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Abstract

For our bachelor project we have been using machine learning to predict account balances for a large Dutch
bank holding company.

The company’s main interest is the integration of machine learning techniques in their systems. To enable
this we have been asked to develop a product to predict account balances for the clients of associated banks.

With the clients interest in machine learning in mind we have developed a framework enabling the user to
implement different machine learning and non machine learning models. The framework makes it easy to
compare the implemented models using different error measures, parameters of inputs and lets the user
visualize the results easily.

In this framework we have implemented our own models for the account prediction. To compare our mod-
els we started with implementing a baseline, next to this baseline we have implemented two non machine
learning and one machine learning model.

The data we used to train and validate our models has been derived from the clients data warehouse. We have
cut the accounts on different criteria like activity and the period they have been with the bank. After that we
have normalized the data to be able to better interpreted and process it.

The machine learning techniques we want to implement require a lot of training examples, this made us
decide implement a clustering model as well to create more data to train our models on. Eventually the
clustering did not give us the expected results and we decided not to use it for our final model.

To give our client a suited recommendation about the machine learning libraries to use on their systems, we
have implemented the same clustering method with two different libraries. After this comparison we were
able to recommend our client the Scikit-learn library over the more low level Tensorflow library. From this
point on we used the Scikit-learn library as well for the implementation of SVM model.

For the regression we implemented the L-1 prediction, OLS method and an SVM. Compared to the baseline,
our SVM model gave the best results, however the results of the L-1 prediction closely followed the results of
our SVM model.

After a better comparison we have discovered that in some cases the SVM model makes a prediction is al-
most exactly the same as the L-1 prediction, one the other hand, various other predictions are not based on
this pattern at all. We therefore assume that after tweaking the SVM more, it will preform better and show
significantly better results than the L-1 prediction.

For now we did not have time to tweak our SVM, but we have tried different inputs and parameters. As a
future improvement these parameters can be tested in more detail and it would be interesting to take a closer
look at different militarization methods and error measures.

In conclusion we were able to test machine learning techniques with the client’s data by implementing a well
working SMV model for account balance prediction. This model works on the clients systems and is validated
on real client data.

Furthermore we provided our client with a framework that allows them to easily implement machine learn-
ing and non machine learning models. This framework provides the user with interfaces to build models,
standard data operations and error measures. This allows the user to quickly research many different con-
figurations. We used this framework ourselves during this project to compare our machine learning and non
machine learning models.
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Preface

As the last part of the undergraduate Computer Science program students work on the Bachelor Project. In
this project, we had to produce a product that solves a real-world problem and carry out research to take
possible solutions for this problem into account.

For our project, we have created a product for a large Dutch bank holding company. This company is con-
stantly trying to improve the clients experience with state of the art IT technology.

The client has asked us to investigate the possibility of account balance predictions for their customers.
They were especially interested in the applications of machine learning techniques into their systems. As
a group, machine learning was one topic of interest in computer science and thus we saw great potential in
this project.
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1
Introduction

Machine learning can give us the possibility of finding patterns and trends in data. The insights gained into
this data can then be used to create predictions. Using machine learning algorithms, it is possible to make
predictions for time series data. For this project, we made time series predictions for bank balances. More
specifically, we looked into using Support Vector Machines in order to make these predictions [19].

The purpose of our project is to develop a model that can predict the bank balances of customers of a large
financial institution. This institution is also interested to see if such predictions could be made using Google
TensorFlow and how such a system could be integrated into their infrastructure.

For this project our research question reads: How well can we predict bank balances? Traditionally these
models have been applied to predictions of stock market data [22]. Interestingly enough, we could not find
any published work concerning such predictions for bank balances. Many machine learning tools exist in
Python. To be able to utilize some of these to the fullest we implemented our own framework in Python
which can be used in combination with these tools. This framework is designed to conveniently combine a
prediction model with different error measures and validation methods.

We will start this report with a chapter in which we clearly state the problem at the core of this project. In
the following chapter we will describe the data that we have at our disposal. In the subsequent chapter we
will describe the clustering techniques that we investigated in detail during the course of this project. After
that we will discuss the machine learning algorithms that we used to create our predictions. In the next
chapter we will elaborate on the non-machine learning and machine learning techniques we employed to
create predictions. We will then move on to the design of our framework. We will follow up on that with a
chapter displaying the results of our model. We have dedicated a separate chapter to the discussion of these
results. In the penultimate chapter we will give an overview of the entire process. Lastly we will end this report
with our conclusion.

1



2
Problem

2.1. Problem Definition

The goal of this assignment is to develop a prototype of an application, that will make bank balance predic-
tions by using machine learning techniques. A secondary objective, is to evaluate whether such a system can
be built using Google TensorFlow and how this could be integrated in the existing sytems of our client. The
whole project description of our client can be found in Appendix E.
We framed our research question as:
How well can we predict bank balances?

2.2. Problem Analysis

Our client is looking for a way to help their customers in the best possible way, therefore they want to know if
they can predict the account balance of their clients to help them foresee future difficulties. Keeping in mind
that no system works perfectly, the client prefers to know how well we can predict the account balances. This
means; How far into the future can we predict? For what clients can we predict? How dynamic is the model
for other clients?
Another important aspect is Google Tensorflow. Our client wants to know how well Google Tensorflow can be
integrated into their systems and how well it works for their desired purposes.
During the problem analysis we also made a project plan, which can be found in Appendix A.

2.3. Solution

We have designed a framework in which different machine learning and non-machine learning models can
be implemented. This framework is not only useful for this project, but can be useful to implement other
models and other projects as well. More about this framework can be read in section 9
In this framework we have implemented clustering in two different ways, these two implementations are
described in chapter 5. For the regression we have compared three different models, described in chapter 7
and 8. Results for the clustering and regression can be found in chapter 10.
This solution does not only give the client a working model with well explained results, but the framework
provides the client a way to further extend this model or easily implement their own model for future use.

2.4. Success measurements

At the beginning of the project, we were not able to make an estimate of how well a good solution should
preform. Therefore we have decided to work with a baseline. Every improvement from this baseline can be
seen as a small success in the project. This baseline thus allows us to measure our success during and at the
end of the project.

2



3
Data

3.1. Main statistics

For our project, the client provided access to a data warehouse. We had to decide what data was useful for
our specific problem. During the research phase of the project we made various queries and plots of data
statistics. For us, this was mainly an introduction into the database and this gave a clearer insight into how
much data was available and how the data was distributed. It also gave us an idea on what to use as input for
our algorithmic solutions. However, a lot of these were not relevant to put into the main section of the report.
The full chapter with extra plots can be found in Appendix G. In our solution and statistical analysis only data
after 2004 is used, because the data warehouse has inconsistent entries before this year. The data warehouse
was set up around this time and this is most likely the reason why entires before this date are inconsistent.

3.1.1. Amount of bank accounts

The total amount of bank accounts in our dataset is 1559534. These are payment accounts created before
2004.

3.1.2. Average balance per month

The goal of this project is to create predictions for a customer’s account balance. Therefore, we needed to
look at the account balances of customers. We looked at the average balance of each customer for each
month since 01-01-2004. These are then normalized by converting them to z-scores. Finally the z-scores of
each customer are averaged for each month. This gave us a representation of how the average customer’s
balance develops over the year. See figure 3.1

3.1.3. Minimum number of transactions

This graph shows the distribution of the number of accounts with a minimum amount of transactions per
month, starting from different years shown in different colors. The x-axis was cut off at 60, because the
amount of accounts starts becoming too low to be of interest to us. The y-axis was cut off at 600000. This
only cuts off the 0-5 bin which is not interesting, because this is the group with a minimum of zero transac-
tions per month which is just every account (1559534).

3.2. Promising data

With a data warehouse containing over one and a half million payment accounts and detailed information
on each of these accounts, it is important to know which information is of use and which is not. This is
impossible to know for certain without testing, especially since our machine learning techniques can be seen
as black box methods. Therefore, it is hard to predict which statistics are useful and which are not. During

3



4 3. Data

Figure 3.1: This graph shows for each month the z-scores of all accounts averaged. Here you can see the main trend for the balance on
bank accounts of the year.

the benchmarking, we tested which data improved the results and which did not. More about this in Section
8.1.5.

3.3. Datasets

In order to create an accurate model based on the data available to us in the data warehouse, we need to
construct our own datasets. For the sake of confidentiality, we cannot publish or share these datasets. The
Python scripts and SQL queries used to create them can be found in our project repository, this is a private
repository accessible only to the client. In the next sections, we will first describe how we filtered out the data
that we want to use and which cut off decisions were made. Then we we describe in more detail the datasets
that we created and how they are divided into validation and training sets. Normalization of the data will also
be discussed, together with an example of what can go wrong and how we fixed this.

3.3.1. Cut off decisions

Before actually using the data as input for our algorithms, we made some decisions on what subset of the
data we wanted to use. A good example is the fact that some accounts are inactive and not very interesting
to predict for. Secondly, some accounts are new and have less information about their behavior. The cut offs
are the following:

1. All accounts need to have at least 5 transactions for every month of during the last 6 years. (From 2010-
01-01 to 2016-04-30)

2. Every account needs to have at least a subscription of 76 months at the bank. (roughly 6 years)

The second cut off ensures that we have accounts with a lot of information for the testing phase. The imple-
mented methods might not need data of such a long period for all accounts.

3.3.2. Trainingset

For the machine learning techniques the data needs to be divided into training and validation sets. Normally
this is split randomly into two sets. However, we are dealing with time series and therefore the data should not



3.4. Normalization 5

Figure 3.2: This graph shows the amount of account that have a certain minimal amount of transactions for each month since the year
you can find in the legend. On the x-axis, you can find the minimal transactions. On the y-axis, you can find the amount of account for
each year with a different color. The leftmost bin is cut off, because this bin contains all payment accounts (1559534)

be split on a unique identifier, but rather on time. By that we mean, that we divided the dataset as following.
All the clients in the filtered set have to be at the bank from 2010-01-01 to 2016-04-30. So, the training set
consists of all the feature vectors from 2010-01-01 until 2014-01-01 which results in a set of 4 years of training
data.

3.3.3. Validationset

The validation set is also split on time. To make sure no data is leaked from training to validation and because
our feature vectors have a time window of 12 months, we opted for selecting the validation set to be only after
2015-01-01 and thus having a gap of one year of data which is not used for either training or validation. The
validation set are all feature vectors from 2015-01-01 until 2016-04-30.

3.4. Normalization

It is better to normalize data instead of using the raw value, because this will lead to scaling issues. For the
feature vector as input for the algorithms, we thus need to normalize the data.

3.4.1. Z-scores

A common way to normalize data is the z-score or standard score. A z-score can be obtained from a raw score
through the following formula:

Z = X −µ
σ

(3.1)

Where X is the raw value, µ is the average value and σ is the standard deviation.

This conversion is used for statistics that can encounter scaling issues. In our case, some payment accounts
have a much higher balance than others. The z-score describes the deviation from the mean in terms of
the standard deviation. This allows for more accurate and meaningful comparison of individuals across our
sample. [24]
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3.4.2. Issues

The average and standard deviation (std) used for the z-score is calculated for each account independently.
After further analysis of the prediction results, we found out that sometimes this normalization can be de-
ceiving. An example is given below:

User x
average balance for all his months: 511.88 euro
standard deviation for all his months: 1914.39 euro

By using the 10 months average prediction we got an MSE of 0.000004. This is considered a small MSE, so
we interpreted this as a very good prediction. We further investigated the feature vector and came to the fol-
lowing conclusion; Our error is presented in z-scores, which means the error gives the amount of standard
deviations the prediction is off compared to the real value. Because we used MSE here, we actually have an
error of 0.002 in terms of the standard deviation. If you then calculate the actual error as an absolute value,
you get

0.002∗1914,88 = 3.83

Which means we predicted this month for this account with an error of roughly 4 euros. If you check his fea-
ture vector, you can see that 4 euros relative to the 30-50 that you see in this previous months, is actually not
exceptionally good. It is a decent prediction, but the calculated error deceives us into thinking this prediction
is near perfect.

The cause of this is bad normalization. The average balance of this account is 511.88, whilst in most months
the balance is fluctuating around 50. The high average is caused by a small number of months where the
account balance is raised to 14000 euros. These few months skew the mean and standard deviation, so that
the normalization is not representative anymore.

We came to the conclusion, that this problem applied to a lot of our accounts an we had to find a way to solve
it. Our solution was taking the averages and standard deviations of the middle .875 percentile of the data.
This means we first filtered out for each account the top and bottom 12.5% of balances as outliers. After this,
filtering the mean and standard deviation are calculated. This gives a more representative normalization and
enables us to interpret the errors better and make them comparable with errors of other accounts.



4
Clustering

4.1. Approach

To train our model we need training examples, however a single account might have limited data to train on,
even if the client has been with the bank for a while. When we use one year for validation and a client has
been with the bank for two years, we would still only have 12 data points to train on.

To alleviate this problem our models could be trained on the data of multiple payment accounts. To train
on accounts similar to the one we are predicting, we decided to cluster the payment accounts. When these
payment accounts are put into clusters, it is possible to train a model on a cluster and to use this trained
model for the prediction of all accounts belonging to that cluster. By doing this, there will be more data
available to train on. Furthermore with this approach it is also not necessary to train the model again for
every single account that we want to make a prediction on. One model can be trained for the whole cluster.
When we want to make a prediction on a new account we can find the cluster it belongs to and use the trained
model to make a prediction. In the following sections of this chapter a description will be given about how
we clustered the payments accounts.

4.2. Clustering method

In this section the method, used to cluster the payment accounts will be described. There are two common
clustering techniques, hierarchical clustering and K-means clustering [21]. As described in the data chapter,
we are working with a large amount of accounts. The time complexity of k-means is better than the time
complexity of hierarchical clustering [21], therefore we only considered K-means.

4.2.1. Clustering Technique: K-means

KM is an unsupervised learning technique since the class labels are not known and no classes will be given
as output [20]. This is needed since we have unlabeled account that need to be clustered together so that the
model can be trained

The standard version of K-means is a relatively simple algorithm consisting of one initialization step and two
iterative steps. The idea is that for each of the K-clusters we have a mean which characterizes this cluster.
This mean is updated until the clusters do not change any more [15].

1. Initialize: Initialize the mean for all of the K clusters (randomly).

2. Assign Points: Each point in the dataset is assigned to the cluster with the nearest mean according to
a predetermined distance metric.

3. Update means: For each of the K clusters the mean is updated. The mean of a cluster is now actually
calculated as the mean from the data points that belong to the cluster.

4. Repeat step 2 and 3 until no data points change clusters between iterations.

7
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4.2.2. Implementation

Python has a broadly used library called scikit-learn which has an implementation of different clustering al-
gorithms [20]. An algorithm to perform K-means is included in these. This implementation was used to clus-
ter the payment accounts, however an implementation of K-means was also made in TensorFlow to compare
the two libraries. More on this comparison can be found in Chapter 5.

4.2.3. Feature vector

The following features where used as input for the clustering algorithm. Since these features are expressed
in different metrics (e.g. balance vs age), the distance metriic can be deceived. By normalizing the features
we can solve this problem. For normalization we used the z-score which is calculated with the method men-
tioned in Section 3.4.1.

Input Description
age Age of the client, considered because we thought

similar age groups might show similar behaviour
average_balance Average balance of the account. Clients with dif-

ferent average balances could show different be-
havior

avg_transactions_per_month We think that a difference in activity on accounts
can have implications on their spending behav-
ior.

avg_transactions_amount We think that a difference in transaction size
on accounts can have implications on their
spending behavior. Big spenders versus careful
spenders for example.

Considered Inputs

The database contained other values that seemed interesting and were considered. The main three of these
were geolocations of clients, the marital state of clients and the nationality. However both of these properties
were not included in the feature vector in the end because they appeared to be sparse.

The database contains a house pricing index, this has potential for grouping people based on their locations
and the house prices in this location. However since we do not have enough background knowledge about
how these type of indexes work, we decided to not take this into account yet. But it is a possibility for future
work.

Clients also have a value for their marital state which has potential for clustering but it was a missing value
for the majority of clients.

The database also contains the nationality of clients but we decided to not use this because on the one hand
we were not sure if nationality would really influence spending behavior and on the other hand because only
about 12% of clients had a nationality different from ’NL’ and out of those about 90% had an unknown na-
tionality.

4.2.4. Final Decision Based on Results

For interpretation of these results, we used a method called Principal Component Analysis to transform
higher dimensional data into a two-dimensional plot [2]. When interpreting these results (see Section 10.1),
no distinct clusters could be found in the dataset. This can occur, because the features as input are not se-
lected correctly, or because no explicit clusters exist inside the dataset. We did not have the time to test other
feature selections and the current clustering did not add any behavioral distinction, therefore we decided to
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leave this out of the main regression model. In the section concerning future work, a further investigation
on the addition of clustering is mentioned. To alleviate the problem of not having enough data available to
train on for a single payment account, one model will be trained on the data of randomly selected payment
accounts. Thus a general model will be trained for the prediction of all payment accounts.



5
Machine learning libraries

There are various libraries available to implement machine learning methods. At the start of this project the
client showed interest in implementing our machine learning algorithms using TensorFlow. After research,
the Scikit-learn library for Python seemed to be a more suitable option for this project. In order to highlight
the differences between these two libraries, K-means clustering (Section 4.2.1) was implemented with Scikit-
learn and compared with an implementation that was made in Tensorflow. In this way, we will give a more
comprehensive analysis of the differences between these two libraries. The analysis includes measurable
qualities, such as runtime and memory requirements, but also less quantifiable properties such as ease of
use. Near the end of this chapter we will discuss these results in the context of the desired use-cases of both
libraries. In the last section we will give our recommendations regarding the two libraries.

5.1. Clustering Implementation

Clustering was performed on approximately 440.000 payment accounts. The feature vectors used for these
payments account are as described in Section 4.2.1.

5.1.1. Tensorflow

TensorFlow takes a more low-level approach to machine learning and requires that the user implements a
K-means algorithm. Our implementation took 24 lines of code. The foundation of TensorFlow lies in the
DataFlow graph. A data flow graph is a directed graph in which the the nodes represent mathematical op-
erations or endpoints for data. The edges in this graph represent dynamically sized arrays of multiple di-
mensions. These arrays are often referred to as tensors. This is written in Python making it rather memory
inefficient.

5.1.2. Scikit-learn

Scikit-learn already has an implementation for K-means. This allows a user to implement their own K-means
script in just two lines of code if the data for the algorithm is already prepared. This library was written in
Cython, which is a superset of Python that translates Python into C code.[20] This is what causes the Scikit-
learn implementation to be more memory efficient than our TensorFlow implementation.

5.2. Test environment

Both solutions use an approximation of the K-Means clustering problem known as Lloyd’s Algorithm. There-
fore the results are expected to be similar. In order to compare the runtime and memory requirements of
both implementations each implementation was executed 10 times per value of K. The value of K was varied
between 3 and 10, and finally a value of 20 was tested as well to see how the implementations reacted to a
higher K value. We ran them on the client’s server through a Docker installation. After each run the kernel
was shut down in order to prevent measurement errors.

10
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Table 5.1: Overview of Runtime & Space Complexity for each K for Scikit-learn(SK) and TensorFlow(TF), averaged over 10 runs

K Runtime SK Runtime TF Memory Required SK Memory Required TF
3 6.97s 10.99s 223.6MB 403.6MB
4 14.79s 13.83s 221.5MB 440.2MB
5 8.75s 12.81s 214.0 MB 462.3MB
6 13.37s 18.61s 214.8MB 447.1MB
7 20.76s 23.81s 214.8MB 468.5MB
8 20.16s 25.64s 214.3MB 489.3MB
9 26.33s 32.99s 215.1MB 527MB
10 31.05s 30.66s 215.1MB 526.1MB
20 88.34s 96.0s 214.4MB 727.4MB

Both implementations of the K-Means algorithm were executed in a Python 3 Notebook in a Jupyter envi-
ronment. All time measurements concern only the runtime of our K-Means algorithm itself and no pre- or
postprocessing.

The measurements containing memory usage were done using functions from the resource package in Python.
The input of these algorithms were approximately 440,000 four-dimensional vectors.

5.3. Runtime

Although both solutions implement the same algorithm, the Scikit-learn implementation seems to be slightly
faster than our TensorFlow solution. There is a clear-cut explanation for this. Computations in TensorFlow
rely on the data flow graph model. For these computations TensorFlow uses Python, whereas Scikit-learn
uses Cython (not to be confused CPython, the standard interpreter) [20]. Cython is a superset of Python that
translates Python code to C for increased performance.

A great advantage here for the Scikit-learn implementation is that speed-up can easily be obtained by altering
the parameters you pass when initializing the object. This includes pre-computing distances of the points
and possibilities to parallelize your code. When using TensorFlow, these options are not available by default
and should be implemented by the programmer himself. For our analysis we have disabled these options, as
this would lead to a biased comparison. The results can be found in table 8.1.

In general, a larger value for K leads to an increase in runtime. The time complexity of Lloyd’s algorithm is
often given as O(nkdi ), where n represents the number of data points, k is the number of clusters, d is the
number of dimensions our points and i is the number of iterations required for convergence [21]. Therefore
the occurrence of this trend was expected. There seems to be a strange jump for our Scikit-learn solution
whenever the number of clusters is equal to the number of dimensions of our datapoints. We were not able
to determine the exact cause of this.

5.4. Memory Requirements

As both solutions implement the same algorithm, the differences in memory usage can be attributed to dif-
ferences between standard Python and Cython.

TensorFlow is again at a disadvantage here, because Python is dynamically typed and does not know prim-
itives. Therefore it requires more memory than a similar solution in Scikit-learn, as this is again optimized
by using Cython. Dynamic typing in Python requires a lot of memory generally [5]. This can be mitigated
by specifying a desired datatype beforehand. Although this improved the performance of our TensorFlow
solution, the Scikit implementation still performed better.

The memory requirements of both solutions can also be found in table 8.1. We do have to take into account
that the functions we used for these measurements measure peak-memory usage of our implementation.
The memory requirements of the Scikit-learn implementation seem to be unaffected by increasing the value
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of K. Our TensorFlow solution uses more memory in all cases and memory requirements increase slightly
when K is increased.

5.5. Ease of Use

Ease of use is a less tangible property for software than matters like runtime or memory requirements. Ease
of use depends on a number of different properties such as lines of code required, difficulty of tweaking this
code and the likelihood that a programmer will create buggy code.

TensorFlow has a more low-level approach than scikit-learn. The clustering itself requires two lines of code
with scikit-learn, the first is a call to the K-Means object and the second assigns labels to the clusters. In our
TensorFlow implementation we required 24 lines to obtain the same functionality. Optimizing the perfor-
mance of our TensorFlow solution would require more code to be written, whereas this is already done in the
Scikit-learn implementation. Having pre-made algorithms ready to use leaves less room for a programmer to
introduce bugs into the program.

5.6. Suitability

From the results described above, we conclude that Scikit-learn is better suited to our needs than TensorFlow.
TensorFlow is a good option for designing your own machine learning methods or tweaking known algo-
rithms. It requires more knowledge on how the algorithm works since every aspect needs to be implemented.
Scikit-learn on the other hand only requires knowledge about how the algorithm behaves with varying inputs
and parameters.

When it is necessary to quickly research known algorithms on new problems, Scikit-learn is more a suited li-
brary. Since it offers pre-made implementations of different machine learning techniques it allows for quickly
researching of different techniques on the problem at hand.

For this project, the speed, reliability and ease of use of Scikit-learn are what made us choose this library over
Tensorflow.

5.7. Recommendations

The datasets required for creating accurate predictions are too large for our desktops to handle. When we
were confronted with the fact that our own computers could no longer handle the calculations we required,
we were advised to use Jupyter which runs ons one of the clients servers. Unfortunately, this did not provide
the increase in computing power that we required. When we wanted to use a sample from our dataset, ap-
proximately 5.0GB in size this environment ran out of memory when reading the file and was thus unable to
process it.

As seen above, TensorFlow already requires a substantial amount of memory. In the case where the client
would like to start building models using TensorFlow, they should make sure to allocate sufficient resources
for these models. We were not able to gain access to systems that had sufficient computing power ourselves.

The most important factor that should be considered is the low-level approach of TensorFlow. Current meth-
ods used by the client all present pre-made algorithms. TensorFlow offers no such thing and therefore re-
quires the programmer to implement all algorithms from scratch. A possible solution for this is Scikit-Flow
or Skflow. This library is a hybrid form between Sckikit-learn and TensorFlow. This offers a set of pre-made
algorithms to the user, while preserving TensorFlow’s functionality.
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Balance prediction

6.1. Time Series

A time series is defined as a sequence of data sampled over continuous intervals of time with equal spacing
between the data points. Time series analysis is the collection of methods that can be used for retrieving
valuable information from the data. One extremely important application of time series analysis is time series
forecasting. Using the characteristics extracted from observed values, a model can be created that predicts
future values.
The point in time from which the prediction is made is often referred to as the forecast origin [22]. The length
of the interval between the forecast origin and the point in time we make a prediction for is called the forecast
horizon [22]. In order to make accurate predictions it is neccessary to evaluate your forecasts. This is done by
calculating the error of the forecast.

6.1.1. Bank Balance as Time Series

The main goal of our application is to create predictions of a customers bank balance. Based on a customer’s
transaction history, we should be able to construct a model that could predict future values of the customer’s
bank balance.

Given the definition of time series in the previous section, we can model the bank balance of a single customer
as a time series. Using the available transaction data, we can construct a sequence of data points that has the
four critical properties for time-series data.

1. We can create a sequence of data points over a continous period of time.

2. These points are constructed from successive measurements of the customer’s bank balance.

3. The time period separating measurements is equal for each consecutive measurement.

4. Each period of time has at most one data point.

A lot of the applications of time series analysis involve financial markets, which have some important differ-
ences. A stock price for instance is much more volatile than a payment account. The prior changes every
second, whereas the latter only has three to four mutations in a day. This means that volatility is much less of
an issue for predicting bank balances than it is for stock prices.

In our case, we are also specifically interested in what time intervals give us the most accurate predictions.
This depends on the size of the forecast horizon that we want to use. If we want to do a 1-step forecast,
we would have to look at one month intervals. If we are interested in the accuracy of l -step forecasts (for
l = {28,30,31}) we should take our intervals to be one day. The difference in accuracy between 1-step and
l-step forecasts depends on the model we will use for forecasting. During the project we had to try different
models with different forecasting horizons.

13
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6.2. Prediction intervals

We have decided to predict one month into the future. This decision is based on a few factors. Firstly, most
people have a financial cycle of one month, e.g. rent, salary and groceries. During distinct days in a cycle
there can be huge fluctuations, whilst the difference between two cycles can still be very small. Therefore we
see more use in a prediction made for the next financial cycle than a prediction for a moment inside the same
cycle.
By predicting one day ahead, and repeating this for the amount of days in a month we can still achieve to
predict one month ahead. However, this prediction will be a lot less accurate than the prediction made based
on month values.
To get a good view of the balance over one month, for every day in the month we measured the balance and
eventually took the mean of this balance over all days of that month as the final average. This way we can get
a good idea of the overall balance this month, so we do not just "pick" a moment at random which can be
deceiving.

6.3. Errors

To compare our regression results we have picked three methods for the error calculation.

• Mean Squared Error. This measure uses the difference between the prediction ŷi , and the actual data
yi . Here (ŷi − yi ) is the error. We have no knowledge about the value of the error, this can either be
positive or negative, therefore we square every error and receive the squared error (ŷi − yi )2. Since we
can have multiple data points to calculate the error over (we use time series so we can calculate te error
over a longer period of time), we want to know something about the overall error. This over all error can
be calculated by taking the mean of all errors in the made predictions. The final measure we get is thus
the Mean Squared Error:

MSE = 1

n

i=0∑
n−1

(ŷi − yi )2 (6.1)

• Root Mean Squared Error The RMSE is an extension of the MSE. Squaring the errors can be deceiving,
big errors become exponentially large whilst errors below one become exponentially small. This draws
errors further apart. To overcome this the RMSE can be used. This measure takes the root of the MSE
which is not exactly the same as the absolute error, but brings the errors closer together. This gives us:

RMSE =
√√√√ 1

n

i=0∑
n−1

(ŷi − yi )2 (6.2)

• Mean Absolute Percentage Error The MAPE describes the error as a percentage. Firstly the difference
between the predicted and real value is calculated, secondly this error is divided by the real value to
scale the error. When multiple predictions are made, the average is calculated.

M APE = 1

n

i=0∑
n−1

| ŷi − yi

yi
|∗100 (6.3)

6.3.1. Error normalization

The input of our models is normalized using the z-scores described in Section 3.4.1. For this reason, the
predicted and real values are also expressed in z-scores. The difference between the real and predicted value
can be written as:

E = ŷ −µ
σ

− y −µ
σ

(6.4)

This can be rewritten as:

E = ŷ − y

σ
(6.5)
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The difference between the real and predicted value is expressed in terms of standard deviations. By normal-
izing our prediction like this we use the fluctuation of the specific account as as scaler. The real value of the
predictions is thus not used, but instead we scale this with the fluctuation measured on the account. By doing
this, absolute differences between real and predicted values on accounts with low fluctuations lead to higher
errors than the same absolute differences on accounts with bigger fluctuations.



7
Non machine learning models

In this chapter, we will describe the non machine learning models used for the regression analysis.

7.1. Average baseline and L-1

To get an idea of how well our models work, we have picked a baseline model to compare our more complex
models with. For this baseline, we picked the simple average model.

7.1.1. Simple Average Model

As a simple statistical model, we took an average over the previous data to predict the next data points. This
algorithm is trivial and is thus used as a baseline algorithm.(results can be found in Chapter 10). The algo-
rithm can be formulated as follows:
When we have a certain amount of data points:

X = (x(0), x(1), ..., x(n)) (7.1)

We predict the next number x(n +1) in the sequence by:

x(n +1) = 1

n

n∑
i=1

x(i ) (7.2)

7.1.2. (l-1) Prediction

As a second simple model, we predicted the next data point by simply taking the previous value as a prediction
for the next one.

7.2. Non machine learning

We do not want to have a narrow vision towards the techniques we considered to be suitable for this project.
Because we already have a few machine learning techniques in, we looked into other techniques suitable
for time series predictions. We found that statistical models can be used for predicting time series in the
financial context as well. Furthermore, we want to compare these models with the machine learning models
mentioned above and see which performd better on the data we have at our disposal.

7.2.1. Grey Model

Grey system theory is an interdisciplinary scientific field and was first introduced in 1980s by Deng [12]. Since
then, it has evolved and has been applied to many real world problems. The application fields of the Grey Sys-
tem involve agriculture, economy, meteorology, medicine, history, geography and more [11]. The Grey System

16



7.2. Non machine learning 17

model uses a certain frame of the last data points. The idea is thus that you predict a future data point by only
using a few older data points instead of all the historical data that is available. As input the algorithm needs a
sequence of positive numbers that represent the data points in time. GM(n,m) denotes a Grey model, where
n is the order of the differential equation and m is the number of variables. Here a description is given for a
GM(1,1) model. Because of its efficiency in calculation time, this is also the model that is often used in real
world situations [12]. For example:

X (0) = (820,840,835,850,890) (7.3)

Here you can see that a certain sequence is given. The window size in this example is 5. Which means that
only the last 5 data points are used to predict the next data point in the sequence. In general, the prediction
model works as follows:

First we denote a sequence of non-negative data as:

X (0) = (x(0)(1), x(0)(2), ..., x(0)(n)) (7.4)

Then an accumulator function (AGO) is used to smooth the primitive sequence. This function sets a certain
x on index k on the sum (accumulation) of all previous numbers. (In the example sequence this results in
X (1) = (820,1660,2495,3345,4235))

X (1) = (x(1)(1), x(1)(2), ..., x(1)(n)) (7.5)

Where
x(0)(1) = x(1)(1) (7.6)

and

x(1)(k) =
k∑

i=1
x(0)(i ) for k = 1,2,3, ...,n (7.7)

The next step is to generate the mean sequence of X (1):

Z (1) = (z(1)(1), z(1)(2), ..., z(1)(n)) (7.8)

where z(1)(k) is the mean of the data point on position k-1 and the one on position k:

z(1)(k) = (0.5x(1)(k)+0.5x(1)(k −1)) for k = 2,3, ...,n (7.9)

Now we constructed the input for the model. The model itself, GM(1,1), is constructed by a first order differ-
ential equation for x(1)(k). It is stated in literature, that financial time series can be modeled accurately with
a differential equation [11].

d x(1)(k)

dk
+ax(1)(k) = b (7.10)

The solution of this equation can be written as:

x̂(1)(k +1) = [x(1) − b

a
]e−ak + b

a
(7.11)

where x̂(1)(k+1) is the prediction x at time k+1, thus the prediction of the next data point. The terms a (called
developing coefficient) and b (called grey input) can be found by the OLS (ordinary least squares) method:

[a,b]T = (B T B)−1B T Y (7.12)

in which:

Y = [x(0)(2), x(0)(2), ..., x(0)(n)]T (7.13)
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and

B =


−z(1)(2) 1
−z(1)(3) 1

...
...

−z(1)(n) 1

 (7.14)

If you predict the value x̂(1)(k+1), you want to calculate the primitive value that is linked to this accumulated
value. Therefore the inverse AGO (IAGO) is performed and the predicted primitive value can be calculated by
the following formula:

x̂(0)(k +1) = [x(1) − b

a
]e−ak (1−e2) (7.15)

Suitability

The first advantage of this model is that it can predict future data point with decent to good performance
depending on the dataset, while only a few data points are used as inputs. In this [17] study, researchers
could predict future suicide rates in India based on 5 previous years (5 data points) with aGM(1,1) with 2-1%
errors. The error measure that has been used is the mean relative percentage error (MRPE) [17]. Secondly, the
Grey Model has no parameters to be set, except for the window size. In literature it can be seen that different
sizes of windows have only minor changes in the prediction accuracy [12]. Furthermore the GM(1,1) has
high computational efficiency when compared to machine learning methods, because no iterative training
needs to be done in order to achieve a prediction. A drawback of this system is that it is not easy to change
its input-output behavior, since it only takes numbers as inputs. SVMs and NNs are more flexible regarding
input-output. Finally the Grey models work only on positive data, bank balances are not only positive values.
At first we had hoped to solve this by for example shifting the bank balances so that all balances fall within
positive values. However since this proved troublesome, we decided to use the ordinary least squares model
instead, this is described in the next section.

7.2.2. Ordinary Least Squares

The Ordinary Least Squares method (OLS [9]) is the foundation of the grey model. However, the grey model
is extended with some features that make it only able to handle positive datapoints. Even after shifting the
datapoints or normalizing them, the grey model would not be able to give us the expected results. Therefore,
we have decided to implement the simple OLS method instead. For the OLS method, the inputs are averages
of previous months and the output will be the average for the month we want to predict. The amount of
input values can be denoted as the window size, in our case this was set to 5. This is stated in literature [12]
as the best size since higher sizes would not give enough increase in accuracy compared to the extra runtime
needed. We wanted to test this assumption for ourselves and plotted the result in figure 7.1. Because we
tested it for ourselves and the results match to what is seen in literature, we took 5 as the standard window
size to run the model. For other kinds of regression the grey model might give better results since it is a more
extensive kind of regression. For our project it was less suitable.
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Figure 7.1: This graph shows the median MSE for all client when using different window sizes for the OLS input vector. On the x-axis you
can see the varying window size and on the y-axis you can see the median of the MSE for all accounts predicted with and OLS of this
window size. For example, having a window size of 2 means that only the previous 2 months are used as input. On the graph you can see
that the error drops drastically when using higher window size, but from 6 onwards the error does not change that much.
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Machine learning model

The problem at hand can be seen as a regression problem. Given the data of an account in the previous
months, give an estimate of the change in balance for the next month. So we apply machine learning tech-
niques that are capable of regression. We opted to try a recurrent neural network and a support vector ma-
chine, however we only managed to implement the support vector machine. More about this can be found
in Section 11.3.

8.1. Support Vector Machines

Support vector machines (SVM) in their most basic form are used for classification [7], but they can also be
used for regression and time series predictions [19]. The big difference between SVM and traditional neural
networks (NN) is that NNs utilize empirical risk minimization principles and SVMs use structural risk mini-
mization [10]. This means that NNs try to minimize the deviation between the output and the training data
while SVMs try to balance fitting to the data with model complexity. If this balance is chosen correctly, this
counters over-fitting.

8.1.1. Support Vector Machine Regression

When performing support vector machine regression, we try to find a linear function that fits to the data.
However not all data fits to a linear function. To solve this, a mapping φ, is made from the input space to a
higher dimensional space, called the feature space. In this higher dimensional feature space a linear regres-
sion then corresponds to a nonlinear regression in the input space [19]. If b is a bias, and w the weight vector
then the output of this system is given by:

f (x) = (w ·φ(x))+b (8.1)

To find the optimal linear function, f , that fits to the data we want a function, R, that determines how good we
deem a certain function f to be. As mentioned SVMs try to both fit the data and keep the model complexity
low, to achieve this we can minimize a formula that contains two aspects. On the one hand the formula has
a term to penalize deviation from the training data and on the other hand there is a term which penalizes
model complexity.

R( f ) =
l∑

i=1
C ( f (xi ), yi )+λ||w ||2 (8.2)

Where C is a function which determines the deviation from result f (xi ) with its expected value yi (more
on these cost functions later), ||w ||2 is the square of the norm of the weight vector and penalizes the model
complexity. Finally λ is a parameter which determines the weight that should be given to model complexity
and in that way determines the trade-off between model complexity and deviation [19]. It can be shown that
the function f (x) from equation 8.1 that minimizes this expression can be given in the following form [18]:

f (x) =
N∑

i=1
((α∗

i −αi )(φ(xi ) ·φ(x)))+b (8.3)
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Where N is the size of the training data set and α∗
i ,αi ≥ 0. After minimization only some of the coefficients

(a∗
i −ai ) will be nonzero due to the nature of this problem. The data points corresponding to these coefficients

are called the support vectors [18]. Computing the dot product φ(xi ) ·φ(x) for every data point xi with the
new input x would take a long time since due to the mapping φ to a higher dimensional space this can be
computationally expensive. Luckily this is not necessary we can rewrite f (x) one last time:

f (x) =
N∑

i=1
((α∗

i −αi )K (xi , x))+b (8.4)

Where K (xi , x) is called the kernel function. The kernel function satisfies K (xi , x) =φ(xi ) ·φ(x) so it calculates
the dot product of xi and x in the higher dimensional feature space. For a lot of choice of φ this kernel
function is known and simple [18].

8.1.2. Kernel Functions

Many different kernel functions are possible. To be able to use a function K as a kernel function it needs to be
a positive definite function and statisfy Mercer’s Conditions [8],

K (x, xi ) =
∞∑
m

amφm(x)φm(xi ), am ≥ 0, (8.5)

∫ ∫
K (x, xi )g (x)g (xi )d xd xi ≥ 0, g ∈ L2 (8.6)

[8] gives a nice overview of commonly used kernels. When we have two or more possible kernel functions,
we can also combine these into a more complex kernel function simply by summing them [8]. We can also
create a multidimensional kernel by calculating the tensor product of multiple kernels [8].

8.1.3. Loss Functions

In equation 8.2 we introduced a loss function C which was needed to determine the deviation from result
f (xi ) with its expected value yi . This function needs to measure the distance between the obtained solution
and the desired one and can also be defined in many ways. [8] gives an overview of a few commonly used loss
functions for SVM regression.

8.1.4. Suitability

We can use support vector machine regression for time series prediction. According to Takens embedding
theorem predicting the next value should be possible by using m previous values. The value m is called the
embedding dimension [18]. So using these m previous values as input for a regression SVM to predict future
values should be possible. Support vector machines seem suitable to solve our problem, because they are
resilient against over-fitting and noise [10]. Both of these aspects are important in our problem since over-
fitting can happen easily, due to often fairly limited data from accounts. Support vector machines have also
been used in research before to predict financial time series. In [10] SVMs were for example used to pre-
dict the direction of the stock price index, they compared them to a back-propagation network (BPN) and a
case-based reasoning (CBR) and found that SVMs work better than both BPN and CBR. In [18] SVMs were
applied to various chaotic time series and compared to polynomial approximation, rational approximation,
local polynomial approximation, Radial Basis Functions with multiquadrics as basis function and Neural Net-
works. They found that their SVM was only outperformed by one technique (rational approximation) in one
out of the six tested instances.

8.1.5. Implementation

Pre-made implementations of SVMs for us to experiment with exist. LIBSVM [6] is a well established library
for SVMs. LIBSVM provides source code in both Java and C and it is also included in Scikit-learn. We used the
Scikit-learn implementation to test regression with SVMs.
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features median MSE per coid median SE
normalized average 2.550612131112 0.944186640142
difference 2.294911 0.562655

Table 8.1: Results for a SVM with a rbf kernel function and parameters C=0.2, epsilon=0.1, gamma=’auto’ (1/n with n = number of
features). Comparing the results for predicting the average bank balance or the difference between average bank balances.

XXXXXXXXXXnMonths
features month_name_value, avg_balance_difference avg_balance_difference

median MSE per coid median SE median MSE per coid median SE
1 2.256563 0.5490103 2.294911 0.562655
2 2.358577 0.590181 2.365729 0.590635
3 2.449823 0.586173 2.448636 0.590052
4 2.423830 0.588169 2.441525 0.597540
5 2.411315 0.586324 2.450461 0.594367
6 2.417386 0.599997 2.454182 0.601695
7 2.423333 0.582792 2.455026 0.587534
8 2.438030 0.596455 2.439002 0.597910
9 2.430606 0.590873 2.448806 0.591172
10 2.417942 0.596481 2.441453 0.599460
11 2.426432 0.592175 2.431141 0.592546
12 2.344148 0.580216 2.350842 0.583081

Table 8.2: Results for a SVM with a rbf kernel function and parameters C=0.2, epsilon=0.1, gamma=’auto’ (1/n with n = number of
features). The results compare the influence of the month_name_value parameter and the number of months used as input.

For the SVM various decisions had to be made, how they were made is described in the following subsections.
Presented results are from SVMs that were trained on the data of 10000 months from payment accounts ad-
hering to the restrictions made in Chapter 3. The validation is done for a sample of 1000 payment accounts on
each month after 01/01/2015 until 01/04/2016. All data is normalized according to the method described in
Chapter 3. The selections are compared based on two statistics. The median squared error of all predictions
and the median of the mean squared error per payment account. All errors are calculated on the normalized
average balance. The first gives insight into how good a prediction in general is and the second gives insight
into how well the SVM predicts certain payment accounts. For both the median is calculated, because the
mean is more sensitive to outliers. These outliers are months in which the average balance of the account is
unusually high. These outliers will be discussed together with the results in Chapter 10.

Loss Function

The Support Vector Machine for regression implemented in Scikit-learn uses an epsilon loss function [1] [8].

Feature Selection

The first decision that had to be made for the feature vector is whether to try and predict the average balance
of the upcoming month with the average balance of the previous months as input or whether to predict the
difference in the average balance between the previous month and the upcoming month, with the differences
of the previous months as input. For this two SVMs were trained. One with as input the past twelve average
balances and one with as input the past twelve differences. The SVMs used a radial basis kernel function
(rbf). The results of this can be found in Table 8.1.

From this we inferred that the differences seemed more promising, so we went ahead with those. Further
decisions for the feature vector remained. More features needed to be selected and the number of months for
input needed to be decided. For this a few tests were executed. First this was tested with just the differences
as input, while varying the number of months this input was given for. After that another parameter, the
month_name_value, was added. This is only added for the month that needs to be predicted. These are
calculated in the same way the average balance per month is calculated in Section 3.1.2.
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features median MSE per coid median SE
month_name_value, avg_balance_diff (1st and 12th month) 2.22692382723 0.543940351876
month_name_value, avg_balance_diff (1st and 12th month),
inflow (1st and 12th month), outflow (1st and 12th months),
inflow_nr (1st and 12th month), outflow_nr (1st and 12th
month)

2.03058373635 0.536919592243

Table 8.3: Results for a SVM with a rbf kernel function and parameters C=0.2, epsilon=0.1, gamma=’auto’ (1/n with n = number of
features). The results compare the influence of adding information about incoming and outgoing transactions.

Feature Name Description
month_name_value This is a value dependent on the month to predict. How it is calcualted exactly, is

explained in Chapter 3
month_diff_min_1 The difference in the average balance of the previous month
month_diff_min_12 The difference in the average balance of one year ago
inflow_min_1 The average amount of an incoming transaction in the previous month
inflow_min_12 The average amount of an incoming transaction of one year ago
inflow_nr_min_1 The number of incoming transactions in the previous month
inflow_nr_min_12 The number of incoming transactions of one year ago
outflow_min_1 The average amount of an outgoing transaction of the previous month
outflow_min_12 The average amount of an outgoing transaction of one year ago
outflow_nr_min_1 The number of outgoing transactions in the previous month
outflow_nr_min_12 The number of outgoing transactions of one year ago

Table 8.4: Table describing the final feature vector used for SVM regression.

From looking at the first row of Table 8.2, it can be seen that the SVM performs best with the input of only
1 month and that the month name value parameter does help a bit. However, it can also be seen from the
last two rows that the error goes down again once the 12th difference is added. So we decided to cut out the
intermediate values and take the first and 12th month as input. Finally, we tried adding information about
incoming and outgoing transactions for these months. The results are presented in Table 8.3.

Adding the data about incoming and outgoing transactions for different months does improve both measures
slightly, so these were taken into account in the final feature vector. This final feature vector is described in
Table 8.4.

Parameter Tuning

With this feature vector, we tried tuning the parameters of the support vector machine. This means tuning C,
epsilon and gamma (gamma is from the radial basis function). First epsilon was set at 0.1 and different values
for C and gamma were tested. For C, we went from 0.01 to 100 with each step increasing with a factor of 10.
For gamma we did the same, but for 10−7 to 100. This gave an optimal median squared error per record of
0.5187 and an optimal mse per account of 2.0759 for C = 1 and gamma = 0.01. To verify the default choice for
epsilon the same values that were tested for gamma were also testes for epsilon (while keeping C = 0.1 and
gamma = 0.01). It turned out that the optimal value for epsilon with these parameters was the 0.1 that was
used as a default.

Kernel

First to select features and do some parameter training an rbf kernel was selected, because this is the default
kernel in Scikit-learn. Scikit-learn also offers a linear, polynomial and sigmoid kernel. After the feature selec-
tion and parameter tuning, we wanted to verify if the choice of kernel was suitable for the chosen features.
The results from testing with different is presented in Table 8.5.

The mean SE column of this table shows that the rbf kernel did indeed perform best, however since we opti-
mized the parameters with this kernel this is not surprising. The error of the linear kernel comes quite close
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Kernel median MSE per coid mean SE
linear 2.21522466721 0.577426952614
polynomial 2.51036697357 0.612505440123
sigmoid 24.0424367063 7.96724012504
radial basis function 2.07597867799 0.518765938346

Table 8.5: Comparison of SVM results using different kernels. The final feature vector as described in Table 8.4 was used.

and the polynomial kernel is not too far off either. One interesting area of further research, would be to test
optimization of features and parameters with a linear or polynomial kernel. More on interesting areas of fu-
ture work can be found in Section 11.3. The sigmoid kernel function gave a very high error, however we did
not have enough time to investigate why this is the case.

To summarize, the final SVM used the feature vector described in Section 8.1.5. It uses a radial basis kernel
function and the parameters of the SVM are C = 0.1, epsilon = 0.1 and gamma = 0.01. More detailed results of
this final SVM can be found in Chapter 10.
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Design

Initially, we wanted to implement multiple different models and compare them. Later on we decided to stick
with a single model, because of planning issues. We still see great value in implementing different solutions
and comparing them, therefore we decided to build an overall framework that would enable this.

Figure 9.1: UML of AbstractProcessBlock. Figure 9.2: UML of AbstractModel

Two main classes of the framework are the AbstractModel and the AbstractProcessBlock. The AbstractModel
can be extended to implement a specific model. The AbstractProcessBlock are modules that can be used after
each other to process data. This makes it easy to pre-process data (like scaling and filtering), before putting it
into the model. A UML diagram of this part of the framework is given in Figure 9.1 and 9.2.

The AbstractModel relies on two more classes, the AbstractValidator and the AbstractError. An instance of
the AbstractValidator represents a validation method. An instance of the AbstractError represents an error
measure, for example the Mean Squared Error. This structure allows us to easily combine different validation
methods with various error measures. This would be very convenient when the programmer wants to run
different combinations on the same model in succession.

9.1. AbstractModel

The AbstractModel class defines an interface for implementing specific models. By doing this, we can easily
reuse code with different models. A model needs to be able to do two things, it needs to be able to train itself
on training data and it needs to be able to make predictions. It is also important, that we can validate these
predictions. When instantiating an instance of AbstractModel, the programmer will have to pass an instance
of the AbstractValidator as a parameter. Since models can use the same validation techniques, this is not
model specific and therefore there is a separate class for this which will be discussed later.

9.2. AbstractProcessBlock

The abstract process block defines an interface for implementing processing blocks. These blocks are small
modules which define a data operation. We can think for example of standardizing a column in a table,
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filtering out certain rows or creating new columns through operations on the existing columns.

These blocks can then be executed one after each other to create the input required by a certain model. This
structure allows for easy reuse of these data operations and gives a lot of flexibility. If we want to test our
model with a different normalization for example, we just exchange the normalization block for another one.
Furthermore this structure is flexible, since it does not put any constraints on the data processing. In this
structure a user can define both a very complicated pre-processor with many ProcessBlocks or a very simple
one that for example only does a simple normalization.

9.2.1. LinearProcessor

One special instance of the AbstractProcessBlock class is the linear processor. This processor takes a list of
ProcessBlocks as input in its constructor and executes them one after each other in the process() method.
Since it is an instance of AbstractProcessBlocks, one of the input ProcessBlocks could also be a LinearPro-
cessor. This allows us to bundle ProcessBlocks together in a LinearProcessor and reuse them in another Lin-
earProcessor.

9.3. AbstractValidator

The AbstractValidator is used by the AbstractModel class to determine how to validate the model. In our opin-
ion this should be defined in a separate class, because validation methods should not be model-dependent.
When instantiating an instance of the AbstractValidator, the programmer needs to pass an AbstractError as
a parameter. In its simplest form, a validator simply calls the error measure that has been assigned to it. In
more complex implementations, one can choose to create an instance of the AbstractValidator that represents
k-fold validation. The current desgin allows for combining different error measures with various validation
methods.

9.4. AbstractError

The AbstractError is the simplest part at the core of our framework. The AbstractError defines an interface
for defining error measures. In essence all these instances take an array of the predicted values and an array
containing the actual values. Our design allows for different error measures to be used by validators conve-
niently.

9.5. Testing

We tested our framework using unittest, a popular Python testing framework. We chose to use this, because it
closely resembles the popular Java testing framework JUnit. Each member of our team has experience writing
test in JUnit and therefore should be able to use unittest.

We created unit tests for most parts of our framework. Some of the abstract classes are not tested directly, as
they cannot be directly instantiated.

We achieved a satisfactory amount of line coverage at 100%. More importantly, we managed to achieve some
minor bugs that would have proven catastrophic. This includes returning incorrect data types, retrieving rows
instead of columns and vice versa.

We wrote three integration tests in order to check that these classes worked together as expected. We did not
uncover any new bugs through these tests.
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Results

10.1. Clustering

In this section, the results of clustering will be presented. As stated earlier in the report, our group put two K-
Means clustering implementations to the test. The results of both implementations algorithms are expected
to be roughly the same since they both implement Lloyd’s algorithm, which is an approximation algorithm
for K-Means clustering[14]. To visualize and interpret results of a clustering algorithm operating on high
dimensional data we used the Principal Component Analysis technique [2].

As expected, the clustering assignments and centroids are roughly the same for k=3 (figure 10.1). This com-
parison is done for k = 4, k = 5 and k = 6 as well. These plots can be seen in the appendix C in Figure C.1, C.2
and C.3. Since we use the same algorithm for both implementations and our four plots give the same results,
we have decided not to further compare the implementations with other values for k.

Figure 10.1: The left graph shows the PCA analysis of the clustering results on our dataset using Scikit-learn. The right graph shows the
PCA analysis of the clustering results on our dataset using Tensorflow. For both graphs, the K-means algorithm is used with k = 3. Both
scikit-learn and Tensorflow give the same result for k = 3.

10.2. Regression

For visualizing the results of the regression models predictions, our group used more than one error measure.
For all the results in this chapter, each model is tested on a sample of 1000 accounts from the validation set
we created in Chapter 3. The results are given in a histogram. This means that the results are plotted as a
distribution over the error measures. We tried different representations of the results and finally one was
chosen to compare the models. The next sections will describe these different representations. For the SVM
model, a plot of each of the different representations is given. Later when comparing the different models,
only one representation is used.
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10.2.1. Feature vector and Account errors

To calculate how accurate our predictions are, we can visualize errors of single predictions For validating how
well we can predict on distinct clients this measure has some limitations. To solve this, we have decided to
visualize the errors in two different ways.

Per feature vector

For every distinct feature vector, one single prediction is made. If we want to see the distribution of errors per
prediction, it is is useful to visualize the distribution of the feature vectors. The three different error measures
for the SVM visualized per feature vector is given in Figure 10.2, 10.4 and 10.6

Per Account

For every account, multiple predictions are made, depending on the time window. By visualizing the distri-
bution of average errors calculated per account we can, get an idea of how well a prediction for this client can
be made. The three different error measures for the SVM visualized per account can be seen in figure 10.3,
10.5 and 10.7

We have decided to compare the rest of our models based on the error per feature vector. The results in figure
10.2, 10.4 and 10.6 are smoother and give a clear distribution. This is caused by the fact that the error per
account is an average. A single bad prediction has an influence on the whole average and can mislead us into
thinking that all predictions are bad. To make recommendations for clients for which we can make accurate
predictions, the error per account can be a better estimate. To compare the results of a model, it is better to
compare distinct predictions than comparing an average per account.

10.2.2. Error Measure

As stated earlier, three error measures were considered: the mean squared error (MSE), root mean squared
error (RMSE) and mean absolute percentage error (MAPE).

The RMSE uses the root of the MSE, because the predictions per feature vector are no means, but just squared
errors, the RMSE of those predictions can be written as:

RMSE =
√√√√1

1

i=0∑
1

(ŷi − yi )2 =
√

(ŷi − yi )2 = |ŷi − yi | (10.1)

For this reason we have described the RMSE for distinct feature vectors as the absolute error.

The six distributions for the SVM can be divided in:

• In Figure 10.2 and 10.3 the distribution of the absolute error per feature vector and RMSE per account
can be seen next to each other.

• In Figure 10.4 and 10.5 the distribution of the absolute error per feature vector and MSE per account
can be seen next to each other.

• In Figure 10.6 and 10.7 the distribution of the absolute error per feature vector and MAPE per account
can be seen next to each other.

To compare the models, we have decided to use the RMSE for distinct feature vectors which is, as mentioned
earlier, the absolute error. The error is expressed in terms of the standard deviation (more about this in Sec-
tion 6.3.1). By taking the absolute error per feature (Figure 10.2), we thus visualize distribution of the the
difference between the real and predicted value in standard deviations.
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Figure 10.2: The distribution feature vectors over the absolute
error for the SVM model.

Figure 10.3: The distribution of accounts over the RMSE per ac-
count for the SVM model.

Figure 10.4: The distribution feature vectors over the MSE for
the SVM model.

Figure 10.5: The distribution of accounts over the MSE per ac-
count on the SVM model.

Figure 10.6: The distribution feature vectors over the MAPE for
the SVM model.

Figure 10.7: The distribution of account over the MAPE per ac-
count for the svm model.
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10.3. Baseline comparison

Each model was compared to a baseline. This baseline is described in Section 7.1.

10.3.1. L-1 Prediction

The L-1 prediction model, in which the balance of the previous month is used to predict the next month,
performs significantly better compared to the baseline. The results are plotted next to the baseline for com-
parison. In Figure 10.8 you can see that in the L-1 model more feature vectors can be predicted accurately.
The first bin contains almost 1400 predictions, while the baseline only has 900 predictions in the first bin.
More to the right you can see that both models have predictions that are very bad and give RMSE values
higher than 10.

Figure 10.8: The left graphs shows the baseline prediction model, taking the average of the last 10 months to predict the next one. The
right graph shows the L-1 prediction model, which takes the balance of the previous month as the prediction for the next one. On the
x-axis you can see the Absolute Error. This is expressed in terms of z-scores, because the data is standardized. The y-axis shows the
amount of feature vectors in the bins. For the baseline the median AE=1.02 and for the L-1 AE=0.77. Here you can see that in general, the
L-1 prediction model gives better results than the baseline.

10.3.2. Ordinary Least Squares Regression

The Ordinary Least Squares model uses linear regression to find a line through the data to predict next data
points. Unexpectedly, in Figure 10.9 the OLS method performs worse than the baseline. The median error of
OLS is significantly higher (1.53 against 1.02). Due to this accuracy OLS seems to be a bad predictor for bank
account balances.

Figure 10.9: The left graphs shows the baseline prediction model of taking the average of the last 10 months to predict the next one. The
right graph shows the OLS prediction model that uses the Ordinary Least Squares method to do a linear regression to prediction the next
one. On the x-axis you can see the Absolute Error which is in z-scores because of the normalization of the data. The y-axis shows the
amount of feature vectors in the bins. For the baseline, the median AE=1.02 and for the OLS AE=1.53. Here you can see that in general,
the OLS model performs worse in term of errors than the baseline.
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10.3.3. SVM Model

The results of the prediction made by the SVM model can be found here. To give a clear comparison, the
results are plotted next to the baseline prediction model. The SVM is implemented as described in Chapter 8.
As can be seen in Figure 10.10 the results of the SVM model are better than the baseline and also better than
the L-1 prediction method. The difference in the median error is about 0.05. From these results, the SVM
model as it is implemented now gives the best results compared to the other models we tested.

Figure 10.10: The left graphs shows the baseline prediction model of taking the average of the last 10 months to predict the next one. The
right graph shows the SVM model to make predictions. On the x-axis you can see the Absolute Error which is in z-scores because of the
normalization of the data. The y-axis shows the amount of feature vectors in the bins. For the baseline the median AE=1.02 and for the
SVM AE=0.72 . Here you can see that in general the SVM model performs better on this data than the baseline.

10.4. Error intervals

To get an idea of the error intervals of our models, we firstly compared the median absolute error of all models
on the same dataset. The SVM and L-1 models showed the lowest errors and therefore we have done some
more tests to get the 25th 75th and 95th percentile as well.

Position SVM L-1
25th percentile 0.29 0.31
50th percentile 0.72 0.77
75th percentile 1.57 1.69
95th percentile 4.50 4.46

Figure 10.11: The error intervals of our SVM and L-1 Model, measured per feature vector using the absolute error.

10.5. Results for accounts individually

For visualization purposes, we want to plot the course of the predictions for a few accounts. We are aware that
this does not provide us any generalized information about the results, but it can help both our group and the
project’s client to understand how the predictions perform on the validation set. We plotted these results for
2 account with a high RMSE and 2 account with a very low RMSE. We can see in Figure 10.12 and 10.13 that
for those two account the predictions are not good and both these accounts have a high RMSE. The accounts
with good predictions and thus a lower RMSE can be seen in Figure 10.15 and 10.16. Interestingly enough,
the results for the two account with bad RMSE seem to predict using a L-1 prediction, because almost every
prediction is very close to the real value of the previous month. Another account, plotted in Figure 10.14
also has this seemingly L-1 behavior, but only has two bad predictions due to a sudden increase in the bank
balance. For the 2 accounts with lower RMSE this does not seem to be the case and the prediction curve
follows the curve of the real values more closely.
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Figure 10.12: This graph shows the results of the prediction of the SVM on the validation set for one account in particular. This account
is selected, because it has a high RMSE, thus having predictions with a high error. On the x-axis of the plot you can see the months for
which the prediction was made. These month are the months in the validation set. On the y-axis you can see the balance of the account.
On this plots you can see that the model seems to give predictions very close to the balance of the previous month. The predictions
resemble the L-1 behavior.

Figure 10.13: This graph shows the results of the prediction of the SVM on the validation set for one account in particular. This account
is selected, because it has a high RMSE, thus having predictions with a high error. On the x-axis of the plot you can see the months for
which the prediction was made. These month are the months in the validation set. On the y-axis you can see the balance of the account.
On this plots you can see that the model seems to give predictions very close to the balance of the previous month. The predictions
resemble the behavior of the L-1 prediction model.
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Figure 10.14: This graph shows the results of the prediction of the SVM on the validation set for one account in particular. This account
is selected, because it has two bad predictions due to a sudden increase in the bank balance. But otherwise has fairly good predictions.
On the x-axis of the plot you can see the months for which the prediction was made. These month are the months in the validation set.
On the y-axis you can see the balance of the account. On this plots you can see that the model seems to give predictions very close to the
balance of the previous month. The predictions resemble the L-1 behavior.

Figure 10.15: This graph shows the results of the prediction of the SVM on the validation set for one account in particular. This account is
selected, because it has a low RMSE, thus having predictions with a low error. On the x-axis of the plot you can see the months for which
the prediction was made. These month are the months in the validation set. On the y-axis you can see the balance of the account. On
this plot you can see that the predictions are close to the real values.
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Figure 10.16: This graph shows the results of the prediction of the SVM on the validation set for one client in particular. This account is
selected, because it has a low RMSE, thus having predictions with a low error. On the x-axis of the plot you can see the months for which
the prediction was made. These month are the months in the validation set. On the y-axis you can see the balance of the account. On
this plot you can see that the predictions are close to the real values.



11
Discussion

11.1. Interpretation of results

In Chapter 10 it can be seen that our L-1 and SVM model give similar results. A slight difference between the
SVM and L-1 can be seen when comparing the median error of both models. The median error of th SVM
model is 0.05 standard diviations lower than that of the L-1 model. By investigating the results of individual
account for which predictions with significantly low of high RMSEs are made, we see a very interesting trend.
When investigating the accounts with a high error first (figure 10.12, 10.13) it can be seen that the predictions
made, come very close to the real values of the previous month. We interpret this result by concluding that
the SVM model taught itself the L-1 prediction model. Another argument for this assumption is that by doing
the parameter optimization for the SVM, we noticed that one of the most important inputs is the previous
month with only a few other inputs, but not all previous 13 months as input works best. This can also be seen
in figure 8.2.

Even though it looks like the SVM learned itself the L-1 prediction model, the results are slightly better so
it has an edge over the simpler model. Secondly, our group investigated accounts with a low error (figure
10.15, 10.16) and found even more interesting results. In the graphs it can been seen that these accounts are
predicted well but no L-1 trend can be observed in these predictions. Our SVM model sometimes predicts
differently than the L-1 model and predicts some accounts with a higher accuracy. The SVM model is thus
more dynamic and can learn more trends.

The trained SVM does not do well with predicting sudden high increases in bank balances either. This can
be seen in the 2015-11 and 2015-12 prediction in Figure 10.14. Where over two months the balance suddenly
increase to nearly 250000. Increases like these are almost impossible to predict because they can be caused
by a lot of outside factors.

Finally we wanted to investigate the distribution of the error of both the models to be able to give better
recommendation and interpretation of which model works best. Figure 10.11 shows the error distribution
for the SVM and L-1 prediction based on percentiles. These percentiles can give us a better understanding of
what the distribution of the errors is. For example we can now say that the top 25 percent of our predictions,
made with the SVM model have a predicted value that deviates less than 0.29 standard deviations from the
real value.

It can be seen that the median is very similar but the 95th percentile is lower for the SVM model so in general
you can predict more accounts more precisely with the SVM. The other percentiles are also akin and no real
improvement of one of over the other can be found. By looking at these results in general we can say that
the SVM is this state gives only little improvement and takes longer computation time over the L-1 because
of the necessity of the training-phase. Our group recommends to further investigate this behavior and try to
improve the SVM because there are still a lot of improvements that can be made that expectedly improve its
accuracy. Even though from the research it is clear that machine learning is more promisable than simple
statistical models, for now we can only say that the results are slightly better. To be able to say this with more
certainty our models have to be improved and more test should be ran.
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11.2. Recommendations

Having worked with the client’s systems for the past couple of weeks, we noticed a number of things the client
could do to better facilitate machine learning solutions in the future.

11.2.1. Infrastructure

Machine learning requires large data sets in order to give accurate predictions. During the course of this
project, we did not have access to sufficient computational resources. It was not surprising that our laptops
could not handle the computations that we required for our models. However, when we could not run our
models on Jupyter environment this was rather inconvenient. Reading a 5GB sample of our dataset was too
much for the systems that were available to us. In the case that our client wants to take machine learning
systems into production, it is of paramount importance that sufficient computational resources are made
available.

11.2.2. Machine Learning Libraries

Using TensorFlow to create models similar to ours. The client would however have to consider that this would
take a significant amount of time, as all algorithms would have to be implemented from scratch.

Based on our own experience, we would suggest that the client looks into Scikit-learn. Another option is
Scikit-flow, which offers TensorFlow’s functionality in combination with Scikit-learn style syntax and pre-
made algorithms. The latest version of TensorFlow ships with Scikit-Flow by default, however the client’s
systems ran an older version of TensorFlow and were not compatible with the latest version.

11.3. Future work

Eventually we have some future improvements that can be made.

Clustering

Firstly, we have not included the clustering in our main model. The primary reason for this was that with
the visualization created using PCA we were not able to distinguish clear clusters. Even though we have
used multiple dimensions to cluster our clients on, there were no separate clusters of clients to be seen. The
clustering can be improved by picking more features to cluster on and trying different clustering methods.
To improve the feature selection and visualisation, a different technique for dimensionality reduction can be
used such as t-SNE [23].

Cutting the data

Secondly, when deciding on the inputs for clustering and the regression we had to make a lot of cutting deci-
sions. For example, we had to decide which accounts were active enough to make a prediction. In the future
it might be interesting to test whether it is possible to make predictions for inactive or outlying accounts as
well.

Predicting further ahead

For now, we only made predictions one month into the future. It would be very interesting to see how well
into the future we can make predictions about our clients as well.

Normalization

Furthermore, to validate our model we used the MSE, this MSE is calculated as the difference in Z-score
between the predicted and the real value. For now we used the Z-score to normalize our data. As described
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in chapter 3, this deviation can be deceiving. Therefore, it would be interesting to test another normalization
method.

Error measures

Changing the normalization might also affect the MSE, for now the MSE is calculated on the Z-scores, but
because we have seen that those can be deceiving. A low MSE does not necessarily mean that the prediction
is good. It might be interesting to try different approaches for expressing the real and predicted value such
that we can measure the error differently.

Parameters SVM

Eventually we did not have enough time to fully optimize our SVM. Optimizing multiple parameters of an
SVM can be seen as an optimization problem itself and it can be very time-consuming as changing one pa-
rameter can affect all the others. For now we have slightly optimized our parameters, but in the future this
has to be done more extensively.

Features SVM

Due to time limitations we did not have enough time to perform extensive feature selection. The DWH con-
tains a lot of information about payment accounts and the users of these payment accounts. With more time
and research we would want to investigate further which interesting data for features is stored in the DWH.

Kernel SVM

For the kernel function of the SVM most tests were done using a radial basis function. However as mentioned
in Section 8.1.5 both the linear kernel and polynomial kernel had errors that were not far off from the error of
the radial basis function. It would be interesting to do more extensive testing with these different kernels.

Training input size SVM

Finally the last thing for the SVM we would really want to investigate further is what happens if these SVMs
are trained on bigger sets. So far these were trained on relatively small sets (the data of 10.000 months of
random payment accounts, see Section 8.1.5).

More machine learning methods

At last, during our process we have decided to only implement an SVM as a machine learning technique
whilst we were originally planning to implement a recurrent neural network (RNN) as well. All information
gathered in the research phase about the RNN can be fount in our research report in appendix D. This infor-
mation combined with our framework makes it easier to implement a RNN model as well. One of our first
improvements might be comparing a RNN model with our current models.
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Reflection

In this chapter we will reflect mainly on the process and the work we have done during the project. Some
parts of the project went very well and smooth, while other difficulties should be handled differently in the
future. We have tracked our progress over the weeks and the difficulties we encountered in Chapter 13.

12.1. Data processing

During all of our previous courses and projects we have always worked with clean data.

During this project we encountered a few difficulties of working with real data:

• The data warehouse was complex and overwhelming. The documentation was over 500 pages and it
was sometimes unclear how to best access some date we needed.

• Some values were missing and or incorrect. The data contained a lot of outliers, for example a lot of
people had no age, or a default age that had never been set.

• Most of the data had to be normalized to get good results an be able to compare results with one an-
other.

We had not really encountered these problems in other projects before, the data we had to work with has
always been clean and was mostly already provided. Because we did not have any experience with these
problems we did not take them into account well enough in our initial planning.

Because of this we were sometimes lashing out in the dark with the problems we had, or only realized fairly
late that they even existed. A lot of literature can be found about the best way to process the data, but we were
unsure of the best approach. Furthermore because we did not know some problems even existed, it was hard
to identify them and find a suitable solution.

12.2. What we learned

By being thrown into the deep during this project, we have gained new insights into how real world companies
and projects work and with that learned a lot. One of the greatest lessons is that data processing is a really big
and important part of the process and can not be underestimated. By doing this we have learned more about
how to clean and normalize the data in a way appropriate for the data.

In a future project we would consult specialists within the company earlier in the project lifetime. In the
fifth week, our colleagues from Utrecht have helped us a lot with problems we had been coping with from
the beginning of the project. They have been working with the company for a long time and had a lot of
experience with the data warehouse. Consulting them earlier would have saved us a lot of time.
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12.3. Planning

During the first week of the project we sat together with our supervisors from the client’s side and the TU.
This gave us enough knowledge to write our project plan (appendix A). From the first week one we made a
planning, planning ahead until the end of the project. After five weeks we realized that we had spent too
much time on processing the data, and getting familiar with the systems to stick to our original planning. In
week five we adapted our original planning and decided to drop some of our planned tasks (Appendix B).
Furthermore we also planned a mid term meeting with a supervisor form the TU to consult him on these
changes.
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Process

13.1. Weekly progress

In this chapter we will present an overview of our progress on a week by week basis.

13.1.1. Week 1

During this week most time was spent on setting up the project. Unfortunately, not all legal arrangements
had been completed. Therefore it was not possible for Max and Bernd to work on site and they had no access
to the client’s systems. Felix and Chantal received all required material during week, but Max and Bernd only
got this in the second week.

Apart from that, the purpose of our project was not yet clearly stated. Therefore we had to specify this as well.
It took some time to get this straight with the client and our supervisor.

Once the project description was clear and we had set up most of our tools, we started with the research phase
and our project plan.

What we planned to get done:

• Setting up organizational structure between members.

• Meetings with client and supervisors.

• Orient toward relevant scientific topics

• Arranging the SCRUM Plans and project plan.

• Produce: requirements + organizational document (project plan)

What actually got done:

• Set up organizational structure between members.

• Meetings with client and supervisors.

• Orientation through literature study.

• Arranging the SCRUM Plans and project plan.

• Stating requirements for the end product.

• Produce: requirements + organizational document (project plan)
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Difficulties

• No complete access to facilities for our entire group and thus not able to start as planned.
Solved by: Max and Bernd worked from the university on their own laptops. In week 2 they had to set
up their accounts at the client’s location.

• Unclear project description.
Solved by: Felix and Chantal discussed this the first day with the supervisors, after consultation with
the rest of our group a clearer description was written.

13.1.2. Week 2

The second week we mainly focused on our literature study. We discovered that there was a lot of useful
information to be found. In consultation with our supervisor, we decided to finish the report in the third
week so that we could deliver a more in-depth research report.

What we planned to get done:

• Literature research of state of the art algorithms.

• Produce: Literature research, which will conclude on the algorithms that are interesting to look at fur-
ther during the next weeks.

What actually got done:

• Literature research of state of the art algorithms.

• Literature research, which will conclude on the algorithms that are interesting to look at further during
the next weeks.

Difficulties

• A lot of decisions had to be made and various questions still remained that where hard to answer with
the research we had performed at that time.
Solved by: Delaying the deadline for the report to the third week.

13.1.3. Week 3

This week we finished the research report and started with discovering the data by visualizing statistics and
running some queries.

The biggest setback in this week was the overwhelming size and complexity of the data warehouse (DWH).
The documentation of the warehouse was a file of over 550 pages and it was hard to filter out good accounts.
Our basic queries were already quite long and took 10 minutes to run on average. Therefore it took us more
time than expected to explore the data.

This week we made some decisions about the benchmarking as well and made scripts in Python to visualize
data from the data warehouse.

What we planned to get done:

• Constructing test cases based on real data from our data warehouse.

• First implementation of 2 different algorithms.

• Create visual representation of results
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What actually got done:

• More literature research about the benchmarking and data analysis.

• Deciding on how to benchmark.

• Explore structure of data warehouse, starting with the queries.

• Documenting and visualizing useful data.

• Creating scripts for visualizing data in Python

Difficulties

• It took us some extra time to finish the benchmarking and data analysis part in the report.

• Getting to know the basics of our data warehouse alone took us a few days, after that it was also com-
plicated to visualize useful data and understand what we were dealing with.
Solved by: We made sure to first work with the data and sort out what we needed from it. Therefore we
were forced to move most of the tasks planned for week 3 to a later moment in the project.

13.1.4. Week 4

During the fourth week we made a decision to cluster the clients before making a prediction. This was not
something we planned to do beforehand, hence our planning was not correct anymore.

This week we spent a lot of time querying the data warehouse to obtain all information needed for the clus-
tering and prediction itself. Apart form the querying, we also had to start normalizing the results properly to
make sure they have similar magnitudes relative to each other.

What we planned to get done:

• First implementation of a 3rd algorithm.

• Improving previous algorithms

What actually got done:

• Improving our research report with obtained results from the DWH.

• Normalizing old queries in a suitable way.

• Deciding to start clustering our customers for better results.

• Literature research for a suitable clustering method.

• Deciding the feature vector for the clustering.

• Writing queries for the feature vector for clustering.

Difficulties

• Our results from the data warehouse were too messy and hard to compare
Solved by: Normalizing most of the data in a way suitable for each individual entry.

• We realized that we did not have enough information about one account to make a single prediction
Solved by: Clustering the accounts to obtain more similar accounts for training.

• Because we only now started with the clustering we had to rework our planning, therefore again it was
hard to finish the tasks planned for week 4
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13.1.5. Week 5

During the fifth week, we did a midterm review to see what we had achieved so far and what still had to be
done.

We had spent a lot more time with the data analysis than expected and also inserted the clustering in our
solution. Therefore we fell behind on our initial planning.

In response we adapted our planning to make it useful again. The biggest difference lies in the regression
approach. In our initial plan we wanted to implement two machine learning algorithms for the regression.
Keeping in mind that it is better to deliver one working algorithm than two concepts, we decided to research
the clustering properly and only implement one machine learning algorithm for the regression.

Furthermore we had a meeting with a TU supervisor to talk about these difficulties. Something that came up
here was the software engineering goal of this project. Up until now our project tended more to a research
project than a software engineering project.

This caused us to focus a bit more on the software engineering. In consultation with our TU supervisor, we
decided to make some changes to take software architecture more into account.

Keeping in mind that the original plan was to implement more than one machine learning algorithm to com-
pare different approaches, we decided to build a framework where various models can be implemented. In-
side this framework, it is easy to compare different models on one data set or try different data sets on one
model.

During this week, we got to finish the feature vector for the clustering and got quite far with the feature vector
for the regression. Apart form this we focused on removing outliers from our data set.

At last, we met with some colleagues from the innovation lab in Utrecht. They had been working on a balance
prediction model as well and were able to give us a lot of tips. Furthermore, someone who had been working
with the data warehouse for over 30 years helped us a lot with writing queries.

What we planned to get done:

• Testing/Bench-marking/comparing the algorithms.

What actually got done:

• Implementing a suitable clustering method.

• Filtering out useful clients.

• Creating the feature vector for the clustering.

• Simple clustering of the filtered clients.

• Start with building of the feature vector for the regression.

• Making a revised planning for the upcoming period.

• Meeting with a TU supervisor to talk about our progress.

Difficulties

• We had fallen behind on our initial planning.
Solved by: Making a revised planning for the weeks to come.

• There was not enough time left to finish all our initial plans, because we had adopted clustering into
solution as well and because we needed to focus more on the software engineering aspects.
Solved by: In the adapted planning, we decided to only implement one off-the-shelf machine learning
algorithm, namely the SVM.
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• We noticed a lot of outliers in our data, which made the clustering underperform.
Solved by: Our colleagues at the innovation lab had more knowledge about the DWH than we did, they
helped us by forming a query that filtered out almost all outliers. They also explained us how we could
store tables inside the data warehouse since we previously did not have access to that.

• One of the main aspects is still software engineering and we have not been doing that so far, thus we do
not have that much to hand in for the SIG review
Solved by: Our TU supervisor advised us to postpone the SIG deadline one week to make sure we can
get enough feedback. After this meeting we decided to start implementing a framework for our model
to keep working on software engineering too.

13.1.6. Week 6

During the fifth week there was not much time to implement the framework, so we started with this in week
6. To guarantee a good quality of the framework we had a lot of discussions about the structure during this
week.

When the framework was finished we successfully implemented two baseline models (L-1 and 12 month avg)
and started on implementing the SVM.

This week we also finished the feature vector for the SVM. Also we set aside a final validation set, which we
will not touch anymore until the final validation.

In this week the clustering showed us some good results, because the adapted normalization and removing
of the outliers.

What we planned to get done:

• Fine tuning the clustering method.

• Building regression feature vector.

• Implementing baseline.

• Implementing Grey model.

What actually got done:

• Fine tuning the clustering method, mainly by normalizing input.

• Implementing k-means in TensorFlow

• Finishing regression feature vector with all useful clients.

• Finishing average baseline.

• Starting with Grey model.

• Finishing a simple framework.

• Starting with applying the basic SVM to our dataset

• Setting aside a validation set inside the DWH.

Difficulties

• Our client did not agree with the decision to drop the second machine learning algorithm and thus
TensorFlow.
Solved by: After discussing a solution with our group, we met again with the client. Our proposal
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was to implement K-means in TensorFlow, the same clustering method we had already used with the
Scikit-learn library. This way we could compare TensorFlow with a more high level off-the-shelf imple-
mentation. After this comparison, it is easier to support our decision to not build a Recurrent Neural
Network in TensorFlow

• Technical problems with the facilities provided by our client:
- On friday our VDI did not work due to "maintenance-issues". Because of this, we were not able to
access our work since our normal work environment is not allowed to be connected to Git or have
Python installed.
- We cannot upload files larger than 25mb to the Docker via the access page in a web browser.
Solved by: We focused more on the report and things we were able to access, unfortunately the whole
weekend our VDI remained useless. After contact with the help desk a ticket was submitted to solve the
problem.

13.1.7. Week 7

In the beginning of this week our VDI was still down. This gave us some time to focus on proper documenta-
tion and updating the report.

Because we had to hand in our SIG code for the code review this week, we also spent some time rearranging
and completing the framework and writing a lot of tests.

After our "week 7" meeting with our TU supervisor, we realized that we had a strangely high MSE. Our TU
supervisor pointed this out to us, but we could not pinpoint directly what the cause was. After some consul-
tation with the whole group, we found out what the problem was.

What we planned to get done:

• Finishing the input vector for the SVM.

• Implementing SVM.

What actually got done:

• Finishing the framework.

• Testing the framework.

• Comparing the TensorFlow implementation against the Scikit-learn implementation.

• Adding the portfolio feature to the clustering

• Creating the complete feature vector for regression and put it on the Docker

Difficulties

• Strangely high MSE on most of our models
Solved by: Consulting with our whole group, walking through our process and understanding a bit
more of what we had to normalize and what the interpretation is of the results we acquired. By doing
this we found that the normalization was not performed correctly. From this we learned that we have
to take a few steps back to reflect on what the results mean and whether they are feasible.

• The docker is only able to run a 1% sample
Solved by: Consulting with the client. No solution has been found, because the docker is limited in
memory. Running the code on our VDIs is the only solution so far. Having more computational power
and memory is a recommendation towards the client when they want to scale these kinds of solutions
in production.
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13.1.8. Week 8

This week we have been working to get results for the model by performing predictions on the validation sets.
We could not use the feedback from SIG since we delivered the code one week after the deadline, because of a
deadline extension. However we also cleaned the code and made some small changes to the framework. Un-
fortunately, one group member got ill during this week and had to rest all week on doctor’s orders. Therefore
we were lighter on resources this week. We contacted the Student Advisors about this problem and we also
mailed the Project managers from both TU Delft and the client.

What we planned to get done:

• Visualizing results.

• Benchmarking the model.

• SVM improvements.

• Restructure code with new framework implementation.

What actually got done:

• Visualizing results.

• Benchmarking the model.

• SVM improvements.

• Restructure code with new framework implementation.

• Restructured report to fit the rubrics and feedback of our TU supervisor.

Difficulties

• Chantal got ill and could not come to the university for four days.
Solved by: When she got better, she immediately consulted the study advisors. Apart from that, the rest
of the team kept working.

• The input data for our algorithms on still had some NULL values in them. This prevented us from
performing normalizations and this needed to be fixed as soon as possible. Solved by: In the data
warehouse, we adjusted the queries to make sure no NULL values were present. There were some
calculations that needed division and some divisors were 0. The result of this division needed to be a 0
and not a NULL.

13.1.9. Week 9

In the beginning of the ninth week, we received our SIG feedback, it was a bit later than expected, but we
started immediately after we received it. We received a four star rating which means better than average
maintainability. The comments were that a higher rating was not obtained due to unit size and duplication.
Mostly our main methods still had a lot of duplication and was not divided into methods a lot. Finally we
also received the comment that we did not have a lot of test code compared to the other code. We started to
calculate the MSE based on distinct predictions instead of averages per account and came to the conclusion
that this reduced our MSE significantly. After further investigating this, we came to the conclusion that our
normalization had some problems and this affected our predictions and thus the errors. This could be fixed
quickly after detecting where it went wrong. During this week, we further investigated predictions with high
MSEs. We discovered that something was wrong regarding the monthly averages used in the feature vector.
This forced us to query all the training and visualization data again and rerun all our models to obtain the
correct results.
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What we planned to get done:

• Running untouched validation set.

• Finishing everything that is left.

What actually got done:

• Improving test coverage.

• Processing the SIG feedback.

• Removing outliers from average and standard deviation calculation and thus fixing the normalization.

• Re-querying our feature vectors

• Running the final validation sets to get final results on all our models.

• Finishing the final report.

Difficulties

• We got very small errors and felt something was wrong.
Solved by: Looking at individual cases of small errors, we came to the conclusion that our normaliza-
tion was imperfect and changed it.

• By investigating single predictions we came across errors in the monthly averages.
Solved by: Recreating all training and validation data and run all our models again on the good datasets,
to create correct plots.

• SIG feedback, duplication, unit size and testing.
Solved by: We immediately processed the SIG feedback. We made extra methods in the mains to re-
duce code duplication there. Extra tests were also written to reduce the imbalance between testing and
regular code.

• Max his laptops were stolen. Therefore he could no longer proofread our report.
Solved by: We sent excerpts of the report for Max to spellcheck. His other tasks were already completed
and therefore required no solution.

13.2. Group

At the beginning of the project, our client provided us with some useful tools to keep track of our project.

13.2.1. Jira

During the project our client provided us with an issue tracker. Through this tool, we could easily keep track
of the tasks that had to be done and who was going to do them. Over the weeks we got used to the tool and
used it more during each sprint.

The tool is able to provide us with a lot of figures about the created tasks and thus the work delivered, two of
those can be seen in Figure 13.1 and 13.2 .

13.2.2. Stash

For git repository management our client provided us with Atlassian Stash, with this program we could easily
manage our git repository. It allowed us to keep a good overview over the network flow and easily review the
created pull requests.
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Figure 13.1: Created and resolved issues against the
days of our project.

Figure 13.2: The amount of issues assigned to individ-
ual group members.

13.2.3. Communication within the group

During the project we had a thought through communication structure within the group. Every day we would
start with discussing how far we have gotten and what had to be finished before the end of the day and at the
end of the week.

Every Monday, we would have a big team meeting to evaluate our progress until that week and look at the
project broad planning. In this meeting, we would discuss the tasks that needed to be finished in the up-
coming week. These tasks were mostly divided amongst group members on Monday. Usually a few remained
unassigned, those were picked up later in the week by team member who had already completed their as-
signed tasks.

Because we always worked at the same location, it was easy to consult each other when decisions had to be
made. Occasionally when problems occurred or difficult decisions had to be made, we sat down with our
whole group to discuss what was going on and find a suitable solution together. This way we kept everyone
up to date with the decisions we made and thought all steps through carefully.
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Conclusion

We have shown that it is possible to create accurate predictions of bank balances through the use of support
vector machines. To make these predictions, we have built a framework in Python for our client. Despite
the client’s initial interest to implement our machine learning algorithms in TensorFlow, we decided to base
this part of our framework on Scikit-learn. This framework is better suited for rapid research into already
existing techniques. The modular design of this framework allows the client to add desired functionality to
this system.

The main question for this project was: How well can we predict bank balances? With the model we have
created, we have managed to accurately predict the balances of a large group of clients. However, for the
remainder of the clients we feel that our predictions are not accurate enough to be used in practice. To make
our predictions good enough for all clients, many things could be done to improve our model.

Our machine learning model performed better than our baseline and non-machine learning models. For our
client, this means that machine learning algorithms are a viable tool for creating bank balance predictions.
We can therefore state that we were successful in achieving the project’s main goal.

Initially the client had wished to have these models implemented using TensorFlow. We identified that this
was not in their best interest, as it was not the most suitable tool for the system that they wished for. The
framework that we have created during this project is better suited for the client’s purpose of integrating
existing machine learning techniques into their environment.
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Project Plan

A.1. Project Assignment

In this section we will give a short description of our client and why they are interested in our project. We will
also describe the purpose of this project. After that we will discuss the specification our assignment

A.1.1. Project Environment

The client of this project is a large Dutch bank holding company, one of the leading financial institutions in
the Netherlands. Their main focus is providing customers with mortgages, savings accounts and payment
accounts.
The client also develops IT applications to give customers insight into their financial situation.

A.1.2. Project Goal

The goal of this assignment is to develop a prototype of an application that will make bank balance predic-
tions by using Machine Learning techniques. A secondary objective, is to evaluate whether such a system can
be built using Google TensorFlow and how this could be integrated in the existing sytems of the client .

A.1.3. Assignment Specification

The project team will have to create a prototype of an application that satisfies the goal specified in the pre-
vious section. The assignment is split into two main timeframes. In the first of these, the team will research
feasible machine learning techniques for time series prediction and Google TensorFlow implementations of
these methods. The second phase concerns implementation of the actual prototype and tuning of the ma-
chine learning methods employed.

A.2. Requirements

Must Haves

• Take user data from the clients SQL database to use as input.

• Output personalized prediction of bank balance for an upcomming time slot.

• The algorithm makes use of a Machine Learning method to learn the behavior of the client.

• Report on research in literature for state of the art techniques for predicting time series and comparing
them. By this comparison a decision will be made on the best option for our program.
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Should Haves

• Simple GUI in which the client can assign a user for prediction and get a prediction of the bank balance
in the form of a number.

Could Haves

• Possibilities of parameter tuning in the GUI.

• Extra visualization options.

Won’t Haves

• No financial advice will be given except for a prediction of the bank balance of the specific user.

A.3. Time Planning

Week 1

• Set up organizational structure between members.

• Meetings with the client and supervisors.

• Orientation on scientific topics

• Arranging the SCRUM Plans and Product plan.

• Produce: requirements + organizational document (product plan)

Week 2

• Literature research of state of the art algorithms.

• Produce: Literature research which will conclude on the algorithms that are interesting to look at fur-
ther during the next weeks.

Week 3

• Constructing test cases from real data from our databases.

• First implementation of 2 different algorithms.

• Implement visual representation of results

Week 4

• First implementation of a 3rd different algorithm.

• Improving previous 2nd algorithms.

• Improving previous 3rd algorithm.

Week 5

• Testing/Bench-marking/comparing the algorithms.
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Week 6

• Making a decision on what algorithm to implement in more detail.

• Decide on what improvements still can be done and implement them.

Week 7

• Further implement the final system with the chosen algorithm and improve this.

Week 8

• Starting with the finishing of the report.

Week 9

• Further implement extra features (Could have)

• Finishing the report.

Week 10

Final week with presentations. All preparation for the final presentation will be made in this week. Maybe
very small changes to documents and our software solution can be made.

A.4. Organization of the process

A.4.1. Agile Process

Our group will be using an agile approach to create this software solution. This means that we will use a
variant of the SCRUM method (link).

A.5. Organization of the process

A.5.1. Agile Process

Our group will be using an agile approach to create this software solution. This means that we will use a
variant of the SCRUM method (link).

A.5.2. Versioning our software product

For the versioning of our product we will use Stash (Git). We will be using the internal repository of out client.
This is the tool of choice of the client and offers us excellent version control.

A.5.3. Report

We have decided to work on our report 4 hours per person each week. This will ideally be every Thursday
morning.
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A.5.4. Roles

We would like to assign certain roles to different members. This because we can always address the right
person for questions and or tasks that need to be fulfilled.
Chief communication: Chantal Olieman
Chief Scrum: Max Spanoghe
Chief Versioning: Felix Van Doorn
All team members bear responsibility for developing, testing and reporting throughout the course of the
project.

A.5.5. Work location

The team will work at the client sit in Den Bosch for two days a week starting from Week 2. The other days the
team will work in Delft, preferably at EEMCS.

A.5.6. Meetings

Monday 9:00 Sprint Meeting

Monday 10:00 Meeting with Cliff & Wouter

Thursday 14:00 Meeting with Thomas

Friday 09:00 Sprint Review

Tuesday, Wednesday, Thursday 9:00 Daily scrum meeting.

A.6. Quality Assurance

In this section we will describe what measures will be taken into account to guarantee the quality of the
product.

A.6.1. Modularity

As we are creating a prototype, modular design of our product is essential. This would allow our client to
easily pick what code they would like to reuse for a new version of this software. This will also allow us to
smoothly exchange our classifier of choice.

A.6.2. Accuracy

As our application will employ Machine Learning techniques, accuracy of these techniques is essential to
deliver a good product. An inaccurate classifier will render our prototype effectively useless.

A.7. Project Risks

In this section we will briefly describe all factors we have identified as forseeable risks at the start of this
project.

A.7.1. Security

The data we will be working with during the course of this project is considered to be sensitive. It is of the
utmost importance that we uphold the security measures requested by the client These measures include
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removing smartcards from laptops, not working with sensitive data on (semi-) insecure networks and sharing
files containing sensitive information on external services.

A.7.2. Lack of data

In order to make accurate predictions for a given customer, this customer needs to have sufficient data avail-
able to work with. If the customer is a new customer, it is almost certain that our prototype will be unable to
make a reasonable prediction for this customer. Although it is unlikely that the majority of the customer will
fall under this category, we will also be examining ways of dealing with such cases properly.



B
Mid Term Update

Mid-term Update

The planning we made turned out to be a little bit optimistic on the retrieving of the data. We spend a lot
of time getting to know the data warehouse and after that building our queries. Below you can see our main
tasks in the past four weeks.

Week 1

• Set up organizational structure between members.

• Meetings with the client and supervisors.

• Orientation on scientific topics

• Arranging the SCRUM Plans and Product plan.

• Stetting our final guidelines for the end product.

• Produce: requirements + organizational document (product plan)

Week 2

• Literature research of state of the art algorithms.

• Produce: Literature research which will conclude on the algorithms that are interesting to look at fur-
ther during the next weeks.

Week 3

• More literature research about the benchmarking and data analysis.

• Deciding how to benchmark.

• First feeling of the database, getting started with the queries.

• Documenting and visualizing useful data.

Week 4

• Improving our research report with obtained results from the DWH.

• Normalizing the old queries.

• Deciding to start clustering our customers for better results.
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• Literature research for a suitable clustering method.

• Deciding the feature vector for the clustering.

• Writing queries for the feature vector for clustering.

Conceptual planning

Since we did not stick to the original planning for mostly the past two weeks, we had to adapt our planning
for the upcoming

ve weeks as well. Unfor- tunately analysing the data and creating suitable test and training sets took us a
lot more time than expected. Therefore in our conceptual planning we dropped some task we previously
thought were able the mange but would not be possible any more. Here we kept in mind that it would be
betting delivering a good working product than a product that does not work at all.

Week 5

• A suitable clustering method implemented and working.

• Filtering out useful clients.

• Creating a validation set.

• Creating feature vectors of coid’s for the clustering.

• Simple clustering the

ltered clients.

Week 6

• Fine tuning the clustering method.

• Build regression feature vector.

• Implementing baseline.

• Implementing Grey model.

Week 7

• Finishing the input vector for the SVM.

• Implementing SVM.

Week 8

• Visualize all result.

• Benchmarking the model.

Week 9

• Running untouched validation set.

• Finishing everything that is left.
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Week 10

Final week with presentations. All preparation for the final presentation will be made in this week. Maybe
very small changes to documents and our software solution can be made.



C
Clustering results

Figure C.1: The left graph shows the PCA analysis of the clustering results on our dataset using scikit-learn. The right graphs shows the
PCS analysis of the clustering results on our dataset using Tensorflow. For both graphs, the k-means algorithm is used with k = 4. Both
scikit-learn and Tensorflow give the same result for k = 4.

Figure C.2: The left graph shows the PCA analysis of the clustering results on our dataset using scikit-learn. The right graphs shows the
PCS analysis of the clustering results on our dataset using Tensorflow. For both graphs, the k-means algorithm is used with k = 5. Both
scikit-learn and Tensorflow give the same result for k = 5.

Figure C.3: The left graph shows the PCA analysis of the clustering results on our dataset using scikit-learn. The right graphs shows the
PCS analysis of the clustering results on our dataset using Tensorflow. For both graphs, the k-means algorithm is used with k = 6. Both
scikit-learn and Tensorflow give the same result for k = 6.
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Recurrent Neural Networks

Traditional feed forward neural networks work very well on classification of single cases. Unfortunately, neu-
ral networks are not able to take connections between multiple instances into account. This is what makes
Recurrent Neural Networks (RNN) special. Consider the simple feed forward neural network y = W · x, an
output y is created by multiplying the input vector x with the weight matrix W . If we translate this to an RNN,
a sequence of inputs x1, ..., xn is needed. The output yi is calculated by yi = W · xi +Wr · yi−1. The weight
matrix Wr is used to include all previous outputs into the calculation of the i -th output.

D.1. Long Short Term Memory

RNN’s have a good ability to recognize short term dependencies, unfortunately in practice RNN’s are not
capable to learn long term dependencies. [3]

Fortunately, a specific kind of RNN’s is able to deal with this problem, the Long Short Term Memory net-
works(LSTM). The LSTM consist of a set amount of connected modules. These separated modules are able
to "remember" information for an arbitrary length of time. Every separated module consists of four neural
network layers working together. The key to the LSTM is the cell state, a "red line" flowing through the entire
network from module to module. The cell state will be denoted as Ct , where i is the number of the module
the cell state is in. Inside every module, three gates decide whether information is added to the cell state or
not. These gates consist of a neural network layer and a point-wise multiplication operation. These gates will
have a sigmoid layer, deciding to let everything (1) or nothing (0) through and a tanh layer pushing values
between −1 and 1.

• The first gate is called the forget gate this sigmoid layer decides if we should keep information gathered
in the previous modules (thus the information in the incoming cell state Ci−1). This is decided by inputs
xi and yt−1. For every value in Ci−1 a 1 or 0 is outputted. This can be written as fi =σ(W f ·[yi−1, xi ]+b f )
Where W f represents the weight vector for function ft . The value for Ci up until now will thus be:

Ct =Ci−1 · fi . (D.1)

• To decide whether we will store the new information in the cell state, we use the input gate layer This
layer consists of a sigmoid layer (g t =σ(Wg · [yi−1, xi ]+bg )), deciding whether or not to store the infor-
mation created in this module. A tanh layer creates candidate values C̃i for Ci . These candidate values
C̃i are calculated by C̃i = tanh(WC · [yi−1, xi ]+bC ). Ci now looks like:

Ci =Ci−1 · fi + C̃i · gi . (D.2)

• Lastly we have to compute our output ht . This is done by another sigmoid layer oi (oi =σ(Wo ·[yi−1, xi ]+
bo)). This layer decide which parts of the cell state Ci we want to output from our module. The cell state
is put through another tanh layer, to creates outputs between −1 and 1. The final output will then look
like:

yi = tanh(Ci ) ·oi (D.3)
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Instead of a normal neural network with inputs xt and outputs yt , we have now created a model that is able
to remember information for a long time through the cell state. The recurrent neural networks are known for
its loops and once we build a loop inside the cell state, we will have a way to store parts of the information
indefinitely.

D.2. Suitability

As stated before, the LSTM is capable of "remembering" information from previous inputs. This together with
the learning of the algorithm makes it a great candidate solution for our problem. It is thus no surprise that
financial time series predictions with RNN’s have often been discussed in literature [16], [4]. The effects have
shown to be good for financial time series in stock prices and currency exchange rates [4], [13]. However, our
data is seemingly different, a clients payment account is not as volatile as the data that can be extracted from
stock markets or currency exchange rates. Neural networks have to be trained from scratch and are sensitive
to underfitting, as well as overfitting. Here lies a difficulty in this approach, what amount of training data will
suffice and when will we have to stop training the model?

D.3. Decisions to be made

This section will shortly outline the decisions that will have to be made when implementing the TensorFlow
LSTM for our specific problem.

• Since the architecture of the network is very open this will be our biggest decision. The modules de-
scribed above can be connected in different ways and the amount of modules will have a big impact on
the performance.

• Furthermore the learning rate λ has to be set to decide how fast the model is trained.

Apart form that, we have to decide what input we will feed the RNN and what output we expect, more about
this will be explained in the data section.

D.4. Implementations

A well working existing implementations of recurrent neural networks can be found in the RNN application
of TensorFlow. This existing implementation is created for language predictions. But the principle works the
same was as for time series. In this project we plan on partially adapting this implementation to make it
possible to TensorFlow for RNNs.



E
Project Description

De desbetreffende bank hecht veel waarde aan de financiële weerbaarheid van haar klanten. Om dit bij
klanten te kunnen verbeteren, is het belangrijk om inzicht te hebben in de financiële situatie. De financiële
situatie uit het verleden is zichtbaar in de transactiehistorie. Hierin valt in detail terug te zien welke mutaties
er zijn geweest op een rekening. Van elk van deze mutaties is tevens bekend in welke (uitgaven)categorie deze
transacties zijn geclassificeerd (al dan niet gecorrigeerd door de klanten zelf).

Naast het inzicht in het verleden, de bank geïnteresseerd in inzicht in de toekomst. Hiermee wil het klanten
beter in staat stellen om financieel in control te zijn. Daar waar het verleden een accuraat beeld geeft, betreft
de toekomst echter altijd een voorspelling, met de daarbijhorende nauwkeurigheid.

Eind 2015 heeft Google zijn tweede generatie zelflerende software opensource gemaakt onder de naam Ten-
sorFlow. TensorFlow is de opvolger van de in 2011 gebouwde deep learning-infrastructuur DistBelief voor het
(interne) Google Brain-project. Sinds die tijd is het een erg actief project gebleken

(https://github.com/tensorflow/tensorflow/graphs/commit-activity). De bank is voor diverse toepassingen
geïnteresseerd in de toepassing en het gebruik van deep learning algoritmes en frameworks. Een daarvan is
TensorFlow.

Concreet is de bank opzoek naar de toepasbaarheid van TensorFlow in de context van het voorspellen van
het toekomstige saldo van een rekening, om zo klanten beter financieel weerbaar te maken.

Aanvullende vragen:

• Tot hoe ver in de toekomst is met voldoende zekerheid het saldo te voorspellen?

• Aan welke eisen moet de rekening voldoen om het toekomstige saldo te kunnen voorspellen?

– Aantallen transacties?

– Verhouding interne/externe transacties?

– Type rekening: betaalrekening/spaarrekening?

• Wat komt er kijken bij het inzetten van TensorFlow in een productieomgeving

– Integratie met bestaande systemen (gezien vanuit TensorFlow)

– Resourceinschatting / realtime-vs-batch
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Framework Documentation
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G
Data

G.1. Main statistics

For our project we had access to the entire Datawarehouse of our client. We had to decide what data was
useful for the specific problem. In this chapter the main statistics about the data are given. For us, this was
mainly an orientation into the database and gave us a clearer insight how much data is at hand and how
the data is distributed. Also it gave us an idea how what to use as input for our algorithmic solutions. In our
solution and statistical analysis only data after 2004 is used because the Datawarehouse has inconsistent data
before this year.

G.1.1. Amount of bank accounts

The total amount of bank accounts in our dataset is 1559534. These are active payment accounts, created
before 2004.

G.1.2. Distribution of amount of months accounts are present

We are interested in the availability of transaction data. The older the payment account, the more likely it
becomes that this account contains sufficient transaction information to use as training data. The cutoff
point at the right end of x-axis is 149, because this is the amount of months between 01-01-2004 and the
present. See figure G.1

G.1.3. Average balance per month

The goal of this project is to create predictions for a customer’s account balance. Therefore, we will need to
look at the account balances of customers. We looked at the average balance of each customer for each month
since 01-01-2004. We then normalized these balances by converting them to z-scores. Then we averaged
the z-scores of each customer for each month. This gave us a representation of how the average customer’s
balance develops over the year. See figure G.2

G.1.4. Distribution of amount of transactions for each bank account

This statistic shows the distribution of transaction over payment accounts. We did not take into account new
customers with less than ten transactions since we want "active" accounts. This group of customers do not
provide us with a sufficient amount of data and would make the rest of the graph difficult to read. See figure
G.3
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Figure G.1: Histogram showing distribution of subscription length of accounts. On the x-axis you can see the amount of months the
account is at this bank, on the y-axis you can see the amount of accounts in the bins. The big bin to the right occurs because every
account older than 140 months falls in this bin.

G.1.5. Distribution of average amount of transactions per month for all accounts

The amount of transactions per month is a better measure of payment activity. It was interesting to see how
the largest individual group, is the group of people with on average 0-5 transactions per month between 2004
and 2016.

G.1.6. Minimum number of transactions

This graph shows the distribution of the number of accounts with a minimum amount of transactions per
month starting from different years shown in different colors.The x-axis was cut off at 60 because the amount
of accounts starts becoming too low to be of interest to us. The y-axis was cut off at 600000, this only cuts off
the 0-5 bin which is not interesting because this is the group with a minimum of zero transactions per month
which is just every account.

G.2. Promising data

With a data warehouse containing over one and a half million payment accounts and detailed information
on each of these accounts, it is important to know which information is of use and which is not. This is
impossible to know for certain without testing, especially since our machine learning techniques can be seen
as black box methods. Therefore it is hard to predict which statistics will be useful and which will not be.
During the benchmarking we will extensively test which data is useful and which data does not have a big
influence on our results.

G.3. Datasets

In order to create an accurate model based on the data available to us in the data warehouse, we need to
construct our own datasets. Due to confidentiality, we cannot publish or share these datasets. The Python
scripts and SQL queries used to create them can however be found in our project. First we give an explanation
on how we filtered out the data that we want to use and which cut off decisions we made.Then we describe
in more detail the datasets that we created and how we divided them in training and validation sets. Also
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Figure G.2: This graph shows for each month the zscores of all accounts averaged. Here you can see the main trend for the balance on
bank accounts of the year.

normalization will be discussed together with an example of what can go wrong and how we fixed this.

G.3.1. Cut off decisions

Before actually using the data as input for our algorithms we made some decisions on what subset of the data
we wanted to use. A good example is the fact that some account are inactive and not very interesting to predict
for. Secondly some account are too new and do not provide use enough individual behavioral information.
The cut offs are the following:

1. All accounts need to have at least 5 transactions for every month of during the last 6 years. (From 2010-
01-01 to 2016-04-30)

2. Every account needs to have at least a subscription of 76 months at the bank. (roughly 6 years)

G.3.2. Trainingset

For the machine learning technique SVM we need to devide the data into training and validation sets. Nor-
mally you split randomly and you have two sets accordingly. However, we are dealing with timeseries and
therefore we do not want to split our data on a unique id, but rather on time. By that we mean that we divided
the dataset as following. We know that all the client in the filtered set have to be at the bank from 2010-01-01
to 2016-04-30. So, the training set consists of all the feature vectors from 2010-01-01 until 2014-01-01 which
results in a set of 4 years of trainings data.

G.3.3. Validationset

For the validationset we also splitted on time. To make sure no data is leaked from training to validation and
because our feature vectors have a time window of 12 months, we opted for selecting the validation set to be
only after 2015-01-01 and thus having a gap of one year of data which we will not use for either training or
validation. In general the validation set are all feature vectors from 2015-01-01 until 2016-04-30.
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Figure G.3: This graph shows the distribution of the amount of transactions each account has.

G.4. Normalization

It is better to normalize data instead of using the raw value, because this will lead to scaling issues. For the
feature vector as input for the algorithms, we thus need to normalize the data.

G.4.1. Z-scores

A common way to normalize data is the Z-score or standard score. A Z-score can be obtained from a raw
score through the following formula:

Z = X −µ
σ

(G.1)

Where X is the raw value, µ is the average value and σ is the standard deviation.
This conversion is used for statistics that can encounter scaling issues. In our case, some payment accounts
have a much higher balance than others. The Z-score describes the deviation from the mean in terms of
the standard deviation. This allows for more accurate and meaningful comparison of individuals across our
sample. [24]

G.4.2. Issues

The average and standard deviation (std) used for the z-score is calculated for each account independently.
After further analysis of the prediction results we found out that sometimes this normalization can be deceiv-
ing. An example is given below:

User x
average balance for all his months: 511,88 euro
standard deviation for all his months: 1914,39 euro

By using the 10 months average prediction we got an MSE of 0.000004. This is considered a small MSE, so
we interpreted this as a very good prediction. We further investigated the feature vector and came to the fol-
lowing conclusion; Our error is presented in z-scores which means the error gives the amount of standard
deviations the prediction is off compared to the real value. Because we used MSE here, we actually have an
error of 0.002 in terms of standard deviation because we need to take the square root. If you then calculate
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Figure G.4: This graph shows the distribution of average transactions per month per account.

the actual error in absolute value, you get

0.002∗1914,88 = 3.83

Which means we predicted this month for this account with an error of roughly 4 euros. If you check his
feature vector you can see that 4 euros against the 30-50 that you see in this previous months, is actually not
exceptionally good. It is a decent prediction, but the calculated error deceives us into thinking this prediction
is near perfect.

The cause of this is bad normalization. The average balance of this account is 511,88 whilst in most months
the balance is fluctuating around 50. The high average is caused by a small number of months where the
account balance is raised to 14000 euros. These few months skew the mean and std so that the normalization
is not representative anymore.

We came to the conclusion that this problem applied to a lot of our accounts an we had to find a way to solve
it. Our solution was taking the averages and stds of the middle .90 percentile of the data. This means we
first filtered out for each account the top and bottom 5% of balances as outliers. After this filtering the mean
and std are calculated. This gives a more representative normalization and enables us to interpret the errors
better and make them comparable with errors of other accounts.

G.5. Methods

All transaction data was stored in a data warehouse. The SQL queries we used to obtain these statistics and
feature vectors can be found in the queries directory of our project.
The results were subsequently exported to a .csv file by means of the built in functionality in Teradata.
We then used Python scripts to visualize the statistics we had obtained. The matplotlib and pandas pack-
ages offered all of the functionality we needed for visualizing our data. The scripts we used to create our
visualizations and feature vectors can also be found in our project, in the visualization directory.
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Figure G.5: This graph shows the amount of account thats have a certain minimal amount of transactions for each month since the year
you can find in the legend. On the x-axis you can find the minimal transactions. On the y-axis you can find the amount of account for
each year with a different color.
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Info Sheet: Time series predictions for bank

account balances

Client: A large bank holding company
Presentation date: 24th June 2016

Project description
The purpose of our project was to develop a model that could predict the bank balances of customers of our
client. For this project our research question was: How well can we predict bank balances?
Our client is a large Dutch bank holding company with five distinct brands. The IT and Change department
makes sure the company keeps up with new IT developments.
The core challenge of this project was the development of an entire system from scratch. This began with
retrieving the data from the datawarehouse and leading all the way up to the visualization of our final output.
Our main research was used to find a suitable machine learning approach for our model. We compared
multiple existing approaches and finally decided which ones to eventually test. During our project we came
across some unexpected difficulties, as a main consequence we had to change our project plan during the
fifth week. More information about the process can be read in our final report, Chapter 13
The eventual product we have created is a framework that enables our client to compare machine learning
and non-machine learning techniques. In this framework we have implemented and compared multiple
models for account balance prediction. During the project we compared two different Python libraries that
can be used for machine learning. This comparison supports our recommendations to the client for future
machine learning implementations. In addition to that, we have given recommendations for the usage and
improvements on our regression model as well.

Team members
Bernd Kreynen b.l.l.kreynen@tudelft.nl
Interests: Data science, software engineering, statistics
Role: Chief code quality.
Chantal Olieman c.olieman@tudelft.nl
Interests: Algorithmics, data science, optimization
Role: Chief communications.
Felix van Doorn f.a.vandoorn@tudelft.nl
Interests: Software testing, software engineering, data science
Role: Chief versioning and testing.
Max Spanoghe m.spanoghe@tudelft.nl
Interests: Data science, optimization, statistics
Role: Chief scrum.

Contributions The complete list of contributions can be found in our Jira, this project is private for the sake
of confidentiality. Please contact our team if needed.

Client and TU Coach
Wouter Poncin Client System Desginer IT & Change
Thomas Abeel TU coach Delft Bioinformatics Lab

A censored version of the final report for this project can be found at: http://repository.tudelft.nl
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