
Dynamic Substructuring Methodologies for
Integrated Dynamic Analysis of Wind Turbines

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus Prof. ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen
op woensdag 7 november 2012 om 12:30 uur

door

Sven Niels VOORMEEREN

werktuigkundig ingenieur
geboren te Hellevoetsluis.



Dit proefschrift is goedgekeurd door de promotor:

Prof. dr. ir. D.J. Rixen

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof. dr. ir. D.J. Rixen, Technische Universiteit Delft / TU München, promotor
Prof. dr. E. Balmès, Arts et Métiers ParisTech, Frankrijk
Prof. dr. ir. A. de Boer, Universiteit Twente
Prof. dr. ir. W. Desmet, Katholieke Universiteit Leuven, België
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Abstract

One of the great questions society is faced with today is how to sustain the current level
of well-being for future generations. The tremendous increase in prosperity that mankind
has seen since the industrial revolution has been mainly fueled by the abundant availabil-
ity of cheap energy, in the form of coal and oil. As maintaining our current lifestyle would
deplete these precious fossil resources within the reasonably near future, sustainable alter-
natives need to be developed sooner rather than later.

Over the last decades wind energy has manifested itself as one of the serious alternatives.
With exponential growth rates seen in both the installed wind energy capacity and wind
turbine size, the wind industry has achieved impressive cost reduction of wind generated
electricity. In fact, for some for favorable locations on land wind energy is cost-competitive
with conventional energy sources. However, subsidies are often still required to make wind
energy economically viable, which is especially true for offshore wind energy. Hence, further
cost reductions are required to truly benefit from the huge potential wind energy offers to
generate “green” electricity on a large scale.

Since wind turbines are very complex machines that operate under continuous and intri-
cate environmental dynamic loading, insight in the turbine’s structural dynamic behavior
is essential in their design and operation. Traditionally, these dynamics are analyzed using
aero-elastic simulation models. Such models account for all relevant dynamic phenomena
(structural, aero-, hydro- and controller dynamics), but the underlying structural models
are very simple. Loads obtained from these simulations are subsequently applied statically
to detailed component finite element models, thereby assuming that these components only
contribute quasi-statically to the global dynamic behavior.

In the quest for further cost reductions, lots of efforts are spent in optimizing wind turbine
designs. These optimized designs generally tend to introduce more structural flexibility. As
a result, dynamic effects get more pronounced such that local dynamic behavior becomes
relevant. Due to their simplified structural models these dynamics cannot be predicted by
the aero-elastic simulations. Hence, the current sequential analysis procedure breaks down.

To overcome this, a methodology is developed in this thesis that enables integrated dynamic
analysis of wind turbines with a high level of structural detail. This methodology is based on
the concept of dynamic substructuring (DS), which consists in analyzing a system’s struc-
tural dynamics in a componentwise fashion. Doing so has many advantages: models can be
tailored to the characteristics of the components, modeled and measured parts can be com-
bined, the total model can be efficiently re-analyzed if some components are changed, and
so on.

In part I of this thesis, several theoretical methods are developed to enhance the practical
useability of the DS methodology. The cornerstones of the DS approach are component
model reduction techniques, which express detailed dynamic models in terms of their most
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dominant behavior. This leads to compact yet accurate component models, thereby greatly
improving the computational efficiency of subsequent simulations. These methods are in-
vestigated in detail and a generalization of existing methods is proposed. Various assembly
techniques are thereafter developed in order to obtain the reduced dynamic model of the to-
tal structure, regardless of the interface representations of its components. If necessary, this
model can be further compacted through interface reduction, which is also addressed. An
important issue that is treated thereafter is the accuracy of this reduced model. Using error
estimation methods, it is shown how the accuracy can be estimated without analyzing the
unreduced model. Furthermore, these error estimates enable adaptive model reduction. Fi-
nally, part I is concluded by an investigation on how to efficiently update reduced component
models that are subjected to (parametric) design modifications. Preconditioned iterative al-
gorithms are proposed to make optimal use of the available information from the nominal
model.

Part II of this thesis applies the methods developed in part I to representative wind turbine
engineering problems in the form of three case studies. Firstly, it is shown how (interface)
model reduction and assembly techniques can be used to obtain a very compact model of a
yaw system of a multi-megawatt wind turbine. The resulting model proves to be an accurate
representation of the full model at only a fraction of its original size and computational cost.
Secondly, a reduced model of a wind turbine bedframe structure is subjected to parametric
design changes. It is demonstrated how the model can be efficiently updated, with a perfor-
mance gain of around a factor three with respect to recomputation for typical modifications.
As such it can be used effectively in a practical design setting. Finally, the modeling of an
offshore wind turbine on a complex support structure is addressed. Using adaptive model
reduction and error estimation, optimal models are created that can be used in aero-elastic
simulations. For selected quantities, these models provide up to an order of magnitude better
accuracy at the same model size as their uniformly reduced counterparts.

In conclusion, a modeling framework is developed based on the dynamic substructuring
methodology, that is a suitable for performing detailed integrated dynamic analysis of wind
turbines. It is a flexible and versatile methodology, that is able to provide thorough insight in
the system’s dynamics without compromising too much on computational efficiency. There-
fore, the developed framework could prove a useful contribution to the design tools needed
for developing innovative next-generation wind turbines: a small yet essential step in the
elaborate path towards cost competitiveness of wind energy.



Samenvatting

Eén van de grootste uitdagingen van de moderne maatschappij is het in stand houden van
het huidige niveau van welzijn voor toekomstige generaties. De ongekende groei in rijkdom
die de mensheid heeft doorgemaakt sinds de industriële revolutie, is voornamelijk mogelijk
gemaakt door de overvloedige beschikbaarheid van goedkope energie in de vorm van kolen
en olie. Nu door het handhaven van onze levensstijl deze waardevolle fossiele grondstof-
fen binnen afzienbare tijd dreigen op te raken, is het van groot belang dat op korte termijn
duurzame alternatieven worden gevonden.

Gedurende de afgelopen decennia heeft windenergie zich gemanifesteerd als één van de se-
rieuze alternatieven. Substantiële kostenverlagingen zijn gerealiseerd door met name de ex-
ponentiële groei van zowel de gëınstalleerde windenergiecapaciteit als de grootte van wind-
turbines. Op gunstige locaties op land zijn de kosten van windenergie daarom al concur-
rerend met die van conventionele energiecentrales. Echter, in veel gevallen zijn nog altijd
subsidies benodigd om windenergie economisch haalbaar te maken. Dit is in het bijzon-
der het geval voor offshore windenergie. Verdere kostenreducties zijn daarom noodzakelijk
om op grote schaal te profiteren van het gigantische potentieel dat de wind biedt tot het op-
wekken van “groene” energie.

Aangezien windturbines zeer complexe machines zijn die onder voortdurende dynamische
belasting moeten functioneren, is inzicht in het structurele dynamische gedrag cruciaal voor
het ontwerp en de werking van deze machines. Traditiegetrouw wordt deze dynamica ge-
analyseerd met behulp van zogenaamde aero-elastische simulatiemodellen. Deze modellen
houden rekening met alle relevante dynamische fenomenen (structuur-, aero-, hydro- en
regelaardynamica), maar zijn gebaseerd op zeer grove structuurmodellen. De belastingen
die met deze simulaties worden berekend worden daarna op een statische manier toegepast
op gedetailleerde eindige elementen componentmodellen, waarbij wordt aangenomen dat
deze componenten slechts quasi-statisch bijdragen aan het globale dynamische gedrag.

In de voortdurende zoektocht naar kostenverlagingen wordt gestreefd naar verdere opti-
malisatie van het windturbine ontwerp. Deze geoptimaliseerde ontwerpen zorgen in het
algemeen voor meer structurele flexibiliteit, waardoor dynamische effecten versterken en
lokaal dynamisch gedrag kan optreden. Door de simpele structurele modellen die worden
gebruikt in de aero-elastische simulaties, kan deze dynamica echter niet voorspeld worden
in de huidige belastingsberekeningen. Hierdoor is de tot nu toe gebruikte stapsgewijze struc-
turele analyseprocedure niet langer geldig.

Om dit probleem op te lossen is in dit proefschrift een methodologie ontwikkeld die het mo-
gelijk maakt gëıntegreerde dynamische analyse uit te voeren met een hoge mate van struc-
turele gedetailleerdheid. Deze methodologie is gebaseerd op het concept van “dynamisch
substructureren” (DS), wat inhoudt dat de dynamica van het systeem geanalyseerd wordt op
basis van de dynamica van haar componenten. Deze aanpak heeft vele voordelen: modellen
kunnen aangepast worden aan de eigenschappen van de componenten, experimenteel en
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numeriek bepaalde componentmodellen kunnen worden gecombineerd, heranalyse van het
totale model kan efficiënt worden uitgevoerd wanneer enkele componenten worden veran-
derd, enzovoorts.

In deel I van dit proefschrift worden verschillende theoretische methoden ontwikkeld om
de praktische bruikbaarheid van de DS methodologie te verbeteren. De hoekstenen van het
DS concept worden gevormd door component modelreductie technieken, waarmee gede-
tailleerde dynamische modellen beschreven kunnen worden in termen van hun meest dom-
inante gedrag. Dit leidt tot compacte en nauwkeurige componentmodellen die veel sneller
kunnen worden doorgerekend. Deze methoden worden in detail onderzocht en een gen-
eralisatie van bestaande methoden wordt voorgesteld. Verschillende assemblagetechnieken
worden daarna beschouwd om zo het gereduceerde dynamische model van het totale sys-
teem op te bouwen, onafhankelijk van de interface representatie van de componentmodellen.
Ook wordt besproken hoe, indien nodig, dit model verder kan worden verkleind door het
gebruik van interface reductietechnieken. Een belangrijk aspect dat daarna wordt behandeld
is de nauwkeurigheid van dit gereduceerde model. Met behulp van foutschattingsmethoden
wordt laten zien hoe de nauwkeurigheid van het gereduceerde model kan worden geschat
zonder het volledige model door te rekenen. Deze foutschattingen maken het bovendien
mogelijk om modelreductie op een adaptieve manier toe te passen. Tenslotte wordt deel I
afgesloten met een onderzoek naar het efficiënt updaten van gereduceerde modellen die on-
derhevig zijn aan parametrische ontwerpveranderingen. Hiertoe worden iteratieve oploss-
ingsmethoden ontwikkeld om zo optimaal mogelijk gebruik te maken van de beschikbare
informatie van het nominale model.

Deel II van dit proefschrift behandelt de toepassing van de methodologie van deel I op on-
twerpproblemen uit de windturbine praktijk. Dit wordt gedaan in de vorm van drie casestud-
ies. Ten eerste wordt gëıllustreerd hoe (interface) modelreductie en assemblagetechnieken
toegepast kunnen worden om een zeer compact model te creëren van een kruisysteem van
een moderne windturbine. Dit model blijkt een nauwkeurige representatie van het volledige
model, voor slechts een fractie van de originele modelgrootte en rekentijd. Ten tweede wordt
een gereduceerd model van een windturbine bedplaat onderworpen aan parametrische on-
twerpmodificaties. Er wordt gedemonstreerd hoe dit model efficiënt kan worden geupdate;
voor realischtische modificaties wordt een prestatieverbetering behaald ten opzichte van
volledige herberekening van ongeveer een factor drie. Hierdoor kunnen gereduceerde mod-
ellen effectief gebruikt worden in een praktische ontwerpomgeving. Tenslotte wordt gekeken
naar de modellering van een offshore windturbine op een complexe fundatie. Door het ge-
bruik van foutschattingsmethoden en adaptieve modelreductie worden van deze turbine op-
timale gereduceerde modellen gemaakt voor gebruik in belastingsberekeningen. Voor de
geselecteerde variabelen is de nauwkeurigheid van deze modellen tot een ordegrootte beter
dan die van uniform gereduceerde modellen.

Al met al kan worden geconcludeerd dat in dit proefschrift een modelleringsraamwerk is
ontwikkeld op basis van dynamisch substructureren, dat gedetailleerde en gëıntegreerde
dynamische analyse van windturbines mogelijk maakt. Het ontwikkelde raamwerk vormt
daarmee een nuttige bijdrage aan de ontwerpgereedschappen die nodig zijn om de volgende
generatie windturbines te ontwikkelen: een kleine doch essentiële stap richting rendabele
windenergie.
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Nomenclature

Symbols
General meaning of often used symbols, unless otherwise noted in context:

A Boolean localization matrix L Boolean assembly matrix
a Adjoint selection vector M Mass matrix
B Signed Boolean assembly matrix m Error indicator vector
C Damping matrix P Matrix with CG iterates
D Collocation assembly matrix q Generalized DoF vector
d Adjoint solution vector r Residual vector
e Error vector R Reduction matrix
f External force vector S Preconditioning matrix
F Matrix of external force vectors T Transformation matrix
g Connection force vector u Displacement DoF vector
G Flexibility matrix uγ Unique interface displacement DoF
gb Interface force DoF vector W Matrix with CG iterates
J(⋆) Target functional Y Receptance matrix
K Stiffness matrix Z Dynamic stiffness matrix

Greek symbols:

η Modal DoF vector ω Eigenfrequency, circular frequency
ϕ Vibration mode shape λ Lagrange multipliers
Φ Set of vibration mode shapes Ω Diagonal eigenfrequency matrix
ψ Static deformation shape ρ(⋆) Rayleigh quotient
Ψ Set of static deformation shapes

General meaning of sub- and superscripts, unless otherwise noted in context:

a Attachment mode k Iteration index
b Boundary c Residual mode / rigid body mode
|b Trace on the boundary (0) Belonging to nominal system
c Constraint mode (1) Belonging to modified system
f Free interface mode + Generalized (pseudo) inverse
i Internal (s) Belonging to substructure s
j Iteration index

xiii
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Notation Conventions
A number of typographical conventions are used in this thesis. Scalar variables are indicated
by normal lowercase symbols, for instance f , while vectors are denoted by bold lowercase
symbols, e.g. f . Uppercase bold symbols represent matrices, for instance K . Block diagonal
matrices are indicated by diag(⋆, ⋆), for instance:

diag(X , Y) = [ X 0
0 Y ]

Stacked column vectors are denoted by col(⋆;⋆), e.g.:

col(x; y) = [ x
y ]

Furthermore, total time derivatives are indicated by a dot over a variable, e.g.

ẋ = dx
dt

and ẍ = d2x
dt2 ,

where x is some time dependent variable and t denotes time.

Abbreviations
The following abbreviations are used throughout this thesis:

AEP Annual electricity production LCOE Levelized cost of energy
CAD Computer aided design MAC Modal assurance criterion
CAPEX Captial expenditures MCB Mixed Craig-Bampton
CB Craig-Bampton MTA Modal truncation augmentation
CG Conjugate gradient NREL National Renewable Energy Lab
CMS Component mode synthesis OPEX Operational expenditures
DCB Dual Craig-Bampton OWT Offshore wind turbine
DoF Degrees of freedom POD Proper orthogonal decomposition
DS Dynamic substructuring POM Proper orthogonal mode
DWR Dual-weighted residual POV Proper orthogonal value
FBS Frequency based substructuring RBM Rigid body modes
FE Finite element RNA Rotor-nacelle assembly
FRF Frequency response function SUMAC Substructure MAC
HAWT Horizontal axis wind turbine SVD Singular value decomposition
IBS Impulse based substructuring SWT Siemens wind turbine
IFPKS Inverse-free Krylov subspace TRAC Time response assurance criterion
IRA Implicit restarted Arnoldi VAWT Vertical axis wind turbine
IRF Impulse response function WTG Wind turbine generator



1
Introduction

When the wind of change blows,
some build walls, others build windmills.

(Chines proverb)

1.1 Wind Energy: For Free and Still Too Expensive?

Wind energy is the kinetic energy contained in the mass of flowing air that occurs due to
the temperature differences on the planet, caused by the energy of the sun absorbed by the
earth. Wind energy is abundant, inexhaustible and, most importantly, for free. Despite this,
its conversion to electrical energy is still too expensive, as will be explained in this section.

For centuries mankind has harnessed the power of the wind. From the first Persian vertical-
axis windmills used to grind corn in the ninth century, to the fifteenth century Dutch wind-
mills that helped to reclaim land from the sea: wind energy has long been instrumental to the
development of mankind. In fact, its importance to our energy supply has only recently been
diminished by the industrial revolution, when fossil fuels became the preferred source of en-
ergy. Still, the development of wind power persisted and the end of the nineteenth century
marked the transition from traditional windmills to wind turbines. That is, machines that
convert wind energy into electrical instead of mechanical energy. These machines formed
the basis for modern day wind turbines.

It took until the 1970’s for wind energy to regain public attention, when the first oil crisis
triggered investigations of renewable energy sources. Especially in the United States this led
to the development of the first multi-megawatt wind turbines. However, a steep decline in oil
prices in the mid 1980’s rendered many of these initiatives uneconomical and hence interest
in wind energy eroded. In Denmark however, development of wind turbines had steadily
continued throughout the twentieth century, mainly driven by a desire for self-sufficiency
during the country’s decentralized electrification. This resulted in the so-called Danish design
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2 ∣ Chapter 1 – Introduction

that turned out to be the blueprint for modern commercial wind turbines: a horizontal-axis,
upwind, three-bladed rotor supported by a tubular tower.

Fueled by concerns over energy security, global warming and depletion of fossil energy
sources, the wind industry finally regained momentum in the beginning of this century. Over
last decade the installed wind power capacity has been consistently growing by 20 to 30%
annually, this exponential growth is shown in figure 1.1. With the market entry of some big
multinational companies, such as Siemens, General Electric, Alstom and Mitsubishi Heavy
Industries, the wind industry today has become a global 50-billion euro business [76]. At the
end of 2011 the global capacity reached 239 Gigawatts, generating around 520 Terawatthours
of electrical energy per year [225]. This is sufficient to cover about 3% of the worldwide elec-
tricity demand.
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Figure 1.1: Global installed wind power capacity over the last decades, data taken from [76].

Enabling this exponential growth of installed capacity was the incredible pace with which
wind turbine technology evolved. In turn, these developments were driven by the desire
to bring down the costs of wind generated electricity. Given that the amount of energy ex-
tracted from the wind is proportional to the cube of the wind speed and the square of the
rotor diameter, and wind speeds generally increase with elevation from the ground, a natu-
ral consequence was to construct ever larger and taller wind turbines. Whereas in the mid
1980’s the first commercial wind turbines had a rated power output of 50 kilowatts with a ro-
tor diameter of 15 meters, their modern successors come as large as 7.5 megawatts and rotor
diameters up to 154 meters. With hub heights (the hub is the center of the rotor) of around
130 meters, this gives a total blade tip height of over 200 meters. For the sake of comparison,
the rotor swept area of these machines is close to two hectares, while their rotor diameters
are almost twice the wing span of the Airbus A380 jumbo jet (80 meters).

Despite its success over the last few decades, wind energy has not been without controversy.
Opponents point at the intermittency and variability of wind generated electricity, also noise
and “landscape pollution” are often heard complaints. Furthermore, the natural habitat of
some wildlife species tends to be disturbed by the the installation of wind turbines. In an at-
tempt to mitigate these negative effects, developers have turned to a new place to install wind
turbines: the sea. Offshore, average wind speeds are higher, acoustic and visual nuisance are
hardly relevant and space constraints are absent. Hence, offshore wind energy offers a huge
potential to generate “green” electricity on a large scale.

Again Denmark took a pioneering role with the installation of the first offshore wind farm
in 1991 at Vindeby. A few years later other countries followed and installed wind turbines in
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Development of rotor diameter [m] and power rating [MW] over time
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Figure 1.2: Sizes of generations of commercial wind turbines.

their own coastal waters, such as the Netherlands, Sweden, the United Kingdom and Ger-
many. During the last years numerous new offshore wind farms have been installed while
many more are currently planned or under construction, as indicated by the numbers in
table 1.1.

2009 2010 2011 Under construction Planned
Number of turbines installed 201 308 235 - -
Total capacity installed [MW] 584 883 866 2375 2910
Cumulative capacity [MW] 2063 2946 3813 6188 9098

Table 1.1: European offshore wind industry statistics, source EWEA [61, 62].

The true debate however centers around the economics of wind generated electricity. Al-
though at some favorable (coastal) onshore sites certain wind turbines can compete with
conventional energy sources in terms of price per kilowatthour of electricity, general con-
sensus is that wind energy is still too expensive. As a result subsidies are required to make
the installation of wind turbines economically viable, which is especially true at offshore lo-
cations. This explains the paradoxical title of this section, that was borrowed from Molenaar
[137]: even though wind energy itself is for free, harnessing it cost-effectively is still a chal-
lenging task.
Nonetheless, wind energy is currently the most promising of all renewable energy sources,
both in terms of cost and potential. According to a recent report of the US Energy Infor-
mation Administration, of all sources of renewable energy, wind is closest to reaching cost-
competitiveness with conventional sources under unsubsidized conditions [204]. Further-
more, in 2009 a study by a team of Harvard scientists showed that the global potential for
wind energy was estimated at more than forty times the current global electricity consump-
tion and over five times the total energy consumption [128]. Provided that its costs are fur-
ther reduced, wind energy thus has the potential to play a major role in a sustainable future
energy supply.
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1.2 Cost Reduction and the Role of Structural Dynamics

In general, the lifetime averaged cost of one kilowatt-hour (kWh) of wind generated elec-
tricity, also referred to as the levelized cost of energy (LCOE), is governed by three factors:

• Capital expenditures (CAPEX): the cost of the investment of the wind turbine and all
secondary items, such as (offshore) foundation, cabling, etc.

• Operational expenditures (OPEX): the cost of operating the wind turbine during its
lifetime, e.g. scheduled maintenance and repair costs.

• Lifecycle energy output: the amount of electricity produced by the wind turbine is the
product of its annual electricity production (AEP) and technical lifetime.

Bringing down the cost of wind energy can hence be achieved by reducing the CAPEX and
OPEX while increasing the lifecycle energy output. Many ways can be imagined to reach
these goals. For instance, an important way of lowering the CAPEX is by reducing the total
top mass of the turbine. Thereby not only less material is used, but also more efficient support
structures can be designed, transport and installation is simplified, etc. On the OPEX side,
cost reductions may be achieved by designing a more reliable turbine that is less prone to
failures. Finally, the energy output might be increased by applying a larger rotor diameter
and increasing the design lifetime from the common twenty years to for instance twenty-five
years.1

However simple this may seem, designing a cost-effective multi-megawatt wind turbine is a
delicate task. Indeed, a modern turbine combines very slender and flexible structures (blades
and tower) with high-tech machinery (drivetrain, yaw system) and electronics in the nacelle,
all subjected to intricate and continuous dynamic loading. In addition to the aerodynamic,
and for an offshore turbine, hydrodynamic loading, the structure is also excited by each
blade passing the tower. This effect is known as tower shadow and occurs with multiples of
the rotor rotation frequency P (i.e. for a three-bladed rotor 1P, 3P, 9P, etc.). Furthermore,
complex internal excitations are generated for instance in the gearbox and bearings.
Therefore, a crucial aspect in designing a wind turbine is thorough understanding of its
structural dynamic behavior. The field of structural dynamics is concerned with the de-
termination of an engineering structure’s dynamic behavior, for instance its free vibration
frequencies (i.e. eigenfrequencies) and its response to time varying loading. Indeed, a lack
of knowledge of the wind turbine’s structural dynamics has in the past caused problems,
ranging from cracking blades, breaking gearboxes to “singing” towers. To achieve the neces-
sary cost reductions the wind turbine design gets pushed more and more to the limit, such
that structural dynamic analysis becomes even more instrumental to the development of
wind turbines.
Structural dynamics hence is a fundamental engineering discipline that greatly influences
performance (AEP), reliability (OPEX) and cost (CAPEX) of wind turbines and in fact many
engineering systems. In order to gain insight in these effects, various analysis tools have been
developed over the years. These tools can in general be divided into two classes: simulation
versus measurement based methods. Both will be very briefly described next.

1Of course the CAPEX, OPEX and AEP can be strongly coupled, both in a positive and negative way. For
instance using a cheaper, lower quality gearbox reduces CAPEX but increases OPEX, since this gearbox is more
likely to need replacement during the turbine’s lifetime. Hence, as in the design of any complex machine, the
challenge is to find the best compromises.
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1.2.1 Simulation: the Finite Element Method

The most notable simulation tool in structural dynamic analysis is the finite element (FE)
method. The origins of the finite element method date back to the 1940’s [94, 35], although
its current name first emerged in 1960 [34]. Given its importance today, the basic idea of
the FE method is deceivingly simple. It consists in dividing a complex domain into a finite
number of smaller domains (elements) which have assumed approximation functions (shape
functions). In this way, the continuous partial differential equations describing the physical
phenomena, which usually have no closed-form solution, are transformed to a discrete set
of ordinary differential equations. By solving these discretized equations, approximate nu-
merical solutions are obtained to the underlying continuous problem.

After the invention of the microprocessor in the 1970’s the FE method quickly evolved to
become an indispensable tool in the analysis of a large variety of engineering problems. In
structural dynamics, the FE method is often employed for the purpose of modal analysis (i.e.
extracting the eigenfrequencies and mode shapes of a structure), harmonic analysis, time
simulation, etc. Although it was already established some 70 years ago, the research field of
finite element methods, in all its facets, is nowadays more active than ever. It is therefore
not intended to give an overview here; instead, the reader is referred to some of the standard
works for details [19, 95, 73, 44].

Despite tremendous advances in computer power over the last decades, the practical use of
high-fidelity FE models is sometimes still hindered by excessive computational cost. This is
especially true in the design phase, where different variants must be quickly analyzed and
long computation times become prohibitive. Another difficulty is that the FE method only
gives reliable results if all relevant physical phenomena are included in the model. Obviously
it is far from trivial to guarantee that all physics of the real-world system are included in its
simulation model, especially when a design only exists in the virtual world.

1.2.2 Measurements: Experimental Dynamic Analysis

Another way to characterize a system’s structural dynamic behavior is by using measured
data. This approach can be chosen to circumvent the issues faced when modeling a (newly
designed) system or, equally important, to validate the outcomes of a simulation model.

Several types of experimental dynamic analyses can be performed. The most common ap-
proach is to measure the dynamic response of a structure to some excitation (e.g. hammer
impact, sine sweep, random noise) over a range of frequencies, thereby obtaining frequency
response functions (FRFs). These can be used directly in order to judge the system’s response
to certain excitation frequencies, or they can be further processed to obtain the structure’s
eigenfrequencies and modes. The latter process is called experimental modal analysis. A
relatively new field of research is the area of output only dynamic testing, i.e. measuring
the structure’s dynamic behavior due to ambient and/or operational excitation. The pro-
cess of determining the eigenmodes in this way is referred to as operational modal analysis.
Again, experimental dynamic techniques span a vast and active field of research, and it is
not intended to give an overview here. Some classic references can be consulted for details
[64, 130].
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Like simulation methods, experimental methods for structural dynamic analysis are not
without difficulty. The biggest obstacle in performing dynamic testing is the amount of re-
sources needed, both in terms of (expensive) measurement equipment and man hours. Fur-
thermore, dynamic testing is sometimes plagued by a number of practical issues, such as
noisy signals, the difficulty of measuring rotational motions, sensitivity to sensor and actu-
ator placement, imposing of the right boundary conditions, and so on.

1.3 State-of-the-Art in Wind Turbine Dynamic Analysis

As explained in above, structural dynamic behavior is an intrinsic aspect in the design and
operation of a modern wind turbine. Due to the costs and practical challenges associated
with measurements on the huge wind turbine (components), insight in this behavior is in
practice mainly gained through simulations. Of course, the simulation results are regularly
validated using measured data of (prototypes of) real turbines, but compared to for instance
the aerospace industry the amount of dynamic testing is rather limited.
Wind turbine manufacturers, research institutes and universities have therefore developed a
specialized class of simulation tools, so-called aero-elastic codes [27, 148]. Based on the finite
element method, these specialized programs are developed to analyze the global dynamic
behavior of a wind turbine by taking into account all relevant phenomena:

• Aero-elasticity, i.e. coupling of structural deformation and aerodynamic loads
• Rotational effects caused by the spinning of the rotor
• The wind turbine controller’s dynamics
• Hydrodynamic loads for offshore turbines
• Soil-structure interaction for offshore turbines

Not only are these codes generally non-linear, also thousands of load cases need to be eval-
uated for certification purposes. These simulations are needed to quantify the loading on
the turbine during its lifetime; to gather statistically relevant data for all of the turbine’s dif-
ferent operational regimes (normal operation, extreme wind speeds, shutdown, idling, etc.)
many simulations are required. In order to keep the computation times at acceptable levels
the models must therefore be as compact as possible. Hence a very limited number of ele-
ments is available to describe the wind turbine, resulting in strongly simplified geometries.
For instance, many components in the nacelle are represented as equivalent mass or stiffness
with only a few degrees of freedom (DoF) and complex frame-like structures are modeled
by simple beam elements. Typically, these simulation models have around 300-400 DoF in
total. As explained before, these aero-elastic models are validated using measurement data
and updated if needed.
As a result of the global dynamic simulations, often called “load calculations” in practice, one
obtains both the ultimate and fatigue loads that the turbine is to withstand during its design
lifetime. Subsequently, these loads are statically applied to detailed finite element models of
the wind turbine components to assess whether their load bearing capacity is sufficient. Such
finite element models can easily consist of hundreds of thousands or even millions of DoF.
This sequential approach to structural dynamic analysis of a wind turbine implicitly assumes
that components only contribute in a quasi-static way to the global dynamics. As explained
next, this might not always be true.
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1.4 Towards Integrated Dynamic Analysis of Wind Turbines

It was explained in section 1.2 that in the quest to drive down the costs of wind energy, the
wind turbine industry is spending a lot of research and development efforts in optimizing
their products. Such optimized turbine designs generally tend to introduce more structural
flexibility.

As a result, local component dynamic behavior becomes relevant, especially since interaction
with the global dynamics can occur (e.g. resonance of a single component due to some global
excitation). This can lead to increased component loading up to a level that results in failure,
compromising the overall reliability of the wind turbine. Thorough understanding of the
coupled dynamics is therefore essential to enable further cost reduction of wind turbines.

However, due to their relatively few degrees of freedom and geometric simplifications, the
existing aero-elastic models are often not capable of predicting these coupled global/local
dynamic effects. In this case, the validity of the current sequential approach to structural
analysis breaks down and an integrated method should be chosen instead.

Hence it can be concluded that currently in wind turbine engineering a need exists for a more
detailed, integrated structural dynamic analysis tool, without losing generality and compu-
tational efficiency. The development of such a tool is the topic of this thesis and it is proposed
to base such a tool on the paradigm of dynamic substructuring. Before formulating the thesis
objective, the next section therefore first gives a brief introduction to this methodology.

1.5 Dynamic Substructuring

It was the roman emperor Julius Caesar who in ancient times introduced the principle of “di-
vide and conquer”. Ever since, this tactic has been successfully applied in a range of domains:
from economics to warfare and from computer science to politics. Probably this inspired
scientists and engineers in the previous century to apply the same paradigm to structural
dynamic analysis. In those days the available resources, in terms of computing power and
measurement hardware, were very limited and global analysis of large and complex struc-
tures was infeasible. Therefore they decomposed the structure into several smaller, simpler
substructures (or components) of which the dynamic behavior is generally easier to deter-
mine. Thereafter they assembled these component dynamic models to obtain the dynamic
model of the total system, an approach that is nowadays known as dynamic substructuring
(DS). Even today this approach remains highly relevant, as the huge advances in modeling
capabilities and measurement hardware are balanced by increasingly complex engineering
structures and ever shorter design cycles.

Analyzing a system’s structural dynamics in such a componentwise fashion has proven to
have some important advantages over global methods where the entire problem is handled
at once:

• It allows evaluating the dynamic behavior of structures that are too large or complex
to be analyzed as a whole.

• By analyzing the subsystems, local dynamic behavior can be recognized more easily
than when the entire system is analyzed.
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• When a single component is changed only that component needs to be reanalyzed; the
total system can be analyzed at low additional cost.

• It gives the possibility to combine modeled parts and experimentally identified compo-
nents. This is especially useful for components that are very difficult to model correctly.

• When a structure consists of several identical parts, dynamic substructuring allows
these parts to be taken into account very efficiently in the total model.

• It enables sharing and combining substructures from different project groups.
• The level of detail of the component models can be matched with the intended usage

of the model.

In short, dynamic substructuring offers a flexible and efficient approach to structural dy-
namic analysis. Three classes of dynamic substructuring methods consist, which will be
treated in more detail in the next chapter.

1.6 Thesis Objectives & Outline

Despite its benefits dynamic substructuring has not yet become a standard tool for the struc-
tural dynamic engineer, for various reasons that will be explained in the next chapter. There-
fore, the objective of the work presented in this thesis can be formulated as follows:

“Develop a practical modeling framework based on the concept of dynamic sub-
structuring that enables detailed, integrated structural dynamic analysis of wind
turbines without compromising on computational efficiency.”

In the true spirit of componentwise analysis, this main objective can be broken down into
two subproblems. The first can be stated as:

“1. Further develop the DS methodology through theoretical extensions that en-
hance its practical usability.”

The second subproblem can be formulated as:

“2. Implement the methodology in the wind turbine engineering practice and demon-
strate its potential through realistic case studies.”

Since the majority of wind turbine dynamic analysis is performed through modeling and
simulation, the developments in this thesis are focused on numerical substructuring meth-
ods. As will be explained in the next chapter, these methods are best suited to bridge the gap
between the existing aero-elastic and detailed FE simulation environments, thereby enabling
true integrated structural dynamic analysis. Furthermore, the work in this thesis is restricted
to linear structures. That is, it is assumed that structural deformations remain relatively small
such that the models can be described in their undeformed state. In vibration analysis this
is generally a valid assumption.

According to the two objectives stated above, the main contents of this thesis is divided into
two parts. Part I consists of chapters 2 to 6 and covers all theory, while in part II (chapters
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7 to 9) the methods are applied to various wind turbine analysis examples. This division is
further motivated by the fact that the theoretical methods in this thesis are of general nature
and can be applied to all sorts of engineering problems.2 Part III presents the conclusions
and recommendations following from this work, while part IV comprises the appendices.
The structure of parts I and II will be elaborated next.

1.6.1 Part I – Theory

Part I of this thesis is structured according to the typical workflow followed when applying
dynamic substructuring analysis in a practical design process. In figure 1.3 this workflow is
schematically shown and the chapters associated with each topic are indicated. This process,
which is continued until some satisfactory analysis result is obtained, can be described in
further detail as follows:

1. Component modeling. The first step in any DS analysis is to decompose the system
into components. Each component is thereafter modeled in a suitable way. The actual
component modeling is not of primary interest in this work, it is simply assumed that
some discrete dynamic model is created using finite elements or some other method.

2. Component validation. To assess the accuracy of the component models they should
be validated against component measurements. This topic will be briefly touched upon
in appendix B, but is not truly in the scope of this work.

3. Component reduction. In practice component models can have a very large number of
DoF. To obtain compact representations of these models, component reduction tech-
niques are applied. Chapter 2 addresses the details of a variety of reduction methods.

4. Assembly. With all components modeled and reduced, they need to be assembled to
obtain the dynamic model of the complete system. During assembly, different choices
exist as to how to treat the interfaces between components. Chapter 3 elaborates on
these assembly techniques. Furthermore, it is sometimes required to decouple models
in order to obtain an isolated component model; this is also discussed in chapter 3.

5. Interface reduction. If the assembled model still has too many DoF, it can be further
compacted using interface reduction. These methods are outlined in chapter 4.

6. Error estimation. The total model is built from reduced component models which ap-
proximate their full counterparts. It is important to have an estimate of the accuracy of
the assembled model; chapter 5 therefore presents error estimation methods. Further-
more, refinement strategies are discussed that can be employed in case the accuracy is
insufficient. Steps 3-5 have to be redone in that case.

7. Model analysis. Now the assembled model has sufficient accuracy it can be subjected
to a dynamic analysis. This could for instance be a modal analysis or time simulation.
These analysis methods, as well as techniques to compare the obtained results, are
briefly discussed in chapter 4.

2As a result of this structure, readers mainly interested in the wind turbine application are advised to simply
read the summaries at the end of each chapter in Part I, and thereafter proceed to Part II.
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8. Assembly validation. To ensure that the assembled model resembles the true structure,
validation measurements are required on the total system. In case the model turns out
to be inaccurate, the interface models must be updated, since the component models
have already been validated in step 2. However, this topic is out of the scope of this
thesis.

9. Reduction basis updating. Based on the analysis of the total model, it can be judged
whether the design is adequate. In practice the design is rarely “first time right” and
often some incremental design change is needed. If so, an updated reduced component
model must be created. A method to handle this efficiently is presented in chapter 6.

1.6.2 Part II – Application to Wind Turbine Engineering

In part II the theoretical methods presented in part I are applied to various representative
case studies. The purpose of this part is to demonstrate the potential of the developed model-
ing framework for wind turbine engineering problems. It consists of the following chapters:

• In chapter 7, a detailed yet compact model of a wind turbine yaw system is created and
analyzed. Thereby, it makes use of the theory presented in chapters 2 to 4, as indicated
by the dotted lines in the flowchart in figure 1.3.

• Chapter 8 treats the iterative design modification of a wind turbine bedframe, making
use of the theoretical methods presented in chapter 6.

• In chapter 9 an optimal reduced model of an offshore wind turbine is created and
analyzed. Again, the dotted lines in figure 1.3 indicate the related theoretical chapters,
namely chapters 2 to 5.

1.6.3 Thesis Contributions

In view of the objectives formulated above, this thesis presents a number of scientific and
practical contributions. The proposed developments of the research reported here are:

• Existing component reduction and assembly techniques are summarized and cast in
common notation framework, showing their similarities and differences in a transpar-
ent way.

• In the field of component model reduction, a generalization of the existing Craig-
Bampton and Dual Craig-Bampton methods is presented. This method, dubbed the
“Mixed Craig-Bampton method”, can be used to overcome the issue of choosing fixed
or free interface mode shapes for the component reduction. See section 2.6 and [217].

• To enable assembly of all types of reduced component models, a general framework
for substructure assembly is developed. Thereby reduced component models can be
created independently in order to increase the modularity of the DS methodology.
See chapter 3 and [219]. Furthermore, a simple method is proposed to incorporate
additional physics arising from the interface, see section 3.7 and [218].
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• Although not in the main scope of this thesis, a substructure decoupling method is
proposed. Based on a dual assembly formulation, different decoupling methods are
derived and classified with the aim to reduce the sensitivity of such methods to mea-
surement errors. See section 3.8 and [212, 213].

• To gain insight in the accuracy of assembled reduced models, without knowledge of
the full solution, existing error estimation methods are analyzed and recast into an
algebraic CMS framework. Adaptive model reduction schemes are proposed using
these error estimates. See chapter 5.

• An updating method is developed to efficiently obtain the reduction bases of com-
ponent models subjected to design modifications. Thereby the need for (expensive)
recomputation of these bases is avoided. See chapter 6 and [214, 215].

• A Matlab toolbox has been developed to facilitate substructuring analysis: the Dy-
namic Substructuring Toolbox (or DS Toolbox). Through a graphical user interface
and a dedicated data format, component models can be imported, reduced, assem-
bled and analyzed in a consistent way. The DS Toolbox automates the “bookkeeping”
involved in the assembly of numerical models and most of the methods presented in
this work are implemented in these tools. See appendix A and [210] for details.
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PART I
Theory

In this part the theoretical developments are presented. This part consists of five chapters and
is structured to resemble the process of a practical dynamic substructuring analysis. Various
methods, techniques and procedures are presented in order to to fulfill the first objective of
this thesis, namely:

“Further develop the dynamic substructuring methodology through theoretical ex-
tensions that enhance its practical usability.”
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2
Dynamic Substructuring & Component

Model Reduction

Each model is useful for different things, but a ‘model’ that tried to describe the design,
the engineering, the ecology and the economics would be no simpler than reality itself

and so would add nothing to our understanding.
(Tim Harford in “The Undercover Economist”)

2.1 Introduction to Dynamic Substructuring

In the previous chapter the basic concept of dynamic substructuring was explained, as well as
a number of advantages of this componentwise approach. In this thesis the vision is adopted
that dynamic substructuring is any technique that tries to find the structural dynamics of a
system through assembly of the dynamics of its components. From this perspective dynamic
substructuring techniques can be subdivided into three classes of methods. Before diving
into the theory, these methods and their historic roots will be treated in a general way in
subsections 2.1.1 to 2.1.3. Thereafter subsection 2.1.4 outlines the structure of the remainder
of this chapter.

2.1.1 Frequency Based Substructuring

Frequency (or FRF) based substructuring (FBS) is the oldest class of DS methods, with the first
contributions in the literature dating back some seven decades [60, 194]. The basic concept
of frequency based substructuring is to assemble component FRFs to obtain the FRFs of
the total system. Usually these FRFs are obtained from measurements, but they can also be
calculated from numerical models. When experimental and numerical models are combined
this is sometimes referred to as “hybrid analysis”.

15
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After the early contributions cited above, it took until the 1980’s for the field of FBS to further
develop. Due to ever more accurate and faster measurement equipment, researchers could
now quite successfully apply FBS methods for the purpose of structural dynamic modifica-
tion. The aim of such applications was to alter the dynamic behavior of a base structure by
coupling a “modification” structure (usually lumped masses or springs). Although structural
modification techniques were at that time not considered as substructuring techniques, the
two concepts are in fact identical as observed in a number of publications [42, 10, 50].

One of the first steps towards “true” frequency based coupling techniques was marked by
the work of Crowley et al., who proposed a structural modification method called SMURF
(Structural Modification Using experimental frequency Response Functions) [46]. However,
this method failed to gain popularity in a broad public. A few years later Jetmundsen et
al. formulated the classical FBS method [106], which was more efficient and more accurate
then the existing FBS methods at that time. The original formulation of the method was
generalized in the following years by a number of authors [82, 81, 158].

While the basic theory of FBS was well established in the mid 1990’s, successful application
of the method was often troubled by all sorts of experimental difficulties. Combined with
the realization that some structures (e.g. a car body and its interior) are simply too complex
to model numerically, the mid 2000’s therefore saw a renewed interest in this field. Since
then, a good amount of research has been devoted to developing methods that increase the
robustness of FBS analyses. The main goal thereby is to decrease the extreme sensitivity of
FBS results to measurement inaccuracies. Some examples include the work in [52, 51, 191,
190].

Finally, a subclass of FBS methods deals with the issue of substructure decoupling, or “inverse
substructuring”. This problem arises when the FRFs of a component need to be found from
the assembled system, which is relevant when the component cannot be measured separately
but only when coupled to neighboring substructure(s). Such problems turn out to be even
more sensitive to measurement inaccuracies; recently quite some research has therefore been
performed to develop methods which alleviate this sensitivity. See for instance [99, 192, 47,
49].

2.1.2 Impulse Based Substructuring

The youngest family of substructuring methods is that of impulse based substructuring (IBS)
techniques, the first work on this topic was published only two years ago [169]. The con-
cept of IBS is to assemble component impulse response functions (IRFs) to obtain the time
response of the assembled system. By the use of the convolution product this time response
can be arbitrary, but the method is most effective to predict the response to impact or shock-
like loading. Indeed, in those cases the high-frequency dynamics of the system are excited,
rendering the modal truncation based approach of CMS ineffective. As such, this method is
the time domain equivalent of the FBS approach.

Similar to FBS, the IRFs can be obtained either experimentally from (hammer) impact tests
or from time integration of numerical component models. Furthermore, since it is a time
domain method, IBS also allows straightforward incorporation of non-linear component
models [207].
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However, like other DS methods there are some difficulties associated with the practical ap-
plication of IBS. Firstly, it was found that accurate predictions with experimental IRFs is
troubled by measurement noise and the fact that a measurement impact is not a perfect
Dirac pulse [168]. Secondly, the computational cost of the method escalates for longer sim-
ulation times. Therefore, truncation and windowing strategies are currently under develop-
ment [173].

2.1.3 Component Mode Synthesis

Perhaps the most well known dynamic substructuring methods are those in the class of com-
ponent mode synthesis (CMS), which combines the concepts of componentwise analysis and
model reduction techniques. Its basic idea is simple: instead of describing a numerical model
at all its nodal DoF, it is described in terms of its most dominant dynamic behavior as ex-
pressed in mode shape vectors (or simply “modes”). In this way very compact descriptions of
component finite element models are obtained. These models are subsequently assembled to
obtain the numerical model of the total system, which can be analyzed at low computational
cost to obtain the global dynamic behavior.
The development of these methods was triggered by the initial ideas of Hurty in 1960 [97]
which were further worked out in [96]. At the same period a method using a branched vi-
sion of the organization of substructures was proposed by Gladwell [75]. Most probably these
ideas came forth from the very limited computation power in those days, making the reduc-
tion of finite element models a bare necessity to analyze any realistic structure. Rapidly the
scientific and engineering communities discovered the benefits of dynamic substructuring
and component mode synthesis became an important research topic in the field of structural
dynamics. Some major developments followed shortly, resulting in the classic methods by
Guyan [85], Craig [37], Rubin [176] and MacNeal [129] in the late 1960’s and 1970’s. Nowa-
days these numerical CMS methods are often used in the structural dynamics community;
especially the Guyan and Craig-Bampton methods are integrated in many FE software pack-
ages. Still, widespread use of these methods in practical design processes can be hindered by
high computational cost. Further challenges remain the (estimation of) the accuracy of the
reduced models, handling of non-linearities and time-variant (e.g. rotating) systems, and so
on.
Around the same time when the numerical CMS methods were developed, already the first
attempts were made to perform CMS using measured component models [115]. Such a hybrid
approach can be very useful for structures that are difficult to be properly modeled. This is
however not a trivial task, since for accurate results so-called static modes are required that
are very hard to determine experimentally. Research is therefore still ongoing to improve the
results of these hybrid analyses, see e.g. [4, 6, 141].

2.1.4 Chapter Outline

As mentioned in the previous chapter, the focus of this thesis lies on numerical substruc-
turing methods and more specifically methods of the component mode synthesis type. The
motivation therefore is twofold. Firstly, performing experimental substructuring on wind
turbine structures involves many practical difficulties, rendering such an approach ineffi-
cient in a design stage. Secondly, in the wind industry extensive finite element (FE) analysis
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is already performed for stress analysis purposes. Therefore CMS based dynamic substruc-
turing is chosen to fulfill the objectives formulated in 1.6.

The current chapter focuses on the first step in the CMS based substructuring process, namely
reduction of component models, and is related to the other topics of part I of this thesis as
illustrated in figure 2.1. This chapter is organized as follows. In the next section, component
model reduction methods are formulated in a general way. Thereafter, the most commonly
used ingredients used in such methods will be treated: the static modes in section 2.3 and the
vibration modes in section 2.4. Section 2.5 then describes the classic component reduction
methods that are obtained by combining different ingredients. In section 2.6 a new reduc-
tion method is proposed, which is in fact a generalization of two existing methods. Finally,
section 2.7 addresses an augmentation method that improves the forced response of reduced
models. The chapter is ended by a summary in section 2.8.
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Figure 2.1: Current chapter in relation to other chapters in part I of this thesis.

2.2 Generic Formulation of Component Model Reduction

The creation of a substructured dynamic model starts with the decomposition of the struc-
ture into non-overlapping components. For each of these components a finite element (FE)
model is then created. In practice, these component FE models are also used for detailed
static stress analysis. Since the small geometric details often determine the stress concen-
trations this requires very fine meshes: models with millions of DoF are no exception. For
a few static analysis runs the computational cost associated with these models is still man-
ageable. However, structural dynamic analysis generally requires solving many static-like
problems and working with such refined models quickly becomes infeasible. Furthermore,
coarser models are usually sufficient since the dynamic behavior is governed by the struc-
ture’s global mass and stiffness distributions. The engineer thus faces a choice: either use the
very fine model or create a coarser mesh. Both options are not very time efficient, as creating
a good mesh can be a time consuming process too.

A more elegant approach would therefore be to decrease the number of DoF without mod-
ifying the FE mesh. Such methods exist and are known as model reduction methods. In
structural dynamics these methods consist in replacing the physical DoF by a much smaller
set of generalized DoF, using the principles of modal superposition and truncation.1 In other
words, instead of describing the structure’s dynamic behavior at a very large number of points

1Model reduction techniques are also employed in many other fields, such as computational mathematics
and control engineering. In those fields the reduction methods usually not derive from physical principles
but from optimizing certain input/output relations. The main difference is that in those cases the quantity of
interest is typically known (e.g. the bandwidth of a certain transfer function) whereas in mechanics/dynamics
this is usually not the case (e.g. the location of a maximum stress). For further discussion see e.g. [7, 152, 181].
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along the structure, the behavior is expressed in terms of a limited number of deformation
shapes (“modes” in general) with associated amplitudes. As such, these reduced models al-
low to obtain a compact description of the component’s structural dynamics while main-
taining the level of detail of the original FE model. When the models are reduced for the
purpose of subsequent assembly to neighboring substructure models, the process is referred
to as component model reduction.

Hence, the starting point for the derivation of component reduction methods is the set of
undamped, linear equations of motion of some component s:

M(s)q̈(s)(t) + K(s)q(s)(t) = f (s)(t) + g(s)(t) (2.1)

Here M is the component’s mass matrix, K its stiffness matrix, q the vector of degrees of
freedom (DoF), f the external excitation vector and g the excitation felt from neighboring
substructures. Equation (2.1) expresses the component’s dynamic equilibrium, by stating
that the sum of inertia and elastic forces equals the sum of the applied forces and reaction
forces from adjacent substructures. In general, the DoF vector can be split into some set of
displacement DoF uu and a set of boundary (or interface) DoF qb:

q = [ uu
qb
] (2.2)

Here the explicit time dependence and component identifier s are omitted for clarity; in the
remainder of this chapter all equations are on a substructure basis, unless otherwise noted.
Following this partitioning of the DoF vector, it can be realized that, by definition, the reac-
tion excitation in g is only non-zero at the boundary DoF:

g = [ 0
gb
] (2.3)

As will be further explained in the coming sections, different choices exist for both uu and
qb depending on the reduction method:

• In a fixed interface method, uu is the set of internal displacement DoF and qb are the
boundary displacement DoF. In that case gb contains boundary connection forces.

• In a free interface method, uu is the complete set of substructure displacement DoF
and qb are the boundary force DoF. In this case gb contains boundary connection
displacements.

Next, a reduction basis is computed for the component such that the vector uu containing nu
physical DoF is replaced by a reduced set of generalized DoF. The interface DoF are generally
retained for the sake of assembly with neighboring (reduced) component models. A reduc-
tion basis usually consists of two types of “ingredients”: vibration modes to account for the
component’s dynamics and static modes to describe the interaction with neighboring sub-
structures. These ingredients can be derived, for the general case, by splitting the response
into a static and a dynamic part:

uu = uu,stat + uu,dyn (2.4)
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Firstly, the static response is obtained by setting the accelerations to zero in the equation of
motion in eq. (2.1). Using the DoF partitioning of eq. (2.2) one obtains:

[ Kuu Kub
Kbu Kbb

] [ uu
qb
] = [ f u

f b
] (2.5)

Assuming no external excitation at the DoF in uu (i.e. f u = 0 ), the static response is found
in terms of the boundary DoF:

uu,stat = −K−1
uuKubqb = Ψqb (2.6)

Here Ψ are the static modes, which describe the static deformation of the DoF in uu as a result
of displacement or force (depending on the reduction method) excitation at the boundary
DoF. Note that instead of static modes one can also use quasi-static modes, obtained from
solving the same equations for a dynamic stiffness matrix obtained by shifting around a cen-
tral frequency. See for instance [124, 187].

Secondly, the dynamic response is approximated by a set of m vibration modes using modal
superposition:

uu,dyn ≈ m∑
j=1

ϕ jη j = Φη (2.7)

The actual reduction is achieved by taking not all nu vibration modes into account but by
truncating the response. Usually the lowest m modes are used as these capture most of the
structure’s mass and stiffness; for effective reduction it should hold that m ≪ nu. The vibra-
tion modes are in general obtained from solving the eigenvalue problem for the DoF in u:

(Kuu − ω2
j Muu)ϕ j = 0 (2.8)

Hence the approximation for uu becomes:

uu ≈ Ψqb +Φη (2.9)

Retaining the interface DoF and writing in matrix/vector notation leads to the following
general reduction basis:

q ≈ Rq̃ → [ uu
qb
] ≈ [ Φ Ψ

0 I ] [ η
qb
] (2.10)

The DoF vector q̃ is often referred to as the set of generalized DoF. The above transformation
can be inserted in the component’s equations of motion, giving:

MR ¨̃q + KRq̃ = f + g + r (2.11)

In this equation r is a residual force introduced due to the fact that the approximation given
in the reduced basis cannot usually represent the exact solution. The reduced equilibrium
equations are then obtained by imposing that the residual force must be zero in the reduction
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space, namely, RT r = 0 . In mathematics this is known as Galerkin2 projection, but in me-
chanics this often referred to as a Rayleigh-Ritz procedure. After projection by the reduction
basis one thus finds the reduced equations of motion of the component as:

M̃ ¨̃q + K̃ q̃ = f̃ + g̃ , (2.12)

with:

M̃ = RT MR
K̃ = RT KR
f̃ = RT f
g̃ = RT g

Note that due to the reduction of the number of degrees of freedom to deform in, the reduced
component model will be stiffer than the full model and consequently has higher eigenfre-
quencies. This effect is similar to the stiffening caused by the discretization of the underlying
continuous equations to a discrete finite element model. After performing some analysis on
the reduced model, the solution for the original DoF can be recovered by expansion of the
generalized DoF using the reduction matrix in eq. (2.10).

In structural dynamics many component model reduction methods exist; they differ only in
the “ingredients” that constitute the reduction basis R. The most commonly used ingredients
will be treated in the next two sections.

2.3 Reduction Basis Ingredients – Static Modes

As explained above, static modes are an essential part of a component reduction basis. Not
only do they make sure that response of the reduced model is statically correct, but more
importantly they allow the compatibility condition to be satisfied after assembly (see chapter
3). In the next three subsections three types of commonly used static modes are discussed.

2.3.1 Constraint Modes

Static constraint modes are used in fixed interface reduction methods (see section 2.5) and
can be derived by partitioning a component’s displacement DoF into internal i and boundary
b DoF. The general DoF vector of eq. (2.2) in this case becomes:

q = [ u i
ub
] (2.13)

Using the same procedure as in the previous section, the static constraint modes can be com-
puted by neglecting the inertia forces and condensing the remaining static on the boundary
DoF ub. This gives:

u i ,stat = −K−1
ii K ibub = Ψ cub (2.14)

2If a different basis is chosen for the projection than for the reduction this is known as a Petrov-Galerkin
method.
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The term −K−1
ii K ib is referred to as the static condensation matrix, whose columns contain

the static constraint modes. Using these modes, the original set of degrees of freedom u are
reduced to the set of boundary DoF ub, as:

[ u i
ub
] = [ Ψ c

I ]ub (2.15)

Physically, these modes represent the static deformation shape due to a unit displacement ap-
plied to one of the boundary DoF, while the remaining boundary DoF are constrained and
no forces are applied at the internal DoF. The constraint modes thus contain the substruc-
ture’s static response to applied interface displacements. An example of a static constraint
mode is illustrated in figure 2.2.

Finally, as was noted in the previous section for the general case, the constraint modes can
also be computed at a central frequency ωs, giving rise to a set of quasi-static constraint
modes [124]. These are computed from the dynamic stiffness matrix, i.e.:

−ω2
s Mu + Ku = Z(ωs)u = f (ωs) (2.16)

This leads to the following shifted constraint modes:

û i ,stat = −Z−1
ii Z ibub = Ψ̂ cub (2.17)

In this case the internal inertia forces are no longer neglected but taken into account at the
frequency ωs.

Legend
Boundary node
Internal node
Interface displacement
Interface force

Constrained nodes
Temporary link

Constraint mode Attachment mode

Equilibration force

Figure 2.2: Illustration of the types of static modes.

2.3.2 Attachment Modes

A different type of static mode is the so-called attachment mode. These modes find their
origin in experimental CMS since, in contrast to the static constraint modes, they can be
obtained relatively easily from experiments (see e.g. [132, 59]). In numerical CMS however,
these modes are barely used due to the more advantageous properties of the residual attach-
ment modes introduced in the next subsection. Still, it is explained in this section how these
modes should be calculated, as they are a prerequisite for the computation of the residual
attachment modes.

The (residual) attachment modes are normally used in free interface reduction methods (see
section 2.5) in which the displacement DoF are not partitioned, but the complete displace-
ment field is approximated. In order to allow assembly to neighboring components, interface
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force DoF are included (see chapter 3). This gives the following DoF vector:

q = [ u
gb
] , (2.18)

with gb the interface connection forces from neighboring components. The static problem
now writes:

[ K −AT

−A 0
] [ u

gb
] = [ f

0
] (2.19)

Here A is a local Boolean matrix selecting the interface DoF of the substructure. This Boolean
matrix has size nb × nu, with nb the number of boundary DoF for the component. Note that
the second equation seems redundant, but is added for symmetry and will be used to enforce
compatibility during assembly. The latter is explained in the next chapter 3. Again assuming
no external excitation ( f = 0 ) the static response is simply found as:

ustat = K+AT gb = Ψa gb (2.20)

Here Ψa are the attachment modes while K+ is the generalized (or pseudo) inverse of the
stiffness matrix, which is in fact a flexibility matrix that will be subsequently denoted by G.
Hence, the attachment modes physically correspond to the static flexible response to unit
interface forces applied at the interface DoF. If the substructure is constrained such that no
rigid body modes exist then G = K+ = K−1 and computation of the attachment modes is
very straightforward. However, in case the structure is free floating their computation is
considerably more complex and a number of additional steps must be taken, namely:

1. Obtain the rigid body modes Φr, this is treated in detail in section 2.4.2.

2. Compute a generalized inverse of K . This generalized inverse is not unique. One way
to obtain a generalized inverse is to constrain the system at some DoF uc, referred to
as isostatic constraints or temporary links, while leaving the remaining uu free:

[ K cc K cu
Kuc Kuu

] [ 0
u f
] = [ f c

AT
u
] (2.21)

In [206] an algorithm is outlined for finding the optimal isostatic constraints, in the
sense that they result in minimal constraint forces f c. This is important in order to
get the best possible estimate of the component’s static deformation due to unit inter-
face forces. With the isostatic constraints applied the remaining stiffness matrix is just
rendered positive definite, allowing to compute a generalized inverse:

K+ = [ 0 0
0 K−1

uu
] = [ 0 0

0 Guu
] = Gc (2.22)

The matrix Gc is called the constrained flexibility matrix.

3. Determine self-equilibrated “force” vectors in AT
eq. In the presence of rigid body modes

there is no solution to eq. (2.20), unless the applied forces are self-equilibrating. If
this would not be the case, the structure would undergo infinite accelerations, since
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the mass is not taken into account, and undetermined deformations. To obtain self-
equilibrated interface forces one can orthogonalize them with respect to the compo-
nent’s rigid body modes Φr. This is achieved through projection as follows:

AT
eq = (I −MΦrΦT

r )AT = PAT , (2.23)

where mass normalized rigid body modes are assumed. The projection matrix P is
termed the inertia-relief projection matrix; for a detailed derivation see [36]. Now the
attachment modes are found as:

Ψ̃a = Gc AT
eq (2.24)

An illustration of the attachment modes and a self-equilibrated interface force is given
in figure 2.2.

4. Finally, the attachment modes Ψ̃a need to be mass-orthogonalized with respect to the
rigid body modes. This is needed to ensure that the attachment modes do not contain
any rigid body contribution themselves and only describe the static deformation of the
structure. In order to achieve this, they are pre-multiplied by the projection matrix P:

Ψa = PT Ψ̃a = PTGcPAT = G f AT (2.25)

Here the matrix G f is referred to as the elastic flexibility matrix, which can be shown
to have the following properties:

GT
f = G f

GT
f KG f = G f

ΦT
r MG f = 0 (2.26)

Hence, the attachment modes are in fact the columns of the elastic flexibility matrix
associated to the boundary DoF.

Note that the attachment modes can also be computed at certain frequency of interest ωs
to obtain the quasi-static attachment modes, as proposed in [188]. Similar to the constraint
modes, these are computed from the dynamic stiffness matrix, as:

ûstat = (K − ω2
s M)−1 AT gb = Z−1AT gb = Ψ̂a gb (2.27)

The so obtained modes represent the structure’s deformation resulting from harmonic forces
applied at the boundary DoF with frequency ωs. In this case the presence of rigid body modes
does not require any special computational procedure, since the dynamic stiffness matrix is
positive definite for any ωs > 0.

2.3.3 Residual Attachment Modes

The attachment modes derived in the previous section were historically derived for use in
experimental CMS analysis. However, when used in a numerical setting in combination with
free interface vibration modes Φ f (see section 2.4.1), the attachment modes can be further
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processed to obtain the residual attachment modes which have better computational prop-
erties. This can be understood from the spectral expansion of the flexibility matrix is [74]:

G f = n∑
j=nr+1

ϕ jϕ
T
j

ω2
j

(2.28)

Here nr is the number of rigid body modes. This spectral expansion shows that the flexibility
associated to the vibration modes is implicitly accounted for twice. In order to simplify the
expressions of the reduced system and, more importantly, obtain an M- and K-orthogonal
basis, one could therefore subtract the flexibility that is already accounted for by the m free
vibration modes in the reduction basis. As a result, the residual flexibility matrix is obtained:

Gr = G f − m∑
j=nr+1

ϕ jϕ
T
j

ω2
j

(2.29)

This matrix contains the flexibility contained in the d = n −m discarded modes. Similar to
the attachment modes, the residual attachment modes are now simply found by picking the
columns associated to the boundary DoF. This gives:

Ψ r = Gr AT (2.30)

Due to their construction the residual attachment modes are not only mass and stiffness
orthogonal with respect to the rigid body modes, like the “normal” attachment modes, but
also with respect to the retained free interface vibration modes.

2.4 Reduction Basis Ingredients – Vibration Modes

As was explained in section 2.2, the vibration modes are included in the reduction basis to
account for the dynamic behavior of the component. By including only a limited number
of these modes (i.e. applying modal truncation), the component model is reduced. Similar
to the static modes, different types of vibration modes exist. Next the three most commonly
used types are addressed.

2.4.1 Free Interface Modes

The free interface modes are the most natural type of vibration mode. They are the defor-
mation shapes of the component when it is allowed to vibrate freely. These modes can be
computed from the component’s equation of motion by including all displacement DoF and
assuming no external excitation:

Mü + Ku = 0 (2.31)

A solution to this equation can be sought by separating the response of the internal DoF in
a space-dependent and time-dependent part, by assuming:

u = xe iωt (2.32)
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Substitution in equation (2.31) then gives:

(K − ω2M) xe iωt = 0 (2.33)

Hence, in order to obtain a non-trivial solution the following eigenvalue problem needs to
be solved:

(K − ω2
f , j M)ϕ f , j = 0 (2.34)

Here ω2
f , j is the jth free interface eigenfrequency and ϕ f , j its associated eigenmode. A set of

these free interface vibration modes is denoted by Φ f ; an illustration of a free interface vi-
bration mode is given in figure 2.3. Note that in practice the eigenvalue problem in eq. (2.34)
can be very large and is hence computationally expensive to solve; algorithms for eigenvalue
problems are treated in section 6.3.1. In this work it is assumed that the free interface vibra-
tion modes are mass normalized (i.e. unity modal mass).

Since it is not required to apply any boundary conditions, free interface vibration modes
can also be obtained quite easily from measurements. These can either be used directly in
an experimental CMS analysis , or could be used to validated the modes obtained from a
numerical model. A method that combines these approaches is the System Equivalent Re-
duction Expansion Process (SEREP) [144], in which the measured mode shapes are expanded
to the full space of the numerical model through a least squares fit.

2.4.2 Rigid Body Modes

A special type of vibration modes are rigid body modes. In these modes the substructure
shows displacements without deformations, that is, it is undergoing rigid body motion. Rigid
body modes (RBM) exist if the substructure is (partially) unconstrained. In a substructuring
analysis this is often the case: even when the total structure is constrained this is probably
not the case for many of its components. In other words, the components’ rigid body modes
only vanish after assembly.

Given the definition of rigid body modes as displacement shapes that do not cause any de-
formation, their basic equation reads:

KΦr = 0 (2.35)

In addition to the “global” rigid body modes, six for an unconstrained three dimensional
model, a component could also contain mechanisms (e.g. hinges) which allow for parts of
the substructure to displace without introducing any deformations. Such displacements are
also rigid body modes and satisfy eq. (2.35).

The actual computation of the rigid body modes can be achieved in a number of ways. They
can be obtained by solving eq. (2.35) (i.e. computing the nullspace of the stiffness matrix) or
equivalently as the zero frequency modes obtained from the eigenvalue analysis performed to
obtain the free interface mode shapes (i.e. from (2.34)). Both approaches are however com-
putationally expensive and, provided the component is free of mechanisms, a much cheaper
alternative exists by obtaining the rigid body modes geometrically. This will be explained
next.
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In general, the rigid body modes can be represented on a per node basis as:

Φr = [ΦT
r|1 . . . ΦT

r| j . . . ΦT
r|nn]T (2.36)

Here Φr| j is the trace of the rigid body modes on the DoF of node j, with j = 1 . . . nn and
nn the number of nodes in the component model. For a finite element mesh consisting of
elements with six DoF per node, Φr| j is obtained from the geometry of the structural model
as follows:

Φgeo
r| j = [Φgeo

r(x , j) Φgeo
r(θ , j)] = [ I33 Rθθ( j)

033 I33
] (2.37)

Here the subscript x is used to indicate the translational rigid body modes and the subscript
θ for the rotational ones, while the superscript geo denotes the fact that the rotational rigid
body modes are obtained geometrically. Hence, it is assumed that the nodal DoF are ordered
according to translational DoF and rotational DoF:

u( j) = [uT(x , j) uT(θ , j)]T = [x( j) y( j) z( j) θx( j) θ y( j) θz( j)]T (2.38)

Using the FE model geometry the term Rθθ( j), describing the displacements due to rotational
rigid body motions, can be computed as:

Rθθ( j) = [e1 × d j e2 × d j e3 × d j] =
⎡⎢⎢⎢⎢⎢⎣

0 dz( j) −dy( j)−dz( j) 0 dx( j)
dy( j) −dx( j) 0

⎤⎥⎥⎥⎥⎥⎦ (2.39)

In this expression the vector d j is the position vector from some reference node in the FE
model, which can be chosen arbitrarily, to the current node j. For a finite element model built
from elements with only translational DoF (e.g. using tetrahedron elements), the bottom
three lines in eq. (4.3) can be discarded and Φgeo

r( j) becomes a matrix of size 3 × 6 instead of
6 × 6.

Note that by construction the above obtained translational rigid body modes are mass or-
thogonal, i.e.:

ΦgeoT

r(x)MΦgeo
r(x) = diag(µx , µy , µz) (2.40)

Here µ⋆ are the modal masses of the translational rigid body modes, which in fact correspond
to the global masses of the structure and hence serve as a simple check of the model.

However, the above orthogonality does not hold for the rotational rigid body modes. Since
the reference node is chosen randomly, it is likely not at the center of mass and hence the
rotational displacement vectors Φgeo

r(θ) are a combination of a translational and rotational
rigid body mode. In order to orthogonalize the rigid body modes, the translational modes
have to be projected out of the space spanned by the rotational rigid body vectors.3 This
projection is similar to the equilibration process in section 2.3.2 and is achieved by:

Φ̃geo
r(θ) = (I −Φgeo

r(x) (ΦgeoT

r(x)MΦgeo
r(x))−1

ΦgeoT

r(x)M)Φgeo
r(θ) = Pr(x)Φgeo

r(θ) (2.41)

3Alternatively, one could choose to solve the eigenproblem on the subspace of the rigid body modes in
order to orthogonalize the rigid body modes with respect to the mass matrix.
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After this projection the rigid body modes are mass and (by definition) stiffness orthogonal.
Finally, these modes need to be mass normalized to obtain the orthonormalized rigid body
modes for use in component reduction bases:

Φr = [Φgeo
r(x) Φ̃geo

r(θ)] µ−1 with µ = diag(µx , µy , µz , µθx , µθy , µθz) (2.42)

Since in this approach the RBM are identified with respect to a chosen reference node, rigid
motions due to mechanisms cannot be detected. One therefore has to ensure the structure
has no unconstrained mechanisms, otherwise the set of rigid body modes obtained from this
method will not be complete. An illustration of a rigid body mode is given in figure 2.3.

2.4.3 Fixed Interface Modes

The fixed interface modes are the vibration shapes of the component when it is constrained
at the interface DoF. Similar to the constraint modes, the first step in their computation is
the partitioning of the displacement DoF vector into internal and boundary DoF. This gives
the following partitioned equations of motion:

[ M ii M ib
Mbi Mbb

] [ ü i
üb
] + [ K ii K ib

Kbi Kbb
] [ u i

ub
] = [ f i

f b
] (2.43)

Next, the boundary DoF are constrained and it is assumed there is no external excitation on
the internal DoF (i.e. f i = 0 ). The equation of motion is thus reduced to only the internal
DoF:

M iiü i + K iiu i = 0 (2.44)

Analogous to the free vibration modes a solution can be assumed that separates the time and
space dependence of u i , giving rise to internal the eigenvalue problem:

(K ii − ω2
i , j M ii)ϕi , j = 0 (2.45)

Here ω2
i , j is the jth fixed interface eigenfrequency and ϕi , j its associated mode shape; a set of

fixed interface vibration modes is represented by Φi . When a free floating component model
has six or more interface DoF, which is generally the case, the fixed interface modes do not
contain any rigid body displacements. Figure 2.3 gives an illustration of a fixed interface
vibration mode. Note that it is assumed that the fixed interface vibration modes are mass
normalized (i.e. unity modal mass).

Note that the fixed interface vibration modes, like the static constraint modes, are hard to
obtain experimentally. This is due to the fact that the interface DoF need to be constrained,
a condition that is very difficult to realize in practice.

2.5 Classic Component Reduction Methods

In the previous two sections the most common types of modes used in component reduction
methods have been outlined. This section therefore addresses the actual reduction methods
that are obtained by mixing the ingredients provided in the previous sections.
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Rigid body mode Fixed interface mode Free interface mode

Figure 2.3: Illustration of the types of vibration modes.

2.5.1 Guyan Method

The oldest of the component reduction methods discussed in this section is the method
proposed by Guyan. In his classic half page long paper [85], Guyan proposed in 1965 an idea
that is still actively used in structural dynamics today. Note that the method is sometimes
also referred to as the Guyan-Irons method, after Irons who proposed the same idea some
five years later [101], or as static condensation (see section 2.3).

Starting from the component equations of motion in eq. (2.1), the set of displacement DoF
are partitioned into boundary DoF ub and internal DoF u i . The Guyan method then con-
denses the internal DoF to the boundary DoF using the static constraint modes derived in
section 2.3.1:

u i = Ψ cub , (2.46)

while the boundary DoF are retained. This gives the Guyan reduction basis:

[ u i
ub
] ≈ [ Ψ c

I ]ub = RG qG (2.47)

Hence, the reduction basis consists of only the static constraint modes and the generalized
DoF are simply the boundary DoF. Applying this reduction basis to the equations of motion
as in eq. (2.12) results in the reduced system of equations:

M̃üb + K̃ub = f̃ + gb (2.48)

Where the reduced matrices are found as:

K̃ = Kbb − Kbi K−1
ii K ib

M̃ = Mbb −Mbi K−1
ii K ib − Kbi K−1

ii M ib + Kbi K−1
ii M ii K−1

ii K ib

f̃ = f b − Kbi K−1
ii f i

(2.49)

In the derivation of the constraint modes it is assumed that there is no excitation at the
internal DoF and the internal inertia forces can be neglected (see section 2.3.1). Whereas the
former assumption is only rarely a limitation for the usability of the Guyan method (methods
exist to overcome this, see section 2.7), the latter is all the more restrictive. Due to the fact
that the internal inertia forces are statically condensed to the interface they only contribute
in a quasi-static manner, meaning that the dynamic behavior is strongly approximated. The
accuracy of this approximation is only reasonable as long as the highest eigenfrequency one
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wants to compute for the entire structure is much lower than the lowest eigenfrequency of
the substructure clamped at its interface.

Note that the Guyan method can also be applied around a central frequency by using the
quasi-static constraint modes for reduction (see section 2.3.1). In this accurate results are
found around this shifting frequency.

Since the interface DoF of the substructure model are retained, assembly to other (reduced)
models is very straightforward (see chapter 3). Due to this property, such reduced models
are referred to as superelements.

Finally it is noted that in case the substructure has rigid body modes, these are retained in
the reduced model. This can be easily shown as follows. Recall the definition of the rigid
body modes from equation (2.35), which can be partitioned as:

[ K ii K ib
Kbi Kbb

] [ Φr|i
Φr|b

] = [ 0
0
] (2.50)

Since only the boundary DoF of the component are retained after reduction, a rigid body
displacement imposed on these DoF should not generate any elastic forces. So the following
condition should hold:

K̃Φr|b = (Kbb − Kbi K−1
ii K ib)Φr|b = 0 (2.51)

From the second equation in the definition of the rigid body modes in (2.50) it follows that:

K ibΦr|b = −K ii Φr|i (2.52)

Such that after substitution one finds:

K̃Φr|b = KbbΦr|b + Kbi K−1
ii K ii Φr|i = 0 (2.53)

Which is indeed in accordance with the first equation in (2.50). Hence, even though the
rigid body modes are not explicitly contained in the static constraint modes, these modes are
consistent with the RBM such that the reduced model can still predict rigid motions. This
is an important notion when the static modes are calculated with only a limited accuracy, as
will be discussed in section 6.2.

2.5.2 Craig-Bampton Method

To overcome the main drawback of the Guyan method, the classic Craig-Bampton method
proposes an expansion of this method by including information on the internal dynamics
in the reduced component model [37]. This is achieved by expanding the reduction basis
with fixed interface vibration modes, thereby obtaining a more complete and versatile basis
to describe the component’s dynamic behavior.

Again starting from the equations of motion partitioned into internal and boundary dis-
placement DoF, the internal DoF are approximated as follows:

u i ≈ Ψ cub +Φi ηi (2.54)
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Here Φi is a reduced set of m ≪ ni fixed interface vibration modes, obtained as outlined
in section 2.4.3. Like in the Guyan method the boundary DoF are retained, leading to the
following Craig-Bampton reduction basis:

[ u i
ub
] ≈ [ Φi Ψ c

0 I ] [ ηi
ub
] = RCBqCB (2.55)

Application of the reduction basis in the usual fashion gives the reduced equations of motion:

[ I Mϕb
Mbϕ M̃bb

] [ η̈i
üb
] + [ Ω2

i 0
0 K̃bb

] [ ηi
ub
] = [ f̃ i

f̃ b
] + [ 0

gb
] (2.56)

With:

K̃bb = Kbb − Kbi K−1
ii K ib

M̃bb = Mbb −Mbi K−1
ii K ib − Kbi K−1

ii M ib + Kbi K−1
ii M ii K−1

ii K ib

Mϕb = MT
bϕ = ΦT

i (M ib −M ii K−1
ii K ib)

f̃ i = ΦT
i f i

f̃ b = f b − Kbi K−1
ii f i

(2.57)

Here Ω2
i is a diagonal matrix containing the fixed interface vibration frequencies ω2

i , j.

One of the strengths of the Craig-Bampton method is the straightforward calculation of its
reduction basis. Secondly, like in the Guyan method, the physical interface DoF ub are re-
tained in the reduced model, which facilitates easy assembly of the reduced substructure as
a superelement in common FE codes.

A major drawback of the Craig-Bampton method is that if the substructure interface is
changed, for instance when connecting more components, the entire reduction basis needs
to be recomputed. Another issue is that, due to the type of ingredients used in the basis, the
Craig-Bampton reduction basis can in practice not be obtained experimentally.

2.5.3 Rubin and MacNeal Methods

After Craig and Bampton published their fixed interface CMS method in 1968, researchers
were soon focussing on using free interface vibration modes in the reduction basis. This
seems natural, as these are the “true” modes of the system and can be experimentally deter-
mined by testing the component in free-free conditions. These modes were first used in a
CMS method by MacNeal in 1971 [129] and later by Rubin in 1975 [176]. These methods, and
their relations with other component reduction methods proposed at that time, were further
analyzed by Craig and Chang [38, 39].4

To derive the Rubin and MacNeal methods, recall the unreduced component equations:

Mü + Ku = f + g
4In the literature one sometimes encounters the “Craig-Chang” method, which is in fact an alternative, more

systematic derivation of the Rubin method. In their paper [39], Craig and Chang show that the Rubin method
indeed is a Rayleigh-Ritz procedure, while Rubin originally claimed this not to be the case. Both derivations
lead to the same reduced system as obtained in section 2.5.3.2.
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Next, the original set of substructure displacement DoF is written as:

u = ustat + n∑
j=nr+1

ϕ f , jη f , j (2.58)

where the total response of the substructure is represented in terms of the free vibration
modes of the substructure and a static solution. Again nr is the number of rigid body modes
of the substructure. The static response can be expressed as:

ustat = Ψ r gb +Φrηr (2.59)

In this expression the first term describes the static flexible response to the interface forces,
using the residual attachment modes described in section 2.3.3. The second term gives the
rigid body mode contribution (see section 2.4.2 for their computation) with ηr the RBM
amplitudes. The reduction is now obtained by approximating the transformation in eq. (2.58)
by taking only the first m≪ n free interface vibration modes:5

u ≈ Ψ r gb +Φrηr +Φ f η f (2.60)

This transformation can now be used to reduce the component equations of motion. Using
the orthogonality properties of the residual attachment modes (see section 2.3.3) the reduced
equations of motion become:

⎡⎢⎢⎢⎢⎢⎣
I 0 0
0 I 0
0 0 Mr,bb

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

η̈r
η̈ f
g̈b

⎤⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎣
0 0 0
0 Ω2

f 0
0 0 Gr,bb

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

ηr
η f
gb

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

ΦT
r

ΦT
f

ΨT
r

⎤⎥⎥⎥⎥⎥⎦ f +
⎡⎢⎢⎢⎢⎢⎣

ΦT
r

ΦT
f

Ψ r

⎤⎥⎥⎥⎥⎥⎦ g (2.61)

with:

Gr,bb = ΨT
r KΨ r = AGr AT

Mr,bb = ΨT
r MΨ r

(2.62)

Here Gr,bb is the residual flexibility on the interface, while Mr,bb is the interface inertia asso-
ciated to the residual flexibility modes. Hence this term will be referred to as the “residual
mass”.

The reduced equations in eq. (2.61) give rise to a so-called “dual” system (see chapter 3),
where the generalized DoF vector contains the modal amplitudes η and the interface force
DoF gb. In order to facilitate assembly of the reduced model in existing finite element soft-
ware as a superelement, both MacNeal and Rubin chose to apply a second transformation to
the equations of motion to obtain interface displacement DoF instead of force DoF. Such a
transformation is found by pre-multiplying eq. (2.60) by the Boolean matrix A which selects
the component’s interface DoF (see section 2.3.2):

ub = Au = A(Ψ r gb +Φrηr +Φ f η f ) = Gr,bb gb +Φr|bηr +Φ f |bη f (2.63)

5Note that the residual attachment modes can only be calculated after the number of modes m has been
chosen. In practice one therefore first computes the attachment modes and subsequently subtracts the contri-
bution of the free vibration modes once these are available.
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Here the subscript |b indicates the trace on the boundary DoF. From this equation the inter-
face force DoF can solved as:

gb = K r,bb (ub −Φr|bηr −Φ f |bη f ) with K r,bb = G−1
r,bb (2.64)

It is observed that K r,bb is in fact the boundary residual stiffness associated to all discarded
modes. The transformation from interface force DoF to displacement DoF is thus found as:

⎡⎢⎢⎢⎢⎢⎣
ηr
η f
gb

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

I 0 0
0 I 0−K r,bbΦr|b −K r,bbΦ f |b K r,bb

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

ηr
η f
ub

⎤⎥⎥⎥⎥⎥⎦ (2.65)

Up to this point the MacNeal and Rubin methods are identical. However, hereafter the two
methods differ in the way the reduced mass matrix is treated. These differences will be high-
lighted next.

2.5.3.1 MacNeal’s method

In MacNeal’s method, the residual mass term Mr,bb in eq. (2.61) is neglected. This can be
achieved in two ways. In a first approach, one simply sets Mr,bb = 0 in eq. (2.61) and pre- and
post-multiplies the resulting equation by the transformation in (2.65). In a second approach,
the stiffness matrix is also obtained from transformation of the stiffness matrix in eq. (2.65),
but a different reduction basis, namely employing only the rigid body and vibration modes,
is used to reduce the mass matrix.

Either way, the following reduced equations of motion are obtained:

⎡⎢⎢⎢⎢⎢⎣
I 0 0
0 I 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

η̈r
η̈ f
üb

⎤⎥⎥⎥⎥⎥⎦ + . . .

⎡⎢⎢⎢⎢⎢⎣
ΦT

r K̄ rΦr ΦT
r K̄ rΦ f −ΦT

r|bK r,bb
ΦT

f K̄ rΦr Ω2
f +ΦT

f K̄ rΦ f −ΦT
f |bK r,bb−K r,bbΦr|b −K r,bbΦ f |b K r,bb

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

ηr
η f
ub

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

f̃ r
f̃ f
f̃ b

⎤⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎣

0
0
gb

⎤⎥⎥⎥⎥⎥⎦
(2.66)

Here Ω2
f is again a diagonal matrix containing the free eigenfrequencies, and:

K̄ r = AT K r,bbA
f̃ r = (ΦT

r −ΦT
r|bK r,bbΨT

r ) f
f̃ f = (ΦT

f −ΦT
f |bK r,bbΨT

r ) f
f̃ b = K r,bbΨT

r f

(2.67)

Although the component is reduced using free vibration modes and residual flexibility modes,
the reduction process still leads to a superelement since the physical boundary DoF ub are
reintroduced in the generalized DoF.

However, the equations of motion obtained by MacNeal’s method are in fact inconsistent.
This is due to the fact that the mass and stiffness matrices are not reduced with the same basis
[36, 73]: whereas the stiffness matrix is reduced using both the free vibration and residual
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attachment modes, the mass matrix is only reduced using the free vibration modes. As a
result, there is no inertia coupling between the modal DoF and the boundary DoF. Hence, the
MacNeal method is not a true Rayleigh-Ritz method in the sense that the reduced equations
are not obtained from a consistent reduction and projection.

2.5.3.2 Rubin’s Method

In Rubin’s method the equations of motion are reduced in a consistent way. That is, equation
(2.61), including the term Mr,bb, is transformed using (2.65) to find the reduced equations of
motion:
⎡⎢⎢⎢⎢⎢⎣

I +ΦT
r M̄rΦr ΦT

r M̄rΦ f −ΦT
r|b M̄r

ΦT
f M̄rΦr I +ΦT

f M̄rΦ f −ΦT
f |b M̄r−M̄rΦr|b −M̄rΦ f |b Mr,bb

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

η̈r
η̈ f
üb

⎤⎥⎥⎥⎥⎥⎦ + . . .

⎡⎢⎢⎢⎢⎢⎣
ΦT

r K̄ rΦr ΦT
r K̄ rΦ f −ΦT

r|bK r,bb
ΦT

f K̄ rΦr Ω2
f +ΦT

f K̄ rΦ f −ΦT
f |bK r,bb−K r,bbΦr|b −K r,bbΦ f |b K r,bb

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

ηr
η f
ub

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

f̃ r
f̃ f
f̃ b

⎤⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎣

0
0
gb

⎤⎥⎥⎥⎥⎥⎦
(2.68)

where the reduced force vectors are stated in eq. (2.67) and the term M̃r is defined as:

M̄r = AT K r,bb Mr,bbK r,bbA (2.69)

Clearly, the reduced stiffness matrices of the MacNeal and Rubin methods are identical but
the mass matrices are different. Indeed, the Rubin reduced mass matrix is a consistent, fully
coupled matrix.

Similar to MacNeal’s method, the reduced model obtained from Rubin’s method can be sim-
ply assembled to other component models as a superelement. Note that the approximation in
eq. (2.60) and transformation (2.65) can be combined to obtain the Rubin reduction matrix:

[ u i
ub
] ≈ [ Φr|i −Ψ r|i K r,bbΦr|b Φ f |i −Ψ r|i K r,bbΦ f |b Ψ r|i K r,bb

0 0 I ]
⎡⎢⎢⎢⎢⎢⎣

ηr
η f
ub

⎤⎥⎥⎥⎥⎥⎦ = RRqR (2.70)

This reduction matrix can be directly applied to the component equations of motion to obtain
the same result as in eq. (2.68). This shows that, in contrast to MacNeal’s method, the Rubin
method is a true Rayleigh-Ritz method.

An advantage of both the Rubin and MacNeal methods over the Craig-Bampton method is
that the reduction basis only partially changes if the interface DoF set is altered. The free
interface modes and associated parts of the reduced matrices remain unchanged. Only the
residual attachment modes have to be recomputed, which amounts to reselecting columns
from the residual flexibility matrix, and the associated parts of the reduced matrices have to
be updated. In contrast to the Craig-Bampton method, this involves very little computational
effort. Furthermore, experimental results can be used to validate the reduced model, since
experimentally determined mode shapes are usually free interface modes.

A weakness of these methods is the rather cumbersome expression of their reduced matrices
which are no longer sparse. Such full reduced matrices increase the computational cost of
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analyzing the reduced models. Although these are usually compact, they can still be relatively
large if the component has many interface DoF. This is a general problem in component
model reduction, see chapter 4, but becomes worse when the reduced matrices are full. Note
that this is less of an issue for the MacNeal method with its diagonal mass matrix, but that
comes at the price of decreased accuracy with respect to Rubin’s method.

2.5.4 Dual Craig-Bampton Method

2.5.4.1 Original Formulation

A more recent component model reduction method is the Dual Craig-Bampton method
[172], that is inspired by both the Craig-Bampton and the Rubin method. In fact, it uses the
same approximation for the component’s displacements as the latter (eq. (2.60)), namely:

u ≈ Ψ r gb +Φrηr +Φ f η f (2.71)

However, where the Rubin method transforms the interface forces back to interface displace-
ment DoF to enable easy assembly of reduced structures, the Dual Craig-Bampton method
explicitly keeps the interface forces as part of the generalized DoF. This means that no longer
a true superelement is obtained and a special assembly procedure must be employed, called
“dual” assembly (hence the name of the method). See section 3.4. To this end, the reduction
basis in eq. (2.71) can be written in matrix-vector form as:

[ u
gb
] ≈ [ Φr Φ f Ψ r

0 0 I ]
⎡⎢⎢⎢⎢⎢⎣

ηr
η f
gb

⎤⎥⎥⎥⎥⎥⎦ = RDCBqDCB (2.72)

In addition to the original substructure displacements u the interface forces gb are included
in the new set of DoF. The substructure’s equation of motion can thus be written as:

[ M 0
0 0

] [ ü
g̈b
] + [ K −AT

−A 0
] [ u

gb
] = [ f

0
] + [ 0−ub

] (2.73)

The second equation seems redundant, but is added for symmetry and is used to enforce
compatibility during assembly. By substituting and projecting these equations onto the re-
duction basis and using the properties of the residual flexibility matrix, the following reduced
equations of motion are found:

⎡⎢⎢⎢⎢⎢⎣
I 0 0
0 I 0
0 0 Mr,bb

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

η̈r
η̈ f
g̈b

⎤⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎣

0 0 −ΦT
r|b

0 Ω2
f −ΦT

f |b−Φr|b −Φ f |b −Gr,bb

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

ηr
η f
gb

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

ΦT
r f

ΦT
f f

ΨT
r f

⎤⎥⎥⎥⎥⎥⎦−
⎡⎢⎢⎢⎢⎢⎣

0
0
ub

⎤⎥⎥⎥⎥⎥⎦ (2.74)

Here the terms Mr,bb, Gr,bb and Φ|b are used as defined in the previous section. Assem-
bly of substructures reduced in this way involves “coupling” of the interface forces, thereby
resulting in a true dual system. This will be described in section 3.4.

The Dual Craig-Bampton (DCB) method shares many of the positive features of the Mac-
Neal/Rubin methods, namely easy adaptation of the reduction basis to changing interface
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DoF and the possibility to obtain or validate the reduction basis ingredients experimen-
tally. In addition, the DCB method gives rise to sparse reduced matrices like in the regular
Craig-Bampton, overcoming one of the drawbacks of the MacNeal/Rubin methods. On the
downside, the DCB method does not lead to a classic superelement and hence assembly is
less straightforward.

The main difference between the MacNeal/Rubin and DCB methods is that in the latter not
only the dynamic equilibrium is reduced, but also the interface compatibility condition is
approximated (i.e. the second line in equation (2.73)). This leads to a weakening of the
compatibility condition, which can be understood from the last line in eq. (2.74). Assuming
no external force, this reduced compatibility condition writes:

Φr|bηr +Φ f |bη f +Gr,bb gb = ub −Mr,bb g̈b → Au = ub + є (2.75)

Hence, the presence of the last term allows a small error on the compatibility equation. This
observation can be interpreted as follows. The last line in (2.74) can be seen as obtained from:

[ΨT
r I] [ Reduced dynamic equilibrium

Compatibility condition ]
Due to the reduction residual forces r arise in the substructure dynamic equilibrium. If
those forces would be statically applied to the substructure through the residual flexibility,
a residual displacement ur = Grr would result. The weak compatibility then states that the
compatibility error can be as big as the trace of displacements ur on the boundary, i.e. ur∣b =
Aur = ΨT

r r.

Since the incompatibility allows motions which are physically impossible (e.g. overlapping
of interface meshes), so-called spurious modes can be introduced in the frequency range of
interest if the reduction basis is too poor. Two ways exist to shift these spurious modes to
higher frequencies: enrich the reduction basis with more normal modes6 and/or enrich the
basis with higher order residual modes. The latter will be described in section 2.7.

Finally, note that if the last term in equation (2.75) is neglected (i.e. Mr,bb = 0 ), exact com-
patibility is required as in the MacNeal method. In this case, the DCB and MacNeal methods
are in fact equivalent. This can be easily shown by transforming the interface force DoF back
to displacement DoF using eq. (2.75) with Mr,bb = 0 :

gb = K r,bb (ub −Φr|bηr −Φ f |bη f ) (2.76)

Indeed, this is the same transformation of eq. (2.64) used by MacNeal/Rubin, and substitu-
tion in eq. (2.74) with Mr,bb = 0 directly gives MacNeal’s reduced equations of motion.

2.5.4.2 Alternative Formulation Using Attachment Modes

In its original formulation, the Dual Craig-Bampton method employs residual attachment
modes to describe the static response of the component to unit boundary forces. This results

6Note that if one would retain all the eigenmodes in the reduction basis, both Mr,bb and Gr,bb would vanish
and exact compatibility is satisfied.
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in the reduced matrices in eq. (2.74), where the mass matrix is (block) diagonal and the
coupling between the modal and interface force DoF occurs in the stiffness matrix. However,
one can also choose to use attachment modes in the basis which, as will be shown below, give
rise to reduced equations that are mainly coupled in the mass matrix. This is beneficial for
the Mixed Craig-Bampton method derived in section 2.6 and allows to further reduce the
number of DoF using interface reduction, as explained in section 4.5.
With attachment modes the alternative DCB reduction basis becomes:

[ u
gb
] ≈ [ Φr Φ f Ψa

0 0 I ]
⎡⎢⎢⎢⎢⎢⎣

ηr
η f
gb

⎤⎥⎥⎥⎥⎥⎦ = RDCBaqDCB (2.77)

Note that this alternative formulation does not alter the space spanned by the reduction basis;
the same space is just represented using slightly different vectors.
In the same way as for the normal DCB the reduced equations of motion are obtained by re-
ducing both the dynamic equilibrium and compatibility equations. Using the orthogonality
properties of the attachment modes and flexibility matrix, as discussed in section 2.3.2, this
yield the alternative DCB reduced system as:⎡⎢⎢⎢⎢⎢⎣

I 0 0
0 I Mϕψ
0 Mψϕ M f ,bb

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

η̈r
η̈ f
g̈b

⎤⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎣

0 0 −ΦT
r|b

0 Ω2
f 0−Φr|b 0 −G f ,bb

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

ηr
η f
gb

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

ΦT
r f

ΦT
f f

ΨT
a f

⎤⎥⎥⎥⎥⎥⎦−
⎡⎢⎢⎢⎢⎢⎣

0
0
ub

⎤⎥⎥⎥⎥⎥⎦ (2.78)

Where:
M f ,bb = ΨT

a MΨa = AG f MG f AT

Mϕψ = MT
ψϕ = ΦT

f MΨa

G f ,bb = AG f AT

(2.79)

The reduced equations are now mainly coupled in the mass matrix instead of the in the
stiffness matrix as in equation (2.74). In the stiffness matrix one still finds coupling terms
between the rigid body modes and boundary force DoF. This cannot be avoided since the
rigid motions must be considered as part of the static solution, as in eq. (2.59). In case no
rigid body modes exist, the reduced stiffness matrix is (block) diagonal.

2.5.5 Remarks, Variations and Other Methods

Regarding the component reduction methods treated in this section, a number of general
remarks can be made:

• Although theoretically the boundaries of the component models may be chosen arbi-
trarily, it is in practice more convenient to adopt the physical component boundaries.
The latter is the approach taken in this work.

• In a practical implementation of the reduction methods, it is not advisable to obtain
the reduced matrices through pre- and post-multiplication by the reduction basis. Due
to numerical round-off errors, non-zero off-diagonal terms will appear that should in
fact be zero, leading to ill-conditioned matrices and additional computational cost.
Instead, the reduced matrices should be directly computed from their detailed expres-
sions.
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• All reduction methods treated in this section are implemented in the Dynamic Sub-
structuring Toolbox (see appendix A). This is also true for the Mixed Craig-Bampton
method presented in the next section as well as the Modal Truncation Augmentation
technique treated in section 2.7.

Furthermore, in addition to the well-established methods described in the previous subsec-
tions, many variations have been proposed over the years. Some of the important contri-
butions are briefly outlined below. This overview and the references mentioned herein are
however by no means exhaustive.

• Many authors have proposed different modes to build a reduction basis that better
approximates the substructures’ dynamics:

– Already at the time when Hurty published the idea of substructuring, the branch
method [75] was proposed where the reduction modes are evaluated by taking
into account the influence of neighboring substructures.

– As indicated before, several authors have proposed to replace the static modes in
the reduction basis by quasi-static modes related to a dynamic stiffness matrix
obtained by shifting around a central frequency [124, 188, 187].

– Some authors have proposed to add masses to the interface when measuring or
computing the vibration modes in order to account for the inertia loading of the
neighboring substructures [107, 31]. A direct extension of these concepts is the
“transmission simulator” method [6]. In this method a fixture is used to condi-
tion the interfaces of experimentally obtained substructure models, in order to
improve the results of hybrid substructuring analyses.

– Instead of using vibration modes, which represent the general dynamics of the
components, one can also use the so-called Krylov vectors related to the interface
loading [43] which in fact arise from the concept of the load-dependent vectors
proposed by Wilson for model reduction [222].

– A way to include both true eigenmodes and Krylov vectors consists in adding
to the reduction basis so-called Modal Truncation Augmentation vectors. Such
vectors can be used to improve the response of the reduced component model to
loading at its internal DoF. These methods will discussed in section 2.7.

• Model reduction for non-linear systems is a research field that is gaining more and
more attention. For such systems the challenge is to find an a priori reduction basis
that properly captures all of the structure’s relevant non-linear behavior. Various ap-
proaches have been proposed over the years to do so. One approach is based on the
use of the proper orthogonal decomposition (POD) method, where a reduction basis
is obtained by extracting the dominant deformation shapes from representative non-
linear response data [112, 126, 84].7 Another approach is to use so-called non-linear
normal modes to reduce the non-linear model. These modes are a generalization of
the classic linear vibration modes and can be computed analytically/numerically but
can also be determined from experiments. See for instance [113, 151, 150, 5]. Other

7This method is also used in this work to create load dependent reduction vectors, see section 2.7 and
appendix D for details.
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approaches for non-linear model reduction include the use of so-called modal deriva-
tives also known as higher order modes [98, 182, 198, 136], or the empirical approach
proposed in the DEIM (Discrete Emperical Interpolation Method) technique [33, 92].

• A special situation is encountered when components are modeled that undergo large
motions, for instance the blades of a wind turbine. When formulating the equations of
motion for such systems non-linear coupling terms arise between the local deforma-
tions and global motions, even when the structural deformations remain small. Vari-
ous methods can be found in the literature to incorporate reduced component models
in such large motion formulations, e.g. [73, 186, 93]. Note that other approaches have
also been developed where instead of individual component reduction, model reduc-
tion is applied to the assembled multi-body system [25, 26, 89, 88]

The non-linear terms associated with these large motion formulations greatly increase
the computational cost of analyzing the reduced model. In the context of this PhD
project, a study has therefore been performed to identify which of the non-linear terms
may be simplified or linearized when reduced component modeling is to be used to
represent a wind turbine rotor (e.g. blades, hub, pitch system, etc.). Based on the float-
ing frame of reference formulation [186] and a simple yet representative wind turbine
model, various simplifications of the non-linear formulation have been proposed and
evaluated for different load cases.

In short, it was concluded that for operational load cases, where the rotational speeds
of the rotor are more or less constant, the simplified formulations could accurately
predict the response of the turbine at much lower computational cost than the full
non-linear formulation. For highly transient load cases such as wind gusts and turbine
shutdowns however, most simplifications gave rise to inaccuracies and only minor
simplifications of the non-linear terms could be justified. The results of this work are
reported in [55]; a detailed treatment is however out of the scope of this thesis.

• For damped systems, classical reduction bases can lead to full reduced damping matri-
ces [156] or might not be adequate for an efficient reduction. In that case some authors
have proposed to consider the state-space form of the equation and use the associated
modes and Krylov vectors [41, 45, 196]. Also, various other approaches have been pro-
posed to handle for instance issues such as frequency dependent damping [16], tuning
of damping of global modes based on the substructure contributions [175], as well as
methods to find equivalent viscous damping models to account for hysteretic struc-
tural damping [69, 9].

• Multilevel substructuring consists in performing nested decomposition of the system
and successively reducing the components starting at the lowest level. Any reduction
technique can be applied in a multi-level manner. One popular technique is the Au-
tomated Multilevel Substructuring method or AMLS [20, 21].

• Some publications have addressed the issue of reducing the interface problem [40,
23, 8]. This is an important issue since in many practical applications the number of
degrees of freedom on the interface is still unnecessarily high. A second reduction
step for the interface DoF can then be performed. Interface reduction methods will be
discussed in detail in section 4.2.
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• A number of authors have proposed to iteratively construct or improve the reduction
basis, using the error residual from the previous iteration [13, 155, 24]. Closely related
to this work is the issue of error estimation and adaptive refinement of reduced models,
which is the topic of chapter 5.

• Building substructured models that undergo parametric modifications (in design op-
timization procedures or for model updating) is an active research area. Several tech-
niques have been proposed to update or enrich the reduction basis and to reduce fam-
ilies of models [14, 56, 133, 30]. In chapter 6 this problem will be addressed in detail.

2.6 The Mixed Craig-Bampton Method

In the previous section the most common component reduction methods were reviewed.
These methods can be classified according to many criteria, but one classification often seen
in the literature (e.g. in [36]) is the distinction between “fixed interface” and “free inter-
face” methods, referring to the type of vibration mode employed in the reduction basis. The
most well known variant of the former class is the Craig-Bampton method, while the Ru-
bin/MacNeal and Dual Craig-Bampton methods are examples of the latter.

From this classification a question that naturally arises is: when should one use fixed inter-
face methods and when are free interface methods to be preferred? This question is relevant
when a situation is imagined where two components are assembled: component one is stiff
and/or heavy whereas substructure two is flexible and/or lightweight. One can imagine that
after assembly the stiff structure will behave as if its interface is still quasi-free, thereby largely
dictating the motion of the flexible structure through its interface. Ideally, one would thus
reduce substructure one using a free interface mode and component two using fixed inter-
face modes. However, this can still lead to difficulties where one of the substructures is for
example very stiff in one direction or at one location but relatively flexible in another direc-
tion/location. In this case one would want to employ a mix of both methods per substructure.
In other words, some interface degrees of freedom should be fixed in the model reduction
while others are left free: a mixed boundary approach to model reduction.

In this section the Mixed Craig-Bampton (MCB) method is proposed to handle this problem.
As will be proven later, this method is a natural mixed boundary generalization of the existing
CB and DCB methods. In general, the MCB method comprises the following steps:

1. For all components in the assembly define the interfaces
2. Using some criterion, choose boundary conditions for all pairs of interface DoF
3. Calculate the reduction bases for the components and compute the reduced matrices
4. Assemble the reduced components in the correct manner

The first step is no different than for other CMS methods. The subsequent steps however
are non-standard and will be discussed next. It should be noted that the reduction of sub-
structures using the Mixed Craig-Bampton method cannot be performed separately, since
the reduction basis of one substructure is dependent on the properties of its neighboring
components.
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2.6.1 Selection of Free or Fixed Interface Vibration Modes

In order to select fixed or free modes for the reduction basis of the components, some cri-
terion must be established. To this end, an a priori estimate is needed of the components’
behavior; ideally the responses of all components to a unit load or displacement at all their
interface DoF. This is however computationally inefficient, so an approximation can be made
by estimating the substructure behavior simply from the value on the diagonal of the stiff-
ness matrix corresponding to the interface DoF. Then, three cases can be distinguished and
the following selection scheme is proposed:

1. In the first case, subsystem 1 is much stiffer than subsystem 2:

K(1)ii /K(2)ii > 10c

Here c is some constant that can be chosen to suit the problem at hand. In this case,
subsystem 1 will feel some connection forces through its interface but will not be in-
fluenced much by the presence of its neighboring substructure, behaving nearly as if
it were free. The motion of component 2 will however be largely dictated through its
interface with component 1. The natural choice would thus be to let free the interface
DoF of component 1 in the reduction, while the corresponding interface DoF of sub-
structure 2 should be fixed. The DoF that remain free will be denoted as “dual” DoF,
while fixed DoF are called “primal”.

2. In the second case, the stiffness at the interface DoF of both subsystems is of approxi-
mately the same order of magnitude, i.e.:

10−c ≤ K(1)ii /K(2)ii ≤ 10c

In this case, both interface DoF can be reduced with either fixed or free interface
modes. The choice for fixed or free modes can be made per set of interface DoF,
although a consistent choice for the complete assembly leads to a simpler assembly
procedure.

3. In the third case, subsystem 2 is much stiffer then 1:

K(1)ii /K(2)ii < 10−c

Using the same reasoning as before, the natural choice is to reduce subsystem 2 with
free interface modes and system 1 with fixed interface modes.

So, the goal of the selection scheme is to use some (simple) knowledge of the the assem-
bled system in order to construct a better reduction basis for the components. As such, the
method is somewhat similar to the application of Robin-type interface conditions (see e.g.
[105]), where stiffness and mass of the neighboring substructures is in some form taken into
account in the component reduction. Thereby the modes used in the component reduction
bases more closely represent the assembled mode shapes.
Using the above selection scheme, the substructure DoF vector u(s) can be partitioned into
internal DoF u(s)i , “dual” DoF u(s)d and “primal” DoF u(s)p , as:

u(s) = [u(s)i u(s)d u(s)p ]T (2.80)
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Now the DoF set u(s)m is introduced, which comprises the set of internal plus “dual” DoF, to
denote the DoF that will be replaced by generalized DoF in the reduction:

u(s)m = [u(s)i u(s)d ]T (2.81)

The above division of DoF will be used in the next subsection to find the reduction basis. It
should be remarked that the above proposed selection method can be easily automated but is
useful only if the component interface coincides with the material interface. If this is not the
case, the values on the diagonal of the stiffness matrix not truly reflect the “global” stiffness
of the system (imagine for instance a rubber bushing with a metal core). In such situations
one should use some other criterion for selecting fixed/free modes or resort to “engineering
judgement”.

2.6.2 Mixed Component Reduction

Given the partitioning of substructure DoF introduced above, the partitioned equations of
motion become (again the substructure denotation (s) is omitted for simplicity):

[ Mmm Mmp
Mpm Mpp

] [ üm
üp
] + [ Kmm Kmp

K pm K pp
] [ um

up
] = [ f m

f p
] + [ gm

g p
] (2.82)

It should now be realized that the DoF in um will be reduced and assembly of the ud in this
DoF set will be performed using interface forces. Hence, similar to the Dual Craig-Bampton
method, the interface forces gd need to be included in the DoF vector. Furthermore, the
compatibility equation is added to both ensure symmetry of the equations and allow weak-
ening of this condition to avoid interface locking. This gives:

⎡⎢⎢⎢⎢⎢⎣
Mmm Mmp 0
Mpm Mpp 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

üm
üp
g̈d

⎤⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎣

Kmm Kmp −AT
m

K pm K pp 0−Am 0 0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

um
up
gd

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

f m
f p
0

⎤⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎣

0
g p−ud

⎤⎥⎥⎥⎥⎥⎦ (2.83)

Here Am is the Boolean matrix localizing the DoF ud in um. As a consequence of the parti-
tioning of DoF, the Mixed Craig-Bampton reduction basis in general consists of three ingre-
dients, namely:

• Static constraint modes Ψ c associated to the interface DoF up that are fixed.
• Attachment modes Ψa associated to the interface DoF ud that will be left free.8

• A truncated set of fixed/free vibration modes Φm of the structure.

Hence the following approximation is obtained:

um ≈ Φmηm +Ψ r gd +Ψ cup (2.84)
8Originally, the MCB method was derived with residual attachment modes [217, 219], leading to coupling

terms between the modal and interface DoF in both the mass matrix (like in the CB method) and the stiffness
matrix (like the DCB method). However, a formulation with attachment modes only gives these coupling terms
in the mass matrix and is hence preferred here. Note that coupling terms between both sets of interface DoF
(up and gd) cannot be avoided.
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The ingredients can be computed according to the procedures outlined in the preceding sec-
tions but will be briefly reiterated here. Firstly, the mixed vibration modes result from solving
the fixed/free eigenproblem with the DoF in um free and the up fixed, so:

(Kmm − ω2Mmm)Φm = 0 (2.85)

Note that in case the fixed DoF in up do not fully constrain the system, Φm also contains the
remaining rigid body modes. Secondly, the constraint modes can be computed by condens-
ing the stiffness matrix to the “primal” DoF, as:

Ψ c = −K−1
mmKmp (2.86)

Note again that in case a set of primal interface DoF is chosen that does not constrain possible
rigid body modes of the substructure, the inverse becomes a pseudo-inverse +. Finally, the
attachment modes can be found from:

Ψa = K−1
mmAT

m (2.87)

Next, the Mixed Craig-Bampton reduction matrix can be put in matrix form as:

⎡⎢⎢⎢⎢⎢⎣
um
up
gd

⎤⎥⎥⎥⎥⎥⎦ ≈
⎡⎢⎢⎢⎢⎢⎣

Φm Ψ c Ψa
0 I 0
0 0 I

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

ηm
up
gd

⎤⎥⎥⎥⎥⎥⎦ = RMCBqMCB (2.88)

As usual, the reduced equations of motion can be computed through substitution and pro-
jection of the reduction basis in the partitioned equations of motion of eq. (2.83). This gives:

⎡⎢⎢⎢⎢⎢⎣
I Mϕm Mϕψ

Mmϕ M̃pp Mmψ
Mψϕ Mψm M f ,dd

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

η̈m
üp
g̈d

⎤⎥⎥⎥⎥⎥⎦ + . . .

⎡⎢⎢⎢⎢⎢⎣
Ω2

m 0 0

0 K̃ pp −ΨT
c|m

0 −Ψ c|m −G f ,dd

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

ηm
up
gd

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

f̃ m
f̃ p
f̃ d

⎤⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎣

0
g p−ud

⎤⎥⎥⎥⎥⎥⎦
(2.89)

Here the terms in the reduced matrices are defined as:

Mϕm = MT
mϕ = ΦT

m (Mmp −MmmK−1
mmKmp) G f ,dd = AmK−1

mmAT
m

Mϕψ = MT
ψϕ = ΦT

m (Mmp −MmmK−1
mmKmp) Ψ c|m = AmΨ c

Mψm = MT
mψ = ΨT

a (Mmp −MmmK−1
mmKmp) f̃ m = ΦT

m f m
M̃pp = Mpp +ΨT

c MmmΨ c −MpmΨ c −ΨT
c Mmp f̃ p = ΨT

c f m + f p
M f ,dd = ΨT

a MmmΨa = AmK−1
mm MK−1

mmAT
m f̃ d = ΨT

a f m
K̃ pp = K pp − K pmK−1

mmKmp

(2.90)

and Ω2
m is again a diagonal matrix containing the squares of the fixed/free eigenfrequencies

of the component. Assembly of systems reduced using the Mixed Craig-Bampton method
requires a special assembly procedure, which is developed in section 3.5.

From the above equation one can clearly see that the Mixed Craig-Bampton method is a true
generalization of the original Craig-Bampton and Dual Craig-Bampton methods; if there are
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no “dual” DoF (i.e. ud is empty) the reduced matrices are exactly equal to those found with
the Craig-Bampton method whereas in the absence of “primal” DoF (i.e. up is empty) the
matrices of the Dual Craig-Bampton method, formulated with attachment modes, are found.
Practically, one can implement this by taking a high value for the parameter c in the selection
scheme. The scheme will then consider the stiffness of all connected pairs of interface DoF
to be of the same magnitude and hence an equal boundary condition will be chosen on both
sides.

Note that the reduction basis in (2.88) was already proposed in [200], where a mixed assem-
bly was also proposed but was not general and limited to decompositions where no more
then two substructures connect on an interface. Also this basis was later proposed in [131],
but there, very much like in the MacNeal and Rubin method, the authors eliminated the
interface forces from the basis, leading to full and intricate reduced matrices.

2.7 Modal Truncation Augmentation

The total models obtained from assembly of the reduced component models are used for
structure dynamic analysis. Amongst others, this can be modal analysis of the system or,
as often encountered in wind turbine engineering, a forced response time simulation. Since
modal superposition is used to obtain the reduced component models, the component model
reduction methods treated in this chapter are particularly suited to efficiently approximate
the total system’s modal properties. However, for the same reason the models are less effec-
tive in the case of forced response analysis. This is due to the difference between spectral and
spatial convergence, as explained next.

In the case of forced response analysis, the approximation made by the component reduction
basis is generally accurate as long as the modes discarded during reduction are not excited
by the external loading. This is governed by two aspects, namely:

• Spectral convergence. For accurate response predictions the frequency content of the
reduced models should be higher than the highest frequency present in the external
loading. An often used rule of thumb is to include all substructure modes up to 1.5
times the highest frequency of interest; in chapter 5 a more systematic approach will
be taken based on error estimation theory.

• Spatial convergence. In order to accurately capture the response, the modes should also
accurately represent the (response to) the spatial distribution of the external loading.
In other words, the external load should be orthogonal to the discarded modes. In
contrast to convergence of the spectral type, spatial convergence is often overlooked.
One way to improve the spatial convergence is by retaining more modes in the reduc-
tion basis, but the convergence rate is dependent on the correlation between the mode
shapes and spatial load vectors. Especially for localized loading this rate can be very
poor.

Several methods have been devised to improve the forced response of reduced models. One
of these methods is the classic mode acceleration method which a posteriori corrects the so-
lution by adding the static response of the discarded modes [157, 74, 67]. Another method,
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which is an extension of the mode acceleration method, is called the modal truncation aug-
mentation (MTA) method [57, 163] and can be used to compute load dependent vectors (or
pseudo-modes) which capture the spatial part of the force response not captured by the re-
tained modes. These pseudo-modes can be used to a priori augment the component reduc-
tion bases, leading to improved response predictions without the need to postprocess the
solution.
In the remainder of this section the MTA method is first explained in the general case. There-
after some specific details are addressed when augmentation is applied to both fixed and free
interface vibration modes, in subsections 2.7.2 and 2.7.3 respectively. Subsection 2.7.4 briefly
discusses some practical details.

2.7.1 General Concept

In order to demonstrate the general concept of the MTA vectors, a single system without
interfaces is considered that is assumed to be constrained such that no rigid body modes
exist. Its equations of motion are simply:

Mü + Ku = f (2.91)

Here the time dependence of u and f is omitted for compactness. Similar to equation (2.4),
the response u can be split into a static and dynamic part:

u = ustat + udyn (2.92)

The static response is obtained simply by assuming zero accelerations, such that ustat = K−1 f .
Equation (2.92) can then be substituted into (2.91) and rewritten for the dynamic part of the
response, this gives:

Müdyn + Kudyn = −MK−1 f̈ (2.93)

This equation can now be treated similarly to (2.91), by separating again the solution for udyn
in a quasi-static solution and a dynamic solution relative to this quasi-static part:

udyn = ystat + ydyn (2.94)

The quasi-static solution ystat can be found by setting üdyn in (2.93) to zero:

ystat = K−1 (−MK−1) f̈ (2.95)

If equation (2.94) is substituted in (2.93) and rewritten for the dynamic part ydyn the following
is obtained:

Mÿdyn + K ydyn = (−MK−1)2 d4 f
dt4 (2.96)

Once again, the obtained result can be treated as (2.93) by representing the solution for ydyn
by a quasi-static and a dynamic solution. Repeating this procedure gives rise to the following
sequence:

u = ustat + udyn= ustat + ystat + ydyn= ustat + ystat + zstat + . . . +wdyn

(2.97)
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When the results obtained for the quasi-static solutions are substituted in (2.97), the follow-
ing expression is therefore obtained for the response:

u = k∑
j=1

K−1(−MK−1) j−1 d2( j−1) f
dt2( j−1) +wdyn (2.98)

This expression describes the system’s response as a sequence of quasi-static solutions up to
order k. The remaining dynamic solution wdyn is approximated by the usual truncated set of
retained (indicated by r) vibration modes Φr.

In order to use eq. (2.98) to compute basis vectors that improve the spatial convergence of the
modal superposition, the external loading f (t) can be decomposed in a spatial and spectral
(time dependent) part:

f (t) = p∑
j=1

f jα j(t) = Fα(t) (2.99)

Here f j is the jth spatial force vector which is modulated by its corresponding time function
α j(t). It is assumed that the external force can be represented by a limited number p of such
spatial force distributions, which are collected in F and α(t) contains their corresponding
time functions. These load distribution vectors can represent all types of forces such as point
forces, surface forces (e.g. wind or wave loads) and body forces (e.g. gravity). Since the aim
is to improve the spatial convergence, only the force distributions in F are taken into account
and the time dependent part is discarded.

Note that this procedure is only applied for the sake of computing the MTA vectors; the
actual response analysis is carried out with the original loading f (t). Hence, in practice one
would preferably obtain these spatial force distributions from a limited yet representative set
of force data, especially if a large number of load cases need to be evaluated. One way to
achieve this is through the use of the powerful proper orthogonal decomposition (POD), this
method is explained in appendix D.

Using the force distribution vectors, the first term on the right hand side of (2.98) the modal
truncation augmentation vectors can now be calculated as:

Φ̃M , j = K−1(MK−1) j−1F for j = 1 . . . k (2.100)

Here Φ̃M , j is a set of MTA vectors (or MTAs in short) of order j; the number of vectors
depends on the number of force distributions p used in F . From the above expression it is
clear why MTAs are often referred to as load dependent vectors. Also, as pointed out in [167],
a clear link can be observed to moment-matching techniques used for model reduction in
control and electrical engineering [70, 127].

Physically, the MTAs can be interpreted as follows. The first order MTAs ( j = 1) simply cor-
respond to the static response of the structure to the external loading in F . For the second
order vectors ( j = 2) the static displacements due to these forces are converted into inertia
forces via the mass matrix, which in turn are converted by the inverse of the stiffness matrix
to quasi-static displacements resulting from these inertia forces. Hence they provide a load
dependent quasi-static correction to the solution. Higher order of MTA vectors provide in-
creasingly higher order load dependent correction modes. Furthermore, it can be seen from
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the above expression that the MTA vectors are in fact forming a so-called Krylov sequence.
In section 2.7.4 it will be explained how this can be exploited in order to efficiently compute
the MTAs.

Both the retained vibration modes and the MTA vectors are used to capture the response of
the system to the external loading. Similar to the residual attachment modes in section 2.3.3,
this can lead to an “information overlap”, meaning that the vibration modes and MTAs partly
span the same space. This not only causes a non-sparse reduced model, but could in extreme
cases lead to a linearly dependent reduction basis which jeopardizes numerical stability. To
overcome this issue the contribution of the vibration modes should be subtracted. Using the
spectral expansion of the inverse stiffness matrix, see eq. (2.28), this is achieved by:

Φ̃M , j = (K−1 −ΦrΩ−2
r ΦT

r ) (MK−1) jF
= (I −ΦrΦT

r M) (K−1M) jK−1F
= P(K−1M) jK−1F

Here P is an orthogonal projector that is very similar to the one used in eq. (2.23); the result-
ing MTAs are both K- and M-orthogonalized with respect to the retained vibration modes.
Next, the different orders of MTAs can be collected as follows:

Φ̃M = [Φ̃M ,1 . . . Φ̃M , j . . . Φ̃M ,k] (2.101)

The value of k specifies the highest order of the MTAs and hence the total number of MTA
vectors. These correction vectors are orthogonal to the free vibration modes, but not mu-
tually orthogonal. To preserve the sparsity of the reduced matrices and improve numerical
robustness the MTA vectors can be orthonormalized by solving a reduced eigenvalue prob-
lem in the space of the MTAs. This is known as the interaction problem (for further details
see section 6.3.1):

(Φ̃T
M KΦ̃M) y = σ2 (Φ̃T

M MΦ̃M) y (2.102)

Here σ2 is a diagonal matrix containing the pseudo-frequencies belonging to the MTA vec-
tors, while y are the eigenvectors. The orthonomalized MTAs are found from expansion of
the reduced eigenmodes as:

ΦM = Φ̃M y (2.103)

Finally, the MTAs can be mass normalized such that:

ΦT
M MΦM = I

ΦT
M KΦM = σ2 (2.104)

The MTA vectors are often referred to as “pseudo-modes”, since they share the orthogonality
properties of the vibration modes but are not fundamental properties of the system, that is,
they are not solutions to the system’s eigenproblem. Note that the MTA pseudo-frequencies
in σ2 are always higher than those of the retained vibration modes Ω2

r . This is because, by
construction, the MTAs take into account the relevant contributions of the discarded vibra-
tion modes. Hence the addition of these vectors to the reduction basis not only improves
the quasi-static results but also provides a dynamic correction. An indication up to what
frequency this correction is provided is given by the pseudo-frequencies.
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2.7.2 Augmentation of Fixed Interface Vibration Modes

Whereas in the previous subsection the derivation of MTAs for the general case was consid-
ered, this subsection treats some specific details when MTAs are used in conjunction with
fixed interface vibration modes to reduce a component model. Indeed, the MTAs can then
be used to enrich the Craig-Bampton reduction basis.

The starting point for the derivation of this type of MTAs are partitioned component equa-
tions of motion in eq. (2.43). Taking the first equation and separating the terms related to
the internal and boundary DoF gives:

M iiü i + K iiu i = −M ibüb − K ibub + f i (2.105)

Similar to the derivation of the MTAs for the general case, the first step is to split the response
of the internal DoF in a static and dynamic part:

u i = u i ,stat + u i ,dyn (2.106)

In a similar fashion as in the previous section, the static response is now found from (2.105)
by neglecting the inertia forces, i.e.:

u i ,stat = K−1
ii f i − K−1

ii K ibub = K−1
ii f i +Ψ cub (2.107)

In this expression the second term on the right hand side can be recognized as the static
constraint modes derived in section 2.3.1. In the derivation of the Craig-Bampton method,
and in fact all the classic component reduction methods treated in this chapter, the first
term on the right hand side is assumed to be zero. That is, no excitation is assumed on the
internal DoF. The MTA vectors specifically take this term into account to improve the spatial
convergence of the reduced model. Next, the above expression is substituted in (2.106) and
subsequently into the equations of motion (2.105). Rewriting for the dynamic solution u i ,dyn
then results in the following:

M iiü i ,dyn + K iiu i ,dyn = −(M ii Ψ c +M ib) üb −M ii K−1
ii f̈ i (2.108)

The columns of the bracketed term on the right hand side can be interpreted as load vectors
associated to the interface accelerations. For ease of notation it is now defined that:

Y i = K ib − K ii M−1
ii M ib , (2.109)

which allows to write the previous equation as:

M iiü i ,dyn + K iiu i ,dyn = −M ii K−1
ii ( f̈ i − Y iüb) (2.110)

Next, the remaining dynamic solution u i ,dyn is again split into a quasi-static solution y i ,stat
and a relative dynamic solution y i ,dyn. By subsequently repeating this process a sequence is
obtained similar to eq. (2.97), now for the response of the internal DoF:

u i = u i ,stat + y i ,stat + z i ,stat + . . . +w i ,dyn (2.111)

After substitution of the results for the (quasi-)static solutions the following is obtained:

u i = Ψ cub+K−1
ii f i−K−1

ii M ii K−1
ii ( f̈ i − Y iüb)+(K−1

ii M ii)2 K−1
ii

d4

dt4 ( f i − Y iub)+⋅ ⋅ ⋅+w i ,d yn
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(2.112)

In the Craig-Bampton method the first term on the right hand side, the static constraint
modes, are already included in the reduction basis. The dynamic solution w i ,dyn is approxi-
mated by a superposition of the fixed-interface vibration modes Φi . The remaining terms in
the expression can be sorted into a group involving the external force on the internal DoF
and another involving the interface excitation. Similar to the previous section it is assumed
that the spatial content of the external loading f i can be described by the force distributions
in F i ; the time dependent part is again discarded. This allows to compute each order of the
fixed interface MTAs as:

Φ̃Mi , j = ⎧⎪⎪⎨⎪⎪⎩
P i K−1

ii F i for j = 1
P i(K−1

ii M ii) j−1K−1
ii [F i Y i] for j = 2 . . . k

(2.113)

In this expression the projection step for orthogonalization with the fixed interface modes is
already incorporated. The projection matrix in this case writes:

P i = I −Φi ΦT
i M ii (2.114)

It is important to note that the number of MTA vectors per order now equals the number
of interface DoF plus the number of load vectors. Hence, the so-obtained MTAs improve
the spatial convergence in response to both external loading and excitation from neighbor-
ing components through the interface DoF. Next, the MTAs up to the desired order k are
collected in the matrix ΦMi , and are subsequently M ii– and K ii-orthogonalized by solving
the interaction problem similar to eq. (2.102). Mass normalization finally gives the same
properties as in eq. (2.104).

Including the MTA vectors, the response of the internal DoF can now be represented by:

u i ≈ Ψ cub +Φi ηi +ΦMi ζ i (2.115)

Here ζ are the modal amplitudes of the MTAs. The above approximation gives rise to the
augmented Craig-Bampton reduction basis as:

[ u i
ub
] ≈ [ Φi ΦMi Ψ c

0 0 I ]
⎡⎢⎢⎢⎢⎢⎣

ηi
ζ i
ub

⎤⎥⎥⎥⎥⎥⎦ = RACBqACB (2.116)

Substitution and projection using this basis gives the reduced equations of motion:

⎡⎢⎢⎢⎢⎢⎣
I 0 Mϕb
0 I Mζb

Mbϕ Mbζ M̃bb

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

η̈i
ζ̈ i
üb

⎤⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎣

Ω2
i 0 0

0 σ2 0
0 0 K̃bb

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

ηi
ζ i
ub

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

f̃ i
f̃ M
f̃ b

⎤⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎣

0
0
gb

⎤⎥⎥⎥⎥⎥⎦ (2.117)

In addition to the terms in eq. (2.57), the terms in the reduced matrices are defined as:

Mζb = MT
bζ = ΦT

Mi (M ib −M ii K−1
ii K ib)

f̃ M = ΦT
Mi f i

(2.118)

By comparing equations (2.56) and (2.117), it can be observed that the properties of the Craig-
Bampton reduced matrices remain the same after augmentation with MTA vectors. This
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is due to the “pseudo-mode” character of the MTAs. Since all interface DoF are retained,
the augmented Craig-Bampton reduced model can be assembled as a regular superelement.
Due to the addition of MTA vectors to the basis the augmented superelement has much
better spatial convergence properties, enabling more accurate predictions of the total system.
Since the MTAs improve the response to both external loading and loading from adjacent
components through the interface, the augmented reduced model will not only provide a
more accurate forced response but will also improve the modal analysis results of the full
system.

2.7.3 Augmentation of Free Interface Vibration Modes

In this subsection MTAs are derived that can be used in a component reduction basis in
combination with free interface vibration modes. The starting point is again the unreduced
equations of motion of a substructure excited by an external force.

Mü + Ku = f + AT gb (2.119)

As before, gb are the connection forces at the interface from neighboring substructures, A the
local Boolean matrix and f is an externally applied force. Since the component model can
be free-floating, these forces need to be split into a self-equilibrating part and a remainder,
according to the procedure outlined for the attachment modes in section 2.3.2. This is done
using the projection matrix of eq. (2.23) which contains the mass normalized rigid body
modes Φr, giving:

Mü + Ku = Pr ( f + AT gb) + (I − Pr) ( f + AT gb) (2.120)

Since the aim is to augment the free vibration modes, here no partitioning of the DoF vector
u is applied. One directly seeks a solution for u where, as before, the response is split into a
quasi-static part and a dynamic part. Solving the static problem results in:

u = ustat + udyn = G f ( f + AT gb) + udyn = G f f +Ψa gb + udyn (2.121)

Here G f is the elastic flexibility matrix from section 2.3.2 and Ψa are the attachment modes
derived therein. Remark again that the first term on the right hand side is normally neglected
in the derivation of free interface component reduction methods. As usual, the above expres-
sion is substituted into (2.120) and rewritten for the dynamic solution. This dynamic solution
can in turn be split in a quasi-static and relative dynamic solution. Repeating this process
like in the previous sections and making use of the orthogonality between G f and Φr, gives
rise to the following sequence:

u = Ψa gb+G f f −(G f M)G f ( f̈ + AT g̈b)+(G f M)2G f
d4

dt4 ( f + AT gb)+ . . .+wdyn (2.122)

In this expression wdyn is again the remaining dynamic solution which is approximated by the
rigid body modes Φr and a truncated set of free vibration modes Φ f . Similar to the previous
section, the attachment modes in first term (or their residual attachment siblings) are usually
already present in the component reduction basis. Assuming again that the external force
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can be represented by p spatial distribution vectors and discarding the time dependency, the
free interface MTAs can thus be computed as:

Φ̃M , j = ⎧⎪⎪⎨⎪⎪⎩
P f G f F for j = 1
P f (−G f M) j−1G f [F AT] for j = 2 . . . k

(2.123)

By construction the MTAs are orthogonal to the rigid body modes; in the above expres-
sion they are also orthogonalized with respect to the free vibration modes using the project
matrix:

P f = I −Φ f ΦT
f M (2.124)

Hereafter the vectors are again mutually orthogonalized with respect to M and K and mass
normalized, the resulting properties are given in (2.104). Assuming that the MTAs are used in
a reduction basis that employs residual attachment modes, one can finally choose to further
orthogonalize the mode sets ΦM and Ψ r since both contribute to the static solution. One
option is to modify Ψ r by subtracting the component already present in the MTAs, i.e:

Ψ r ← (Ψ r −ΦM σ−2ΦT
M AT) (2.125)

Note that this is similar to the K-orthogonalization of the attachment modes to obtain the
residual attachment modes in section 2.3.3. However, since the MTAs are only pseudo-
modes, they will not be M-orthogonal to the residual attachment modes (see [166]). Another
option is to make the residual modes M-orthogonal to the MTAs as follows:

Ψ r ← (I −ΦM ΦT
M M)Ψ r (2.126)

When using the above procedure the MTAs and residual attachment modes are not K-
orthogonal. Either option can be used as the choice does not influence the solution obtained
by the reduced system.

Using the MTAs to augment the free interface mode reduction basis, the system’s response
can now be approximated by:

u ≈ Φη +ΦM ζ −Ψ r gb (2.127)

For compactness, the rigid body modes and free interface vibration modes are here collected
in one matrix, i.e. Φ = [Φr Φ f ]. Indeed, this reduction basis is used in both the Rubin and
Dual Craig-Bampton methods. Next it will be briefly shown how the augmentation affects
the reduced matrices obtained from these methods.

As was discussed in section 2.5.3, the Rubin reduction matrix is obtained as the product of the
reduction basis in (2.127) and a subsequent transformation to backsubstitute the boundary
displacement DoF ub. Including the MTAs, the augmented Rubin basis thus becomes:

[ u i
ub
] ≈ [ Φ|i −Ψ r|i K r,bbΦ|b ΦM|i −Ψ r|i K r,bbΦM|b Ψ r|i K r,bb

0 0 I ]
⎡⎢⎢⎢⎢⎢⎣

η
ζ
ub

⎤⎥⎥⎥⎥⎥⎦ = RARqAR

(2.128)
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Application of this reduction basis gives reduced equations of motion that are similar to
those obtained in eq. (2.68); due to the transformation to interface displacements the ma-
trices are again full. As outlined in section 2.5.4, the difference between the Rubin and Dual
Craig-Bampton reduction is that in the latter also the compatibility condition is reduced. To
this end, the interface forces are added to the DoF vector and the augmented Dual Craig-
Bampton reduction basis becomes:

[ u
gb
] ≈ [ Φ ΦM Ψ r

0 0 I ]
⎡⎢⎢⎢⎢⎢⎣

η
ζ
gb

⎤⎥⎥⎥⎥⎥⎦ = RADCBqADCB (2.129)

Substitution of this basis in the equations of motion in (2.73) and subsequent projection leads
to the following reduced system:

⎡⎢⎢⎢⎢⎢⎣
I 0 0
0 I Mϕψ
0 Mψϕ Mr,bb

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

η̈
ζ̈
g̈b

⎤⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎣

Ω2 0 −ΦT
|b

0 σ2 −ΦT
M|b−Φ|b −ΦM|b −Gr,bb

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

η
ζ
gb

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

ΦT f
ΦT

M f
ΨT

r f

⎤⎥⎥⎥⎥⎥⎦ −
⎡⎢⎢⎢⎢⎢⎣

0
0
ub

⎤⎥⎥⎥⎥⎥⎦
(2.130)

Where in addition to the terms previously introduced, it is defined that:

Mϕψ = MT
ψϕ = ΦT

M MΨ r

ΦM|b = ΦT
M|b = AΦM

(2.131)

By comparing the above reduced equations with eq. (2.74) it can be observed that the topol-
ogy of the Dual Craig-Bampton reduced matrices is retained after augmentation.

2.7.4 Practical Details & Further Remarks

Having derived in the previous subsections MTA vectors for the augmentation of fixed and
free interface vibration modes, this subsection briefly addresses a few practical details re-
garding their use and implementation:

• In section 2.7.1 it was remarked that the different orders of MTAs form a Krylov se-
quence. This sequence is similar to those generated by inverse iteration eigensolvers,
a feature can be exploited to efficiently compute the MTAs. In fact, the MTAs can be
obtained as a by-product of the popular (block) Lanczos eigensolver used to compute
the substructure vibration modes. In order to do so the external force vectors, both
from the interface and external loading, need to be chosen as the initial guess for the
eigensolver. The MTAs can then easily be obtained by postprocessing the Lanczos it-
eration vectors. Hence, the MTAs can be obtained at very little additional cost which
greatly enhances their practical value. For more details on the Lanczos eigensolver in
general see section 6.3.1, the use of this solver to compute MTAs is addressed in [164].

• When MTAs arising from interface excitation are used to augment the reduction ba-
sis, the number of augmentation vectors is dependent on the desired order and the
number of interface DoF. In case a substructure has many interface DoF this number
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can hence grow rapidly, limiting the effectiveness of the model reduction. To over-
come this limitation, interface reduction techniques can be applied. Various interface
reduction methods exist, both on substructure and system level; some techniques will
be outlined in chapter 4. Note that these techniques serve two purpose, namely 1) to
reduce the actual set of interface DoF and 2) to obtain a smaller set of MTA vectors to
more efficiently augment the reduction basis. The interface reduction methods can be
applied to independently achieve either or both of these goals.

• In addition to interface reduction techniques, other ways exist to reduce the number
of MTA vectors. One very simple method may be to select the MTAs based on their
pseudo-frequencies in σ2. Similar to the selection of vibration modes, some cutoff
frequency maybe defined (e.g. two or three times the targeted maximum frequency)
and all MTAs below that frequency can be included. This means that all MTAs still
need to be computed and the most suitable ones are chosen a posteriori. Another,
more elaborate, method is to use the effective modal mass associated with the MTAs,
see [68] and [142] for details.

• Like the static modes, the MTA vectors can be frequency shifted. This allows the load
dependent vectors to be created around a central frequency ωs, which is beneficial if a
clear source of harmonic excitation is known in advance (e.g. an operational rotation
frequency). However, this incurs additional computational cost since the dynamic
stiffness (K − ω2

s M) matrix needs to be factorized, unless this shifted matrix was al-
ready used to compute the static and/or vibration modes.

• As treated in the previous subsection, the free interface MTAs originating from inter-
face excitation can be used to augment the Dual Craig-Bampton reduction basis. In
[166] it was shown that these MTAs help to avoid so-called “spurious peaks” caused
by incompatible motions between the substructures.

• In practice one finds that a combination of vibration modes and MTAs in the reduction
basis gives the best results (see e.g. [163, 165, 142]). The reason is that the MTAs are well
suited to improve the response to interface excitations whereas the vibration modes are
important ingredients to represent the internal dynamics. Both aspects are important
to accurately represent the dynamics of the total system.

2.8 Summary

This chapter was concerned with component model reduction techniques, which are used to
obtain a compact model of a component’s structural dynamics. After a general introduction
to dynamic substructuring in section 2.1, these techniques were derived in section 2.2 in
general terms. This showed that a component reduction basis usually consists of a set of
static modes and truncated set of vibration modes. The former account for the interaction
with neighboring components while the latter describe the component’s dynamic behavior.
Different types of static and vibration modes were derived respectively in sections 2.3 and
2.4, forming the ingredients for the component reduction methods.

By combining these ingredients the most common reduction methods can be obtained, as
discussed in 2.5. These methods generally fall into two classes: fixed and free interface modes,
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referring to the type of vibration modes used in the basis. It was observed that no clear
criteria exist as to when to applied each type of method. Therefore, section 2.6 introduced a
mixed boundary component reduction method, called the Mixed Craig-Bampton method.
It was shown that this method is a natural generalization of the existing regular and Dual
Craig-Bampton methods. Table 2.1 summarizes all component reduction methods treated
in this chapter in terms of ingredients and properties.

Guyan CB Rubin/MacNeal Dual CB Mixed CB
Static modes
Constraint Ψ c ✓ ✓ ✓

Attachment (res.) Ψ r ✓ ✓ ✓

Vibration modes
Rigid body Φr ✓ ✓ ?
Fixed interface Φi ✓ ✓

Free interface Φ f ✓ ✓ ✓

Properties
Adaptiveness – – +/– ++ +
Sparsity + + – + +
Implementation ++ ++ + +/– –
Experimental – – + + +/–
Superelement? ✓ ✓ ✓ ✗ ✗

Table 2.1: Overview of component reduction methods, “CB” stands from Craig-Bampton.

The final section 2.7 of this chapter addressed the topic of modal truncation augmentation
(MTA), a technique that aims to improve the spatial convergence of reduced component
models. Especially for accurate forced response predictions this is relevant, since the external
forces are usually neglected in the derivation of component reduction methods. The so-
called MTA vectors were derived, which can be used in conjunction with both fixed and
free interface vibration modes to enrich the reduction basis, thereby improving the spatial
convergence of the reduced component.



3
Assembly of Component Models

Nothing is particularly hard if you divide it into small jobs.
(Henry Ford)

3.1 Introduction

After the reduced component models are created according to the methods treated in the
previous chapter, or perhaps obtained from experiments, the next step is to assemble these
models to obtain the structural dynamic model of the total system. The assembly techniques
required to achieve this are an important aspect of dynamic substructuring analysis. In the
majority of the literature on dynamic substructuring however, assembly is treated as an inte-
gral aspect of the reduction method and one simply assembles the components as superele-
ments, i.e. like regular finite elements. In this chapter component assembly is considered
from a wider perspective, with the aim to develop generic assembly procedures that allow
(reduced) component modeling and assembly to be treated separately.

To this end, this chapter is organized as follows. The first part of this chapter is devoted to a
general framework for component assembly. Section 3.2 describes the three possible assem-
bly cases, for which assembly procedures are subsequently derived in sections 3.3, 3.4 and 3.5.
The developed framework thereby enables assembly of all types of reduced substructures.

Thereafter, section 3.6 addresses the issue of non-conforming interface discretizations. Sec-
tion 3.7 treats a method to account for additional physical effects arising from the interface.
Finally, a sidestep is made in section 3.8, which addresses the decoupling (or disassembly) of
components obtained from measurements of assembled systems. A brief summary is pro-
vided in section 3.9. Note that although the component reduction methods discussed in the
previous chapter considered linear systems only, the assembly techniques presented here are
equally valid for non-linear models. The relation between this and other chapters of part I is
shown in figure 3.1.

55
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Figure 3.1: Current chapter in relation to other chapters in part I of this thesis.

3.2 General Framework for Component Assembly

In general, structural dynamic component models can be expressed either in terms of stiff-
ness or flexibility, or a mix of both, at their interface degrees of freedom. This holds both for
reduced and unreduced component models as well as for numerically and experimentally
obtained models. Examples of substructure models expressed in terms of interface stiffness
are regular (full) finite element models as well as models reduced using classical component
reduction methods, such as the Craig-Bampton and MacNeal/Rubin methods. Hence the
latter are often referred to as superelements. Substructure models having an interface flex-
ibility representation arise from dual or mixed reduction techniques such as the Dual and
Mixed Craig-Bampton methods, or from measured models.

Hence, the substructure DoF vector either contains some set of internal DoF and interface
displacements or some set of internal DoF and interface forces. Given the different representa-
tions of the substructure models on the interface, three assembly cases can be distinguished:

1. Assembly of interface displacements to interface displacements: “stiffness assembly”.
2. Assembly of interface forces to interface forces: “flexibility assembly”.
3. Assembly of interface displacements to interface forces: “mixed assembly”.

These three cases are illustrated in figure 3.2 and will be treated in detail in the three subse-
quent sections, where a so called three-field variational formulation will be used to derive the
required assembly procedures. Such an approach is needed to handle the mixed assembly
problem; for the more straightforward cases of stiffness and flexibility assembly a two-field
formulation is already sufficient (see [53]). Note that in the subsequent discussion in sections
(3.3 to 3.5) it is assumed that the substructure interfaces are conforming, that is, their nodes
are collocated and element shape functions are matching. Section 3.6 outlines a method that
can be used in case the interfaces are non-conforming.

The notations used in this chapter are similar to those of the previous chapter, namely vec-
tors u denote physical displacements, while a vector q denotes a set of generalized DoF. A
superscript ⋆̄ denotes properties belonging to a reduced substructure with force interface
DoF (i.e. flexibility interface representation). Assembled matrices are indicated by ⋆̂.

3.3 Stiffness Assembly

This section treats the assembly of components expressed in terms of stiffness at the struc-
tural interface. As indicated before, this can either be a full FE model, or a model reduced
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Figure 3.2: Three different cases encountered in assembly of reduced component models: “stiffness”
assembly (a), “flexibility” assembly (b) and “mixed” assembly (c).

using any of the classic superelement methods (i.e. Craig-Bampton, Rubin or MacNeal, see
section 2.5). The starting point is again the set of linear, discretized and possibly reduced
equations of motion of a substructure s connected to other substructures:

M(s)q̈(s) + K(s)q(s) = f (s) + g(s) (3.1)

Here M(s) denotes the substructure’s mass matrix, K(s) is the stiffness matrix, q(s) some vec-
tor of generalized degrees of freedom, f (s) the external excitation vector and g(s) the vector
of connection forces felt from connected substructures. After partitioning the subsystem
DoF (and the associated matrices) in an internal i and boundary b part the generalized DoF
vector and vector of connection forces can be written as:

q(s) = [ q(s)i
u(s)b
] , g(s) = [ 0

g(s)b
] (3.2)

Here qi are the generalized internal DoF (for non-reduced systems these are simply the nodal
displacements u i) and ub the physical boundary displacement DoF. By definition the vector
of connection forces g is zero at the internal subsystem DoF, while gb is similar to the local
Lagrange multipliers used for instance in the algebraic FETI method [146]. Between the
substructures one can define the intermediate interface displacement field uγ, to govern the
compatibility of substructural displacements at the interface. This compatibility condition
ensures no relative motion between the boundaries of connected substructures and writes:

u(s)b − L(s)b uγ = 0 (3.3)

Here L(s)b is a Boolean matrix of size n(s)b × nγ, with n(s)b the number of boundary DoF of
the substructure and nγ the number of unique boundary DoF of the total system, and lo-
calizes the substructure boundary DoF from the global intermediate displacement field. Its
construction is treated in [53]. As a result, one ends up with a three-field formulation of the
substructuring problem, having as independent unknowns the substructure DoF field q, the
field of interface connection forces gb and the intermediate interface displacement field uγ.
This situation is depicted for the assembly of two components in figure 3.2 (a). Taking a vari-
ational approach one can now obtain the assembled equations. To this end, the Lagrangian
of this problem is set up as:

L(q(s), g(s)b , uγ) = n∑
s=1
( 1

2
q(s)T

K(s)q(s) − f (s)T
q(s) + g(s)T

b (L(s)b uγ − u(s)b )) (3.4)
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Note that the above considers the static problem only. To include the inertia terms, one needs
to go back to the variational principle in terms of the Hamiltonian [74]; these details will not
be treated here. However, since in eq. (3.3) it was chosen to express the compatibility condi-
tion in terms of displacements (instead of accelerations) the coupling between substructure
will occur in the assembled stiffness matrix. The assembled mass matrix, and possibly damp-
ing matrix, is hence not of primary interest. To find the assembled equations the variation
is taken with respect to the free variables to find the equations of motion of the assembled
system:⎡⎢⎢⎢⎢⎢⎢⎢⎣

K ii K ib 0 0
Kbi Kbb −I 0
0 −I 0 Lb
0 0 LT

b 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

qi
ub
gb
uγ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

f i
f b
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3.5)

Here the following block diagonal matrices have been defined:1

K ii = diag (K(1)ii , . . . , K(n)ii )
K ib = KT

bi = diag (K(1)ib , . . . , K(n)ib )
Kbb = diag (K(1)bb , . . . , K(n)bb )

(3.6)

Details on the content of these matrices for specific reduction methods are found in section
2.5. Furthermore, the vectors and Boolean matrix Lb are written in block form as:

qi =
⎡⎢⎢⎢⎢⎢⎣

q(1)i⋮
q(n)i

⎤⎥⎥⎥⎥⎥⎦ ≜ col (q(1)i ; . . . ; q(n)i )
ub = col (u(1)b ; . . . ; u(n)b )
f i = col ( f (1)i ; . . . ; f (n)i )
f b = col ( f (1)b ; . . . ; f (n)b )
gb = col (g(1)b ; . . . ; g(n)b )
Lb = col (L(1)b ; . . . ; L(n)b )

(3.7)

In the above equation 3.5 one can recognize the third equation as the compatibility condi-
tions, governing the compatibility between the ub and uγ. The last row is the equilibrium
condition on the interface, stating that the sum of the substructure connection forces must
be zero.
For completeness, the assembled mass matrix is shown below; it is a simple matrix containing
the block diagonal component submatrices.

M̂ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

M ii M ib 0 0
Mbi Mbb 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3.8)

1This block diagonal notation is used for explanatory purposes only. Obviously, the sparse band-diagonality
of the component matrices is lost due to this ordering of the equations, which is undesirable from a computa-
tional perspective. In a practical implementation of the assembly procedures, an additional DoF reordering of
the transformation matrices (i.e. eqs. (3.10), (3.13) and (3.15)) is advised.
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With the mass matrix, the complete dynamic equations of the assembled system are found.
In case damping is formulated on a substructure level, the assembled damping matrix has the
same topology. However, these assembled equations of motion still contain the full three-
fields, which is for most analyses inefficient from a computational point of view. Therefore,
it is desired to simplify the equations. In essence two ways exist to do this, namely so called
primal or dual assembly, as discussed next.

3.3.1 Dual Assembly

In dual assembly, one eliminates the interface connection force fields by realizing that the
interface forces should be equal and opposite to satisfy the interface equilibrium. To a priori
satisfy this condition a unique field of interface forces λ is introduced, as follows:

gb = −BT
b λ

Here Bb is a signed Boolean matrix acting on the substructure interface DoF and λ corre-
sponds physically to the interface force intensities. Note that the minus sign is chosen to
stress the fact that whereas gb was seen as an external force for the substructure, λ is con-
sidered an internal force. Due to the construction of the Boolean matrices it holds that [53]:

BbLb = 0 (3.9)

Hence this choice for the interface connection forces satisfies the interface equilibrium for
any λ. This choice gives rise to the following transformation:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

qi
ub
gb
uγ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0 0
0 I 0 0
0 0 −BT

b 0
0 0 0 I

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

qi
ub
λ

uγ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3.10)

Substituting this transformation in the three-field assembled equations of motion (3.5) re-
places the local connection forces by the unique global field λ, satisfying the interface equilib-
rium condition.2 To end up with a symmetric system one can use the above transformation
to subsequently pre-multiply the equations. This eliminates the intermediate displacement
field uγ, due to the relation between the Boolean matrices in (3.9). The procedure is illus-
trated in figure 3.3 and the simplified assembled equations become:

⎡⎢⎢⎢⎢⎢⎣
M ii M ib 0
Mbi Mbb 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

qi
ub
λ

⎤⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎣

K ii K ib 0
Kbi Kbb BT

b
0 Bb 0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

qi
ub
λ

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

f i
f b
0

⎤⎥⎥⎥⎥⎥⎦ (3.11)

The above system is called the dual assembled system, since the unknowns defining the in-
terface problem are forces which are mathematically dual to the original displacement un-
knowns. As a result, the compatibility condition is present explicitly in the assembled equa-
tions of motion, i.e. the last row in eq. (3.11). Note that dual assembly approaches were

2It should be noted that in this work, Lagrange multipliers are used to enforce compatibility on the inter-
face. In the same framework one can also use additional Lagrange multipliers to enforce Dirichlet boundary
conditions imposed on substructure DoF that are not on the interface.
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already considered in the early days of finite element theory, but only became popular in the
1990’s as a way to implement efficient solvers on parallel processing computers. This led to
the family of parallel solvers known as FETI (Finite Elements Tearing and Interconnecting)
[65].
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Figure 3.3: Simplification of the three-field formulation for stiffness assembly through a dual ap-
proach.

3.3.2 Primal Assembly

An even further simplified expression for the assembled system can be obtained by real-
izing that the compatibility condition can be a priori satisfied by choosing a unique set of
substructure interface DoF as:

ub = Lbuγ (3.12)

This choice gives the following transformation:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

qi
ub
gb
uγ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0
0 0 Lb
0 I 0
0 0 I

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

qi
gb
uγ

⎤⎥⎥⎥⎥⎥⎦ (3.13)

Again, this transformation is substituted in (3.5) thereby eliminating the substructure bound-
ary DoF sets ub and satisfying the interface compatibility condition. Pre-multiplication is
then needed to obtain a symmetric system of equations. Using again the relation between
the Boolean matrices Lb and Bb in eq. (3.9) the equilibrium condition is also satisfied and
drops out of the equation. The procedure is illustrated in figure 3.4 and results in the follow-
ing expression for the assembled system:

[ M ii M ibLb
LT

b Mbi LT
b MbbLb

] [ q̈i
üγ
] + [ K ii K ibLb

LT
b Kbi LT

b KbbLb
] [ qi

uγ
] = [ f i

LT
b f b
] (3.14)

The above equations form the so called primal assembled system; the most compact form of
the assembled equations of motion using a minimum number of DoF. Note that this type of
assembly is the way individual elements are classically assembled in a finite element method.
Furthermore primal assembly is almost always used in component mode synthesis methods.
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Figure 3.4: Simplification of the three-field formulation for stiffness assembly by a primal approach.

3.3.3 A Mix of Both: Dirichlet-Neumann Assembly

In addition to the primal and dual assembly methods treated above, the assembled equations
in (3.5) can also be simplified by combining both methods, that is, by choosing both a unique
set of interface DoF and interface forces. Thereby, both the equilibrium and compatibility
condition on the interface are satisfied a priori. This gives rise to the following transforma-
tion:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

qi
ub
gb
uγ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0
0 0 Lb
0 −BT

b 0
0 0 I

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

qi
λ

uγ

⎤⎥⎥⎥⎥⎥⎦ (3.15)

Substitution of this transformation in the three-field assembled equations of motion in (3.5)
simultaneously introduces the interface force field λ and eliminates the substructure bound-
ary DoF ub, as illustrated in figure 3.5. This gives:

[ M ii 0 M ibLb
Mbi 0 MbbLb

]
⎡⎢⎢⎢⎢⎢⎣

q̈i
λ̈
üγ

⎤⎥⎥⎥⎥⎥⎦ + [
K ii 0 K ibLb
Kbi BT

b KbbLb
]
⎡⎢⎢⎢⎢⎢⎣

qi
λ
uγ

⎤⎥⎥⎥⎥⎥⎦ = [
f i
f b
] (3.16)

Note that two lines of zeros have dropped out of the equation such that, although not directly
clear from the above expression, a square system of equations is obtained. As can be seen this
expression for the assembled system is non symmetric, therefore in practice this form of the
assembled equations is often not very useful. Pre-multiplication with this transformation
matrix does solve this, as it eliminates the Lagrange multipliers and results in the primal
assembled system of eq. (3.14). The reason this type of assembly is still shown is that a similar
transformation is used in the case of mixed assembly. Note that the name of this type of
assembly refers to the way the assembled system can be solved, namely using the Gauss-
Seidel method. This leads to so-called Dirichlet-Neumann iterations known from domain
decomposition theory [199].

3.4 Flexibility Assembly

This section will address the assembly of subsystems reduced such that they are expressed
in terms of flexibility at their interface, resulting for example from a Dual Craig-Bampton
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Figure 3.5: Simplification of the stiffness three-field formulation by a Dirichlet-Neumann approach.

reduction (see section 2.5.4). For such systems, the original displacement field u(s) of the
substructure is approximated by some set of generalized DoF and interface forces, as:

u(s) ≈ R̄(s)q̄(s) → [ u(s)i
u(s)b
] ≈ [ R̄(s)ii R̄(s)ib

R̄(s)bi R̄(s)bb
] [ q̄(s)i

g(s)b
] = [R̄(s)i R̄(s)b ] q̄(s) (3.17)

To come to the assembled equations of motion for multiple components one needs to for-
mulate again the Lagrangian of the substructuring problem. However due to the reduction,
the boundary DoF are no longer explicitly present in the reduced substructure descriptions.
Hence they can be recovered from the reduction basis by

u(s)b = [R̄(s)bi R̄(s)bb ] q̄(s), (3.18)

where R̄(s)b is the part of the reduction matrix associated with the boundary DoF. This then
allows to set up the Lagrangian of the flexibility assembly problem as:

L(q̄(s), g(s)b , uγ) = n∑
s=1
( 1

2
q̄(s)T K̄(s) q̄(s) − f̄ (s)T

q̄(s) . . .

+g(s)T

b (L(s)b uγ − [R̄(s)bi R̄(s)bb ] q̄(s))) (3.19)

where:

K̄(s) = R̄(s)T K(s)R̄(s) and f̄ (s) = R̄(s)T f (s). (3.20)

This assembly case is illustrated for two subsystems in figure 3.2 (b). Taking again the varia-
tion of this expression to the free variables, one obtains the assembled equations of motion
as: ⎡⎢⎢⎢⎢⎢⎣

M̄ ii M̄ ib 0
M̄bi M̄bb 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

¨̄qi
g̈b
üγ

⎤⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎣

K̄ ii K̄ ib 0
K̄bi K̄bb Lb
0 LT

b 0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

q̄i
gb
uγ

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

f̄ i
f̄ b
0

⎤⎥⎥⎥⎥⎥⎦ (3.21)

Analogous to the previous section, the following (reduced) block diagonal matrices have
been defined:

K̄ ii = diag (K̄(1)ii , . . . , K̄(n)ii ) with K̄(s)ii = R̄(s)T

i K(s)R̄(s)i for s = 1 . . . n
K̄ ib = K̄T

bi = diag (K̄(1)ib , . . . , K̄(n)ib ) with K̄(s)ib = R̄(s)T

i K(s)R̄(s)b − R̄(s)T

bi

K̄bb = diag (K̄(1)bb , . . . , K̄(n)bb ) with K̄(s)bb = R̄(s)T

b K(s)R̄(s)b − R̄(s)bb − R̄(s)T

bb

(3.22)
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The mass terms are defined similarly, but obviously do not contain any coupling terms:

M̄ ii = diag (M̄(1)
ii , . . . , M̄(n)

ii ) with M̄(s)
ii = R̄(s)T

i M(s)R̄(s)i

M̄ ib = M̄T
bi = diag (M̄(1)

ib , . . . , M̄(n)
ib ) with M̄(s)

ib = R̄(s)T

i M(s)R̄(s)b

M̄bb = diag (M̄(1)
bb , . . . , M̄(n)

bb ) with M̄(s)
bb = R̄(s)T

b M(s)R̄(s)b

(3.23)

Furthermore, the vector gb and Boolean matrix Lb are as defined in the previous section,
while the remaining vectors are defined as:

q̄i = col (q̄(1)i ; . . . ; q̄(n)i )
f̄ i = col ( f̄ (1)i ; . . . ; f̄ (n)i ) with f̄ (s)i = R̄(s)T

i f (s)
f̄ b = col ( f̄ (1)b ; . . . ; f̄ (n)b ) with f̄ (s)b = R̄(s)T

b f (s)
(3.24)

Note that the part K̄bb of the stiffness matrix acting on the interface DoF is in fact a true flex-
ibility matrix and f̄ b are in fact interface displacements, namely the interface displacements
due to the applied external forces f . In section 2.5.4 the full expressions of these submatrices
are derived for the case of the Dual Craig-Bampton method.
Although the starting point was a three-field formulation, the equation (3.21) is actually the
dual assembled form for interface flexibility type of substructures, as can be seen by com-
parison with eq. (3.11). In the dual assembly of the interface flexibility, the intermediate
displacement uγ plays the role of the Lagrange multipliers and enforces the equilibrium of
the interface force DoF. Due to the reduction, the compatibility conditions for the compo-
nents are stated in the second row in a weakened form; see section 2.5.4. The third row can
be recognized as the equilibrium condition.
From the above set of assembled equations, the only simplification to be made is therefore to
go to a true primal system as in the previous section. As in the dual assembly of the previous
section, the interface forces are again chosen in the form:

gb = −BT
b λ (3.25)

As before, this gives the following transformation:⎡⎢⎢⎢⎢⎢⎣
q̄i
gb
uγ

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

I 0 0
0 −BT

b 0
0 0 I

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

q̄i
λ

uγ

⎤⎥⎥⎥⎥⎥⎦ (3.26)

First, the above transformation is again substituted in eq. (3.21). This introduces the unique
interface force field λ and eliminates the gb, hence the equilibrium condition is satisfied.
Pre-multiplication then eliminates the interface displacement field (illustrated in figure 3.6)
and gives the primal assembled system as:

[ M̄ ii −M̄ ibBT
b−Bb M̄bi Bb M̄bbBT
b
] [ ¨̄qi

λ̈ ] + [ K̄ ii −K̄ ibBT
b−BbK̄bi BbK̄bbBT
b
] [ q̄i

λ ] = [ f̄ i−Bb f̄ b
] (3.27)

As can be seen, this primal form of the equations of motion is very similar to that of the
previous section, consisting only of the generalized substructure DoF and one unique inter-
face field. Due to the flexibility expression of the substructure interfaces the unique interface
field here is the set of interface forces, whereas in the previous section it was the unique set
of interface displacements.
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Figure 3.6: Simplification of the three-field formulation for the flexibility assembly case.

3.5 Mixed Assembly

In this section the case of mixed assembly is addressed, where some subsystems are expressed
in terms of stiffness at their interfaces while the other interfaces are expressed in terms of flex-
ibility. This is for instance the case when assembling a combination of Craig-Bampton and
Dual Craig-Bampton reduced systems, or when assembling Mixed Craig-Bampton reduced
systems (see section 2.6). To derive the assembled equations of motion in this case, one sim-
ply combines the Lagrangians found earlier for the stiffness and flexibility assembly cases in
eqs. (3.4) and (3.19) and takes their variation.

Suppose that some n f substructures, expressed in flexibility at their interfaces, are to be
assembled with ns components which have an interface stiffness representation. This is
schematically shown in figure 3.2 (c) for two substructures. The following three-field as-
sembled equations are then found from a variational approach:

⋯+
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K̄ ii K̄ ib 0 0 0 0

K̄bi K̄bb 0 0 0 L f
b

0 0 K ii K ib 0 0
0 0 Kbi Kbb −I 0
0 0 0 −I 0 Ls

b

0 L f T

b 0 0 LsT

b 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q̄i
g f

b
qi
us

b
g s

b
uγ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f̄ i
f̄ f

b
f i
f s

b
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.28)

Similar to the previous sections, the submatrices are defined as the block diagonals of the
component submatrices; the superscripts f and s denote “flexibility” and “stiffness”, respec-
tively. In this equation, the second row is the weak compatibility condition for the n f “flexi-
bility components” while the fifth row can be recognized as the compatibility condition for
the ns “stiffness components”. The sixth row constitutes the equilibrium condition. The mass
matrix is not shown for compactness. The above equations can be rearranged by grouping
similar terms:

⋯+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K̄ ii 0 K̄ ib 0 0 0
0 K ii 0 0 K ib 0

K̄bi 0 K̄bb 0 0 L f
b

0 0 0 0 −I Ls
b

0 Kbi 0 −I Kbb 0

0 0 L f T

b LsT

b 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q̄i
qi

g f
b

g s
b

us
b

uγ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f̄ i
f i

f̄ f
b

0
f s

b

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.29)
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This allows a more compact notation, as:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Mqq Mqg Mqb 0
Mgq Mg g 0 0
Mbq 0 Mbb 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

q̈
g̈b
üs

b
üγ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎢⎢⎣

Kqq Kqg Kqb 0
K gq K g g −AT

s Lb
Kbq −As Kbb 0
0 LT

b 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

q
gb
us

b
uγ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

f q
f̄ b
f s

b
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3.30)

As in the previous sections, the three-field assembled equations of motion can be simplified
to find a more efficient expression for the assembled system. However, since mixed assembly
is considered, one cannot simply apply the primal or dual assembly methods of the previous
sections. Instead, the transformations should also be mixed. First it should be realized that
in the case of mixed assembly both a unique interface displacement uγ field and unique inter-
face force field λ are needed to facilitate the interaction between the force and displacement
interface DoF of both substructures. One can then devise a transformation in the form:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

q
gb
us

b
uγ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0
0 −BT

b 0
0 0 Ls

b
0 0 I

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

q
λ

uγ

⎤⎥⎥⎥⎥⎥⎦ (3.31)

This transformation corresponds to primal assembly for the “flexibility” structures as in the
previous section, whereas the “stiffness” components are subject to Dirichlet-Neumann as-
sembly as outlined in section 3.3.3. Substitution of this transformation in eq. (3.28) intro-
duces both the unique interface force field and eliminates us

b, as shown in figure 3.7. Pre-
multiplication is needed only for the sake of symmetry and gives the mixed assembled sys-
tem:

⎡⎢⎢⎢⎢⎢⎣
Mqq −Mqg BT

b MqbLs
b−Bb Mgq Bb Mg g BT

b 0

LsT

b Mbq 0 LsT

b MbbLs
b

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

q̈
λ̈

üγ

⎤⎥⎥⎥⎥⎥⎦ +⋯⎡⎢⎢⎢⎢⎢⎢⎣
Kqq −Kqg BT

b KqbLs
b−BbK gq BbK g g BT

b −B f
b L f

b
LsT

b Kbq −L f T

b B f T

b LsT

b KbbLs
b

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

q
λ

uγ

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

f q−Bb f̄ b
LsT

b f b

⎤⎥⎥⎥⎥⎥⎦
(3.32)
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Figure 3.7: Simplification of the three-field formulation for the mixed assembly case.

For the sake of illustration, the above assembled equations are now worked out for the case
depicted in figure 3.2 (c), namely the assembly of two components, with substructure 1 has
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force interface DoF and substructure 2 displacement DoF. Furthermore, it is assumed that
the boundary DoF of both substructures are ordered equally.

In this case L f
b , Ls

b and Bs
b are identity matrices, while B f

b is minus identity. If the block
matrices are expanded and the DoF sets are reordered such that the Lagrange multipliers are
associated to component 1 and the interface displacement field is associated to component
2, one can write the assembled equations of motion according to:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M̄(1)
ii M̄(1)

ib 0 0

M̄(1)
bi M̄(1)

bb 0 0

0 0 M(2)
ii M(2)

ib
0 0 M(2)

bi M(2)
bb

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

¨̄q(1)i
λ̈

q̈(2)i
üγ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K̄(1)ii K̄(1)ib 0 0

K̄(1)bi K̄(1)bb 0 I
0 0 K(2)ii K(2)ib
0 I K(2)bi K(2)bb

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

q̄(1)i
λ

q(2)i
uγ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f̄ (1)i

f̄ (1)b
f (1)i
f (2)b

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.33)

From the above equation one can clearly see the way the two systems interact. In addition to
the external excitations, component 1 is excited by interface displacements from component
2 through its boundary DoF, while component 2 feels additional forces from component 1
through its interface.

The general framework for substructure assembly presented in the last three sections is sum-
marized in table 3.1. This table shows the DoF sets involved with the three-field formulation
as well as the possible dual, primal and Dirichlet-Neumann simplifications and the resulting
DoF sets. Furthermore, the total number of DoF n of the assembled system is indicated,
where ni is the sum of all the substructure internal/generalized DoF and nb the number of
unique boundary DoF in the total system.
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⎢ ⎥
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q
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T
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b
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⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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T
b b
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=

g B λ
u L u
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⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

q
λ

u
n = ni + 4nb n = ni + 2nb

Start:

Start:

Start:

Table 3.1: Simplification of the three-field formulation for the mixed assembly case.
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Intermezzo: Relations BetweenReductionMethods andAssembly Techniques

From the previous chapter it became clear that basically three types of component model
reduction methods exist: those employing fixed, free or mixed interface vibration modes in
the reduction basis. In the preceding sections it was shown that also three types of assem-
bly exist: stiffness, flexibility and mixed assembly. A strong relation exists between these
assembly methods and reduction techniques. Indeed, the ingredients used in the reduction
basis govern whether the interface degrees of freedom are displacement DoF, force DoF, or
a mixed of both. This in turn determines the kind of assembly procedure to be used.

In the case of fixed interface modes, the boundary DoF are automatically retained and a
stiffness representation at the interface is obtained, like in the Craig-Bampton method. The
substructures are then naturally assembled using the stiffness assembly procedures outlined
in section 3.3. Similarly, reduction of a model using free interface vibration modes leads to
force interface DoF. The most natural assembly procedure is hence the flexibility assembly of
section 3.4, like is done in the Dual Craig-Bampton method. In the same fashion the logical
consequence of reduction using the Mixed Craig-Bampton method is to employ the mixed
assembly method of the previous section.

In the Rubin and MacNeal methods however, the interface force DoF are transformed back to
displacement DoF in order to enable stiffness assembly of the reduced model. This could be
regarded as an artificial approach, which is confirmed by the fact that the resulting matrices
lose their sparsity. Analogously, one could devise a reduction method that employs fixed
interface vibration modes in which the natural interface displacement DoF are transformed
to force DoF such that flexibility assembly can be employed. Obviously, like the Rubin and
MacNeal method, this is unnatural and would lead to cumbersome reduced matrices.

The above discussion is summarized in figure 3.8, where the methods in light-grey circles
indicate the natural combination of reduction basis ingredient and assembly procedure. The
dark circles represent combinations that can be regarded as artificial.
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Figure 3.8: Relations between different reduction methods and assembly techniques.
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3.6 Assembly of Non-Conforming Meshes

One of the benefits of dynamic substructuring is that it allows to combine substructure mod-
els created by different engineering groups. These models are often created without any
knowledge of, or consideration for, the neighboring substructures. Since the models are
meshed independently, it is likely that their meshes are incompatible. This means that the
nodes at both sides of the interface are not collocated (i.e. at the same geometric position)
and/or the models are meshed with different types of elements having non-matching shape
functions. If this is the case, the meshes are said to be non-conforming and their assembly
requires special procedures.

One approach would be to remesh the component models such that they become compatible.
However, as explained in section 2.2, remeshing can be a tedious job that compromises the
overall effectiveness of the dynamic substructuring strategy. Furthermore, sometimes a spe-
cific element type is needed to properly describe the structure and remeshing with different
elements is not advisable.

A more efficient approach is therefore needed. One option is to use the interpolation func-
tions of the interface elements in order to enable assembly of non-conforming substructure
meshes. Based on the discussion in [171], the next subsections therefore treat the simple
but effective node collocation method and its least squares variant.3 Subsection 3.6.3 there-
after briefly addresses how to apply this method in the assembly procedures of the previous
sections.

3.6.1 Node Collocation

For the sake of illustration suppose that two substructures are to be assembled, but the in-
terfaces are not matching as depicted in figure 3.9. Obviously, due to the unequal number of
non-collocated boundary nodes the the compatibility condition can in this case no longer
be expressed using the Boolean matrices in eq. (3.3). Instead, a set of constraints is needed
for each substructure that equals its number of boundary DoF. This can be achieved by us-
ing the intermediate interface field uγ and its associated shape functions to interpolate and
connect the nodes to the intermediate field at some nγ DoF. This is illustrated in figure 3.9.
The compatibility condition can now be expressed as:

u(s)b = D(s)b uγ for s = 1, 2 (3.34)

where D(s)b is the substructure “collocation” matrix of size n(s)b × nγ. This collocation matrix
is obtained by evaluating the interface field shape functions at the coordinates of each of the
substructure boundary nodes. In order to uniquely define the displacements of the interface
field by the substructure displacements, it is assumed that its number of DoF is lower or
equal to the minimum number of substructure boundary DoF, that is:

nγ ≤min (n(1)b , n(2)b ) (3.35)

3Note that in the last two decades, the assembly of structural models with non-conforming discretizations
has become a research field on its own. An important contribution is the so-called Mortar element method,
see e.g. [22]. However, it is out of the scope of this work to treat these advanced methods.
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However, this approach is cumbersome in practice as specific shape functions have to be
defined for the interface field. Hence it would be desirable to express the interface field in
terms of the existing boundary DoF fields, thereby eliminating the intermediate interface
field.4 One way to achieve this is by choosing the interface field uγ equal to the coarsest
substructure boundary field, i.e. the substructure with the minimum of the number of nodes
on each interface. Note that uγ could also be chosen equal to the finest interface but this
would leave some DoF on this side unconnected, which might be undesirable in practice.

From figure 3.9 it becomes clear that in this case u(2)b are the master interface DoF while u(1)b
are the slave interface DoF. As a result, D(2)b becomes an identity matrix and only the collo-
cation matrix of substructure 1 needs to be computed, such that the compatibility condition
can be written as:

u(2)b = uγ

u(1)b = D(1)b uγ = D(1)b u(2)b

(3.36)

The collocation matrix D(1)b contains the values of the boundary shape functions on the inter-
face of substructure 2 at the positions of the interface nodes of substructure 1. This condition
imposes that the nodes of substructure 1 remain on the interface of substructure 2, as illus-
trated in the bottom right figure in 3.9.
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Three-field approach

21
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γu

21

( )1
bu ( )2

bu

( )2
bu

Non-conforming interface

γu

Figure 3.9: Two node-collocation approaches to handle non-conforming meshes on the interface.

However, both the general node collocation (eq. (3.34)) and the specific case where the in-
terface field is chosen as the coarsest of the substructure interfaces (eq. (3.36)) restrict the
number of interface DoF of the finest side, thereby stiffening its behavior. This might be un-
desirable, for instance if there is a large difference in the number of DoF at both sides of the
interface. It might therefore be beneficial to render some flexibility to the interface; one way
to achieve this is to relax the collocation constraints as explained next.

4The three-field formulation might however have some advantages for instance in formulating contact prob-
lems between non-matching grids [189].
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3.6.2 Discrete Least Squares Compatibility

Suppose now that eq. (3.34) is not directly imposed, but some interface incompatibility is
allowed. This means that eq. (3.34) can be used to compute the substructure displacements
such that the incompatibility between both fields is minimized in terms of the L2-norm.
Hence it is wished to find:

min
uγ
((u(s) − D(s)b uγ)T (u(s) − D(s)b uγ)) for s = 1, 2, (3.37)

which corresponds to

∂
∂uγ
((u(s)b − D(s)b uγ)T (u(s)b − D(s)b uγ)) = 0 for s = 1, 2 (3.38)

Obviously, given condition (3.35), this is an overdetermined problem that can be solved in a
least square sense. This gives results in:

uγ = (D(s)T

b D(s)b )−1
D(s)T

b u(s)b = D̃(s)b u(s)b (3.39)

This expression gives the discrete least squares compatibility condition between the sub-
structure boundary DoF and the intermediate interface field. As in case of the normal node
collocation, the intermediate field can again be eliminated by choosing the coarsest inter-
face as the master interface. This leads to the following compatibility condition between
substructures 1 and 2:

uγ = u(2)b

uγ = (D(1)T

b D(1)b )−1
D(1)T

b u(1)b → u(2)b = D̃(1)b u(1)b

(3.40)

where use was made of the fact that in this case D(2)b = D̃(2)b = I. Clearly the discrete least
squares approach gives less rigid connections between the substructure DoF, as the number
of constraints imposed by (3.40) is now equal to the number of DoF on the coarsest interface,
instead of the number of DoF of the finest side as in eq. (3.36). The compatibility condition
in (3.40) therefore leads to a “best fit” in the least squares sense, by minimizing the interface
incompatibility.
It should be noted that in both the node collocation and the discrete least square method only
nodal compatibility is considered. Hence the substructures are only point-wise connected
and the compatibility error along the interface between the nodes is disregarded. This could
lead to bad overall compatibility for non-uniform and highly incompatible meshes and de-
tailed results (e.g. stress concentrations) at the interface cannot be accurately predicted.
Alternatively, continuous compatibility methods could be used. These methods can be seen
as evaluating eq. (3.37) by an integral over the boundary; the resulting D(s) have the same
form but are obtained by integration of the product of shape function of the substructure
displacement and uγ on the interface. In terms of subsequent algebraic treatment it therefore
makes no difference whether discrete or continuous compatibility is considered. The reader
is referred to [171] for a detailed discussion on continuous compatibility methods.
Nonetheless, discrete compatibility methods are still often used (also in many commercial
software packages) since they are easy to implement and, following Saint-Venant’s principle,
will in general not significantly alter the global dynamic behavior.
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3.6.3 Implementation in Assembly Procedures

The node collocation and discrete least squares compatibility can be implemented in a straight-
forward manner in the assembly procedures treated in the previous sections. For the stiffness
and flexibility assembly cases this is done as described below, for the case of mixed assembly
both approaches are simply combined.

Stiffness assembly In the case of stiffness assembly, the methods are easily implemented
by replacing the local Boolean matrices L(s)b by the collocation matrices D(s)b or D̃(s)b
in case least squares collocation is used. In both cases the collocation matrices can
either be obtained using a general intermediate field as in eqs. (3.34) and (3.39), or by
selecting a master interface as in eqs. (3.36) and (3.40). In the latter case, some of the
collocation matrices are equal to identity.

Collecting the substructure collocation matrices D(s)b (or equivalently D̃(s)b ) in a block
form as

Db = col (D(1)b ; . . . ; D(n)b ) , (3.41)

leads to a three-field formulation similar to eq. (3.5), namely:
⎡⎢⎢⎢⎢⎢⎢⎢⎣

M ii M ib 0 0
Mbi Mbb 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

q̈i
üb
g̈b
üγ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎢⎢⎣

K ii K ib 0 0
Kbi Kbb −I 0
0 −I 0 Db
0 0 DT

b 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

qi
ub
gb
uγ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

f i
f b
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3.42)

One can now proceed as in section 3.3 by simplifying the equations through dual or
primal assembly. This requires a new signed matrix that is acting on the interface DoF
B̄b which, like Db, is no longer Boolean. However, the relation between these matrices
is still according to eq. (3.9) and hence B̄b can be computed as:

B̄b = null (Db)
The dual assembled equations are now obtained by choosing

gb = −B̄T
b λ

There are now as many Lagrange multipliers as there are DoF in uγ, hence one La-
grange multipliers can act between multiple boundary DoF of the same substructure.
The intensities are however different since B̄b is no longer Boolean. The obtained equa-
tions of motion have the same form as eq. (3.11). In a similar fashion as in section 3.3
the primal system can be obtained, by choosing:

ub = Dbuγ

Again, the obtained equations of motion look like eq. (3.14), with Lb replaced by Db.

Flexibility assembly Implementation of the nodal collocation methods in the case of flex-
ibility assembly is equally straightforward. In the first step, the Boolean matrices are
replaced by the collocation matrices to find the following equivalent of eq. (3.21):⎡⎢⎢⎢⎢⎢⎣

M̄ ii M̄ ib 0
M̄bi M̄bb 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

¨̄qi
g̈b
üγ

⎤⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎣

K̄ ii K̄ ib 0
K̄bi K̄bb Db
0 DT

b 0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

q̄i
gb
uγ

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

f̄ i
f̄ b
0

⎤⎥⎥⎥⎥⎥⎦ (3.43)
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As explained in section 3.4, these equations can only be further simplified in a primal
manner. This is again done by choosing the interface forces as:

gb = −B̄T
b λ,

and assembled equations are found that are similar to eq. (3.27).

3.7 Assembly with Additional Interface Physics

The assembly procedures outlined above all assume a perfect connection between the sub-
structure boundary DoF. For many substructures this however does not hold true. Consider
for example two components that are connected by a bolt, a situation encountered very often
in practice. Due to this connection some flexibility and/or damping is introduced on the in-
terface that is not present in the separate components. Many other examples of connections
are imaginable where some physics are added to the system simply through the coupling of
components. Often these interface effects are simply neglected. However, in case the inter-
face physics introduce significant flexibility or inertia to the system this simplification cannot
be made.

In this section a method is therefore proposed which allows easy incorporation of these inter-
face effects in the assembly procedure by changing the imposed interface conditions. Next, it
will be explained how additional interface stiffness or inertia can be accounted for in both the
stiffness and flexibility cases. In order to incorporate interface physics in the case of mixed
assembly, both approaches can be simply combined.

3.7.1 Stiffness Assembly with Additional Interface Physics

3.7.1.1 Stiffness Assembly with Interface Stiffness

In order to explain the treatment of additional interface physics for the case of stiffness as-
sembly, first recall the three-field formulation of section 3.3:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

M ii M ib 0 0
Mbi Mbb 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

q̈i
üb
g̈b
üγ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎢⎢⎣

K ii K ib 0 0
Kbi Kbb −I 0
0 −I 0 Lb
0 0 LT

b 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

qi
ub
gb
uγ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

f i
f b
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3.5)

Suppose now that the boundary DoF are not perfectly connected, but assembled through
some interface stiffness κbb. This situation is illustrated in figure 3.10(a) for the assembly
of two components. Due to the presence of this interface stiffness the interface DoF are
free to have a relative displacement and the compatibility condition between these DoF no
longer holds. Hence, the third equation in the above expression cancels which eliminates
the intermediate field uγ. Due to the construction of the Boolean matrix Bb, the relative
displacements of the interface DoF can be expressed as:

∆ub = Bbub (3.44)
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Furthermore, the interface forces associated to the “flexible” boundary DoF can be chosen
to be expressed as:

gb = −BT
b λ (3.45)

In this way the interface forces in gb are chosen such that, due to the construction of the
Boolean matrix, the interface forces are always equal and opposite. As before, the Lagrange
multipliers λ are the force intensities. Indeed, due to the properties of the Boolean matrices
the equilibrium condition is always satisfied:

LT
b gb = −LT

b BT
b λ = 0 (3.46)

Next it should be realized that the interface forces result from the deformation of the interface
stiffness κbb. Hence the interface force intensities can be expressed as:

λ = κbb∆ub = κbbBbub (3.47)

The interface connection forces are therefore found as:

gb = −BT
b κbbBbub (3.48)

Note that the interface stiffness κbb contains the stiffness of the interface springs and is in
general a diagonal matrix. As such, κbb is not like a regular stiffness matrix, but becomes
one after pre- and postmultiplication by Bb. This can be illustrated by the simplest example
where two boundary DoF u(1)b and u(2)b are connected through stiffness kb. In that case one
finds:

Bb = [1 − 1] → BT
b kbBbub = [ kb −kb−kb kb

] [ u(1)b
u(2)b
]

With the expression for the connection forces in eq. (3.48), the following assembled equa-
tions of motion are found:5

[ M ii M ib
Mbi Mbb

] [ q̈i
üb
] + [ K ii K ib

Kbi Kbb + BT
b κbbBb

] [ qi
ub
] = [ f i

f b
] (3.49)

A few remarks are in place regarding these assembled equations:

• Due to the action of the interface stiffness the substructures are automatically assem-
bled. In other words, there is no longer any choice whether to perform the assembly
in a dual or primal way.

• Interface damping effects can be taken into account in the exact same manner. In that
case, the expression for the interface connection forces becomes

gb = −BT
b κbbBbub − BT

b δbbBbu̇b , (3.50)

with δbb the interface damping matrix, and the assembled damping matrix has the
same topology as the stiffness matrix. In [159], this formulation was applied to include
non-linear interface damping arising from friction effects.

5Note that this result can also be obtained directly from the Lagrangian in eq. (3.4), by disregarding the
intermediate interface field uγ and including the interface stiffness κbb and taking the variation.
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• In (3.47), by stating that κbb is a diagonal matrix, it is implicitly assumed that the force
expressed by a Lagrange multiplier is related only to the interface incompatibility seen
by that multiplier. So, in other words, one can create coupling only between corre-
sponding DoF across the interface, and not represent a coupled stiffness/damping net-
work on the interface. In the latter case the interface physics would need to be incor-
porated as a true “third component” between two substructure interfaces. However,
as long as the interface springs/dampers are connected in the same way as the inter-
face DoF, the formulation in this section is considered a simpler and more elegant
approach.

• In case the interface includes dynamics, it is no longer correct to assume that the forces
on each side of the interface are equal as in eq. (3.45). In the next subsection it is
therefore explained how to include additional interface inertia.

• In the above discussion, interface stiffness was assumed to act between all boundary
DoF. In case not all boundary DoF are affected by the interface stiffness but are per-
fectly connected instead, one can a) increase the stiffness for those DoF in κbb to a
value that is orders of magnitude higher than the corresponding entries in Kbb or b)
partition the DoF set into a set of “perfect” boundary DoF ub and a set of “flexible”
DoF u f . As the former approach leads to bad matrix conditioning the latter approach
is preferable, and is illustrated in figure 3.10 (a). Partitioning the boundary DoF and
applying the procedure in this section to only the “flexible” DoF then gives the follow-
ing assembled matrices:

⋯+
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K ii K ip K i f 0 0
K pi K pp K p f −I 0
K f i K f p K f f + BT

f κbbB f 0 0

0 −I 0 0 Lp
0 0 0 LT

p 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qi
up
u f
g p

uγ,p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.51)

Here the mass matrix is omitted for compactness. Note that for the “perfect” DoF up
a choice needs still to be made as to assemble them in a dual or primal fashion, as
described in sections 3.3.1 and 3.3.2.

• The assembly of systems with perfect connections can be regarded as a special case
of the above situation, namely when ∥κbb∥ → ∞. Then ∆ub = Bbub → 0 and the
compatibility condition indeed holds.

• The same formulation is found when one wants to enforce compatibility with a penalty
method; the interface stiffness is then the penalty. See for instance [171].

3.7.1.2 Stiffness Assembly with Interface Inertia

In a way similar to the previous subsection, additional interface inertia µbb can be incorpo-
rated in the assembled equations of motion. This is illustrated in figure 3.10 (b). In this case
the reasoning is as follows. Due to the presence of additional inertia the force equilibrium
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Figure 3.10: Assembly of components with additional interface physics in the form of stiffness and
damping (a) and additional inertia (b).

between the interface DoF no longer holds. Instead, a resulting force exists on the interface
which can be expressed as:

∆gb = LT
b gb (3.52)

This force leads to acceleration of the additional inertia at the intermediate interface DoF:

µbbüγ = −∆gb = −LT
b gb (3.53)

The minus sign originates from the fact that the gb are the forces applied on the substructures,
hence the additional interface inertia experiences these forces in the opposite direction. Next
it is realized that, since only inertia is added between the components, the compatibility
condition still holds:

ub = Lbuγ (3.54)

Substitution of expressions (3.53) and (3.54) in the three-field formulation of eq. (3.5), and
considering the primal assembly process that led to (3.14), leads to the following assembled
equations:

[ M ii M ibLb
LT

b Mbi LT
b MbbLb + µbb

] [ q̈i
üγ
] + [ K ii K ibLb

LT
b Kbi LT

b KbbLb
] [ qi

uγ
] = [ f i

LT
b f b
] (3.55)

Clearly, the interface inertia is added to the sum of the substructure inertia’s at the interface.
Note that in this case one automatically ends up with a primal assembled system. The ad-
ditional inertia violates the equilibrium condition, such that dual assembly using Lagrange
multipliers becomes impossible. However, since the compatibility condition still holds the
redundant interface DoF can be eliminated through primal assembly. As was remarked for
the case of additional interface stiffness, the interface DoF ub can easily be split into a part
um where additional inertia is present and a part up that are perfectly connected. For the
latter, one still has a choice for further simplification through dual or primal assembly.

In case both interface stiffness and inertia need to be taken into account, two situations can
be encountered:

• When the interface stiffness and inertia act at disjoint sets of boundary DoF (i.e. an
interface DoF feels either additional stiffness or mass), the approach of this and the
previous subsection can be individually applied to the associated DoF sets.
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• In case interface stiffness and inertia act simultaneously between some interface DoF,
both the compatibility and equilibrium condition can no longer be satisfied at these
DoF. Indeed, this amounts to assembly of the interface physics as an intermediate sub-
structure.

3.7.2 Flexibility Assembly with Additional Interface Physics

3.7.2.1 Flexibility Assembly with Interface Stiffness

To account for the presence of additional interface stiffness in the case of flexibility assembly,
recall the assembled system obtained in section 3.4:

⎡⎢⎢⎢⎢⎢⎣
M̄ ii M̄ ib 0
M̄bi M̄bb 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

¨̄qi
g̈b
üγ

⎤⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎣

K̄ ii K̄ ib 0
K̄bi K̄bb Lb
0 LT

b 0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

q̄i
gb
uγ

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

f̄ i
f̄ b
0

⎤⎥⎥⎥⎥⎥⎦ (3.21)

Again it is assumed that the boundary DoF are not perfectly connected, but are coupled
through some interface stiffness κbb. To account for this stiffness it should again be realized
that the compatibility condition no longer holds. As a result, it is no longer correct to state
that there exists a unique set of interface DoF such that ub = Lbuγ, but one must keep all ub
as independent variables. The above expression thus becomes:

⎡⎢⎢⎢⎢⎢⎣
M̄ ii M̄ ib 0
M̄bi M̄bb 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

¨̄qi
g̈b
üb

⎤⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎣

K̄ ii K̄ ib 0
K̄bi K̄bb I
0 LT

b 0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

q̄i
gb
ub

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

f̄ i
f̄ b
0

⎤⎥⎥⎥⎥⎥⎦ (3.56)

Next, following the reasoning of the previous section, it is observed that the equilibrium
condition can still be satisfied by choosing:

gb = −BT
b λ (3.57)

Introducing this relation in (3.56) cancels the third line and multiplying the second line by−Bb, similar to what was done in the dual assembly to obtain (3.27), then gives:

[ M̄ ii −M̄ ibBT
b−Bb M̄bi Bb M̄bbBT
b
] [ ¨̄qi

λ̈ ]+[ K̄ ii −K̄ ibBT
b−BbK̄bi BbK̄bbBT
b
] [ q̄i

λ ]+[ 0
Bbub

] = [ f̄ i−Bb f̄ b
]

(3.58)

Like in the previous section for the stiffness assembly, the interface forces λ are caused by
the relative interface displacements ∆ub = Bbub through the stiffness between every pair of
DoF related by the Lagrange multipliers:

λ = κbbBbub or Bbub = κ−1
bb λ (3.59)

This indicates that the interface gap is generated by the λ over the interface flexibility. Re-
placing this relation in (3.58) yields the final result

[ M̄ ii −M̄ ibBT
b−Bb M̄bi Bb M̄bbBT
b
] [ ¨̄qi

λ̈ ]+[ K̄ ii −K̄ ibBT
b−BbK̄bi BbK̄bbBT

b + κ−1
bb
] [ q̄i

λ ] = [ f̄ i−Bb f̄ b
] (3.60)
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So, the additional interface flexibility is simply added to the assembled flexibility of the sub-
structures at the interface DoF (recall that K̄bb is an interface flexibility matrix). Note the
duality with adding the interface inertia in the stiffness assembly in (3.55); in both cases one
ends up with a primal assembled set of equations.

Of course, as remarked before, the above technique can also be applied to a subset of inter-
face DoF in case additional stiffness acts only on part of the interface(s). Furthermore it is
remarked that it is probably possible to also include additional interface damping in the case
of flexibility assembly, although it is not directly clear how. This is beyond the scope of this
work.

3.7.2.2 Flexibility Assembly with Interface Inertia

Finally, this subsection considers the incorporation of additional interface inertia in the case
of flexibility assembly. As before, due to the presence of the interface inertia, the interface
forces gb are no longer satisfying the action-reaction equilibrium, but a resulting force will
be created as expressed by eq. (3.53):

µbbüγ = −∆gb = −LT
b gb (3.53)

Replacing then the last line of eq. (3.21) by this dynamic equilibrium directly yields the equa-
tions for the assembled system with additional interface inertia:

⎡⎢⎢⎢⎢⎢⎣
M̄ ii M̄ ib 0
M̄bi M̄bb 0
0 0 µbb

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

¨̄qi
g̈b
üγ

⎤⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎣

K̄ ii K̄ ib 0
K̄bi K̄bb Lb
0 LT

b 0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

q̄i
gb
uγ

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

f̄ i
f̄ b
0

⎤⎥⎥⎥⎥⎥⎦ (3.61)

3.8 Decoupling of Component Models

So far, this chapter considered techniques to couple substructure models to obtain the total
system model. However, sometimes one has to consider the reverse problem, namely how
a substructure model can be found from the assembled system by decoupling. Obviously
this is only relevant for components that cannot be modeled numerically, for instance due to
viscoelasticity (i.e. frequency dependent behavior), high damping, too complex geometry,
high modal density, etc. In that case an experimental model can be created from measure-
ments. Sometimes a component cannot be tested separately, but only when coupled to their
neighboring substructure(s) (e.g. a fixture needed for testing). This can for example be the
case for subsystems that are very delicate or in operational conditions [99]. In these cases
decoupling of the component from neighboring substructures becomes a relevant issue.

Although substructure decoupling techniques are not the main focus of this thesis, this sec-
tion takes a sidestep and briefly addresses a number of developments in this field. To this
end, the next subsection briefly describes the decoupling problem, which will be formalized
in subsection 3.8.2 using a dual (dis)assembly approach. Thereafter, subsection 3.8.3 presents
a framework for decoupling methods. Note that the discussion in this section is a concise
version of the work presented in [211, 212, 213], more details can be found in these publica-
tions.
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3.8.1 Problem Description

To illustrate the problem at hand, consider subsystems A and C shown in figure 3.11 (a); when
assembled they form assembly AC. In a dynamic substructuring analysis, the dynamics of
AC are obtained by coupling the dynamic models of A and C. In substructure decoupling,
the reverse problem is solved. In this case, it is assumed that the models of the assembly AC
and the substructure A are known. Based on this information, the aim is to find the dynamics
of component C as a “stand alone” component, that is, completely decoupled from A.

= +

–=

Substructure decoupling:

Substructure coupling:

(a) (b)

(unknown)C AC (known) (known)A

C (known)AC (unknown) A (known)

au
bu

cu

A C
bg

i cf ∈ f
o cu ∈u

i o

A
bu

au

C
bu

cu

Figure 3.11: Substructure coupling vs. decoupling (a); finding the uncoupled response of C (b).

Practical applications of substructure decoupling can be imagined in structural monitoring
and vibration control for critical components in an assembly. However, as outlined in [47],
a number of challenges remain in the practical implementation of decoupling techniques.
One important issue is the sensitivity of decoupling techniques to small (measurement) er-
rors, especially around the anti-resonances of the known component [192].6 In this thesis
the decoupling problem is formulated in a general framework, using a dual (dis)assembly
approach. This framework can then be used to show the relations between existing decou-
pling techniques and allows deriving new, possibly more robust techniques.

To illustrate the problem of substructure decoupling more thoroughly, the situation depicted
in figure 3.11 (b) is considered. For the sake of illustration, suppose one is interested in the
response uo of component C at degree of freedom (DoF) o, due to excitation fi at DoF i,
without the influence of neighboring subsystem A. Both DoF are internal to subsystem C
and hence part of uc. In general, the decoupling problem can now be described as follows:

• The force fi excites the system AC at DoF i internal to component C. As a result, the
assembled system AC shows a response uAC .

6In substructure decoupling the sensitivity is highest around the anti-resonance frequencies of the known
subsystem(s), while in substructure coupling the sensitivities are highest around the subsystems resonances
[209].



3.8 Decoupling of Component Models ∣ 79

• Now take only the part of the response of AC associated to component C and realize
that in addition to the excitation force fi , subsystem C in the assembly AC is also
subjected to connection forces of component A.

• Additional forces opposing these connection forces should thus be applied to the as-
sembly AC in order to let C behave without “feeling” the influence of A.

• Using the dynamic model of uncoupled system A, one can determine these connection
forces loads by imposing to the uncoupled model the coupled responses of subsystem
A.

Summarizing, one can formulate the decoupling problem as finding the behavior of sub-
structure C as part of the assembled system AC when additional forces are applied at the in-
terface such that substructure C experiences no connection forces from subsystem A. Hence,
substructure C behaves as if it were decoupled from A.

3.8.2 Dual Formulation of the Decoupling Problem

The decoupling procedure outlined in the previous section will be formalized mathemati-
cally in this section. As mentioned above, the dynamics of the assembled system AC and
component A are known and assumed to be expressed in the frequency domain. A sys-
tematic approach can be taken when starting from a dynamic stiffness representation of the
subsystems. In general, the dynamic stiffness matrix can be obtained from the structural
matrices as follows:

Z (ω) = K + iω2C − ω2M (3.62)

Here ω denotes the frequency dependence. Hence, the assembled system AC is described as

ZACuAC = f AC + gAC

⎡⎢⎢⎢⎢⎢⎣
ZA

aa ZA
ab 0

ZA
ba ZA

bb + ZB
bb ZC

bc
0 ZC

cb ZC
cc

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

ua
ub
uc

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

f a
f b
f c

⎤⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎣

0
gb
0

⎤⎥⎥⎥⎥⎥⎦
(3.63)

For the sake of illustration it is assumed that ZAC originates from a primal assembly of the
substructures, as can be seen from comparison with eq. (3.14) (with identity Boolean matri-
ces). Similarly the dynamic stiffness of subsystem A writes:

ZAuA = f A − gA

[ ZA
aa ZA

ab
ZA

ba ZA
bb
] [ ua

uA
c
] = [ f a

f c
] − [ 0

gA
c
] .

(3.64)

Here g⋆ now represents the disconnection forces felt from the coupling/decoupling of the
neighboring components. Since the aim is to decouple component A from AC, the signs of
these connection forces should be opposite as explained in section 3.8.1. The subscripts a, c
and b denote “internal to subsystem A”, internal to subsystem C and “boundary”, respectively;
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the superscripts A, C and AC denote the two subsystems and the assembled system. The
explicit frequency dependence is omitted for clarity.
Just as in the case of substructure coupling two interface conditions must be satisfied when
decoupling, namely the compatibility and equilibrium conditions. Firstly, the compatibility
condition governs the compatibility of of connected interface DoF. In this case:

ub = uA
b (3.65)

Secondly, the equilibrium condition imposes that the connection forces between the sub-
structures should be in equilibrium, i.e.:

gb + gA
b = 0 (3.66)

Similar to the procedures in sections 3.3 to 3.5, two Boolean matrices (assuming the interfaces
are conforming) can be introduced to allow a systematic description of the problem. The first
is the signed Boolean matrix B, operating on the substructure interface degrees of freedom.7
Using this Boolean matrix, the compatibility condition can be conveniently expressed as

Bu = [ BAC BA ] [ uAC

uA ] = ub − uA
b = 0 . (3.67)

The second Boolean matrix L localizes the interface DoF of the substructures in the global set
of DoF and is similar to the localization matrices used in the assembly of individual elements
in finite element models. In this case, the equilibrium condition can be stated as:8

LT g = [ LACT LAT ] [ gAC

gA ] = 0 → gb + gA
b = 0 (3.68)

As was noted in section 3.3 in eq. (3.9), L actually represents the nullspace of B or vice versa.
Equations (3.63), (3.64), (3.67) and (3.68) now fully describe the decoupling problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ ZAC 0
0 ZA ] [ uAC

uA ] = [ f AC

f A ] + [ gAC−gA ]
[ BAC BA ] [ uAC

uA ] = 0
[ LACT LAT ] [ gAC

gA ] = 0
(3.69)

These equations are the two-field formulation of the decoupling problem, which bears strong
resemblance to the three-field form of the coupling problem of eq. (3.5). The main differ-
ence is that in the above equations the intermediate field uγ is absent, which can likewise be
eliminated from eq. (3.5) by multiplying its third row by Bb.9

7Whereas in the previous sections this Boolean matrix was defined on the interface DoF only (Bb), here
B is defined to act on all substructure DoF. Both Booleans are simply related as B = [0 Bb], were the zeros
correspond to the substructure’s internal DoF.

8Similar to the B matrix, the localization matrix L is in this section defined to act on all substructure DoF
in contrast to the previously used Lb. These matrices are simply related through L = [I Lb], with the identity
matrix corresponding to the internal DoF.

9The decoupling problem can also be formulated in a three-field form. Like in the case of substructure
coupling, this is however only useful for mixed decoupling problems, i.e. when a component expressed in
stiffness terms is subtracted from an assembly expressed in flexibility or vice versa. This is not very relevant
since measured systems are generally in terms of flexibility matrices and hence the mixed decoupling problem
is not considered here.
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Starting from equation (3.69), one can proceed to solve the decoupling problem in a primal
or dual manner exactly like in section 3.3. In this section a dual approach will be taken, since
it was shown in [52, 53] to be the most natural when dealing with experimental data and
avoids double inversion of the (measured) FRF matrices as encountered in primal assembly.
As in section 3.3.1, dual assembly is achieved by choosing the interface forces in the form:

g = −BT λ (3.70)

Here, λ are again Lagrange multipliers corresponding to the interface force intensities. Due
to the construction of the Boolean matrices, this choice satisfies the equilibrium condition
and the decoupling problem can be formulated in a dual way as:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ZACuAC + BACT λ = f AC

ZAuA − BAT λ = f A

BACuAC + BAuA = 0
(3.71)

One can transform this to matrix vector notation as:

⎡⎢⎢⎢⎢⎢⎣
ZAC 0 BACT

0 −ZA BAT

BAC BA 0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

uAC

uA

λ

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

f AC

0
0

⎤⎥⎥⎥⎥⎥⎦ (3.72)

The above equation has been symmetrized by multiplying the second equation by minus 1.
Note that since component A is not of particular interest here it is assumed that, for the sake
of simplicity, f A = 0 . This last relation clearly shows that the decoupling of a subsystem is
equivalent to a dual assembly of a negative dynamic stiffness for the substructure that one
wants to subtract (here substructure A). Note that this is sometimes referred to as “fictitious
domain substructuring” [52, 48]. The actual uncoupled FRFs of C can now be found by
eliminating the Lagrange multipliers. At first, start by writing explicitly the substructure
DoF as:

uAC = ZAC–1 ( f AC − BACT λ) (3.73)

uA = ZA–1 BAT λ (3.74)

Substitution in the compatibility condition and solving for λ gives:

λ = (BAC ZAC–1 BACT − BAZA–1 BAT)−1
BAC ZAC–1 f AC (3.75)

Substitution in the expression for uAC (eq. (3.73)) gives the decoupled responses:

uAC = (ZAC–1 − ZAC–1 BACT (BAC ZAC–1 BACT − BAZA–1 BAT)−1
BAC ZAC–1) f AC (3.76)

It should now be realized that the dynamic stiffness matrices are the inverse of the receptance
matrices, where the latter are usually obtained from dynamic experiments. , which might be
obtained from a (reduced) numerical model, So:

ZAC–1 = Y AC and ZA–1 = Y A. (3.77)
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Hence one can write:

uAC = (Y AC − Y AC BACT (BACY AC BACT − BAY ABAT)−1
BACY AC) f AC

= Y AC f AC − Y AC BACT Z intuint
(3.78)

where

Z int = (BACY AC BACT − BAY ABA)−1

uint = BACY AC f AC
(3.79)

A clear physical interpretation can be given to this form of the decoupling problem as follows:

• The term Y AC f AC represents the response of assembly AC to external excitation f AC

• This leads to interface displacements uint

• However, these interface displacements are due to the combined stiffness of A and C.
Therefore, a corrected interface stiffness Z int must be calculated to eliminate the influ-
ence of substructure A

• The adjusted interface stiffness times the interface displacements (Z intuint) leads to a
correction force at the interface DoF

• This force correction is spread to the other DoF through multiplication by Y AC BACT

Next, the expressions for the receptance matrices of systems A and AC can be inserted in
(3.78) and the products with the Boolean matrices calculated. This gives: Extracting the
third row then gives the expression for the uncoupled FRFs Y cc of C:

uc = Y B
cc f c = (Y AC

cc − Y AC
cb (Y AC

bb − Y A
bb)−1 Y AC

bc ) f c (3.80)

Note that this expression for Y B
cc is exactly equal to what would be found if a primal approach

was taken, as shown in [212]. The procedure of dual decoupling is illustrated in figure 3.12.

i cf ∈ f
o cu ∈u

o

i cf ∈ f
o cu ∈u

oλ λ

ABZ AZ BZ
Figure 3.12: Substructure decoupling from a dual perspective.
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3.8.3 Framework for Substructure Decoupling

Based on the dual formulation of the previous section, the approach can be generalized to
find a framework from which several decoupling techniques can be derived. This framework
is based on the idea that in decoupling problems, in contrast to substructure coupling, a cer-
tain freedom exists in the choice of DoF on which to enforce the compatibility and equilib-
rium conditions. In other words, it is not required to enforce compatibility and equilibrium
on the same (number of) DoF. Physically this translates to applying forces at some set of DoF
in order to satisfy compatibility at another set of DoF. This idea can be expressed in equations
by taking different Boolean matrices for the compatibility and equilibrium conditions, as:

⎡⎢⎢⎢⎢⎢⎣
ZAC 0 EACT

0 −ZA EAT

CAC CA 0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

uAC

uA

λ

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

f AC

0
0

⎤⎥⎥⎥⎥⎥⎦ (3.81)

Here E⋆ are the Boolean matrices defining the location of the uncoupling forces while C⋆ are
the matrices enforcing compatibility. One way to understand the value of this formulation is
by realizing that assembly AC itself can be written as a dual assembly of components A and
C, so:

ZACuAC = f AC ↔
⎡⎢⎢⎢⎢⎢⎢⎢⎣

ZA 0 BAT

0 ZB BBT

BA BB 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣

uAC
A

uAC
B

λAC

⎤⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎣

0

f AC
B

0

⎤⎥⎥⎥⎥⎥⎥⎦
(3.82)

Here it was again assumed that f A = 0 . This dual form can be inserted in eq. (3.81) to find:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ZA 0 BAT
0 −EAT

0 ZB BBT
0 0

BA BB 0 0 0

0 0 0 −Z̃A EAT

−CA 0 0 CA 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uAC
A

uAC
B

λAC

uA

λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

f AC
B

0

0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.83)

Here the dynamic stiffness matrix of the separate component A is denoted by Z̃A, while the
dynamic stiffness of A embedded in the total system AC is denoted by ZA. Theoretically
these should be identical, but due to measurement errors and test procedures they will not
be exactly equal in practice so that Z̃A = ZA+∆. Writing the decoupling problem in this form
allows to derive different decoupling methods, depending on the choices for C⋆ and E⋆. In
essence these conditions can be anything, as long as they enforce interface compatibility and
lead to a solvable interface problem. The goal thereby is to choose these conditions such that
the effect of the error ∆ on the decoupled FRFs is minimized.

For the sake of clarity, the expression for ZAC is compacted again to write:

⎡⎢⎢⎢⎢⎢⎣
ZAC 0 EACT

0 −Z̃A EAT

CAC CA 0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

uAC

uA

λ

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

f AC

0
0

⎤⎥⎥⎥⎥⎥⎦ (3.84)



84 ∣ Chapter 3 – Assembly of Component Models

Taking the above expression as the general formulation of the decoupling problem, the La-
grange multipliers can be eliminated and solved for the uncoupled responses as before. This
gives

uAC = (Y AC − Y AC EACT (CACY AC EACT − CAỸ AEAT)+ CACY AC) f AC , (3.85)

where + denotes the (Moore-Penrose) pseudo-inverse, since the middle bracketed term is
now no longer necessarily a square matrix.

On the basis of equations (3.84) and (3.85) a family of decoupling techniques can be derived
and existing techniques can be classified. These methods are however not in the main focus
of this thesis, the reader is therefore referred to [213] for further details.

3.9 Summary

Substructure assembly techniques were the topic of this chapter. In section 3.2 a general
framework was sketched for substructure assembly by identifying the three possible assem-
bly cases. Based on a three-field formulation the “stiffness”, “flexibility” and “mixed” assem-
bly cases have been worked out in sections 3.3, 3.4 and 3.5 respectively, thereby enabling
assembly of all types of (reduced) component models. Hence, all types of reduced models
can now be treated as superelements, even those obtained from the Dual and Mixed Craig-
Bampton methods (see sections 2.5.4 and 2.6). As such, this framework allows reduced mod-
els to be created independently and used as building blocks for the total model.

Section 3.6 addressed the issue of non-conforming interface meshes, a situation regularly
encountered if substructure models are created separately. The simple but effective node
collocation method was outlined, as well as its least squares variant. These methods allow
to enforce point-wise compatibility between the substructures and can be directly incorpo-
rated in the assembly framework. Thereafter, section 3.7 treated the situation where addi-
tional physics arise from the interface. Such effects are often overlooked or neglected in
substructure assembly. It was outlined how these additional physics can be accounted for
in a straightforward manner, without the need to model them explicitly as an intermediate
substructure. Note that all assembly techniques have been incorporated in the DS Toolbox,
and more specifically the AssemblyTool (see appendix A).

In the final section of this chapter a small sidestep was made by considering the reverse
problem, namely the decoupling of a component model from an assembled system. This
problem is relevant for subsystems that cannot be properly modeled and can only be charac-
terized experimentally when attached to some neighboring substructure(s). Based on a dual
formulation, it was shown that the decoupling problem amounts to assembly of a negative
dynamic stiffness. Furthermore, the dual disassembly approach allows freedom in the choice
for DoF on which to enforce the compatibility and equilibrium conditions. This freedom is
unique to decoupling problems and allows to derive new, possibly more robust techniques.



4
Interface Reduction & Assembled System

Analysis

Essentially, all models are wrong,
but some are useful.

(George Box)

4.1 Introduction

In the previous to chapters it was explained how component models can be reduced and
subsequently assembled to obtain compact representations of detailed structural dynamic
models. Sometimes however, the component models are connected through large and com-
plex interfaces leading to high numbers of interface DoF. Obviously, this limits the achiev-
able reduction of the component models and hence decreases the efficiency of the dynamic
substructuring approach.

To overcome this problem interface reduction can be applied such that truly compact models
can be obtained. In this second reduction step, the number of interface DoF is decreased
while the overall accuracy remains at an acceptable level. A number of methods exist to
achieve this, which will be addressed in the first part of this chapter. First, section 4.2 explains
the issue associated with and different options for reducing the boundary DoF. Section 4.3
thereafter outlines a simple yet effective reduction technique. The more general modal trun-
cation based interface reduction methods are subsequently addressed in sections 4.4 and 4.5,
respectively for interfaces expressed in terms of displacement and force DoF.

Once a satisfactory assembled model is obtained, it can be used for the actual structural dy-
namic analysis of the modeled system. This is the topic of the second part of this chapter. For
instance, the model can be subjected to a modal or harmonic analysis, or a time simulation.
Although such analysis methods span a research area in itself, section 4.6 briefly addresses

85
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Figure 4.1: Current chapter in relation to other chapters in part I of this thesis.

these for illustrative purposes. Thereafter, section 4.7 outlines different comparison and cor-
relation techniques that can be used judge the results obtained from the analyses. As usual,
the chapter is concluded with a brief summary in section 4.8 and the relation between the
topics of this and other chapters is illustrated in figure 4.1.

4.2 Options for Interface Reduction

Complex engineering structures, such as a modern wind turbine, commonly consist of a
large number of (structural) components. Consequently, a large number of interfaces be-
tween these components exist. Furthermore, these interfaces may be extensive and com-
plex. When a structural dynamic model of such a structure is created in a componentwise
fashion using the reduction techniques of chapter 2, the ratio of interface over generalized
DoF becomes unacceptably high. Consequently, the achievable reduction is limited and the
memory requirements for handling the full (instead of sparse) component reduction matri-
ces become excessive. This difficulty can be overcome using interface reduction techniques.
Similar to component reduction techniques, these consist in replacing the original interface
DoF by some set of deformation shapes, called interface modes, and associated generalized
DoF. As such, they constitute a second reduction step which leads to more compact equations
of motion as well as smaller sized component reduction matrices.

In principle, interface reduction can be applied both on substructure level and on assembly
level. Since the interface behavior is dependent on all components that it connects, it is
obvious that a priori interface reduction on component level in general gives far less accurate
results than when information of the assembled structure is used to reduce the interface DoF.
Even worse, component level interface reduction gives rise to non-conforming interfaces,
similar to non-matching element shape functions, which in turn can cause so-called interface
locking if the reduction bases are poor. Hence, component level reduction of the interface
DoF can only be successful when the interface DoF of all components connected through
one interface are reduced using the same basis, and the deformation shapes in this basis are
representative for the actual interface behavior.

Having outlined the general idea behind interface reduction techniques, the actual reduction
can be achieved in a number of ways:

• The simplest method to decrease the number of interface DoF is to assume that the
interface behavior can be described by local rigid motions. This “interface rigidifi-
cation” hence neglects local deformation of the interface, allowing each substructure
interface to be described by only six DoF. The process of interface rigidification will be
elaborated in section 4.3.



4.3 Options for Interface Reduction ∣ 87

• In many cases however, interfaces cannot be assumed to behave rigidly. A more accu-
rate method, which can in fact be seen as a generalization of the interface rigidification,
is then to apply modal reduction to the interface DoF. Similar to the component re-
duction techniques of chapter 2, a modal basis is computed for the boundary DoF by
solving an eigenvalue problem. By truncating the interface modes, interface reduction
is achieved and the physical boundary DoF are replaced by generalized DoF. In sec-
tions 4.4 and 4.5 the procedures are explained in detail for the case where the interface
is expressed in terms of displacement DoF and force DoF, respectively. For systems
with mixed boundary DoF, such as described in section 3.5, interface reduction can be
applied by combining both approaches.

• A number of other interface reduction methods have been proposed over the years.
Some notable recent contributions are:

– The work in [201] considers model reduction of cyclic symmetric structures. By
exploiting the symmetry only a small portion of the total structure needs to be
modeled, but as a result this model has many interface DoF. An interface reduc-
tion method is proposed to overcome this. The work is extended in [202] for the
case when only part of the interface DoF needs to be reduced and other boundary
DoF are retained.

– In [223, 224] an interface between two substructures is considered internal to the
structure instead of considering the associated DoF as boundary DoF. Using the
equilibrium condition, so-called joint interface modes are then computed which
are subsequently used to reduce the (double set of) joint DoF.

– An extension of the technique presented in section 4.4 is proposed in [109], for
assembled systems obtained from Rubin reduced component models. The au-
thors developed an iterative scheme in which (residual) attachment modes are
only added to the reduction basis if they satisfy a certain orthogonality criterion.
In this way, only the most important static modes are taken into account, leading
to a much smaller reduction basis.

It is noted that all interface reduction methods discussed in this chapter can be applied on
component as well as on assembly level. For the reasons explained above, the interface rigid-
ification method of the next section is well suited to be applied on component level, whereas
the general modal methods of sections 4.4 and 4.5 usually give much better results when
applied on assembly level. One exception is the case when modal truncation augmentation
is applied to improve the dynamic response to excitation coming from neighboring compo-
nents through the interface DoF (see section 2.7). In that case, substructure level interface
reduction may be a good way to decrease the number of additional MTA vectors. Indeed,
the accuracy of this interface reduction is less critical since the MTAs are only higher order
correction vectors that augment the basis; the full set of boundary DoF remains.

Finally, note that due to the interface reduction the total number of DoF to deform in is fur-
ther decreased which, as in any reduction method, leads to stiffening of the overall structure.
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4.3 Interface Rigidification

In case an interface is located on a stiff part of the substructure, or is relatively small com-
pared to the total substructure, one could approximate the behavior of the interface by a local
rigid region. This assumption allows to reduce the interface DoF to only six rigid motions,
namely three translations and three rotations. Hence a very compact representation of the
substructure interface is obtained. Note that rigid interface modeling is a straightforward
way of enabling assembly of substructures with non-conforming meshes, eliminating the
need for more complex node collocation techniques (see section 3.6).

The rigidification process is basically a projection of the original interface DoF on the local
rigid body modes of the interface. Since these rigid body modes only depend on the geom-
etry of the interface, the rigidification can be performed both on substructure and assembly
level. As long as the same reference point on the interface is chosen, identical results will
be obtained in both cases. In practice it is however more efficient to perform the rigidifica-
tion a priori on substructure level, as this avoids the computation of the many static modes
associated to the original set of substructure boundary DoF.

Suppose now that a substructure’s interface DoF ub can be partitioned into a set of DoF be-
longing to interfaces that need to be rigidified ub,r and a set that is retained ub,b, for instance
because the associated interfaces are too large or flexible for rigidification. For each of the
g physical interfaces in ub,r that need to be rigidified a projection matrix needs to be con-
structed, such that:

u j
b,r = T j

rq j
r for j = 1 . . . g (4.1)

Here q j
r are the six rigid body coordinates of interface j:

q j
r = [x j y j z j θ j

x θ j
y θ j

z]T (4.2)

Note that the origin of the rigid body coordinates can be chosen arbitrarily, either coincid-
ing with some existing FE node or some other convenient location. One however needs to
ensure that the interface rigid body DoF on the to-be connected substructure(s) are defined
with respect to the same global geometric position. Next, the interface projection matrix is
constructed on a per-node basis as:

T j
r = col (T j

r(1); . . . ; T j
r(nn)) (4.3)

Here nn is the number of nodes associated with interface j. The nodal projection matrix for
node k is formed as:

T j
r(k) = [ I33 Tθθ(k)

033 I33
] (4.4)

with:

Tθθ(k) = [e1 × dk e2 × dk e3 × dk] =
⎡⎢⎢⎢⎢⎢⎣

0 dz(k) −dy(k)−dz(k) 0 dx(k)
dy(k) −dx(k) 0

⎤⎥⎥⎥⎥⎥⎦ (4.5)
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Here dk is the position vector from the chosen location of the rigid body coordinates to the
current node k. For a finite element model built from elements with only translational DoF
(e.g. using tetrahedron elements), the bottom three lines in eq. (4.4) can be discarded and
T j

r(k) becomes a matrix of size 3×6 instead of 6×6. This approach is similar to the procedure
for obtaining the global rigid body modes in section 2.4.2.

When the transformation matrices are collected for all nodes of all g interfaces in ub,r, one
obtains the following transformation:

⎡⎢⎢⎢⎢⎢⎣
ub,r
ub,b
u i

⎤⎥⎥⎥⎥⎥⎦ ≈
⎡⎢⎢⎢⎢⎢⎣

T r 0 0
0 I 0
0 0 I

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

qr
ub,b
u i

⎤⎥⎥⎥⎥⎥⎦ = Rr

⎡⎢⎢⎢⎢⎢⎣
qr

ub,b
u i

⎤⎥⎥⎥⎥⎥⎦ (4.6)

By substitution and projection of Rr on the original substructure equations of motion, the
stiffness and mass of the interfaces in ub,r are condensed onto the reference interface nodes.
The so obtained locally rigidified component equations may be further reduced using any of
the component reduction techniques outlined in chapter 2.

Since interface rigidification locally creates an infinitely stiff section, one can imagine that
this will mostly affect the mode shapes in which this rigid section would previously deform.
This leads to higher eigenfrequencies for these modes after rigidification. If a substructure
has many interfaces and/or interfaces take up a large portion of the substructure’s surface
this approach is therefore not advisable, as it would substantially increase the stiffness of the
entire structure. One way to check whether rigidification of an interface is “allowed” is by
calculating its original rigidity. Suppose that some deformation vector, such as a mode shape
or operational deflection shape, is known for the component. For this deformation vector
the interface rigidity can be quantified by projecting the interface deformation on the local
rigid modes T r and recovering the deformations in a least squares sense [54]:

rigidity = ∥T r (TT
r T r)−1 TT

r ub,r∥∥ub,r∥ ⋅ 100% (4.7)

Note that in order to obtain a complete picture of the interface rigidity, this check should be
performed for a representative set of deformation vectors. Hence, in practice this check is
usually carried out a posteriori.

This rigidification could also be extended by including local interface modes to the basis
in (4.6) to account for some interface flexibility [134, 4, 54]. In this case, this approach can
be regarded as the substructure level equivalent of the modal interface reduction method
outlined next.

4.4 Modal Reduction of Interface Displacements

Although the rigidification technique of the previous section is useful for some structures,
the rigid interface approximation is often too crude. In that case the more general modal
truncation based method discussed in this section can be applied. This method is based on
the observation that determining the interface behavior generally does not require detailed
insight in the components’ dynamic behavior; an accurate representation of the static be-
havior at the interface is often sufficient. Hence, interface modes are computed from the
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eigenvalue problem of the substructures statically condensed to the interface. This idea was
first proposed in [40] and was later further worked out in [15, 201]. In this section the method
will be detailed for systems with displacement interface DoF.
As a starting point for the interface reduction method, recall the primal form of the stiffness
assembly derived in section 3.3.2:

[ M ii M ibLb
LT

b Mbi LT
b MbbLb

] [ q̈i
üγ
] + [ K ii K ibLb

LT
b Kbi LT

b KbbLb
] [ qi

uγ
] = [ f i

LT
b f b
] (3.14)

Taking only the boundary portion of the assembled equations of motion, one finds:

M̂bbüγ + K̂bbuγ = f̂ b (4.8)

Following from the definitions of section 3.3 one has:

M̂bb = LT
b MbbLb = n∑

s=1
L(s)T

b M(s)
bb L(s)b

K̂bb = LT
b KbbLb = n∑

s=1
L(s)T

b K(s)bb L(s)b

f̂ bb = LT
b f b = n∑

s=1
L(s)T

b f (s)b

(4.9)

Here it is assumed that the assembly consists of reduced component models obtained from
either the Craig-Bampton or Rubin method (see section 2.5). In this case, equation (4.8) in
fact constitutes a static condensation of all the substructures to the interface DoF. For the
Craig-Bampton method this is obvious, given the definitions of K̃(s)bb and M̃(s)

bb in eq. (2.57).
Although less obvious, this is also true for Rubin reduced components. As long as no rigid
body modes are present, it can be shown that the attachment modes in the Rubin basis span
the same space as the constraint modes and hence the terms K r,bb and Mr,bb in eq. (2.68) are
equivalent to their Craig-Bampton counterparts. If the substructure is unconstrained, one
can alter the reduction basis to include the constraint modes to enable static condensation;
this is described in [201].
Since the mass and stiffness of the substructures is condensed to the interface, equation 4.8
can be considered as the assembled system obtained when no vibration modes are included
in the component reduction bases. This equation can therefore be used to find the interface
behavior. Assuming the external forces to be zero and finding a non-trivial solution then
leads to boundary eigenvalue problem:

(K̂bb − ω2
γ, j M̂bb)ϕγ, j = 0 (4.10)

Here ϕγ, j is the jth interface displacement mode with ω2
γ, j its associated frequency. As usual,

the reduction is obtained by truncating the number of modes. Taking the nγ interface modes
with the lowest frequency, the interface DoF are approximated by:

uγ ≈ nγ∑
j=1

ϕγ, jηγ, j = Φγηγ (4.11)

The interface reduction basis thus becomes:

[ qi
uγ
] ≈ [ I 0

0 Φγ
] [ qi

ηγ
] = Rγ [ qi

ηγ
] (4.12)
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Application of this reduction basis to the assembled system of eq. (3.14) then gives the final
reduced equations of motion, where the physical boundary DoF are replaced by generalized
DoF. For the sake of illustration, the approach is shown here for the case of an assembled
system consisting of Craig-Bampton reduced components. Using the reduced matrix ex-
pressions from section 2.5.2 and the block notation of section 3.3, the assembled system can
be written as:

[ I MϕbLb
LT

b Mbϕ LT
b M̃bbLb

] [ η̈i
üγ
] + [ Ω2

i 0
0 LT

b K̃bbLb
] [ ηi

uγ
] = [ f̃ i

LT
b f̃ b
] (4.13)

Here all submatrices are block diagonal containing the reduced substructure submatrices;
the vectors are also put in block form, e.g.:

K̃bb = diag (K̃(1)bb , . . . , K̃(n)bb )
ηi = col (η(1)i ; . . . ; η(n)i ) (4.14)

Application of the interface reduction basis in eq. (4.12) to the assembly of Craig-Bampton
reduced components in (4.13) then gives:

[ I MϕbLbΦγ
ΦT

γ LT
b Mbϕ I ] [ η̈i

η̈γ
] + [ Ω2

i 0
0 Ω2

γ
] [ ηi

ηγ
] = [ f̃ i

ΦT
γ LT

b f̃ b
] (4.15)

Here the interface displacement modes are assumed to be mass normalized. As can be seen,
the assembled stiffness matrix is now fully diagonal. Note that for Rubin reduced systems this
is not the case due to the presence of off-diagonal terms. Furthermore, since all components
are reduced with the same set of interface displacement modes, the substructures remain
compatible in terms of their interface discretizations.

In addition to reducing the total number of DoF of the assembled model, interface reduc-
tion can also be used to decrease the size of the component reduction matrices. Thereby,
handling of the component reduction matrices, which can easily take up many gigabytes of
memory and storage space, is greatly simplified. This can be achieved by simply combining
the subsequent coordinate transformations that lead to equation (4.13). Indeed, three trans-
formation steps are performed to arrive at this equation, which using the block notation can
be written as:

1. Reduction of the components using the Craig-Bampton reduction bases:

[ u i
ub
] ≈ [ Φi Ψ c

0 I ] [ ηi
ub
] = RCB [ ηi

ub
] (4.16)

2. Primal assembly is performed by pre- and post-multiplication by the assembly matrix,
as explained in section 3.3.2:

[ ηi
ub
] = [ I 0

0 Lb
] [ ηi

uγ
] = L [ ηi

uγ
] (4.17)

3. Application of the interface reduction basis in equation (4.12).
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By far the largest amount of memory space is required by the first transformation; the three
transformations can be combined to decrease the size of this matrix. This gives rise to the
following total reduction matrix:

[ u i
ub
] ≈ [ Φi Ψ cLbΦγ

0 LbΦγ
] [ ηi

ηγ
] = RCBLRγ [ ηi

ηγ
] = Rtot [ ηi

ηγ
] (4.18)

Due to the interface reduction, the size of Rtot is much smaller than that of RCB. Therefore,
handling the assembled reduced system becomes much easier, while the substructure nodal
results can still be easily obtained through expansion with Rtot.

4.5 Modal Reduction of Interface Forces

In a similar fashion as in the previous section, interface reduction can also be applied to
systems described in terms of interface force DoF. To this end, recall the primal assembled
equations derived in section 3.4:

[ M̄ ii −M̄ ibBT
b−Bb M̄bi Bb M̄bbBT
b
] [ ¨̄qi

λ̈ ] + [ K̄ ii −K̄ ibBT
b−BbK̄bi BbK̄bbBT
b
] [ q̄i

λ ] = [ f̄ i−Bb f̄ b
] (3.27)

Next, a static condensation of the substructures to the boundary DoF needs again to be ob-
tained. In contrast to the previous section, this cannot be found by simply taking the bound-
ary portion of the assembled equations since in this case rigid body modes may contribute to
the static solution. Hence, these must be explicitly accounted for in the static condensation.

This is best illustrated by considering the Dual Craig-Bampton version of the assembled
equations. Here, the alternative formulation of the Dual Craig-Bampton method, using at-
tachment instead of residual attachment modes, will be used; the reason for doing so will be
explained below. Combining the associated expressions for the reduced component matri-
ces from section 2.5.4 with the assembled form shown above, one then obtains the assembled
model consisting of Dual Craig-Bampton component models as:

⎡⎢⎢⎢⎢⎢⎣
I 0 −MϕψBT

b
0 I 0−Bb Mψϕ 0 Bb M f ,bbBT

b

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

η̈ f
η̈r
g̈b

⎤⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎣

Ω2
f 0 0

0 0 ΦT
r|bBT

b
0 BbΦr|b −BbG f ,bbBT

b

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

η f
ηr
gb

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

ΦT
f f

ΦT
r f−BbΨT

a f

⎤⎥⎥⎥⎥⎥⎦
(4.19)

Similar to the previous section, block notation is applied here. The submatrices are block
diagonal matrices containing the component submatrices, while the vectors are also stacked
in block form, e.g.:

G f ,bb = diag (G(1)f ,bb , . . . , G(n)f ,bb)
η f = col (η(1)f ; . . . ; η(n)f ) (4.20)

Taking no free interface vibration modes in the reduction basis allows to obtain the system
statically condensed to the interface DoF as:

[ I 0
0 Bb M f ,bbBT

b
] [ η̈r

λ̈ ] + [ 0 ΦT
r|bBT

b
BbΦr|b −BbG f ,bbBT

b
] [ ηr

λ ] = [ ΦT
r f−BbΨT

a f ] (4.21)
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Note that equation (4.19) corresponds to the alternative formulation of the Dual Craig-Bamp-
ton method using attachment modes, while the original formulation employs the residual
attachment modes (see section 2.5.4). Due to the absence of vibration modes in the static
interface condensation, eq. (4.21) is independent of the type of attachment. However, there
is an important practical advantage of using the alternative formulation.

Namely, in case one follows the approach of this section using the original Dual Craig-
Bampton formulation, the residual interface flexibility matrix Gr,bb (see section 2.5.4) needs
to be supplemented by the retained free interface vibration modes to obtain the (statically
complete) interface flexibility matrix G f ,bb. One thus needs to reload the substructure re-
duction bases and apply (2.29) in a backward fashion; this additional computational effort
can be avoided by using attachment modes.

Next, the interface modes are obtained by solving the statically condensed eigenproblem:

([ 0 ΦT
r|bBT

b
BbΦr|b −BbG f ,bbBT

b
] − ω2

λ, j [ I 0
0 Bb M f ,bbBT

b
])[ ϕr

λ, j
ϕλ

λ, j
] = 0 (4.22)

Here ϕλ, j is the jth interface force mode with ω2
λ, j the corresponding eigenvalues. It was ob-

served in [170] that these eigenvalues can be both positive and negative. The former are
associated with the rigid body modes while the latter correspond to the Lagrange multipli-
ers. Interface reduction is now achieved by choosing the nγ modes with the lowest absolute
eigenvalues [170], resulting in the following interface reduction basis:

⎡⎢⎢⎢⎢⎢⎣
η f
ηr
λ

⎤⎥⎥⎥⎥⎥⎦ ≈
⎡⎢⎢⎢⎢⎢⎣

I 0
0 Φr

λ
0 Φλ

λ

⎤⎥⎥⎥⎥⎥⎦ [
η f
ηλ
] = Rλ [ η f

ηλ
] (4.23)

Applying this reduction to the assembled equations in (4.19) leads to:

[ I −MϕψBT
b Φλ

λ−ΦλT

λ Bb Mψϕ I
] [ η̈ f

η̈λ
] + [ Ω2

f 0
0 Ω2

λ
] [ η f

ηλ
] = [ ΦT

f f
f λ
] (4.24)

with:

f λ = (ΦrT

λ ΦT
r +ΦλT

λ BbΨT
a ) f (4.25)

After interface reduction one again obtains a diagonal stiffness matrix whereas coupling
terms are found in the mass matrix.

In a similar fashion as in the previous section, the interface reduction basis can be used to
decrease the size of the component reduction bases. Again, the reduced assembled equations
in (4.24) are obtained in three transformation steps. Using the same block notation as before,
these transformations are:

1. Component reduction using the Dual Craig-Bampton reduction bases of eq. (2.72):

[ u
gb
] ≈ [ Φ f Φr Ψa

0 0 I ]
⎡⎢⎢⎢⎢⎢⎣

η f
η f
gb

⎤⎥⎥⎥⎥⎥⎦ = RDCB

⎡⎢⎢⎢⎢⎢⎣
η f
η f
gb

⎤⎥⎥⎥⎥⎥⎦ (4.26)
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2. Assembly of components by the primal transformation derived in section 3.4:

⎡⎢⎢⎢⎢⎢⎣
η f
η f
gb

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

I 0 0
0 I 0
0 0 −BT

b

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

η f
η f
λ

⎤⎥⎥⎥⎥⎥⎦ = B
⎡⎢⎢⎢⎢⎢⎣

η f
η f
λ

⎤⎥⎥⎥⎥⎥⎦ (4.27)

3. Interface reduction of the assembled system by applying the basis Rλ in (4.23).

Combining these transformations allows to obtain a compact form of the total reduction
matrix. As explained before, this can limits the memory required for handling and storing
the reduction basis, which is very useful in practice. The total reduction matrix is in this case
found as:

[ u
gb
] ≈ [ Φ f ΦrΦr

λ −ΨaBT
b Φλ

λ
0 −BT

b Φλ
λ

] [ η f
ηγ
] = RDCBBRλ [ η f

ηγ
] = Rtot [ η f

ηγ
] (4.28)

4.6 Analysis of Assembled Model

After the assembled model is obtained it is used to perform the actual dynamic analysis of the
modeled system. To this end the model can be subjected to variety of analysis types. In this
section three types of analysis often encountered in practice are briefly addressed, namely
harmonic analysis, modal analysis and time integration. In order to simplify the notations,
the equations of motion of the reduced assembled model are written in general as:

M̃q̈(t) + C̃q̇(t) + K̃q(t) = f̃ (t) (4.29)

Here the damping matrix is assumed to derive from some simple damping model, such as
the Rayleigh or modal damping assumption.

4.6.1 Harmonic Analysis

When performing an harmonic analysis the aim is to determine the steady-state response
of the structure to a certain harmonic external loading. This can for instance be relevant for
rotating machinery, such as a wind turbine, which are subjected to excitation at (multiples
of) the rotation frequency, or other structures exposed to loading with a distinct frequency.

Suppose the external excitation can be written as some harmonic with frequency ωe :

f̃ (t) = p̃e iωe t (4.30)

Here p̃ is the spatial force distribution vector. A steady-state solution can now be found by
assuming that the response of the system is synchronous with the excitation, i.e.:

q(t) = x̃e iωe t , (4.31)

with x̃ the unknown harmonic deformation. Inserting the harmonic response in the assem-
bled equations of motion (4.29) and discarding the time dependent part, one obtains the
harmonic problem as:

(K̃ + iωeC̃ − ω2
e M̃) x̃ = Z̃x̃ = p̃ (4.32)
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The matrix Z̃ is known as the (reduced) dynamic stiffness matrix of the system. Note that
when the external excitation frequency ωe reduces to zero, the harmonic problem becomes
a static problem. In general, the harmonic problem is solved by factorizing (i.e. triangular-
ization of) the dynamic stiffness matrix, using direct solvers based on the classic elimination
techniques by Gauss. Since the reduced harmonic problem is small, this can be done very
efficiently. Alternatively, iterative solvers such as the conjugate gradient method can be em-
ployed (see section 6.2.1 for details).

Finally, note that the obtained deformation x̃ is in terms of the generalized DoF. Using the
component and possibly interface reduction bases, this vector can be expanded to obtain the
structure’s response at the physical degrees of freedom:

x = Rx̃ (4.33)

The vector x is known as the operational deflection shape (ODS). When the external excita-
tion coincides with one of the system’s eigenfrequencies, the ODS has the same shape as the
associated eigenmode.

4.6.2 Modal Analysis

To determine the eigenmodes and -frequencies of the assembled system, a modal analysis can
be performed. Such an analysis is useful when the external excitation is still unknown and
provides insight in the intrinsic dynamic properties of the structure, namely its free vibration
behavior in terms of eigenfrequencies and mode shapes. Modal analysis thus amounts to
finding a solution to the equations of motion with no external force applied:

M̃q̈(t) + K̃q(t) = 0 (4.34)

Here damping is assumed to be small, such that it can be neglected during the modal analysis.
If needed a correction can be computed to obtain the damped eigensolutions, see [74]. A
non-trivial solution can be found by separating the response of the internal DoF in a space-
dependent and time-dependent part, i.e.:

q = x̃e iωt (4.35)

Substitution in the free vibration equations then leads to the eigenproblem:

(K̃ − ω2
j M̃) ϕ̃ j = 0 , (4.36)

with ω2
j the eigenfrequency of mode j and ϕ̃ j the associated eigenmode (or eigenvector or

-shape). Many types of solvers exist to handle the eigenproblem, both direct (such as the
Jacobi and Householder methods) and iterative (such as the Lanczos and Arnoldi methods).
Solvers of the latter type are treated in more detail the next chapter, section 6.3.1. However,
since the eigenproblem of the reduced assembled system is again rather small, the computa-
tional cost associated to solving its eigenproblem is rather low and the choice of eigensolver
is not critical.

Once the eigensolutions of the reduced assembly are obtained, they can be judged against
some criterion. For instance, the first eigenfrequency should be above a certain threshold
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or within a certain margin from experimental results in order to validate the model. Fur-
thermore, the eigenmodes can again be expanded to obtain the modes at the physical DoF.
These modes can be used to judge the dynamic behavior of the structure and also serve as a
means for correlating the model with experimental results for validation purposes. The next
section outlines comparison criteria that could be used to do so.

Finally, the eigensolutions could be used to synthesize the frequency response function (FRF)
matrix of the structure. This is done as follows:

Y(ω) = na∑
j=1

ϕ jϕ
T
j(ω2

j − ω2) + 2iζ jω jω
(4.37)

In this expression na is the number of DoF of the (unreduced) assembled system and ζ j the
modal damping ratio if damping is taken into account. Also, mass normalized modes ϕ j are
assumed. Since a different FRF matrix exists for all frequencies ω, one usually only synthe-
sizes the matrix for a limited number of DoF of interest in order to limit the required storage
space. The so obtained FRFs may for instance be used to compare directly with measured
FRFs or to use in a frequency based substructuring analysis in which the current assembly
is coupled to some experimentally obtained component(s).

4.6.3 Time Integration

One analysis type where the use of reduced models especially pays off, is when performing
time integration. In time integration, the transient time response of the system to some
external excitation or initial condition is computed. This process is also referred to as time
simulation or transient analysis.

Various techniques exist for performing the actual numerical (time) integration. Since the
equations to be solved are second order ordinary differential equations, one option is to
transform them to a state-space formulation to obtain a first order system of equations. This
first order form could for instance be:

[ M̃ 0
0 I ] [ q̈(t)

q̇(t) ]+[ C̃ K̃−I 0
] [ q̇(t)

q(t) ] = [ f̃ (t)
0
] ↔ Aż(t)+Bz(t) = p(t) (4.38)

Popular methods such as the Runge-Kutta schemes can then be employed to integrate the
above equations of motion. An important disadvantage is that in this case the number of
DoF doubles, which strongly increases computational cost.

Methods exist that are tailored for solving second order differential equations. One such
method especially developed for structural dynamics is the Newmark method [140]. Al-
though first published in 1959, this method is still often used today. Without going into the
details of its derivation, this method can be summarized as follows. At time step k + 1 in the
integration process, the method first computes the so-called predictors based on the results
from the previous time step k:

q̂k+1 = qk + hq̇k + (1/2 − β)h2q̈k
˙̂qk+1 = q̇k + (1 − γ)hq̈k

(4.39)
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Here h is the time step and γ ≥ 0 and β ≥ 0 are parameters that can be chosen freely, leading
to different stability and accuracy properties for the method. For details, see for instance
[74]. Secondly, the accelerations for the current time step are computed by:

Sq̈k+1 = f̃ k+1 − C̃ ˙̂qk − K̃ q̂k+1, (4.40)

with:

S = M̃ + hγC̃ + h2βK̃ (4.41)

The matrix S is often referred to as the time-stepping matrix. Finally, the predictors are
updated in a correction step as follows:

qk+1 = q̂k+1 + h2βq̈k+1

q̇k+1 = ˙̂qk+1 + hγq̈k+1
(4.42)

The above process is repeated for the desired number of time steps, that is, the desired
duration of the time simulation divided by the step size. Different variations of the New-
mark scheme have been developed, the most notable being the Hilber-Hughes-Taylor (HHT)
method [91]. Through s slight modification of the Newmark scheme this method introduces
numerical damping into the simulation for the high frequency range, while adding only very
little damping in the lower frequencies, thereby preserving the accuracy. This numerical
damping helps to suppress the response of eigenmodes with infinite or negative eigenfre-
quencies. The latter may be encountered in Dual Craig-Bampton reduced models due to
so-called spurious modes (see section 2.5.4).

Note that although not relevant in this work, the Newmark method can easily be extended
to non-linear systems. Furthermore, the last decade saw the development of new time inte-
gration methods, most notably methods with energy and momentum conservation built in
the integration scheme [120, 117, 118].

When the time integration is completed, regardless of the method used, the results in terms
of the generalized DoF can again be expanded to obtain time responses for the structure’s
physical DoF. However, if the simulated time series becomes too long, it might be advisable
to expand only the results at certain DoF of interest to limit the required space for storing
and handling the data.

4.7 Comparison & Correlation Methods

After the assembled system has been analyzed, the results are to be interpreted. In addition
to “engineering judgement” and simple rules of thumb, it is useful to establish more objective
criteria. Such methods are especially valuable when comparing the results from one model
to another, or when correlating analysis outcomes to experimental results. In this section
some basic comparison and correlation metrics are therefore outlined.

4.7.1 Eigenfrequency Comparison

Suppose that one has performed a modal analysis on the assembled system (system a) and
one wishes to compare the results to some set of reference results (system b), for instance
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obtained from the full model or from measurements. The most basic comparison one can
perform is to simply compare the eigenfrequencies of ωa and ωb of both systems.

In practice one usually compares the relative frequency error, i.e.:

∆ω = ∣ωb − ωa∣
ωb

⋅ 100% (4.43)

For matching mode shapes, some maximum error can be defined (e.g. 5%). In some indus-
tries standards are established which state maximum frequency errors between models and
measurements, for instance standards defined for spacecraft by NASA [139]. Should some
modes in the frequency range of interest not satisfy this criterion, one either needs to enrich
the reduced models or update the underlying FE models.

4.7.2 Modal Assurance Criterion

An eigenfrequency comparison is usually carried out in conjunction with a comparison of
the associated mode shapes. Indeed, only when the mode shapes correspond reasonably well
it makes sense to compare the difference in frequency of these modes, and vice versa. One of-
ten used method for comparing mode shape vectors is the modal assurance criterion (MAC)
[3], which computes the vector correlation between a pair of mode shapes from systems a
and b as follows:

MAC = ∣ϕT
a ϕb∣2(ϕT

a ϕa) (ϕT
b ϕb) (4.44)

Due to the scaling by the vector norms, the MAC value is a scalar in the range of zero to
one. A MAC value of zero indicates no correlation (i.e. the vectors are orthogonal), while
a value of one indicates perfect correlation (i.e. the vectors are parallel). Ideally, matching
mode shapes should thus have a MAC value close to one, whereas cross-correlating different
mode shapes should give a value close to zero. Furthermore, a number of remarks are in
place regarding the MAC:

• Note that the MAC computes the true orthogonality between two mode shape vectors,
while in theory they are in fact mass- and stiffness orthogonal. When a mass matrix is
available, it is therefore more appropriate to use the mass-weighted MAC, sometimes
referred to as MAC-M.

• When comparing multiple mode shape vectors for two systems, a MAC matrix is ob-
tained. Along the diagonal one then finds the matching modes, while the off-diagonal
terms show the correlation between non-matching modes.

• A MAC analysis can be used to correlate any type of deformation shapes as long as they
are of the same dimension. Hence, not only mode shape vectors can be compared but
the MAC can also be used to correlate static, harmonic and time response vectors.

• Historically, the MAC was derived to correlate modes obtained from a finite element
model to experimentally identified mode shapes. In that case the mode shapes gen-
erally do not have the same dimension; two ways exist to overcome this. Firstly, the
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response of the finite element model can be extracted at the measurement locations,
and the MAC is computed only at this limited number of DoF and no weighting with
the mass matrix is applied. Secondly, experimental mode shapes can be expanded us-
ing the SEREP method [144] to allow correlation at all FE DoF, as well as weighting
with the FE mass matrix.

• Similar to eigenfrequency comparisons, in some industries standards have been estab-
lished for correlating experiments and models in terms of the MAC (for an example
see again [139]). In the frequency range of interest, these standards dictate a certain
minimum MAC value along the diagonal (e.g. 0.95) and a maximum value for the
cross-terms (e.g. 0.1).

• Furthermore, the MAC can be used to compare mode shapes between reduced and full
models. In this case one usually finds that the lowest modes are very well correlated
while higher modes gradually show less and less correlation. It might therefore make
sense to examine the 1-MAC value on a logarithmic scale, in order to distinguish the
results for the highly correlated modes and clearly identify a drop in MAC value for
the higher modes.

4.7.3 Substructure Modal Assurance Criterion

Over the years many variants of the modal assurance criterion have been proposed, an over-
view is given in [2]. In a dynamic substructuring analysis, one might be interested in which
particular substructure modes are dominant in a certain global mode. In other words, one
would like to somehow correlate the substructure modes and the global system modes. There-
fore yet another variant of the MAC is proposed here, namely the substructure modal assur-
ance criterion (SUMAC).

The SUMAC is a tool which can be used to check the modal contribution of a certain sub-
structure to the global mode shapes, and is calculated as:

SUMAC = ∣ϕ(s)T

g ϕ(s)l ∣2(ϕ(s)T

g ϕ(s)g ) (ϕ(s)T

l ϕ(s)l ) (4.45)

Here, ϕ(s)g is the trace of the global mode shape on the DoF of substructure s and ϕ(s)l is the
local, uncoupled mode shape of that substructure. The trace of the global mode is obtained
by localization of the substructure DoF using the assembly matrix L or B, depending on the
type of reduced model used.

A SUMAC value close to one indicates a strong contribution of the local mode to the global
mode shape, meaning that the local substructure dynamics are important in that global mode
shape. On the other hand, a SUMAC value close to zero indicates that the substructure
is only quasi-statically participating in the global mode shape. One can imagine that the
accuracy of the local mode with a high contribution in the global mode, has a significant
effect on the accuracy of the global mode. Hence, the SUMAC can, in an a posteriori fashion,
help identifying the dominant substructure modes in the global dynamic behavior, enabling
selection of the relevant modes in the component reduction basis and possibly discarding
less relevant ones.



100 ∣ Chapter 4 – Interface Reduction & Assembled System Analysis

Conversely, when dominant substructure modes are not, or only with low accuracy, con-
tained in the reduced substructure model, this will incur errors in the global dynamic be-
havior. Obviously, this cannot be identified with the SUMAC. Instead, the error estimation
methods developed in the next chapter should be applied.

4.7.4 Comparison of Time Integration Results

Finally, this subsection addresses the comparison of time integration results, for instance
obtained from a full and reduced model. As will be discussed next, this is always a difficult
task and different comparison criteria can be applied. A number of options are outlined
below.

MAC analysis at each time step One idea for correlating time integration results is to sim-
ply perform a MAC analysis at every time step. In case both time responses are very
similar, the deformation shapes at each time step should correlate well. However, small
periodicity errors are introduced by the time integration scheme and in addition fre-
quency differences usually exist between a full and reduced model. Over time, these
frequency errors accumulate leading phase shifts between the different time signals.
Analyzing these data sets using the MAC then easily leads to false conclusions on their
accuracy.

Time-response assurance criterion One way to overcome this issue is as follows. Instead of
computing the MAC value at every time step for all DoF simultaneously, one could also
compute a MAC between the complete time series for one single DoF. Hence, one com-
pares two time responses of the same DoF as if they were shape vectors. This method is
called the time response assurance criterion (TRAC) [11]. The idea behind this method
is that although the phase shifts may change the signal, its shape remains similar. How-
ever, it creates a correlation value per DoF and should be properly weighted to produce
a meaningful statement on the accuracy of the global response.

POD analysis of time series A more consistent comparison of time series can be made us-
ing the proper orthogonal decomposition (POD) method. The POD is a mathematical
data analysis method for efficient analysis of complex data and is explained in more
detail in appendix D. In short, using the POD a time signal can be decomposed into
proper orthogonal modes (POMs) and proper orthogonal values, which respectively de-
scribe the dominant modes in the signal and their energy level. The POMs and POVs
can be treated similarly to the eigenmodes and eigenfrequencies of the system: POMs
can be compared through correlation via the MAC, while the POVs are compared by
computing the relative error.1 Close correspondence in the POMs and POVs obtained
from two sets of time series then indicates good correlation between those time series.

Energy based comparison Finally another comparison criterion, that is slightly different
from the above methods, is to compare energies in the system. One could for instance
track in time the deformation energy, kinetic energy, energy dissipated by damping (if

1Note it is advisable to scale the relative error on the POVs by the relative energy captured by the corre-
sponding POM, to take into account that the relative energy captured by the POMs, and so their importance,
diminishes quickly for higher POMs.
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applicable) or the total energy in the system. By doing so, a global comparison criterion
is obtained that can be easily interpreted. Indeed, when comparing time responses of
reduced and full models, it is expected that the deformation energy in the reduced
model is always less than in the full model due to the stiffening induced by the model
reduction. Furthermore, energies in the total system can easily be broken down into
substructure contributions, yielding insight in which component causes the largest
discrepancies.

4.8 Summary

Two different topics were addressed in this chapter: sections 4.2 to 4.5 were concerned with
the issue of interface reduction, while sections 4.6 and 4.7 considered the analysis of the
assembled system.

Interface reduction was introduced as a method to further decrease the number of DoF of
assembled system, which is relevant for systems consisting of many components and con-
sequently carry many boundary DoF in comparison to generalized internal DoF. Interface
reduction may then be applied to obtain a truly compact set of equations and maximize
computational efficiency; section 4.2 outlined different options for doing so.

The most straightforward approach was to simply assume the interface to behave as a lo-
cally rigid region. As was shown in section, this interface rigidification can be applied a
priori on a substructure level. Generalizations of this method were introduced in sections
4.4 and 4.5, where modal reduction of the interface was treated for displacement and force
interface DoF, respectively. In those methods, the internal substructure DoF were statically
condensed to the interface such that interface modes could be calculated. A truncated set of
interface modes was subsequently used to reduce the original interface DoF. Furthermore, it
was shown how these interface modes could be used to compact the component reduction
bases to minimize memory and storage requirements.

Section 4.6 briefly treated different types of analysis that can be applied to the assembled re-
duced model, namely harmonic and modal analysis as well as time integration. Thereafter, it
was explained in section 4.7 how the results of such analyses can be correlated between dif-
ferent (reduced) models and/or between models and experiments. Most notably, the modal
assurance criterion was discussed, which is a simple but powerful method for correlating
(mode) shape vectors. Also, a variant of the MAC was proposed, termed the substructure
modal assurance criterion, with the purpose of correlating substructure modes with global
system modes. Finally, the non-trivial issue of comparing time series from different models
was addressed. A number of options were discussed, each with their own pros and cons.
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5
Error Estimation & Adaptive Model

Reduction

Make everything as simple as possible,
but not simpler.

(Albert Einstein)

5.1 Introduction

In the previous chapters it has been outlined how to obtain reduced component models, as-
semble these, and subsequently further reduce their size using interface reduction. Through
this approach, compact models can be created for structural dynamic analysis of complex
built-up structures. One important question that up to now however remained unaddressed
is how accurate these reduced models actually are. Indeed, to confidently use these reduced
models in practice requires insight in their accuracy.

Both the component and interface reduction incur an error on the total model. In these
procedures, physical DoF are replaced by generalized DoF through a truncated set of defor-
mation shapes, leading to an approximation of the dynamic behavior. The accuracy of this
approximation depends on the number of deformation shapes, or modes in short, used to
generate the model: the more modes the higher the accuracy. The computational efficiency
of the reduced model is inversely related to the number of modes: more modes means more
DoF and less compact models.

Finding the right balance between accuracy and efficiency is not trivial and is in practice
often done using simple rules of thumb. One often applied method is frequency selection
where all modes up to a certain frequency are included. In order to test the accuracy of
the so obtained reduced system, its response can be compared to that of the unreduced sys-
tem. When the accuracy proves to be unsatisfactory, more modes can be iteratively included.

103
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However, two difficulties are associated with this approach. Firstly, obtaining the reference
solution from the unreduced system is in general (very) computationally expensive. Sec-
ondly, no insight is gained in which components to enrich in order to improve the accuracy
in the most effective way.
In this chapter a more systematic approach for quantification of the accuracy of the reduced
model is therefore developed. This is done on the basis of error estimation methods. Thereby
it is assumed that the full finite element model is an accurate representation of the actual
structure, for instance through validation with dynamic measurements (see appendix B for
an example). Hence, the goal is to quantify the error arising from the component and inter-
face reduction, based on which effective enrichment schemes can be derived. As such, this
chapter relates to the other chapters of part I as indicated in figure 5.1.
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Figure 5.1: Current chapter in relation to other chapters in part I of this thesis.

5.2 Aspects of Error Estimation

Before diving into the theory of error estimation methods for reduction methods, this sec-
tion briefly discusses two important aspects: firstly the similarity between errors arising from
discretization and reduction, and secondly the notions of a priori and a posteriori error es-
timation. Thereafter, an outline for the remainder of this chapter is sketched.

5.2.1 Discretization & Reduction Errors

The problem of determining the accuracy of a reduced model is very similar to the problem
that arises one step earlier in the modeling process, namely in the construction of an ade-
quate finite element model. Due to the discretization of the continuous problem a difference
between the analytical and discrete solutions is found, called the discretization error. This is
illustrated in figure 5.2. Assuming an appropriate element type is chosen, this error is gov-
erned by the mesh size. Refining the mesh enhances the accuracy, or in other words reduces
the error, but also increases the computational effort and required storage space.
Various error estimation techniques were developed in the field of finite element modeling to
predict and control the discretization error, based on which (local) mesh refinement strate-
gies have been be derived. See for instance [28, 18]. An important requirement for these
methods is that they provide a conservative estimate of the error, i.e. the error should never
be underestimated. In this context one therefore usually speaks of error bounds instead of
the actual error, since the latter generally remains unknown.
Similar to the discretization error is the reduction error which arises due to the reduction
of the FE model by truncating the number of modes. Analogous to mesh refinement of
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Continuous domain Discrete domain Reduced domain

Discretization error Reduction error

Figure 5.2: Sources of error in a substructured reduced model.

the FE model, the reduction error can be controlled through refinement of the reduction
basis by adding modes. As outlined above, in order to do this effectively requires both a
conservation error estimate as well as quantitative information on its distribution across the
different component models in the assembly. Two types of error estimation exist, namely a
priori and a posteriori estimation; both are briefly described in the next subsection.

5.2.2 A Priori Versus A Posteriori Error Estimates

Two classes of error estimation methods are defined in the literature: a priori and a posteriori
methods, referring to when in the modeling and analysis process the error estimation is
performed. Both are briefly described next.

A priori error estimation is used to predict a certain error before the actual computation is
performed. The error however is expressed in terms of constants which depend on the exact
solution. The resulting estimates do not quantify error bounds but only provide information
on the convergence and the stability properties of the approximate model and the asymptotic
behavior of the error if the refinement parameters are changed [18].

On the other hand, a posteriori error estimation is used to give both qualitative and quantita-
tive measures of the error after the actual computation, using only the approximate solutions
obtained from the reduced system. This type of estimation is able to provide both global and
local information. An example of the former is an error bound expressed in terms of some
global norm (e.g. energy), while local information can for instance be the error in displace-
ments or stresses at a specific target location in the model. From the advantages described
above it is understood that a posteriori estimation has become a popular method in error
estimate and refinement strategies [28].

5.2.3 Chapter Outline

Given the discussion above, the focus of this chapter is the development of an a posteriori
error estimation method for reduced substructured models. Indeed, error estimation tech-
niques used for mesh refinement are seldom applied to component mode synthesis problems;
in the literature only a few examples were found [102, 103, 104, 203]. The main ideas put for-
ward in this chapter are based on these publications, but the applied mathematics are adapted
and simplified. More specifically, the original functional analysis notation is translated to the
algebraic notation as used throughout this thesis.
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Using the proposed concepts, error estimates can be derived for the different types of dy-
namic analysis discussed in the previous chapter, section 4.6. Based on these error estimates,
refinement strategies can be formulated. These allow to iteratively refine the component re-
duction bases until a satisfactory result is obtained (i.e. the error estimate drops below a
certain threshold), a process that will be referred to as adaptive model reduction.
The remainder of this chapter is structured in the following way. Next, section 5.3 casts the
expressions for the reduced system in the format needed to enable error estimation. The error
estimates for systems excited by an external harmonic force are derived in section 5.4. Based
on these results, section 5.5 describes an error estimate for the very similar time-stepping
problem encountered in time integration schemes. Thereafter, error estimates for global
eigensolution approximations, i.e. approximations of eigenfrequencies and -modes of the
assembled system, are developed in section 5.6. Refinement schemes based on the error
estimates are proposed in section 5.7, while section 5.8 finally provides a summary of the
methods.

5.3 Alternative Reduced System Description

The error estimation methods in this chapter are developed for an assembled system built
from Craig-Bampton (CB) reduced component models with additional reduction of the in-
terface DoF. In this section, the expressions of the assembled system, as developed in the
previous chapters, are rewritten in order to enable a posteriori error estimation.
To summarize, an assembly of CB reduced components was in the previous chapters ob-
tained as follows. First, the component models are reduced using using the CB reduction
basis in eq. (2.55) obtained in section 2.5.2. Thereafter, they are collected in a block diagonal
form and assembled using the primal transformation (3.14) derived in section 3.3.2. Finally,
interface reduction is applied as described in section 4.4 using the interface reduction basis
in eq. (4.12).
In this section, the order of these operations is slightly altered, namely:

1. First, the component models are transformed using only the static constraint modes
of the CB reduction basis. This step is no reduction, but just a transformation where
the substructure internal DoF are transformed to DoF relative to the static modes as-
sociated to the interface DoF.

2. Thereafter, the transformed component models are collected in a block diagonal form
and assembled using the primal transformation.

3. Finally, the reduction of the substructure internal DoF is combined with the reduction
of the global interface DoF, leading to a single reduction step.

In short, the main difference with the previous formulation of the assembled model is that
here the application of the CB reduction basis is performed into two separate steps. To ob-
tain the associated equations, the first step is to collect all substructure models in a (non-
assembled) block form, as:

[ M ii M ib
Mbi Mbb

] [ ü i
üb
] + [ K ii K ib

Kbi Kbb
] [ u i

ub
] = [ f i

f b
] (5.1)
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Here the same block notation is used as in chapters 3 and 4, i.e. the submatrices are block
diagonal containing the component submatrices. Next, the equations are transformed using
the component static constraint modes. These are again gathered in a block form, leading to
the following transformation:

[ u i
ub
] = [ I Ψ c

0 I ] [ ũ i
ub
] (5.2)

As a result the following equations of motion are obtained:

[ M ii M̄ ib
M̄bi M̄bb

] [ ¨̄u i
üb
] + [ K ii 0

0 K̄bb
] [ ū i

ub
] = [ f i

f̄ b
] , (5.3)

with the (block diagonal) submatrices defined as:1

K̄bb = Kbb − Kbi K−1
ii K ib

M̄ ib = M̃T
bi = M ii Ψ c +M ib

M̄bb = Mbb +ΨT
c M ii Ψ c +ΨT

c M ib +Mbi Ψ c

f̄ b = f b +ΨT
c f i

(5.4)

Note that the ū i correspond to the dynamic response of the internal DoF relative to the
static displacements caused by static constraint modes; furthermore since all static modes
are used the above transformation is exact. The transformed equations of motion are still
unassembled, assembly is achieved by applying the primal transformation derived in section
3.3.2:

[ ū i
ub
] = [ I 0

0 Lb
] [ ū i

uγ
] , (5.5)

leading to an assembled, unreduced set of equations with a block diagonal stiffness matrix:

[ M ii M̄ ibLb
LT

b M̄bi LT
b M̄bbLb

] [ ¨̄u i
üγ
] + [ K ii 0

0 LT
b K̄bbLb

] [ ū i
uγ
] = [ f i

LT
b f̄ b
] (5.6)

In the derivation of the error estimation methods, the above assembled equations will be
considered as the reference system. The benefit of this formulation is that the stiffness matrix
is block diagonal, a property that will be used in subsequent derivations. As a result, the
interface can be considered as an additional domain to the internal component domains.
Whereas in dynamic substructuring one usually considers a physical component (internal
plus boundary DoF) as one domain, here only its internal DoF are defined as one domain.
An additional domain is thereby defined, namely the global interface domain (i.e. the “sum”
of all interfaces). As a result, an assembly of n components can now be seen as consisting of
n + 1 domains, which is illustrated by expanding the block notation of the stiffness matrix:

K̄ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K(1)ii 0 0 0 0

0 K(2)ii 0 0 0
0 0 ⋱ 0 0

0 0 0 K(n)ii 0
0 0 0 0 LT

b K̄bbLb

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and ū =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ū(1)i
ū(2)i⋮
ū(n)i
uγ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.7)

1Note that these matrices correspond to the reduced matrices of the Guyan approach.
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The interface is simply regarded as domain n+ 1. Similarly, the mass matrix can be expanded
to reveal the coupling terms between the internal and boundary domains:

M̄ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M(1)
ii 0 0 0 M̄(1)

ib L(1)b
0 M(2)

ii 0 0 M̄(2)
ib L(2)b

0 0 ⋱ 0 ⋮
0 0 0 M(n)

ii M̄(n)
ib L(n)b

L(1)T

b M̄(1)
bi L(2)T

b M̄(2)
bi ⋯ L(n)T

b M̄(n)
bi LT

b M̄bbLb

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.8)

In compact notation this transformed version of the equations of motion will be written as:

M̄ ¨̄u + K̄ū = f̄ (5.9)

In the last step the actual reduction is performed, both of the internal domains as the bound-
ary DoF. The former are reduced using the CB fixed interface modes of section 2.4.3, while
the latter are approximated using the interface displacement modes obtained in section 4.4.
Combining these mode sets in a block diagonal matrix gives the following reduction basis:

[ ū i
uγ
] ≈ [ Φi 0

0 Φγ
] [ ηi

ηγ
] = Rq (5.10)

Application of this reduction finally leads to the Craig-Bampton reduced assembled system:

[ I ΦT
i M̄ ibLbΦγ

ΦT
γ LT

b M̄bi Φi I ] [ η̈i
η̈γ
] + [ Ω2

i 0
0 Ω2

γ
] [ ηi

ηγ
] = [ ΦT

i f i
ΦT

γ LT
b f̃ b
] (5.11)

Since the ingredients in the reduction bases have not changed, these equations are exactly
equal to those obtained in section 4.4, equation (4.15). The above equation can be cast in a
more compact notation as:

M̃q̈ + K̃q = f̃ (5.12)

Finally it is noted that if one chooses to leave the interface unreduced, i.e. Φγ = I, the system
matrices in (5.11) are equal to those obtained using the standard CB method.

After performing any type of structural dynamic analysis on the assembled reduced system
of equation (5.12), the solution can be expanded to the space of the physical DoF using the
reduction basis in (5.10). Since the reduction is an approximation the dynamic equilibrium
is never satisfied exactly, giving rise to a force residual. This force residual can be calcu-
lated by substitution of the expanded reduced solution into the unreduced, but transformed
equations of motion in (5.9):

r = f̄ − M̄Rq̈ − K̄Rq (5.13)

Physically, the force residual can be interpreted as the constraining forces needed to restrict
the system to its reduced displacement space. The magnitude of the residual depends on how
well the contained modes describe the full system response.
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5.4 Error Estimation for Harmonic Solutions

One type of analysis that is regularly encountered in structural dynamics is the harmonic
analysis. As explained in section 4.6.1, for a system excited by a harmonic force it holds for
the steady state solution that q̈ = −ω2

e q. Hence, one can define the dynamic stiffness of the
unreduced system as

Z̄ = K̄ − ω2
e M̄, (5.14)

such that the force residual can be written as:

r = f̄ − Z̄Rq (5.15)

This residual can be allocated to the different domains:

r = col (r(1)i ; . . . ; r(n)i ; rγ) (5.16)

An important property of this residual is its orthogonality with respect to the reduction basis,
both on local (domain) and global level:

RT r = 0 and R(s)T r(s) = 0 (5.17)

This property is often referred to as the Galerkin orthogonality principle, which simply means
that the force residual exists only in the space spanned by the discarded modes. By defini-
tion the residual will therefore be zero if all the modes are retained; in that case R is merely
a transformation. The fact that the residual vector can be split into domain contributions
hints that it might be used as an indicator for the relative error produced by each domain.
However, knowledge of the domain force residual does not directly relate to the size of the
domain error.

The error is defined as the difference between the full and expanded reduced solution:

e = ū − Rq = ū − ũ (5.18)

Since the full solution creates no force residual, the residual of the reduced system can also
be written as:

r = Z̄ū − Z̄Rq = Z̄ (ū − ũ) = Z̄e (5.19)

Clearly, there is a relation between the error and the residual; to compute the error however
still requires the full solution. In the remainder of this section an upper bound will therefore
be derived for the error on reduced solutions for the harmonic problem. To this end, the
next subsection introduces the Dual Weighted Residual (DWR) method, which enables error
estimates for quantities of interest. This approach is generalized in subsection 5.4.2 to obtain
a global error bound in terms of the energy norm.

5.4.1 Goal Oriented Error Estimates – the Dual Weighted Residual Method

The dual-weight-residual (DWR) method is often used to obtain error estimates in the fields
of structural optimization and parameter sensitivity analysis. It is also a common method
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for estimating the error resulting from discretization of a continuous domain by means of
finite elements, which is then used as input for mesh refinement strategies. Less common is
its use in model reduction, for one of the few examples in the literature see [135]. Here the
DWR method will be employed to estimate the reduction error by finding a relation between
the known force residual r and the unknown error e.

When performing structural dynamic analyses one is often interested in a certain output
quantity. In wind turbine engineering, this could for instance be the amplitude of the tip
displacement of a wind turbine blade, or the stress at a particular location in the support
structure. To measure the contribution of the reduction error to these quantities one can
define the so-called linear goal oriented function, or target functional, as:

J(ū) = aT ū (5.20)

Vector a is a selection vector which selects the predefined quantities of interest. Equally, this
goal oriented function can be evaluated for the approximate reduced solution:

J(ũ) = aT ũ (5.21)

Since the target functional is linear, subtracting the two gives the linear target functional of
the error, also called goal oriented error:

J(e) = J(ū) − J(ũ) = aT (ū − ũ) = aT e (5.22)

This goal oriented error cannot be evaluated without knowledge of the full solution. Recall-
ing that ū is the solution to the harmonic problem with the dynamic stiffness matrix Z̄, one
may rewrite the goal oriented error by:

J(e) = aT (ū − ũ)
= aT Z̄−1Z̄ (ū − ũ)
= (Z̄−1a)T r
= dT r

(5.23)

Here use was made of the symmetry of the dynamic stiffness matrix and d is referred to as
the solution of the adjoint problem:2

Z̄d = a (5.24)

The adjoint solution d can be interpreted as the response of the system excited at the quan-
tities of interest, defined in vector a. Since the goal oriented error in the last line of eq. (5.23)
is a vector product, it may be expressed as a summation over the individual domains:

J(e) = n+1∑
s=1

d(s)T
r(s) denoted by eΣ (5.25)

Here r(s) is the force residual of domain s (note that for s = n + 1 one has rγ), weighting by
the trace of the adjoint solution d(s) on the same domain this gives the domain error; their

2In the literature this problem is also referred to as the dual problem, but this terminology is not used here
to avoid confusion with dual assembly techniques
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summation yields the total goal oriented error eΣ. Hence, the value of the domain error gives
an indication of its relative contribution to the total goal oriented error.

The domain errors can be positive and negative, such that in the summation the error in one
domain can counteract the error in another. An upper bound for the error can therefore be
obtained by using the triangle inequality:

∣J(e)∣ ≤ n+1∑
s=1
∣d(s)T

r(s)∣ denoted by e≤Σ (5.26)

Here the notation e≤Σ is introduced to denote the upper bound for the goal oriented error.

However, to evaluate the goal oriented error one needs the solution to the adjoint problem.
From the definition of the adjoint problem (5.24) it can be seen that this requires solving
the full system. Obviously this would take similar computational effort as solving for the
full solution ū which would allow the error e to be computed directly. Still, using an adjoint
problem formulation is beneficial in case many load cases need to be solved. One would then
want a reduced model to run all the load cases, but one could afford a full solution for the
adjoint problem to estimate the accuracy.

Furthermore, in practice the adjoint solution is often approximated using a reduced model
that is more refined than the one used to obtain ũ. As a result the inequality in expression
(5.26) becomes an approximation:

∣J(e)∣ ≤ n+1∑
s=1
∣d(s)T

r(s)∣ ≈ n+1∑
s=1
∣d̃(s)T

r(s)∣ = n+1∑
s=1

m(s)J denoted by e≈Σ (5.27)

In this expression d̃ is the approximate adjoint solution and m(s)J an error indicator, collected
in the vector mJ , that is introduced to unify notations in the coming sections. It is empha-
sized that the approximate adjoint solution must be computed using a more refined model
than the “nominal” model used to compute ũ. Indeed, both ũ(s) and d̃(s) can be written as
a modal superposition of the modes contained in the domain reduction basis. Due to the
Galerkin orthogonality, the domain residual is orthogonal to the part of d̃(s) that lives in
the space of nominal reduction basis. In order to obtain meaningful results, the reduction
bases used to computed the approximate adjoint solution should therefore contain additional
modes.

5.4.2 Global Energy Norm Based Error Estimate

The main difficulty associated with the goal oriented error estimates derived above is that
they require solving the adjoint problem. In this subsection the DWR method is therefore
generalized to obtain a global error estimate that does not require any adjoint solution. In
order to do so, first the following terms are defined to unify the notation for the internal and
interface domains:

Φ(s)l =
⎧⎪⎪⎨⎪⎪⎩

Φ(s)i for s = 1 . . . n
Φγ for s = n + 1

and M(s) = ⎧⎪⎪⎨⎪⎪⎩
M ii for s = 1 . . . n
LT

b M̄bbLb for s = n + 1
(5.28)
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Here it is assumed that Φ(s)l contains the ks lowest eigenmodes of each domain and nor-
malized with respect to their corresponding mass matrix M(s). Note that Φ(s)l are the eigen-
modes of (K(s), M(s)) as used earlier for the Craig-Bampton method and interface reduction.
Using these definitions, an operator P(s) can be defined for each domain as:

P(s) = Φ(s)l Φ(s)T

l M(s) (5.29)

Next, use is made of the fact that the domain residual is orthogonal to the associated domain
reduction basis (Galerkin orthogonality), such that the goal oriented error in eq. (5.26) can
be formulated as:

∣J(e)∣ ≤ n+1∑
s=1
∣d(s)T

r(s)∣ = n+1∑
s=1
∣((I − P(s))d(s))T

r(s)∣ (5.30)

The above expression can be rewritten using the so-called Cauchy-Schwarz inequality. For
two arbitrary vectors x and y this inequality states:

∣xT y∣ ≤ √xT x
√

yT y (5.31)

In this case, one can define that:

x = M(s)1/2 (I − P(s))d(s)
y = M(s)–1/2 r(s) (5.32)

It therefore follows that:√
xT x =√((I − P(s))d(s))T

M(s) (I − P(s))d(s) = ∥(I − P(s))d(s)∥√
yT y = √r(s)T M(s)–1 r(s) = ∥r̂(s)∥ (5.33)

Here ∥⋆∥ is the L2 norm
√⋆T M(s)⋆, and it has been defined that r̂(s) = M(s)-1 r(s). Hence, the

force residual is translated to an acceleration residual by pre-multiplication with the inverse
mass matrix. Note that in practice it might be undesirable to factorize the domain mass ma-
trix, so instead one could employ either of the two following methods to approximate the
acceleration residual. Firstly, one can use a lumped mass approximation, leading to diag-
onal domain mass matrices. It is speculated that for the internal domains this might be a
reasonable approximation as the domain mass matrices are diagonally dominant. For the
interface domain however, where coupling terms with the other domains are present, this
approximation might be too crude. Secondly, one might consider evaluating the accelera-
tion residual using a more refined reduced model, similar to the approximate evaluation of
the goal oriented error in the previous section.

Using the above definitions, one can write the goal oriented error in eq. (5.30) as follows:

∣J(e)∣ ≤ n+1∑
s=1
∥(I − P(s))d(s)∥ ∥r̂(s)∥ (5.34)

Next, the projector in the first term on the right hand side is rewritten using the spectral
expansion of the identity matrix (see e.g. [74] for the derivation of the spectral expansions):

I − P(s) = (Φ(s)l Φ(s)T

l +Φ(s)h Φ(s)T

h )M(s) −Φ(s)l Φ(s)T

l M(s) = Φ(s)h Φ(s)T

h M(s) (5.35)
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Here Φ(s)h contains the domain’s higher (i.e. discarded) modes; substitution of this expansion
in (5.34) and applying the definition of the L2 norm then gives:

∣J(e)∣ ≤ n+1∑
s=1
(d(s)T

M(s)Φ(s)h Φ(s)T

h M(s)d(s))1/2 ∥r̂(s)∥ (5.36)

To obtain this result it was assumed that the domain eigenfrequencies are ordered in a mono-
tonically increasing sequence

0 ≤ ω(s)1 ≤ . . . ≤ ω(s)ns , (5.37)

with ns the total number of DoF in domain s. Hence one can conservatively scale the goal
oriented error using the first discarded eigenvalue as follows:

∣J(e)∣ ≤ n+1∑
s=1
(d(s)T

M(s)Φ(s)h Ω(s)2

h Φ(s)T

h M(s)d(s))1/2 1
ω(s)ks+1

∥r̂(s)∥ (5.38)

Here Ωh is a diagonal matrix containing the eigenfrequencies associated to the discarded
modes in Φh. Furthermore, for the bracketed term in (5.38) it is found that:

d(s)T
M(s)Φ(s)h Ω(s)2

h Φ(s)T

h M(s)d(s) ≤ d(s)T
M(s)Φ(s)Ω(s)2 Φ(s)T M(s)d(s)

≤ d(s)T
K(s)d(s) = ∥d(s)∥2

K

(5.39)

Here Φ(s) contains all the domain modes and the spectral expansion of the domain stiffness
matrix has been used in the second step. Hence one obtains:

∣J(e)∣ ≤ n+1∑
s=1
∥d(s)∥

K

1
ω(s)ks+1

∥r̂(s)∥ (5.40)

Once more the Cauchy-Schwarz and triangle inequalities can be used to separate the sum of
products, to give:

∣J(e)∣ ≤ (n+1∑
s=1
∥d(s)∥2

K
)1/2 ⎛⎝

n+1∑
s=1

1
ω(s)2

ks+1

∥r̂(s)∥2⎞⎠
1/2

(5.41)

Due to the block-diagonality (or decoupling) of the stiffness matrix of the transformed unre-
duced system, see eq. (5.6), it holds that:

n+1∑
s=1
∥d(s)∥2

K
= ∥d∥2K (5.42)

As a result, the goal oriented error is found as:

∣J(e)∣ ≤ ∥d∥K
⎛⎝

n+1∑
s=1

1
ω(s)2

ks+1

∥r̂(s)∥2⎞⎠
1/2

(5.43)

In order to obtain an estimate for the global error e, the selection vector for the adjoint
problem is chosen as a = K̄e. Due to this choice, the goal oriented error J(e) becomes a
global error estimate in terms of the energy norm:

∣J(e)∣ = ∣aT e∣ = ∣eT K̄e∣ = ∥e∥2K (5.44)
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Consequently applying eq. (5.43), the global error estimate is found as:

∥e∥2K ≤ ∥d∥K
⎛⎝

n+1∑
s=1

1
ω(s)2

ks+1

∥r̂(s)∥2⎞⎠
1/2

(5.45)

Here d is now the solution to the adjoint problem Z̄d = K̄e. However, this estimate still
depends on the full adjoint solution. The final step in this derivation is therefore to obtain a
bound for the energy norm of the adjoint solution ∥d∥K in terms of the error e. Therefore,
the adjoint solution computed from eq. (5.24) is written using the spectral expansion of the
global matrices:

d = Z̄−1K̄e = na∑
j=1
(ω2

j − ω2
e)−1 ϕ jϕ

T
j K̄e = na∑

j=1
ω2

j (ω2
j − ω2

e)−1 ϕ jϕ
T
j M̄e (5.46)

In this expression na is the number of DoF of the assembled, unreduced model; the eigenfre-
quencies ω j and mode shapes ϕ j now also refer to this total model. Next, the above expression
is rewritten as follows:

d = na∑
j=1
(ω2

j − ω2
e)−1 (ω2

j − ω2
e + ω2

e)ϕ jϕ
T
j M̄e

= e + na∑
j=1

ω2
e (ω2

j − ω2
e)−1 ϕ jϕ

T
j M̄e = e + d1

(5.47)

In the second step the spectral expansion of the identity matrix was used. Using the above re-
sult and the triangle inequality, the energy norm of the adjoint solution can now be expressed
as:

∥d∥K ≤ ∥e∥K + ∥d1∥K (5.48)

The final step is to obtain a bound for the last term. This can be achieved by writing the
energy norm of this term and maximizing the result:

∥d1∥2K = eT ⎛⎝
na∑
j=1

ω2
e (ω2

j − ω2
e)−1 M̄ϕ jϕ

T
j
⎞⎠ K̄ ( na∑

k=1
ω2

e (ω2
k − ω2

e)−1 ϕkϕT
k M̄) e

= eT ⎛⎝
na∑
j=1

ω4
e (ω2

j − ω2
e)−2 ω2

j M̄ϕ jϕ
T
j M̄
⎞⎠ e

≤max
ωj
( ω2

e
ω2

j − ω2
e
)2

eT ⎛⎝
na∑
j=1

ω2
j M̄ϕ jϕ

T
j M̄
⎞⎠ e =max

ωj
( ω2

e
ω2

j − ω2
e
)2 ∥e∥2K

(5.49)

With this result the bound for the energy norm of the adjoint solution can be expressed as:

∥d∥K ≤ (1 + Sω) ∥e∥K with Sω =max
ωj
( ω2

e
ω2

j − ω2
e
) (5.50)

Here Sω is the so-called stability factor, i.e. an additional factor on the inequality in order for
it to hold true. This stability factor requires knowing the eigenfrequency of the total system,
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that is closest to the excitation frequency. Finally, combining this result and equation (5.45),
the error estimate in the energy norm becomes:

∥e∥K ≤ (1 + Sω)⎛⎝
n+1∑
s=1

1
ω(s)2

ks+1

∥r̂(s)∥2⎞⎠
1/2

denoted by e≤K (5.51)

To determine the relative domain contributions for use in refinement schemes, the following
error indicators are introduced based on this estimate:

m(s)K = 1
ω(s)2

ks+1

∥r̂(s)∥2 (5.52)

For convenience all domain indicators are collected in the vector mK . The error estimate e≤K
in eq. (5.51) can be interpreted as follows.

The energy norm represents the total elastic energy in the system caused by the displacement
error. The above equation finds an upper bound for it by conservatively scaling the (accel-
eration) residual using the eigenfrequencies of the first modes outside the space in which
the approximate solution is obtained. This scaling of the residual can be interpreted as tak-
ing into account that part of the inverse stiffness matrix which is outside the reduced space.
Multiplication by the stability factor then gives the estimate for the error in the energy norm.

The stability factor can be recognized as the dynamic amplification factor of the harmonic
response due to the global eigenfrequency that is closest to the excitation frequency. Obvi-
ously, this eigenfrequency is not calculated from the full model but is also approximated by
the reduced model. In order for the error estimate to remain an upper bound, it is therefore
important that this frequency is accurately predicted by the reduced model. Should this not
be the case, for instance when the reduction bases are still very poor at the start of a refine-
ment algorithm (see section 5.7), the error estimate no longer holds quantitatively but can
still be used to estimate the relative domain contributions.

Finally, note that the error estimate may be scaled by the energy norm of the (approximate)
solution to obtain relative energy norms of the error.

5.5 Error Estimation for Time-Stepping Solutions

In this section, an error estimate will be derived for the time-stepping problem. As the name
suggests, this problem is solved in each time step of a time integration scheme, see section
4.6.3. Indeed, this problem is very similar to the harmonic problem and as a result, most
of the developments of the previous section can be directly applied to the time-stepping
problem.

The time-stepping problem for the popular Newmark time-integration scheme can be ob-
tained by combining the equations for the prediction, acceleration and correction steps (i.e.
eqs. (4.39), (4.40) and (4.42) in section 4.6.3). Discarding damping and, for the sake of il-
lustration, assuming that the system was at rest at the previous time step, one finds that the
problem to be solved has the following form:

Ŝqk = f̄ k (5.53)
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Where:

Ŝ = K̄ + τM̄ with τ = 1
h2β

(5.54)

Hence, the time-stepping problem is very similar to the harmonic problem. Consequently,
in order to derive an error estimate the same line of reasoning can be followed for both the
goal oriented and the global error estimates. In fact, the goal error estimates can be one-
to-one applied to the time-stepping problem. For the global error estimate in terms of the
energy norm, the derivation in section 5.4.2 can be followed up to eq. (5.45):

∥e∥2K ≤ ∥d∥K
⎛⎝

n+1∑
s=1

1
ω(s)2

ks+1

∥r̂(s)∥2⎞⎠
1/2

(5.45)

Here d is again the unknown adjoint solution while r̂ now is the (acceleration) residual re-
sulting from the time-stepping computation with the reduced model. To arrive at a global
error estimate for the time-stepping problem the adjoint solution should again be eliminated.
In this case, this can be easily achieved by proving that ∥e∥K ≤ ∥d∥K which is done by noting
that the adjoint solution is now obtained from:

Ŝd = K̄e (5.55)

Hence, using spectral expansion and the definition of Ŝ, the energy norm of the adjoint
solution can be written as:

∥d∥K = eT K̄ Ŝ−1K̄ Ŝ−1K̄e

= eT K̄
⎛⎝

na∑
j=1
(ω2

j + τ)−1 ϕ jϕ
T
j
⎞⎠ K̄ ( na∑

k=1
(ω2

k + τ)−1 ϕkϕT
k ) K̄e

= eT K̄
⎛⎝

na∑
j=1

ω2
j (ω2

j + τ)−2 ϕ jϕ
T
j
⎞⎠ K̄e

= eT K̄
⎛⎝

na∑
j=1

ω4
j (ω2

j + τ)−2 ϕ jϕ
T
j M̄
⎞⎠ e ≤ ∥e∥K

(5.56)

In the last step it was used that τ > 0, which can be seen from its definition in eq. (5.54). As
a result, the error estimate for the time-stepping problem can be expressed as:

∥e∥K ≤ ⎛⎝
n+1∑
s=1

1
ω(s)2

ks+1

∥r̂(s)∥2⎞⎠
1/2

(5.57)

Again the following domain error indicators are defined and gathered in the vector mK :

m(s)K = 1
ω(s)2

ks+1

∥r̂(s)∥2 (5.58)

Note that apart from the stability factor the obtained error bound is exactly similar to the
one found for harmonic problems. This is expected as both problems only differ in the fact
that the mass matrix is multiplied by a factor τ > 0 in the time-stepping problem whereas it
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is multiplied by −ω2
e ≤ 0 in the harmonic problem. Due to this difference, the stability factor

can be omitted in the error estimate for the former.

Finally, it is pointed out that the error bound in (5.57) gives an estimation of the reduction
error incurred in a single time step. A propagation analysis is required in order to quantify
the total reduction error that is accumulated during a time integration with multiple time
steps. This is a complex problem that is out of the scope of this work.

5.6 Error Estimation for Global Eigensolutions

In addition to the common harmonic analysis and time integration, in practice an often seen
type of dynamic analysis is the modal analysis (see section 4.6.2). By extending the theory
of the previous sections, an error estimate can be derived for a global eigensolution (eigen-
frequency and -mode of the assembled system) obtained from the reduced model without
knowledge of the solution for the full model. The next subsection therefore first defines the
error on the eigensolution, thereafter the actual estimates are derived in subsections 5.6.2
and 5.6.3. Throughout this section references will be made to appendix C where some steps
in the derivation of the error estimates are worked out in detail. This is done to avoid too
lengthy derivations in the main text.

5.6.1 Error & Force Residual

In section 5.4 the goal was to create a reduced model whose harmonic response converges
towards that of the unreduced model. Hence the error was defined as the difference between
those two responses. Here the goal is to iteratively improve a reduced model having an ap-
proximate eigensolution that should converge towards a selected/target eigensolution of the
unreduced model. Since an eigensolution consists of an eigenfrequency and an eigenmode,
two errors need to be defined.

The error on the eigenfrequency of eigensolution j, denoted by eω, is simply defined as the
absolute difference between the exact eigenfrequency ω j obtained from the unreduced model
and the approximate one ω̃ obtained from the reduced system:

eω = ∣ω̃2 − ω2
j ∣ (5.59)

The error on the eigenmode is defined some what differently, namely as the part of the ap-
proximate eigenmode ϕ̃ that is (mass) orthogonal to the space of its exact counterpart ϕ j,
i.e.:

eϕ = ϕ̃ − ϕ jϕ
T
j M̄ϕ̃ = (I − P j) ϕ̃ (5.60)

Here mass normalized modes are assumed and P j is an operator on the global level, similar
to the projector used on the domain level in section 5.4.2. Note that in practice one might
include multiple eigenmodes in this projector, for instance when several modes are very
closely spaced. Note that the error estimates that will be derived in this section are equally
valid in that case.
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Since the eigensolution of the reduced system is an approximation of the exact solution it
does not satisfy the eigenproblem of the full system. Hence, when the approximate eigenso-
lution is substituted in the full eigenproblem a force residual is found:

r = K̄ϕ̃ − ω̃2M̄ϕ̃ (5.61)

Note that the force residual can again be split into domain contributions similar to eq. (5.16).
Furthermore, in order to converge to the correct global eigensolution, both the error on the
eigenvalue and -vector need to be below a certain tolerance.

For the derivation of the error estimates for the approximate eigensolution, the starting point
is again the target functional introduced in section 5.4.1. This target functional can be eval-
uated for the approximate mode ϕ̃ as:

J (ϕ̃) = aT ϕ̃ = dT (K̄ − ω2
j M̄) ϕ̃

= dT K̄ϕ̃ − ω2
j d

T M̄ϕ̃ = dT r
(5.62)

In this expression ω2
j is the exact eigenfrequency of the unreduced assembled system, and d

is again the solution to the adjoint problem which for the eigenproblem becomes:

(K̄ − ω2
j M̄)d = a (5.63)

Next, the projector P is defined as the block diagonal equivalent of the domain projectors
P(s) defined in eq. (5.29). This allows to split the adjoint solution d in a part that lives in the
space of the domain modes and an orthogonal part. One can apply this split to the first term
eq. (5.62) to write the goal oriented error as:

J (ϕ̃) = ((I − P)d)T K̄ϕ̃ + (Pd)T K̄ϕ̃ − ω2
j d

T M̄ϕ̃ (5.64)

After a number of manipulations, which are detailed in appendix C, this equation can be
rewritten to:

J (ϕ̃) = ((I − P)d)T (K̄ − ω̃2M̄) ϕ̃ + (ω̃2 − ω2
j)dT M̄ϕ̃ (5.65)

This expression for the goal oriented error forms the basis for the error estimates for the
approximate eigensolution. In the next two subsections, these estimates will be derived for
the eigenfrequency and eigenmode, respectively.

5.6.2 Error Estimate for Global Eigenfrequency

To come to an error estimate for an approximate global eigenfrequency ω̃2, the first step is
to choose the selection vector in the adjoint problem simply as a = 0 . With no goal quantity
selected, the goal oriented error in eq. (5.65) reduces to zero:

0 = ((I − P)d)T (K̄ − ω̃2M̄) ϕ̃ + (ω̃2 − ω2
j)dT M̄ϕ̃, (5.66)

while the adjoint problem in eq. (5.63) now amounts to:

K̄d − ω2
j M̄d = 0 (5.67)
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Hence, a non-trivial adjoint solution can be found as:

d = P jϕ̃ (5.68)

This solution is simply verified with the definition of the orthogonal projector P j in eq. (5.60):

K̄ϕ jϕ
T
j M̄ϕ̃ − ω2

j M̄ϕ jϕ
T
j M̄ϕ̃ = ω2

j M̄ϕ jϕ
T
j M̄ϕ̃ − ω2

j M̄ϕ jϕ
T
j M̄ϕ̃ = 0 (5.69)

Using this adjoint solution, the last term dT Mϕ̃ on the right hand side of eq. (5.66) can be
written as:

dT M̄ϕ̃ ≥ 1 − δ (5.70)

Here 0 ≤ δ < 1 is a so-called safety factor which is often introduced in the literature on error
estimation to ensure the conservatism of error bounds [104, 122]. Details of this step are
shown in appendix C.1. Substitution of this result in (5.66) then leads to the following:

(ω̃2 − ω2
j) (1 − δ) ≤ −((I − P)d)T (K̄ − ω̃2M̄) ϕ̃ (5.71)

This expression can be transformed to an error estimate on the approximate eigenfrequency
by:

eω ≤ 1
1 − δ

∣((I − P)d)T (K̄ − ω̃2M̄) ϕ̃∣ (5.72)

Next, using the definition of the residual in eq. (5.61), one can write:

eω ≤ 1
1 − δ

∣((I − P)d)T r∣ (5.73)

As before, the adjoint solution and residual can be written as a summation of the domain
contributions. As a result, the eigenfrequency error estimate becomes:

eω ≤ 1
1 − δ

n+1∑
s=1
∣((I − P(s))d(s))T

r(s)∣ (5.74)

Indeed, apart from the safety factor δ, this expression is exactly similar to eq. (5.30) obtained
in the derivation of the error estimates for harmonic problems. Hence, one can proceed the
derivation exactly as in section 5.4.2 to obtain the equivalent of eq. (5.45):

eω ≤ 1
1 − δ

∥d∥K
⎛⎝

n+1∑
s=1

1
ω(s)2

ks+1

∥r̂(s)∥⎞⎠ (5.75)

The final step in obtaining the error estimate for the eigenfrequency is to find a bound for the
energy norm of the adjoint solution ∥d∥K . Recalling the adjoint solution found with a = 0
from eq. (5.68), one can write this energy norm as:

∥d∥K = (ϕ̃T PT
j KP jϕ̃)1/2

= (ϕ̃T M̄ϕT
j ϕ jK̄ϕ jϕ

T
j M̄ϕ̃)1/2

= ω j (ϕ̃T MP jϕ̃)1/2 ≤ ω j

(5.76)
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In the last step it was used that ϕ̃T MP jϕ̃ ≤ 1, see appendix C.1. Finally, the error estimate for
the approximate eigenfrequency is thus obtained as:

eω ≤ ω j

1 − δ
⎛⎝

n+1∑
s=1

1
ω(s)2

ks+1

∥r̂(s)∥⎞⎠
1/2 = ω j

1 − δ
(n+1∑

s=1
m(s)K )

1/2
denoted by e≤ω (5.77)

As before, the notation e≤ω is used to indicate the error estimate and distinguish it from the
actual error eω. Furthermore, mK are the same domain indicators as defined previously (eq.
(5.52)), and can be used in adaptive refinement schemes such that the error on the eigenfre-
quency is decreased most efficiently. Note that a relative frequency error can be found by
normalizing e≤ω by the (approximate) target eigenfrequency.
Quite paradoxically, the error estimate for the approximate global eigenfrequency ω̃ contains
the exact eigenfrequency ω j for which an error bound is sought. In practice ω j is obviously
not calculated but simply replaced by the approximate frequency obtained from the reduced
model. Indeed, due to the reduction this frequency will always exceed the exact frequency
of the unreduced model, such that the error estimate remains a conservative bound. When
applying the error estimate in an adaptive reduction scheme it could therefore be that at
first this frequency is poorly approximated, leading to a (too) high error estimate, but as the
refinement progresses the eigenfrequency will converge and the error bound will become
more and more accurate.

5.6.3 Error Estimate for Global Eigenmode

In order to arrive at an error estimate for the approximate eigenmode ϕ̃, one chooses the
selection vector in the goal oriented error similarly as in section 5.4.2, namely a = K̄eϕ. As
a result, the goal oriented error again becomes a global energy norm of the error on the
eigenmode as defined in eq. (5.60):

J (ϕ̃) = aT ϕ̃ = eT
ϕ K̄ϕ̃ = ∥eϕ∥2

K (5.78)

Details on how this result is obtained are treated in appendix C.2. With this choice, the goal
oriented error from eq. (5.65) becomes the following global error estimate:

∥eϕ∥2
K = ((I − P)d)T (K̄ − ω̃2M̄) ϕ̃ + (ω̃2 − ω2

j)dT M̄ϕ̃ (5.79)

As in the previous subsection, the last term (ω̃2 − ω2
j)dT M̄ϕ̃ in the expression is first ana-

lyzed. As is shown in appendix C.2, the following bound for this term is found:

(ω̃2 − ω2
j)dT M̄ϕ̃ ≤ δ ∥eϕ∥2

K (5.80)

In this case the safety factor δ, with 0 ≤ δ < 1, has the following property (see appendix C.2
for details):

max
i≠ j
( ω̃2 − ω2

j

ω2
i − ω2

j
) ≤ δ (5.81)

Such that, after substitution in eq. (5.79), the error estimate becomes:

∥eϕ∥2
K ≤ 1

1 − δ
(((I − P)d)T (K̄ϕ̃ − ω̃2M̄ϕ̃)) (5.82)
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From this point onwards, the same steps can be followed as in the previous subsection. By
doing so one obtains:

∥eϕ∥2
K ≤ 1

1 − δ
∥d∥K

⎛⎝
n+1∑
s=1

1
ω(s)2

ks+1

∥r̂(s)∥⎞⎠
1/2

(5.83)

Again, the final step in the derivation of the error estimate is to establish a bound for the
energy norm of the adjoint solution. Indeed, for the current adjoint solution this problem is
very similar to that of section 5.4.2. Applying the same reasoning as therein thus leads to the
following bound:

∥d∥K ≤ (1 + Sω) ∥eϕ∥K with Sω =max
i ≠ j
( ω2

j

ω2
i − ω2

j
) (5.84)

Here Sω is again a stability factor that is similar to that for the harmonic problem, except that
the frequency of external excitation ωe is replaced by the frequency of the target eigensolu-
tion. With this bound for the adjoint solution, the error estimate e≤ϕ for the approximate
eigenmode finally becomes:

∥eϕ∥K ≤ 1 + Sω

1 − δ
⎛⎝

n+1∑
s=1

1
ω(s)2

ks+1

∥r̂(s)∥⎞⎠
1/2 = 1 + Sω

1 − δ
(n+1∑

s=1
m(s)K )

1/2
denoted by e≤ϕ (5.85)

Similar to what was remarked before regarding the stability factor for the harmonic problem,
it is noted here that the above stability factor depends on the (exact) global eigenfrequency
that is closest to the target eigenfrequency. Again, these frequencies are not calculated from
the full model but are approximated by the reduced model. Therefore, when the stability
factor is poorly predicted, the error estimate no longer holds quantitatively but can still be
used to estimate the relative domain contributions. The further the domain reduction bases
are refined, the better the error estimate becomes.

Intermezzo: Error Estimation for DCB and MTA Methods

The error estimates of the previous sections were derived with respect to the Craig-Bampton
reduced model formulation. Although the CB method is often regarded as the most popular
component reduction technique, the practical value of the error estimation methods would
be further enhanced if it could also be used to obtain error estimates for models reduced
with other methods, such as the Rubin, Dual Craig-Bampton and Mixed Craig-Bampton.

To derive the error estimates in this chapter, use was made of the fact that an uncoupled
stiffness matrix can be obtained through a transformation with the static constraint modes.
The Rubin methods employs static residual attachment modes combined with an additional
transformation to obtain displacement interface DoF, leading to coupling between the static
and vibration modes (and hence the internal and boundary DoF, see section 2.5.3). It will
hence be impossible to obtain such a block-diagonal stiffness matrix for the Rubin method.
This is not to say that no error estimates can be derived for this method, but at least not using
the current approach.
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In the Dual CB method the same modes are used as in the Rubin method, but as explained in
section 2.5.4 there is no back-transformation to interface displacement DoF. Therefore, when
performing a transformation similar to that of section 5.3, one also obtains a block-diagonal
stiffness matrix but with the original interface DoF ub now replaced by the force DoF gb.
However, due to the presence of these force DoF, the DCB equations of motion describe a
saddle point problem in contrast to the convex problem described by the CB equations. The
derivations in terms of the energy norm therefore no longer hold and a different type of norm
should be applied instead. Further research is needed to investigate this.

Another valuable extension of the error estimation methods would be to apply them to re-
duced models with MTA vectors in the basis. These vectors, as described in section 2.7, are
“pseudo-modes” which adhere to all the properties of true eigenmodes except that they do
not originate from an eigenproblem. In fact, in this work it was attempted to generalize the
error estimates from section 5.4.2 to such augmented reduction bases. However, the pres-
ence of the pseudo modes causes problems in the derivation step in eq. (5.39), where both
mass- and stiffness orthogonality with respect to the domain’s discarded vibration modes is
required. This cannot be achieved for the MTAs (otherwise they would be true eigenmodes).
Again, further research is needed to see if and how this can be overcome.

5.7 Refinement Schemes for Adaptive Model Reduction

In the previous sections error estimates were presented that give quantitative measures of
the reduced model’s accuracy for different types of dynamic analysis. All estimates are based
on the summation of domain error contributions and can therefore be used in refinement
schemes. These refinement schemes are applied in an iterative way to perform adaptive
model reduction, that is, the reduced model is adapted through refinement until it has suffi-
cient accuracy for the given analysis. This process is illustrated for the general case in figure
5.3. In the next subsection two adaptivity schemes are discussed that are suitable for respec-
tively goal oriented and global error estimates. Thereafter two basic refinement strategies are
proposed in subsection 5.7.2 for use in these adaptivity schemes.

Compute 
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Compute domain 
vibration modes

Compute error 
estimates + 
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Apply refinement 
scheme

Accuracy
ok?

Unreduced 
transformed 

assembly
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Figure 5.3: Schematic representation of adaptive model reduction procedure using error estimation.
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5.7.1 Adaptivity Schemes

Based on the error estimates two adaptive model reduction algorithms are defined; one for
goal oriented error estimation (algorithm 5.1) and another for global error estimates (algo-
rithm 5.2). Both algorithms consist of a few basic steps. First one defines either an error
tolerance ε or a maximum number of DoF of the total reduced model, or both. Then the
internal and interface domains are reduced with an initial number of modes ks. From the
resulting force residual the error estimates are evaluated to obtain the domain contributions
to the overall error.

In algorithm 5.1 for goal oriented errors the next step is to solve the adjoint problem using a
more refined reduced system, where each domain is reduced with k+s modes. Based on the
values of the domain error indicators in mJ , the domains can be enriched according to some
refinement scheme. Two examples of such refinement schemes are proposed in the next
subsection. This process is repeated until the error estimate e≈Σ is smaller than a predefined
tolerance and/or a maximum size of the assembled reduced model is reached.

Algorithm 5.1 Adaptivity scheme for goal oriented error
Define tolerance ε or maximum size of model kmax
Set initial number of modes ks
while e≈Σ > ε or∑s ks < kmax do

Reduce domains with number of modes ks
Solve the reduced system, obtain ũ
Solve the adjoint problem, using k+s modes, obtain d̃
Compute error indicator mJ from (5.27)
Apply refinement scheme such that ks = ks + kadd

end while

The second adaptive model reduction algorithm is applicable for global norm-based error
estimates. As treated in the previous sections these can be obtained for harmonic analysis,
time-stepping problems and global eigensolution convergence. The resulting algorithm 5.2
is very similar to algorithm 5.1, expect that in this case a different error estimate is calculated
as well as different domain error indicators. Furthermore, no longer any adjoint solution
needs to be solved which is beneficial in terms of computational efficiency.

Algorithm 5.2 Adaptivity scheme for global error estimates
Define tolerance ε or maximum size of model kmax
Set initial number of modes ks
while e≤⋆ > ε or∑s ks < kmax do

Reduce domains with number of modes ks
Solve the reduced system, obtain ũ or (λ̃, ϕ̃)
Compute error indicator mK from eq. (5.52)
Apply refinement scheme such that ks = ks + kadd

end while

In the adaptive model reduction schemes the domain reduction bases are iteratively refined
with additional eigenmodes. Hence, from a numerical implementation perspective a suit-
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able algorithm should be used for obtaining these eigensolutions. Specifically, the numeri-
cal method should be capable of efficiently handling the computation of a limited number
of eigenmodes when a number of lower eigenmodes has already been computed. Hence,
a good choice would be a restarted iterative algorithm like the implicitly restarted Arnoldi
(IRA) method [195, 123] or the implicitly restarted Lanczos method [29].

5.7.2 Refinement Schemes

Based on the knowledge of the domain contribution to the total error, in terms of the error
indicators, two refinement strategies are presented here for use in the adaptive model reduc-
tion algorithms. Note that here only two basic refinement schemes are proposed and that
other, more elaborate heuristics can be imagined.

The first strategy is to obtain the maximum domain contribution and add a fixed number of
modes kadd to all domains that contribute more than a certain fraction c of this maximum.
This scheme will be referred to as “threshold refinement”. The parameter c is to be chosen
beforehand with a value from zero to one. Using the generic notation m for the domain
indicators, which depending on the type of estimate (goal oriented or global) that is used
can either be mJ or mK , this refinement scheme can be expressed as in algorithm 5.3.

Algorithm 5.3 Refinement scheme 1 – threshold
Set threshold value for refinement 0 ≤ c ≤ 1
Select mmax =max (m)
for domain s = 1, . . . , n + 1 do

if m(s) ≥ c ⋅mmax then
ks = ks + kadd

end if
end for

In case one chooses c = 0 this scheme enriches all domains such that it effectively becomes a
uniform refinement scheme, whereas with c = 1 only the most inaccurate domain is enriched.

The second refinement strategy computes a relative contribution for each domain based on
the total error. This normalized distribution is then used to determine which share of the
available enrichment modes kadd are to be added to each domain. Of course these values have
to be rounded to the nearest integer. This refinement scheme is called “linear refinement”
and is shown in algorithm 5.4.

Algorithm 5.4 Refinement scheme 2 – linear
Compute mtot = ∑n+1

s=1 m(s)
for domain s = 1, . . . , n + 1 do

Compute m̂(s) = m(s)/mtot
ks = ks + m̂(s) ⋅ kadd

end for

For both of the above refinement schemes it holds that they are easy to compute and im-
plement. The benefit of the “linear” scheme is that the growth of the reduced model per
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iteration is known in advance and therefore can be better controlled. On the other hand,
the “threshold” scheme offers more flexibility by adaptively choosing the value for c in the
iterative model reduction algorithm (i.e. algorithm 5.1 or 5.2). For instance one can apply
quasi-uniform refinement (i.e. c → 0) when the error is large, whereas targeted refinement
steps can be taken when the error gets close to the tolerance ε (c → 1).

5.8 Summary

This chapter was concerned with error estimation for assembled reduced models. This was
motivated by the fact that the reduced models only approximate the dynamic behavior of
the full system; to have confidence in the outcomes of these models it is important to gain
insight into their accuracy. Preferably, this should be achieved without knowledge of the full
solution, which can be very computationally expensive, while at the same time providing
information on the contribution of each component to the total error.
To this end, a posteriori error estimation methods were considered. It was explained in
section 5.2 that these methods were initially developed in the field of finite element analysis
to estimate the error arising from discretization of the continuous domain, but have recently
been applied for the first time to the similar problem of estimating the reduction error. Based
on that work, error estimates were derived in this chapter in an algebraic model reduction
setting.
In order to do so, the reduced equations of motion were first cast in an alternative format in
section 5.3. This resulted in a transformed system description with an uncoupled, block diag-
onal stiffness matrix; an essential property for the derivation of the error estimates. Section
5.4 thereafter treated the derivation of error estimates for approximate solutions to harmonic
problems obtained from the reduced model. Goal oriented errors were considered first, that
is, errors in quantities of interest. Through the definition of an adjoint problem, that is also
solved approximately but from a more refined reduced model, error estimates could be de-
rived that express the total error as a summation of component error contributions. The goal
oriented error estimate was subsequently generalized to a global error estimate in terms of
the energy norm by a specific choice of the selection vector.

Harmonic problem EigenproblemTime stepping problemType of problem

Refinement scheme

Type of error estimate Goal oriented error Global error norm

Choose Target eigensolution

Threshold refinement Linear refinement

Quantity of interest

Size of adjoint problem

Figure 5.4: Different options and choices for adaptive model reduction using error estimation.

Thereafter, section 5.5 treated error estimates for the time stepping problem that is solved
within time integration schemes. As this problem is very similar to the harmonic prob-
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lem, so are its error estimates. Finally, in section 5.6 the problem of estimating the accuracy
of approximate global eigensolutions was addressed. Using the same reasoning as for the
harmonic solution, error estimates for an approximate eigenfrequency and -mode could be
derived.

In section 5.7 it was outlined how the error estimates may be used in an adaptive model
reduction scheme. These schemes aim to reduce the reduction error as efficiently as possible
by refining those components that contribute most to the total error. Two simple refinement
schemes were proposed to do so.

Summarizing once more, error estimates have been derived for three types of problems. For
harmonic and time stepping problems, one can further choose a goal oriented error or global
error norm. In the former case, one additionally needs to choose a quantity of interest and the
size of the approximate adjoint problem. Finally, one can choose one of the two proposed
refinement schemes. These different options and choices are indicated in the flowchart in
figure 5.4.



6
Updating of Component Reduction Bases

Fast cars, fast women, fast algorithms. . .
what more could a man want?

(Joe Mattis)

6.1 Introduction

In a dynamic substructuring analysis, the main computational cost lies in the computation
of the component reduction bases. As explained in chapter 2, this reduction basis in general
consists of a set of static modes and a truncated set of vibration modes. Hence, obtaining the
basis involves solving both a linear system of equations for the static modes and an eigen-
problem to obtain the vibration modes. This initial investment pays off when the assembled
system is analyzed; since it is built up from reduced component models it is very compact
and can be analyzed efficiently. However, in the practical setting of an iterative design pro-
cess, one or more of the component models may be subject to (parametric) modifications.
This means that for every design change these components need to be remodeled and their
reduction basis recomputed. Thereby the efficiency of the componentwise reduced approach
is largely undone.

However, the design changes made to the components are in practice often rather small. It is
therefore unlikely that the modified component will exhibit completely different behavior in
terms of eigenfrequencies and mode shapes. The question thus arises whether one actually
needs to recalculate the complete component reduction basis or if maybe the knowledge of
the nominal system could be used to efficiently update its basis to suit the modified compo-
nent. In this chapter a method is developed to achieve this, the interaction with the topics
presented in other chapters is shown in figure 6.1.
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Figure 6.1: Current chapter in relation to other chapters in part I of this thesis.

6.1.1 Existing Methods

In the literature, different approaches have been described to efficiently update component
reduction bases. For the static modes, one approach is to simply assume that the nominal
static modes can also be used to reduce the modified component [133]. In another publication
it is proposed to completely recompute them based on the new model [30]. Finally, the
static modes can be updated using the Combined Approximations (CA) technique [114], as
proposed in [1].

The vibration modes can also be updated using the Combined Approximations method, as
was suggested in [30]. Another approach is to enrich the reduction basis using sensitivity
modes as described in [133, 1]. Such sensitivity modes represent the change of the vibration
mode shapes around the nominal design point with respect to the design change. Further-
more, methods exist where an (approximate) extended reduction basis is created for a para-
metric family of models [14, 13]. This requires a priori knowledge of the design modifications.

The main difficulties with the existing methods is that either the approximate reduction ba-
sis fails to accurately capture the response of the modified system or, in the case of multiple
design parameters, the extended basis grows larger and larger, eventually losing its effective-
ness. In this work a different approach is therefore taken. Here the aim is not to approximate
or enrich the reduction basis but truly update the static and vibration modes to suit the mod-
ified component model, thereby reusing as much information as possible from the nominal
system. To this end, iterative solution techniques will be used in combination with effective
preconditioning. These concepts will be elaborated further in the following sections, after
explaining the starting points for this work:

• In line with the work referred to earlier [1, 133, 30], it is assumed that the component
FE mesh topology and connectivity are not altered. Nodal positions may be changed
(e.g. elongation or thickness changes) as long as this does not result in element shape
violations.

• The goal of the methodology presented here is to update the reduction basis. This
means the reduced models remain of the same size, which implicitly assumes that the
same number of modes can properly represent the structural response after modifica-
tion.

• The stiffness matrix of the nominal system is factorized when setting up the nominal
reduced model. This factorization is a significant part of the computational cost of the
reduction, it is therefore assumed that this factorization is stored for further use.
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• The methods developed in this chapter should be universally applicable to all types of
component reduction bases. To this end, the generic notation from section 2.2 will
be adopted; details on how specific types of modes are calculated were addressed in
sections 2.3 and 2.4 for respectively the static and vibration modes.

• Parametrization of a component FE model is out of the scope of this chapter. Instead,
it is simply assumed that some design change is performed which is translated into a
modified FE model. In chapter 8 an example is presented where a component FE mesh
is parameterized for simple design modifications and the structural matrices updated
accordingly.

6.1.2 Direct Versus Iterative Solvers

As explained in chapter 2, the computation of a component reduction basis requires solving
both a static and an eigenvalue problem. The former is associated with the computation of
the p static modes Ψ = [ψ1 . . . ψp] and generally is of the form (see section 2.3)

Kψ j = f j, (6.1)

while the latter is solved to find the m vibration modes Φ = [ϕ1 . . . ϕm] and takes the form
(see section 2.4)

Kϕ j = ω2
j Mϕ j (6.2)

Here f is some right hand side equivalent to an applied force. The vector ψ j is some required
static mode and ϕ j the vibration mode with ω j its associated eigenfrequency. Note that in
case one is interested in solutions around a certain frequency of interest ωs, one can also use
modes of the shifted problem. In that case K should be replaced by (K − ω2

s M); the methods
discussed in this chapter can be used without modification in case shifting is applied.
The static problem is usually solved using direct techniques. These are basically variants of
the factorization techniques by Gauss, such as LDLT decomposition for symmetric matrices
or Cholesky decomposition for symmetric positive matrices, which are very robust and ef-
ficient. Direct solvers are therefore the standard choice for most static calculations. In this
case, the factorization of the stiffness matrix can be stored for future computations.
On the other hand, eigenvalue problems in dynamics are generally solved using iterative
techniques such as the Lanczos method [121]. Due to the sparsity of the matrices and the
fact that one is usually only interested in a few of the structure’s (lowest) eigenfrequencies,
iterative methods are clearly the most efficient choice. The Lanczos method, and related
methods such as the Block Lanczos, Arnoldi and Implicitly Restarted Arnoldi [195], require
the factorized stiffness matrix in their iterations. When the static problem is solved using a
direct solver, this factorization is readily available.
The most time consuming steps in computing the reduction basis are the factorization of
the stiffness matrix and the eigensolver iterations. Hence, when a component is modified
one would ideally like to avoid these computationally intensive steps. Indeed, it was noted
earlier that when the modified system is “close” to the nominal one, its dynamic behavior will
probably not change dramatically. Therefore, it is proposed not to start the factorization and
eigensolution for the modified component from scratch but instead use iterative methods.
The aim is to start from the solutions of the nominal system, reuse as much of the available
information as possible and quickly converge to the solutions for the modified system.
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6.1.3 Chapter Outline

The updating strategy proposed in this work builds on preconditioned iterative methods.
Similar to the calculation of the nominal reduction basis, the updating strategy requires the
static and eigenproblem to be solved sequentially. The procedure for updating the static
modes will be based upon the preconditioned conjugate gradient method and is elaborated in
section 6.2. Thereafter, the updating scheme for the vibration modes is explained in section
6.3 and achieved using the inverse-free preconditioned Krylov subspace method. Section 6.4
then briefly covers the issue of sequential updating, that is, when a component is subjected
to a sequence of design modifications. A summary is provided in 6.5.

Regarding the notations in this chapter: a subscript ⋆(0) refers to the nominal component,
while ⋆(1) designates the modified component. The component denotation ⋆(s) used in the
previous chapters will be omitted here for compactness; all expressions regard component
properties unless otherwise noted. Furthermore, the symbol ∆⋆ is used to indicate the differ-
ence between the nominal and modified system. Subscripts i and k refer to iteration indices.

6.2 Updating of Static Modes

In this section an approach will be presented for updating the static modes in the component
reduction basis. The starting point for this updating problem is as follows. For the nominal
component, the static problem has been solved:

Ψ(0) = K−1(0)F(0) (6.3)

Subsequently a design modification is made to the component, which leads to the new static
problem:

K(1)Ψ(1) = F(1) (6.4)

The goal is now to efficiently find Ψ(1) by reusing Ψ(0) and K−1(0), while avoiding the factor-
ization of K(1). This section is therefore organized as follows. First the general concept of
the CG method is outlined, thereafter subsection 6.2.2 addresses its convergence as well as
how to improve it using preconditioning. The issue of solving for multiple right hand sides is
addressed in subsection 6.2.3 while subsection 6.2.4 finally returns to the updating problem
and shows why the approach might be useful.

6.2.1 The Conjugate Gradient Method

In addition to direct solvers, iterative solvers can also be employed to solve static problems.
Most iterative methods for static problems are based on the conjugate gradient (CG) algo-
rithm proposed by Hestenes and Stiefel [90] in 1952. These methods initially did not gain
popularity as their convergence was slow and they were lacking robustness compared to di-
rect techniques. However, due to their sequential nature, the direct solvers turned out to be
ill-suited for parallel computing. The upcoming of parallel computing in the 1980’s therefore
boosted the development of iterative solvers and as a result, they became a serious alternative
to their direct counterparts. Since the CG method will be heavily used in this chapter, it is
summarized hereafter.
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The conjugate gradient (CG) method is an iterative algorithm for solving systems of linear
equations with symmetric and positive-definite operators, such as the problem for a static
mode:

Kψ = f (6.5)

Solving this linear system is equal to minimization of the quadratic problem:

L(ψ) = 1
2

ψT Kψ −ψT f (6.6)

Suppose that one has some initial guess ψ0 of the solution (ψ0 can be equal to 0 ) and wishes
to iteratively refine it by adding some improvement: ψ1 = ψ0 + ∆ψ. The question now is
how to choose ∆ψ. Taking the negative gradient of the quadratic problem around the initial
guess, one finds:

− ∂L
∂ψ ∣ψ0

= f − Kψ0 = r0 (6.7)

In fact, r0 is the residual force vector for the initial guess u0 and corresponds to the steepest
descent direction around ψ0, that is, the direction in whichL is reduced quickest. Hence the
new approximation ψ1 is written as

ψ1 = ψ0 + η0r0, (6.8)

where η0 is the unknown amplitude in the direction of the residual r0. Inserting this in the
linear problem yields

Kψ1 = K (ψ0 + η0r0) = f − r1 (6.9)

To find the “optimal” value for η, the new residual is required to be zero in the space of the
current approximation, i.e. rT

0 r1 = 0. This gives

rT
0 K (ψ0 + η0r0) = rT

0 f , (6.10)

and using the expression for r0 then allows to find η0:

η0 = rT
0 r0

rT
0 Kr0

(6.11)

Note that this corresponds to a “line search” minimization step. Subsequently one can cal-
culate ψ1 and the associated residual r1, compute the next correction for η1, and so on. In
this sequence, the current residual is each time minimized in the space of only the previous
residual. This means that the same direction might appear several times in the residual and
as a result, the solution is not guaranteed to be found in a finite number of steps.
To overcome this, Hestenes and Stiefel proposed to use conjugate gradients, by adding an or-
thogonalization step to the process. In this way, the search direction at iteration k is no longer
directly the residual rk, but is first K-orthogonalized to all the previous search directions. In
theory, the new search direction needs to be orthogonalized only with respect to the previ-
ous one, but due to numerical round-off errors the preceding directions will progressively
reappear. Hence a full orthogonalization is needed, as follows:

pk = rk − k−1∑
i=0

pi βi (6.12)
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where k is the index of the current iteration and i the index of the previous directions. Here
p is used to denote the search direction (i.e. orthogonalized residual) as opposed to the true
residual r. Realizing that after orthogonalization it should hold that pT

i K pk = 0, and after
scaling the search directions such that pT

i K pi = 1, the factor βi is found as:
βi = rT

k K pi (6.13)
Since the search directions obtained in this way span a K-orthogonal space, the algorithm
is guaranteed to converge in n iterations, where n is the size of the problem. The basic in-
gredients of the CG method have now been treated and can be summarized in the form of
algorithm 6.1.

Algorithm 6.1 Basic conjugate gradient method
Input: K , f , ψ0
r0 = f − Kψ0, k = 0
while ∣∣rk ∣∣ > ε∣∣ f ∣∣ do

pk = rk
– Orthogonalization with previous directions –
for i = 0 . . . k − 1 do

βi = rT
k K pi

pk = pk − pi βi
end for
pk = pk√

pT
k K pk

– Minimization and updating –
ηk = pT

k rk
ψk+1 = ψk + ηk pk
rk+1 = rk − ηkK pk = f − Kψk+1
k = k + 1

end while

Some remarks are in place regarding the algorithm 6.1 and the CG method in general:

• The main cost of the algorithm is in the matrix-vector multiplication K pk. Hence
one can optimize the algorithm by storing this product as wk, so that it needs to be
calculated only once per iteration.

• The calculation of the new residual can be done recursively or directly. For numerical
stability it is advisable to explicitly evaluate the residual once every few iterations (for
instance

√
n); see [193] for a discussion.

• The convergence criterion is to compare the norm of the residual with the norm of the
force (right hand side) and define an iteration tolerance ε for their ratio.

• The normal CG method makes use of the symmetry of the operator K in the conju-
gation step. However, for non-symmetric operators similar algorithms can be devised
such as the bi-CG or GMRES methods [179, 178].

• The sequence of search directions spanning the solution space is in fact the Krylov
space Kk spanned by K starting from r0 [77]:

span{p1, p2, ..., pk} = span{r0, Kr0, ..., Kk−1r0} = Kk (K , r0) (6.14)
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6.2.2 Convergence & Preconditioning

In the original version of the CG method outlined above, the convergence of the algorithm is
usually very slow. To illustrate this, a lower bound for the convergence rate of the conjugate
gradient method can be expressed as a function of the condition number κ of the operator
K [77]:

∥ψ −ψk∥K ≤ 2 ∥ψ −ψ0∥K (
√

κ − 1√
κ + 1
)k

(6.15)

Here ∥⋆∥K is the energy norm defined as
√⋆T K⋆, see section 5.4. This indicates that when

κ(K) ≈ 1 the convergence of the CG algorithm is very fast. Most structural problems how-
ever, suffer from bad mathematical conditioning for instance arising from stiffness changes
in the structure, mixing of translation and rotational DoF, etc. In those cases κ(K) ≫ 1 and
the convergence rate is very slow. An important way to increase the convergence rate is thus
to improve the condition number of the operator. This can be done by the transformation

K̂ = S−1K , (6.16)

with S chosen such that the condition number of K̂ is lower than that of K . This concept
is known as preconditioning and was the driving force behind the rapid development of the
CG type methods some three decades ago. Note that S must be a full rank matrix in or-
der to retain the full possible solution space. In the iterative scheme of the CG method the
preconditioning step can be implemented by taking

pk = S−1rk , (6.17)

such that the Krylov subspace generated by the CG algorithm becomes:

Kk (K̂ , r0) = span{r0, K̂r0, ..., K̂k−1r0} (6.18)

Ideally one would take S−1 = K−1, so that κ(K̂) = 1. In that case the search direction becomes

pk = K−1rk , (6.19)

and the exact solution would be found in one iteration. This is of course the paradox of the
method: to achieve this the inverse of K is needed from a factorization. The updating step
is then nothing more than a forward/backward substitution and the CG method has in fact
become a direct solver. The trick is therefore to come up with some approximation K̂−1 for
K−1 which is good enough to seriously speed up the calculations but is not too costly in its
construction.
A physical interpretation of the slow convergence without preconditioning is that the dis-
placement solution one seeks is iteratively updated using forces (the orthogonalized residual
vectors). This seems inconsistent from a mechanical point of view and one should in fact
translate the force errors to a displacement correction, using preconditioning. The better the
preconditioner approximates the inverse of K , the closer the correction is to a true displace-
ment correction.1

1Another interpretation of the slow convergence is that the structural response is dominated by the lowest
modes of K . Since one applies direct iteration on K , as opposed to inverse iteration, one first has to go through
the high spectrum of K in order to arrive at the lowest modes.
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The simplest and computationally cheapest preconditioning is the Jacobi preconditioner

S = diag (K) , (6.20)

which corresponds to simple scaling of K . The issue of choosing an optimal preconditioner
has been studied intensively over the years and as a result, many other preconditioners exist.
This is however not of interest here, as will be shown in subsection 6.2.4.

6.2.3 Multiple Right Hand Sides

In the above discussion the CG method was considered for solving a static problem with a
single right hand side:

Kψ j = f j (6.21)

In practice however, a component has very rarely only a single interface degree of freedom
and hence usually multiple static modes need to be calculated, i.e.

KΨ = F , (6.22)

where Ψ = [ψ1 . . . ψp] and F = [ f 1 . . . f p]. Using a direct solver this is very easy;
since the factorization is already available only a forward/backward substitution is needed
to solve for the new right hand sides.

The question thus arises if something similar can be done for the CG method or whether one
needs to start from scratch. In fact, two ways exist to handle multiple right hand sides in the
CG method, namely 1) performing subsequent iterations making use of the previous results
through projection and reconjugation, and 2) simultaneous iteration on a block of vectors.
Both will be treated next.

6.2.3.1 Projection and Reconjugation

Suppose that the first static mode has been computed with a (preconditioned) CG solver:

Kψ1 = f 1 (6.23)

In the process the following sequences were generated:

P1 = [p1, p2, . . .] , W 1 = [K p1, K p2, . . .] , (6.24)

such that by construction one has a K-orthonormal basis:

PT
1 KP1 = PT

1 W 1 = I (6.25)

Hence, if a new right hand side is considered in order to find the next static mode, one can
first search for (an estimate of) the solution in the existing space. So suppose it is tried to
solve

Kψ2 = f 2 (6.26)
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and an initial guess ψ2,0 for the solution already exists (the following also holds if ψ2,0 = 0 ).
Instead of directly starting the CG iterations, the solution can first be improved by searching
for a correction in the existing space:

ψ2 = ψ2,0 + P1α1 (6.27)

Inserting this in the static mode problem, premultiplying with PT
1 and solving for α1 gives:

α1 = PT
1 ( f 2 − Kψ2,0) (6.28)

The improved solution for the second static mode is thus found as

ψ2 = ψ2,0 + P1PT
1 ( f 2 − Kψ2,0) = P1PT

1 f 2 + (I − P1PT
1 K)ψ2,0, (6.29)

where the last term can be recognized as projection of the ψ2,0 on the space K-orthogonal
to the existing space P1. By doing so the solution is first computed in the space P1 and sub-
sequently improved by CG iterations. To that end, the associated residual can be calculated
as:

r = f 2 − Kψ2= (I −W 1PT
1 ) f 2 − (K −W 1W T

1 )ψ2,0
(6.30)

This forms the starting point for the CG iterations for the new static mode. To avoid search-
ing in the existing subspace, the new search directions should not only be mutually orthog-
onalized but should also be orthogonalized with respect to P1 (this is sometimes called re-
conjugation). This process can be repeated for all right hand sides and the search space P is
continuously enriched. When this space is rich enough, the solution for a new right hand
side may be found with very few iterations. For more details see for instance [177, 58].

6.2.3.2 Block Conjugate Gradient

Another way to treat multiple right hand sides in a CG solver is by solving them all simul-
taneously (i.e. solving directly eq. (6.22)). This can be achieved by iterating on a block
of vectors [145].2 In order to adapt the CG algorithm to block computations, the only no-
table difference with the single vector algorithm is instead of simple scaling one needs to
perform a K-orthonormalization of the vectors in the block of search directions P, such
that PT KP = PT W = I. This can be accomplished for example through a modified Gram-
Schmidt process [77]. Using this orthonormality, the orthogonalization step of the block of
vectors with respect to the previous directions is straightforward:

Pk = Rk − k−1∑
i=1

P i β i with β i =W T
i Rk . (6.31)

Similarly, the minimization step in the block algorithm is also easily solved as:

Ψk+1 = Ψk + Pkηk with ηk = PT
k Rk . (6.32)

2Obviously, the block CG method can only be applied if all right hand sides are known in advance, i.e. if a
right hand side is not computed based on the outcome of previous right hand side(s). This is usually the case
for component static modes.
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Since in the block implementation the residuals are minimized simultaneously in all search
directions of the set of residuals, the convergence of the method is very fast in terms of num-
ber of iterations. However, the total number of search directions needed for convergence (i.e.
block size times number of iterations) is approximately equal for the block and the single vec-
tor algorithms.3 Still the block CG method is an interesting option since modern CPUs can
run more efficiently when iterations are performed on a number of vectors instead of a single
vector.
However, when a large number of static modes need to be computed (i.e. when the compo-
nent has many interface DoF), the efficiency of the block algorithm breaks down due to its
memory requirements and the need to orthonormalize Pk. To overcome this, the projection
and reconjugation approach for multiple right hand sides can be combined with the block
CG algorithm. This allows one to choose the block size such that the processor is used most
efficiently while at the same time making use of the previous iterates for finding the solutions
for the other block right hand sides. So, the static problem of eq. (6.22) is split in a number
of block equations

KΨ j = F j, (6.33)

and subsequently solved using a combination of the projection/reconjugation and block ap-
proaches. This variation of the CG method is outlined in algorithm 6.2.

6.2.4 Application to Updating of Static Modes

6.2.4.1 Preconditioning

In the previous subsections the basics of the CG method were outlined and it became clear
that the convergence rate algorithm is highly dependent on the effectiveness of the precon-
ditioner. Next it will be shown why the CG algorithm is potentially very attractive for the
updating of static modes in a component reduction basis.
Suppose that the static modes Ψ(0) of the nominal component have been calculated and the
factorization of K(0) is stored. Next the static modes problem for the modified component
is to be solved

K(1)Ψ(1) = F(1), (6.34)

using the CG method from algorithm 6.2. As initial guess for the solution the static modes
of the nominal system are used and, more importantly, the factorization of the nominal stiff-
ness matrix is used for preconditioning. Now recall that the convergence rate of the CG
method is given by the bound in (6.15) and is dependent on the conditioning of the precon-
ditioned stiffness matrix. After preconditioning one thus has the following operator in the
CG algorithm:

K̂ = K−1(0)K(1) = K−1(0) (K(0) + ∆K) = I + K−1(0)∆K (6.35)

Clearly, the closer K−1(0)∆K is to some factor times identity, the closer the condition number
of the preconditioned stiffness matrix will be to unity. Indeed, in case ∆K = αK(0), then the

3The total number of vectors needed in the block algorithm is usually slightly higher than for the single
vector algorithm. This is due to the fact that all vectors in a block come from the same Krylov order.
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Algorithm 6.2 Preconditioned block conjugate gradient with multiple right hand sides
Input: K , F , Ψ0, S−1

k = 0, j = 1
R0 = F 1 − KΨ 1,0
for j = 1 . . . p do

– Initial guess for new right hand sides –
if j > 1 then

Q = KΨ j,0

α = PT (F j −Q)
Rk = F j −Wα −Q
Ψ j,0 = Ψ j,0 + Pα

end if
while ∣∣rm,k ∣∣ > ε∣∣ f m, j∣∣ do

Pk = S−1Rk
– Orthogonalization with previous directions –
for i = 1 . . . k − 1 do

β i =W T
i Pk

Pk = Pk − P i β i
end for
W k = KPk
Orthonormalize Pk ∶ PT

k W k = I
– Minimization and updating –
ηk = PT

k Rk
Ψ j,k+1 = Ψ j,k + Pkηk
Rk+1 = F j − KΨ j,k+1 = Rk −W kηk
k = k + 1

end while
end for

condition number would be one and the solution is obtained in a single iteration. Hence, a
very good preconditioner is available “for free” if K(0) was factorized for the nominal system.
The closer the modified component is to the nominal one (i.e. the smaller the design change),
the better this preconditioner becomes and the faster the CG algorithm will converge.

Note that when dealing with a floating subsystem the stiffness matrix K(0) is singular and
its inverse will be a generalized inverse K+(0).4 This generalized inverse can for instance be
obtained through projecting K(0) out of the space spanned by the rigid body modes. How-
ever, the rigid body modes may change with a design modification, or in other words the
nullspace of K(0) is not equal to the nullspace of K(1). The new rigid body modes may be
obtained geometrically or as a by-product of a CG solver [162]. Hence applying K+(0) as a pre-
conditioner for K(1) requires special attention to make sure that one retains the full solution
space.

4Note that in general this is only relevant for the Rubin/MacNeal and Dual Craig-Bampton methods. In the
Craig-Bampton method the constraining of the interface DoF usually eliminates any rigid body modes. For
more details refer to section 2.5.
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6.2.4.2 Implementation Issues of Block Conjugate Gradient Method

As outlined in the introduction, a component’s static modes correspond physically to the
static deformation shapes in response to an excitation (either displacement or force) at one
of its boundary DoF. In practice, where the boundary DoF may be located close to each
other, this means that some of the static modes may be very similar in shape. Mathematically
speaking, such vectors are (nearly) linearly dependent.

In those cases, solving the updating problem with a block CG method might become prob-
lematic. Indeed, when starting the CG iterations with Ψ(0) having linearly dependent columns,
the initial residual will not have full rank. As a result, the orthonormalization process of the
vectors in the block P0 will break down and the CG algorithm is no longer guaranteed to con-
verge. To overcome this, a check on the rank of the initial residual needs to be performed
when initializing the block CG algorithm [66]. If the block of vectors is rank deficient, they
need to be orthogonalized such that:

R0 = F(1) − K(1)Ψ(0) = R̄0G (6.36)

Here R̄0 has size n × r and G has size r × p, with r the rank of R0 and p the original number
of vectors in the block. The original problem is then transformed to:

K(1)Ψ̄(1) = R̄0 (6.37)

Having solved the transformed problem, the solutions to the original static updating problem
can be recovered by:

Ψ(1) = Ψ(0) + Ψ̄(1)G (6.38)

Another issue encountered in practice is that not all vectors in the block converge at the
same rate. Some vectors may thus meet the convergence criterion much sooner than others.
In order to minimize the computational effort and, more importantly, to avoid numerical
instabilities in the minimization step it is therefore advisable to remove converged vectors
from the iteration block.

6.2.4.3 Low Tolerance Updating

One possibility that arises when iteratively updating the static modes is to perform the up-
dating only up to a relatively low tolerance. This idea is motivated by the fact that due to
the reduction one already makes an approximation and hence the accuracy of the updated
modes needs not to be higher than the accuracy that the reduction imposes on the com-
ponent model. In case one applies low tolerance updating to the static modes for a fixed
interface reduction method (e.g. the Guyan or Craig-Bampton method, see section 2.5), one
has to make sure that possible rigid body modes of the structure are properly described. A
procedure to achieve this is outlined below.

The rigid body modes of the structure are denoted by ΦT
r = [ΦT

r∣u ΦT
r∣b], such that by defi-

nition they do not produce any elastic forces:

K [ Φr∣u
Φr∣b ] = [ 0

0
] (6.39)
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Here Φr has size n × r, with r between 1 and 6 when the structure is assumed to be free of
mechanisms. In case the mesh of the model has changed due to the design modification the
new rigid body modes may be obtained geometrically which, as explained in section 2.4.2,
is computationally cheap. Suppose now that, for the sake of illustration, a component model
is reduced using only static modes:

[ u
qb
] = [ Ψ

I ] qb = Rsqb (6.40)

Hence, only the boundary DoF are retained. If a rigid body displacement is imposed on
these DoF, the reduced model should not generate any elastic forces such that neighboring
components do not experience any reaction forces. This can be interpreted as a patch test for
a reduced component model (superelement), similar to a regular finite element. Therefore
one should have that:

RT
s KRsΦr∣b = 0 (6.41)

One way to satisfy this condition is to impose that:

RsΦr∣b = Φr ↔ ΨΦr∣b = Φr∣u (6.42)

Since the static modes have been updated with a limited tolerance, this condition does not
hold in general. Instead, one has:

ΨΦr∣b = Φr∣u + є (6.43)

In order to cancel the error є and satisfy the rigid body condition in (6.42), a correction is
added to the static modes:

Ψ = Ψ̃ + ∆ (6.44)

The correction can be found from substitution in (6.42), hence

∆ = (Φr∣u − Ψ̃Φr∣b) (ΦT
r∣bΦr∣b)−1 ΦT

r∣b , (6.45)

where it was assumed that there are more boundary DoF than rigid body modes (i.e. Φr∣b is a
tall matrix). Note that by adding this correction to the updated static modes the approximate
CG solution to the original static problem in eq. (6.4) is changed. This could lead to a larger
residual, meaning that due to the correction the part of the static modes describing the defor-
mations is less accurately captured. However, this should not be of great concern since one
has chosen to compute the static modes with a low tolerance in the first place. Furthermore,
correctly describing the rigid body modes is deemed more important in a substructuring
analysis.

Finally, it is noted that the (domain) error estimates derived in the previous chapter could
be used as a guideline for determining the updating tolerance required for the static modes
(as well as for the vibration modes).
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6.3 Updating of Vibration Modes

After outlining the updating procedure for static modes in the previous section, this section
addresses the updating of that other important ingredient in a component reduction basis:
the vibration modes. This updating problem is formulated as follows: suppose that the vi-
bration modes Φ(0) = [ϕ(0),1 . . . ϕ(0),m] of the nominal component have been obtained.
After a design modification the new vibration modes must be found by solving

K(1)ϕ(1), j = ω2(1), j M(1)ϕ(1), j for j = 1 . . . m (6.46)

in an efficient way and without factorizing K(1). To present the proposed strategy, subsection
6.3.1 treats structural dynamic eigensolvers in general and explains their shortcomings for
updating purposes. Subsection 6.3.3 therefore addresses an eigensolver that is suited for the
updating problem. Some details for further improvement of the updating strategy for the
vibration modes are finally treated in subsection 6.3.4.

6.3.1 Eigensolvers in Structural Dynamics

The most important ingredient of any reduction basis is the set of vibration modes Φ =[ϕ1 . . . ϕm]. To find these modes requires solving an eigenvalue problem of the form

Kϕ j = ω2
j Mϕ j. (6.47)

Since one is usually interested in only the lowest m ≪ n modes and generally the K and M
matrices are symmetric, (semi-)positive definite and very sparse, structural dynamic eigen-
problems are usually solved using iterative methods. The basis for these methods is the con-
cept of inverse iteration, which will be briefly explained next.

6.3.1.1 Inverse Iteration Method

Suppose one wants to find the first eigenmode associated to the eigenproblem in eq. (6.47)
and have some arbitrary starting vector x0. Using modal superposition this vector can be
written as a combination of eigenmodes:

x0 = n∑
i=1

αi ϕi (6.48)

Next, the initial eigenvalue problem can be written as

σ jϕ j = K−1Mϕ j, (6.49)

where σ j = 1/ω2
j and consequently σ1 ≥ σ2 ≥ . . . ≥ σn. The solution for the first mode ϕ1 can

be found iteratively by starting from x0 and forming the iterates xk by:

xk+1 = K−1Mxk = Dxk (6.50)

This method is known as power iteration, where the matrix D is referred to as the iteration
matrix. After inserting the modal expansion for x0 and k successive applications of the power
iteration one thus has:

xk = Dkx0 = Dk
n∑

i=1
αi ϕi = n∑

i=1
σ k

i αi ϕi (6.51)
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This can also be written as:

xk = σ k
1 (α1ϕ1 + n∑

i=2
(σi

σ1
)k

αi ϕi) (6.52)

Since σ1 ≥ σi , the ratios (σi/σ1)k tend to zero with increasing k and hence xk converges to
ϕ1, provided that α1 ≠ 0. The convergence rate is governed by the ratio (σ2/σ1) and is thus
independent of the system size, which can be very attractive for large systems. However,
explicitly forming the iteration matrix D becomes infeasible for such systems. Therefore, the
algorithm can be split up into two operations, giving the inverse iteration scheme:

yk = Mxk

xk+1 = K−1 yk
(6.53)

The first step is a simple multiplication by the mass matrix, while the section operation corre-
sponds to solving a static problem. Convergence can be monitored by calculating the residual
at iteration k:

rk = K−1Mxk − σkxk (6.54)

The algorithm can be terminated when ∥rk∥ < ε ∥Kxk∥, where ε is some preset tolerance.
Since in structural dynamics one is often interested in the convergence of the eigenfrequency,
an alternative convergence criterion can be based on the Rayleigh quotient:

ρk = xT
k Kxk

xT
k Mxk

(6.55)

such that the algorithm is stopped when ∥ρk+1 − ρk∥ < ε ∥ρk∥, where ε is now a tolerance on
the frequency. The eigenfrequency is then found as ω = √ρk. A straightforward relation
exists between the residual criterion and the frequency criterion. Knowing that at iteration
k the mode approximation has converged up to a tolerance ε, one can write:

xk = ϕ1 + εy = ϕ1 + ε
n∑

i=2
αi ϕi (6.56)

Computing the Rayleigh quotient for this mode approximation, assuming mass normalized
modes and using mode orthogonality, it is found that:

ρk = (ϕ1 + εy)T K (ϕ1 + εy)
(ϕ1 + εy)T M (ϕ1 + εy) = ω2

1 + ε2 yT K y
1 + ε2 ≈ ω2

1 + ε2
n∑

i=2
α2

i ω2
i (6.57)

This shows that when a tolerance ε is requested for the residual, the associated frequency has
converged with an accuracy in order of approximately ε2.

After the first eigenmode is found, higher modes can be found by orthogonal deflation. Fur-
thermore, in case one is interested in the eigenmodes around a certain target frequency µ,
one can apply spectral shifting and solve the following problem:

(K − µM)ϕ j = (ω2
j − µ)Mϕ j. (6.58)
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This requires the factorization of the shifted stiffness matrix (also known as the dynamic
stiffness) so that the inverse iteration step becomes:

yk = Mxk

xk+1 = (K − µM)−1 yk
(6.59)

Using the same reasoning as before, one can easily show that this inverse iteration sequence
converges to the eigenmode closest to the target frequency µ. Finally, one can also choose
to integrate the shifting in the iterations. This means that at every iteration, one calculates
the eigenfrequency estimate (i.e. the Rayleigh quotient) and shifts the problem accordingly.
This is called Rayleigh quotient iteration [77] and the inverse iteration step becomes:

yk = Mxk

xk+1 = (K − ρk M)−1 yk
(6.60)

This iteration scheme gives an eigensolver with extremely fast convergence, which comes at
the high cost of having to factorize a different linear system at every iteration. The approach
is therefore only feasible for relatively small systems, as the cost of the factorization becomes
prohibitive for larger systems. For more details regarding power and inverse iteration meth-
ods see for instance [77, 74].

6.3.1.2 Subspace Iteration Method

Using the inverse iteration method to find the vibration modes of a structure has some short-
comings. Most notably, each eigensolution is calculated from scratch and converges without
knowledge of higher eigensolutions. This means that information from previous solutions
is thrown away and the convergence is slow when eigenvalues are closely spaced. Much like
the CG algorithm in the previous section, the aim is to modify the method such that these
drawbacks are eliminated. The concept of inverse iteration can therefore be generalized such
that iterations are performed on several vectors simultaneously, leading to the well known
subspace iteration method.
Instead of iterating on a single vector, the subspace method iterates on a block of m vectors.
The iteration step in the algorithm thus becomes:

Y k = MXk

Xk+1 = K−1Y k
(6.61)

To avoid that all m vectors in Xk converge towards the first eigenmode, an orthogonalization
step is needed at every iteration to make sure that the columns of Xk span a m-dimensional
subspace. This orthogonalization can be accomplished by using a Gram-Schmidt procedure
or by solving the interaction problem. The interaction problem amounts to finding the best
estimate for the eigensolutions in the space spanned by Xk. Hence one forms the reduced
matrices:

K̃ = XT
k K Xk

M̃ = XT
k MXk

(6.62)

and subsequently solves the reduced eigenproblem:

K̃V k = M̃V k ρk (6.63)
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Since it is very small, this eigenproblem can be solved efficiently by a direct method. The
resulting eigenvalue estimates are ρk = diag (ρk,1 . . . ρk,m) and the eigenmode estimates can
be found from expansion of the reduced modes:

Xk+1 = XkV k (6.64)

These eigenmode estimates are K- and M-orthogonal. As a convergence criterion one can
again choose to either iterate until the residual drops below a certain threshold

∥Rk∥ = ∥K Xk −MXk ρk∥ < ε ∥K Xk∥ , (6.65)

or monitor the difference between subsequent eigenfrequency estimates:

∥ρk − ρk−1∥ < ε∥ρk∥ (6.66)

Similar to the inverse iteration method, the convergence rate of the subspace iteration method
for mode j is driven by the ratio (ω2

j/ω2
m+1). Therefore, in order to increase the convergence

rate towards the highest required eigenvalue ω2
m it might be interesting to add so-called buffer

vectors to the iteration block X. The goal is then to choose the number of buffer vectors such
that the convergence speeds up while at the same time the total number of operations is not
increased by too much. As a rule of thumb one usually chooses the total number of itera-
tion vectors according to min{2m, m + 8}. The subspace iteration method is summarized
in algorithm 6.3; more details can be found in [19].

Algorithm 6.3 Subspace iteration method
Input: K , M, K−1, X0 ∶ XT

0 MX0 = I
ρ0 = diag (XT

0 K X0), k = 1
while ∣∣ρk − ρk−1∣∣ > ε∥ρk∥ do

– Inverse iteration –
Y k = MXk−1
Xk = K−1Y k
– Interaction analysis & orthogonalization –
K̃ = XT

k K Xk
M̃ = XT

k MXk
Solve: K̃V k = M̃V k ρk
Xk+1 = XkV k
k = k + 1

end while
Φ = Xk
Ω2 = ρk

6.3.1.3 Lanczos Method

Although the subspace iteration method is an efficient and robust method for computing
the lowest few eigenmodes of a structure, it still has some flaws. Most importantly, at every
iteration the information from previous steps is disregarded. Intuitively, this is not the most
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efficient way of converging to the solution and in fact one would like to use as much of that
previous information as possible. The Lanczos method, first published in 1950 [121], does
exactly that and will be briefly outlined next.

Conceptually the Lanczos method for solving eigenproblems is very similar to the CG method
for static problems. The Lanczos method also generates a growing, orthogonal subspace and
seeks for the eigensolutions in this space. Starting from an initial vector z0 that is mass nor-
malized (i.e. zT

0 Mz0 = 1), the first step in the Lanczos algorithm is the inverse iteration to
find

z̃1 = K−1Mz0 (6.67)

From the inverse iteration method it is known that if this process is continued the subsequent
iterates will all converge towards the first mode. To avoid this, the following iterate is M-
orthogonalized to the previous one, much like the K-orthogonality of the CG iterates:

α0 = zT
0 Mz̃1

ẑ1 = z̃1 − z0α0
(6.68)

Hereafter ẑ1 is mass normalized according to:

γ1 =√ẑT
1 Mẑ1

z1 =ẑ1/γ1
(6.69)

This process is repeated, so that after k iterations the following Krylov sequence is created:

Kk (K−1M, z0) = span{z0, K−1Mz0, (K−1M)2 z0, . . . , (K−1M)k−1 z0} (6.70)

The eigensolutions of the problem are searched for in this growing Krylov subspace. Similar
to the subspace iteration method, one therefore needs to solve the interaction problem to
find the approximate first m eigensolutions. After k ≥ m iterations, this interaction problem
turns out to take the following form (see [121, 77, 74] for more details):

TV k = σ kV k (6.71)

Here σ k = diag (σ1 . . . σk) contains the reciprocals of the eigenvalue estimates (σ j = 1/ρ2
j );

the eigenmode approximations are again found by expansion, i.e. Xk = ZkV k. The matrix
T is built from the coefficients α⋆ and γ⋆ and it can be shown that, due to orthogonality and
symmetry of K and M, this matrix is symmetric and tri-diagonal:

T =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

α0 γ1 0
γ1 α1 ⋱⋱ ⋱ γk
0 γk αk

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Due to this form of T the interaction problem can be solved very efficiently. The convergence
criterion can again be taken either on the norm of residual of the eigenvalue problem or on
the differences between subsequent eigenfrequency estimates.

As pointed out before, the Lanczos method can be seen as the counterpart of the CG method
for eigenproblems; both are Krylov subspace methods. Comparing the Lanczos method to
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the inverse iteration and subspace iteration eigensolvers, the main difference is that no in-
formation is discarded since all iterates are used to find the best approximation of the eigen-
solutions. As such, the Lanczos method is the most efficient way of calculating the lowest
few eigenmodes of a sparse, symmetric system. Further details of the method are treated in
[74]. The discussion on the Lanczos method is concluded with the following remarks:

• Similar to the CG algorithm, theoretically the current vector zk+1 only needs to be
orthogonalized with respect to the previous vector zk. However, due to accumulation
of numerical errors, full orthogonalization is needed to preserve the tri-diagonality of
T .

• Instead of iterating on a single vector, the Lanczos method can also be written in a
block form to iterate on a block of vectors. As pointed out for the CG method, this
might have advantages for modern CPUs that can run more efficiently on a block im-
plementation.

• The Lanczos method makes use of the symmetry of the mass and stiffness matrices.
The Arnoldi method is a generalization of the Lanczos method for non-symmetric
systems and forms the basis for the Implicitly Restarted Arnoldi solver often used in
structural dynamics [195]. To limit memory use when dealing with very large systems,
this method consists in restarting the iterations after some number of steps using only
the most relevant results obtained so far.

6.3.2 Eigensolvers & the Updating Problem

Having introduced the two most common eigensolvers in structural dynamics, namely the
subspace iteration and Lanczos methods, the discussion is now returned to the updating
problem for the component vibration modes. Recall that in this work it is tried to avoid the
factorization of the modified stiffness matrix, which cannot be done using the traditional
solvers. Hence, an alternative algorithm is desired. The most straightforward idea is to re-
place the inverse iteration (requiring solving a static problem) of the traditional algorithms
with an iterative algorithm such as the CG method outlined in the previous section. This
results in an algorithm consisting of two nested iteration loops called inner-outer iteration:
the original iteration of the eigensolver is called the outer iteration while the static problem
in eq. (6.67) is solved by the inner iteration loop.

For the Lanczos method, this approach turns out to be very inefficient. This can be under-
stood as follows. For the sake of illustration, suppose the first eigensolution is sought of a
system with the mass matrix equal to identity:

Kϕ1 = ω2
1 Iϕ1 (6.72)

After k iterations of the Lanczos method an approximation xk of the first is searched for in
the Krylov subspace:

xk ∈ span{z0, z1, . . . , zk} = span{z0, K−1z0, . . . , K−k+1z0} (6.73)

Note that due to orthogonalization of the zk the vectors are not exactly identical to those in
the Krylov sequence, but since the orthogonalization process involves only linear operations
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the space spanned remains the same. To improve the approximation xk, the Krylov basis is
then extended by adding the direction resulting from the inverse iteration step:

Kzk+1 = zk (6.74)

However, since it is wished not to compute K−1, a CG method is applied to solve the inverse
iteration step: the inner iteration. This means that the new vector zk+1 is searched for in the
following Krylov subspace (assuming the CG iterations are started with zk+1,0 = 0 ):

zk+1 ∈ span{zk , Kzk , K2zk , . . .} = span{zk , zk−1, zk−2, . . . , z0, Kz0, K2z0, . . .} (6.75)

This indicates that the CG algorithm starts by finding the part of zk+1 residing in the space
of all previous zk−i (i = 0 . . . k). This part of zk+1 is useless since it is already present in
the Lanczos subspace and it will anyways be filtered out of zk+1 in the subsequent Lanczos
orthogonalization step. The new contribution to the Lanczos space will be generated by the
CG iterations from the Krylov space span{Kz0, K2z0, . . .} which will first approximate the
higher spectrum of the problem and is thus in contradiction with the fact that the solution
zk+1 is expected to be relevant for the low spectrum in the Lanczos space. In other words,
the useful part of the solution will be obtained only after many CG iterations.

Preconditioning the CG algorithm might help to reduce the number of iterations needed, but
this fundamental problem remains. Furthermore, speeding up the convergence by reusing
the iteration results in subsequent CG solves through the projection/reconjugation technique
(see section 6.2.3) will also only have limited effect. The reason is that at each step one needs
to solve the inverse iteration for a right hand side that is orthogonal to the previous ones.

Alternatively one could consider solving the inverse iteration step (i.e. the inner iteration)
only approximately, called inexact inverse iteration in the literature [78]. However, the Lanc-
zos method is not well suited to such an approach as the Krylov subspace in eq. (6.70) is
no longer formed exactly. Indeed, it was already noted in the literature that the Lanczos
method is sensitive to perturbations [80]; especially the first few inverse iteration steps need
to be solved to high accuracy in order to preserve its fast convergence.

The above discussion motivates the need for a different approach. It is therefore proposed
to apply the inverse-free preconditioned Krylov subspace (IFPKS) method for handling the
updating problem for the vibration modes. This method has only recently been developed
in the field of computational mathematics [79, 153, 154] and will be discussed in detail next.

6.3.3 Inverse-Free Preconditioned Krylov Subspace Method

6.3.3.1 Basic Concept

To understand the concept of the IFPKS method, it should be realized that the eigenproblem
is in fact a non-linear minimization problem. Considering again the eigenproblem for a
single vector, one namely tries to find a local minimum of the Rayleigh quotient:

ρ (x) = xT Kx
xT Mx (6.76)
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Suppose one has some initial guess x0 for the eigenvector. In case one assumes x0 to be mass
normalized, the gradient around x0 can be computed as follows:

1
2

∂ρ
∂x ∣x0

= Kx0 − ρ (x0)Mx0 = r0 (6.77)

Note that the residual is also dependent on ρ(x0) which clearly indicates that it is a resid-
ual of a non-linear problem. As in the CG method, r0 is the residual corresponding to the
initial guess x0 and is the direction of steepest descent. In order to improve the eigenmode
estimate, one can thus search for a new approximation x1 in the space span{x0, r0} by min-
imizing ρ (x1). However, since this is a non-linear problem, other directions orthogonal to
the residual might also be useful to construct a better approximation x1. Hence one generates
a set of vectors that span the following Krylov subspace:

Kr (K − ρ0M, r0) = span{r0, (K − ρ0M) r0, . . . , (K − ρ0M)r−1 r0} (6.78)

Here r ≥ 1 is some chosen number of inner iterations. The new approximate eigensolution
x1 is then found in the space

x1 ∈ span{x0} + Kr (K − ρ0M, r0) = Kr+1 (K − ρ0M, x0) (6.79)

by solving the interaction problem. The associated eigenvalue estimate ρ1 can then be used
to calculate the residual, subsequently generate the Krylov subspace and repeat the process
until convergence. This idea forms the basis of the inverse-free Krylov subspace method as
introduced in [79], the associated basic algorithm is shown in alg. 6.4. Note that in case
r = 1 the method reduces to the steepest descent method, which can be shown to converge
to an eigensolution of (K , M); for the proof and detailed convergence analysis the reader
is referred to [79, 153]. Finally, it is noted that a similar idea was already proposed in 1971,
although in that work the aim was to minimize mainly the computer memory usage [72].

Algorithm 6.4 Inverse-free Krylov subspace method
Input: K , M, x0 ∶ xT

0 Mx0 = 1, r
ρ0 = xT

0 Kx0, k = 0
while ∣∣ρk − ρk−1∣∣ > ε∣∣ρk ∣∣ do

– Generate Krylov subspace –
Z = [z0, . . . , zr] such that span{Z} = Kr+1 (K − ρk M, xk)
– Interaction analysis & orthogonalization –
K̃ = ZT KZ, M̃ = ZT MZ
Solve: K̃v = ρk+1M̃v
xk+1 = Zv
k = k + 1

end while
ϕ = xk
ω2 = ρk

The actual generation of the Krylov subspace Z can be achieved in different ways. They all
involve recursive application of the shifted matrix (K − ρk M) and subsequent orthogonal-
ization. As such, this process is very similar to the CG and Lanczos processes described in
sections 6.2.1 and 6.3.1.3, respectively. Details are addressed in [79].
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6.3.3.2 Preconditioning and Block Generalization

In its form described above, the inverse-free algorithm is not yet very useful for handling the
vibration mode updating problem. This has two main causes:

• The convergence rate is dependent on the spectral distribution of the shifted matrix.
Suppose the aim is to converge to ω2

1 , the first eigenfrequency of (K , M), and take
this as the shifting frequency. Let σn ≥ ⋅ ⋅ ⋅ ≥ σ2 > σ1 = 0 then be the eigenvalues of
the shifted matrix K − ω2

1 M (with n the size of the problem) and assume that for the
current estimate it holds that ω2

1 ≤ ρk ≤ ω2
2. For this case, the following bound for the

convergence rate was derived in [79]:

ρk+1 − ω2
1

ρk − ω2
1
≤ 4(1 −√γ

1 +√γ
)2r +O((ρk − ω2

1)1/2) with γ = σ2 − σ1

σn − σ1
= σ2

σn
(6.80)

Hence, the convergence rate depends on the distribution of the eigenvalues of the
shifted matrix instead of those of (K , M) as in the Lanczos method. Consequently, the
shifted matrix may be preconditioned to improve its spectral distribution and thereby
accelerating convergence, independently from the spectrum of the original eigenprob-
lem. The preconditioner is then applied in a way similar to the linear case. In fact, it
is proposed to use the same preconditioner, namely the factorization of the nominal
stiffness matrix; its effect will be discussed more extensively in section 6.3.4.1. Fur-
thermore, eq. (6.80) shows that convergence accelerates with increasing order r of the
Krylov subspace this will be illustrated in chapter 8.

• Only one eigenvalue is calculated at a time. Similar to the inverse iteration method,
subsequent eigensolutions can be calculated by deflation, but this has the disadvantage
that information from previous solutions is thrown away and convergence is slow for
closely spaced modes. Therefore a more efficient approach is to generalize the inverse-
free method to a block form, much like the subspace algorithm is a block generaliza-
tion of the inverse iteration.

Next the preconditioned block form of the inverse-free method as presented in [154] will
be discussed, which will be referred to as the inverse-free preconditioned Krylov subspace
(IFPKS) method.

Instead of iterating on a single vector, the block version iterates on a number of vectors si-
multaneously. To this end, the iterations are started with a set of initial approximations for
the eigenvectors X0 = [x1,0 . . . xm,0] that are mass normalized such that XT

0 MX0 = I. The
associated Rayleigh quotients can then be calculated as:

ρ0 = diag (XT
0 K X0) (6.81)

In order to improve the eigensolution approximations, the next steps are again:

1. Generate the Krylov basis from the shifted matrix
2. Solve the interaction problem in the Krylov space
3. Update the eigensolution approximations
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Since one is dealing with m eigenvalue approximations, there is no longer a single shifted
matrix. Therefore, [154] outlines a process for generating the Krylov subspace for the block
of vectors simultaneously. This process, which constitutes the inner loop of the algorithm,
is very similar to that of the block CG as treated in section 6.2.3.2. The inner iterations are
started by simply taking the previous eigenvector estimates as the first block of search direc-
tions:

Z0 = X0 (6.82)

The new set of search directions is found by application of the shifted vectors to the previous
directions, so:

Z̃1 = S−1 (KZ0 −MZ0ρ0) (6.83)

Here S is the preconditioner. In order to avoid searching in the existing subspace, these
vectors are block orthogonalized with respect to Z0 like in the block CG method:

Z1 = Z̃1 − Z0β1 with β1 = ZT
0 MZ̃1 (6.84)

Finally, the block of vectors need to be mass orthonormalized such that ZT
1 MZ1 = I, similar

as in the block CG method. This loop is repeated r times to obtain the space of the desired
size, namely Z = [Z0 . . . Zr]. Note that this algorithm requires two matrix-vector multipli-
cations for every iteration: one by K and one by M. In a practical implementation these
products can be stored and reused to save computations when forming the reduced matrices
for the interaction problem.
After the space Z has been generated, the interaction problem can be solved. This leads to
new eigensolution estimates ρ1 and X1, for which the above described process can be repeated
to obtain a new approximation space. This whole process is repeated until convergence,
again monitored either using a frequency or residual vector criterion. The IFPKS method is
summarized in algorithm 6.5.

6.3.3.3 Alternative Interpretation

In order to put the IFPKS method into perspective with respect to the existing eigensolvers,
this subsection addresses an alternative interpretation of this method, namely as being a
variant of the subspace iteration method. The only difference with respect to the normal
subspace algorithm is that the inverse iteration step is replaced by an inner iteration loop,
which is motivated as follows. Starting again from X0, suppose that the aim is to improve
the eigenvector approximations by an inverse iteration (i.e. eq. (6.61)):

X1 = K−1MX0 (6.85)

Since the factorization of K is not to be computed this linear system needs to be solved iter-
atively using a CG method. As pointed out before, the convergence of this iterative process
will be very slow. To overcome this, spectral shifting can be applied such that the linear prob-
lem has a more favorable spectral distribution and a useful approximation space is obtained
after fewer iterations. For every vector x i (i = 1 . . . m) in X one thus iteratively solves:5

(K − ρ i ,0M) x i ,1 = Mx i ,0 (6.86)
5In practice one would probably use a block algorithm, this notation is for illustrative purposes only.
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Algorithm 6.5 Inverse-free preconditioned Krylov subspace method

Input: K , M, S−1, X0 ∶ XT
0 MX0 = I

ρ0 = diag (XT
0 K X0), k = 0

while ∣∣ρk − ρk−1∣∣ > ε∣∣ρk ∣∣ do
– Generate Krylov subspace –
Z0 = Xk
for j = 0 . . . r do

Z j+1 = S−1 (KZ j −MZ jρk)
for i = 0 . . . j do

β i = ZT
i MZ j+1

Z j+1 = Z j+1 − Z i β i
end for
Orthonormalize Z j+1 ∶ ZT

j+1MZ j+1 = I
end for
Z = [Z0 . . . Zr]
– Interaction analysis & orthogonalization –
K̃ = ZT KZ
Solve: K̃V = V ρk+1 with V T V = I
Xk+1 = ZV
k = k + 1

end while
Φ = Xk
Ω2 = ρk

Note that, as one is now in fact applying Rayleigh quotient iteration, the eigenproblem also
converges faster. When solving the linear system of eq. (6.86) using the CG method, the
solution is sought in the Krylov subspace:

x i ,1 ∈ K (K − ρ i ,0M, Mx i ,0) = span{Mx i ,0, (K − ρ i ,0M)Mx i ,0, (K − ρ i ,0M)2 Mx i ,0, . . .}
(6.87)

The x i ,1 obtained in this way are the best approximate solutions to the linear system. However,
these are not necessarily the best choice for approximating the desired eigenvectors. The
particularity of the IFPKS method is therefore to generate a slightly different space instead,
such that a best approximation for the eigenproblem (i.e. the minimization of the Rayleigh
quotients) is found. As explained before, this space is spanned by the Krylov sequence:

x i ,1 ∈ K (K − ρ i ,0M, x i ,0) = span{x i ,0, (K − ρ i ,0M) x i ,0, (K − ρ i ,0M)2 x i ,0, . . .} (6.88)

Although the difference is subtle, the latter space gives a better approximation especially
when the Rayleigh quotients in ρ are not yet very close to the desired eigenvalues [79].

In summary, the IFPKS method can be understood as a subspace iteration method where
the inverse iteration step is replaced by the generation of a Krylov subspace. This is allowed
since the subspace iteration method, in contrast to the Lanczos method, does not dictate the
inverse iteration step to be solved with high accuracy. Indeed, at each iteration, the eigenso-
lutions are sought only in the current subspace and there is no dependency on the previous
iterates.
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6.3.3.4 Practical Issues

When implementing the IFPKS method as outlined in algorithm 6.5, there are a few practical
issues one needs to be aware of. The most important ones are:

• In its form of alg. 6.5, the IFPKS method iterates on blocks of vectors. These blocks
contain up to m vectors, where m is the desired number of eigenmodes. As pointed
out for the CG method, the efficiency of the iterative process in the inner iteration loop
can break down for large block sizes. Hence, one might consider iterating on only a
few vectors simultaneously in order to maximize CPU efficiency. In this case one has
to apply orthogonal deflation techniques in order to prevent subsequent (blocks of)
vectors from also converging to the lowest eigensolutions.

• Similar to the subspace iteration method, the use of buffer vectors may be considered
for the IFPKS method by adding b vectors to the block X. The sole purpose of the
buffer vectors is to speed up the convergence of the first m vectors, so the iterations
are stopped as soon as these modes have converged with sufficient accuracy. Although
the effect is hard to quantify exactly, the convergence rate bound in eq. (6.80) seems to
indicate that for a block implementation the parameter γ becomes γ = σm/σn, where m
is the highest desired mode and n the size of the problem. Therefore, when using buffer
vectors one has γ = σm+b/σn ≥ σm/σn. Numerical tests seem to confirm the increased
convergence rate when using buffer vectors. For choosing b, the rule of thumb used
for the subspace iteration method may be adopted, namely b =min{2m, m + 8}.

• As pointed out before, the number of inner iterations r (i.e. the order of the Krylov
subspace) can be freely chosen. Indeed, the bound for the convergence rate in eq.
(6.80) shows that the convergence speeds up rapidly with increasing r. However, in-
creasing r means increasing the computational effort in the inner iteration loop, so it is
expected that some compromise needs to be found for optimal overall computational
efficiency. This was also observed in [79] and will be illustrated in chapter 8.

• When choosing r = 1 for the number of inner iterations, it was previously mentioned
that the IFPKS method reduces to the steepest descent method. In the literature it has
been observed that for a steepest descent method, the convergence rate can be notably
increased when adding the difference vector of the previous and current eigenmode
estimates (Dk = Xk − Xk−1) to the search directions. This forms the basis of the so-
called LOBPCG method [116]. Given the low additional computational cost, it was
therefore advocated in [154] to include these vectors in the basis Z. In that case the
basis becomes Z = [Dk Xk Z1 . . . Zr].

6.3.4 Application to Updating of Vibration Modes

Now that an eigensolver has been outlined that seems suitable for handling the vibration
mode updating problem, this section treats a few specific issues that affect the actual calcu-
lation of the updated vibration modes. First, it is shown how preconditioning with the fac-
torization of the nominal stiffness matrix improves the convergence of the IFPKS method.
Thereafter, an idea is outlined to enhance the preconditioning based on the information gen-
erated during the updating of the static modes. Finally, it is discussed how modal sensitivity
vectors might be used in the updating computations.
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6.3.4.1 Preconditioning

An in depth, mathematical analysis of preconditioning strategies for the IFPKS algorithm is
out of the scope of this work, such results can be found in [79, 153, 154]. Instead, the effect of
preconditioning will be illustrated from an engineering perspective in a qualitative way. The
starting point is the application of the shifted operator when building the Krylov subspace
in the IFPKS inner iteration loop:

z j+1 = (K − ρk M) z j (6.89)

For simplicity the single vector version of the algorithm is considered and the preconditioner
has not yet been applied. Suppose one is searching for ϕ1, the first eigensolution of (K , M).
To this end, the current search direction z j is written as the following superposition:

z j = ϕ1 + n∑
i=2

ϕiηi (6.90)

In order to converge to the first mode, compute subsequent search directions should be com-
puted that account for the higher modes. By doing so, vectors are added to the basis Z such
that the desired ϕ1 can be found as a combination of the vectors in the basis when solving
the interaction problem.
Using the expansion in (6.90) and the spectral expansions of the stiffness and mass matrices,
the application of the shifted operator in eq. (6.89) can be written as:

z j+1 = ( n∑
i=1
(ω2

i − ρk)Mϕi ϕ
T
i M)(ϕ1 + n∑

i=2
ϕiηi) , (6.91)

Applying mode orthogonality properties this can be rewritten to:

z j+1 = (ω2
1 − ρk)Mϕ1 + n∑

n=2
(ω2

i − ρk)Mϕiηi (6.92)

If it is now assumed that the first mode has nearly converged, so ρk ≈ ω2
1 , the first term

becomes approximately zero. The new search direction therefore becomes:

z j+1 ≈ n∑
n=2
(ω2

i − ρk)Mϕiηi (6.93)

This z j+1 is however not directly the desired search direction; its usefulness in the approxi-
mation basis Z depends on the conditioning (i.e. spectral distribution) of the shifted mass
matrix. This is in line with the remark in section 6.3.3.2. Therefore, similar to the CG algo-
rithm, preconditioning can be applied to generate more useful search directions. One very
good preconditioner would be the factorized stiffness matrix, as will be shown next:

z j+1 ≈ K−1
n∑

n=2
(ω2

i − ρk)Mϕiηi = n∑
i=2

(ω2
i − ρk)ϕiηi

ω2
i

(6.94)

Furthermore, since ρk/ω2
i ≤ 1 (i = 2 . . . n) one can neglect ρk, which is reasonable espe-

cially for the higher spectrum where it holds that ρk ≪ ω2
i . As a result, the search direction

becomes approximately:

z j+1 ≈ n∑
n=2

ϕiηi (6.95)
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Comparing to eq. (6.90), this direction is a very useful enrichment of the basis Z. It can
therefore be concluded that for the lower modes K−1 is an effective preconditioner. How-
ever, an important feature of the basis updating strategy proposed here is that it avoids the
factorization of the modified stiffness matrix K(1). Therefore, the factorization of the nom-
inal stiffness matrix K(0) is again used as an approximation. As is the case for the updating
of the static modes, the quality of this preconditioner is dependent on the magnitude of the
design modification.

6.3.4.2 Reusing the Conjugate Gradient Iterates

When the updating problem for vibration modes is solved after the updating problem for
the static modes, a possibility is to reuse the iterates generated by the CG algorithm in the
IFPKS method. Indeed, the CG iterates implicitly contain information on the inverse of the
stiffness matrix of the modified system. This is valuable information that can be employed
to enhance the preconditioning step in the IFPKS method, as explained below.

Suppose one has solved the updating problem for the static modes using the CG method
and in the process generated the iterates P and W = K(1)P, such that PT K(1)P = PT W = I.
From the previous subsection it was seen that ideally, the preconditioning step in the IFPKS
algorithm has the form:

K(1)Z j+1 = (K(1)Z j −M(1)Z jρk) = R j (6.96)

The solution can now be split into a part that lives in the space of the CG iterates P and a
part in the K(1)-orthogonal space:

Z j+1 = Pα + Tβ, (6.97)

where the orthogonal projector T is defined as:

T = I − PPT K(1) = I − PW T (6.98)

Next, insert this solution in the preconditioning problem to find:

K(1) (Pα + Tβ) = R j (6.99)

The unknown amplitudes α can be found by projection of this equation onto the space P:

PT K(1) (Pα + Tβ) = PT R j → α = PT R j (6.100)

Similarly, the amplitudes β are found through projection onto the space T :

TT K(1) (Pα + Tβ) = TT R j → β = K−1(1)R j (6.101)

However, since the factorization of the current stiffness matrix is not available an approx-
imation is used, namely the factorization of the nominal stiffness matrix K−1(0). Hence the
preconditioning step in the IFPKS method, when reusing the CG iterates, becomes:

Z j+1 = PPT R j + (I − PW T)K(0)−1
R j (6.102)
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The additional cost of this extended preconditioning scheme is low, since it only involves
(block) vector multiplications. In chapter 8 the effectiveness of this preconditioning ap-
proach will be tested.

Note that in case the structure is subjected to a substantial design change, it could be that
the basis P of the CG iterates is relatively large. Furthermore, since the basis is obtained
from solving the static response to a local interface force, it might contain local information
that is not very useful for predicting the global vibration modes. One way to select only the
most relevant content of the basis P is by solving an interaction problem in that space and
retaining only a limited number of the lowest modes for preconditioning:

PT (K(1) − ω2M(1))Py = 0 (6.103)

This can be written in the following form:

(I − ω2PT M(1)P) y = 0 , (6.104)

hence the reduced eigenproblem can be solved efficiently. Choosing the lowest m modes
Y = [y1 . . . ym], the most important content of the CG iterates can be recovered by:

P̄ = PY (6.105)

If these modes are scaled such that P̄T K(1)P = I, this compacted basis can directly be used
in eq. (6.102).

6.3.4.3 Modal Sensitivity Vectors

Based on the eigensolutions of the nominal component and the design modification, one
can easily and fairly cheaply calculate so called modal sensitivity vectors. These modal sen-
sitivities contain information on the extent and direction in which the eigensolutions have
changed due to the design modification. Hence, this information can be used to enhance the
initial guess for the IFPKS method, thereby hopefully accelerating its convergence.

When starting the updating calculations using the IFPKS method, one wants to solve the
eigenproblem for the modified system for some mode j:

(K(1) − ω2(1), j M(1))ϕ(1), j = ((K(0) + ∆K) − ω2(1), j (M(0) + ∆M))ϕ(1), j = 0 (6.106)

This can be written as:

(K(0) − ω2(1), j M(0))ϕ(1), j = −(∆K − ω2(1), j∆M)ϕ(1), j (6.107)

Here the right hand side can be understood as the residual forces introduced in the nominal
eigenproblem due to the design modification. However, eq. (6.107) cannot be solved directly
for the new mode since the associated frequency is still unknown and factorization of the
shifted matrix should be avoided. Instead, so-called modal correction or sensitivity vectors
can be computed. Since the lowest eigenmodes are sought, it is therefore first assumed that
the elastic forces are dominating over the inertia forces. This gives:

K(0)ϕ̄(1), j = −(∆K + ω2(1), j∆M)ϕ(1), j (6.108)
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However, the eigenmodes and frequencies of the modified system are unknown. Still these
can be expressed as the known nominal solution plus some unknown perturbation:

ϕ(1), j = ϕ(0), j + ∆ϕ j and ω2(1), j = ω2(0), j + ∆ω2
j . (6.109)

Inserting in (6.108) and neglecting higher order terms gives a first order modal sensitivity
vector as:

ϕ̄(1), j = −K−1(0) (∆K − ω2(0), j∆M)ϕ(0), j (6.110)

Such a sensitivity vector is computed for all j = 1 . . . m vibration modes. Since the factoriza-
tion of K(0) is already computed and the design changes may be only local, this is not very
expensive to compute. These “modal sensitivities” or corrections are the same as used di-
rectly in the reduction basis in the Enriched Craig-Bampton method [133]. Physically, these
modal sensitivities can be interpreted as the static deformation shapes due to the force resid-
ual resulting from applying the nominal eigensolutions to the modified structure.

These modal sensitivity vectors can be employed to improve the initial guess used as input
to the IFPKS method. This is done by taking:

X = [Φ(0) Φ̄(1)] , (6.111)

and subsequently solving the interaction problem on (K(1), M(1)) in this space. The resulting
modes are expected to provide an improved initial guess X0 over simply taking X0 = Φ(0),
which will be examined in chapter 8.

6.4 Sequential Updating

Up to now only a single design modification and associated basis update has been considered.
In practice however, a component often undergoes a series of design modifications from the
nominal to the final design. In that case, not only the factorization of the nominal compo-
nent’s stiffness matrix might be useful for preconditioning, but also the CG iterates obtained
from updating computations of previous modifications. This is very similar to what has been
treated previously in section 6.3.4.2 for reusing the CG iterates in the IFPKS method.

Suppose that one has updated the reduction basis of the modified component 1 and that the
iterates P(1) and W(1) = K(1)P(1) have been generated, such that PT(1)K(1)P(1) = PT(1)W(1) = I.
Hence, a good approximation to an arbitrary static problem

K(1)x = f , (6.112)

may be found as:

x ≈ K−1(0) f + P(1)α (6.113)

Here the amplitudes α are chosen such that the residual resulting from the approximation is
orthogonal to the space spanned by the CG iterates:

PT(1) ( f − K(1)x) = 0 (6.114)
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Substitution of the approximation (6.113) and solving for α then gives:

α = PT(1) (I − K(1)K−1(0)) f (6.115)

Replacing this in (6.113) gives

x ≈ (K(0) + P(1)PT(1) (I − K(1)K−1(0))) f , (6.116)

which shows that an approximation to the inverse modified stiffness matrix may be found
as:

K−1(1) ≈ K̃−1(1) = P(1)PT(1) + (I − P(1)W T(1))K−1(0) (6.117)

This approximation forms a good preconditioner that can be used in subsequent calculations,
as was proposed previously to extend the preconditioning of the IFPKS method. Indeed, this
result is equal to that of eq. (6.102), namely a preconditioner that searches an approximation
in the space of the CG iterates P(1) and in the deflated space of the inverse nominal stiffness
matrix, i.e. the space of K−1(0) that is K(1)-orthogonal to these iterates.

Imagine now that after the first design change and basis updating, a second modification is
made to the structure and the reduction basis needs to be updated again for a stiffness matrix
K(2). One could use the nominal factorization as preconditioner as was done to find the
static modes of K(1). However, assuming that the design process is converging, usually K(2)
is closer to K(1) than to K(0). Hence it is probably more efficient to use the best knowledge
one has of K(1) to precondition K(2). As a result, the following sequential updating procedure
can be envisioned:

• In the updating to find the static modes of K(2) using the conjugate gradient method,
use the preconditioner K̃−1(1) in approximation (6.117). This updating process generates
the iteration vectors P(2) and W(2).

• In the updating of the vibration modes using the IFPKS method on K(2), M(2), use the
following preconditioner:

K−1(2) ≈ K̃−1(2) = P(2)PT(2) + (I − P(2)W T(2))K−1(1)≈ P(2)PT(2) + (I − P(2)W T(2)) K̃−1(1)= P(2)PT(2) + (I − P(2)W T(2)) (P(1)PT(1) + (I − P(1)W T(1))K−1(0))
(6.118)

This process can be continued for every sequential update. Obviously as the number of up-
dates increases the total number of vectors in P(i) increases, so does the computational cost
of these “deflations”. An important issue then becomes selecting from all the available in-
formation the most relevant content for approximating the inverse of the current stiffness
matrix. This issue is often encountered in the field of iterative solvers and has been addressed
by several authors in the literature, see for instance [174, 160, 161, 83, 147]. One straightfor-
ward approach proposed here is to simply monitor the linear dependency between the search
directions obtained from the different updates. For instance, one could compute first

δik = PT(1),iW(2),k (6.119)

and remove P(1),i if δik < ε, where ε is some selection tolerance. Obviously more elaborate
and efficient selection strategies exist, but these are beyond the scope of this work.
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6.5 Summary

Application of component model reduction techniques can be troublesome in practical de-
sign settings due to the need to recompute the reduction basis when the model is subject
to design modifications. In this chapter a method was therefore presented for updating the
reduction bases of such modified components. The starting point for this method was the
reduction basis of a nominal component model, from which a modified component model
is obtained after making a small design change. In contrast to existing enrichment or ap-
proximation methods, this chapter proposed an updating strategy that obtains the genuine
reduction basis for the modified component.
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Figure 6.2: Flowchart for updating of component reduction bases.

It was established that factorization of the stiffness matrix accounts for the largest contribu-
tion to the computational cost of obtaining a reduction basis. Hence, the aim was to avoid
the factorization of the modified stiffness matrix and reuse as much information as possible
from the nominal component. Following the structure of a typical component reduction ba-
sis, a strategy was developed that sequentially updates the static and vibration modes. Based
on the observation that the dynamics of the modified component are often close to those
of the nominal structure, iterative Krylov subspace methods were proposed to achieve this,
namely:

• For updating the static modes the well known conjugate gradient (CG) solver was
proposed in section 6.2. The algorithm was started from the nominal static modes
and preconditioned using the factorized nominal stiffness matrix. In order to handle
the possibly many static modes associated to the interface DoF of a component model,
the CG algorithm was cast into a variable size block form combined with a projection
and reconjugation approach. Furthermore, the possibility was raised of updating the
static modes with a low tolerance. A correction was introduced to make sure that in
that case possible rigid body modes are still properly described.

• In section 6.3 it was proposed to update the vibration modes using the recent inverse-
free preconditioned Krylov subspace (IFPKS) method. Again, the iterations were started
from the nominal vibration modes and the inverse nominal stiffness matrix was ap-
plied for preconditioning. Furthermore, it was shown how the preconditioning can be
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enhanced using the CG iterates and the initial guess can be improved using computa-
tionally cheap modal sensitivity vectors.

Section 6.4 finally briefly addressed the issue of multiple sequential design modifications. In
that case the preconditioning can be extended using the CG iterates from previous updates.
Assuming that the modified model is closer to the previous model than to the nominal one,
this should improve the convergence rates of both the CG and IFPKS methods. To limit
the additional computational costs of this extended preconditioning, selection of the most
relevant iterates can be performed. The updating scheme is summarized in the flowchart in
figure 6.2.



PART II
Application to Wind Turbine Engineering

In this part the theoretical methods presented in Part I are applied to representative problems
encountered in the wind turbine engineering practice. This part consists of three chapters,
each of which employs a different mix of methods and techniques presented in Part I. Their
collective aim is to fulfill the second objective of this thesis, namely:

“Implement the dynamic substructuring methodology in the wind turbine engi-
neering practice and demonstrate its potential through realistic case studies.”
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7
Dynamic Substructuring Analysis of a Yaw

System

I can’t change the direction of the wind,
but I can adjust my sails to always reach my destination.

(Jimmy Dean)

7.1 Introduction

Ever since wind turbines were first applied commercially in the 1970’s, a variety of different
types of machines has been developed. One common classification is that of horizontal-
axis versus vertical-axis wind turbines. As the name suggests, vertical-axis wind turbines
(VAWTs) have the main rotor shaft oriented vertically. In general, VAWTs have the gearbox
and generator near the ground, which eliminates the need for a tower. The key advantage
of the vertical axis arrangement is that the turbine’s orientation is independent of the wind
direction. However, due to reliability issues caused by high cyclic loading inherent to the
design, VAWTs never turned into a commercial success.

Horizontal-axis wind turbines (HAWTs) have the rotor main shaft arranged horizontally,
with a tower-supported rotor pointed into the wind. Within the HAWT class, different con-
figurations can be identified such as one, two or three bladed rotors, turbines using a gearbox
to drive a high speed generator and those that use a low speed generator to which the rotor
is directly mounted (so-called direct drive turbines). A further distinction is whether the
rotor is place upwind, i.e. in front of the tower, or downwind, where the rotor positions it-
self behind the tower. Nowadays, all commercial multi-megawatt wind turbines are HAWTs
according to the “Danish design”, which is a three bladed, upwind turbine supported by a
tubular tower.
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An important aspect in the operation of such wind turbines is the alignment of the rotor
plane with respect to the wind direction. This is important in order to maximize both the
energy capture as well as the turbine’s fatigue lifetime. Indeed, when the rotor is not perpen-
dicular to the wind a so-called yaw misalignment (yaw denotes the rotation about the vertical
axis) gives rise to cyclic varying asymmetric loads, which increase the fatigue loads on many
components. Hence a yaw system is needed to ensure optimal yaw orientation during oper-
ation, either in a passive or active manner.

For upwind turbines passive yawing can be achieved by using a tail vane and a cone-shaped
rotor. However, passive yawing can generate high yaw rates, leading to excessive gyroscopic
moments on the wind turbine tower. Twisting of the cable that runs from the generator in
the nacelle to the transformer in the tower base is also an issue. Hence, all modern wind
turbines are equipped with an active yaw system which, based on data from a wind sensor,
continuously keeps the rotor orthogonal to the wind direction. The yaw system therefore is
an important part of every modern wind turbine.

In this chapter a structural dynamic model of the yaw system of a Siemens 2.3 megawatt
wind turbine will be created using dynamic substructuring, more specifically through appli-
cation of the theory and methods presented in chapters 2, 3 and 4. The motivation to do so is
twofold. Firstly, the yaw system comprises many components and complex interfaces, mak-
ing it an interesting case study for illustrating the potential of the dynamic substructuring
methodology. Secondly, the yaw system is generally not taken into account in a detailed way
in aero-elastic codes, but is in some cases thought to influence the overall turbine dynamics.
The model created in this chapter could therefore be used to gain more insight in the yaw
system dynamics.

The remainder of this chapter is based on the work reported in [206, 218] and is organized
as follows. Next, section 7.2 gives an overview of the Siemens 2.3 megawatt wind turbine
in general and its yaw system in specific, treating the different yaw system components and
their interfaces. Thereafter, sections 7.3 to 7.6 describe the modeling of these components and
interfaces. Analysis results of the assembled system are presented in section 7.7. As usual the
chapter is ended with a summary in section 7.8.

7.2 System Description

7.2.1 The 2.3 Megawatt Siemens Wind Turbine

The Siemens 2.3 megawatt (MW) wind turbine is according to the Danish design and equipped
with a variable speed generator. Whereas in the early days of turbine technology the rotor
speed was kept constant to generate an alternating current at a certain frequency (usually
50 or 60 Hz), nowadays the rotor speed can vary with the wind speed. For a wide range of
wind speeds, such variable speed wind turbines can be operated at the optimal energy cap-
ture while minimizing the load on the machine. As a result of the variable rotor speed, the
frequency of the generated electricity is not constant and has to be converted to the right
frequency. This is done with a converter in the tower base.

The turbine is available in four variants with different rotor diameters (i.e. 82, 93, 101 and 108
meters). In order to generate the same energy output, a site with relatively low average wind
speeds requires a larger rotor compared to a site with higher average wind speeds. Hence, by
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offering three rotor diameters a site optimized choice of turbine type can be made. The most
common variant of this product family is the SWT-2.3-93; its 45 meter blades and 3 meter
diameter hub create a 93 meter rotor diameter suited for moderate average wind speeds.

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15

1 Spinner 6 Gearbox 11 Yaw ring
2 Pitch bearing 7 Brake disc 12 Yaw gearbox
3 Rotor hub 8 Generator 13 Bedplate
4 Main bearing 9 Blade 14 Canopy
5 Main shaft 10 Tower 15 Wind sensors

Figure 7.1: Nacelle arrangement of the 2.3 MW Siemens wind turbine
(Source: http://www.siemens.com/windpower)

An onshore wind turbine consists of three main parts, namely the tower, rotor and nacelle.
The rotor is the assembly of the blades, pitch bearings and hub, while the tower supports the
rotor-nacelle-assembly (RNA). The nacelle is the heart of the wind turbine and houses the
components that convert the mechanical energy captured by the rotor into electrical energy;
see figure 7.1. Within the nacelle, two main (mechanical) subsystems can be identified:

• The drivetrain is the assembly of all mechanical components directly involved in trans-
ferring the energy captured by the blades to the generator, which transforms this en-
ergy into electrical energy. Important components within the drivetrain are the main
bearing, the main shaft, the gearbox and the generator.

• The yaw system consists of all components of the wind turbine which enable the ro-
tation of the nacelle (and rotor) about the tower axis. Since this system is analyzed in
this chapter, it is discussed in more detail in the next subsection.

7.2.2 Yaw System & System Boundaries

As already explained, yawing denotes the rotation of the nacelle and the rotor about the
vertical tower axis. The yaw system of the SWT-2.3-93 is schematically depicted in figure 7.2.
In the yaw system of this wind turbine one can identify a number of components:
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Figure 7.2: Yaw system of a 2.3 MW Siemens wind turbine

• The bedplate can be seen as the nacelle’s “chassis”. It serves as a platform for mounting
the main turbine components, such as the gearbox, main bearing, canopy and several
smaller parts. Furthermore, the bedplate houses the interface between the tower and
RNA.

• The tower top is the upper section of the tapered tower. The tower top flange is welded
on top of the tower and bolted to the yaw ring.

• The yaw ring is a big sprocket wheel driven by the yaw drives, enabling rotation of the
entire RNA. The yaw ring is bolted to the tower top and journaled by the yaw pads.

• The yaw pads are attached to the bedplate and serve as a friction-type bearing for the
yaw ring. These pads are made of polyamide material and are lubricated in operation.

• The yaw motors are electric motors controlled by the yaw controller. Through the yaw
gearboxes their rotational speed is decreased and their torque increased. This is needed
to overcome the RNA’s inertia and static friction at the yaw pads so that the RNA can be
rotated, while simultaneously keeping yaw velocities low. Combined the yaw gearbox
and motors are referred to as the yaw drive.

• The yaw controller is a central controller for the yaw system and is instructed by the
global turbine controller. This controller regulates the torque of the yaw motors.

In figure 7.2 all yaw system components are displayed in grey, while the wind turbine com-
ponents shown in white are outside the system of interest. In between both the following
system boundaries can be identified:

• The tower and tower top
• The bedplate and main bearing
• The bedplate and gearbox
• The bedplate and canopy
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7.2.3 Component Modeling & Validation

Due to the fact that extensive stress analyses are performed on the structural components of a
wind turbine, CAD and finite element models of most components are often readily available.
Furthermore, most components are made from steel and are hence very well suited for FE
modeling. Therefore, existing FE models can be used in a DS analysis with only some minor
changes, which benefits the practical usability of the DS approach. In the coming sections
the modeling of the different yaw system components, as well as their respective interfaces,
will be treated in more detail.

As was outlined in chapter 1, in order to gain confidence in the component models it is
important to validate them using measurements. Generally one can identify two types of
modeling errors in a DS analysis, namely errors in the component models and errors in the
interface models. To eliminate both errors an effective validation strategy is to first validate
the component models, subsequently assemble the validated component models and finally
perform a validation measurement on the assembled structure. One can then use the vali-
dation measurement to identify the errors resulting from the interface modeling.

In this work however the focus is on the modeling and numerical aspects of dynamic sub-
structuring, so detailed model validation, both on component and assembly level, is out of
the scope of this thesis. Nonetheless some component validation tests have been performed
in the context of the work presented in this chapter, see appendix B for details. Validation of
the assembled model will not be addressed.

7.3 Component Modeling – Bedplate

The bedplate is a central part of the nacelle and serves as a chassis for all main components of
both the yaw system and the drivetrain. As such, it endures and transmits all the trust forces
from the wind and is exposed to continuous variation in loading. Due to its geometry and
material properties, FE modeling of the bedplate is relatively straightforward. A CAD model
of the bedplate is used to create the FE model. This CAD model contains all geometrical fea-
tures of the bedplate, including many small details (e.g. bolt holes). These geometric details
cause (locally) very small elements when meshing the model, while not significantly influ-
encing the global dynamic behavior. Due to limitations in the available computing resources,
a number of details have been removed from the CAD model:

• All bolt holes have been removed from the structure.

• Shallow cavities exist in the bedplate for mounting the yaw pads. The depth of these
cavities is small compared to the thickness of the bedplate, so they are removed from
the model.

• Similar cavities exist for the yaw gearboxes, these are also removed from the CAD
model.

Although the system boundaries were initially set as in figure 7.2, it was chosen to also in-
clude the main bearing housing and gearbox supports in the bedplate model. This leads to
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more convenient interfaces for the assembly of a drivetrain model in a later stadium.1 Fur-
thermore, the yaw clamps are integrated in the bedplate model; the yaw pads are mounted on
the yaw clamps and thereby serve as a bearing between the bedplate and yaw ring. The bed-
plate is made from a high strength steel with the following homogeneous isotropic material
properties:

Density [kg/m3] Young’s modulus [GPa] Poisson ratio [−]
Bedplate 7850 210 0.30

The finite element model of the bedplate substructure is created in ANSYS and is depicted
in figure 7.3. It is meshed with 25k quadratic (i.e. ten-node) tetrahedral elements with only
translational nodal DoF resulting in a finite element model of approximately 125k DoF. Using
the FEMLink toolbox (see [17]), the FE model is imported in Matlab where it is cast in the
data format for the DS Toolbox and further processed using the PrepTool (see appendix A.1).

Figure 7.3: FE model of the bedplate with yaw clamps, main bearing housing and gearbox supports.

The following interfaces can be identified on the bedplate structure (see also figure 7.2):

Bedplate – Yaw gearboxes Eight yaw gearboxes are attached to the bedplate, each bolted to
the bedplate by twelve high-strength bolts. It is assumed that these bolted connections
ensure exact compatibility between the bedplate and yaw gearboxes, i.e. possible bolt
flexibility is neglected. Furthermore, this interface is assumed to behave as a rigid
region as explained in section 4.3; coupling is done through a single node with six
DoF.

Yaw Pads – Bedplate Figure 7.4 shows the configuration of the yaw pads. To mount the
set of upper yaw pads (22 pieces in total), special cavities are milled into the bottom
side of the bedplate. Although these cavities are removed from the bedplate model,
it is assumed that this design ensures perfect compatibility between the bedplate and
upper yaw pads. The radial and lower yaw pads (both 22 pieces in total) are mounted
in yaw clamps which are attached to the bedplate. It is assumed that this construction
also leads to exact compatibility between the yaw clamps and pads.

1Including these additions the bedplate is often referred to as the “bedframe”; for consistency this extended
structure will still be referred to as the “bedplate” in the remainder of this chapter.
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Since the yaw pads cover a large part of the bedplate surface, rigidification of this in-
terface would significantly stiffen the bedplate model. It is therefore chosen to retain
the original set of interface DoF. Moreover, with the bedplate and yaw pad models
created independently their meshes are incompatible, requiring the use of the node
collocation techniques described in 3.6.

Note that in order to gain confidence in the bedplate model as well as the modeling of its
interfaces, it has been successfully validated with measurements. The details of these exper-
iments are out of the scope of this section but are treated in appendix B.1.

7.4 Component Modeling – Yaw Pads

In figure 7.4 the configuration of the yaw pads is shown. In total, the yaw ring is enclosed
by three circular arrays of 22 yaw pads: one array at the top, one at the bottom (not present
in figure 7.4 (a)) and one in the inner radius. Thereby the global motion of the bedplate is
constrained to five degrees of freedom, so the yaw pads form a (lubricated) friction bearing
that allows rotation of the RNA about the vertical tower axis. This chapter however considers
the case where the interface is in the “stick” regime, that is, the (external) forces are not high
enough to overcome the static friction.

Yaw ring
Yaw pad 
(radial)

Yaw clamp
(radial)Bedplate Bedplate

Yaw
clamp

Yaw pad (upper)

Yaw pad 
(radial)

Yaw pad 
(lower)

Yaw ring

(a) Bottomside of (part of) the yaw system (b) Schematic configuration of yaw pads

Figure 7.4: Configuration of the yaw pads.

A further simplification in the current analysis is made by including only the upper array
of yaw pads. It is assumed that the other sets of yaw pads, which are significantly smaller
in size, have a negligible effect on the global dynamic behavior. To facilitate assembly with
both the bedplate and the yaw ring, the yaw pads are also meshed using ten-node tetrahe-
dral elements. The (very simple) FE model of the yaw pad is again created in ANSYS and
subsequently imported in Matlab using FEMLink. In Matlab the yaw pad model is copied
22 times to obtain an FE model of the upper yaw pad array. The yaw pads have interfaces at
both the top and bottom surfaces:

Yaw pads – Bedplate This interface was described in section 7.3.



168 ∣ Chapter 7 – Dynamic Substructuring Analysis of a Yaw System

Yaw pads – Yaw ring As described above, it is assumed that the forces on the interface are
not high enough to overcome the static friction between the yaw pads and yaw ring.
Therefore exact compatibility between the interface DoF is imposed. Again the meshes
on the interfaces between the yaw pads and the yaw ring are non-conforming, so the
node collocation methods from section 3.6 are applied. For the same reason as the
interface between the yaw pads and bedplate, no interface rigidification is applied but
all interface DoF are retained.

The yaw pads are made from a polyamide material with a high wear resistance and a low (dy-
namic) friction coefficient. An important property of synthetic materials is their frequency
dependent behavior, which, in the time domain, requires a non-linear model.2 Since no de-
tailed data of the polyamide was available, it was chosen to approximate its properties by the
modulus of elasticity and Poisson ratio at room temperature:

Density [kg/m3] Young’s modulus [GPa] Poisson ratio [−]
Yaw pads 1135 4.5 0.30

Clearly this approximation is very crude and only gives a limited idea of the substructure’s
behavior. However, the aim of the work reported in this chapter is to illustrate the potential
of the substructuring approach for modeling the yaw system, so creating a non-linear yaw
pad model was deemed out of the scope.

7.5 Component Modeling – Tower Top & Yaw Ring

The yaw ring is an important component in the yaw system as can be seen in figure 7.2. As
already mentioned, the yaw ring is a large externally geared ring that is driven by the output
pinions of the yaw gearboxes. It is bolted to the tower top flange and journaled to the bedplate
by the yaw pads, thereby allowing the yaw gearboxes to generate a torque around the tower
axis that results in the yawing motion of the RNA. To include the stiffening effect of the tower
on the yaw ring, the final section of the tower, the tower top, is included in the model. It is
assumed that the bolted connection between the tower top flange and yaw ring ensures exact
compatibility, thereby allowing them to be combined to a single substructure model.

The yaw ring model is simplified by removing the gear teeth geometry and replacing it by
an equivalent ring radius. Similar to the bedframe, this is done to avoid very small element
sizes, and associated large number of DoF, that would result from meshing the detailed gear
teeth geometry. The material properties of the substructure are given below.

Density [kg/m3] Young’s modulus [GPa] Poisson ratio [−]
Yaw ring 7830 210 0.30
Tower top 7850 210 0.30

Using the geometries and mechanical properties of the tower top and yaw ring, they are
meshed using ten-node tetrahedral solid elements. The tower top however is a cylinder with

2Note that in the frequency domain this frequency dependent behavior can be directly captured by the
FRFs that are used to describe the component dynamics. Hence, in frequency based substructuring (FBS) such
behavior can be accounted for without additional complexity.
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a small wall thickness, well suited for meshing with shell elements. Nonetheless it is chosen
to use solid elements, for the reason that the number of DoF did not decrease sufficiently
to justify the additional effort associated with coupling the solid and shell elements. The
resulting FE model as created in ANSYS can be seen in figure 7.5 (a). From figure 7.2 it can be
seen that this substructure interacts with neighboring components through two interfaces:

Yaw ring – Yaw pads This interface was described in section 7.4.

Yaw ring – Yaw gearboxes In order for the nacelle to yaw, torque is exerted on the yaw ring
by eight yaw gearbox and motor assemblies. The yaw ring and gearboxes are connected
through the gear teeth interaction between the yaw ring and the output pinions of the
yaw gearboxes. The interface is modeled by an equivalent gear teeth stiffness based on
the ISO6336 guideline [100] and modeling techniques found in the literature [119, 149],
and will be described in more detail in section 7.6.2. Assembly of these two structures
with the additional interface stiffness is performed using the method outlined in sec-
tion 3.7.

+

(a) (b)

Figure 7.5: (a) Tower top and yaw ring model and (b) model of the yaw gearbox.

7.6 Component Modeling – Yaw Gearbox

One can imagine the enormous torsional moments associated with yawing a wind turbine
RNA. To generate the required torque a speed reduction gearbox is essential, making the yaw
gearbox a central part of the yaw system of a modern wind turbine. This yaw gearbox con-
verts the high speed/low torque output of the electric yaw motors to low speed/high torque
motion at the yaw ring. This avoids the need for large and expensive yaw motors and guar-
antees a low rotation speed of the RNA. The latter is important to minimize the gyroscopic
loads of the yawing rotor with respect to the fixed tower. In total, eight yaw motors and yaw
gears (when combined often called yaw drive) are employed in the 2.3 MW wind turbine.
Although the yaw motors are relatively small electric motors, due to the transmission ratio
of the yaw gearboxes they are able to generate more than 106 Nm of torque about the vertical
tower axis.
The gearbox can be divided into two parts; the running gears (internal) and the gearbox
housing (external). Both subcomponents are modeled separately and assembled to form the
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total gearbox model. Furthermore, the yaw motor is included in the yaw gearbox model. As
such, the yaw gearboxes are involved in two interfaces:

Yaw gearbox – Bedplate This interface was described in section 7.3.

Yaw gearbox – Yaw ring This interface was described in section 7.5.

Yaw controller – Yaw motors The yaw controller regulates the yaw motors output torque.
It is expected that during yawing action, the controller affects the global dynamic be-
havior. However, in this work the yaw system is analyzed during standstill conditions,
so the controller is not included in the current analysis.

The yaw gearbox model is shown in figure 7.5 (b). How this model was created will be elab-
orated in the next three subsections.

7.6.1 Yaw Gears

The running gears in the yaw gearbox consist of four planetary gear stages, that result in
a final transmission ratio of over 1000:1. Each stage has four planet gears to distribute the
torque from the sun gear to the planet carrier. The ring wheel is attached to the housing and
hence is stationary. In order to set up a discrete structural dynamic model of the yaw gears,
the first step is to identify all relevant flexibilities and inertias in the gearbox, namely:

Internal components The individual torque-transferring components in the gearbox will
deform under the applied loads. The mass, inertia and stiffness of the shafts, gears and
planet carriers are important for the structural dynamics. The structural properties of
the shafts and gears are modeled using Euler-Bernoulli beam elements with 6 DoF per
node. The planet carriers will be modeled as rigid bodies. Given their size compared
to the other shafts this seems a reasonable assumption, especially for the high speed
stages where the torque is not too large. However, the inertia properties of the planet
carriers must be taken into account.

Bearings The bearings (and ring wheels) are the interfaces where the running gears and
housing are assembled. Although the mass and inertia associated to the bearings can
be assumed to be negligible, the stiffness of the bearings probably significantly influ-
ences the dynamic behavior and thus needs to be included.

Yawmotor The yaw motor drives the input shaft of the yaw gearbox. Only the rotational
inertia of the stator influences the dynamic behavior, since it is greatly amplified by
the transmission ratio of the yaw gearbox. In comparison to the gearbox mass, the
motor mass is small and therefore neglected. Hence, the motor is simply added as a
rotational inertia at the input shaft.

Gear teeth interaction The gear teeth interaction accounts for an important part of the run-
ning gear flexibility and is also one of the hardest features to model. Section 7.6.2 will
treat this model in more detail.

Due to a lack of information, a number of parameters in the current gearbox model remain
unknown. These are:
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• The stiffness of the bearing connecting the internal gears to the housing is estimated.

• The distribution of damping and friction in the yaw gearbox is unknown and ne-
glected. Furthermore, damping resulting from the lubrication oil is also neglected.

• Currently the inertias of the gears and planet carriers are estimated from their geome-
try. Ideally these are to be determined from a detailed CAD-model or measurements.

7.6.2 Gear Interaction

The main challenge in building the yaw gear model was modeling the gear teeth interaction.
In order to keep the model relatively simple and avoid the need for modeling the gear teeth
contact in detail, a number of assumptions were made:

• The gear teeth stiffness is linear and time invariant. Varying stiffness effects due to
changing numbers of gear teeth in contact are assumed to be small and hence ne-
glected.

• Sliding of gear teeth is neglected, so no friction forces are taken into account.

• The gear teeth are assumed to be in contact at all times (no play). Impact forces (back-
lash) are thus not included.

• The yaw gear is constructed mostly of steel, so damping is assumed to be small and
thus neglected. However, the lubrication oil of the gears probably adds damping.

• Since the yaw system is analyzed during standstill conditions, gyroscopic effects are
not relevant. Should the system be analyzed around a certain (constant) operational
yawing velocity, these effects could be added in a linearized way. Probably these gyro-
scopic forces are only relevant for the high speed side of the gearbox.

• In the derivation of the gear teeth stiffness matrix, the displacements and rotations are
assumed to be small. This simplifies the analysis and results in a linear stiffness matrix.

Based on the above assumptions a model for the gear interaction can be constructed by mod-
eling the gear teeth as a three dimensional linear spring. One can derive a “gear stiffness
element”, based on the schematic drawing in figure 7.6 showing two interacting gears. The
derivation is based on similar work presented for example in [149, 119, 226].

Figure 7.6 shows an interacting gear pair. The gear mesh stiffness is shown as a spring with
stiffness kg . This gear mesh stiffness can be determined using the ISO 6336-1:2006 guidelines
[100]. The gears are interacting in the plane of action, which is defined by an angle φ with
respect to the positive x-axis. This angle is a function of both the geometric angle γ between
the gear centers and the pressure angle α of the gears. The pressure angle is a design parameter
of the gears. Note that the angle of the plane of action is dependent on the driving direction
of the gear pair. If the driving direction switches, the pressure angle of the gears changes
sign. Hence, one can write the angle of the plane of action as:

φ = γ + (π
2
− α) sign (τ) , (7.1)
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here τ is the driving direction of the gears (positive for clockwise rotation of the central gear,
negative for counterclockwise rotation). The top view of the interacting gear pair in figure
7.6 shows the helix angle β. When this angle is zero, the gears are called spur gears. Note that
when the driving direction changes, the helix angle β changes sign.
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Figure 7.6: Schematic representation of gear interaction.

An energy approach can be used to derive the gear stiffness element. This requires an expres-
sion of the deflection of the gear mesh as a function of the degrees of freedom of the centers
of the interacting gears. These DoF can be assembled in the vector q as:

q = [ x1 y1 z1 θx1 θ y1 θz1 x2 y2 z2 θx2 θ y2 θz2 ]T . (7.2)

Since the gear mesh can be loaded by compressive forces only, a compressive deflection is
taken positive. Based on the figure above, one can then derive the deflection of the gear mesh
as

δ = (x1 cos φ − x2 cos φ + y1 sin φ − y2 sin φ + r1θz1 + r2θz2) cos (β sgn (τ))
+ (z2 − z1 + θx1r1 cos φ + θx2r2 cos φ + θ y1r1 sin φ + θ y2r2 sin φ) sin (β sgn (τ)) (7.3)

Under the assumption of small displacements, the spring deflection clearly is a linear func-
tion of the degrees of freedom of the gears. One can write the potential energy in the spring
as:

V = 1
2

kg δ (q)2 (7.4)

The stiffness matrix can then simply be obtained by:

K = ∂2V
∂q∂q (7.5)

This gear stiffness element can now be defined between and assembled with any other struc-
tural element such as beam elements. Note that analogous to the derivation above one can
derive the stiffness matrix representing the gear mesh stiffness of internal gears, i.e. the in-
teraction between a planet and ring gear. It turns out that this stiffness matrix can be found
simply from the derivation above by taking a negative radius for the internal gear [149].
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Using these gear stiffness elements, a model for the dynamics of the interacting gears can be
created. Together with the beam models for the shafts and carriers and simple spring models
for the bearings, as described in section 7.6.1, a dynamic model for the yaw gearbox internals
was created in Matlab. A plot of this model is shown in figure 7.5 (b).

7.6.3 Gearbox Housing

The internals of the gearbox are mounted in the gearbox housing, which thereby functions as
an interface between the running gears and the bedplate. Since a CAD model of the gearbox
housing was not available, a geometrically simplified gearbox housing is created based on the
drawings from the supplier. This geometry is used in ANSYS to build the structural model;
a plot of the model is shown in figure 7.5 (b). The gearbox housing is casted, therefore the
mechanical properties of cast steel are used for the structural model.

Density [kg/m3] Young’s modulus [GPa] Poisson ratio [−]
Yaw gearbox housing 7800 200 0.30

Four ring wheels and three bearings connect the housing to the internal gears. The ring gears
are bolted into the housing while the bearings are pressed into position. As the housing itself
is already very stiff, one can thus assume a rigid connection. Using the rigidification tech-
nique of section 4.3, seven master nodes are created in the gearbox housing to facilitate the
assembly of the internal gear model. When the gearbox housing and internals are assembled
they can be used in the substructuring analysis of the yaw system. A simple check on this
model is to verify the number of rigid body modes. These should be seven in total: six rigid
motions of the complete gearbox and one rigid rotation mode of the internals. This is indeed
the case.

Finally, note that attempts have been made to validate the yaw gearbox model through dy-
namic measurements. However, successful measurements on the yaw gearbox proved far
from trivial such that the model could not be validated. For details see appendix B.2.

7.7 Assembled Models & Analysis Results

With all components modeled, the next step is to create assembled models of the wind tur-
bine yaw system. The following abbreviations are introduced to refer to the different com-
ponent models: YR-TT for the yaw ring and towertop substructure model, YP for the yaw
pad model array, BP for the bedplate component model and YGB for the yaw gearbox model
array.

Firstly, all unreduced component models are assembled in a primal way, see section 3.3, lead-
ing to a yaw system model of almost 300k DoF. This assembled model is created using the
AssemblyTool (see appendix A.2) and shown in figure 7.7. In the remainder of this section
this unreduced assembly will serve as the reference model. An overview of the component
and assembled models’ properties is given in table 7.1. As can be seen the total model con-
sists of over 7k interface DoF, which are caused by the extensive interfaces of the yaw pads.
Note that due to the non-conforming interface meshes the (interface) DoF counts cannot
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Side view Top view

Figure 7.7: Assembled model of the yaw system. Note that the yaw gearbox internals are not shown
in the plot due to their special element type which is not supported by the AssemblyTool’s
plotting function. Also, due to their location in the system the yaw pads are not visible in
these plots.

simply be added and subtracted to find the total number of (interface) DoF of the assembled
system. The non-conforming meshes are assembled using the discrete least squares compat-
ibility method described in section 3.6.2.

Model # Elt. # Nodes # DoF (n) # int. DoF (nb) Pcs. Σn Σnb

YR-TT 16411 32290 96891 4068 1 96891 4068
YP 104 243 729 378 22 16038 8316
BP 24517 41864 125631 2826 1 125631 2826
YGB 1412 2501 7899 12 8 63192 96

Totals 32 301752 15306
Primal assembly 32 293712 7299

Table 7.1: Properties of component and primal assembled models; nb denotes the number of interface
displacement DoF.

In the remainder of this section, the component models are reduced using different meth-
ods from chapters 2 and 4, and subsequently assembled to create more compact dynamic
models of the yaw system. In order to assess their accuracy, these models are subjected to
a modal analysis and their eigenfrequencies and mode shapes are compared to those of the
full reference model. Two criteria are defined for this comparison:

• Relative frequency error: the relative error of the eigenfrequencies with respect to the
reference solution is compared. In order to qualify as an “accurate” result, the relative
frequency error should be no more than 1%.

• Mode shape error: the MAC matrix is computed to quantify the correlation between
the expanded mode shapes from the reduced models with respect to the reference
solution (see section 4.7.2). The diagonal MAC values, so those of matching modes, are
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subtracted from 1 and plotted for each mode. The resulting mode shape error should
be less than 0.1 (i.e. MAC value of 0.9) in order to be considered accurate. Note that the
MAC is computed using (4.44), so no weighting with the full assembled mass matrix
is applied.

In subsequent plots these accuracy thresholds will be indicated by a dashed black line. The
next subsection will discuss the results for the component reduced models, while subsection
7.7.2 treats the results obtained when additional interface reduction is applied.

7.7.1 Results Component Reduction

In this section the component models are reduced using the Craig-Bampton (CB), Dual
Craig-Bampton (DCB) and Rubin methods described in sections 2.5, as well as using the
Mixed Craig-Bampton method proposed in section 2.6. Hence, all original boundary dis-
placement DoF are retained, or replaced by interface force DoF in the case of the DCB and
(possibly) MCB methods.
For the MCB method the automated selection of free or fixed interface DoF was applied as
described in section 2.6.1 (with c = 1), and it was chosen to assemble equal-stiffness interface
DoF in a primal manner. This led to the fixed and free interface DoF selection as shown
in table 7.2, where nb again denotes the number of interface displacement DoF (to be fixed
during reduction) while ng denotes the number of interface force DoF (to be left free during
reduction).

Model YR-TT YP BP YGB
nb ng nb ng nb ng nb ng

No. DoF 37 4031 8316 0 48 2778 86 10

Table 7.2: Selection of fixed and free interface DoF in the Mixed CB method; ng denotes the number
of interface force DoF.

As can be seen, all interface DoF of the yaw pads are to be reduced with fixed interface modes,
its reduction basis thus corresponds to a normal CB basis. This was to be expected since the
polyamide pads are very soft in comparison with the steel structures connected to it. For
the tower top and yaw ring, most interface DoF are to be reduced with free interface modes,
except for a few DoF with the yaw gearboxes. Their stiffness is approximately equal to that of
the yaw gearboxes and hence to be assembled primally. The bedplate interface DoF are also
mostly to be left free, again except for the eight (rigidified) interfaces with the yaw gearboxes.
For simplicity, all components are reduced using 30 vibration modes, except the yaw pads
which are reduced using 15 modes each. Obviously, using the adaptive model reduction
methods from chapter 5, a more efficient distribution of the modal DoF across the different
components can be made; this is however out of the scope of this initial case study. The four
assemblies of reduced component models analyzed in this section are listed in table 7.3. The
abbreviations in the first column denote the names of the assemblies and correspond to the
names used in subsequent figures.
From table 7.3, note that the assembly of DCB reduced components (DCB30) has more DoF
than the CB30 and R30 models. This is due to the fact that now interface force DoF are
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Model YR-TT YP BP YGB Assembly
nη nη nη nη Σnb Σnλ Σnη Total no. DoF

REF – – – – 7299 – – 293712
CB30 30 22 × 15 30 8 × 30 7299 – 630 7929
DCB30 30 22 × 15 30 8 × 30 – 8007 630 8637
R30 30 22 × 15 30 8 × 30 7299 – 630 7929
MCB30 30 22 × 15 30 8 × 30 7289 6819 630 14738

Table 7.3: Overview of the reduced assembled models; nη denotes the number of modal DoF and nλ

denotes the number of Lagrange multipliers.

assembled instead of interface displacement DoF. As can be understood from the relations
between the Boolean assembly matrices Bb and Lb in chapter 3, the number of unique La-
grange multipliers, and hence interface DoF, is equal to the total number of interface DoF
minus the number of unique displacement DoF.3 The components of the MCB reduction are
assembled in a mixed way according to the procedure in section 3.5, such that both interface
displacement DoF and Lagrange multipliers are needed. This leads to a rather large system
of assembled equations.
The results of the modal comparison of the reduced yaw system models are presented in
figures 7.8 to 7.10. Figures 7.8 and 7.9 show the relative frequency error and mode shape errors
with respect to the full model, whereas the plots in figure 7.10 (a)–(d) show the MAC matrix
for the modes of the four reduced models with respect to the modes of the full model. Note
that in figures 7.8 and 7.9 the results from the DCB30 assembly are corrected for so-called
“spurious modes” (as discussed in section 2.5.4).
From the obtained results, a number of observations can be made:

• All the reduction methods show excellent results and are accurate up to at least the
eightieth eigenmode and eigenfrequency of the full model. Still, the total number of
DoF are reduced by a factor of almost 40 for the CB30, DCB30 and R30 models and
by a factor of 20 for the MCB30 model.

• The classic CB, DCB and Rubin methods have similar accuracy, but the MCB seems
to perform slightly better across the complete frequency range. This is especially true
for the error on the mode shapes. These good results could maybe be explained by the
fact that the assembled MCB model has many more DoF than the other assemblies.
On the other hand, this larger model size is only the result of the mixed assembly
procedure; the actual component models do not contain any more relevant content
(i.e. deformation shapes) than in the other models. Nonetheless, this shows that a
more accurate reduced model is obtained when the reduction bases are constructed
with some knowledge of the neighboring components and the assembly procedure is
tailored to the content of these bases.

• In figure 7.10 (b) the MAC plot between the modes of the reference system and those
of the Dual Craig-Bampton system is shown. From this plot a spurious mode can

3So here the number of unique Lagrange multipliers is 15.306 – 7.299 = 8.007. Note that if all interface meshes
are conforming and each interface node is coupled to only one other node, then the number of unique Lagrange
multipliers and unique interface displacement DoF are equal. In case a node belongs to m substructures, for
interface corners with a “multiplicity” > 2, there would m − 1 multipliers and only 1 unique interface DoF.
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clearly be seen at mode 58 of the reduced model. Such spurious modes originate from
the fact that the DCB method only enforces weak compatibility, it therefore allows
motion of the interface DoF which is physically not possible (e.g. relative sliding of
the interfaces). These non-physical modes are an artifact of the reduction procedure.
Depending on the selection of fixed and free interface DoF, such modes can also occur
in MCB reduced models.
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Figure 7.8: Frequency errors of the reduced models with respect to the full model.
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Figure 7.9: Mode shape errors of the reduced models with respect to the full model.

7.7.2 Results Component & Interface Reduction

Although the assemblies of reduced component models show a reasonable reduction of DoF
with respect to the full model, with approximately 8k DoF (and even 15k DoF for the MCB30
model) they are still orders of magnitude larger than the structural models typically used in
aero-elastic simulations in the wind industry. In order to reduce the number of DoF even
further, the interface reduction techniques from chapter 4 are therefore applied. Since the
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Figure 7.10: MAC between the expanded modes of the reduced models and the reference model:
Craig-Bampton (a), Dual Craig-Bampton (b), Rubin (c) and Mixed Craig-Bampton (d).

number of interface modes used in the interface reduction is a crucial parameter in obtaining
accurate but compact models, two interface reduced versions are created for each of the three
original reduced models, employing respectively 100 and 200 interface modes. The different
variants analyzed in this subsection are listed in table 7.4.

Since the MCB model contains both a unique field of interface displacement DoF as well
as Lagrange multipliers, it needs to be reduced with both interface displacement modes and
interface force modes (see sections 4.4 and 4.5). As can be seen from table 7.4, this again leads
to reduced models that are (slightly) larger than those of the traditional reduction methods.

Next, the same modal comparison is applied to these interface reduced models as before;
the results are shown in figures 7.11 to 7.14. Figures 7.11 and 7.12 show the error for the three
different reduction methods with respect to the full model when the interface is reduced
with 100 modes; figures 7.13 and 7.14 show the same comparison when 200 modes are used.
Again, a number of observations can be made from these results:

• As expected, the interface reduced models are less accurate then the original CB30,
R30 and DCB30 systems. The big advantage however, is that by applying the interface
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Model YR-TT YP BP YGB Assembly
nη nη nη nη nγ – Φγ nγ – Φλ Σnη Total

REF – – – – 7299 – 293712
CB30ir100 30 22 × 15 30 8 × 30 100 – 630 730
CB30ir200 30 22 × 15 30 8 × 30 200 – 630 830
DCB30ir100 30 22 × 15 30 8 × 30 – 100 630 730
DCB30ir200 30 22 × 15 30 8 × 30 – 200 630 830
R30ir100 30 22 × 15 30 8 × 30 100 – 630 730
R30ir200 30 22 × 15 30 8 × 30 200 – 630 830
MCB30ir100 30 22 × 15 30 8 × 30 100 100 630 830
MCB30ir200 30 22 × 15 30 8 × 30 200 200 630 1030

Table 7.4: Overview of the interface reduced assembled models; nγ denotes the number of interface
modes, Φγ denotes interface displacement modes and Φλ denotes interface force modes.

reduction, the total number of DoF is reduced by a factor of approximately 300-400
with respect to the full model. This results in much shorter computation times as well
as lower storage requirements for the component reduction bases.

• All the interface reduced models show good results for the relative frequency error,
where they show little difference with respect to the non-interface reduced models. For
the mode shape errors this is true to a lesser extent, where the accuracy deteriorates
already at some of the lower modes. This is probably due to the fact that the interface
deformations play an important role in this modes of the total system. It is believed
that this can avoided by better distributing the modes across the different components
and interfaces, without significantly increasing the model size, by application of the
adaptive reduction algorithms of section 5.7. This is however out of the scope here.

• Again, the MCB model outperforms the other reduced models in terms of accuracy.
However, as before, the MCB reduced model has more degrees of freedom to deform
in, making direct comparison with the other models not completely fair. Nonetheless
the difference in model size between the MCB and other models is only relatively small
here, making the good accuracy of the MCB models quite remarkable.

• The three other models (CB30ir, DCB30ir and R30ir) on average perform more or
less similarly, although differences can be observed. For instance, it seems that the
DCB30ir models provide the best accuracy on the eigenfrequencies, especially for the
lowest modes, but perform not as good when it comes to the accuracy of the mode
shapes.

• From figures 7.13 and 7.14 it shows that the MCB model reduced with 100 interface
modes performs better than the one reduced with 200 interface modes. This contra-
dictory outcome is believed to be the result of numerical issues, probably caused by
bad matrix conditioning due to mixing of force interface modes (i.e. flexibility based)
and displacement interface modes (i.e. stiffness based). Due to this bad conditioning
round-off errors from the solver can be amplified. Since higher modes are generally
less accurately captured, this can result in errors in the MCB30ir200 reduced system
that are not observed in the MCB30ir100 version. The consequence is that after mode
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40 the accuracy deteriorates quite badly. This is undesirable in practice, hence some
sort of indicator should be developed to signal this deterioration. To avoid this in the
future, scaling and/or preconditioning could maybe be applied in the solver. Note that
the R30ir200 model seems to suffer from the same problem, albeit to a lesser extent.

All in all these results show that with component and interface reduction, compact yaw sys-
tem models can be created that still provide acceptable accuracy with respect to the full
model. Since the reduced substructure models originate from CAD models, all geometrical
information and details are accounted for. Hence, the substructuring and reduction methods
provide a powerful structural dynamic analysis tool for use in wind turbine engineering.
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Figure 7.11: Frequency errors of the component and interface reduced models with respect to the full
model, interface reduction with 100 modes.
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Figure 7.12: Mode shape errors of the component and interface reduced models with respect to the
full model, interface reduction with 100 modes.



7.7 Assembled Models & Analysis Results ∣ 181

 

 
MCB30ir200R30ir200DCB30ir200CB30ir200

Re
la

tiv
ef

re
qu

en
cy

er
ro

r[
%

]

Mode no. [-]

Frequency errors

0 10 20 30 40 50 60 70 80 90 100
10−6

10−4

10−2

100

102

Figure 7.13: Frequency errors of the component and interface reduced models with respect to the full
model, interface reduction with 200 modes.
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Figure 7.14: Mode shape errors of the component and interface reduced models with respect to the
full model, interface reduction with 200 modes.

7.7.3 SUMAC Analysis

To conclude the analysis of the yaw system, in this subsection a SUMAC analysis is per-
formed. Although unrelated to the previous comparisons between full and (interface) re-
duced models, it serves to show the use of the SUMAC indicator defined in section 4.7.3. As
was explained in that section, the SUMAC correlates the trace of the assembled modes on a
certain substructure (or subassembly) to the modes of that unassembled substructure. Here
the SUMAC is calculated between the modes of the total yaw system model ΦREF and those of
the subassembly of yaw ring and towertop, yaw pads and bedplate, denoted by ΦYRTT & YP & BP.
The resulting plot is shown in figure 7.15.

This SUMAC shows the correlation between the global mode shapes and the mode shapes of
the yaw ring and towertop, yaw pads and bedplate subassembly. From figure 7.15, one can thus
visualize the effect on the mode shapes of the addition of the yaw gearboxes onto the YRTT–
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YP–BP subassembly to obtain the total assembly. The figure can be read as follows. Along
the horizontal axis the modes numbers of the subassembly are shown, while the vertical axis
shows those of the total assembly. Where there is a high correlation between the two mode
sets, one can conclude that the addition of the gearboxes has little effect on the subassembly.
Low correlation values can be attributed to modes that have significantly changed due to the
addition of the yaw gearboxes or to localized modes in the gearboxes.
The SUMAC plot in figure 7.15 can thus be interpreted as follows. Firstly, due to the shifts of
the red blocks, which denote a high correlation, one can identify the isolated gearbox modes
in the set of global modes. But one can also see from for instance modes 14, 22 and 30 that
there is an interaction between the gearboxes and the other assembled components. Finally,
it is seen that the added mass and stiffness affect some modes more than others, thereby
leading to higher frequencies for some modes and lower frequencies for others. This can
be observed at modes 37–41 of ΦREF, which have a significant correlation with modes 13–
17 of ΦYRTT & YP & BP, but where the order of the modes is altered. In conclusion, a SUMAC
plot thus provides additional insight in the assembled system’s behavior and the role of the
substructure models therein.
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Figure 7.15: SUMAC between the modes of the total model and of the YR-TT, YP and BP subassembly.

7.8 Summary

Every modern wind turbine in the multi-megawatt class is equipped with an active yaw sys-
tem, in order to keep the rotor plane orthogonal to the wind direction by rotating the rotor-
nacelle assembly around the vertical tower axis. Since the yaw system is modeled in an ex-
tremely simplistic way in the aero-elastic models used in the wind industry, this chapter was
concerned with creating a detailed dynamic model of the yaw system of a Siemens 2.3 MW
wind turbine using the methods outlined in chapters 2, 3 and 4.
A description of the yaw system was given in section 7.2, which also established the system
boundaries and identified the relevant structural components, being the bedplate, yaw pads,
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tower top and yaw ring and the yaw gearboxes. The modeling of these components was de-
tailed in sections 7.3 to 7.6 respectively. Modeling of the first three components was achieved
in a quite straightforward manner by reusing existing CAD and FE models, but creating a
dynamic model for the yaw gearboxes required a more elaborate approach to account for
the dynamics of the internal gears. Although not treated in this chapter, measurements have
also been performed to validate the bedplate and yaw gearbox models. See appendix B.

The assembled yaw system models were analyzed in section 7.7. The primal assembly of the
full models consisted of almost 300k DoF, more than 7k of which were on the substructure
interfaces. Reduced assemblies were created using the methods of chapter 2, specifically
the Craig-Bampton (CB), Dual Craig-Bampton (DCB), Rubin and Mixed Craig-Bampton
(MCB) methods. For simplicity all components were reduced using 30 vibration modes,
except the yaw pads which were reduced with 15 modes each. Since all interface DoF were
initially retained this resulted in reduced models of around 8k DoF for the first three methods
and 15k DoF for the MCB method, a reduction of a factor 40 and 20, respectively, compared
to the full model. From a comparison of their modal properties, with respect to the full
model, it was shown that all four reduced models provide an accurate prediction of the dy-
namic behavior up to the eightieth mode. The Mixed CB method showed the best accuracy
of the four methods, which however comes at a larger reduced model size.

These reduced models were still deemed too large, such that the interface reduction tech-
niques from chapter 4 were applied for further DoF reduction. This resulted in models of
approximately 700-1000 DoF, achieving a reduction factor of around 300-400. Performing
the same modal comparison revealed that the accuracy of these very compact models was
still good, especially when compared to the non-interface reduced models. Hence, it was
shown how applying component and interface reduction allows to create compact yet accu-
rate dynamic models of wind turbine components and assemblies. Furthermore, compared
to existing methods, the proposed Mixed Craig-Bampton method has proven to be a more
systematic and accurate way of doing so.
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8
Design Modification of a Bedframe

Structure

8.1 Introduction

It is common practice among wind turbine manufacturers to base new wind turbine models
on existing designs by changing the rotor diameter and/or rated generator power. This is an
effective way of bringing down the cost of wind generated electricity, since these upgraded
wind turbines usually provide substantially increased electricity output at often only moder-
ate additional cost. For wind turbine manufacturers this approach also has several benefits.
For instance, there is no need to design a new turbine from scratch, lessons learned from the
previous design can be implemented, and last but not least the turbine designs are pushed
more and more to the limit which benefits profitability and market position.

Due to the new configuration of the wind turbine, it has to be checked whether all compo-
nents have sufficient capacity to withstand the increased loading. In this process small design
modifications to the nominal components are often needed to ensure their reliability in the
new turbine.

This chapter zooms in on this incremental design approach for one specific structure, in or-
der to assess the efficiency of the dynamic substructuring approach for such design problems.
Indeed, in chapter 6 it was explained that iterative (parametric) modifications to one or more
components could partly undermine the computational efficiency. A solution was proposed
in the form of preconditioned iterative updating methods that reuse as much information as
possible from the nominal reduced model. This chapter therefore forms a test case for these
updating methods.

The structure of interest is the bedframe, that has already been analyzed in the previous
chapter. This structure was chosen due to its central function in the nacelle and, more im-
portantly, due to the fact that it absorbs and transfers all the aerodynamic loads going into
the turbine. In practice it is therefore likely that this structure needs to be modified when
the loads on the turbine increase.

This chapter is organized as follows. The structural model of the bedframe and the design
modifications at hand will be described in the next subsection. Subsections 8.3 and 8.4 will
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thereafter treat the efficiency of the updating of the static and vibration modes, respectively.
The overall efficiency of the updating method will be addressed in section 8.5. The situation
where design modifications are applied sequentially, and the effect on the computational
efficiency of the updating method, is covered in section 8.6. Finally, the updating strategy
will be compared to existing updating/reanalysis strategies in section 8.7. The chapter is
ended with a summary in section 8.3. Note that the work in this chapter is based on the
publications in [214, 215].

8.2 Structural Model & Design Modifications

In this chapter the bedframe structure is considered that was described for the modeling
of the yaw system in section 7.3, that is, the bedplate including the main bearing housing
and gearbox supports. This total structure will here be referred to as the the “bedframe”. As
described in section 7.3, the structural finite element model of the bedframe is based on a
CAD model. For the purpose of this chapter, three finite element models have been created
from this CAD model in ANSYS, which only differ in their mesh size. These models will
be referred to as the “coarse”, “normal” and “fine” models, respectively; their properties are
listed in table 8.1. Considering three FE models allows to study the influence of the model
size on the effectiveness of the iterative updating approach proposed in chapter 6.

Coarse Normal Fine
# DoF 123459 246762 511953
# Elements 23651 49882 107681

Table 8.1: Bedplate FE model properties.

All three finite element models are meshed using quadratic (i.e. ten-node) tetrahedral ele-
ments with only translational nodal DoF. Note that this somewhat simplifies the updating
computations, as difficulties with scaling of rotational DoF are avoided. The normal finite
element model of the nominal bedframe structure is shown in figure 8.1, which also indicates
the coordinate system used to define the different design modifications. The bedframe FE
models will be reduced using the Craig-Bampton method, see section 2.5.2. This means that
the reduction basis ingredients are the static constraint modes and fixed interface vibration
modes, derived in sections 2.3.1 and 2.4.3 respectively.

Side view Top view

xy

z

Figure 8.1: Finite element model of bedframe structure.
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The interfaces of the bedframe considered in this chapter are the black areas shown in the
topview plot. At these locations the yaw gearboxes are connected, as was discussed exten-
sively in the previous chapter. Each interface consists of multiple nodes which have been
replaced by a single 6 DoF master node by assuming the interface region behaves rigidly. In
total, this leads to 48 interface DoF, regardless of the mesh size.
The reason for not considering the other interfaces of the bedframe (i.e. interfaces with
yaw pads, main bearing, gearbox) is twofold. Firstly, as was explained in section 7.3 for the
interface with the yaw pads, these interfaces cannot in general be assumed to behave as rigid
regions. Hence, the number of interface DoF, and consequently the number of static modes,
varies with the mesh size, making one-to-one comparison between the different FE models
troublesome. Secondly, larger interfaces such as the yaw pads cause many static modes which
negatively affects the efficiency of the CG based updating approach, such that recomputation
of the static modes might become more efficient. In practice one would however often apply
interface reduction to these extensive interfaces. These interface modes can then in turn be
updated using the vibration mode updating method; maybe one could devise some scheme
where the static modes and interface modes are updated simultaneously, such that only a
limited number of static modes need to be computed. This is however out of the scope here.
To resemble realistic situations, the bedframe structure is subjected to the following design
modifications:

Case 1 – Global geometric change in x , z directions The complete bedframe geometry is
modified to grow in the global x (width) and z (thickness) directions; both directions
are scaled simultaneously by the same factor. The length of the bedframe as well as its
structural properties, such as the Young’s modulus, Poisson ratio and density, remain
constant. In order to study the effect of the magnitude of the design change, the fol-
lowing series of 15 scaling factors is used: [1.005, 1.01, 1.02, 1.03, 1.04, 1.05, 1.075, 1.10,
1.125, 1.15, 1.20, 1.25, 1.30, 1.40, 1.50]. This means that for each FE model 15 modified
variants will be created.

Case 2 – Global geometric change in y direction The complete bedframe geometry is mod-
ified to grow by a certain percentage in the global y (length) directions. The same 15
variants are considered as in case 1. The other dimensions and the structural properties
remain constant.

Gearbox supports

Main bearing housing

Figure 8.2: Division of the bedframe finite element model into three parts.

Case 3 – Local material property change For this case the structure is divided into three
parts as shown in figure 8.2: the bedplate, main bearing housing (designated by “mb”)
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and gearbox supports (designated by “gs”). Two variants are considered for each FE
model, namely where the material properties of the bearing housing and gearbox sup-
ports are individually changed from steel to aluminium. The material properties used
for both materials are listed in table 8.2.

Density [kg/m3] Young’s modulus [GPa] Poisson ration [−]
Steel 7850 210 0.30
Aluminium 2700 70 0.35

Table 8.2: Material properties.

In order to quantify the “intensity” of the series of design changes described above, the fol-
lowing metrics are defined based on the Frobenius norm of the structural matrices:

δK = ∥∆K∥F∥K(0)∥F
⋅ 100% and δM = ∥∆M∥F∥M(0)∥F

⋅ 100%, (8.1)

with the Frobenius or “entrywise” norm defined as:

∥A∥F =
¿ÁÁÀ n∑

i=1

n∑
i=1
∣ai j∣2 (8.2)

Since the models at hand only consist of translational DoF, these numbers can be roughly
interpreted as the percentage by which the global stiffness and mass properties are affected
by the design modification. In the discussion on the efficiency of the updating procedures for
the static and vibration modes in the next two sections, it will be addressed how the following
aspects affect the results:

• Algorithm settings
• Preconditioner and initial guess
• Design modification and model size

Note that to truly gain insight in the performance of the updating methods, the next two
sections consider each design modification with respect to the nominal model. Sequential
updating, where the structure is subjected to a series of design modifications and updating
is only performed with respect to the previous modification, is treated separately in section
8.6. The main comparison criterion in these investigations will be CPU time.

As explained in section 6.1, existing updating/reanalysis methods enrich and/or approximate
the reduction basis of the modified model. This complicates direct comparison of the com-
putational efficiency of those methods and the updating methods of chapter 6 troublesome.
Instead, since the updated basis provides the same reduced model size and accuracy (see
section 8.7), the CPU efficiency will be compared to that of full basis recomputation with
efficient standard solvers.

All calculations in this chapter are performed in Matlab R2009b on a quad-core Intel Xeon
machine running Windows XP64. The matrix factorizations and forward/backward sub-
stitutions in Matlab are performed using the SD Toolbox, and specifically using the sparse
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multi-frontal spfmex solver based on LDLt decomposition [17]. This compiled solver uses the
routines in the SPOOLES library, written in the C-language using object oriented design (see
http://www.netlib.org/linalg/spooles/spooles.2.2.html). Furthermore, all vector and matrix
operations, both in the SD Toolbox and in the implementations of the updating algorithms,
are performed using the BLAS routines.

8.3 Efficiency of Updating of Static Modes

The test structure has 48 interface DoF, hence an equal number of static constraint modes
need to be computed. In order to obtain the static modes for the nominal component a
compiled direct solver is applied based on sparse LDLT-type decomposition. This solver is
part of the SD Toolbox [17]. For the three FE models, table 8.3 lists the solver’s computation
times for the factorization of the stiffness matrix and backsubstitution to obtain the 48 static
modes.

Coarse Normal Fine
Factorization [s] 11 50 260
Backsubstitution [s] 4 11 33
Total [s] 15 61 293

Table 8.3: CPU times for direct calculation of static modes.

After performing the design modifications as outlined before and rebuilding the finite ele-
ment matrices, the aim is to compute the static modes of the modified structures starting
from the nominal structure using an implementation of algorithm 6.2. In all subsequent
calculations the iteration tolerance is set to ε = 10−6.

8.3.1 Effect of Algorithm Settings

In the block CG algorithm shown in alg. 6.2 the block size used in the iterations can be
freely chosen. In order to assess the influence of the block size on the efficiency of the CG
solver, the normal FE model is taken and analyzed for all design modifications in case 1 and
different block sizes ranging from 1 to 48. Figure 8.3 shows the CPU time for a specific block
size normalized by the lowest CPU time of all block sizes for that design modification. The
size of the markers is inversely proportional to the normalized CPU time, while the dark
markers indicate lowest CPU time.
Furthermore, taking case 1, design modification 8 (i.e. 10% scaling in global x and z direc-
tions) the effect of varying the block size is listed in table 8.4.

Block size 1 2 4 6 8 12 24 48
CPU time [s] 158 104 94 81 76 88 102 123
# iterations 212 116 64 42 33 23 16 13
# vectors 212 216 224 222 225 263 293 344

Table 8.4: Effect of block size for normal FE model, case 1 – (x , z) scaling by 10%.

From these results the following is observed:
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Figure 8.3: Normalized CPU time versus block size.

• For the current implementation and calculation setup, in the majority of cases a block
size of 8 is most efficient. This seems to be independent of design modification and
model size, as similar results are found for the coarse and fine FE model (not shown
here).

• As speculated in section 6.2.3.2, the block algorithm is always more CPU efficient than
its single vector equivalent, even for a block size of 2.

• From a memory usage perspective the single vector algorithm is least demanding, as
it finds the solution using the lowest number of search directions. This is due to the
fact that the vectors result from a higher Krylov order. However, these differences are
rather small compared to the differences in CPU time.

• The block size times the number of iterations is in general not equal to the total number
of vectors used in the approximation space, due to the fact that converged vectors have
been removed from the iteration blocks (see discussion in section 6.2.4).

Given these results, all subsequent calculations using the block CG method are performed
with a block size of 8.

8.3.2 Effect of Preconditioner & Initial Guess

In section 6.2.4 it was shown theoretically that the factorization of the nominal stiffness ma-
trix can be a very good preconditioner for the CG iterations on the modified stiffness matrix.
In this subsection this will be illustrated by comparing the results obtained using other pre-
conditioners. Furthermore the influence of a different initial guess will be shown.
Two alternative preconditioners are considered here, namely the Jacobi preconditioner and
the Symmetric Successive Over Relaxation (SSOR) [63, 12]. Many other preconditioners ex-
ist, but these have been chosen because they can be obtained at virtually no computational
cost. Both preconditioners can be defined by decomposing the stiffness matrix into a diago-
nal part D and a strictly lower diagonal part E. Due to symmetry of the stiffness matrix one
can then write:

K = D + E + ET (8.3)
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The Jacobi preconditioner is defined simply as S J = D. The SSOR preconditioner is somewhat
more complex and defined by:

SS = (D + E)D−1 (D + ET) (8.4)

In order to efficiently apply this preconditioner in the CG iterations, one can observe that it
can be written in the form of an LU-decomposition [178]:

SS = LU with { L ≡ (D + E)D−1 = I + ED−1

U ≡ D + ET (8.5)

Indeed, this is an approximation of the LU decomposition of the stiffness matrix:

SS = D + E + ET + ED−1ET = K + ED−1ET (8.6)

This preconditioner can be applied like any other factorized preconditioner.

To quantify the effect of using different preconditioners, the 125k DoF model is subjected to
design modification case 1, 1% scaling in (x , z) directions. Larger models and design mod-
ifications could not be tested due to the memory requirements for storing the CG iterates.
The results are listed in table 8.5.

Preconditioner Initial Tol. CPU time [s] # iterations # vectors Rel. CPU [–]
K(0) Ψ(0) 10−6 10 12 82 0.7
K(0) 0 10−6 16 20 131 1.2

SSOR Ψ(0) 10−4 374 396 1178 28
SSOR 0 10−4 2718 875 2526 209
Jacobi Ψ(0) 10−4 3017 1095 3309 233
None Ψ(0) 10−4 4982 1238 4970 384

Table 8.5: Results for static modes using different preconditioners and initial guess, for case 1 – scaling
by 1%.

Again, a few remarks can be made based on these results:

• Using the factorization of the nominal stiffness matrix for preconditioning is far more
efficient than using the Jacobi or SSOR preconditioners, or no preconditioning at all.
SSOR preconditioning is relatively more efficient than Jacobi.

• A good initial guess can really decrease the computation time since the iterations are
started with a much smaller initial residual. However, the preconditioner thereafter
determines the actual rate of convergence.

• In order to be able to complete the CG iterations with the available memory space, the
tolerance ε for the CG iterations had to be changed from 10−6 to 10−4 when using the
Jacobi and SSOR preconditioners.

• Although all computations have been performed with block size 8, the average block-
size with the Jacobi and SSOR preconditioning is much smaller. This indicates that
some static modes converge much faster than others.



192 ∣ Chapter 8 – Design Modification of a Bedframe Structure

Finally it is noted that, at least theoretically, the Jacobi and SSOR preconditioners should
become relatively more competitive when the design change increases since they are based on
K(1) and hence independent of the design modification. However, the initial guess is worse
in those cases which again requires many additional iterations. The net effect is therefore
hard to quantify.

8.3.3 Effect of Design Modification & Model Size

The most important criterion for the practical applicability of the updating strategy is its
computational cost compared to that of direct methods for realistic design modifications.
In order to assess this, the three FE models are subjected to the series of design changes
described in section 8.2. The results are presented in figure 8.4 where the relative CPU time
is plotted as a function of the intensity of the design change, expressed by δK as defined in
eq. (8.1). The relative CPU time is defined as the actual CPU time divided by the CPU time
needed for the direct solver (see table 8.3).

Furthermore, for each of the three design change cases one representative variant was cho-
sen for which detailed results are provided in table 8.6. For cases 1 and 2, a global scaling
of 5% was deemed realistic, while for case 3 the material change of the bearing housing is
considered.

Design change δK [%] CPU [s] # iterations # vectors Rel. CPU [–]

Case 1 – 5%
Coarse 5.3 21 24 156 1.40

Normal 4.7 54 24 158 0.89
Fine 4.7 144 24 157 0.49

Case 2 – 5%
Coarse 3.9 21 24 156 1.40

Normal 3.8 52 24 159 0.85
Fine 3.5 140 24 157 0.48

Case 3 – mb
Coarse 26 15 20 20 1.00

Normal 23.9 36 18 114 0.59
Fine 25.2 99 18 114 0.34

Table 8.6: Static modes updating results for three realistic cases.

Based on figure 8.4 and table 8.6, a number of observations and remarks can be made:

• From the results of cases 1 and 2, it appears that a somewhat linear relation seems to
exist between δK and the CPU time, regardless of the model size.

• With increasing model size the updating approach becomes relatively more efficient.
This is due to the fact that factorization of the sparse stiffness matrix takes in the order
of n ⋅b2 floating point operations, where n is the model size and b the matrix’ diagonal
bandwidth [77]. Backsubstitution requires an additional n ⋅ b operations for each of
the p static modes, leading to a total of the order of n ⋅ b2 + n ⋅ b ⋅ p operations for
the direct solver. From table 8.6 it is seen that the number of CG iterations needed
for convergence is independent of the model size. Hence the number of matrix-vector
multiplications, each requiring of the order of n ⋅b operations, is constant and the total
number of operations is of the order of n⋅b⋅p⋅m, where m is the number of iterations. In
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Figure 8.4: Relative CPU time versus intensity of design modification for static modes updating.

both cases the number of operations, and hence the computation time, scales linearly
with the model size n. However, the matrix bandwidth b also increases with a finer
mesh. Since the computational cost of the direct solver depends quadratically on b
while the CG solver’s cost depends only linearly, it is clear that for larger models the
iterative method becomes more and more attractive.

• For the global modifications, the plots in figure 8.4 can be used to determine the
“break-even” points, i.e. the δK values and/or scaling factors for which the CPU time
of the iterative CG solver is equal to that of the direct solver (relative CPU time equal
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to 1). This is indicated by the dotted lines in the plots in figure 8.4.

• Local modifications (see bottom plot in fig. 8.4) can be handled much more efficiently
then global changes even though the corresponding δK values are larger. In fact, for
the two local modifications tested here, the updating approach is always more efficient
then the direct method. This is believed to be due to the fact that the design change
is performed “far away” from the boundary DoF, thereby barely affecting the more
localized static deformation shapes.

• In practice a design modification where the structure’s dimensions are scaled by 50% is
not realistic. In that case one either creates a new model or sequentially applies smaller
design changes of for instance 5 to 10% scaling. As was described in section 6.4, in the
latter case one can use the updating approach combined with previous CG iterates to
enhance the preconditioning. This approach is studied in section 8.6.

8.4 Efficiency of Updating of Vibration Modes

In this section the attention is turned to the updating of the vibration modes of the bedframe
model. Since in this chapter the Craig-Bampton reduction basis is updated, the so-called
fixed interface vibration modes are considered, see section 2.4.3. It was chosen to compute
30 vibration modes for the reduction basis, which is a reasonable number in practice. The
vibration modes for the nominal reduction basis are computed using the (compiled) imple-
mentation of the Lanczos method that is included in the SD Toolbox for Matlab [17]. The
analysis times needed for the computation of 30 modes are shown in table 8.7, this excludes
the time needed for the factorization of the stiffness matrix.

Coarse Normal Fine
Lanczos eigensolution [s] 40 100 282

Table 8.7: CPU times for calculation of 30 vibration modes of the nominal bedframe models, exclud-
ing factorization of the stiffness matrix.

For the modified models described in section 8.2 the aim is to compute the vibration modes
using the IFPKS method with an implementation of algorithm 6.5. Similar to the previous
section, this section subsequently addresses the effect of the algorithm settings, the precon-
ditioner and initial guess and finally the design modification and model size. All calculations
are performed with an iteration tolerance of 10−3 on the residual, corresponding to a toler-
ance of approximately 10−6 on the eigenfrequencies.

8.4.1 Effect of Algorithm Settings

In the IFPKS method a number of algorithm settings need to be chosen, namely:

• The iteration block size b, i.e. the number of vectors in the blocks Z j in algorithm 6.5
• The Krylov order, i.e. the number of inner iterations r in algorithm 6.5
• Whether or not to enrich the search space with difference vectors (see section 6.3.3.4)
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In contrast to the CG algorithm, where the block size only affects computational efficiency,
the settings of the IFPKS algorithm determine how the problem is solved and can hence
strongly influence the convergence of the algorithm. Furthermore, it is expected that for
different design change magnitudes these parameters might have different effects. Quan-
tification of these effects therefore requires a parameter study, which is carried out on the
coarse FE model subject to the design modifications of case 1. For this study, the Krylov or-
der r was varied from 1 to 5, while block sizes b of [1, 2, 4, 6, 8, 10, 15, 30] were considered. In
all cases preconditioning was done using the factorization of K(0), the nominal modes Φ(0)
were taken as initial guess and deflation was used to obtain the 30 modes.

To limit the amount of data presented here, table 8.8 lists, for each design change of case 1,
the block size and Krylov order settings of the IFPKS method that give the lowest CPU time.
This is done with the IFPKS algorithm set to run both with and without difference vectors
added to the basis; the CPU time in column 6 is relative to the lowest CPU time without
difference vectors.

Due to the fact that different parameter values are shown, the number of outer iterations
needed for convergence cannot be compared. Instead, table 8.8 lists the product of the num-
ber of outer iterations k, the number of inner iterations (i.e. Krylov order) r and the block
size b. This number is equal to the total number of forward/backward substitutions due to
application of the preconditioner, the computationally most expensive step in the iterations,
and is hence a good indication of the computational cost.

Variant/ w/o difference vectors w/ difference vectors
Scaling b × r × k b r Relative CPU [–] b × r × k b r

1 0.5% 108 4 3 1.02 108 4 3
2 1% 160 10 2 0.95 144 8 3
3 2% 180 10 2 1.06 180 10 2
4 3% 208 8 2 0.96 150 15 1
5 4% 240 8 2 1.02 240 15 2
6 5% 256 8 2 1.02 240 10 2
7 7.5% 330 15 2 0.91 272 8 2
8 10% 408 8 3 1.01 360 15 2
9 12.5% 480 8 3 0.92 390 15 2
10 15% 585 15 3 0.94 510 10 3
11 20% 760 10 4 0.93 648 8 3
12 25% 920 10 4 0.90 800 8 4
13 30% 1125 15 5 0.89 928 8 4
14 40% 1600 8 5 0.86 1320 8 5
15 50% 2325 15 5 0.75 1620 15 4

Table 8.8: IFPKS parameter settings for design changes in case 1 for lowest CPU times. With k the
number of outer iterations, b the block size and r the Krylov order.

Furthermore, for the practical usability of the IFPKS method the computational efficiency
should not be too sensitive to the algorithm settings. Therefore, figure 8.5 shows the variation
of the CPU time with the algorithm settings for two design modifications. The CPU time is
normalized with respect to the lowest CPU time for that case, the corresponding settings
are indicated by the black dots. In plot (b) some CPU time data is missing since for those
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settings the algorithm could not find all 30 requested modes in the set maximum number of
outer iterations, which was set to

√
n = 351.
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Figure 8.5: Relative CPU time versus block size and Krylov order.

Based on the results in table 8.8 and figure 8.5, the following is observed:

• No single combination of algorithm settings gives the best results across the full range
of scaling factors. However, small block sizes (b < 8) and low Krylov orders (r < 2)
seem to be inefficient in all cases. In most cases, a block size of 8, 10 or 15 combined
with a Krylov order of 2 to 4 gives the best results. Figure 8.5 shows that the efficiency of
the IFPKS method does not change dramatically with slight variations of the settings.

• The use of difference vectors incurs some additional computational cost at each outer
iteration but generally leads to (much) faster convergence, as can be seen from the
product b × r × k. Especially for larger design changes this outweighs the additional
cost, giving a net decrease in the CPU times of over 10%. For small design changes the
benefit is less pronounced.

• Larger design modifications require larger approximation bases, either by increasing
the number of inner iterations (Krylov order) or the block size. Trivially, increasing the
Krylov order leads to less outer iterations. With the outer iterations becoming more
expensive, the challenge is therefore to find the right balance. Furthermore, it was
shown in section 6.3.4.1 that the preconditioning is most effective when the frequency
shift ρk is close to the desired eigenfrequency ω2

i ; when ρk ≪ ω2
i it is more efficient to

update the shift by solving the interaction problem. Therefore, to optimize its conver-
gence properties one might consider adaptively choosing the Krylov order during the
IFPKS iterations using some heuristic scheme based on the current residuals. This is
however out of the scope of this work.

Given these results and observations, future calculations are performed using a blocksize of
10, Krylov order 3 and use of difference vectors enabled.
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8.4.2 Effect of Preconditioner & Initial Guess

In this subsection the effect is investigated of extending the preconditioning using the CG
iterates (see section 6.3.4.2) and enhancing the initial guess using sensitivity modes (see sec-
tion 6.3.4.3). To this end, the coarse FE model is again subjected to the design changes of
case 1. Having updated the static modes and obtained the sensitivity modes, four cases are
considered for each updating problem and the results listed in table 8.9:

1. Standard preconditioning, standard initial guess: columns 3
2. Standard preconditioning, enhanced initial guess: columns 4-5
3. Extended preconditioning, standard initial guess: columns 6-7
4. Extended preconditioning, enhanced initial guess: columns 8-9

For each design modification table 8.9 shows the relative CPU time for the calculations using
extended preconditioning and/or enhanced initial guess with the standard preconditioning
and initial guess taken as the reference case. Since all calculations are performed with the
same block size and Krylov order, the total number of outer iterations is also listed.

Preconditioning: Std. – K(0) Std. – K(0) Ext. – K(0), P Ext. – K(0), P
Initial guess: Std. – Φ(0) Enh. – Φ(0), Φ̄(1) Std. – Φ(0) Enh. – Φ(0), Φ̄(1)

Variant Scaling # its. Rel. CPU # its. Rel. CPU # its. Rel. CPU # its.
1 0.5% 5 0.91 4 1.03 5 0.93 4
2 1% 6 0.76 4 1.19 7 0.79 4
3 2% 9 0.53 4 0.91 8 0.55 4
4 3% 9 0.75 6 1.03 9 0.78 6
5 4% 10 0.78 7 1.05 10 0.71 6
6 5% 11 0.70 7 1.06 11 0.73 7
7 7.5% 14 0.69 9 0.98 13 0.74 9
8 10% 15 0.86 12 1.01 14 0.78 10
9 12.5% 19 0.78 14 0.87 15 0.73 12
10 15% 22 0.81 17 0.86 17 0.64 12
11 20% 29 0.86 24 0.79 20 0.65 16
12 25% 37 0.86 31 0.66 21 0.52 16
13 30% 47 0.87 40 0.58 23 0.49 19
14 40% 60 0.91 54 0.62 30 0.51 24
15 50% 78 0.94 72 0.60 36 0.49 34

Table 8.9: Results for vibration modes using different preconditioners and initial guess. Abbrevia-
tions: “Std.” means standard, “Ext.” extended and “Enh.” enhanced.

Again some conclusions can be drawn from these results:

• Enhancing the initial guess using sensitivity vectors reduces the CPU time in all cases.
However, its effect is most pronounced for small to modest design changes (scaling< 10%), where it can help reducing the number of outer iterations (and hence the
computational cost) by up to 40%. Since the sensitivity vectors are based on a first or-
der perturbation analysis, they lose their effectiveness for larger design modifications.
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However, even when scaling the structure by 50% the sensitivity vectors help reducing
the computation time by over 5%.

• The extended preconditioning using CG iterates seems to be efficient only for larger
design modifications (scaling > 10%). In those cases the increased convergence rate
overcomes the additional computational effort associated to the preconditioning step
(see section 6.3.4.2). This shows that for smaller design changes the information con-
tained in the CG iterates is not very relevant for preconditioning the eigenproblem.
This can be expected as the modified stiffness matrix is still close to the nominal one.
As a result one already has a good preconditioner and the CG iterates mainly contain
“local” information. With increasing ∆K this is less and less the case and the extended
preconditioning becomes more effective, requiring only half the number of outer iter-
ations or 40% less CPU time when the structure is scaled by 50%.

• Combining the enhanced initial guess and extended preconditioning gives good re-
sults across the full range of design modifications. At small design modifications this
is slightly less efficient than using only the enhanced initial guess, but for larger design
changes there is a substantial benefit. Therefore, unless otherwise noted, the results
presented in the remainder of this chapter are obtained using both techniques.

8.4.3 Effect of Design Modification & Model Size

Now the settings and ingredients for the IFPKS method have been established, the remain-
ing question is how its computational efficiency compares to that of traditional eigensolvers
when considering the updating problem. To answer this question the IFPKS method is used
to update the vibration modes for all modified models described in section 8.2, for each of
the three FE models. The results are plotted in figure 8.6; the CPU times are normalized for
each model by the corresponding CPU time needed for full recomputation, as listed in table
8.7. Similar as for the updating of the static modes, more detailed results are listed in table
8.10 for one realistic variant of each of the three design change cases.1

Design change δK [%] δM [%] CPU [s] # outer its Rel. CPU [–]

Case 1 – 5%
Coarse 5.3 10.3 27 7 0.67

Normal 4.7 10.3 70 7 0.70
Fine 4.7 10.3 181 7 0.64

Case 2 – 5%
Coarse 3.9 5.0 29 8 0.73

Normal 3.8 5.0 69 7 0.69
Fine 3.5 5.0 184 7 0.65

Case 3 – mb
Coarse 26.0 24.3 41 11 1.03

Normal 23.9 28.9 99 10 0.99
Fine 25.2 27.5 264 12 0.94

Table 8.10: Vibration modes updating results for three realistic cases.

The following can be noted with respect to these results:
1Note that since the FE models are meshed with elements having only translational DoF, the δM values in

table 8.10 directly indicate the global mass change of the structure. In case 1 the volume of the structure has
scaled by 1.05 × 1.05 × 1 and hence δM = 10.25%.
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Figure 8.6: Relative CPU time versus intensity of design modification for vibration modes updating.

• In contrast to the static modes, the efficiency of the vibration modes updating is in-
dependent of the model size. This is due to the efficiency of the reference calculations
with the Lanczos method being independent of the system size (see section 6.3.1), but
only dependent on the spectral distribution of the eigenvalue problem (i.e. the under-
lying physics of the problem). These properties are more or less independent of the
mesh size. This is reflected in the number of outer iterations which is equal for the
different mesh sizes, see table 8.10.

• For the global modifications, the plots in figure 8.6 can be used to determine the
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“break-even” points, i.e. the δK values and scaling factors for which the relative CPU
time of the IFPKS solver is equal to unity. In these plots the break-even points are
indicated by the dotted lines.

• Again in contrast to the static modes, local modifications are not necessarily handled
more efficiently then global design changes. Where the static modes are not really
influenced by the local modification, the (fixed interface) vibration modes are much
more sensitive to such changes. In figure 8.7 this is illustrated by comparing the modal
assurance criterion (see section 4.7.2) values calculated for the nominal fixed interface
modes and the modified modes, for both a local change and a global modification.
As can be seen, for the local design change the modified modes are relatively more
uncorrelated with the nominal modes.
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Figure 8.7: MAC of modified vs. nominal vibration modes for global (a) and local (b) design change.

8.5 Overall Efficiency of Basis Updating

By combining the results of the updating of the static and vibration modes, the overall ef-
ficiency of the basis updating strategy can be determined. Figure 8.8 shows the CPU time
for the updating of both the static and vibration modes normalized by the total CPU time
needed for recomputation of the reduction bases, i.e. the sum of the CPU times in tables 8.3
and 8.7. Furthermore, table 8.11 lists the results for updating the three FE models subject to
the selected variants of the three design change cases.

As before, the plots indicate the break-even points for cases 1 and 2. It can be seen that in
general the updating strategy becomes more efficient with increasing model size and hence
is mainly attractive for large FE models. In this example for the fine FE model, the updating
strategy outperforms recomputation for δk values up to 14%. For the same fine FE model
subject to the three representative cases listed in table 8.11, updating of the reduction bases
is approximately 40% faster than recomputation. Obviously, both when larger FE models
or smaller design changes are considered the updating method becomes more and more
efficient.
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Figure 8.8: Relative CPU time versus intensity of design modification for total basis updating.

8.6 Sequential Updating

In the previous two sections the situation was considered where the updating of the reduc-
tion basis was performed with respect to the nominal component. In practice however de-
sign changes are often applied sequentially, where a component undergoes a series of design
modifications from the nominal to the final design. As was explained in section 6.4, in this
case not only the information from the nominal component maybe useful for precondition-
ing the updating algorithms but also the CG iterates from the previous update(s). This is
especially true if the new component design is closer to the previous modification than to
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Mesh Case CPU recomputation [s] CPU updating [s] Relative
Static Vibration Static Vibration CPU [–]

Coarse
Case 1 – 5%

15 40
21 27 0.87

Case 2 – 5% 21 29 0.91
Case 3 – mb 15 41 1.02

Normal
Case 1 – 5%

61 100
54 70 0.77

Case 2 – 5% 52 70 0.76
Case 3 – mb 36 99 0.84

Fine
Case 1 – 5%

293 282
144 181 0.57

Case 2 – 5% 140 184 0.56
Case 3 – mb 99 264 0.63

Table 8.11: Efficiency of basis updating vs. recomputation for three realistic cases.

the nominal design.

In order to test the effectiveness of the extended preconditioning scheme described in section
6.4, this section treats the sequential updating of the bedframe FE models. To this end each
modified model is not updated with respect to the nominal model, but with respect to the
previous updated model. As before, the design changes are performed in increasing order
of magnitude. Hence, when for example updating the modified model of case 1 with 10%
scaling, this is done with respect to the updated model of case 1 with 7.5% scaling. This
latter model was updated as before, i.e. directly with respect to the nominal model. For
the preconditioning of the 10% modified model then both the factorized nominal stiffness
matrix and the CG iterates from the 7.5% update are employed; the corresponding updated
modes (static or dynamic, depending on which are computed) are used as initial guess. This
procedure is repeated for the next model, so the 12.5% scaled model is updated with respect
to the updated 10%, which in turn was updated with respect to the nominal model. This
approach is illustrated in figure 8.9.

Nominal 
model

Modified 
model 1

Modified 
model 2

  Modified 
model 

Modified 
model 3

. . .

Direct updating w.r.t. to nominal model

Sequential updating w.r.t. previous model
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Figure 8.9: Schematic representation of direct and sequential updating procedures.

Another approach would be to apply all design modifications sequentially, meaning that the
modified model of case 1 with 10% scaling would be updated using the CG iterates from all
preceding updated models (i.e. those with 7.5%, 5%, 4%, ..., scaling). This would however
lead to so many CG iterates that the extended preconditioning would lose its effectiveness.
Selection of the most relevant content then becomes essential, as was indicated in section
6.4. This is however out of the scope of this work.

Next, the sequential updating as described above is applied to the static modes using the CG
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method; thereafter, subsection 8.6.2 treats sequential updating of the vibration modes. Note
that for the sake of brevity here only the design changes of case 1 are considered.

8.6.1 Sequential Updating Applied to Static Modes

The sequential updating of the static modes has been performed as follows. First, each variant
of the design changes in case 1 is updated with respect to the nominal model (this will be
called the “direct update”). As was done before, the nominal static modes Ψ(0) are used as
initial guess and the factorization K−1(0) is used for preconditioning. As a result the updated
static modes Ψ(1) as well as the CG iterates P(1), W(1) are obtained for each variant. Next,
variants 2-15 are updated with respective to the associated previous variant (i.e. variants 1-14,
this will be called the “sequential update”). Thereby the updated static modes Ψ(1) are taken
as initial guess; preconditioning is achieved according to eq. (6.117) in section (6.4) using
both K−1(0) and the CG iterates P(1), W(1). This sequential updating is applied to all three FE
models while all calculations are performed with a blocksize of 8 and an iteration tolerance
of ε = 10−6. This is summarized in table 8.12.

Direct update Sequential update
Variants considered: 1 . . . 14 k = 2 . . . 15
Initial guess: Ψ(0) Ψ(k−1)
Preconditioning: K−1(0) K−1(0), (P(k−1), W(k−1))
Output: Ψ(1) Ψ(k)

Table 8.12: Summary of sequential updating procedure for static modes.

As was established in section 8.3, the convergence rate of the CG algorithm is independent
of the problem size. Hence the efficiency of the extended preconditioning is independent of
the size of the FE model used. The results listed in table 8.13 are therefore true for all three
FE models. In columns three and four, this table shows the number of iterations and vectors
needed for the direct updating. These results are equal to those used to generate the figures
in section 8.3.3. Columns seven and eight list the number of iterations and vectors needed
for the sequential update. Relative CPU times are listed in column six, which denote the
ratio between the CPU time of the sequential update over that of the direct update of the
same modified model. Finally, column five lists the relative δK value between two sequential
design modifications. This value signifies the “distance” between the two components that
has to be “bridged” by the CG algorithm.

From table 8.13 it is clear that in all cases the number of iterations, number of vectors and
the CPU time needed for convergence are lower when performing the update relative to the
previous component than directly from the nominal one. Since the design modifications are
ordered with increasing magnitude, the relative δK values are always lower than the δK value
with respect to the nominal component. This result should therefore not come as a surprise.

Still, the gain in CPU time can be approximately a factor two for large design changes. These
results are reminiscent of those for the extended preconditioning scheme for IFPKS method
in section 8.4.2: despite the additional computational effort associated with the extended
preconditioning the increased convergence rate proves very effective. In conclusion, when
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Variant/ Direct update Sequential update
Scaling # its. # vecs. Rel. δK [%] Rel. CPU [–] # its. # vecs.

1 0.5% 11 75 – – – –
2 1% 12 83 0.5 0.93 11 75
3 2% 17 111 1.0 0.89 15 95
4 3% 18 123 1.0 0.80 14 93
5 4% 21 146 1.1 0.71 14 96
6 5% 24 156 1.1 0.65 14 98
7 7.5% 29 191 2.7 0.73 20 134
8 10% 33 225 2.7 0.66 23 140
9 12.5% 39 258 2.7 0.61 23 155
10 15% 42 291 2.7 0.58 26 162
11 20% 53 354 5.4 0.61 33 215
12 25% 63 420 5.4 0.57 36 228
13 30% 69 483 5.4 0.52 38 249
14 40% 87 609 10.9 0.54 50 324
15 50% 107 741 10.7 0.50 54 362

Table 8.13: Results of sequential updating of the static modes.

CG iterates from previous updates are available, and the relative “distance” to the previous
modified model is closer than to the nominal one, it is always beneficial to reuse the available
CG iterates.

8.6.2 Sequential Updating Applied to Vibration Modes

In this subsection sequential updating is applied to the vibration modes. To this end, first the
static modes are sequentially updated according to the above described procedure. A very
similar procedure is thereafter followed for the vibration modes, which is best summarized
by the overview in table 8.14.

Direct update Sequential update
Variants considered: 1 . . . 14 k = 2 . . . 15
Initial guess: Φ(0), Φ̄(1) Φ(k−1), Φ̄(k−1)
Preconditioning: K−1(0), (P(1), W(1)) K−1(0), (P(k−1), W(k−1)), (P(k), W(k))
Output: Φ(1) Φ(k)

Table 8.14: Summary of sequential updating procedure for vibration modes.

In this table Φ̄(1) denotes the sensitivity modes also used in section 8.4.2. Note that all calcu-
lations with the IFPKS algorithm are performed with blocksize 10, Krylov order 2, and the
use of difference vectors enabled. As before, the iteration tolerance is set to ε = 10−3 on the
residual.

Table 8.15 shows the results obtained from the sequential updating. Similar to the static
modes, the convergence of the IFPKS method is independent of the model size, such that
one set of results can be shown that is applicable to all three FE models. In column three of
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table 8.15 the number of iterations is listed for the direct updating with respect to the nominal
model. Since the block size and Krylov order are equal in both cases, it is irrelevant to also
specify the b× r×k number as in table 8.8. The number of iterations of the sequential update
is listed in column six. Like before, column four lists the relative δK value while column five
shows the relative CPU times between the direct and sequential update.

Variant/ With respect to nominal With respect to previous
Scaling # its. Rel. δK [%] Rel. CPU [–] # its.

1 0.5% 4 – – –
2 1% 4 0.5 0.78 3
3 2% 4 1.0 0.82 4
4 3% 6 1.0 0.70 4
5 4% 6 1.1 0.69 4
6 5% 7 1.1 0.77 5
7 7.5% 9 2.7 0.84 8
8 10% 10 2.7 0.79 7
9 12.5% 12 2.7 0.71 7
10 15% 12 2.7 0.72 8
11 20% 16 5.4 0.75 11
12 25% 16 5.4 0.75 11
13 30% 19 5.4 0.73 13
14 40% 23 10.9 0.73 16
15 50% 23 10.7 0.81 17

Table 8.15: Results of sequential updating of the vibration modes.

Again, from table 8.15 it can be seen that for all sequential modifications considered here it is
more efficient to perform the update with respect to the previous model than from the nom-
inal one. Given the findings from section 8.4.2 where more or less the same preconditioning
scheme was tested, this is again no surprise.

In contrast to the static modes however, it seems that for the vibration modes the relative
gain is independent of the magnitude of the design change. This could be due to the fact
that for large design changes the benefit of the increased convergence rate is partly offset by
the additional cost of the extended preconditioning. Since in the IFPKS scheme now both
the CG iterates P(1) and P(2) are used for preconditioning according to eq. (6.118), this can
become quite costly indeed.

Nonetheless, computation times can be reduced by about 30% for the cases tested here with-
out any additional computational effort. Hence, it is again concluded that when relevant
CG iterates are available from previous updates, it is always advisable to apply these in the
extended preconditioning scheme to increase the convergence rate.

8.7 Effectiveness of Different Reduction Bases

Up to now the focus has been on the computational efficiency of the updating method. In
order to illustrate the use of the method, this section compares reduced models of a modified
bedframe obtained in several ways, namely:
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1. Application of the nominal Craig-Bampton reduction basis to the modified compo-
nent model.

2. Recomputation of the complete Craig-Bampton basis for the modified component.

3. Enrichment of the nominal Craig-Bampton basis by the modal sensitivity vectors in-
troduced in section 6.3.4.3, leading to the Enriched Craig-Bampton (ECB) method
[133]. The static modes are not updated.

4. Updating of the Craig-Bampton reduction basis using the strategy outlined in this
work, with the same tolerances as used in the two previous sections namely ε = 10−6

for the static modes and ε = 10−3 for the vibration modes.

5. Low tolerance updating of the Craig-Bampton reduction basis, with ε = 10−4 for the
static modes and ε = 5 ⋅ 10−2 for the vibration modes, and using the correction for the
rigid body modes as outlined in 6.2.4.3.

All reduced bedframe models consist of 78 DoF (48 static modes and 30 vibration modes)
except for the ECB reduced model, which due to the addition of the sensitivity modes has
108 DoF. The different reduced models are compared by computing their free interface eigen-
modes and frequencies and comparing these to the exact solutions obtained from the unre-
duced model of the modified structure. Since modes and frequencies are compared, the
results are independent of the FE mesh size. The results are shown in figure 8.10 where the
relative frequency error and 1-MAC value are compared.

Since the model is free-floating, the first six eigensolutions should be rigid body modes at
(approximately) 0 Hz. However, as explained in section 6.2.4.3, inaccuracies in the static
modes can cause the rigid body modes to shift to higher frequencies. Therefore, the fre-
quencies of the first six modes in fig. 8.10 are normalized by the first true flexible frequency.
For modes 7 and higher the difference between the full and reduced model frequency is plot-
ted, normalized by the corresponding full model frequency. Furthermore, the MAC values
for the rigid body modes are not compared, as they can be any linear combination. From
figure 8.10 a number of observations can be made:

• Both the nominal CB and ECB bases are unable to properly describe the rotational
rigid body modes (modes 4 to 6) of the modified reduced model, even for a small
design change of 1%. This severely handicaps the use of these models in an assembled
model, as rigid motions already cause reaction forces to neighboring components. This
is due to the fact that the static modes are not updated.

• Sufficient accuracy of the static modes is also important to properly represent the first
few flexible modes. To accurately predict the higher modes, it is already sufficient to
have an approximation of the fixed interface modes in the basis. This can be achieved
by adding sensitivity modes to the basis, but even taking only the nominal modes as
an approximation gives reasonable results as long as the design change remains small.
Obviously, for larger changes these approximations deteriorate, leading to relatively
large errors in the frequencies and mode shapes. This can be seen from the results for
the scaling of 15%.
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Figure 8.10: Frequency (a,c) and mode shape (b,d) errors for different reduction bases applied to the
modified models.

• The updated basis shows only slightly less accurate results for the rigid body modes
than the true recomputed CB basis, which is due to the CG algorithm tolerance of
10−6 whereas the recomputed static modes are solved to numerical precision. This
effect is however negligible and as expected, all higher modes are predicted with the
same accuracy as the recomputed CB basis.

• The same holds when the reduction basis is updated to a low tolerance. Due to the
rigid body mode correction, the rigid body modes are even represented with the same
accuracy as with the recomputed basis. Furthermore, the low tolerance updated vi-
bration modes are sufficiently accurate to account for the dynamics of the modified
component.

This comparison shows that even though the reduction basis is updated to a lower tolerance,
the accuracy of the reduced model is preserved. Hence, updating the reduction basis ingre-
dients with high accuracy is irrelevant when the approximation made by the reduction itself
is not very accurate.

Finally, note that as a result of the lower tolerance settings, the efficiency of the total updating
procedure is further improved. This is illustrated for case 1 in figure 8.11. Table 8.16 finally
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Figure 8.11: Relative CPU time versus intensity of design modification for low tolerance basis updat-
ing.

lists the CPU times associated to the low tolerance updating for the three realistic cases dis-
cussed before. This shows that when the updating is performed using the low tolerances
mentioned before, design changes up to over 30% can be efficiently handled for the fine FE
model. For the three typical cases, the updating method performs up to three times faster
than recomputation.

Mesh Case CPU recomputation [s] CPU updating [s] Relative
Static Vibration Static Vibration CPU [–]

Coarse
Case 1 – 5%

15 40
15 25 0.73

Case 2 – 5% 14 24 0.69
Case 3 – mb 6 25 0.56

Normal
Case 1 – 5%

61 100
39 58 0.60

Case 2 – 5% 39 63 0.63
Case 3 – mb 15 57 0.45

Fine
Case 1 – 5%

293 282
104 148 0.44

Case 2 – 5% 104 144 0.43
Case 3 – mb 39 148 0.33

Table 8.16: Efficiency of low tolerance basis updating vs. recomputation for three realistic cases.

8.8 Summary

An often seen approach in wind turbine engineering is to develop new wind turbine models
by incrementally upgrading existing designs, for instance by increasing the rotor diameter or
upgrading the rated generator output. This new turbine configuration requires all relevant
components to be checked for their load bearing capacities, and their designs to be modified
where needed. Often small design changes are made to these components in order to arrive
at a reliable upgraded turbine design.

As explained in chapter 6, this approach is undermining the efficiency of using reduced com-
ponent models in a practical design setting. For each design modification, a new reduction
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basis needs to be computed for the component which, especially for large FE models, is com-
putationally expensive. Methods were therefore developed in chapter 6 that allow to iterative
update the component reduction basis in order to avoid expensive recomputation.

In this chapter a case study was carried out on a representative structure to test the perfor-
mance of the proposed updating methods. To this end, the situation is sketched where a
wind turbine bedframe is subjected to a range of parametric modifications. In section 8.2,
three finite element models of the bedframe were created with respectively 125k, 250k and
500k DoF. Two cases of global design modifications were defined by scaling the bedframe
in the length and width/height dimensions, each with 15 different scaling factors ranging
from 0.5% to 50% stretching. A third case was defined where the material properties of the
bedframe were locally changed from steel to aluminium.

Section 8.3 thereafter considered the updating of the static modes for each of the modified
bedframe models using the conjugate gradient based updating algorithms of section 6.2. It
was shown that the CG method was capable of efficiently updating the static modes; espe-
cially for the large FE model and small to moderate design changes the updating of the static
modes was a factor of 2-3 faster than recomputation. Similarly, in section 8.4 the vibration
modes were updated using the IFPKS method from section 6.3. It was shown that the IFPKS
algorithm is capable of efficiently updating the vibration modes, although in contrast to the
static modes, its efficiency with respect to recomputation is independent of the model size.
Furthermore, the extended preconditioning and enhanced initial guess methods proposed
in section 6.3.4 proved to significantly speed up the analysis.

The case were multiple design changes are applied sequentially was treated in section 8.6.
There it was shown that as long as the current modification is closer to the previous one than
to the nominal model, it is very beneficial to extend the preconditioning with the available
CG iterates.

Finally, in section 8.7 the accuracy of the updated reduction bases was investigated. Regard-
less of the design modification, the accuracy of the models reduced with the updated static
modes proved to be on par with the accuracy obtained when the modes are recomputed
from scratch. In fact, the iteration tolerance could be lowered without noticeably affecting
the reduced model’s accuracy, thereby further improving the computational efficiency. It can
therefore be concluded that the proposed basis updating methods form an attractive alter-
native to both recomputation and existing approximation methods.
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9
Optimal Reduced Models of an Offshore

Wind Turbine

9.1 Introduction

9.1.1 Offshore Wind Energy

Ever since wind turbines are installed for commercial purposes, developers are searching for
sites that maximize the energy harvested from their wind farms. With attractive onshore
locations in Europe running out, the wind industry turned its attention to offshore sites. In
addition to more favorable wind conditions (higher average speeds, lower turbulence lev-
els), this trend of going offshore mitigates some of the often heard objections against wind
energy, namely the acoustic and visual nuisance. Furthermore, size constraints are often less
stringent when installing turbines offshore, allowing even larger turbines to be developed.
Over the last decade, the offshore installed wind energy capacity has increased exponentially
and many more offshore wind farms are currently planned or under construction. This is re-
flected by the data in table 1.1 and figure 9.1.
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Figure 9.1: Development of installed offshore wind power capacity in Europe, source EWEA [62].

However, as was discussed in chapter 1, electricity generated from offshore wind is still too
expensive to be competitive with conventional sources in unsubsidized markets. The wind
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energy industry is therefore working hard to achieve further cost reduction. One of the ways
the industry has successfully achieved this for onshore wind energy is by scaling up the wind
turbine size, as a large portion of the cost is more or less independent of the turbine size (e.g.
costs of foundation, grid connection, installation). The same trend is now seen for offshore
wind farms, where turbines with power ratings of six megawatts are expected to soon domi-
nate the market. Because of size constraints on land, most of these next-generation machines
are exclusively developed for offshore applications. In order to maximize the electricity pro-
duction of these huge machines, developers are gradually moving towards sites farther off-
shore. Here average wind speeds are generally higher, but so are the water depths. Indeed,
the average water depth for offshore installed wind turbines has increased from 11.8 meters
in 2009 to 22.8 meters in 2011 (see [62]).

These trends have some profound implications for the foundations on which offshore wind
turbines are installed. Before going into details, first the following terminology is defined, as
(partly) adopted from [205]:

• Wind turbine generator (WTG) refers to the rotor-nacelle-assembly (RNA) and tower
• The foundation is the “underwater” structure including transition piece (if applicable)
• The support structure is the combined foundation and tower

Hence the complete offshore wind turbine (OWT) is either the assembly of WTG and foun-
dation, or the combination of RNA and support structure. Note that the latter perspective
allows a clear split between a standard, large scale produced RNA and a custom engineered
support structure that is optimized to suit the local conditions. This split offers an important
way to cut costs of offshore support structures by designing them in an integrated manner,
as was demonstrated in [197, 86].

Up to now, by far the most popular type of offshore foundation has been the monopile due
to its simplicity and robustness; at present 75% of all European offshore turbines are installed
on this type of structure. An additional 21% employs a gravity based foundation while the
remaining turbines are installed on more complex foundation structures [62]. These differ-
ent types of foundations are illustrated in figure 9.2. However, the tendency of installing ever
larger wind turbines in increasingly deeper water renders monopiles less and less attractive,
since a disproportional amount of material is needed to withstand the more severe load-
ing and fulfill the eigenfrequency requirements. More complex types of foundations then
become economically attractive, with jacket structures currently as the most promising op-
tion. Next the ramifications of these trends for the engineering of offshore wind turbines,
and more specifically for the required structural dynamic analysis, will be outlined.

9.1.2 Dynamic Analysis of Offshore Wind Turbines

Since the environmental conditions (water depth, soil properties) and ambient excitations
(aero- and hydrodynamic loading) vary greatly across different offshore sites, each offshore
wind farm is custom engineered. This means that a standard RNA is combined with a specif-
ically designed support structure. An important part of the engineering process is to per-
form dynamic simulations to assess whether the support structure can withstand the loads
during its specified lifetime. For certification purposes, thousands of load cases need to be
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Monopile Gravity based Tripod Jacket Floating

Figure 9.2: Different foundation types for (from left to right) increasing water depths.

evaluated. As was explained in section 1.3, aero-elastic codes have been developed to effi-
ciently perform these dynamic simulations. These codes are designed to analyze the global
dynamics of a wind turbine, taking into account aerodynamic loads and coupling, the wind
turbine controller and hydrodynamic loads. Given the number of load cases that need to be
run, these models must be as coarse as possible to keep the computation times at an accept-
able level. Such aero-elastic models typically consist of 300-400 degrees of freedom (DoF),
including the tower.1

As explained above, the offshore wind industry is gradually moving from monopile founda-
tions to deeper water solutions such as jackets. Also, integrated design methodologies are
being explored to obtain more optimized support structure designs. However, a jacket type
of foundation is considerably more complex then a monopile and so is its dynamic behavior.
Consequently, a more detailed model is needed to predict these dynamics. Where a monopile
can typically be represented with a few beam elements leading to a model of at maximum
50 DoF, a jacket structural model easily consists of more than 1000 DoF. Needless to say,
this negatively impacts the computation times of the dynamic simulations. Simplifying or
even neglecting the jacket dynamics cannot be done in general since dynamic coupling can
occur between the jacket, tower and RNA [183, 180]. Fully coupled dynamic simulations of
the integrated system are therefore essential.

Therefore, the goal of this chapter is to create “optimal” reduced models for the combined
RNA and complex support structure. These models are “optimal” in terms of their size (num-
ber of DoF) in relation to their accuracy. To this end, this chapter employs the error estima-
tion and adaptive reduction methods of chapter 5, as well as the modal truncation augmen-
tation method treated in section 2.7 to create compact yet accurate models of the offshore
wind turbine.

1This holds true for finite element (FE) based codes (such as HAWC2 and BHawC); modal based codes (e.g.
Flex5 and FAST) usually have much less DoF, typically in the order of 30-50.



214 ∣ Chapter 9 – Optimal Reduced Models of an Offshore Wind Turbine

9.1.3 Chapter Outline

This chapter is organized as follows. First, section 9.2 describes the reference offshore wind
turbine model used throughout this chapter: the NREL 5 megawatt RNA on the OC4 sup-
port structure consisting of a jacket foundation and tubular tower. Furthermore, section 9.2
describes the hydrodynamic loading that will be applied to the model. Thereafter, the OWT
model will be adaptively reduced in section 9.3 according to several criteria using the error
estimation techniques of chapter 5. In section 9.4 the reduced model of the jacket foundation
is subsequently augmented using the MTA method of section 2.7, to improve its response to
hydrodynamic loading. Several load cases are analyzed and the results obtained from the
optimal reduced model are compared to results from other reduced models. A summary
concludes the chapter in section 9.5. Note that this chapter is based on the work reported in
[142, 143, 216] and, in addition to the aforementioned chapters and sections, employs differ-
ent methods treated in chapters 2, 3 and 4.

9.2 System Description

In order to test the effectiveness of the modeling methods, a model of an offshore wind tur-
bine is needed that is representative for the models used in the aero-elastic codes. Therefore,
use is made of a reference model described in the literature that consists of a 5 MW rotor-
nacelle assembly on a tubular tower and jacket offshore foundation. Note that for practical
reasons here the model is separated in a WTG (i.e. RNA and tower, hereafter simply referred
to as “wind turbine”) and foundation. However, the discussion is equally valid in case the
split would be made between the RNA and support structure (i.e. foundation and tower).

The wind turbine model is based on the reference design created by the National Renew-
able Energy Laboratory (NREL) in the United States. This design, known as the “NREL 5
MW baseline wind turbine”, is a 5 MW wind turbine of the conventional horizontal axis,
three-bladed, upwind type on a tubular tower. Its detailed specifications can be found in
[108]. The wind turbine is supported by the jacket structure initially designed for the Up-
Wind project and subsequently used in the Offshore Code Comparison Collaboration Con-
tinuation (OC4). Details of this jacket structure can be found in [221]. Therein also some
modifications are given for the NREL turbine model which are also taken into account in the
subsequent model description. Next the modeling of the wind turbine and jacket foundation
will be discussed in more detail, as well as the hydrodynamic loading it is subjected to.

9.2.1 Implementation of NREL 5 MW Baseline Wind Turbine

The NREL wind turbine consists of a standard tubular tower, a nacelle, hub and three blades,
where the latter three form the RNA. Figure 9.3 (a) indicates the main dimensions. Since the
RNA and tower will be reduced separately in the next section, they are considered as two
individual components. In this work these components are modeled as follows:

Tower A conical tower is created according to the specifications given in [221]. The tower is
68 meters in height, with a base diameter of 5.6 meter and top diameter of 4.0 meter,
and is modeled using 8 three-dimensional linear Euler-Bernouilli beam elements. The
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tower has two 6 DoF interfaces, one at the bottom (tower bottom), which will be con-
nected to the jacket structure and one at the top (tower top) which will be connected
to the nacelle.

RNA – Nacelle The nacelle is modeled as a single stiff and massless element with on one
end a point mass representing the nacelle’s mass (240000 kg) and inertia, and on the
other a 6 DoF interface which connects to the tower top. The large stiffness and low
mass of the element are created using a high Young’s modulus and a low density value.
The parallel axis theorem was used to calculate the moments of inertia around its local
axes. By modeling the nacelle in this way, the drivetrain dynamics are neglected and
the rotor is implicitly assumed to be parked. Such a simplified model is justified by
the fact that here the main interest lies in the influence of the support structure on the
overall dynamics.

RNA – Hub Similar to the nacelle, the hub is modeled as a single stiff and massless element.
The hub has a virtual distance of 1.5 meters between its center and the connection to
the blades. The hub’s mass (56780 kg) is added as a point mass at one end of the element
together with its moments of inertia. The element has two 6 DoF interfaces, one end
connects to the tower top, the other to the three blades.

RNA – Blades The blades are 61.5 meters in length and each has a mass of 17740 kg. They
are modeled using 13 three-dimensional linear Euler-Bernouilli beam elements. Again,
since here the influence of the support structure on the overall dynamics is investigated
and no aerodynamic loads will be applied to the rotor, a linear model for the blades
is deemed sufficiently accurate. A root-element, located at the base of each blade, is
modeled as a 1.5 meter long stiff and massless element to account for the virtual dis-
tance to the hub center. The root-element has a 6 DoF interface which connects to the
hub element.

The tower and RNA component models are created in Matlab using the DS Toolbox (see
appendix A); their numbers of DoF and elements as well as those of the assembled wind
turbine model are listed in table 9.1.

Part No. of DoF No. of elements
Rotor nacelle assembly 252 41
Tower 54 8
Assembled wind turbine 300 49

Table 9.1: Properties of RNA and tower component models and assembled wind turbine model.

Finally damping is added to the assembled wind turbine model such that, when fixed at
tower bottom, the lowest 100 modes have a modal damping ratio of 2% (or approximately
12.5% logarithmic decrement). This is done to account for the structural and aero-dynamic
damping (in a vary rough way), as well as to ensure numerical stability of the time simulations
performed in section 9.4. The damping is implemented by computing the corresponding
undamped eigensolutions and synthesizing the damping matrix using the eigenfrequencies,
mode shapes and desired damping ratios (see e.g. [44]).
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Figure 9.3: RNA of the NREL 5 MW baseline turbine (a) and model of the OC4 jacket (b).

9.2.2 Implementation of OC4 Jacket Foundation

The jacket foundation used in the OC4 project, hereafter called the OC4 jacket, consists of
four main legs which are interconnected via four levels of cross-braces, see figure 9.3 (b). The
jacket is designed for water depths of 50 meters and has a height of 68 meters. Based on the
information in [221], the various parts of the jacket are modeled as follows:

Structure The main jacket structure, i.e. the four legs and cross-braces, is modeled in AN-
SYS using linear beam elements. Their properties are defined according to the speci-
fications given in [221].

Seabed connection As was described in [221], the stiffness of the connection to the seabed
is assumed to be high and is therefore modeled as rigidly clamped; this excludes any
soil effects from the model. Furthermore, the grouted connection between the main
legs and soil piles is also modeled rigidly, leaving only the bottom 0.5 meters flexible.

Transition piece The connection between the turbine and jacket is realized using a concrete
transition piece with a mass of 666 ton; its inertia was calculated using this mass and
the specified dimensions. This transition piece rigidly connects the top elements of the
jacket structure. The interface to the tower bottom is realized by a 6 DoF coupling.

Added mass A number of factors are described in [221] that add to the mass of the jacket
structure, thereby influencing its dynamic behavior. These are the marine growth
on the structure, the water contained in the free-flooded legs and the hydrodynamic
mass felt from the surrounding water when the jacket structure vibrates. These added
masses are calculated as nodal point masses (with directional properties) using the
ASAS software package, which is an extension of ANSYS specialized for offshore and
maritime applications. These masses are thereafter added to the structural model in
ANSYS.

After completing the jacket model in ANSYS, it is exported to Matlab using the FEMLink
toolbox (see [17]) for reduction and further calculations using the DS Toolbox (see appendix
A). The total jacket model consists of 229 linear beam elements and 1014 DoF. A plot is shown
in figure 9.3 (b), where the point masses representing the added mass are shown as dots.
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Finally, as defined in [221], damping is added to the model such that the first 100 modes
have a damping ratio of 1% (or approximately 6% logarithmic decrement). This accounts for
hydrodynamic and soil damping and is implemented in the same manner as described for
the wind turbine model.

9.2.3 Verification of the Offshore Wind Turbine Model

By assembly of the RNA, tower and jacket models the total model of the offshore wind turbine
is obtained, which consists of 1308 DoF. In order to verify the correctness of the implemen-
tation of the numerical model some checks are performed, namely:

Masses A straightforward but important check is to compare the mass contained in the
models. An overview of the masses of the models created here is given in table 9.2,
along with (averaged) results reported by the OC4 participants [220]. It can be seen
that the mass of the turbine model is in good agreement up to the level of accuracy
available from the reported OC4 results. The same holds for the mass of the transi-
tion piece and marine growth on the jacket, while minor differences are observed for
the structural, flooded water and hydrodynamic added mass. These are however well
below one percent and therefore considered to be within modeling tolerances.

Model Part Calculated mass [tons] OC4 mass [tons]

Turbine Rotor nacelle assembly 350 350
Tower 217 217

Jacket

Structure 676 675
Transition piece 666 666
Marine growth 180 180
Water mass flooded legs 205 204
Hydrodynamic added mass 672 675

Table 9.2: Mass comparison of turbine and jacket models.

Eigenfrequencies Preferably an eigenfrequency comparison should be performed on the
individual wind turbine and jacket models. Unfortunately, no such data was found in
the literature. Therefore a modal analysis was performed on the total OWT model; the
first ten damped eigensolutions are listed in table 9.3, the mode shape descriptions are
adopted from [220]. The results generally compare well to those reported by the OC4
participants (see [220]), but two remarks are in place. Firstly, since the drive-train is
not modeled explicitly here, the drive-train mode is absent. Secondly, the rotor is fixed
in the current simplified model of the nacelle. As a result the first side-side mode is
shifted to a lower frequency than the first fore-aft mode.

9.2.4 Hydrodynamic Loading

Since this chapter focusses on the modeling of the foundation structure, other influences
are excluded from this case study. Therefore, the numerical experiments in the coming sec-
tions are performed with only hydrodynamic forces applied to the jacket, while the rotor is
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Mode no. [-] Frequency [Hz] Damping ratio [%] Mode shape description
1 0.30 3.3 First global side-side
2 0.30 3.3 First global fore-aft
3 0.74 2.1 First asymmetric flapwise yaw
4 0.77 2.1 First asymmetric flapwise pitch
5 0.80 2.1 First flapwise collective
6 0.91 3.6 First edgewise collective
7 0.97 4.1 First asymmetric edgewise pitch
8 1.23 2.1 First asymmetric edgewise yaw
9 1.26 2.1 Second global fore-aft
10 1.29 2.6 Second global side-side

Table 9.3: First 10 eigensolutions of total model.

parked and no aerodynamic loads are applied. The hydrodynamic loads on the jacket sup-
port structure have been created in the ASAS software package. Based on a JONSWAP wave
spectrum2, four hydrodynamic load cases have been considered for different sea conditions,
namely:

Sea state description Wind speed Significant wave Mean wave Mean current
[m/s] height Hs [m] period Ts [s] speed [m/s]

Ripple waves 4 0.2 1.9 0
Low waves 12 0.8 3.4 0
Medium waves 25 2.7 6.2 0
High waves 25 3.8 7.2 0.5

Table 9.4: Properties of hydrodynamic load cases.

In the first three cases the current velocity is zero, so the hydrodynamic forces only originate
from waves colliding with the jacket structure. In the high waves case, there is a mean current
speed of approximately 0.5 m/s which varies slightly with depth. The wave model used in
ASAS assumes irregular linear waves; the forces on the jacket structure are calculated using
the Morison equation [138]. This equation contains quadratic coupling terms between the
structural and water velocities giving rise to hydroelasticity. In line with common practice in
the wind industry, here the hydroelastic effect is however assumed to be negligible and the
hydrodynamic loading is simply applied in an uncoupled fashion. Note that this assumption
is valid as long as the relative velocities remain low. Furthermore, the effect of marine growth
on the surface roughness is taken into account and the main direction of hydrodynamic
loading is in the negative x-direction.

For each sea condition a (quasi-)stochastic time series of 100 seconds is obtained with time
steps of 0.04 seconds, so 2500 samples in total. The time step is such that the highest fre-
quency that can be represented in the data is higher than the highest frequency present in
the signal. Figure 9.4 shows the normalized amplitude spectra of the different load cases

2JONSWAP is the abbreviation for the “Joint North Sea Wave Observation Project” carried out in the 1970’s
with the aim of developing wave spectra that can be applied in the engineering of offshore structures for the
North Sea [87].
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summed over all nodes in the x-direction, where the current (i.e. zero frequency) component
in the high wave case can clearly be seen. The importance of dynamic analysis is underlined
by the fact that the frequency content of the loading is in the range of the eigenfrequencies
of the total model, so modal excitation is likely to occur. This can lead to an energy build-
up in the system causing large displacements and high stresses, thereby reducing the fatigue
lifetime of the structure.
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Figure 9.4: Frequency spectra of different wave time series.

Next, the hydrodynamic load time series are analyzed using the proper orthogonal decom-
position (POD) method. With this method, that is explained in more detail in appendix D,
the most dominant information can be extracted from the time signals in terms of proper
orthogonal modes (POMs) and proper orthogonal values (POVs). The POMs describe the
dominant force shapes while the POVs indicate their relative energy content. Hence, the
POMs can be used to load the jacket structure, as will be done in the next section, and/or be
used to compute modal truncation augmentation vectors (see section 2.7), as will demon-
strated in section 9.4.

A POD analysis is performed on each of the four load cases in table 9.4. For each load case
the first five POMs capture more than 95% of the total energy in the signal, showing the effec-
tiveness of the POD method. However, a limitation of the POMs obtained in this way is that
they are based on a single load case. To obtain more general force vectors an extended time
series is therefore created by simply combining all four load series, from which generalized
force vectors can be obtained using again the POD method.3 The first five generalized POMs
proved to capture 92% of the total energy in this combined time signal. From a vector cor-
relation between the load case specific and generalized POMs using the MAC (see section
4.7.2) it can be seen that the generalized POMs show reasonable correlation with the POMs
of the low, medium and high wave cases, but a bad correlation to those of the ripple wave
case. See figure 9.5.

9.3 Adaptive Reduction Applied to Offshore Wind Turbine Model

Now the reference model is described, the next step is to apply model reduction. Indeed,
with over 1300 DoF the full model is far larger than the models typically used in the wind
industry and, given the number of load cases that need to be analyzed, ill-suited to perform

3To prevent the introduction of high frequencies in the combined data, a signal window was used to scale
the magnitude of the loads to zero at the transitions between time series. Furthermore, because the magnitude
of the force data varies for different wave types, a normalization step is taken by scaling the maximum occurring
value of the individual time series to unity.
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actual load simulations. In this section the OWT model will therefore be adaptively reduced
using the methods outlined in chapter 5. Hereby the aim is to create models that have optimal
accuracy, in terms of a specified quantity, with respect to their size.
In chapter 5 the theory of error estimation and adaptive model reduction was presented. Es-
timates were derived that conservatively approximate the error created by a reduced model,
both for local quantities of interest using goal oriented errors or in global terms using error
norms. These estimates can be used to answer the question “is the reduced model accurate
enough?”. A logical consequence when the answer to this question is “no” is to ask “which
component model(s) should be enriched to most efficiently improve the accuracy of the as-
sembled model?”. Indeed chapter 5 also showed that the error estimates not only provide
global accuracy information but also give the contributions of the local components. This
allows to pinpoint the component models that contribute most to the total error and select
them for refinement, thereby efficiently improving the global accuracy. In wind turbine en-
gineering this is important knowledge since one usually strives to obtain the most accurate
reduced model with the least amount of DoF.
For the purpose of this case study, the total OWT model is divided into three components:
the jacket foundation, the tower and the rotor-nacelle assembly (RNA). One could argue that
the RNA could be further separated into individual blade, hub and nacelle models to allow
more localized refinement of reduced component models. However, due to the simplicity of
both the nacelle and hub models and the fact that in practice only a single reduced model
for all three blades will be used, this separation is not made. The three component models
are connected (using primal assembly) by two 6 DoF interfaces, see figure 9.6. The jacket
structure and the RNA both have a single interface of 6 DoF which connects to the tower
bottom and tower top, respectively.
In the remainder of this section adaptive model reduction is applied to the OWT model for
four different cases, which are described in the next subsection. Subsections 9.3.2 to 9.3.5
thereafter present the results for the four respective cases.

9.3.1 Numerical Experiments

As was shown in section 5.8, many choices can be made when applying error estimation
and adaptive reduction techniques to practical problems, such as the type of problem to be
solved (harmonic, eigenproblem), the type of error estimate (global or goal oriented) and
the refinement scheme. A series numerical experiments were therefore conceived to test the
different aspects of these methods:



9.3 Adaptive Reduction Applied to Offshore Wind Turbine Model ∣ 221

Jacket

Tower

RNA

6 DoF
Interface

6 DoF
Interface

y

z

x

Figure 9.6: The three component models of the OWT model, connected through two interfaces.

• Test 1 – Global reduced model for harmonic excitation. In this test a reduced assembly
is created using a limited total number of DoF that are to be distributed in an optimal
way over the domains based on their contributions to the total error.

• Test 2 – Goal oriented reduced model for harmonic excitation. For this test a quantity
of interest is defined, for which a reduced assembled model is created such that the
goal oriented error falls below a chosen threshold.

• Test 3 – Global reduced model for eigensolution convergence. In this test two target
eigensolutions are chosen, for which a reduced assembled model is created such that
the estimated error on the target eigenfrequency satisfies a preset tolerance.

• Test 4 – Reduced jacket model for multiple criteria. Finally, this test considers the
refinement of only the jacket model, such that the assembled model has sufficient ac-
curacy. By simultaneous application of the various error estimates, a reduced model is
created that satisfies multiple criteria.

In line with the transformed model description introduced in section 5.3, the assembled
model consists of four domains: the internal domains of the jacket structure, tower and
RNA and a global interface domain. Furthermore, in all experiments the error estimates are
evaluated using the exact acceleration residual r̂ (see section 5.4).

In the first two experiments the assembled structure is excited by a harmonic force with a
single fixed excitation frequency acting on the jacket model. These force vectors are based on
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the POMs from the hydrodynamic load series as described in section 9.2.4, since they repre-
sent a force shape which captures a large portion of the total energy present in the external
excitation. A suitable excitation frequency for the POMs can be obtained by calculating the
POD from a singular value decomposition (SVD), as explained in appendix D. By doing so
the time modulation of the POMs is obtained, from which the most dominant frequency can
be selected for each POM by performing a Fourier analysis. This frequency can be used as
the POM’s excitation frequency, and is listed in table 9.5 for the first POM of each wave type.

Sea state/wave type Ripple Low Medium High Combined
Frequency of first POM [Hz] 1.53 0.29 0.16 0.15 0.14

Table 9.5: Frequency of first POM for different hydrodynamic loads.

9.3.2 Test 1 – Global Reduced Model for Harmonic Excitation

In this first test the aim is to create an optimal reduced model of the assembled OWT for
a given maximum number of DoF. An optimal model is searched for in terms of the global
energy norm of the error, while the model is subjected to harmonic excitation. To do so,
use is made of the error estimation method derived in section 5.4.2. In short, the following
settings were used for this test:

Type of problem: Harmonic
Excitation vector: Jacket domain loaded by first POM of combined wave load

case
Excitation frequency: 0.14 Hz
Type of error estimate: Global energy norm
Refinement scheme: Threshold refinement (alg. 5.3) with c = 1 and kadd = 2
Stopping criterion: Total model size of 60 DoF

Next different results obtained from this test will be analyzed. Firstly, it is investigated how
accurate the actual error estimated is through comparison with the exact error. The latter
is obtained by solving the full problem, which in this case is still very cheap for a single
load case, and computing the difference with the approximate solution. The result is shown
in figure 9.7 (a), where both the exact and estimated error are plotted during the adaptive
refinement of the OWT model. As a reminder, the exact error eK is computed as the left
hand side of eq. (5.51) while the estimated error e≤K is the corresponding right hand side.

As can be seen, the error estimate forms a proper upper bound of the exact error. When the
accuracy of the reduced model is still very poor it overestimates its error quite strongly, but
for more refined models the estimate is rather close to the actual error (within one order of
magnitude).

Secondly, the effect of adaptively refining the reduction basis is quantified. In this test re-
finement of the component models is performed using algorithm 5.3 with c = 1 and kadd = 2,
meaning that at each iteration only the most inaccurate domain is enriched by 2 modes. This
is continued until the total model size has reached 60 DoF. For the sake of comparison, the
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Figure 9.7: Test 1: Exact vs. estimated error (a) and adaptive vs. uniform refinement (b).

error estimate is also evaluated for the case where uniform refinement has been applied. That
is, each domain is enriched by one mode until the total model again has 60 DoF. The results
are shown in figure 9.7 (b). From this figure the benefit of adaptive refinement over uniform
refinement can be clearly seen: the energy norm of the error is approximately a factor four
times smaller for the adaptively reduced model. This is a significant difference that illustrates
the power of adaptive model reduction.
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Figure 9.8: Test 1: Domain sizes (a) and error contributions (a) during refinement.

Furthermore, figure 9.8 (a) shows the size of the different domains during adaptive refine-
ment; the corresponding the domain errors, expressed in terms of the domain indicators
m(s)K defined in eq. (5.52), can be seen in figure 9.8 (b). These plots show that in this case
the model of the jacket is most refined, followed by the interface. This makes sense since
only the jacket is subjected to external loading and hence shows localized deformation that
requires more modes to be properly described. The response of the tower and RNA is al-
ready properly captured by only including their first mode. Of course, when the adaptive
reduction would be continued these domains will at some point also be further refined, but
the error in the jacket is dominant at first.

9.3.3 Test 2 – Goal Oriented Reduced Model for Harmonic Excitation

The goal of the second test is to create a reduced model that is optimal with respect to a
certain quantity of interest, when subjected to harmonic loading. To this end the goal ori-
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ented error estimation technique from section 5.4.1 is applied. The problem statement can
be summarized as follows:

Type of problem: Harmonic
Excitation vector: Jacket domain loaded by first POM of high wave load case
Excitation frequency: 0.15 Hz
Type of error estimate: Goal oriented error
Quantity of interest: Displacements at two focus nodes on jacket (see fig. 9.3) and

at tip nodes of each blade, all weighted equally
Size of adjoint problem: Additional 10 modes per domain
Refinement scheme: Linear refinement (alg. 5.4) with kadd = 4
Stopping criterion: Estimated goal oriented error e≈Σ < 10−4

With the above settings the adaptive model reduction algorithm coverged after 20 iterations,
with a total model size of 79 DoF (due to round-off errors only 3 DoF were added in one
iteration). As for the previous test, it is first investigated how well the goal oriented error
estimate approximates the exact error. In the plot in figure 9.9 (a) the exact goal oriented
error eΣ is shown (as computed from eq. (5.25)), as well as an upper bound e≤Σ found by
summation of the absolute domain contributions (i.e. eq. (5.26)) and the approximate goal
oriented error e≈Σ (the right hand side of eq. (5.27)) found from approximately solving the
adjoint problem.

As expected, the summed error e≤Σ forms a true upper bound for the exact error. This more
or less also holds for the approximate goal oriented error e≈Σ, which only occasionally slightly
underestimates the exact error. The quality of this approximate error estimator obviously
depends on the accuracy with which the adjoint problem is solved; the more refined the
adjoint model the better the error estimate and vice versa. In this case an additional 10 modes
are used per domain, leading to a rather accurate adjoint model.
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Figure 9.9: Test 2: Comparison of exact and estimated goal oriented error (a) and adaptive vs. uni-
form model refinement (b).

Figure 9.9 (b) again shows the difference between adaptive and uniform refinement of the
component reduction bases. In this test refinement is performed using the scheme in alg.
5.4 with kadd = 4, such that at each iteration 4 additional modes are distributed linearly over
the domains according to their relative error contributions. Uniform refinement is again
achieved by sequently adding one mode to each domain until a total model size of 80 DoF
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is reached. For the goal oriented error and refinement strategy considered here, the benefit
of adaptive refinement is clear: at a model size of only 80 DoF, the adaptively reduced model
is a factor 10 more accurate in the quantities of interest then the uniformly refined model.

The sizes of the four domains during the refinement iterations is shown in figure 9.10 (a),
the respective error contributions are indicated in (b). The latter are expressed in terms of
the domain indicators m(s)J , see eq. (5.27). It can be seen that at first mainly the interface
domain is enriched, until it consists of the full 12 DoF and its error contribution drops to
(approximately) zero. This is caused by the fact that part of the quantities of interest are the
displacements at the interface between the jacket and tower. Furthermore, the interface is
crucial in transferring the response from the tower to the RNA, where the blade tip displace-
ments are also quantities of interest.

After the interface is fully refined, both the RNA and jacket domains are further enriched.
Especially the latter is heavily refined which, as in the previous test, is due to the localized
loading applied to the jacket as well as the fact that the displacements at one of the jacket
brace nodes are chosen as a quantity of interest.
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Figure 9.10: Test 2: Domain sizes (a) and error contributions (b) during refinement.

9.3.4 Test 3 – Global Reduced Model for Eigensolution Convergence

In this test adaptive model reduction is applied with the aim of converging to an eigensolu-
tion of the assembled system. Hence the error estimates for global eigensolutions, as derived
in section 5.6, are applied to the OWT model. The following settings are used in the adaptive
model reduction algorithm:

Type of problem: Eigenproblem
Type of error estimate: Eigenfrequency and eigenmode
Target eigensolution Global mode 5 and mode 10
Refinement scheme: Linear refinement (alg. 5.4) with kadd = 4
Stopping criterion: Estimated eigenfrequency error e≤ω < 10−3

Two reduced models are created for the global eigensolution convergence, using respectively
the fifth and tenth global mode as target eigensolution. As listed in table 9.3, the fifth global
eigenmode has a frequency of 0.80 Hz and is the first flapwise collective motion of the blades,
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Target eigensolution Jacket Tower RNA Interface Total no. DoF
ϕ5, ω5 @ 0.80 Hz 9 3 33 10 55
ϕ10, ω10 @ 1.29 Hz 84 8 62 10 164

Table 9.6: Distribution of DoF of adaptively reduced models for two target eigensolutions.
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Figure 9.11: Test 3: Domain sizes (a,c) and error contributions (b,d) during refinement iterations for
target eigensolutions 5 and 10.

also known as the coning mode; its motion is thus RNA-dominated. The tenth eigenmode,
with a frequency of 1.29 Hz, is the second global side-side mode and hence involves all do-
mains (jacket, tower, RNA and interfaces). Note that the stopping criterion is defined on the
(relative) estimated error on the eigenfrequency e≤ω; alternatively one can define a termina-
tion criterion based on the error estimate of the eigenmode, or a combination. Initially all
domains are reduced with 3 vibration modes, i.e. the total model initially has 12 generalized
DoF.

With the above settings and the fifth eigensolution as target, the adaptive algorithm con-
verged in 13 iterations leading to a model with 55 DoF. Selecting the tenth mode as target
eigensolution the algorithm needed 44 iterations to reach the required accuracy resulting in
a total model of 164 DoF. The distribution of the DoF across the different domains is listed in
table 9.6. As speculated above, with the fifth mode as target eigensolution the RNA is much
more refined than the other domains. Using the tenth mode as target indeed leads to fur-
ther refinement of all domains; for instance, 8 modes are now required for the tower domain
instead of the 3 modes that were sufficient to represent the fifth global mode. The evolution
of the domain sizes and error contributions during the refinement iterations are shown in
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Figure 9.12: Test 3: Comparison of exact and estimated error on eigenfrequency (a,c) and eigenmode
(b,d) for target eigensolutions 5 and 10.

the plots in figure 9.11 for both target eigensolution 5 and 10. As before, the domain error
contributions are expressed by the indicators m(s)K , see eq. (5.77).

Next, the error estimates are again compared to their exact counterparts, as shown in the
plots in figure 9.12 for the two different target eigensolutions considered here. For the eigen-
frequencies, the exact error eω as well as the estimated error e≤ω, as computed from eq. (5.77),
are shown in plots (a) and (c). Similarly, the exact and estimated errors for the eigenmodes
(respectively eϕ and e≤ϕ) are shown in plots (b) and (d), where the estimate is obtained from
eq. (5.85). From these plots it is shown that the estimates form an upper bound for the exact
errors.

Both error estimates however suffer from overestimation of the actual error, to a (much)
larger extent then the global and goal oriented error estimates for harmonic problems applied
in the two previous tests. This is especially true for the eigenfrequency error estimate, which
overestimates the error by almost two orders of magnitude for target eigensolution 5. With
increasing model size this overestimation seems to decrease as can be seen from the error
estimate for target eigensolution 10. As explained in section 5.6.2, this overestimation is
due to the fact that the estimate depends on the actual target eigenfrequency, see eq. (5.77),
which is approximated by the reduced model and hence is quite badly overestimated when
the model is coarse.

The error estimate on the eigenmode suffers from overestimation to a lesser extent, although
still up to one order of magnitude. This due to the definition of the stability factor in eq. (5.84)
used in the error estimate of eq. (5.85), which depends on the (exact) difference between the
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target eigenfrequency and its most closely spaced neighboring eigenfrequency. Again, this
stability factor is evaluated with the reduced model, leading to overestimation of the true
error.

Finally, in figure 9.13 the modal results for both reduced models are given. To this end the
eigensolutions of the reduced models are compared to those of the unreduced model in terms
of the relative frequency error and 1-MAC value. It is observed that, as expected, the more re-
fined model obtained with target eigensolution 10 gives better results over a wider frequency
range. However, at some modes of the global system the difference is less pronounced (e.g.
modes 16, 19 and 20). This is believed to be due to the localized deformations associated to
these modes, that are only captured reasonably well by the (fixed interface) vibration modes
used in the reduction bases of both models.
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Figure 9.13: Test 3: Errors on eigenfrequency (a) and eigenmodes (b) with respect to the full model.

9.3.5 Test 4 – Reduced Jacket Model for Multiple Criteria

In this final test of the error estimation methods, a situation is sketched that is quite com-
mon in wind turbine engineering. Namely, the situation when a new component model is
introduced to an existing (reduced) assembly. For this new component its level of enrich-
ment has to be determined such that a certain accuracy of the assembled model is achieved.
In practice this situation can be encountered for instance when adapting models of onshore
wind turbines for the simulation of offshore turbines, or when exchanging a simple monopile
foundation model for a complex foundation model such as a jacket structure.

To investigate the use of error estimation methods in this situation, this test is set up as
follows. The tower, RNA and interface domains remain unreduced, while the jacket domain
is initially reduced with a single fixed interface mode and subsequently refined by one mode
at a time. Since only one substructure is refined no refinement strategy is used. Multiple
criteria are defined to determine the level of refinement of the jacket model, using all the
error estimates applied in the previous tests:
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Eigenproblem
Target eigensolution: Global mode 1 @ 0.30 Hz (global side-side mode)
Criterion 1: Eigenfrequency error e≤ω < 10−4

Criterion 2: Eigenmode error e≤ϕ < 10−2

Harmonic problem
Excitation: First POM of combined wave load case @ 0.14 Hz
Goal quantity: Displacements at jacket-tower interface node
Adjoint problem: Additional 10 modes in jacket domain
Criterion 3: Energy norm of global error e≤K < 10−1

Criterion 4: Goal oriented error e≈Σ < 10−5

The motivation for criteria 1 and 2 is that the global side-side mode of an offshore wind tur-
bine, due to the lack of aerodynamic damping, is in practice very lightly damped in compar-
ison to the fore-aft mode. Vibrations in this mode hence contribute strongly to the fatigue
loads on the support structure, and are for instance excited by misaligned wind and wave
loading. Hence the model should be capable of accurately predicting this mode.

Criteria 3 and 4 are motivated by the fact that the jacket model should be able to properly
describe the deformations due to wave loading. Especially important in this respect is the
accuracy of the deformations (and loads) at the jacket-tower interface, since in practice these
are post-processed by the foundation designer for detailed design purposes. Hence these
deformations are chosen as the quantity of interest for the goal oriented error, for which also
quite a strict criterion is chosen.

The results for these four criteria are presented in figure 9.14. In total 24 iterations were
performed, such that the jacket domain contains 25 fixed interface vibration modes. It is
observed that the criteria on the eigenfrequency and goal oriented errors are most stringent,
both requiring approximately 20 DoF to reach the desired accuracy. Furthermore it is noted
that, as explained in section 6.3.1, the error on the eigenmode is approximately the square
root of the error on the corresponding frequency. Also note that whereas the three global er-
ror estimates (e≤ω, e≤ϕ and e≤K) monotonically decrease with increasing model size, the goal
oriented error e≤Σ does not improve when certain modes are added to the jacket reduction
basis (e.g. for modes 12-17).

In conclusion, a reduced model size of around 20 DoF for the jacket structure should provide
sufficient accuracy of the total offshore wind turbine model. In the next section, it will be
investigated how this model performs when it is used in the time simulation of the total
OWT model.

9.4 Modal Truncation Augmentation & Time Simulation

As described in the introduction to this chapter, an important part of the engineering effort
for an offshore wind turbine is constituted by the aero-elastic load simulations. In this section
the reduced model developed before will therefore be used to perform time simulations. To
resemble a realistic situation, this section continues on the situation sketched in test 4 of the
previous section, namely when an existing aero-elastic code is extended with the model of a
complex offshore support structure. To this end, the full model of the wind turbine will be
combined with a reduced foundation model.
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Figure 9.14: Test 4: Comparison of different error estimates during refinement of jacket structure.

Although in the previous section it was shown that the total model could be accurately de-
scribed when the jacket model is reduced using the Craig-Bampton method with 20 fixed
interface modes, this section addresses an often overlooked problem associated with such a
reduced model. Indeed, since the jacket foundation is subjected to hydrodynamic loading at
a large portion of its DoF, traditional reduction methods fail to properly describe the com-
ponent’s transient response to this excitation. Hence in this section the reduced model is
extended using the concept of modal truncation augmentation. This methods was described
in section 2.7 and consists in adding load dependent “residual vectors” to the reduction ba-
sis. In this it is aimed to combine the best of two worlds: the computational efficiency of
reduced component modeling on the one hand, with the accuracy and hydrodynamic load-
ing capabilities of unreduced coupling approaches (such as described in [110, 184]) on the
other hand.

This section is organized as follows. The next subsection treats the different reduced models
of the jacket foundation that will be assembled to the full wind turbine model. Thereafter,
section 9.4.2 will show the results of a modal comparison of these models, while subsection
9.4.3 will show a comparison of time simulation results. In all comparisons the unreduced
model will be the reference.

9.4.1 Reduced Models

In subsection 9.3.5 it was shown that when the jacket internal domain is reduced with 20
fixed interface modes, good accuracy of the assembled system is found. As discussed above,
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it will be shown in this section that for transient analyses with internal loading, the accuracy
might actually not be so good. Therefore, modal truncation augmentation vectors will be
added to the reduction basis to improve the transient response.
In order to make a fair comparison, the total jacket reduced model size will be kept constant
at 26 DoF, six of which are reserved for the static modes. Hence 20 DoF can be used for any
combination of vibration modes and force dependent MTAs. In section 2.7 it was shown that
MTA vectors can be based on force vectors arising from interface or external loading. Here
the focus lies on the latter, by creating MTAs based on the spatial force vectors obtained from
the time varying hydrodynamic load data using the POD method described in section 9.2.4.
Based on these POMs first and second order MTAs are created and added to the reduction
basis, yielding 10 MTAs in total. Since in total 20 DoF can be allocated, the reduced jacket
models including MTAs carry an additional 10 vibration modes.
Sometimes it is advocated in the wind industry to simply represent the jacket model as a 6
DoF equivalent mass and stiffness (see e.g. [185]), since a jacket structure is often regarded
as being a very stiff structure that is only participating quasi-statically in the global dynam-
ics. For the sake of comparison, the jacket model is therefore also reduced using constraint
modes only, resulting in a 6 DoF model. This is indeed a Guyan type of reduced component,
see section 2.5.1, where the internal dynamics are discarded.
All reduced jacket foundation models are assembled to the unreduced wind turbine model;
an overview of the created models is given in table 9.7. The last letter in the name of the
reduced models with MTAs indicates the load case on which the MTA vectors are based (r
= ripple, l = low, m = medium, h = high and c = combined).

Jacket Turbine Total model
Load case for MTA # Ψ c # Φi # ΦMi # DoF # DoF # DoF Name
- - - - 1014 300 1308 REF
- 6 - - 6 300 300 CB00
- 6 20 0 26 300 320 CB20
Ripple 6 10 10 26 300 320 CB10M10r
Low 6 10 10 26 300 320 CB10M10l
Medium 6 10 10 26 300 320 CB10M10m
High 6 10 10 26 300 320 CB10M10h
Combined 6 10 10 26 300 320 CB10M10c

Table 9.7: Overview of numerical models of baseline offshore turbine.

With the reduced models created, their accuracy with respect to the full model can be as-
sessed. This is done on the basis of the outcomes of both a modal and time response analysis,
the respective results are presented in the next two subsections.

9.4.2 Modal Comparison Results

The models listed in table 9.7 are subjected to a modal analysis and the solutions of the re-
duced models are compared to those of the full model. In figure 9.15 the results for all modes
up to 10 Hz are plotted, with the frequency values on the horizontal axis taken from the ref-
erence model. As before, the accuracy of the eigenfrequencies is expressed by relative the



232 ∣ Chapter 9 – Optimal Reduced Models of an Offshore Wind Turbine

relative frequency error with respect to the corresponding eigenfrequency of the full model,
while the accuracy of the mode shapes is expressed in terms of the 1-MAC value.
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Figure 9.15: Modal results of the reduced wind turbine models.

From figure 9.15 a number of observations can be made:

• Obviously, the addition of fixed interface vibration modes and/or MTA vectors greatly
improves the modal results compared to the Guyan reduced model (CB00). Indeed,
the CB00 model is only accurate up to approximately 2.5 Hz (i.e. the lowest 13 modes);
higher eigenfrequencies are at least 10% off and the associated modes become increas-
ingly inaccurate. In practice this is unacceptable, since excitation of the internal jacket
dynamics (i.e. modes of the system with predominant displacement of the jacket mem-
bers) in this frequency range cannot be predicted with the CB00 model, or in fact any
equivalent 6 DoF model.

• The modal results of all five models reduced with MTA vectors are very similar. For the
modes up to around 6 Hz (mode 32) the results on both the eigenmodes and eigenfre-
quencies are of similar quality as the CB20 model, hereafter however the CB20 model
produces better results as expected. Nevertheless, in practice a 5 MW offshore wind
turbine probably experiences little excitation at frequencies higher than 6 Hz. Fur-
thermore, the associated mode shapes are rather complex, so that modal excitation is
not very likely.
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• Very high accuracy is observed for three modes between 4 and 6 Hz for all models,
with the exception of the CB00 model. Upon inspection of these mode shapes it was
found that they show very localized deformation of the jacket structure which is ex-
actly represented by the fixed interface vibration modes. These modes are present in
all reduction bases (except the CB00 model) and thus explain the high correlation.

9.4.3 Time Integration Results

Next, the models are simulated in time in order to obtain the dynamic response of the off-
shore wind turbine to the hydrodynamic loads described in section 9.2.4. Due to the fact that
no aerodynamic forces are applied and the rotor is parked, the wind turbine model is linear.
Hence the linear Newmark time integration scheme is employed, which was described in
section 4.6.3. For the full model, this scheme took 11 seconds to perform the time integra-
tion with a length of 100 seconds and time step of 0.04 seconds. The reduced models all took
only around 4 seconds to integrate, so about a factor 3 faster. Given the fact that thousands
of 10 minute simulations need to be evaluated in practice of every wind farm, and usually a
time step of 0.02 seconds is required, the use of a reduced jacket model adds up to a serious
reduction of computational cost.

As was explained in section 4.7.4, comparing results obtained from time simulations is always
a difficult task and many techniques exist to do so. Here it was chosen to directly compare the
time series at the two focus nodes shown in black in figure 9.3. Focus node 1 is the interface
node at tower bottom, focus node 2 is one of the nodes in the lowest level of cross braces.
To limit the amount of information presented, only the displacements in x-direction (the
main loading direction) are shown for only the low and high wave load cases. Additionally,
to obtain a comparison on a global level, it was also chosen to show the total deformation
energy in the jacket structure over time. The time series are shown in figures 9.16 and 9.17 for
the low and high load cases, respectively. Some statistics are also listed, where the differences
are defined with respect to the reference solution. A few remarks can be made based on these
results:

• All displacements are in general comparatively small. This is due to a number of fac-
tors, namely: the very stiff and heavy jacket structure, the relatively low intensity of
the hydrodynamic loads and the absence of aerodynamic loading.

• For both load cases the displacements at the interface DoF (focus node 1) are accu-
rately predicted by all models, even the CB00 model. This is believed to be partly
due to the fact that the internal dynamics are not observed on the interface, and party
because of the “uncoupling” effect of the heavy transition piece and the absence of
aerodynamic loads on the turbine. Such good agreement for the CB00 model might
not be found when more dynamic interaction is taking place, for instance under other
loading conditions and for more optimized jacket designs.

• When considering the internal DoF (focus node 2) the picture looks totally different
and clear discrepancies can be observed between the models. For both load cases the
CB00 model underestimates the response by approximately 30 to 40 percent. Without
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further postprocessing in the form of a “retrieval run”4 this could lead to severe un-
derestimation of the loads/stresses in the structure. However, as was shown by recent
investigations [208], even when performing a retrieval run in a dynamic fashion, it
cannot be ensured that the correct internal jacket displacements are obtained.
The CB20 model on the other hand overestimates the response by some 10 percent. The
models containing MTA vectors finally, are able to very accurately follow the responses
of the full model.

• An indication of the global accuracy of the responses is given by the plots of the in-
stantaneous deformation energy in the system. It can be seen that the CB00 model
contains on average 30 to 40 percent less deformation energy, indicating that it is much
too stiff and deformations (and hence stresses) are underestimated. The CB20 system
already captures more of the deformation energy but still serious underestimation can
occur, up to 24% for the low wave case. This can greatly affect the calculated fatigue
loads in the structure and hence emphasizes the need for more accurate reduced mod-
els. Indeed, the energy plots show that the use of MTAs in the reduced jacket model
allows to predict the global deformations with very high accuracy, especially given the
compact size of the models.

• Another interesting observation is that the system with MTA vectors based on the
combined POMs (CB10M10c), yields results that are comparable to those when load
case specific MTAs are used (CB10M10m and CB10M10f). This justifies the approach
of obtaining POMs from combined load data to produce generalized MTAs and thus a
generalized reduced model, which greatly benefits the practical usability of the method.

From all results it can be concluded that the CB00 model is the least accurate, which was
to be expected since the jacket model is statically reduced to only 6 DoF. Given the large
discrepancies found when using this model, it is advisable to refrain from using such over-
simplified models in practice. The addition of both fixed interface vibration modes and MTA
vectors improve the results, but the best results for the forced transient response are by far
obtained by adding MTAs. Thereby it makes little difference whether they were obtained
from specific load cases or from more general load data.

9.5 Summary

Offshore wind energy has the potential to generate “green” electricity on a large scale and
has seen tremendous growth in installed capacity during the last decade. However, since en-
vironmental conditions vary greatly across offshore sites, the support structures for offshore
wind farms are custom engineered. This requires thousands of load cases to be evaluated
with aero-elastic codes, which use computationally efficient but geometrically coarse mod-
els. While monopiles long were the default choice of foundation type, the wind industry is
gradually moving towards more complex foundations such as jackets to cope with ever larger

4A retrieval run, as defined in [184, 185], amounts to the following. After the initial coupled dynamic sim-
ulation, internal forces and moments at the interface are extracted. These are subsequently applied to the
stand-alone jacket structure in a quasi-static or dynamic fashion, possibly combined with a prescribed inter-
face motion resulting from the initial coupled simulation. The internal jacket deformations are obtained from
this additional analysis. See references for details.
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Figure 9.16: Results for low waves load case.
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Figure 9.17: Results for high waves load case.
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turbines and greater water depths. Even the simplest models of such structures have many
more degrees of freedom (DoF) than the complete wind turbine models in use today, lead-
ing to excessive computation times. To overcome this, the current chapter outlined modeling
strategies to create “optimal” models of offshore wind turbines on complex foundations.

Firstly, a reference offshore wind turbine (OWT) model from the literature was described and
modeled in section 9.2. The model consisted of the NREL 5MW turbine placed on the OC4
jacket foundation structure. Using simple beam models, the wind turbine was modeled with
300 DoF while the jacket model consisted of over 1000 DoF, leading to an assembled model
of the total OWT with 1308 DoF. Furthermore, transient hydrodynamic loads were defined
for four different sea states. Using the POD method, the most dominant “load shapes” and
frequencies were extracted from this loading.

Thereafter, this model was subjected to adaptive model reduction in section 9.3. Using the
error estimation and adaptive refinement methods from chapter 5, optimal models were cre-
ated for four different combinations of problem types (harmonic, modal) and quantities of
interest (local, global). The error estimates proved to be true upper bounds of the exact er-
rors, although at some occasions the error was quite strongly overestimated. Nonetheless,
in all cases the benefit of adaptive reduction could be clearly observed, leading to reduced
models with up to ten times higher accuracy with respect to a uniformly reduced model of
the same size. In the fourth test it was established that reducing the jacket model with 20 vi-
bration modes, while leaving the wind turbine model unreduced, should give good accuracy
of the combined system.

However, in section 9.4 it was shown that not so good accuracy was found when using this
model for transient simulations with the jacket subjected to hydrodynamic loading. Since
in this case the jacket is subjected to loading at a large portion of its DoF, traditional reduc-
tion methods fail to properly describe the transient response. Therefore the MTA method of
section 2.7 was used to add load dependent MTA vectors to the reduction basis, which were
computed using the dominant load shapes obtained from the POD analysis. For a fair com-
parison, 10 MTAs were used to replace an equal amount of vibration modes. As expected,
the reduced models with MTAs in their bases perform not as good as the original 20 DoF
reduced model in a modal comparison. However, their accuracy in transient analyses was
orders of magnitude better, which is most important in the wind engineering practice.

In conclusion, this chapter illustrated the use of adaptive model reduction and modal trun-
cation augmentation. It was shown that when combined, these methods provide a powerful
way of obtaining very compact as well as accurate dynamic models, enabling efficient inte-
grated simulation of offshore wind turbines.
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10
Conclusions & Recommendations

If you follow reason far enough
it always leads to conclusions that are contrary to reason.

(Samuel Butler)

10.1 Conclusions

To ensure a leading role in a future sustainable energy supply, the cost of wind energy must
be further reduced. A prerequisite for further driving down these costs is thorough insight in
the structural dynamic behavior of wind turbines. Current dynamic analysis methods used
in the wind industry, based on aero-elastic simulations and static finite element analysis,
have some serious shortcomings when it comes to integrated and detailed dynamic analysis.
In this thesis it was therefore proposed to fill this need for a new dynamic analysis tool using
the paradigm of dynamic substructuring. As a result, the objective of this thesis was defined
in chapter 1 as:

“Develop a practical modeling framework based on the concept of dynamic sub-
structuring that enables detailed, integrated structural dynamic analysis of wind
turbines without compromising on computational efficiency.”

In this thesis, the methodology of dynamic substructuring has proven to enable detailed
dynamic analysis while providing versatility through the use of generalized model assembly
techniques. With the concepts of model reduction, interface reduction, error estimation and
basis updating the computational efficiency of the approach has been maximized. Through
realistic case studies it was demonstrated that by combining all these methods, a valuable
modeling framework has been developed for use in the wind turbine engineering practice.
It can therefore be concluded that the goal of this PhD project has been achieved. To moti-
vate this overall conclusion, next more detailed conclusions will be drawn for the three main
topics addressed in this work, namely component model reduction and assembly, error es-
timation and reduction basis updating.
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10.1.1 Conclusions on Component Model Reduction & Assembly

In part I of this thesis it was shown that existing component model reduction techniques
can be written in a common notation framework. This allowed to derive a new component
reduction technique, called the Mixed Craig-Bampton (MCB) method. It was shown that
this method is a natural generalization of the existing CB and DCB methods and overcomes
the issue of choosing fixed or free interface vibration modes in the reduction basis. The
augmentation of the reduction basis with excitation-dependent MTA vectors was also ad-
dressed. Additionally, a general framework was developed for the assembly of component
models. Again, this framework is a generalization of existing assembly techniques and allows
to combine reduced component models with different interface representations. Further-
more, this framework was extended with methods to incorporate interface physics (stiffness
and inertia) and handle non-conforming interface meshes. Hence two conclusions can be
drawn from the theoretical contributions on the topics of model reduction and assembly:
with the MCB method component models can be created in a systematic and possibly auto-
mated way, while the assembly framework allows all types of reduced models to be treated
as “superelements”, such that they can be created truly independently thereby enhancing the
modularity of the DS methodology.

The application of these methods in wind turbine engineering was treated in part II, chapter
7, by modeling the yaw system of a Siemens 2.3 megawatt wind turbine. Starting from their
CAD models, reduced component models were created and assembled to obtain detailed
dynamic models of the yaw system. The models were partly validated with measurements.
Furthermore, interface reduction was applied to obtain truly compact models (a factor 300-
400 smaller than the original model), which proved to accurately describe the dynamics
of the full system (less than 1% error on the frequencies and mode shapes up to mode 80).
Especially the MCB reduced model showed very good accuracy. As such, these models might
be used directly in aero-elastic simulations for specific load cases or could serve as a reference
for tuning a more simplified yaw system model. Either way, the models are helpful in gaining
more insight in the yaw system’s dynamic behavior and its role in the global wind turbine
dynamics. From this result it can be concluded that (interface) reduction methods provide
a powerful way of obtaining compact dynamic models, that are useful in the wind turbine
engineering practice.

10.1.2 Conclusions on Error Estimation

Error estimation methods were translated to and derived in an algebraic setting in chapter 5.
The benefits of these methods are twofold: they allow to estimate the accuracy of a reduced
model without the (expensive) evaluation of the full problem, as well as provide insight in the
contribution of the different components to the total error. The latter information allows to
adaptively obtain an optimal reduced model. In conclusion, the theory of error estimation is
a valuable tool in the creation of reduced models, especially when the associated full models
are very large.

To illustrate the use of these methods in the wind turbine engineering practice, the model-
ing of an offshore wind turbine on a complex support structure was considered in chapter
9. This application is especially important in view of the industry trend of installing ever
larger turbines in ever deeper waters. From the application of error estimation techniques
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the potential of adaptive model reduction was shown. Compared to uniformly reduced mod-
els of the same size, adaptive reduction led to models with up to ten times higher accu-
racy for the selected properties. Additionally, augmentation of reduction bases with load
dependent vectors was shown to be crucial to improve the model’s response to external (hy-
drodynamic) loading. Results from modal and time domain simulations showed that it is
paramount to properly model the coupled dynamic behavior for OWTs on complex founda-
tions, with orders of magnitude higher accuracy compared to equally-sized non-augmented
models. Therefore it can be concluded that augmented reduced models are essential for load
simulations of wind turbines on for instance jacket foundations, while error estimation and
adaptive reduction help to keep the model size to a minimum.

10.1.3 Conclusions on Reduction Basis Updating

To conclude part I, techniques were developed in chapter 6 for the efficient updating of re-
duction bases of components subjected to parametric design modifications. It was shown
how iterative preconditioned methods may be employed to reuse the available information
from the nominal model to efficiently obtain the reduction basis for the modified compo-
nent. Especially in the case of small, incremental design changes the proposed methods offer
an efficient alternative to recomputation of the reduced model. Hence it can be concluded
that these methods enable the use of reduced models in practical design settings or opti-
mization loops where components are subjected to slight modifications.

In order to demonstrate the application of these methods in wind turbine engineering, a
common approach in turbine design was followed in chapter 8. Here the incremental im-
provement of component designs was considered; more specifically, the bedframe struc-
ture of the Siemens wind turbine was subjected to parametric design modifications. From
comparisons with recomputation and other reanalysis techniques it was established that the
reduced bedframe model could be efficiently updated, even up to reasonably large modifi-
cations. For typical design changes a gain in computation time of up to a factor three was
found. This proved that reduced component models may be efficiently used in wind turbine
design processes.

10.2 Recommendations

Although the main aspects of dynamic substructuring and its application in wind turbine
engineering have been covered in this thesis, there is always room for further research. In
this section some recommendations will be given as to the focus of future efforts in these
areas. This will be done separately for the theoretical and application parts. Regarding the
theoretical topics, recommendations for future work are:

• Further develop the efficient use of reduced models in a floating frame of reference
(FFR) formulation, to enable simulation of reduced models undergoing large motions.
For wind turbines, this is for instance relevant when simulating operational load cases
using reduced models of the rotor or drivetrain. For details see the discussion and
references in section 2.5.5. In the context of this project a preliminary study was per-
formed, investigating possible simplifications of the FFR theory to speed up the cal-



244 ∣ Chapter 10 – Conclusions & Recommendations

culations while maintaining accuracy. This showed promising results, but remains to
be further worked out and implemented.

• Damping in reduced models. In this work damping of component models has not be
considered, although most methods are also valid for lightly damped structures with
modal or Rayleigh damping. However, these types of damping are known to be very
simplistic representations of real life sources of structural dissipation. Further research
is thus required to incorporate more realistic damping models in reduced components
(see also discussion and references in section 2.5.5).

• A priori interface reduction. To enable a truly modular “building block” approach,
it would be desirable to perform interface reduction in an a priori fashion on sub-
structure level. The issue with such ideas is that one needs to determine the inter-
face reduction basis without knowing anything from neighboring components. One
therefore encounters the problem of incompatible interface representations, such that
the requiring only discrete interface compatibility can result in significant errors. To
overcome this problem one will have to resort to more sophisticated Mortar-type of
methods.

• Development of error estimates for the Dual Craig-Bampton and Mixed Craig-Bamp-
ton methods. As indicated in chapter 5, this should be possible since the DCB method
can be cast in a similar stiffness-uncoupled format as the CB method. However, due
to the “saddle point” nature of the DCB equations of motion, other definitions of the
error norms are required. This requires additional research. Since the MCB method is
a generalization of the CB and DCB methods, it is speculated that once error estimates
are derived for the DCB method, they can be generalized to suit the MCB method.

• Combining modal truncation augmentation and error estimation. When applying er-
ror estimates for goal oriented quantities, one idea is to enrich the domain reduction
bases with MTA vectors based on the domain’s force residual. It is speculated that
by doing so the reduced model will show very fast spatial convergence towards the
exact response, posing an effective way to reducing the goal oriented error. The com-
putation of the additional MTA vectors per iteration requires only minor changes in
the refinement algorithms. However, a prerequisite for doing so is the ability to esti-
mate the error from a reduction basis that contains MTA vectors. This might not be
so trivial since MTAs are related to specific “inputs” and are not true eigensolutions
(even though they can be considered as pseudo-modes). Hence additional research is
required.

• A number of other topics can be identified that do not follow directly from this work,
but would be very valuable additions to the developed modeling framework. These
include:

– Research related to other classes of (non-modal) reduction techniques, such as
balanced truncation from the control engineering community or moment match-
ing techniques (that are similar to the MTA method). The debate on what method
to use when, depending on the purpose of the reduced model, is still ongoing.
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– Reduction of non-linear component models. For wind turbine modeling this is
for instance relevant for the blades, which can show geometric non-linearity, to
model non-linear soil-structure interaction, etc.

– Reduction of components with multiphysical coupling, so coupling of the struc-
tural dynamics with other dynamic physical effects (e.g. aerodynamics, hydro-
dynamics, acoustics, controller dynamics).

In addition to the recommendations on the theoretical part, the following future work can
be envisioned on the applications in wind turbine engineering:

• Reduced model of the complete wind turbine. An interesting application of the DS
modeling framework would be to create a reduced model of a complete turbine, in-
cluding all reduced models from relevant components obtained from detailed FE mod-
els. This model could serve two purposes:

1. Tune/design the coarse structural model used in aero-elastic simulations, for in-
stance by identifying where relevant structural flexibility and inertia is located.

2. Use directly to simulate a set of reference load cases to verify the aero-elastic
model and/or perform detailed investigations on component level.

The first steps towards such a model were already made in the course of this project
by extending the yaw system model with a number of components.

• Include controller models. Controller dynamics strongly influence the overall dynam-
ics of a wind turbine. It would therefore be interesting to include (simplified) controller
models in the substructured models of (parts of) the wind turbine.

• Generalization of MTA vectors. To further enhance the practical value of load de-
pendent MTAs, it could be tested whether more generalized MTAs can be calculated
such that they can be used for example for multiple loading directions and wind/wave
misalignment load cases.

• Error estimation for eigensolutions in a frequency range. In the application in this
work, the error estimation method for global eigensolutions was tested only when a
single target eigensolution was selected. In practice one usually strives to create a re-
duced model with a certain accuracy for all eigensolutions in a given frequency range.
Therefore it could be tried to apply the adaptive model reduction for instance using
several target eigensolutions (and hence error estimates) simultaneously.

• Incorporate experimental models. For wind turbine components that are very difficult
to model properly, such as the main gearbox, it would be interesting to try to obtain
an experimental model and include it in a dynamic substructuring analysis.

• Validation using measurements. Although in this work a first attempt was made to val-
idate some component models using measurement data, thorough validation of com-
ponent as well as assembled models is still an open issue. In this respect the updating
of component and interface models is a relevant issue.

• Use of the validated reduced model. Once the reduced model has been validated it
can be used in the wind turbine design practice for instance for model-based health-
monitoring.
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A
The Dynamic Substructuring Toolbox

One task of the work reported in this thesis was to implement the dynamic substructuring
methods and procedures, such that they can be used in a practical setting. This is a non-trivial
task that involves a lot of “bookkeeping”, especially when generality of the tools is required.
Over the course of this PhD project a toolbox was therefore developed, which contains most
of the methods treated in chapters 2, 3 and 4. This Matlab based toolbox, called the Dynamic
Substructuring Toolbox (DS Toolbox), employs a data format that is specifically designed
to simplify the handling of component models that can be modeled by finite elements, by
analytical methods or from experimental data. The actual toolbox consists of three separate
graphical user interfaces (GUIs), namely:

• The Preparation Tool (PrepTool) is built to import finite element models from popular
FE codes, using the FEMLink toolbox (which in turn is part of the commercial SD
Toolbox, see [17]), and cast them in the correct data format. Along with the FE data, a
Matlab file should be created by the user describing interface properties of the model.
Hereafter, model reduction techniques can be applied to create a superelement.

• The Assembly Tool (AssemblyTool) is used to assemble the (reduced) component mod-
els. The component models are loaded and hereafter the user can select which inter-
faces of the different component models are to be assembled. Interface reduction can
be applied to the assembled model if the number of interface DoF is considered too
high.

• The Postprocessing Tool (PostTool) is developed to analyze components and assem-
blies, respectively created in the PrepTool and AssemblyTool. Two structures can be
analyzed simultaneously and the results can be compared. Various types of analysis
can be performed, such as a modal analysis, frequency response comparison and time
integration.

Next, section A.1 treats the functionality of the PrepTool in further detail. Section A.2 ex-
plains the AssemblyTool and finally section A.3 addresses the PostTool. These descriptions
are a summary of the more extensive user manual [210], which also contains a step by step
walk through introducing the new user to the functionality of the tools.

267



268 ∣ Appendix A – The Dynamic Substructuring Toolbox

A.1 Preparation Tool

The PrepTool is used to import FE models and to transform them into component models
with the DS Toolbox data structure, its GUI is shown in figure A.1. The functionality of this
tool will be briefly described in this section.

Preparation & Import The first step in the use of the PrepTool is to select the correct file
and folder in the Path selection. Firstly, the input file containing the interface informa-
tion, such as the number and geometry of the interfaces, has to be selected. This file is named
Declare sub.m and is specifically created for each substructure. If the component model is
created using FE software one must additionally select a data file type .emat, accompanied
with a .rst and .mode file which are used by FEMLink (for a description of the FEMLink
toolbox functionality see [17]). The selected target folder is used as an output folder during
the following steps. Next in the Substructure preparation section the Check button can
be used to check if all the necessary data files are present in the selected folders, if so the user
is allowed to continue to the next step. Based on the data contained in Declare sub.m the
Load .emat button is enabled which starts the data conversion using FEMLink. Hereafter
the Prepare .mat button can be pressed which creates a compatible data structure for the
component model.

Checking & Visualization The Plotting section allows the user to visualize and check
the component model and its interfaces. Various element types can be plotted, such as beams,
shells, tetrahedron etc. A variety of plotting tools are incorporated in the docked plotting
window such as rotate, zoom, move, data cursor, etc. The nodes belonging to the selected
interfaces are highlighted using colors. A useful option, the Constrain button, allows the
user to constrain the structure at the selected interface. This allows natural boundary condi-
tions to be applied to the substructure models. If during the visual check it is found that the
specified interface information is incorrect one can efficiently change this using the Change
interfaces button. This opens the Declare sub.m file to allow direct altering. Hereafter
the user is guided to restart at the substructure preparation since the component model in-
formation has been changed.

Model Reduction In the Reduction section the user can choose any of the reduction
methods discussed in section 2.5 to generate a reduced model. Next, the number of vibra-
tion modes to be included in the basis has to be specified; hereafter the reduction process
can be started using the Reduce button. In case it wished to augment the reduction basis
using MTAs (see section 2.7), this can be specified in the MTA section. The user input for
this method is the desired order of MTAs and optionally the method to reduce the number
of MTAs, the reduced number of MTA vectors per order and the frequency shift. If some
external excitation on the component model is known and associated spatial force vectors
exist, these can be loaded by pressing the Load force vectors button. These vectors are
added to static response vectors used to compute the MTAs.

DesignModification &Updating The Parametric updating section is a functionality
that is still in development. It allows the user to change certain parameters of the component
model (such as the width, length or height) and hereafter iteratively update its reduced mass
and stiffness matrices using the methods of chapter 6. This allows the user to make (small)
design changes and efficiently produce an updated component model.
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Figure A.1: Graphical user interface of the PrepTool

A.2 Assembly Tool

If the substructures are properly created and the interfaces are correctly identified, the As-
semblyTool can be used to build assembled models. Its GUI is shown in figure A.2.

Loading ComponentModels The Load substructures section allows the user to load
or delete components models using the Load and Delete buttons, respectively. The tool also
allows to import and export complete assemblies via the Import -/Export assembly but-
tons. The memory use is also indicated. The Model summary section provides information
of the loaded component models such as the unreduced number of DoF (NDof), the sparsity
of the matrices (K-sparsity, M-sparsity, C-sparsity, respectively), the reduced num-
ber of DoF (Ndof reduced), the size of the FRF (FRF size).

Assembly Options In the Assembly options section the required options for the as-
sembly of the substructures can be set. The first option is in which domain the compo-
nent models have to be assembled, either the time or frequency domain. The clear other

domain option deletes previous couplings to save memory and required storage space. The
option Copy coupling(s) to other domain copies the couplings from the selected do-
main to the other. The component models can be assembled per node or per interface
(Assembly per node or Assembly per interface, respectively), and in specified direc-
tions only (Assembly DoF). If assembly via interfaces is selected the user can choose the al-
gorithm used for node collocation, selecting either Normal or Least squares, see section
3.6.

Defining Couplings After choosing the correct settings, the couplings between the com-
ponent models can be defined and visualized in the Define couplings section. Two
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substructures can be selected which are also plotted. Two tables display the available con-
nections per model. Depending on the settings this list either shows individual nodes or
complete interfaces. From the tables the connection for each model can be selected, which is
highlighted in the plotting window, and submitted using Submit coupling(s). The cou-
pling then appears in the Assembly section table. Note that the coupling section allows to
couple either the full or reduced component model. Erroneous couplings can be corrected
by selecting the coupling(s) and pressing Delete coupling(s). Further visualization can
be obtained using the Preview assembly which plots the assembly in an external window.

Performing Assembly The second Assembly options section has a number of options.
The Reload substructures reloads the substructures after the assembly is performed, for
instance to create another assembly using different settings. The Delete substructures

discards the loaded component model information to minimize memory use. The assem-
bly can be further reduced by applying interface reduction using the Apply interface

reduction option (see sections 4.4 and 4.5); the user must specify the number of interface
modes to be used in the input field.

The Assemble button is pressed to truly assemble the component models. In case only sub-
structures with either stiffness or flexibility interface representations are to be connected, pri-
mal assembly is applied by default to obtain an assembled a model with a minimum number
of DoF (see sections 3.3 and 3.4). Mixed assembly is automatically applied when both stiff-
ness and flexibility type of components are connected, see section 3.5. Finally, when applying
the Mixed Craig-Bampton method (see section 2.6), the loaded substructures are both re-
duced (with a number of modes to be specified in a pop-up window) and assembled using
the Mixed CB reduction & assembly button. As the name suggests, the reduced com-
ponents are connected using mixed assembly.

Saving Data In the Assembled model section information is given on the assembled
model, such as the number of DoF and the CPU time to needed for assembly. Using the Save
assembly the newly assembled model can be saved to a desired location. By checking the
option Send to PostTool the PostTool is opened with the assembly already loaded after it
is saved.

A.3 Postprocessing Tool

The third and last part of the DS Toolbox is the PostTool which is used to analyse the (re-
duced) component models and (reduced) assemblies, the GUI is displayed in figure A.3.

Loading&SelectingModels In the Load systems two systems from either the PrepTool
or the AssemblyTool can be loaded. Information on the loaded systems is displayed is this
section, such as its name, the number of DoF or the (reduced) system (NDoF), the number
of DoF when expanded (NDoF expanded) and, if available, the size of the FRF (FRF size).
When assemblies are loaded the two tables display its component models. The Active and
All checkboxes are respectively used to select which system(s) and component model(s) are
to be analyzed and/or plotted.

Modal Analysis The Modal Analysis section enables modal analysis of the models.
When a reduced model is analyzed the Expand option can be checked to expand the re-
duced eigenmodes such that they can be visualized and/or correlated to unreduced results.
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Figure A.2: Graphical user interface of the AssemblyTool

The number of modes to be computed can be specified in the No. modes [-] box. If the
loaded system(s) possess a damping matrix, the checkbox Complex modes can be checked to
allow the algorithm to compute complex valued eigenmodes. By pressing Modal analysis

the eigensolutions of the system(s) are computed. When these results are obtained the eigen-
frequencies are displayed in the listboxes.

Visualization & Plotting Tools One of the eigenfrequencies of the system(s) can be se-
lected, when the button Plot is pressed the selected component model(s) of the system(s)
are plotted in the plot area. By toggling the Active checkboxes in the Load systems sec-
tion and selecting component models in the listboxes, the user can choose which part(s) of
the system(s) are plotted. By pressing the Animate button the system is animated to deform
in the selected eigenmode.

In the Plot controls section the amplitude of deformation can be scaled using the slider
bars denoted by Animation amplitude. Furthermore, in the Plot controls section the
user can, amongst others, rotate, move, orbit and zoom the plotted model. The mesh at
which the model is shown can be coarsened to reduce plotting time (which can be necessary
for large FE models) using the Mesh coarsening slider. Finally the Undock button can be
used to undock the current plot into an external window, allowing it to be saved and/or other
Matlab plotting tools to be used.

Correlation Direct comparisons between all eigenmodes can be performed via the MAC
or SUMAC (see section 4.7), using MAC or SUMAC, where the results are plotted in the plot
area. The 1-MAC option plots the error of the diagonal of the MAC matrix on a semi loga-
rithmic scale. Finally the Save results allows the user to save the eigenfrequencies and
eigenmodes, for instance to export or perform further analysis elsewhere.
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Time Integration The Time integration (Newmark) section allows the user to per-
form time integration of the model. First the user can specify which system(s) to be ana-
lyzed using the checkboxes. Hereafter the user can specify values for the Beta and Gamma

parameters of the Newmark time integration scheme. Alternatively, the user can selected
from several standard forms of the algorithm by checking Choose algorithm and select-
ing the desired version. By checking the HHT-a: the Newmark scheme is modified using to
the Hilber-Hughes-Taylor α-method which introduces numerical damping in the method
without degrading the order of the accuracy. The value for α has to be specified.

The time step and simulation length has to be specified in h [s] and T [s], respectively.
Note that the allowable time step is dependent on the values for β and γ for the Newmark
scheme. Initial conditions for the system’s displacements and velocities can be loading using
the Load q0, dq0 button. The external (time-varying) force can be loaded using the Load
F button. Pressing the Start button initiates the time integration algorithm.

The Animate button initiates and stops the animations of the computed response of the sys-
tem. Furthermore, using the Disp., Vel. and Acc. checkboxes the user can choose be-
tween plotting displacement, velocity or acceleration responses, respectively. From the list-
box beneath Response nodes: the user can select a certain node of interest and hereafter
select the desired DoF for the listbox beneath DoF:. Using the Add and Plot the selected
response can be added and plotted.

Figure A.3: Graphical user interface of the PostTool



B
Component Validation Measurements

In chapter 7 the dynamics of the yaw system of the Siemens 2.3 MW wind turbine were an-
alyzed. Parallel to the numerical modeling of the components, efforts were spent validating
some component models and subassemblies. These efforts are described in this appendix.
Specifically, the validation of the important bedplate component will be treated next, while
the attempts to validate the yaw gearbox model will be described in section B.2. Finally,
section B.3 addresses the validation of the subassembly of bedplate and yaw gearboxes.

B.1 Experimental Modal Analysis of the Bedplate

In order to validate the finite element model of the bedplate, an experimental modal analysis
has been performed. Here the bare bedplate is considered, that is, without the main bearing
housing, yaw clamps and gearbox mounts. A schematic overview of the measurement setup
is given in figure B.1, photos of the actual measurement are shown in figure B.2.

Shaker Air springImpedance head Accelerometer Data 
acquisition 

system

Measurement 
PC

Compressor

Figure B.1: Schematic overview of the bedplate test setup.

The bedplate was suspended using four air springs . These air springs were pressurized at 5.8
bar and created a low stiffness suspension; the rigid body eigenfrequencies were all around
2 Hz and well below the first flexible eigenfrequency.

Using a total of nine tri-axial ICP accelerometers, 33 locations were measured in four steps.
Excitation of the bedplate was achieved using a shaker with a random noise signal. The mea-
surements were performed using Pulse LabShop software from Brüel & Kjær. The measured

273



274 ∣ Appendix B – Component Validation Measurements

Figure B.2: Photos of the bedplate measurement.

frequency response functions (FRFs) were exported in universal file format and imported to
Matlab using the SD Toolbox. This same toolbox was subsequently used perform the modal
identification, i.e. the identification of the bedplate’s eigenmodes and eigenfrequencies from
the measured FRFs.

For the actual validation, the measured modes were expanded using the SEREP technique
[144] and a MAC analysis was performed to visualize the correlation between the measured
modes and the modes from the finite element model. See figure B.3 (a). The eigenfrequen-
cies are compared by simply checking the relative frequency difference, see figure B.3 (b). As
can be seen, the lowest 7 modes compare very with MAC values above 0.9. The low cross-
correlation at FE mode 8 and mode 9 is due to the fact that both seem to be in-plane modes,
whereas the excitation during the measurement was out-of-plane. Hence, these modes are
missing in the set of measured modes. FE mode 10 shows a good correlation to measured
mode 9, at the higher modes the correlation deteriorates due to both measurement and mod-
eling inaccuracies. This is however well beyond the frequency range of interest. Furthermore,
the difference between the measured eigenfrequencies and the FE eigenfrequencies can be
seen to be less than 2% for all identified modes.
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Figure B.3: Results of the bedplate measurement.

As described in section 7.3, in modeling the bedplate it was assumed that the interfaces to
the yaw gearboxes behave as locally rigid regions. In order to validate this assumption, two
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yaw gearbox interfaces have each been equipped with 4 tri-axial accelerometers during the
bedplate measurements, as can be seen in figure B.4. By projecting the measured FRFs onto
the (local) rigid motions and dividing their norm by the norm of the FRFs, a measure for
the rigidity is obtained that is similar to eq. (4.7):

rigidity = ∣∣R (RTR)−1 RTY ∣∣
∣∣Y ∣∣ 100% (B.1)

Figure B.4: Measurements performed for checking the rigidity of the interfaces.

It can be seen from figure B.5 that the interfaces of the yaw gearboxes indeed behave more or
less rigidly up to a normalized frequency of approximately 0.85, while the frequency range
of interest is up to a normalized frequency of 0.5. The rigidities of the interfaces to the main
bearing housing and to the main gearbox mounts are also determined and are also shown
in figure B.5. It is clear that the interface to the main gearbox mounts can be assumed to
behave rigidly up to a normalized frequency of approximately 0.85, whereas the interface
to the main bearing housing clearly shows flexibility within the lower frequency range and
therefore cannot be considered rigid.
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Figure B.5: Rigidity of the interfaces on the top surface of the bedplate.

Finally, two of the yaw pad interfaces on the bottom side of the bedplate were measured to
determine their rigidity, as can be seen in figure B.6. In section 7.3 it was mentioned that
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Figure B.6: Rigidity of the interfaces on the bottom surface of the bedplate.

these interfaces could not be modeled rigidly. From the experimental results in figure B.6 it
is clear that neither of the two yaw pad interfaces considered here can be assumed to behave
rigidly and hence indeed need to be modeled as flexible. It can thus be concluded that with
these measurements on the bedplate both the bedplate FE model itself and the approach to
modeling its interfaces are valid.

B.2 Validation Measurements on the Yaw Gearbox

As was mentioned in section 7.6, several measurements have been performed in order to try
to measure the dynamic behavior of the gearbox internals and to validate the model created
in Matlab. These measurements did however not give the desired results. Nonetheless this
section briefly describes the different attempts made and lessons learned.

Figure B.7: The yaw gearbox measurement setup.

The setup for the yaw gearbox measurements is shown in figure B.7. The gearbox is sus-
pended using an elastic rope; due to its flexibility and the mass of the gearbox the rigid body
eigenfrequencies are very low. From figure B.7 it can be seen that there are two locations
where one can excite the internal dynamics: the input pinion and the output pinion. Both
have their disadvantages, which will briefly be described here. Excitation through the input
shaft has a number of disadvantages:
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• Due to the large transmission ratio, small input signals are reduced to negligible am-
plitudes at the lower stages making them difficult (if not impossible) to measure.

• Shaker excitation is also challenging, since relatively small forces result in large rota-
tions of the input shaft. Therefore the shaker cannot be mounted on the input shaft.

• Due to the play between the gear teeth, gears will shake loose during the measurement,
resulting in a (non-linear) time varying system instead of a linear time invariant one.

• Fixing or applying pretension through the output pinion is also infeasible, since due
to the transmission ratio of 1000:1 (from output to input) the required torque at the
output pinion will be very large. Applying such a large torque is practically impossible
in the current setup.

Excitation through the output pinion also has some disadvantages:

• The input displacement amplitude will be amplified. This results in a amplification of
the inertia of the upper stages and will also amplify the friction of the upper stages.

• Again, due to the play between the gear teeth, gears will shake loose during the mea-
surement.

However, there are two major benefits that excitation through the output pinion has over
excitation through the input pinion:

• It can practically be done. Since exciting the output pinion with (large) forces only
leads to small rotations; a shaker stinger can be mounted on the output pinion.

• Since the input force is reduced instead of amplified, the input shaft can be preten-
sioned (or fixed) with limited pretensioning forces in order to minimize the gear play.

In order to get some idea of the eigenfrequencies of the system, an impact hammer was used
to excite the output pinion. No useful results where obtained from these measurements,
which is likely caused by the high damping due to friction and gear play. The energy put into
the system is dissipated in a very short time, leading to useless FRFs.

The approach taken next was to replace the hammer by a shaker (as can be seen in figure
B.7), in order to put energy in the structure during the entire measurement. A number of
input signals were used to obtain the measurement data: random noise, chirp and full sine
sweep. However, none of the input signals resulted in reproducible results, one of the FRFs
found is shown in figure B.8. From these shaker measurements a number of crucial variables
were discovered:

• The gear play has a major influence on the measurements. In the extreme cases the
input pinion had to be rotated up to five full rotations in order for all the gears to be
in contact. From the results one could see when gear teeth contact was lost and the
system changed during the measurement.

• Pretension is essential in order to keep the gear teeth in contact with each other, to
obtain a system which is as constant as possible.

• The force amplitude should be sufficient to overcome the internal gearbox friction.
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Figure B.8: Example FRF from the first measurements on the yaw gearbox.

A second measurement was attempted, taking into account these lessons learned. The in-
ternal friction was determined by measuring the moment needed to turn the input pinion
of the yaw gearbox. Knowing this friction, a pretensioning torque was applied to the input
pinion to ensure gear teeth contact during the measurements. The pretension was applied
by a mass suspended on a cable, which generated a torque through the use of a lever (the
radius of the input pinion), as can be seen in figure B.9.

Lever

Pulley

Mass

Figure B.9: Pre-tensioning of the yaw gearbox.

With this setup the vibration measurements were performed for a second time. Again no
useful results were obtained, which could in fact be due to the pretension applied to the sys-
tem. Since the pretension was achieved through a mass that generated a constant torque,
inertia was also added. Due to the gearbox ratio, this inertia is amplified by a factor of over
one million (since inertia scales quadratically with transmission ratio), which could obvi-
ously significantly influence the measurement results.

From these attempts it can be concluded that excitation through a shaker and/or hammer
did not give the desired results. One idea to come to usable measurement data is to mount
an electric motor on the input shaft and apply a constant sine (constant rotation), which will
ensure gear teeth contact, and superimpose a random excitation. Operational modal analysis
techniques would then have to be used to obtain the eigenmodes and frequencies (see [71]).
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B.3 Validation of the Assembly of Bedplate & Yaw Gearboxes

The setup for the final measurement, which was performed after the bedplate validation mea-
surements described in section B.1, was created by mounting four yaw gearboxes to the bed-
plate. This setup is shown in figure B.10. Again the bedplate was suspended using four air
springs. These air springs were pressurized at approximately 6 bar, which was slightly higher
in comparison to the first measurement to account for the additional mass of the gearboxes.
Like before, the rigid body eigenfrequencies were all found to be well below the first flexible
eigenfrequency.

Figure B.10: Photo of the measurement setup

With this setup, an experimental modal analysis was performed on this assembly in a similar
fashion as for the isolated bedplate structure. This means that nine tri-axial ICP accelerom-
eters were used to measure 33 locations were measured on the bedplate and 8 locations on
the yaw gearboxes. Excitation of the structure was applied by a shaker with a random noise
signal. Again, the SD Toolbox in Matlab was used to identify the eigenfrequencies and eigen-
modes.

An assembled FE model was created that resembles the measurement setup using the bed-
plate and yaw gearbox component models. The FE eigenfrequencies and -modes were com-
puted, where the latter were subsequently used to again expand the measured modes using
the SEREP technique. Thereafter, a MAC analysis was performed to correlate the measured
modes and the finite element modes, the results are shown in figure B.11 (a). Figure B.11
(b) shows the relative frequency difference between the measured and FE eigenfrequencies.
Note that in these plots the rigid body modes of the FE model are not shown.

In figure B.11 (b) it can be clearly seen that the first and second (flexible) eigenmodes com-
puted from the assembled FE model have a high correlation with the first two measured
modes. It can also be seen that there are four modes missing in the measurement, or al-
ternatively four additional modes in the FE results. These modes correspond to motion of
the gearbox internals; since no sensors were placed at the gearbox input and output pinions
these could not be measured. Furthermore, since the yaw gearbox model was not validated
no conclusions can be drawn from these modes. The next few modes show a good correlation
to the measurement, except for FE modes 10 and 11. The modeled and measured eigenfre-
quencies match reasonably well and are below 5 % for most modes. Given the fact that the
yaw gearbox models still need to be validated and updated with measured parameters, this
is considered to be not too bad.

From these results it can be concluded that the added mass and stiffness effects of assembling
the yaw gearboxes to the bedplate are also present in the assembled FE model, but still have
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Figure B.11: Measurement results of the assembly of a bare bedplate and four yaw gearboxes.

a slight discrepancy with respect to the measured data. It is expected that with validated yaw
gearbox models these small differences will disappear.

Finally, the effects of assembling the yaw gearboxes on the eigenfrequencies and modeshapes
of bedplate are investigated. Using the expanded measured mode shapes, a SUMAC analysis
is performed on the (trace of) modes of the bedplate. The resulting plot is shown in figure
B.12, as well as the eigenfrequency differences between both systems.
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Figure B.12: Effect on results due to the assembly of the yaw gearboxes

These results show that both the modeshapes and eigenfrequencies change due to the added
mass and stiffness of the yaw gearboxes. As expected, some modes are more influenced by
the assembly of the gearboxes than others. For instance, the correlation of modes 3, 4 and 5
is still very high and it can thus be concluded that these modes are insensitive for the added
gearbox stiffness and mass, whereas the other modes clearly change due to the added mass
and stiffness.



C
Detailed Derivation of Error Estimates for

Global Eigensolutions

In this appendix some of the steps in the derivation of error estimates for global eigensolu-
tions, as treated in section 5.6, are worked out in detail. The first derivation step elaborated
here is the sequence of manipulations needed to go from equation (5.64) to (5.65). The former
is repeated here:

J (ϕ̃) = ((I − P)d)T K̄ϕ̃ + (Pd)T K̄ϕ̃ − ω2
j d

T M̄ϕ̃ (5.64)

Now the second to last term on the right hand side, (Pd)T K̄ϕ̃, is rewritten. To do so, it is
first realized that the block diagonal projector P, containing along its diagonal the domain
projectors P(s) defined in eq. (5.29), in fact corresponds to:

PT = diag (M(s)Φ(s)j Φ(s)T

j )
= diag (M(s))diag (Φ(s)j Φ(s)T

j )= diag (M(s))RRT

(C.1)

Here R is the global reduction matrix as defined in section 5.3. Hence, one can write:

dT PT K̄ϕ̃ = dTdiag (M(s))RRT K̄Rϕ̃q= dTdiag (M(s))RK̃ϕ̃q= ω̃2dTdiag (M(s))RM̃ϕ̃q

(C.2)

Here ϕ̃q is the approximate eigensolution in terms of the generalized DoF of the reduced
model. In the last step use was made of the solution to the eigenproblem of the reduced
system for mode j, i.e.:

K̃ϕ̃q = ω̃2M̃ϕ̃q (C.3)
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As a result, the second to last term in (5.64) can be expressed as:

(Pd)T K̄ϕ̃ = ω̃2 (Pd)T M̄ϕ̃
= −ω̃2 ((I − P)d)T M̄ϕ̃ + ω̃2dT M̄ϕ̃

(C.4)

In the second step the same split was applied as before to obtain (5.64). Substitution of this
result in (5.64) allows the goal oriented error to be written as:

J (ϕ̃) = ((I − P)d)T K̄ϕ̃ − ω̃2 ((I − P)d)T M̄ϕ̃ + ω̃2dT M̄ϕ̃ − ω2
j d

T M̄ϕ̃ (C.5)

Rearranging terms finally leads to equation (5.65) in section 5.6:

J (ϕ̃) = ((I − P)d)T (K̄ − ω̃2M̄) ϕ̃ + (ω̃2 − ω2
j)dT M̄ϕ̃ (5.65)

C.1 Error Estimates for Global Eigenfrequency

In the derivation of the error estimate for the approximate global eigenfrequency in section
5.6.2, the starting point is the goal oriented error of eq. (5.66):

0 = ((I − P)d)T (K̄ − ω̃2M̄) ϕ̃ + (ω̃2 − ω2
j)dT M̄ϕ̃, (5.66)

The first step in the derivation is to analyze the last term in this expression, i.e. dT M̄ϕ̃. Using
the adjoint solution d as shown in eq. (5.68), this term can be written as:

dT M̄ϕ̃ = ϕ̃T PT
j M̄ϕ̃

= ϕ̃T M̄ϕ jϕ
T
j M̄ϕ̃

= ∥P jϕ̃∥2

= 1 − ∥(I − P j) ϕ̃∥2

(C.6)

Next, a so-called safety factor 0 ≤ δ < 1 is defined for which it is assumed that:

∥(I − P j) ϕ̃∥2 ≤ δ (C.7)

Such a safety factor is often used in the literature on error estimation to ensure that an error
bound remains conservative [104, 122]. The validity of this safety factor can, in an ad hoc
fashion, be shown as follows. Expanding the term ∥(I − P j) ϕ̃∥2 gives:

∥(I − P j) ϕ̃∥2 = ϕ̃T M̄ϕ̃ − ϕ̃T M̄ϕ jϕ
T
j M̄ϕ̃

= 1 − ϕ̃T M̄ϕ jϕ
T
j M̄ϕ̃

(C.8)

From a spectral expansion of the mass matrix it indeed follows that:

ϕ̃T M̄ϕ jϕ
T
j M̄ϕ̃ ≤ ϕ̃T ( na∑

i=1
M̄ϕi ϕ

T
i M̄) ϕ̃ = 1 (C.9)

Hence, it is found that dT M̄ϕ̃ ≤ 1 − δ.
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C.2 Error Estimates for Global Eigenmode

As explained in section 5.6.3, the first step in the derivation of the error estimate for an ap-
proximate global eigenmode is to transform the goal oriented error in eq. (5.65) to a global
error norm. This is done by choosing a = K̄eϕ. Here it is shown how this choice leads to an
error estimate in the energy norm:

J (ϕ̃) = eT
ϕ K̄ϕ̃ = ϕ̃T (I − PT

j ) K̄ϕ̃

= ϕ̃T (I − M̄ϕ jϕ
T
j ) K̄ϕ̃

= ϕ̃T K̄ϕ̃ − ϕ̃T M̄ϕ jϕ
T
j K̄ϕ̃

= ϕ̃T K̄ϕ̃ − ϕ̃T M̄ϕ jω2
j ϕT

j M̄ϕ̃
= ϕ̃T K̄ϕ̃ − ϕ̃T M̄ϕ jϕ

T
j K̄ϕ jϕ

T
j M̄ϕ̃

= ϕ̃T (I − PT
j ) K̄ (I − P j) ϕ̃ = ∥eϕ∥2

K

(C.10)

In the fourth and fifth steps it was used that (ω2
j , ϕ j) is a solution to the unreduced eigen-

problem and the mode ϕ j is mass normalized, i.e.:

K̄ϕ j = ω2
j M̄ϕ j and ϕT

j K̄ϕ j = ω2
j (C.11)

The second step in the derivation of the global error norm is to find a bound for the last term
of eq. (5.79), (ω̃2 − ω2

j)dT M̄ϕ̃. To do so, the adjoint solution d is required. Recalling the
definition of this problem for an approximate eigensolution (eq. (5.63)) and inserting the
choice for a, the following adjoint solution is obtained:

d = (K̄ − ω2
j M̄)−1 K̄eϕ = ⎛⎝

na∑
i≠ j
(ω2

i − ω2
j)−1 ϕi ϕ

T
i
⎞⎠ K̄eϕ (C.12)

Here spectral expansion has been used to express the adjoint solution as a summation of
modes. The term dT M̄ϕ̃ can thus be written as:

(ω̃2 − ω2
j)dT M̄ϕ̃ = (ω̃2 − ω2

j) eT
ϕ K̄
⎛⎝

na∑
i≠ j
(ω2

i − ω2
j)−1 ϕi ϕ

T
i
⎞⎠ M̄ϕ̃ (C.13)

Next, the approximate eigenmode ϕ̃ can be split into a part that lives in the space P j and
a part that lives in the orthogonal space, i.e. (I − P j) ϕ̃ = eϕ. By doing so and using mode
orthogonality properties, one finds:

(ω̃2 − ω2
j)dT M̄ϕ̃ = (ω̃2 − ω2

j) eT
ϕ K̄
⎛⎝

na∑
i≠ j
(ω2

i − ω2
j)−1 ϕi ϕ

T
i
⎞⎠(M̄ (I − P j) ϕ̃ + M̄P jϕ̃)

= (ω̃2 − ω2
j) eT

ϕ K̄
⎛⎝

na∑
i≠ j
(ω2

i − ω2
j)−1 ϕi ϕ

T
i
⎞⎠ M̄eϕ

(C.14)



284 ∣ Appendix C – Detailed Derivation of Error Estimates for Global Eigensolutions

Now a bound for (ω̃2 − ω2
j)dT Mϕ̃ can be found by maximization as follows:

(ω̃2 − ω2
j)dT M̄ϕ̃ = (ω̃2 − ω2

j) eT
ϕ K̄
⎛⎝

na∑
i≠ j
(ω2

i − ω2
j)−1 ϕi ϕ

T
i M̄
⎞⎠ eϕ

≤ (ω̃2 − ω2
j)max

i ≠ j
(ω2

i − ω2
j)−1 eT

ϕ K̄eϕ

≤ (ω̃2 − ω2
j)max

i ≠ j
(ω2

i − ω2
j)−1 ∥eϕ∥2

K

(C.15)

Using again the safety factor δ, with 0 ≤ δ < 1, this bound can be written as:

(ω̃2 − ω2
j)dT M̄ϕ̃ ≤ δ ∥eϕ∥2

K (C.16)

Hence, for the safety factor it should now hold that:

max
i≠ j
( ω̃2 − ω2

j

ω2
i − ω2

j
) ≤ δ (C.17)

Due to the fact that the ω j are bounded since the model has a finite number of DoF, the
condition on δ always holds (see [103, 122]).



D
The Proper Orthogonal Decomposition

Method

The proper orthogonal decomposition (POD), also known as principal component analysis
(PCA) or Karhunen-Loève transformation (KLT), is a mathematical data analysis method for
efficient analysis of complex data. The POD is a so-called orthogonal linear transformation,
transforming data dependent on n possibly correlated variables into a reduced or equal set
of uncorrelated variables, called principal components. A nice description of the Proper
Orthogonal Decomposition (POD) is given in [125] and will be quoted here:

The proper orthogonal decomposition (POD) is a powerful and elegant method for
data analysis aimed at obtaining low-dimensional approximate descriptions of a
high-dimensional process . . .The most striking feature of the POD is its optimal-
ity: it provides the most efficient way of capturing the dominant components of
an infinite-dimensional process with only a finite number of “modes”, and often
surprisingly few “modes”.

In this appendix the general theory of the POD method will be outlined. An excellent ex-
planation of the mathematical formulation of the POD is given in [32] and [112] and will not
be repeated here. Instead, the practical implementation of the method will be addressed by
a discussion of the discrete version of theory.

Suppose that from some time-varying signal a number of snapshots m can be obtained; each
snapshot is a vector z i containing the instantaneous values of n output variables. These vec-
tors can for instance represent a structural response or external loading at a specific time
instant. Collecting these vectors in a matrix Z gives the (n ×m) response matrix:

Z = [ z1 ⋯ zm ] =
⎡⎢⎢⎢⎢⎢⎣

z11 ⋯ z1m⋮ ⋱ ⋮
zn1 ⋯ znm

⎤⎥⎥⎥⎥⎥⎦ (D.1)

One can now construct the so-called sample covariance matrix:

C = m∑
i=1

E [(z i − µ) (z i − µ)T], (D.2)
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where µ is the average of the snapshots. Now choose the snapshots such that they have a
zero mean, i.e.

x i = z i − µ, (D.3)

such that the covariance matrix can be simply expressed by:

C = 1
m

m∑
i=1

x i xT = 1
m

X XT (D.4)

The eigensolutions of the (n× n) covariance matrix C characterize the POD. These eigenso-
lutions are such that:

Cϕ j = λ jϕ j j = 1...n (D.5)

Since C is real and symmetric due to its definition, the eigenvectors form an orthogonal basis.
Hence, the eigenvectors ϕ j are the proper orthogonal modes (POMs) and the eigevalues λ j
are the proper orthogonal values (POVs). Note that the POV is a measure of the relative
energy of the system dynamics contained in the associated POM [111].

Computing simply the eigensolutions of C is one approach to obtain the POMs and POVs.
However, one could also use the singular value decomposition (SVD), this will provide some
additional information on the decomposition. To this end, recall that the SVD of the real-
valued (n ×m) response matrix X can be written as:

X = U ΣV T (D.6)

Here U is the (n×n)matrix of left singular vectors, Σ is the (n×m) pseudo-diagonal matrix
containing the singular values and V is the (m × m) matrix of right singular vectors. Now
note that:

X XT = U ΣV T V ΣTU T = U (ΣΣT)U T

XT X = V ΣTU TU ΣV T = V (ΣΣT)V T (D.7)

Here the right hand sides describe the eigenvalue decompositions of X XT and XT X, respec-
tively. Hence, the singular values of X are the square roots of the eigenvalues of X XT and
thus correspond to the proper orthogonal values multiplied by the number of samples m.
Also, the left singular vectors U of X correspond to the eigenvectors of X XT and thus to the
POMs. The advantage of using an SVD to compute the POD is that additional information
is obtained in the form of the matrix V , the columns of which contain the time modulation
of the corresponding POM, normalized by the singular value [112]. This can be valuable in-
formation, as it provides insight into the frequency of oscillation of the POM. Furthermore,
from a numerical/computational point of view it is more efficient to apply the SVD on the
snapshot matrix instead of an eigenvalue analysis on the covariance matrix, as it avoids the
(possibly expensive) computation of the covariance matrix.

It can be shown that, due to its formulation, the POD is optimal in a least squares sense when
considering the energy in the snapshots. This means that the POMs form a vector basis that
captures more energy per mode than any other set of basis vectors [112, 125].
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