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The polymer segment distribution is shown to obey the Laplace equation for a suspension of small
protein spheres and semidilute polymer. The depletion interaction is computed at all protein
concentrations by introducing void distributions. Within a linear response Ansatz for the solution to
the Laplace equation, the average depletion energy depends on two- and three-point void~-surface!
correlation functions. It is concluded that depletion correlations of long range do not appear at high
protein concentrations. ©1997 American Institute of Physics.@S0021-9606~97!51108-1#
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INTRODUCTION

The effective interaction among particles in a mixture
a subject in its own right. It has been known for a long tim
that the elimination of certain degrees of freedom gives
to nontrivial potentials of mean force1 that are nonpairwise–
additive. In the past, little analytical work appears to ha
been carried out to comprehend the statistical mechanic
this type of interaction.2 One approach due to Fixman is
expand the potential of mean force in terms of density fl
tuations around the actual average density instead of aro
density zero.3 This ruse could well be exploited in problem
involving mixtures if the fluctuations are small enough
some sense. More recently there have been efforts to add
the interactions in mixtures of colloids and polymers.4–10

These systems have the theoretical advantage of b
strongly asymmetric, at least potentially.

Here, our purpose is to discuss one type of syste
protein–polymer mixtures—where formal headway with
spect to nonpairwise–additive interactions can be made w
out undue mathematical complications. Globular proteins
often substantially smaller than the typical correlation len
of the surrounding polymeric medium which results in
essential simplification of the statistical mechanics.
Gennes11 and, recently, the author12 noted that various physi
cal quantities may be readily understood for a single sm
sphere immersed in a semidilute polymer solution, in ter
of straightforward though nontrivial scaling relations. O
ingredient is the basic validity of the Laplace equation12 for
the distribution of the polymer segments. This notion will
extended here for spheres at all concentrations up to c
packing. Accordingly, the protein–polymer problem in th
limit is quite similar to the mathematics of diffusion in
random array of spheres, an analogy that will be exploi
here.

Within a rough zero-order approximation, globular pr
teins may often be viewed as inert small impenetra
spheres. This approximation obviously has its drawbacks
it is known that proteins at their isoelectric point exhib
weak attractive forces in aqueous solution.13–17The scope of
this paper is restricted to an analysis of many-body polym
protein interactions accounting for the nonuniformity of t
3402 J. Chem. Phys. 106 (8), 22 February 1997 0021-9606/
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segment distribution of the flexible polymers. The consid
ation of phase separation is left to future work.

This paper differs from previous theoretical work4–10 for
a method is developed to deal with the statistical mecha
of a mixture at all levels of the many-body correlation
First, it is shown that the polymer distribution satisfies
Laplace equation to a high degree of accuracy. Hence
simple free energy functional involves merely a gradient
the polymer density. The depletion of the polymer at t
protein surfaces may be related to a suitable void probe fu
tion via a response function, at least in an attempt correc
the linear order. Thus, ultimately, minimization of the ave
age energy functional should yield the response in terms
void correlations. The averaging of both polymer and sph
configurations is effected at the same time and this is
essential advantage of the current theory. Our purpose
compute the depletion interaction as a function of the prot
volume fraction almost up to close packing.

VALIDITY OF THE LAPLACE EQUATION

In a semidilute solution of long flexible polymers, th
statistical properties of the system are independent of
polymer contour length. Hence, the segment density is a
evant variable. But fluctuations are of crucial importance
the semidilute limit.18 Accordingly, the partition function of
a mixture ofn hard spheres of radiusa and entangled poly-
mer chains at semidilute concentrations, may be schem
cally represented by

Z5E dr1, . . . ,drnE D@c~r !#e2U tot /kBT ~1!

with

U tot5Uh~r1 ,r2 , . . . ,rn!1Ud~r1 , . . . ,rn ,c~r !!

1Up@c~r !#. ~2!

Here,kB, is Boltzmann’s constant andT is the temperature
Both the hard-sphere and depletion interactions,Uh andUd ,
depend on the protein centers of mass denoted
r1, r2, . . . ,rn . Furthermore, the interactionUd among the pro-
tein particles is also a functional of the concentrationc~r ! of
97/106(8)/3402/5/$10.00 © 1997 American Institute of Physics
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3403Theo Odijk: Many-body depletion interactions
polymer segments. Formally, we also expect a termUp aris-
ing from the interaction between polymer segments that
outside some convoluted depletion zone centered
$r1, . . . ,rn%. I suppose the flexible polymer is well soluble
the solvent~water!. The dependence of the protein–polym
interaction on the quality of the solvent is subtle12 but is
neglected here. The general form Eq.~1! exhibiting a con-
centration measureD@c~r !#, is shown explicitly here in orde
to stress two potential hurdles in the resolution of the ma
body problem:~a! the fluctuations in the segment concent
tion; ~b! elimination of the polymer degrees of freedom w
lead to an interaction which could be strongly nonpairwis
additive at high protein concentrations. Fortunately, the fi
problem is greatly simplified in the limit of small spheres,
I now show.

First, we momentarily forget about segment fluctuatio
and simplify Eq.~1! in a self-consistent field approximation
Then,Up is simply a constant andUd is known explicitly.

19

At a fixed configuration of proteins,Ud in the integrand of
Eq. ~1! has a minimum whenc~r ! equalscm~r ![c0w

2~r !
given by

D1w1S a2j2Dg~w!50. ~3!

The Laplacian is denoted byD; all coordinates are conve
niently scaled bya: r1[r /a. The average segment conce
tration is c0; in solution there will exist voids completel
free from proteins, with a uniform polymer concentratio
cvÞc0 since the volume fractionv of protein spheres is non
zero. Equation~3! is simply the usual self-consistent fie
equation19 for w5w~r1,r1

1, . . . ,rn
1!, with a correlation length

j5j(cv). Joannyet al.
19 have discussed the eigenvalue equ

tion ~3! in some detail and have analyzed the resulting de
tion near a planar wall. The dimensionless functiong has the
form w2wm with m.1. The boundary conditions onw are
~a! w50 at the surface of the spheres;~b! w→(cv/c0)

1/2 at
some point within a void far removed from all the sphere

Now let the correlation lengthj(cv) be much greater
thana. Then, Eq.~3! reduces to the Laplace equation corre
to the second order in the small parametera/j

Dw.0. ~4!

However, this ‘‘derivation’’ of Eq.~4! is a bit deceptive for a
relevant scale of depletion is implicitly assumed to bea. For
instance, for a very long rodlike array of aligned spheres,
solution to Eq.~4! is not a uniformly valid approximation to
the one given by Eq.~3!. Another exception is a large com
pact cluster of spheres of size much greater thanj: Depletion
beyond the cluster is now poorly described by Eq.~4!. On
the whole, the validity of the Laplace equation must be ba
on the occurrence of purported clusters whose maxim
spanl is, in the main, smaller thanj. Equation~4! can only
apply in a statistical sense.

Essentially the same equations~3! and ~4! may be writ-
ten down if one were to use a hybrid theory combining sc
ing and self-consistent arguments.20 In that case, the function
g has a different exponent~with againm.1! but its overall
shape remains the same and the correlation length
J. Chem. Phys., Vol. 106, N
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j5A25/4cv
23/4, whereA is the Kuhn segment length of th

polymer. Accordingly, providedl!j, we again conclude
that depletion occurs on scales less than the polymer co
lation length and its range does not depend on the streng
the interaction between the segments.

We are finally in a position to argue for the essent
validity of Eq. ~4! even when segment fluctuations are pro
erly taken into account. In the mean-field and hybrid p
tures, Eq.~4! is legitimate provided the correlation length
sufficiently large. It is well known that the Laplacian oper
tor results from the square gradient term in the polymer f
energy which denotes the ideal entropy of the chains.19 In
other words, this entropy predominates in depletion wh
j@a and segment interactions in some average sense pla
insignificant role. But, then, strong fluctuations in these
teractions may well modify them into renormalized term
yet will certainly not enhance them to a level competing w
the ideal entropy~recall that the interactions are scaled by
very small coefficienta2/j2!. Accordingly, segment fluctua
tions are unimportant in determining the polymer distributi
in the convoluted depletion volume surrounding an array
protein spheres. Within the depletion zone, the segment d
sity obeys Eq.~4!. In voids far removed from the sphere
however, segment fluctuations are as important as usua
that a self-consistent field picture will break down the
Hence, we have to use, say, a scaling analysis in orde
derive the depletion interaction which is addressed next.

DEPLETION INTERACTION

It is now argued that the depletion energy has the f
lowing form:

Ud.S aj0D
4/3

a21kBTE dr ~“w!2. ~5!

~a! Ud is a function ofa, r1, . . . ,rn andc~r !5c0w
2~r ! only;

~b! it must be proportional to the number of segments
pleted from a convoluted volume surrounding the sphe
this number, in turn is proportional toc0 or j0

24/35j0
24/3~c0!;

~c! Ud is an extensive quantity;~d! Eq. ~4! results upon mini-
mization ofUd with respect tow~r !; ~e! Eq. ~5! does not have
an explicit dependence onA for j0 is the sole relevant scal
of the polymer;~f! Ud reduces to the correct expression va
in the limit of infinite dilution of spheres,11 Ud

.n(a/j0)
4/3kBT.

Two general expressions can now be derived. T
chemical potential of a polymeric segment is given by

mp52kBT
]Z

Z]N
5mp,01N21^Ud&c, ~6!

whereN is the number of segments in the suspension,mp,0 is
the chemical potential of a segment in a protein-free solut
of concentration equal to that in the protein-free voids, a
^ &c signifies a canonical average. But the osmotic pressur
a semidilute polymer suspension free from protein and
concentrationc0 is simply

18
o. 8, 22 February 1997
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3404 Theo Odijk: Many-body depletion interactions
pp,0.
kBT

j0
3 ~7!

Hence, we have a relation between the chemical poten
and the osmotic pressure, which may be of experimental
evance

mp2mp,0;pp,0
9/4 . ~8!

The depletion attraction is of intermediate range bu
comparatively weak fora!j. One expects the local correla
tions between spheres to be dominated by their harsh re
sive interactions. Accordingly, the hard-sphere interact
Uh may serve as a reference state~index h!. Perturbation
theory21 gives for the free energy of the spheres

Fs5Fh1^Ud&h . ~9!

I next investigate the nature of the average depletion ene
^Ud&h .

NONPAIRWISE-ADDITIVE CORRELATIONS

Equations~1!, ~4!, ~5!, and ~9! may, of course, be ad
dressed by standard perturbation theories21 at low volume
fractionsv of protein~v[4pna3/3V; V5total volume of the
system!. Interactions beyond the pair level may be dealt w
by expansions about a nonzero concentration3 but I would
like to propose a formalism valid, in principle, for allv. We
have two difficult problems to solve: Eq.~4! and Eq.~9!. It
would be expedient were we to replace these by one. We
note that the statistical mechanics of the protein–polym
system at hand is a problem in statistical geometry:22 We
may view the array of protein spheres as a porous med
with an associated diffusion statement given by Eq.~4!. A
mixture of large colloids and polymers has also been trea
within a porous medium analogy recently.9 We might try a
numerical analysis of the fieldw~r ! in terms of multipole
expansions23 and then perform the statistical averaging@Eq.
~9!#. However, powerful analytic work may proceed in th
spirit of classic analyses in the past by Prager24,25and Doi.26

It is the polymer distribution in the spaceV between the
protein spheres that we wish to know; the fieldw~r ! is then
logically regarded as a functional of the void pro
function27 hv~r !
hv~r !51 r within V ,

hv~r !50, r within the complementV̄ ~V5V 1V̄ !.
~10!

Thus the sphere–sphere correlations themselves are n
interesting but rather the void correlation functions whi
have been studied at length.22 A plausible Ansatz introduced
below, is thatw~r ! responds linearly tohv~r !. In effect, Eq.
~4! is linear inw~r ! andhv~r ! if the boundary condition on
the surfaces of the spheres were to be formally incorpora
as source terms. In the end, the theory boils down to c
puting a response function in only one step, which is carr
out via a suitable variational principle.
J. Chem. Phys., Vol. 106, N
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Void correlations

Before formulating a minimum principle, we first intro
duce convenient approximate expressions for the void co
lation functions. The surface probe functionhs~r ![u“hv~r !u
is a delta function defined on the surfaceS of the void. We
further define void–void and surface–void correlation fun
tions which reflect the translational invariance of the syste

Fvv~r2r 8![^hv~r !hv~r 8!&h, ~11!

Fsv~r2r 8![^hs~r !hv~r 8!&h . ~12!

A convenient approximate form forFvv pertaining to impen-
etrable spheres is9

Fvv~ t!5w21wve2t/a t<2a

5w2 t.2a, ~13!

wherew[12v5^hv~r !&h . This has the correct limits att50
andt5` as can be seen from Eq.~11!. Equation~13! is fairly
close to the correlation determined by Haileet al.28 via com-
puter simulations. Note that weak oscillations are clea
present in the numerical work.28 Doi26 has computedFsv for
a certain random model of imbedded spheres which i
popular theoretical artifice for a porous medium

Fsv~ t!5
1

2
sS 11

t

2aDw21Fvv~ t! t<2a

5sw t.2a. ~14!

It so happens that Eq.~14!, but with Fvv given by Eq.~13!,
is a fairly good approximation to the surface–void corre
tion deduced by computer simulations on impenetra
spheres.29 The limits at short and long distances can be
ferred from the definition@Eq. ~12!#. The average ofhs is
easily calculated because the delta function“hv~r ! is defined
on the surfaces of the spheres

^hs&h5V21E dr ^hs~r !&h

5V21E dS54pna2V2153v/a[s. ~15!

Linear response Ansatz

Next, I propose a linear response Ansatz24,26 as argued
above for the functionw~r ! which is supposed to approxi
mate the solution to the Laplace equation~4!

w~r !5E1E dr 8 K~r2r 8!~hv~r 8!2w!. ~16!

This is a continuous function defined throughout the volu
V and nonzero within the spheres. The kernelK whose form
must reflect the translational invariance of the porous m
dium after averaging, is to be determined variationally.
very low volume fractions, we expectK;ur2r 8u21 from the
solution12 to Eq. ~4!. Hence, the porosityw has been sub-
tracted fromhv~r ! to avoid a potential divergence. Thus th
constantE tends to unity12 in the limit of vanishing volume
fraction. Fortunately, it turns out that the form Eq.~16! leads
o. 8, 22 February 1997
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3405Theo Odijk: Many-body depletion interactions
to a renormalizable theory for impenetrable spheres. I h
also investigatedhs~r ! as a possible source term but, in th
case, formal difficulties appear in the limitv→0 which do
not seem resolvable.

Depletion implies thatw~r ! must be identical to zero on
S. This is evidently difficult to take into account exactly, s
we replace this constraint by a global condition which is le
stringent

V21E dŜ w~S!&h5V21E dr ^hs~r !w~r !&h

5Es1E dt K~ t!~Fsv~ t!2ws!50. ~17!

A second condition connectingE andK stems from the in-
variance of the total number of polymer segments in
suspension. On averaging this requirement and taking
care to delete the fictive contribution within the spheres,
have

V21E dr ^hv~r !w
2̇~r !&h

5E2w12EE dt K~ t!~Fvv~ t!2w2!

1E dtE du K~ t!K~u!H~ t,u!51 ~18!

with

H~u,t![G3~u,t!2wFvv~ t!2wFvv~u!1w3 ~19!

and a three-point correlation function

G3[^hv~r !hv~r 8!hv~r 9!&h ~ t5r2r 8;u5r2r 9!. ~20!

Note thatE51 in the limit v50 as it should.
Despite extensive computations30,31 it is not so easy to

find a useful uniform approximation toG3 valid at all vol-
ume fractions. One interesting choice has been discusse
Weissburg and Prager30

G3.w21Fvv~a!Fvv~b!, ~21!

wherea and b are the two smallest vectors out of the s
~u,t,u2t!. At the very least, Eq.~21! has the following mer-
its: It is accurate whenever~i! all three points are well sepa
rated (G35w3); ~ii ! r 9→` at fixed r and
r 8~G35wFvv~r2r 8!!; ~iii ! r5r 8~G35Fvv~r2r 9!!; ~iv!
r5r 85r 9(G35w). Moreover, it can be readily shown tha
H~u,t!>0 uniformly, so realistic solutions forE andK are
guaranteed. Equation~21! tends to overestimateG3 in vari-
ous regimes,30 which causes problems as will be seen belo
Still, Eq. ~21! is useful in assessing the qualitative nature
the depletion energy as a function of the protein volu
fraction.

The constantE is now eliminated to yield a condition o
the functionK. Equations~17!–~21! reduce to

wJ21w21I 151, ~22!

where
J. Chem. Phys., Vol. 106, N

Downloaded¬31¬Jul¬2007¬to¬130.161.132.53.¬Redistribution¬subject¬
e
t

s

e
ue
e

by

t

.
f
e

J[E dt K~ t!~w21Fvv~ t!2s21Fsv~ t!! ~23!

and

I 1[2E dtE
uuu,uu2tu,utu

du K~ t!K~u!Fvv~u!~Fvv~u2t!2Fvv~ t!!.

~24!

Next, a scaled energy density may be written as

u[a2V21E dr ^hv~r !~“w~r !!2&h

5a2E dtE du
dK~u!

du

dK~ t !

dt

t–u

tu
H~u,t!. ~25!

Approximating the three-point correlation by Eq.~21! again,
we get

u.w21I 2 , ~26!

I 2[2a2E dtE
uuu,uu2tu,utu

du
dK~u!

du

dK~ t !

dt

t–u

tu

3Fvv~u!~Fvv~u2t!2Fvv~ t!!. ~27!

It is now possible to eliminate the scale orh dependence of
K, i.e. , we rescalehK⇒K employing Eq.~22!

u@K#5
I 2

w2J21I 1
. ~28!

This constitutes a minimum principle forK.
A plausible choice forK is

K5
e2bt/a

4pa2t
. ~29!

The variational parameterb is expected to vanish as the vo
ume fractionv of spheres tends to zero; on the other hand
finite rangeab21 with b5O ~1! is reasonable as the prote
spheres cluster together. If we use Eqs.~13! and ~14!, the
integral I 2 has the approximate form

I 25w2vE
0

2

dz~11bz!e2bzE
0

z

dx~11bx!e2bx~w1vx!

3E
x/2z

1

dy y@exp2~x21z222xzy!1/22e2z#. ~30!

Unfortunately, it is now evident from the behavior of th
integrand that it contributes substantially toI 2 in a regime
where the approximation Eq.~21! is no longer accurate.30

This is explicitly borne out by evaluating the dilute lim
v!1: this should yieldu53v whereas Eqs.~28!–~30! mark-
edly overestimate the numerical coefficient. A better com
tation ofG3 at all volume fractions will have to be awaited

Meanwhile, it is possible to understand the qualitati
behavior of the depletion energy. Arguably, the depende
of G3 on the volume fraction should be fairly well describe
by Eq. ~21!: G3 is accurate at several extreme positions. A
o. 8, 22 February 1997
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3406 Theo Odijk: Many-body depletion interactions
cordingly, the use of aG3 similar to Eq.~21! but rescaled to
yield the correct numerical coefficient at low protein conce
trations, leads to the following estimates:

I 1.
1
3t~12a1v !w2v, ~31!

I 2.
1
3t~12a2v !w2v ~32!

with a coefficientt close to unity, anda1.a2 and 12a1!1.
Together with the relation

J. 1
3w, ~33!

these expressions yield

u.
3t~12a2v !v

~12v !213t~12a1v !v
. ~34!

We conclude that the depletion energŷ Ud&h
.V(a/j0)

4/3ua23kBT starts to saturate to a constant value
a protein volume fraction of about13. Accordingly, this theory
does not predict the existence of a second correlation le
l@a; in that case,Ud would tend to zero asv approaches the
value at close packing. There is no tendency to force
polymer out of clusters of spheres as is seen in simulation
large colloids.8 Of course, this arises, in part, from our su
positiona!j0. The collective effect of protein crowding i
substantial though not overpowering despite the intermed
range of the depletion forces.

CONCLUDING REMARKS

A general conclusion of this work is that polymer
particle interactions may be markedly mediated by corre
tions beyond the pair level in qualitative agreement with n
merical computations in other regimes.8 However, our
analysis for small proteins seems to preclude very str
correlations of long range. I have given a treatment at
level of three-point void correlations. A precise computati
of these will be needed to gain quantitative understandin
protein–polymer mixtures at all concentrations. It is recal
that in the phase separation of isotropic phases, the pro
volume fraction may be quite high.32

The present theory accounts for protein–protein corre
tions up to quite high volume fractions of protein. The effe
of segment fluctuations has been proved to be weak for c
paratively small protein spheres. Depletion forces aris
from the interaction among several proteins and the s
rounding sea of polymer segments have been dealt with
significant degree of correlation. Indeed, the formalism is
at all mean field in the usual sense for delicate three-p
correlations have been taken into account. Preaveragin
the depletion constraint as expressed by Eq.~17! is arguably
the weakest link in our argumentation.

Note added in proof.The concentrationc0 of polymer
segments refers to the space accessible to the poly
J. Chem. Phys., Vol. 106, N
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hence, we havec0[N/V(12v). The average depletion en
ergy per protein iŝUd&h/n54p(a/j0)

4/3(u/v)kBT and may
sometimes exceedkBT; unfortunately, we do not know the
precise theoretical value of the numerical prefactor. T
depletion energy is quite sensitive to polymer–protein int
actions@see T. Odijk, Langmuir~submitted!#.
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