e€ teTy

(18)

TIRANA et al.: MINIMIZATION OF THE TRAINING MAKESPAN IN HYBRID FEDERATED SPLIT LEARNING

Algorithm 1: ADMM-Based fwd-prop Workflow.

Input:)\(0), y(o) =0, €1, €25, P5 Tmax» Tf

1 for 7 =1,2,..., Tyhaes do

2 w D= argmin L£(w,y ™, A7) weaue
(2),(14)—(17),(22)

3 y Y = argmin £(w ™, y, A7) i & priocot setcion
(5),(6),(13)

4)\53—4—1) _ AS:]T‘) + (EteTf 17(::-1) _ yf'/;"-%—l)pij)’ v(i,j) € &

5 Exit for if (19) and (20) are satisfied.

6 Correct Py feasibility with (21).

7 Return w* = (z*, ¢'*, c/*), y*

where we define w=(x, ¢/, c/) to streamline the notation;
introduce the dual variables A = (1,5, (i,) € &) for relaxing
(8); and use the ADMM penalty parameter p, see [30, Ch. 3].
Note that, unlike the vanilla version of ADMM that uses the
euclidean norm /5, we penalize the constraint violation using
the ¢1 norm so as to improve the algorithm runtime.

The detailed steps can be found in Algorithm 1. At itera-
tion 7 4 1, we first update the schedule w using the previous
assignment y(™) and dual variables A(") (line 2). Next, we
optimize the assignment y("t1) using the updated schedule
w1 (line 3), and finally we correct the dual variables based
on the violation of (8) in line 4. We repeat these steps until
convergence is achieved or a maximum number of iterations is
reached (Tmax).” As a convergence flag, we use the detection of
stationary assignments and objective values (line 5):

> yf}“)—yij)‘ql and (19)
(i,5)€€

max ¢/ “max cf’(T)‘ <ées. (20)
jeg jeg

Finally, we correct any remaining infeasible constraints by tun-
ing the schedule to the final assignment y* (line 6):
L (w7 y*7 x*))

w* =

argmin 21

(2),(14)-(17).(8)
where we additionally use the constraints (8) to ensure full con-
sistency between * and y*. We remind that this step concerns
only clients for which the SL protocol was selected.

Furthermore, we can accelerate the convergence of
Algorithm 1 by creating a tighter constraint set [33]. In detail, we
introduce a set of constraints that limit the search to schedules
that allocate enough processing time for each client in the
w-subproblem:

1)
72.%1']'15:1, \V/jej
Dij

Y oteTy

(22)

€7

Moreover, one can employ other techniques that speed up the
convergence of ADMM, such as varying penalty parameter p,

7The w- and y-subproblems (i.e., lines 2-3 of Algorithm 1) could be solved
either with exact methods, e.g., branch and bound, or inexact methods, e.g.,
through a tailored relaxation [35]. As for the former, we elaborate on the resulting
overhead in Section VIII, and the latter is in line with the fact that ADMM can
(under certain conditions) tolerate inexact solutions for its subproblems [46].

5407

varying order of solving the subproblems, etc. An analysis of
such techniques can be found in [30].

Algorithm 1 is not guaranteed to converge to the optimal
solution of Py. However, its efficacy is demonstrated with a
battery of trace-driven evaluations in Section VIII, where in most
of the tested scenarios, it achieves less than 9.4% suboptimality
gap, with one corner case of 15.9%.

B. Bwd-Prop Schedule

Given the assignment y* and fwd-prop schedule w*=
(z*, ¢'*, c¢’*) from the solution of Py, we can optimize the
bwd-prop schedule easily. The latter stems from P by re-
moving the constraints which do not involve z; and by further
replacing variables and y with the respective values * and
y* that we obtained from Py, wherever they appear in the
constraints:

Problem 3 (Bwd-prop makespan; given y*, w*).

Py : minimize max c;
z,¢,c jeJ

st (3),4),(9) — (1)

z € {0, 11T g c e {T7.T} . (23)

We stress that the variables ¢ and ¢ can be restricted in the
time window starting after the fwd-prop, which is provided by
P and denoted by ij. These provisions ensure that the solution
we obtain from successively solving subproblems P, and Py
will not induce constraint violations. Moreover, if for a client j
we have y(r4;); = 1 (i.e., the FL training protocol is selected
for this client), then scheduling decisions are not necessary for
this client. Hence, P, will be solved only for the subset of clients
which the SL training protocol was selected during the previous
step.

Theorem 2: P, can be solved in polynomial time.

Proof: We first observe that, since the client-helper assign-
ments are fixed (y*), we can parallelize P,’s solution across the
helpers. That is, we can independently focus on the bwd-prop
tasks of the subset of clients J; assigned to each helper i € Z,
where J; 1= {j € J : y;; = 1}. Also, the w* obtained by Al-
gorithm 1 dictates a subset of time slots where bwd-prop tasks
can be scheduled. We denote by 7; the remaining eligible slots
for helper 7. We can now state the subproblem of minimizing
the bwd-prop makespan for each helper« € Z, while we abuse
notation and drop the index <.

P , , Minimize max {o; +7;}

S.t.Zth :p;, V_] S ljl

teT;
=
;)
2ty + 2 el < o Z‘Tj7'7 Vie JiteT;
J =0

<1, VteT

JeT;

5408

Client j 1 2 3 4 5
CJ[* +1; + 1 (arrival time at helper) 0 2 3 1 9
P} (proc. time of bwd-prop of part-2 at helper) 1 2 3] 2 1
7j(trasm. + proc. time of bwd-prop of part-1at client)| 5 3 8 1 1
— By —~
initial schedule I 1 I 4 I 2 I 3 I
0 1 3 5 8 9 10 TIME
dated schedule o L
orf, LLIA] 2 1 3 Ja]
o1 2 4 7 8 9 10
optim:(alzic)hedule I 1 I 4 I 2 I 3 I 2 I 4 I
o 1 2 3 6 7 8 9 10

Fig. 5. Algorithm 2 for optimal bwd-prop schedule in a toy example of 5
clients and 1 helper.

where 7; := 3", 7 (r; +tr{})'y;;, Vi € Ji and a7, are fixed
parameters. We will show that there is a polynomial-time re-
duction from P/ to the single machine scheduling problem of
minimizing the maximum cost subject to release and precedence
constraints, which is polynomial time solvable [47]. It suffices
to set the release times of the jobs as the {c;* +1;+ 1+
triz +tr]*}jeg, (ie. the time the client needs to complete
the back-propagation of part-3 and transmit the gradients, given
the cj). Moreover, it suffices to set as the cost function in [47]
the quantity ¢; + 75, i.e., the makespan of the batch update
(including the clients’ local computations). O

We now present the algorithm that optimally solves P, based
on [47] together with a worked example in a scenario of 5 clients
and 1 helper, as depicted in Fig. 5.

Algorithm 2 and Worked Example: ® For each helper 7, and in
parallel, we find the set of assigned clients . 7;. We then order the
clients according to nondecreasing {c; "+ 1 + 1} }jeg,, which
are the arrival (release) times for their bwd-prop tasks at
the helper, and build an initial schedule where tasks are pro-
cessed according to the ordering of their arrival times. This
schedule naturally decomposes J; into an initial set B; of
blocks. Specifically, each block 5 € B; is the smallest set of
clients whose bwd-prop task has an arrival time at (or after)
s(B) == minjeﬁ{cﬁ* +1; +1;} and can be processed before
e(B) = s(B) + >_,ep Pj- In fact, a client’s task i ¢ 3 is either
processed no later than s(3), i.e., ¢, < s(/3), or not released at
the helper before e(3), i.e., C{L* +1p, + 1), > e(5). Essentially,
each block in BB; represents a non-idle period for the helper. In our
example, there are two blocks: 51 = {1,4,2,3} and 35 = {5}
withs(81) = 0,e(81) = 8,5(f2) =9, and e(52) = 10. We can
now focus on each block separately [47]. For each block 8 € B;,
we find client £ € /3 such that

¢ := argmin{e(B) + 75 }.
JjeB

(24)

In our example, that would be client 4 for 31 since 9 = min{8 +
5,84+ 3,8+ 8,8+ 1} and client 5 for 8. Then, we reschedule
the tasks in 8 such that the bwd-prop task of client /¢ is
processed only during time intervals (between s(3) and e(f))
where no other client’s task has arrived or is being processed. In
our case, since 5 contains a single client, no reschedulings are

8For simplicity, we drop here the parameters that concern the transmission
delays. We can assume they are captured inside the computing delays as in [1].

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 24, NO. 6, JUNE 2025

required within S, while, for 31, client 2 “moves” to an earlier
slot in the schedule (subject to its arrival time) and the task of
client 4 is scheduled in slots where no other task is processed.
This also decomposes the remaining set § — {¢} into a set I'g
of subblocks (according to the rule described above). In our
example, 'y = {311, S12} as depicted in Fig. 5. Now, for each
subblock in I3, we find the client ¢’ based on (24) and reschedule
the tasks within this subblock (based on the same rules as above).
In our example, 811 needs no rescheduling, while, for 315, ¢/
is 2 since 10 = min{7 + 3,7 + 8}. The resulting schedule is
optimal. In our case, client 3 will be processed upon arrival at
the helper. The final optimal schedule has a makespan of 14,
where client 3 will be the last one to finish the back-propagation
of its part-1. This process runs in O(|J;|?) time for helper
i, so Algorithm 2 will run in O(max;c;{|J;|}?) time due to
parallelization.

C. Time Complexity

While estimating the time complexity of Algorithm 2 is
straightforward, this is not the case for Algorithm 1. In practice,
the time complexity of Algorithm 1 depends on the number
of iterations (i.e., Tiax) Which may depend on the stopping
criterion [30] and on the methods employed to solve the w—
and y—subproblems (i.e., exactly or inexactly, as discussed in
footnote 7). In principle, these subproblems are NP-hard (since
they are ILPs), and thus, cannot be solved exactly in polynomial
time unless P = N P. Therefore, the time complexity of the
ADMM-based method is at least that of Algorithm 2 but may or
may not be polynomial. It is important to stress that even if the
time complexity is not polynomial (in case of exact solutions
of the subproblems), the ADMM-based method provides the
framework to decompose the P problem into smaller subprob-
lems. This decomposition leads to considerable speedups in
running time when compared to an optimization solver that
solves IP (see Section VIII-B).

D. Discussion on Robustness to System Changes

Although the proposed approach focuses on offline optimiza-
tion decisions (i.e., proactive decisions that concern a time
period ahead), in this section, we discuss how our solution
method can be easily adapted in cases where the clients have
samples of different sizes and where changes in the system occur
during training. In the former case, the ADMM-based solution
method can be adapted by simply removing from the obtained
schedules * and z* the clients whose samples are completely
processed (after a number of batch updates) and “moving” the
remaining clients earlier in the schedules (subject to availability
of their tasks at the helpers). Moreover, the assignments y* do
not need to change since helpers have already allocated memory
for the model copies of the assigned clients. In the latter case,
changes in the system such as client dropouts or fluctuations
in the estimated time parameters can be handled either during
or at the end of the batch processing/training. Given that the
orchestrator is the entity with an overall view of the system,
it may re-calculate and update the decisions concerning the

TIRANA et al.: MINIMIZATION OF THE TRAINING MAKESPAN IN HYBRID FEDERATED SPLIT LEARNING

makespan. Meanwhile, the helpers may need to adapt their
schedules before receiving the updated decisions.

Due to the nature of the training operations (see
Section III-B), the protocol selection and client-helper assign-
ments cannot change during the training round since the activa-
tions/gradients of part-2 are stored at the helper. Therefore, only
the scheduling variables x and z (for forward and backward
propagation respectively) may be updated during the training
round by re-solving the w-subproblem and P,. However, while
the helpers are anticipating the new scheduling decisions, they
will go through a transition phase, during which they shift the
scheduled jobs to fill the idle slots. We note that, before that, the
helpers need to wait for a short time for the originally scheduled
jobs. Consequently, at the end of the batch update, the helpers
can proceed with the incomplete delayed jobs; possibly causing
an increase in the makespan. The shifted phase will last only
for a short transition period since re-solving the w-subproblem
and re-running Algorithm 2 is relatively fast, as demonstrated
by the numerical evaluations in Section VIII-F. After this, the
new fwd-prop and bwd-prop schedules will be adopted by
the helpers, leading to a “fixed schedule” phase before the end
of the training round, when a new solution to the problem P
with the new information (following the system changes) will
be computed.

VI. A (FASTER) HEURISTIC AND PREEMPTION COST
A. A Scalable Heuristic (Balanced-Greedy)

Since the subproblems of Algorithm 1 are ILP problems, the
ADMM-based method might induce an overhead. To exemplify,
running the ADMM-based method on an ILP solver (with
exact solution) for a scenario of J = 70 clients and I = 10
helpers takes 14min. While such overhead may be tolerable
in scenarios of this size, especially given the resulting time
savings in total training makespan compared to baseline schemes
(see Section VIII), it might not be the case in larger problem
instances. Moreover, this method decides on the assignments
(y) without taking into account the times p’ of bwd-prop
tasks. Specifically, in our experiments, we noticed that when
the processing times of bwd-prop, i.e., p/, are much larger
than the times of fwd-prop tasks, i.e., p, long queues during
bwd-prop may occur. This can be alleviated by balancing the
workload among the helpers. We, thus, propose a heuristic that
addresses these issues : it is of low complexity and balances the
client assignments among helpers in a greedy way.

We propose balanced-greedy that can be run by the orches-
trator and consists of three steps; it first decides on the training
protocol per client, then on the client-helper assignments (for
the clients for which the SL protocol was selected), and finally,
on the scheduling at the helpers. Specifically, it starts with all
decision variables being zero, i.e., ¢, z,y = 0, and:

1) First, the orchestrator decides on the training protocol of
each client. In detail, the worst-case offloading delay for each
client j € J is estimated as follows:

J
. ! X ! g gri . / <
e {T]Jrrj i+ +Z(”‘i}‘ +trii ")+ (pij + pij) 7 }v

keo

5409

where a helper’s processing time is multiplied by the fraction
% to represent the on-average queuing delay. Then, if client
7 has sufficient memory to support on-device training, and if
T+ r;- +1; + l;- + p(j+1); (i-e., the on-device training delay),
is smaller than the expected worst-case offloading delay, the FL
protocol is selected for this client. Otherwise, the SL protocol
is selected. This step takes O(JI) time since, for each client, it
needs to iterate through all the helpers in order to estimate the
worst-case offloading delay.

2) This step concerns only clients for which the SL protocol
was selected in the first step. Specifically, for these clients, the
assignments follow a static load balancing algorithm [48]. For
this, the load of helper ¢ € 7 is defined as the number of assigned
clients, i.e., G; = > ; Yij» and the free memory capacity of ¢ is
definedas G} = m; — 3 ;. 7 d;y;;. Then, foreachclient j € J,
balanced-greedy finds the subset of helpers); with enough
available memory to allocate for j (i.e., Q; :=={i € Z: G, >
dj}) and, based on @}, it finds the helper n with the least load,
i.e., n = argmin,., {G;}. Balanced-greedy assigns client j to
n,i.e.,y,; = 1 and updates G, and G, before proceeding to the
next client. This step takes O(.JTI) time as it iterates through all
clients that have been selected to perform SL and, for each such
client, ititerates through the helpers in) ;, which is a subset of Z.

3) The scheduling decisions « and z are made at each helper
in a first-come-first-served (FCFES) order [49], i.e., for the fwd -
prop tasks, the schedule « and the completion times ¢l are
based on the release times r + tr**, and, for the bwd-prop
tasks, z is based on ¢/ + I + I + tr®2 + ¢tr972_In contrast to
the ADMM-based method, balanced-greedy is non-preemptive.
For this final step, balanced-greedy does not require any offline
computation and it can be solved with a small buffer of jobs at
each helper.

As aresult, balanced-greedy will run in O(J 1) time. We note
that this time complexity is, in principle, smaller than the one of
the ADMM-based method, see Section V-C.

Finally, we discuss briefly how the balanced-greedy may
adapt to system changes. Specifically, when delays or client’s
device failures occur during the training round, the processing
order at the helpers is naturally shifted by the FCFS order to
adapt to these changes. Unlike the ADMM-based method (see
Section V-D), there is no need to re-compute the scheduling
decisions during the batch processing. At the end of the training
round, protocol selection and assignment decisions may be
re-computed based on the new information on the system by
steps 1 and 2 of the balanced-greedy algorithm.

B. Preemption Cost

In certain systems, preemption might induce further delays or
costs (e.g., due to context switch [50]) that need to be taken into
account when deciding on a schedule. This feature can be readily
incorporated into our model without affecting the proposed
solution method. In detail, let us denote with p; the switching
cost that captures the delay induced at helper < € Z when switch-
ing between two tasks, i.e., z;;; =0 and Tij(e41) = 1, for some
client j € J and time interval S;. Then, we can directly apply
the ADMM algorithm with the following modified constraint

5410

instead of (15) in IPy:
cf:@f—i-z Li+trs? ym—kz ZN2|xwt_
€T i€l teT

where the last term captures the cost of switching tasks when
a preemption occurs and when a task has just started being
processed. Note that this cost is considered only for the helpers;
not for clients. As was already discussed, clients in on-device
training do not essentially make any scheduling decisions, and as
an extension do not need to interrupt the training tasks. Similarly,
we can modify the constraints in (11) in P, for variables z,
and use exact or inexact methods to solve the problems]P’g, as
discussed in footnote 7.

VII. ENERGY COST WITH HFSL EXTENSION

The primary motivation of SL is the edge-friendly attribute
which aims to relax the computing and memory demands on the
edge. However, minimizing the training delay and the energy
consumption are not considered two orthogonal objectives. For
instance, an energy-aware system may suggest offloading as
many layers as possible into the helpers, but, if there is not a suf-
ficient number of helpers this can lead to an increased makespan.
Hence, there is a trade-off between the energy consumption and
the training makespan, when it comes to deciding whether the
client will offload. In ARES [21], the trade-off between these two
objectives is solved by introducing a user-defined parameter,
a (where 0 < a < 1) that quantifies the importance of each
objective (more details below). This implies that there is a high
competitive relationship between these two objectives. However,
we will show that this point is not valid as the system scales.
Consequently, additional hyperparameters, which introduce a
more complex interface for the user, require better management.

In what follows, we present an extension of the system model
that considers the energy consumption on the client devices,
and then in Section VIII we will study the relationship between
makespan and energy. Let P7 be the power consumption for
computing for client j, and P?, P} be the power consumption for
transfer and receiving operations respectively (both measured
in Watt). To compute the energy consumption we multiply
the power consumption with the processing or communication
delay of the corresponding operation. Finally, let E; be the total
energy that client j consumes during a batch update, which can
be computed as:

E; =) (P
€L

+ Pi(ry + 75 + 1 + 1)

(trif +trl?) + Py (tri? + i)

VieJ.

The first term of the equation computes the energy consumption
due to transfer and receiving cost, hence we do not iterate
through 7', but instead only through the real helpers; there will
be a communication cost only if the client offloads part-2 into a
helper (y;; = 1 for j < I). Otherwise, if y;; = 1 for j > I we
do not want to consider the communication cost, but only the
on-device computing cost, as is presented in the last term.

+ PEy(r45); (D) T Plrsg)s (25)

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 24, NO. 6, JUNE 2025

Now we can formulate the joint scheduling and assignment
problem that minimizes the batch makespan of HFSL while
considering the cost of the energy consumption, using the user-
defined o hyper-parameter.

Problem 4 (Batch Training Makespan and Energy Consump-
tion for HFSL).

: m1n1mlzeamax{cj}+ (1—a)|Sr |ZE

Penergy
T,2,Y,P,C

st (2)—(11),(25)
x, z € {0, 1}\5’\X|T\7
¢,cc{0.T}/,

y € {0,111,

Moreover, in order to produce an energy value measured
in Joules, we need to multiply the output of (25) with the
length of the slot, |S,|. However, this will result in the objec-
tive function having a sum of values that belong to different
metrics. Consequently, we compute the proportional values of
the two variables. Specifically, each objective is translated into
a percentage value, representing the portion of the maximum
possible value that it achieves.” The maximum value for the
makespan is the length of the time horizon, while the maximum
energy consumption is:

Z maX{Pf(p(I+j)j + p,(1+]’)j)7
jeJ

t
max{ P} (tri} +trf}*) + Py (tr7 + trf]")})

+ Pi(ry + 7 + 1+ 15).

Fmax _

(26)

The first term selects the maximum between the energy con-
sumption of on-device computing (for FL) or transfer/receiving
energy consumption of the slowest link (for SL). Recall that
a client can either have the communication cost, in case of
offloading, or the computing cost. The last term contains the
computing cost for part-1 and part-3.

‘We note that the results of Theorem 1 could be easily extended
to the problem Peycrgy. Moreover, one could extend (with
small adjustments) the proposed solution methods (ADMM-
based/balanced-greedy) to solve Pey,¢rq, . However, due to space
constraints, we focus here only on exploring the tradeoff between
energy consumption and makespan, and therefore, in Section VI-
II-B, we showcase this tradeoff by exactly solving the problem
using an optimization solver.

VIII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our solution
methods using measurements from our testbed’s devices.

Dataset & Models: We use CIFAR-10 [51] and two NN
models: (i) ResNet101 [52], and (ii) VGG19 [53] for our training
tasks. They are both deep convolutional NNs with 0.42 and 2.4

9The objective variables are divided by their maximum. Hence the two
variables will have the same scale, i.e., a number between 0, and 1.

TIRANA et al.: MINIMIZATION OF THE TRAINING MAKESPAN IN HYBRID FEDERATED SPLIT LEARNING

TABLE II
TESTBED DEVICES AND AVERAGE COMPUTING TIME (IN SEC) FOR A BATCH
UPDATE, WHERE THE BATCH SIZE IS 128 SAMPLES

Device ResNet101 VGG19
RPi 4 B Cortex-A72 (4 cores), 4GB 91.9 71.9
RPi 3 B+ Cortex-A5 (4 cores), IGB not enough memory
NVIDIA Jetson Nano, 4 GB (CPU,GPU) (143, 1.2) (396, 2.6)
VM 8-core virtual CPU, 16GB 2 3.6
Apple M1 8-core CPU, 16GB 3.5 3.6

million parameters and are organized in 37 and 25 layers re-
spectively. Hence, they may push resource-constrained devices
to their limits when trained locally.

Testbed: The testbed’s devices are listed in Table II, where the
last two were employed as helpers. We also list the collected time
measurements for a batch update for ResNet101 and VGG19.
These measurements show the diversity of testbed devices in
terms of computing capabilities. One of the devices (RPi 3)
cannot fully train any of the two models locally due to its memory
limitations. Furthermore, while helpers are typically assumed
to be more powerful (in terms of computation) than clients in
the literature, e.g., [21], we do not restrict the evaluation of the
proposed methods by this assumption. In particular, as shown
in Table II, Jetson GPU’s training times are comparable to the
helpers’ times. However, in practice, the memory allocation for
the GPU training can be very challenging [54].

Setup: In our simulations, the values of the input parameters
of P,ie, r,v,p,p,l,l',tr® tr9" , are set according to the
profiling data of the testbed (for the computation times) and
findings on Internet connectivity in France [55, p.56] (for the
transmission times). In detail, the connections between clients
and helpers are of: i) low bandwidth, i.e., less than 4Mbps,
ii) medium bandwidth at 4 — 10 and 10 — 15 Mbps, and iii)
high bandwidth at 15 — 20 Mbps, following the corresponding
percentages given in [55, p.56]. We consider two scenarios
that represent rwo levels of heterogeneity in terms of devices,
resources, and cut layers:

e Scenario I (low heterogeneity): Clients and helpers have
the same parameters as in Table II, where the selection of
the type of device for each client and helper is uniformly
random. Moreover, all the clients” NNs have the same cut
layers: layers 2 and 30 for Resnet101, and layers 3 and 20
for VGGI19.

e Scenario 2 (high heterogeneity): To capture higher het-
erogeneity, clients participate in the training by using dif-
ferent cut layers, and the input parameters are devised
by interpolating the time measurements of the profiled
devices. In detail, each input parameter is calculated by
selecting a random value between the smallest and the
largest profiled measurement for the corresponding task.'”
This way, we construct scenarios that capture realistic and
highly-heterogeneous environments.

Moreover, in both scenarios, the memory capacities of all

entities (i.e., clients and helpers) can vary from device to device
but are upper-bounded by their RAM size.

10The available code contains detailed measurements with the profiled data
and implementation for constructing the test scenarios.

5411

A. Protocol Selection Decision (FL or SL)

First, we study the impact of the protocol selection decision
on the makespan. Considering the ResNet101, we explore the
benefits of the HFSL setting while changing a small subset of
the system’s parameters. Specifically, in Fig. 6 the number of
clients and helpers remains the same, while, changing the types
of (i) clients’ devices and (ii) communication links between
clients and helpers. In detail, we consider a set of 10 clients
and 2 helpers of type VM (see Table II). Initially, the profiled
data of RPi 4 are used for the clients, while the bandwidth of
all network connections belongs to the fastest class, of the mea-
surements of [55, p.56]. As we proceed, we alter the computing
characteristic for a portion of the clients by slowing them down
and similarly changing the bandwidth from the fastest class to
the slowest one.

In this set of experiments, part-2 has fewer layers when
compared to [1] since, otherwise, the on-device processing for
part-2 is longer than the one of the helpers, and would not allow
us to observe the benefits of the HFSL setting. The first row
of Table III shows the relative gain in makespan in the HFSL
setting for the corresponding experiments from Fig. 6.

At first glance, we notice that when there are slow clients but
good connections, having on-device training will not alter the
makespan, except in the case where there are no slow connec-
tions and no slow devices, i.e., (0%,0%), in which there is a
slight acceleration of 4.8%. However, as more communication
links get slower it is preferable to use on-device training even if
the client’s device is slower.

Observation 1. HFSL can decrease the makespan by up to
59% in the presence of slow network connections and devices
that can process part-2 fast.

This happens because model part-2 is small and the process-
ing time on the devices is not significantly different from the
processing time on the helper (see also Section VIII-E). As a
result, the communication delay may be larger than the on-device
computation delay. However, we would like to highlight that
these split cut do not fully benefit from the helper’s availability.
When having a larger part-2 it is more beneficial to offload,
because, the on-device processing time gets larger, while the
offloading delay gets smaller. This is shown in the second row
in Table I1I, where the acceleration of HFSL is smaller compared
to the previous case because fewer clients perform FL. Whereas,
when there are more fast clients with slow communication links
we can see the effects of FL, where the makespan is decreased
up to 5.6%.

In general, this indicative exploration example demonstrates
the importance of having a balance between the SL and FL,
which is achieved through HFSL.

B. Comparison With the Optimal Solution

We proved that P is NP-hard, which led us to propose two
scalable solution methods. Table IV shows the suboptimality and
speedup achieved by the ADMM-based method when compared
to Gurobi [42], one of the fastest ILP solvers [56], that optimally
solves IP. The table shows the effectiveness of the ADMM-based
method since it finds the optimal solution in most scenarios.

5412

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 24, NO. 6, JUNE 2025

of slow

Type of experiment (percentange of slow clients, p

Client ID 0%, (100%,50%) [(100%,100%)] (75%.,0%) | (75%,50%) | (75%,100%) | (20%,0%)

%, 51

%) | (20%,100%) [(0%,0%) 9,50%)

2

In each experiment:

1 X X X X

X X

X X

First & second column:

communication links

||| >x|x|x

> ||| x|

between client and helpers.

X

©ONDO G A WN

x| |>|x

Grey colour for slow links

X

<[3¢ [3¢ [5e [[] >|>|>]x
>

HEIRIEIEIEIEIEIE]
<5< [3¢ [>¢ > [|||

HEIIEIEIEIEIEIE]
HRIEIEIEIEIEIEIEIE]
3¢ | 5< [3¢ [>¢[[]>|>|x]|x
HRIEIEIEIEIEIE IR

-y
o
>

x|

Last column: client

N x

1

N

1[2

-

2

-

1]2

N
X}

N
N
N

Device
Device
Device
Device
Device

Device
K

ol
&
&

QQ’Q?
>
¥

‘Z"Q?
>
&

&

%

QQ??
>
¥

63?‘

&QA
%
'R,
%

device.

Grey colour for slow
devices.

Device
&Q‘%
K
Device
&Q‘
%
Device
&QA‘,
K
Device
&Q‘%
K
Device

Single experiment (3 columns)

Fig. 6.

Training protocol selection decisions in a scenario of 10 clients and 2 helpers. For each experiment conducted, we alter the type of clients’ devices and the

communication throughput between clients and helpers. The figure shows how the clients are allocated. If the client offloads its model part into one of the helper
this is indicated with a black “X” at the corresponding cell. Whereas, when the client does not offload there is a red X’ at the third column of the corresponding

experiment.

TABLE III
RELATIVE GAIN IN MAKESPAN IN THE HFSL SETTING VERSUS CLIENTS TRAINING ONLY THROUGH SL (AS IN [1])

% of slow clients 100 75 20 0
% of slow communication | 0 50 100 0 50 100 0 50 100 0 50 100
small partition (Fig. 6) 0% 41.1% 42.3%| 0% 20% 42% 0% 22.1% 41.1%| 4.8% 57.8% 59%
large partition 0% 0% 0% 0% 1.17% 0% 0% 1.17% 0% 0% 1.17% 5.6%
TABLE IV 10 10 -
SUBOPTIMALITY AND SPEEDUP ACHIEVED BY THE ADMM-BASED METHOD 3 o opu
COMPARED TO AN ILP SOLVER FOR HFSL e 1 1 RPI-3
'g jetson-cpu
J I T’ suboptimality (%) speedup (x) E’zm" 10!
= 10 _2 266 0 1451 8,
E r;) o 266 9.4 14 forward backward HT“’ forward backward
g = 15 5 291 15.9 1.3 Operation
5§ . 19 _2 125 0 1238
A 8 5 125 0 13 Fig. 7. Profiled computing time (ms.) of part-1 for each device.
. 15 5 172 0 15.7
s 10 2 264 2.7 4
Q3 5 237 0 1
5 = 15 5 271 0 2.6 When compared to the case where all clients train through
= . .
8 2 10 g gg? 8 160'15 SL (as in [1]), the computing speedup of the ADMM-based
22 45— 567 18 =3 algorithm for the HFSL is not as large. This is due to two main

There are some corner cases (e.g., 9.4%, 15.9%), but even then
there is a significant speedup compared to the solver, i.e., x14,
x11.3, respectively. We note that the numerical evaluations in
Table IV were performed in small instances (up to 15 clients and
5 helpers) that ILP solvers can handle. Moreover, we observe
that the lowest suboptimality gap is achieved for VGG19, which
comes from the choice of cut layers (see above). In particu-
lar, Fig. 7 shows the processing times between forward and
backward propagation per device for the two NNs. We see that
these times can highly differ between forward and backward
operations. Such asymmetries that can occur in SL further
corroborate our approach towards jointly optimized assignments
and scheduling.

Observation 2. The proposed ADMM-based method finds
the optimal solution for P in most problem instances and
achieves up to 15.7x speedup compared to an ILP solver.

reasons: (i) for the same input parameters, the time horizon
T may be larger than in [1], because, in HFSL, we use (1),
which also accounts for the on-device delay. Additionally, (ii)
the space of combinatorial choices becomes larger; each client
may be assigned to any of the I + 1 helpers (the additional one
is due to the FL selection), whereas in [1], there are I options.
Nevertheless, we achieve a makespan closer to the optimal value
when compared to [1].

C. Impact of the Time Slot’s Length

In Section IV, we discussed the impact of the time slot’s
length, i.e., |.S;|, on the frequency of preemptions. Furthermore,
as |S;| decreases, the time horizon T and the number of the
problem’s variables increase. To exemplify, a processing time
of 400ms would be translated into 2, 3, or 8 time slots when
|S¢| = 200 ms, |S¢| = 150 ms, and |S;| = 50 ms respectively.
Since T is defined based on the input processing and trans-
mission times, its length will be the largest when |S¢| = 50.

TIRANA et al.: MINIMIZATION OF THE TRAINING MAKESPAN IN HYBRID FEDERATED SPLIT LEARNING

65 X speedup
=[S = 200
55 777 1S = 150
0 IS¢ = 50

batch makespan (sec)
B
w

w
@

oo
(50,5)
(number of clients, number of helpers)

(50,10) (50,10)

Fig. 8. Batch makespan obtained by the ADMM-based method for time slot
length |S¢| equal to 1500ms, 1000ms, and 500ms, in Scenario 1. Speedup is
relative to the case |S¢| = 500.

s ADMM
ResNet101

— relative gain (%) v77) balanced-greedy baseline-bal =]

1000 o 500 o8 R

800 402 400

600 300

r;k .| ™
li) -

400

=
o
=
&
=
@
O
(2]

RSN SSSY

A\asssaassasss |

4
2001 1 s87 i ‘“

4

1

o

2

e

<

5

a 4 s z

Zo001

S

é AR A% 1

5 S S S &S S B O S S S S S S B O
PSS & P S e &

400

600 e
350 = 2]

5 4.3
300 500 A

f
7 &7 i\ e «
= AR A 2
250 i 100 A ERIT % B ‘ s
i 17 oes MR D 8
200 li kg T I DM .!'2’ o
- 300 728 21 i % O
’ 1217 ’ @
150 1 172
¥ 200 ’ ‘ ’ {
! 1 12 !
10014z N\ o ’ a 1717 5 4
50 F 1 A4 i v E A
IR RN SN > S @ SO S B S
S ST S ST &S S O

(number of clients, number of helpers)

Fig. 9. Comparison of the proposed methods with the baselines for HFSL.

Moreover, in the case where |.S;| = 150, the processing time of
our example is interpreted as 3 slots, which can overestimate
the makespan. In fact, since the helper will need a bit less than
3 slots to process the task, in a real-life implementation of the
obtained schedule, it may be able to start processing the next
task before the end of the 3 rd slot. Therefore, in such cases,
the time slot’s length may affect the accuracy of the obtained
schedule.

Observation 3. As the length of the considered time slots S,
increases, the obtained makespan increases, while the execution
time decreases. This shows an algorithmic tradeoff between the
solution’s precision and size of the solution space.

Fig. 8 depicts the makespan obtained by the ADMM-based
method for 3 different |S;|. The numbers on top of the bars
are the speedups relative to the case |\S;| = 500, which has the
highest overhead. In principle, the makespan is higher as the
|S¢| increases. Large |\S;| implies less frequent preemptions and
a less precise solution. Of course, as |.S;| increases, the length
of the time horizon (7°) decreases, which results in a speedup of
up to x5H.

D. Comparison With Two Baselines

Next, in Fig. 9, we compare the proposed methods (ADMM-
based and balanced-greedy) between them, and with two base-
line schemes. The first one is the baseline-random that first

5413

decides on the training protocol selection and client-helper
assignments in a random way (subject, of course, to memory
constraints), and then schedules the tasks in an FCFS order.
This baseline could be seen as a naive real-time implementation
of SL without proactive decisions on assignments or scheduling.
The second one, baseline-balanced, is less naive as it considers
the first step from balanced greedy (Section VI-A) for training
protocol selection. Then, if SL protocol is selected for a client,
this client will be randomly assigned to a helper. We note that a
straightforward comparison with related work (e.g., [12], [14]) is
not possible since these works consider only the client-protocol
selection (there is only one helper).

We focus first on comparing the two proposed methods. First,
for medium-sized scenarios (1 & 2), i.e., up to 50 clients,
the ADMM-based method outperforms the baseline-random
up to 71%, and up to 63% the baseline-balanced. While the
balanced-greedy achieves an improvement up to 60% and 63%,
respectively. Even though the balanced-greedy and the baseline-
balanced are two very close approaches, we notice that control-
ling the helpers’ load plays an important role even for a medium-
sized number of clients. In fact, as the number of clients grows
and the queuing delays risk increases even more, balancing the
helpers’ loads provides a solution closer or even better to the
ADMM-based method. Even in scenario 2, where scheduling
and balancing become more crucial, the two approaches tend
to provide close outputs, as the system scales. Hence, given the
discussion on the overhead of the two methods in Section VI-A,
balanced-greedy should be preferred for very large scenarios
(e.g., > 100 clients in our case) to avoid excess overhead.

The observations above shape a solution strategy that com-
prises the two proposed methods, and it is tailored based on the
scenario at hand (i.e., its heterogeneity and size). Also, we see
that any improvement of one method over the other is larger in
the ResNet101. This reveals a dependency on the NN, since NNs
may differ on the cut layers, the size of the processing tasks [10],
etc. We further explore this dependency and its implications on
the makespan in the following sections.

Focusing now on the comparison of our strategy (i.e., ADMM-
based or balanced-greedy depending on the scenario, as dis-
cussed above) to the baseline schemes, we observe that our
proposed strategy consistently outperforms the two baselines,
achieving a shorter makespan. In detail, the baseline schemes
decide on the assignments y without taking into account process-
ing and transmission delays, which results in a larger makespan.
Essentially, this confirms the need for workflow optimization in
SL.

Observation 4. The numerical evaluations allow us to build
a solution strategy based on the scenario’s characteristics that
achieves a shorter makespan than the fair-baseline by up to
63.7%, and up to 71.6% for the baseline-random.

E. Sensitivity Analysis

In Fig. 10, we perform a sensitivity analysis with respect to
the number of helpers in Scenario 1 where we depict the relative
gains in batch makespan. Given the scenario’s type and size, we
employ balanced-greedy.

5414

batch makespan (sec)
w0
o
(%) ureb eAejp) ——

30

20 1
number of helpers

Fig. 10. Batch makespan obtained by the balanced-greedy method in Scenario
1 for J = 100 clients and varying 1.

5
3

) N 0

200 . B m |

»
3

=
3

S

100 == === =

o
3

batch makespan (sec)

o
o

split points (4}, 5;)

Fig. 11. Batch makespan obtained using balanced-greedy in Scenario 1 for
J =100, I = 20 and varying split points.

Observation 5. In a scenario of 100 clients and 1 helper,
adding one more helper can dramatically decrease the batch
makespan by up to 43.4%.

Whereas, in the presence of 10 helpers, the relative gains of
adding more helpers are decreasing. Such observations provide
useful insights for real-life implementation of HFSL. Finally,
extending the analysis of Table III, Fig. 11 compares the output
of balanced-greedy for different definitions of o1 and o2; altering
the split policy.

Observation 6. Offloading larger model parts into the helpers
can reduce the batch makespan by up to 71% in ResNet101 and
80% for VGG19.

As part-2 gets larger, the obtained makespan gets shorter.
In practice, this fluctuation is shaped by the clients who train
through SL. Because when part-2 becomes larger, the gain from
using the helpers becomes even more considerable. This output
indicates the importance of SL for systems that involve small
IoT devices like the one we have in our testbed.

F. Preliminary Results on Robustness to System Changes

Following the discussions in Sections V-D and VI-A concern-
ing the proposed solutions’ robustness and adaptation to system
changes, we explore the impact of the suggested methods on
the makespan. Since this in not the main focus of our work,
we present here some preliminary results that showcase that
the proposed methods can be easily adapted to handle system
changes.

Considering the Resnet101 in a setting of 5 helpers (I = 5)
and of two different client scales (i.e., J =30 and J = 50
clients), Table VI presents the changes in the makespan when
two different types of system changes occur. First, we focus on
the first (i.e., top-half) part of Table VI which studies the case
where the release times of the processing tasks are delayed (i.e.,
devices or communication links become slower). In particular,
in this tested scenario, the release times for almost 20% of
the clients are increased by 100%. In this case, we expect the

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 24, NO. 6, JUNE 2025

TABLE V
NUMERICAL VALUES FOR POWER CONSUMPTION ASSIGNED TO THE DEVICES
USED BUT THE CLIENTS

Device Variable Value (W att) Source
Pc 6—7 See footnote 11

RPI 4 Pt 2.5 PowerPi [57]
PT 1.5 PowerPi [57]
P° 7.2 ARES [21]

NVIDIA Jetson Nano P? 2.3 ARES [21]
PT 2.2 ARES [21]

TABLE VI

RELATIVE CHANGES IN MAKESPAN (%) WITH RESPECT TO THE ORIGINAL
OPTIMIZATION DECISIONS DUE TO TWO DIFFERENT SYSTEM CHANGES
(DELAYS IN PROFILED TIMES AND CLIENT’S DEVICE FAILURES)

Type of | J Algorithm shifted fixed new sol.
change sched.
30 _ADMM T 16% T 8% 0%
@% BG T 11% — T 11%
e 50 _ADMM T 29% T 7.4% F7.4%
BG 1 15.5% — 1 15.5%
30 ADMM 0% 1 24% 124%
0@ BG 29% — 29%
Q;z& 50 _ADMM 3.4% 1275% 6%
BG 1% — 33%

Increases in makespan are denoted by 1 and decreases by |. For these experiments, the
ResNet101 model was trained in a setting of / = 5 helpers, and two different cases of J
(number of clients) were considered. BG refers to the balanced-greedy.

makespan to increase or remain the same with respect to the
original one (before any system change) and the goal is to min-
imize this increase. In the ADMM-based method, as expected,
the shifted phase is the one that has the greatest increase in the
makespan. However, this phase lasts only one batch update as
the computation of fwd-prop and bwd-prop schedules lasts
less than 3 seconds; the corresponding delay for a batch update
is more than 100 sec. as shown in Fig. 9. Re-calculating the
scheduling decisions (column “fixed schedule”) can decrease
considerably the increase in the makespan. Finally, in the new
training round, i.e., after re-running the ADMM-based method
(column “new solution”), the resulting makespan turns out to be
the same as the original one or to have a small increase of 7.4%.
In the latter case, this is due to changes in the protocol selection
or re-assignment of clients to different helpers.

For the balanced-greedy, the FCFS scheduling order man-
ages to keep the relative increase in makespan in the range
of 11 — 15%. We observe that there is no change between the
shifted schedule and the makespan of the next round (i.e., new
solution). This implies that, in the new solution, the decisions on
protocol selection and assignments remain the same as before.
This happens because, in balanced-greedy, only the load (i.e.,
number of clients) is considered for the protocol selection and
assignment decisions, and not the release times. However, in the
case of device failures that we study next, the balanced-greedy
will update the assignments in order to balance the load at the
helpers. Finally, we note that there is no value in the column
of fixed schedule for balanced-greedy since the scheduling
decisions are by design online, as discussed in Section VI-A.
Thus, there is no need to re-calculate the scheduling decisions
as in the ADMM-based method.

Focusing now on the case of client device failures (i.e.,
bottom-half of Table VI), we consider that 15% and 20%
of the client devices become unavailable during training, re-
spectively for J = 30 and J = 50. We note that, in principle,

TIRANA et al.: MINIMIZATION OF THE TRAINING MAKESPAN IN HYBRID FEDERATED SPLIT LEARNING

10 clients & 2 helper:

70 ———— 860
gg: - Makespan ——— i ggg
Energy —&—
40 | e B G 1 800
30 [183% 1 780
20 |- 1 760
10 |- 1 740
; y: 1 2 1
0 9, 9, 95 @ 0 Qs Qo Qg 7

70 ——
60 |-
50 -
40|
30 -
20
18— | H

o o, o,

1400
1380
1360
1340
1320
1300
1 1280
1260
4 1240
1220

N\

Batch Makespan (sec)

Makespan 1
Energy —a—

LA

:

it

Fig. 12.

5415

70 10 clients & 5 helpers

60
50
40 -
30 -
20

10 |

860
- 840
-1 820
-1 800
-1 780
1 760

-1 740
EW 720

Makespan —
Energy —&—

9,

4

s 9> % Qo

70— 20 clients & 2 helpers 1900
ol A a a4

i A A‘/A
o 0.2% 1 1850
el Makespan ——— 1 1800

Energy —a—
30 | M 4 1750
20 |

- A
1650

%| 2 9% @ % % 7

| %% % 9>

Energy (Joule)

a

Total clients’ energy versus Batch makespan for different values of «.. The box shows the smallest o in which we obtain the best makespan, while the

arrows show the energy increase compared to o« = 0 (i.e., most energy-efficient case).

the makespan is expected to decrease since the processing
load at the helpers will be reduced. Therefore, the goal here
would be to maximize this decrease (as opposed to minimiz-
ing the increase in the previous case), i.e., find new decisions
that will achieve the shortest makespan. We see that, for the
ADMM-based method, the most impaired case is the shifted
phase, which has a makespan (almost) equal to the prior one.
However, the relative change in makespan is dramatically im-
proved in the next training round (i.e., new solution) when
compared to the shifted phase. Moreover, we observe that, in
the case of J = 30, this improvement is already achieved in
the phase of fixed schedule, i.e., without need of calculating
a new solution. Further, for J = 50, where a larger number
of clients become unavailable, the clients can be redistributed
among the helpers, reducing up to 50% of their original load.
A similar behavior is observed in the case of balanced-greedy,
too.

Of course, changes usually happen gradually in a system. For
simplicity, the experiments shown in Table VI consider a large
number of changes occurring at the same time, thus, leading to
a significant change in the makespan. However, the presented
findings demonstrate how these changes may be efficiently
handled to minimize the makespan.

G. Exploring Energy Consumption

Table V presents the input values used for the parameters
corresponding to the power consumption when solving Peyergy -
For the computing power consumption of the RPis, we use
the benchmarks from the RPi Drupal project!! while for the
communication operations (transferring and receiving), we use
the profiled data from the power cost model of PowerPi [57],
which is also used in related work, e.g., [58]. Moreover, for
the Jetson device, we use the measurements from ARES [21]
which can be verified from additional sources.'> We notice that

https://www.pidramble.com/wiki/benchmarks/power-consumption
2https://www.macnica.co.jp/en/business/semiconductor/manufacturers/
nvidia/products/ 141900/

in both devices computing operations require more power than
communication operations. Hence, energy-wise, it’s preferable
that IoT devices offload their model parts to helpers, which aligns
with the initial motivation of SL (as we discussed in Section I).

Fig. 12 shows the makespan and the total energy consumption
on the client devices as « changes for different numbers of
clients and helpers. When having o« = 0, the preferred protocol
for the clients is SL (i.e., offload part-2 to helper) since the
communication operations cost less than the computing ones.
Moreover, each client will offload to the helper with the fastest
communication link, neglecting the helper’s computing delay
or the queuing delay due to increased load. This may result in
the over-utilization of a helper, while the other helpers remain
idle. As an extension, the makespan becomes larger for smaller
values of . Whereas, when a = 1, the energy consumption
increases up to 15.5% (on average 13.5%). But, it achieves a
makespan on average x4.5 faster than o = 0. This difference is
mainly because of clients for whom the FL protocol is selected.
However, one of the objectives is multiplied by zero when having
these extreme values, and consequently, it is neglected when
solving the problem. This can be seen by the fact that when oo = 0
the makespan becomes extremely large.'> But, when o = 0.1
we get the same energy consumption with a better makespan.
Similarly, we can use o = 0.9 instead of a = 1, to obtain the
best makespan, with less energy consumption. As a result, we
can define two modes regarding the trade-off between energy
and makespan.

Observation 7. Energy-efficient mode: When o = 0.1 we
(almost) always obtain the optimal energy consumption, with
an improved makespan compared to o = 0.

Observation 8. Delay-efficient mode: When o = 0.9 we
obtain the optimal makespan, with a smaller energy consumption
compared to o = 1.

Note that, in the energy-efficient mode, the makespan needs
to be controlled too (v # 0) since, by increasing the per-batch
delay, the training process will take longer in total. As a result,

131n fact, the makespan becomes equal to the length of the time horizon.

https://www.pidramble.com/wiki/benchmarks/power-consumption
https://www.macnica.co.jp/en/business/semiconductor/manufacturers/nvidia/products/141900/
https://www.macnica.co.jp/en/business/semiconductor/manufacturers/nvidia/products/141900/

5416

client devices need to remain available for a longer time, which
can affect the energy consumption and the device’s battery
autonomy. On the other hand, for the intermediate values of
a, we do not notice significant fluctuations. This is due to
two factors. The first reason is regarding energy, when « falls
between 0.1 < o < 0.9 the allocation decision is mainly relied
on the helper selection, not on offloading, like in o =0 or
« = 1. This decision is affected by the power consumption due
to the communication operations, which are smaller than the
computing ones. This results in a small fluctuation in energy for
those « values. The second reason concerns the makespan. As
is shown in Fig. 12, we obtain the best possible makespan even
from a small « value (shown in orange boxes). This is due to
the presence of the max function in the objective function. As
the slowest client determines the makespan, changes for other
clients will not affect the makespan as soon as the best allocation
and scheduling have been found. Therefore, all 0.1 < o < 0.9
values can be represented by the balanced mode, as observed
below.

Observation 9. Balanced mode: When oo = 0.5 we obtain
the optimal makespan, while the energy consumption is larger
than o« = 0, but smaller than o = 1.

To conclude, the presented performance evaluation for all «
values allows us to define three distinct system modes (energy-
efficient, delay-efficient, balanced).

IX. CONCLUSIONS AND FUTURE WORK

In this work, we formulated the joint problem of training
protocol selection, client-helper assignments, and scheduling for
HFSL. We analyzed it theoretically, proving it is NP-hard, and
experimentally, using measurements from a realistic testbed. We
proposed two solution methods, one based on the decomposition
of the problem, and the other characterized by a low compu-
tation overhead. Our performance evaluations led us to build
a bespoke solution strategy comprising these chosen methods
based on the scenario’s characteristics. We showed that this
strategy finds a near-optimal makespan, while it can be tuned
to balance suboptimality and speed. Also, it outperforms the
baseline schemes by achieving a shorter makespan by up to 63%
and 71%. Finally, we explore and analyze the tradeoff between
makespan and energy consumption. This led to the introduction
of three user modes which could provide the flexibility to a
system administrator to select according to their preferences
and goals. An interesting direction for future work would be
to study the formulated problem from the perspective of the
online optimization framework that makes decisions as clients’
processing tasks arrive or as the system’s state (e.g., entities’
availability, connectivity, etc.) changes.

REFERENCES

[1] J. Tirana, D. Tsigkari, G. losifidis, and D. Chatzopoulos, “Workflow
optimization for parallel split learning,” in Proc. IEEE Conf. Comput.
Commun., 2024, pp. 1331-1340.

[2] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. 20th Int. Conf. Artif. Intell. Statist., 2017, pp. 1273-1282.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 24, NO. 6, JUNE 2025

[3] W. Y. B. Lim et al., “Federated learning in mobile edge networks: A
comprehensive survey,” IEEE Commun. Surveys Tuts., vol. 22, no. 3,
pp. 2031-2063, 3rd Quarter, 2020.

[4] L.L.Pilla, “Optimal task assignment for heterogeneous federated learning
devices,” in Proc. 2021 IEEE Int. Parallel Distrib. Process. Symp., 2021,
pp. 661-670.

[5] Y. Jiang et al., “Model pruning enables efficient federated learning on
edge devices,” IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 12,
pp. 10374-10386, Dec. 2023.

[6] M. R. Sprague et al., “Asynchronous federated learning for geospatial
applications,” in Proc. Joint Eur. Conf. Mach. Learn. Knowl. Discov.
Databases, Springer, 2018, pp. 21-28.

[7] P. Vepakomma, O. Gupta, T. Swedish, and R. Raskar, “Split learning

for health: Distributed deep learning without sharing raw patient data,”

2018, arXiv: 1812.00564.

C. Thapa, P. C. M. Arachchige, S. Camtepe, and L. Sun, “SplitFed: When

federated learning meets split learning,” in Proc. AAAI Conf. Artif. Intell.,

2022, pp. 8485-8493.

J. Jeon and J. Kim, “Privacy-sensitive parallel split learning,” in Proc. Int.

Conf. Inf. Netw., 2020, pp. 7-9.

[10] Z. Zhang, A. Pinto, V. Turina, F. Esposito, and 1. Matta, “Privacy and

efficiency of communications in federated split learning,” /EEE Trans.

Big Data, vol. 9, no. 5, pp. 1380-1391, Oct. 2023.

K. Palanisamy, V. Khimani, M. H. Moti, and D. Chatzopoulos, “SplitEasy:

A practical approach for training ML models on mobile devices,” in Proc.

22nd Int. Workshop Mobile Comput. Syst. Appl., 2021, pp. 37-43.

[12] X. Liu, Y. Deng, and T. Mahmoodi, “Energy efficient user scheduling for
hybrid split and federated learning in wireless UAV networks,” in Proc.
IEEE Int. Conf. Commun., 2022, pp. 1-6.

[13] X. Liu, Y. Deng, and T. Mahmoodi, “Wireless distributed learning: A
new hybrid split and federated learning approach,” IEEE Trans. Wireless
Commun., vol. 22, no. 4, pp. 2650-2665, Apr. 2023.

[14] Z. Wang, H. Xu, Y. Xu, Z. Jiang, and J. Liu, “CoopFL: Accelerating
federated learning with DNN partitioning and offloading in heterogeneous
edge computing,” Comput. Netw., vol. 220, 2023, Art. no. 109490.

[15] Z. Jiang, Y. Xu, H. Xu, Z. Wang, and C. Qian, “Adaptive control of

client selection and gradient compression for efficient federated learning,”

2022, arXiv:2212.09483.

A. Rodio, F. Faticanti, O. Marfoq, G. Neglia, and E. Leonardi, “Federated

learning under heterogeneous and correlated client availability,” in Proc.

IEEE Conf. Comput. Commun., 2023, pp. 1-10.

[17] C. Chen et al., “GIFT: Toward accurate and efficient federated learning
with gradient-instructed frequency tuning,” IEEE J. Sel. Areas Commun.,
vol. 41, no. 4, pp. 902-914, Apr. 2023.

[18] H. Liu, F. He, and G. Cao, “Communication-efficient federated learning
for heterogeneous edge devices based on adaptive gradient quantization,”
in Proc. IEEE Conf. Comput. Commun., 2023, pp. 1-10.

[19] J. Tirana, S. Lalis, and D. Chatzopoulos, “MP-SL: Multihop parallel split
learning,” 2024, arXiv:2402.00208.

[20] M. Kim, A. DeRieux, and W. Saad, “A bargaining game for personalized,
energy efficient split learning over wireless networks,” in Proc. Wireless
Commun. Netw. Conf., 2023, pp. 1-6.

[21] E.Samikwa, A. Di Maio, and T. Braun, “ARES: Adaptive resource-aware

split learning for Internet of Things,” Comput. Netw., vol. 218, 2022,

Art. no. 109380.

W. Wu et al., “Split learning over wireless networks: Parallel design

and resource management,” [EEE J. Sel. Areas Commun., vol. 41, no. 4,

pp. 1051-1066, Apr. 2023.

Y. Mu and C. Shen, “Communication and storage efficient federated split

learning,” in Proc. IEEE Int. Conf. Commun., 2023, pp. 2976-2981.

[24] E.L.Lawler,J. K. Lenstra, A. H. R. Kan, and D. B. Shmoys, “Sequencing
and scheduling: Algorithms and complexity,” in Handbooks in Operations
Research and Management Science. Amsterdam, The Netherlands: Else-
vier, 1993.

[25] J.K.Lenstra, D. B. Shmoys, and E. Tardos, “Approximation algorithms for
scheduling unrelated parallel machines,” Math. Program., vol. 46, pp. 259—
271, 1990.

[26] B. Chen, C. N. Potts, and G. J. Woeginger, “A review of machine
scheduling: Complexity, algorithms and approximability,” in Handbook of
Combinatorial Optimization, vol. 1-3. Berlin, Germany: Springer, 1998,
pp. 1493-1641.

[27] A. M. Geoffrion, “Generalized benders decomposition,” J. Optim. Theory
Appl., vol. 10, pp. 237-260, 1972.

[28] J.Lou, Z. Tang, W. Jia, W. Zhao, and J. Li, “Startup-aware dependent task
scheduling with bandwidth constraints in edge computing,” IEEE Trans.
Mobile Comput., vol. 23, no. 2, pp. 1586-1600, Feb. 2024.

[8

[t}

[9

—

[11]

[16]

[22]

[23]

TIRANA et al.: MINIMIZATION OF THE TRAINING MAKESPAN IN HYBRID FEDERATED SPLIT LEARNING

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]
[42]
[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]
[51]

[52]

[53]

[54]

H. Wang et al., “Low-complexity and efficient dependent subtask offload-
ing strategy in IoT integrated with multi-access edge computing,” IEEE
Trans. Netw. Service Manag., vol. 21, no. 1, pp. 621-636, Feb. 2024.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learn., vol. 3, pp. 1-22, 2011.

Q. Chen, F. R. Yu, T. Huang, R. Xie, J. Liu, and Y. Liu, “Joint resource
allocation for software-defined networking, caching, and computing,”
IEEE/ACM Trans. Netw., vol. 26, no. 1, pp. 274-287, Feb. 2018.

D. Tsigkari, G. Iosifidis, and T. Spyropoulos, “Quid pro quo in streaming
services: Algorithms for cooperative recommendations,” IEEE Trans.
Mobile Comput., vol. 23, no. 2, pp. 1753-1768, Feb. 2024.

S. Diamond, R. Takapoui, and S. Boyd, “A general system for heuristic so-
lution of convex problems over nonconvex sets,” 2016, arXiv:1601.07277.
A. Themelis and P. Patrinos, “Douglas—Rachford splitting and ADMM
for nonconvex optimization: Tight convergence results,” SIAM J. Optim.,
vol. 30, no. 1, pp. 149-181, 2020.

C. Leng, Z. Dou, H. Li, S. Zhu, and R. Jin, “Extremely low bit neural
network: Squeeze the last bit out with ADMM,” in Proc. AAAI Conf. Artif.
Intell., 2018, pp. 3466-3473.

S. Zhang, J. Liu, H. Guo, M. Qi, and N. Kato, “Envisioning device-to-
device communications in 6G,” IEEE Netw., vol. 34, no. 3, pp. 86-91,
May/Jun. 2020.

A. S. Schulz and M. Skutella, “Scheduling unrelated machines by ran-
domized rounding,” SIAM J. Discrete Math., vol. 15, no. 4, pp. 450-469,
2002.

N.H. Tran, W. Bao, A. Zomaya, M. N. Nguyen, and C. S. Hong, “Federated
learning over wireless networks: Optimization model design and analysis,”
in Proc. IEEE Conf. Comput. Commun., 2019, pp. 1387-1395.
Z.Fu,J.Ren, D. Zhang, Y. Zhou, and Y. Zhang, “Kalmia: A heterogeneous
QoS-aware scheduling framework for DNN tasks on edge servers,” in Proc.
IEEE Conf. Comput. Commun., 2022, pp. 780-789.

J. Meng, H. Tan, C. Xu, W. Cao, L. Liu, and B. Li, “Dedas: Online task
dispatching and scheduling with bandwidth constraint in edge computing,”
in Proc. IEEE Conf. Comput. Commun., 2019, pp. 2287-2295.

S. P. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

Gurobi Optimization, LLC, “Gurobi optimizer reference manual,” 2023.
[Online]. Available: https://www.gurobi.com

J. K. Lenstra, A. R. Kan, and P. Brucker, “Complexity of machine schedul-
ing problems,” Ann. Discrete Math., vol. 1, pp. 343-362, 1977.

T. Gonzalez, E. L. Lawler, and S. Sahni, “Optimal preemptive scheduling
of two unrelated processors,” ORSA J. Comput., vol. 2, no. 3, pp. 219-224,
1990.

W. Horn, “Some simple scheduling algorithms,” Nav. Res. Logistics
Quart., vol. 21, no. 1, pp. 177-185, 1974.

J. Eckstein and D. P. Bertsekas, “On the Douglas—Rachford splitting
method and the proximal point algorithm for maximal monotone opera-
tors,” Math. Program., vol. 55, no. 1, pp. 293-318, 1992.

K.R.Baker, E. L. Lawler, J. K. Lenstra, and A. H. Rinnooy Kan, “Preemp-
tive scheduling of a single machine to minimize maximum cost subject to
release dates and precedence constraints,” Operations Res., vol. 31, no. 2,
pp. 381-386, 1983.

J. M. Shah, K. Kotecha, S. Pandya, D. Choksi, and N. Joshi, “Load
balancing in cloud computing: Methodological survey on different types
of algorithm,” in Proc. Int. Conf. Trends Electron. Inform., 2017,
pp- 100-107.

M. Harchol-Balter, Performance Modeling and Design of Computer Sys-
tems: Queueing Theory in Action. Cambridge, U.K.: Cambridge Univ.
Press, 2013.

C. Li, C. Ding, and K. Shen, “Quantifying the cost of context switch,” in
Proc. Workshop Exp. Comput. Sci., 2007, pp. 1182—1189.

A. Krizhevsky, “Learning multiple layers of features from tiny images,”
in Handbook of Systemic Autoimmune Diseases, 2009.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770-778.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

L. Bai, W. Ji, Q. Li, X. Yao, W. Xin, and W. Zhu, “DNNAbacus: To-
ward accurate computational cost prediction for deep neural networks,”
2022, arXiv:2205.12095.

[55]

[56]

(571

[58]

5417

D. Belson, “State of the internet Q4 report,” 2016. [Online]. Avail-
able: https://www.akamai.com/site/en/documents/state- of-the-internet/
q4-2016-state-of-the-internet-connectivity-report.pdf

R. Anand, D. Aggarwal, and V. Kumar, “A comparative analysis of
optimization solvers,” J. Statist. Manage. Syst., vol. 20, no. 4, pp. 623-635,
2017.

F. Kaup, P. Gottschling, and D. Hausheer, “PowerPi: Measuring and
modeling the power consumption of the Raspberry Pi,” in Proc. 39th Annu.
IEEE Conf. Local Comput. Netw., 2014, pp. 236-243.

A. C. Valera, N. Clayton, W. K. Seah, and T. Zheng, “Optimal transmission
scheduling in data-intensive audio sensor networks,” in Proc. IEEE Glob.
Commun. Conf., 2023, pp. 7049-7054.

Joana Tirana received the diploma (MSc-
equivalent) degree in electrical and computer
engineering from the University of Thessaly in
Volos, Greece, in 2021. She is currently working
toward the PhD degree with the University College
Dublin, since January 2022. Her research area
is Decentralized Al, focusing on protocols for
distributed and collaborative learning like federated
learning and finding ways to optimize these
techniques by using Al task offloading and split
learning.

Dimitra Tsigkari received the degree in mathematics
from the Aristotle University of Thessaloniki, Greece,
the master’s degree in mathematics and applications
from Pierre-et-Marie-Curie University, France, and
the PhD degree in computer science, telecommunica-
tions, and electronics from EURECOM and Sorbonne
University, France. She was a postdoctoral researcher
with TU Delft, Netherlands. She is currently a re-
search scientist with Telefonica Research, Spain. Her
research interests lie in the area of network opti-
mization with a focus on edge/cloud computing and
distributed learning.

George Iosifidis received the diploma degree in elec-
tronics and telecommunications engineering from
Greek Air Force Academy, Athens, in 2000, and
the PhD degree from the University of Thessaly,
in 2012. He was an assistant professor with Trinity
College Dublin from 2016 to 2020. He is currently
an associate professor with the Delft University of
Technology. His research interests lie in the broad
area of network optimization and economics.

Dimitris Chatzopoulos received the diploma and
MSc degrees in computer engineering and communi-
cations from the University of Thessaly, Greece, and
the PhD degree in computer science and engineering
from the Hong Kong University of Science and Tech-
nology. He is an assistant professor with the School
of Computer Science, University College Dublin.
His research interests include privacy-preserving and
Al-enabled decentralized applications for mobile and
distributed systems.

https://www.gurobi.com
https://www.akamai.com/site/en/documents/state-of-the-internet/q4-2016-state-of-the-internet-connectivity-report.pdf
https://www.akamai.com/site/en/documents/state-of-the-internet/q4-2016-state-of-the-internet-connectivity-report.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

