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The polymer segment distribution is shown to obey the Laplace equation for a suspension of small
protein spheres and semidilute polymer. The depletion interaction is computed at all protein
concentrations by introducing void distributions. Within a linear response Ansatz for the solution to
the Laplace equation, the average depletion energy depends on two- and three-pdiswtade
correlation functions. It is concluded that depletion correlations of long range do not appear at high
protein concentrations. €997 American Institute of Physids$S0021-9607)51108-1

INTRODUCTION segment distribution of the flexible polymers. The consider-
ation of phase separation is left to future work.
The effective interaction among particles in a mixture is  This paper differs from previous theoretical work for
a subject in its own right. It has been known for a long timea method is developed to deal with the statistical mechanics
that the elimination of certain degrees of freedom gives risef a mixture at all levels of the many-body correlations.
to nontrivial potentials of mean forté¢hat are nonpairwise— First, it is shown that the polymer distribution satisfies a
additive. In the past, little analytical work appears to havelaplace equation to a high degree of accuracy. Hence, a
been carried out to comprehend the statistical mechanics @imple free energy functional involves merely a gradient of
this type of interactio. One approach due to Fixman is to the polymer density. The depletion of the polymer at the
expand the potential of mean force in terms of density flucprotein surfaces may be related to a suitable void probe func-
tuations around the actual average density instead of arounibn via a response function, at least in an attempt correct to
density zer@. This ruse could well be exploited in problems the linear order. Thus, ultimately, minimization of the aver-
involving mixtures if the fluctuations are small enough in age energy functional should yield the response in terms of
some sense. More recently there have been efforts to addregsid correlations. The averaging of both polymer and sphere
the interactions in mixtures of colloids and polymérs? configurations is effected at the same time and this is an
These systems have the theoretical advantage of beingssential advantage of the current theory. Our purpose is to
strongly asymmetric, at least potentially. compute the depletion interaction as a function of the protein
Here, our purpose is to discuss one type of system-yolume fraction almost up to close packing.
protein—polymer mixtures—where formal headway with re-
spect to nonpairwise—additive interactions can be made with-
out undue mathematical complications. Globular proteins ar ALIDITY OF THE LAPLACE EQUATION
often substantially smaller than the typical correlation length In a semidilute solution of long flexible polymers, the

of the surrounding polymeric medium which results in an_,_,. .. . )
. Yk - ; statistical properties of the system are independent of the
essential simplification of the statistical mechanics. De

Genne$t and, recently, the authtfmoted that various physi- polymer c_ontour length. He_nce, the segmeht o_lenSIty 'S a r_el-
- . . vant variable. But fluctuations are of crucial importance in

cal quantities may be readily understood for a single smal - T ) o .

: . 7 S he semidilute limit® Accordingly, the partition function of
sphere immersed in a semidilute polymer solution, in terms . :

: o . . a mixture ofn hard spheres of radius and entangled poly-
of straightforward though nontrivial scaling relations. One : L . .
. . : : - mer chains at semidilute concentrations, may be schemati-
ingredient is the basic validity of the Laplace equatfoior callv represented b
the distribution of the polymer segments. This notion will be y rep y
extended here for spheres at all concentrations up to close _ U JkaT
packing. Accordingly, the protein—polymer problem in this Z_f dry, ... ’dr"J e(r)]e T @)
limit is quite similar to the mathematics of diffusion in a

. . ith
random array of spheres, an analogy that will be epr0|te(¥V
here. Uioi=Un(rq,ro, ... r) +Ug(rg, ... ry,c(r))
Within a rough zero-order approximation, globular pro- ‘U ; @)

teins may often be viewed as inert small impenetrable ple(r)].
spheres. This approximation obviously has its drawbacks foHere, kg, is Boltzmann’s constant anfl is the temperature.
it is known that proteins at their isoelectric point exhibit Both the hard-sphere and depletion interactidhsandU,
weak attractive forces in aqueous solutidn*’ The scope of depend on the protein centers of mass denoted by
this paper is restricted to an analysis of many-body polymer+4, o, ... r,. Furthermore, the interactiddy among the pro-
protein interactions accounting for the nonuniformity of thetein particles is also a functional of the concentratgn of
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polymer segments. Formally, we also expect a terparis-

3403

£=A"54 34 whereA is the Kuhn segment length of the

ing from the interaction between polymer segments that arpolymer. Accordingly, providedh<<¢, we again conclude
outside some convoluted depletion zone centered othat depletion occurs on scales less than the polymer corre-

{ri,...rn}. | suppose the flexible polymer is well soluble in

lation length and its range does not depend on the strength of

the solvent(iwatep. The dependence of the protein—polymerthe interaction between the segments.

interaction on the quality of the solvent is subfldut is
neglected here. The general form Ed) exhibiting a con-
centration measur&/[c(r)], is shown explicitly here in order

We are finally in a position to argue for the essential
validity of Eq. (4) even when segment fluctuations are prop-
erly taken into account. In the mean-field and hybrid pic-

to stress two potential hurdles in the resolution of the manyiures, Eq.(4) is legitimate provided the correlation length is
body problem:a) the fluctuations in the segment concentra-sufficiently large. It is well known that the Laplacian opera-
tion; (b) elimination of the polymer degrees of freedom will tor results from the square gradient term in the polymer free
lead to an interaction which could be strongly nonpairwise—energy which denotes the ideal entropy of the chiiris.
additive at high protein concentrations. Fortunately, the firsbther words, this entropy predominates in depletion when
problem is greatly simplified in the limit of small spheres, asé&>a and segment interactions in some average sense play an
| now show. insignificant role. But, then, strong fluctuations in these in-
First, we momentarily forget about segment fluctuationsteractions may well modify them into renormalized terms,
and simplify Eq.(1) in a self-consistent field approximation. yet will certainly not enhance them to a level competing with
Then,U,, is simply a constant and 4 is known explicitly!®  the ideal entropyrecall that the interactions are scaled by a
At a fixed configuration of proteing/, in the integrand of very small coefficiena?£%). Accordingly, segment fluctua-
Eqg. (1) has a minimum where(r) equalscm(r)zc()(pz(r) tions are unimportant in determining the polymer distribution

given by in the convoluted depletion volume surrounding an array of
22 protein spheres. Within the depletion zone, the segment den-
Ale+| 2 |g(¢)=0. (3)  sity obeys Eq.4). In voids far removed from the spheres,
3 however, segment fluctuations are as important as usual so

The Laplacian is denoted hi; all coordinates are conve- that a self-consistent field picture will break down there.

niently scaled bya: r’=r/a. The average segment concen- Hence, we have to use, say, a scaling analysis in order to

tration is co; in solution there will exist voids completely derive the depletion interaction which is addressed next.

free from proteins, with a uniform polymer concentration

C, # Cg since the volume fraction of protein spheres is non-

zero. Equation(3) is simply the usual self-consistent field pEp| ETION INTERACTION

equationt® for e=¢(rri,...rl), with a correlation length

&=¢(c,). Joannyet al!® have discussed the eigenvalue equa- It is now argued that the depletion energy has the fol-

tion (3) in some detail and have analyzed the resulting deplelowing form:

tion near a planar wall. The dimensionless functiphas the a
Vo (50

form ¢—¢™ with m>1. The boundary conditions op are
(@) Uq is a function ofa, ry,...r, andc(r)=cye(r) only;

(a) cp—_o at the surface of the Sp| ere(b) QD—>(C /c )1/2 at
v ~0
(b) it must be proportional to the number of seglnents de-

some point within a void far removed from all the spheres.
pleted from a convoluted volume surrounding the spheres;

Now let the correlation lengti¥(c,) be much greater
thana. Then, Eq(3) reduces to the Laplace equation correct

this number, in turn is proportional 1, or & “3=&;,*3(c,);
(c) U4 is an extensive quantityd) Eq. (4) results upon mini-

to the second order in the small parametéf
Ap=0.
mization ofU 4 with respect tap(r); (e) Eg. (5) does not have
an explicit dependence oh for & is the sole relevant scale
é)f the polymer;f) U4 reduces to the correct expression valid
in the limit of infinite dilution of spheres: Uy
=n(a/&,)*KgT.
Two general expressions can now be derived. The
chemical potential of a polymeric segment is given by

4/3

a kgT (5

fdr(V¢)2.

(4)

However, this “derivation” of Eq.(4) is a bit deceptive for a
relevant scale of depletion is implicitly assumed tosbé-or
instance, for a very long rodlike array of aligned spheres, th
solution to Eq.(4) is not a uniformly valid approximation to
the one given by Eq.3). Another exception is a large com-
pact cluster of spheres of size much greater thddepletion
beyond the cluster is now poorly described by E4. On
the whole, the validity of the Laplace equation must be based 97
on the occurrence of purported clusters whose maximum #p= —KgT 7N~ Moot N~YUg)e,
span\ is, in the main, smaller thaé Equation(4) can only
apply in a statistical sense. whereN is the number of segments in the suspensigyy, is
Essentially the same equatio(® and(4) may be writ-  the chemical potential of a segment in a protein-free solution
ten down if one were to use a hybrid theory combining scal-of concentration equal to that in the protein-free voids, and
ing and self-consistent argumeRtdn that case, the function (). signifies a canonical average. But the osmotic pressure of
g has a different exponeritvith againm>1) but its overall a semidilute polymer suspension free from protein and of
shape remains the same and the correlation length isoncentratiorc, is simply'8

(6)
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kgT Void correlations

Ty 0=""3" 7 _ - - _
P.0 & @) Before formulating a minimum principle, we first intro-

. ) _duce convenient approximate expressions for the void corre-
Hence, we have a relation between the chemical potenti
S

tion functions. The surface probe functie(r)=|V 7,(r
and the osmotic pressure, which may be of experimental re P 9 =[V 7, (1)

a delta function defined on the surfaSef the void. We

evance further define void—void and surface—void correlation func-
= Hp o™ W%_ (8)  tions which reflect the translational invariance of the system.
The depletion attraction is of intermediate range but is Foo(r=r)=(m,(1) 2, (1D, (1D

comparatively weak foa<¢. One expects the local correla- Fo(r—r")=(nyr)n,(r'))p. (12)

tions between spheres to be dominated by their harsh repul- ) . - .
sive interactions. Accordingly, the hard-sphere interactiorf* CONvVenient apg’fox'mate form fd,, pertaining to impen-
U, may serve as a reference stdtedex h). Perturbation ©trable spheresis

theonf! gives for the free energy of the spheres F,o(D=w?+wpe V2 t<2a

Fs=Fnp+(Ugn. ©) =w? t>2a, (13)
| next investigate the nature of the average depletion energywherew=1—uv=(7,(r)),. This has the correct limits &40
(Ugdp- andt=c as can be seen from E(.1). Equation(13) is fairly

close to the correlation determined by Hagteal 8 via com-
puter simulations. Note that weak oscillations are clearly
present in the numerical wofR.Doi*® has computedF, for
a certain random model of imbedded spheres which is a

Equations(1), (4), (5), and (9) may, of course, be ad- Popular theoretical artifice for a porous medium
dressed by standard perturbation thedfiext low volume

NONPAIRWISE-ADDITIVE CORRELATIONS

1 t
fractionsv of protein(v=4mna’/3V; V=total volume of the Fe(t)= > s| 1+ %a wlF (1) t<2a
system. Interactions beyond the pair level may be dealt with
by expansions about a nonzero concentrdtiont | would =sw t>2a. (14)

like to propose a formalism valid, in principle, for all We
have two difficult problems to solve: E¢4) and Eq.(9). It
would be expedient were we to replace these by one. We fir
note that the statistical mechanics of the protein—polyme
system at hand is a problem in statistical geométryve
may view the array of protein spheres as a porous mediu
with an associated diffusion statement given by &j. A
mixture of large colloids and polymers has also been treate

It so happens that E¢14), but with F,, given by Eq.(13),

& a fairly good approximation to the surface—void correla-
pon deduced by computer simulations on impenetrable
sphere$® The limits at short and long distances can be in-
r{1erred from the definitioEq. (12)]. The average ofy; is
easily calculated because the delta func¥o,(r) is defined

gn the surfaces of the spheres

within a porous medium analogy recentiyVe might try a .

numerical analysis of the fielg(r) in terms of multipole (n9n=V fdr(ns(r»h

expansion® and then perform the statistical averag]ty.

(9)_]._ Howeve_r, powerful gnalytic work may proceed i_26the :V—lf dS=4mna2v-1=3p/a=s. (15)
spirit of classic analyses in the past by Praétand Doi

It is the polymer distribution in the spac&” between the
protein spheres that we wish to know; the figlt) is then  Linear response Ansatz

Iogicglly7regarded as a functional of the void probe Next, | propose a linear response Ana® as argued
functior?” #,(r) above for the functionp(r) which is supposed to approxi-

7(r)=1 1 within 7 mate the solution to the Laplace equatidh

=0, ithin th lement? (V= 7"+ 7). , , ,
7,(r) r within the complement7{ )(10) <p(r)=E+Jdr KT =) (1) = W), (16)

Thus the sphere—sphere correlations themselves are not $bis is a continuous function defined throughout the volume
interesting but rather the void correlation functions whichV and nonzero within the spheres. The kerdalhose form
have been studied at lengthA plausible Ansatz introduced must reflect the translational invariance of the porous me-
below, is thate(r) responds linearly toy,(r). In effect, Eq.  dium after averaging, is to be determined variationally. At
(4) is linear in ¢(r) and 7,(r) if the boundary condition on very low volume fractions, we expebt~|r—r’|"* from the

the surfaces of the spheres were to be formally incorporatesolutiont? to Eq. (4). Hence, the porosityv has been sub-
as source terms. In the end, the theory boils down to comtracted from,(r) to avoid a potential divergence. Thus the
puting a response function in only one step, which is carriecconstantE tends to unity? in the limit of vanishing volume
out via a suitable variational principle. fraction. Fortunately, it turns out that the form Ef6) leads
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to a renormalizable theory for impenetrable spheres. | have
also investigatedy(r) as a possible source term but, in that JEf dt K() (W1, (1) =5 'Fg, (1)) (23
case, formal difficulties appear in the limit—0 which do
not seem resolvable. and
Depletion implies thatp(r) must be identical to zero on
S. This is evidently difficult to take into account exactly, so |152J dtj du K(t)K(u)F,,(u)(F,,(u—t)—F,,(1)).
we replace this constraint by a global condition which is less
stringent lul-Ju=t <[t (24)

Next, a scaled energy density may be written as

v [ aste®)=v [ arinnetn,

uEaZV‘lf dr(7,(r)(Ve(r)?)y
=Es+fdt K(t)(Fg,(t)—ws)=0. (17

) dK(u) dK(t) t-u
A second condition connecting andK stems from the in- =a f dtf du “du  dt tu H(u,t). (29
variance of the total number of polymer segments in the
suspension. On averaging this requirement and taking duBpproximating the three-point correlation by E@1) again,
care to delete the fictive contribution within the spheres, weve get

have u=w1,, (26)
v—lf dr{7,(r)e2(r)i dK(u) dK(t) t-u
v — 2 -
=22 f dtf e TR Ty
:E2W+2Ef dt K(1)(F,,(t)—w?) b=l
X Fvv(u)(Fvv(u_t)_Fvv(t))- (27)
+J dtf du K(H)K(u)H(t,u)=1 (18) It is now possible to eliminate the scale lordependence of
' K, i.e., we rescalédhK=K employing Eq.(22)
with I,
uKl=s —=—. 28
H(U,)=Ga(U,t) —WF,, (1) = WF,, (u) + w3 (19 T 29
and a three-point correlation function This constitutes a minimum principle fdg.
, , . , A plausible choice foK is
G3E<77v(r)7]z)(r )%(r )>h (t:r_r yu=r—r ) (20) _
e Btla
Note thatE=1 in the limitv =0 as it should. K= ypre (29
Despite extensive computatiofist it is not so easy to
find a useful uniform approximation tG; valid at all vol-  The variational paramete® is expected to vanish as the vol-
ume fractions. One interesting choice has been discussed loyne fractionv of spheres tends to zero; on the other hand, a
Weissburg and Prag@r finite rangeaB ! with B=7(1) is reasonable as the protein

_ spheres cluster together. If we use E@k3) and (14), the
Gs=w 'F,,(a)F,,(b), (21) integrall, has the approximate form

wherea and b are the two smallest vectors out of the set 2 ;

(ut,u—t). At the very least, Eq(21) has the following mer- IZZWZUJ dz(1+,82)e‘BZJ dx(1+ Bx)e A (w+oX)

its: It is accurate whenevei) all three points are well sepa- 0 0

rated Gz=w®); (i) r"—w at fixed r and 1

r'(Gy=wF,,(r—r"); (i) r=r'(Gz=F,,(r—r"); (iv) XJ dy yexp— (x*+ 22— 2xzy)*?—e 7. (30)
r=r'=r"(Gs=w). Moreover, it can be readily shown that xlzz

H(u,t)=0 uniformly, so realistic solutions fof andK are  uUnfortunately, it is now evident from the behavior of the
guaranteed. Equatiof21) tends to overestimat€s in vari-  integrand that it contributes substantially ltpin a regime
ous regimes? which causes problems as will be seen below.here the approximation Ed21) is no longer accurat®.
Still, Eq. (21) is useful in assessing the qualitative nature ofThijs is explicitly borne out by evaluating the dilute limit
the depletion energy as a function of the protein volume, <1: this should yieldi=3v whereas Eq¥28)—(30) mark-

fraction. _ o _ - edly overestimate the numerical coefficient. A better compu-
The constanE is now eliminated to yield a condition on  tation of G5 at all volume fractions will have to be awaited.

the functionK. Equations(17)—(21) reduce to Meanwhile, it is possible to understand the qualitative
wi+w =1, 22) behavior of the depletion energy. Arguably, the dependence

of G; on the volume fraction should be fairly well described
where by Eq.(21): G; is accurate at several extreme positions. Ac-
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cordingly, the use of &5 similar to Eq.(21) but rescaled to hence, we have,=N/V(1—v). The average depletion en-
yield the correct numerical coefficient at low protein concen-ergy per protein i€Uy)n/n=4m(al &)*3(u/v)kg T and may
trations, leads to the following estimates: sometimes exceekizT; unfortunately, we do not know the
precise theoretical value of the numerical prefactor. The

=1 l — 2
l1=37(1-ap)w, (3Y) depletion energy is quite sensitive to polymer—protein inter-
l,=ir(1— apv)W? (32)  actions[see T. Odijk, Langmuifsubmitted].
with a coefficientr close to unity, andy;=a, and 1-ay<1.
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