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Abstract

In this thesis we will study the ergodic measures and the hydrodynamic limit of independent
run-and-tumble particle processes, i.e., an interacting particle system for particles with an
internal energy source, which makes them move in a preferred direction that changes at
random times. We start by providing some basic concepts and theory of Markov processes
and interacting particle systems. Afterwards, we define our model on the particle state space
Zd×S, with S a finite space of internal states, by giving its generator, and we prove a duality
result with a similar process which we will use repeatedly throughout this thesis. Then we
show that the product Poisson measures with constant parameter are ergodic, and are also
the only ergodic probability measures for this process in the space of so-called tempered
measures, i.e., measures with bounded factorial moments. Lastly we prove the hydrodynamic
limit of this process on Z× S by showing that the evolution of the macroscopic density is a
weak solution to a PDE.
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Chapter 1

Introduction

In this thesis we will study the dynamics and hydrodynamic limits of independent run-and-
tumble particle processes. The particles in this process, which are also referred to as active
particles, follow a motion consisting of two components.

The first component is a symmetric random walk. This component models a “passive”
diffusion caused by random collisions with surrounding molecules.

The second component is a motion in a direction that is determined by the internal state
of the particle. We will refer to this component as the active part of the motion, and it is
what causes the particle to “run”. However, the internal state of a particle will also change
at random times, causing the particle to “tumble” towards a new direction.

Model

Here we will discuss the general model of a run-and-tumble particle process considered in
this thesis. Let V := G × S, with G a countable set and S a finite set. We will view G as
the space of possible positions of a particle and S as the internal state space. Furthermore,
let T : V → G be a function. This value of this function T (x, σ) is the preferred direction
of a particle at position x ∈ G with internal state σ ∈ S, i.e., the active part of the motion
sends a particle at (x, σ) to (T (x, σ), σ).

A run-and-tumble particle is a Markov process of the form {(Xt, σt)}t≥0 on V with the
following three types of transitions.

1. With rate κ, the position performs a symmetric random walk on G

2. With rate λ, the particle jumps in its preferred direction according to the function T .

3. With rate γ, the internal state changes uniformly on S. (Generalizations are possible)

In this report, we will look at multiple (possibly infinitely many) run-and-tumble parti-
cles, all moving independently on the space of positions G = Zd. on Zd we can actually define
a “direction” in which a particle moves with a certain “velocity” by taking S ⊂ Zd a finite
subset and letting T (x, σ) = (x+ σ, σ). A simple case for this is by taking V = Z× {−1, 1}.
Then the active motion of the particle equals moving one space to the right or left if its
internal state is 1 or −1 respectively.

Motivation

A run-and-tumble particle system falls in the category of a larger area, that both physicists
and biologists have taken an interest in, called active matter. The theory of active matter
is about the motion of organisms with an energy source, which is able to use this energy to
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2 CHAPTER 1. INTRODUCTION

move in a certain direction [20]. Examples of active matter include flocks of birds, schools
of fish, but also a human crowd [6]. However, the dynamics of run-and-tumble particles
were inspired by certain bacteria, such as E. coli, which are able to perform a self-propelled
motion [27].

Another example of objects where the run-and-tumble dynamics are observed is in motor
proteins [11]. These “motors”, which can be found in any animal body, are involved in the
transport of proteins and vesicles. By converting energy into motion, they move along the
filaments of the cytoskeleton, which are long, interconnected strings. At any crossroad, the
motor protein can switch from string to string, changing its direction.

Lately, active matter and run-and-tumble particles are being studied extensively. Ex-
amples of recent articles include Soto and Golestanian, where mutually excluding run-and-
tumble particles were being considered [25], and Le Doussal et al., where they studied two
independent run-and-tumble particles [17]. However, not a lot is known about systems of
infinitely many run-and-tumble particles moving independently, hence they are the subject
of this thesis.

Duality

Duality is a term that appears in many branches of mathematics. It is usually a way to
reformulate a problem into a different (“dual”) problem that is either easier to solve or helps
to better understand the original problem. In the theory of interacting particle systems, or
more generally the theory of Markov processes, duality of a process {ηt, t ≥ 0}, with initial
value η, consists of a dual process {ξt, t ≥ 0}, with initial value ξ, and a duality function D
such that

E [D(ξ, ηt)] = E [D(ξt, η)] .

In Chapter 3, we will prove a duality result for the run-and-tumble particle system,
which we will use repeatedly throughout the rest of this thesis, where the dual process only
consists of finitely many particles. We will prove this result in two different ways; firstly
through straight-forward calculations, by applying the generators of the processes to the
duality function. Secondly we introduce a so-called deterministic system, which corresponds
to a Markov process, and show that there is a duality result between the run-and-tumble
particle system and its deterministic system. Afterwards, we will show that this result is
equivalent to the duality result which we are after.

Ergodic theory

In the study of dynamical systems, ergodic theory looks at average asymptotic behavior. The
notion of ergodicity began with the Boltzmann hypothesis, stating that “for large systems
of interacting particles in equilibrium, the time average along a single trajectory equals the
space average” [8]. It turned out that this hypothesis was false, and conditions on the
measure of the space were needed. The measures for which the hypothesis was true were
called the ergodic measures.

It turned out that the ergodic measures also play a strong part in the structure of the
invariant measures of a process, i.e., the measures that are preserved under the process.
Namely, the set of invariant measures is a convex set with the ergodic measures as extremal
points, as we will see in Section 2.2. Therefore, knowing all the ergodic measures can tell a
lot about the invariant measures.

In Chapter 4 we will show that the product Poisson measures with constant parameter
are ergodic and we show that in a certain subspace of probability measures, called the
tempered measures, these are the only ergodic measures. To prove this, we use the method
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of Kuoch and Redig in [16] where they prove a similar result for the Symmetric Inclusion
Process. In their proof, they needed that there is a successful coupling starting from any
two configurations η and ξ, i.e. there exists a joint process {(ξt; ηt), t ≥ 0} such that ξt and
ηt eventually coincide. Therefore, we will look at a successful coupling of two configurations
of run-and-tumble particles in Section 4.2.

Hydrodynamic limit

The hydrodynamic limit focusses on the “macro scale” of particle densities instead of the
“micro scale” of particle configurations, i.e., instead of looking at all the particles individually,
we perform a rescaling of the particle state space with a factor 1

N , and turn it into a continuum
by taking N to infinity. This way, due to some sort of extended version of the law of large
numbers, we end up with a macroscopic density. After this rescaling of space, we can ask
ourselves how this density evolves under the run-and-tumble dynamics. In order to let these
dynamics have an effect on the macro-scale, we will also need a rescaling of time with a
factor N2. However, this will will speed up some parts of the process too much, and we
will have to perform the following change of parameters (which we will motivate later);
λ→ λ

N and γ → γ
N2 . The evolution of the density under these dynamics is what we call the

hydrodynamic limit of the system.

In Section 5, we set out to prove the hydrodynamic limit of the run-and-tumble particle
system on the one-dimensional space G = Z. We do this by following the proof Seppäläinen
in [23], in which he showed that the evolution of the Exclusion Process is described by the
heat equation. For the run-and-tumble particle system, we will see that this evolution will
be described by a system of PDEs, one for every internal state in S, which are all dependent.
Afterwards, we will also find a PDE for describing the evolution of the total density of
particles, i.e. the density of particles where there is no subdivision of particles in regards to
the internal state.

Structure of this thesis

In Chapter 2 we begin with the necessary preliminary knowledge of this thesis. Section
2.1 starts with the basics of Markov processes, Markov semigroups and Markov generators,
and Section 2.2 looks at invariant and ergodic measures. Experienced readers on Markov
processes can skip the first two sections. Section 2.3 introduces the concept of duality and self-
duality, and a useful theorem for proving duality results. In Section 2.4 we look at empirical
measures and define convergence to density profiles, along with some examples. Afterwards
we give the mathematical meaning of a hydrodynamic limit. Lastly, in Section 2.5 we define
the Simple Symmetric Exclusion Process and apply all the mathematical concepts we have
introduced in this chapter to this process.

In Chapter 3 we show a duality result for the run-and-tumble particle system with a
dual process. In Section 3.1 we introduce the result and proof it on the level of generators.
Afterwards, in Section 3.2, we prove duality of the run-and-tumble particle system with
a deterministic system, which will help us prove the required duality result. We end this
chapter with a duality result between the two deterministic systems of the run-and-tumble
particle system and the dual process.

In Chapter 4 we look at ergodic properties of product Poisson measures. Section 4.1 starts
by showing an application of Doob’s theorem, stating that Poisson measures are preserved
under independent Markovian particle processes. This will show that product Poisson mea-
sures with constant parameters are invariant. The rest of the section is dedicated to showing
that these measures are also ergodic by showing they are mixing. Afterwards In Section
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4.2 we prove that we can achieve a successful coupling between finite configurations of run-
and-tumble particles. We will use this result in Section 4.3 where we show that all bounded
harmonic functions only depend on the number of particles, and we end with the proof that
the product Poisson measures with constant parameter are the only ergodic measures in the
space of tempered measures.

In Chapter 5 we prove the hydrodynamic result of the run-and-tumble particle system
on Z × S. In Section 5.1 we state the result and in the sections 5.2 - 5.6 we prove this
in the same way as it is done in [23]. Then in Section 5.7 we define the local equilibrium
measures and show that the evolution of these measures corresponds to the hydrodynamic
limit. Lastly, in Section 5.8 we look at the evolution of the total density of particles.



Chapter 2

Interacting Particle System Theory

In this chapter, we will give an overview of the background material and math concepts
needed to study the run-and-tumble particle process. At the end of this chapter, we will
first apply this material in the context of a simpler model, namely the Exclusion Process.
Much of the theory discussed here is derived from the following sources [8, 18, 21]. For a
reader that is already familiar with Markov semigroups, Markov generators, and invariant
and ergodic measures, the first two sections of this chapter can be skipped.

2.1 Markov processes

We start with some basics of the theory of Markov processes.

2.1.1 Markov processes and Markov semigroups

Markov processes

Let (Ω,F ,P) be a probability space with filtration {Ft, t ≥ 0} and (E,E ) a measurable
space. We start with the definition of a stochastic process.

Definition 2.1. A stochastic process is a family X = {Xt, t ≥ 0} of random elements
Xt : Ω → E. We say that a stochastic process is adapted to the filtration {Ft, t ≥ 0} if for
every t ≥ 0 we have that Xt is Ft-measurable.

Remark 2.1. While every random element Xt of the stochastic process is a function from
Ω to E, the distinction between these two spaces is often irrelevant. Therefore we tend to
work with the case where (Ω,F ) = (E,E ) and every Xt is the identity. Unless mentioned
otherwise, we from now on assume that this is the case.

If we want the starting value of the process, i.e., the value of X0, to follow a probability
distribution µ on (Ω,F ), then we associate the process X with the law Pµ := P(·|X0 ∼ µ),
and let Eµ be the corresponding expectation. However, in the case that µ = δx for some
x ∈ Ω and δ the Dirac-measure, i.e., with probability 1 the process starts from x, we will
simply write Px and Ex.

A Markov process is a special kind of stochastic process.

Definition 2.2. An adapted stochastic process X is called a Markov process if for every
bounded measurable function f : Ω→ R and 0 ≤ s < t, the following holds,

E
[
f(Xt)

∣∣Fs

]
= E

[
f(Xt)

∣∣Xs

]
. (2.1)

We furthermore call the Markov process homogeneous if for any s > 0 the following process
{Xt+s, t ≥ 0} starting from Xs = x has the same distributions as {Xt, t ≥ 0} starting from
X0 = x.

5



6 CHAPTER 2. INTERACTING PARTICLE SYSTEM THEORY

Intuitively, the property 2.1 tells us that a Markov process is a stochastic process that is
memoryless: the future does not depend on the whole past, but only on the current state.
This property is also called the Markov property.

Markov semigroups

Definition 2.3. Let (F (Ω), || · ||∞) be a complete, real-valued function space. A family
{St, t ≥ 0} of bounded linear operators St : F (Ω) → F (Ω) is called a Markov semigroup if
for all f ∈ F (Ω) and s, t ≥ 0,

(S1). S0f = f ,

(S2). St+sf = St(Ssf),

(S3). limt↓0 ||Stf − f ||∞ = 0,

(S4). St1 = 1,

(S5). If f ≥ 0 then Stf ≥ 0,

(S6). ||Stf ||∞ ≤ ||f ||∞.

The property (S2) is called the semigroup property. It says that applying the operator
St after Ss is the same as applying St+s. (S3) is also called strong continuity. This property
says that the semigroup is right-continuous at 0 with respect to the norm || · ||∞. And lastly
(S6) says that St is a contraction.

Remark 2.2. If we combine the semigroup property with the strong continuity, we can
conclude that the path {Stf, t ≥ 0} is continuous in t for each f ∈ F (Ω).

As the names would suggest, theres is a connection between a Markov semigroup and
a Markov process. For X = {Xt, t ≥ 0} a homogeneous Markov process that is right-
continuous, we want to define the the following family of operators {St, t ≥ 0} acting on
functions f : Ω→ R as follows

Stf(x) = Ex [f(Xt)] . (2.2)

The first question that arises from this definition is on which function space F (Ω) we can
define these operators. This entirely depends on the state space Ω that we are working with.

1. If Ω is a compact metric space, then we can take F (Ω) = C(Ω).

2. If Ω is a locally compact metric space, then we can take F (Ω) = C0(Ω), i.e., the space
of continuous functions that vanish at infinity, or F (Ω) = Cb(Ω), i.e., the space of
bounded continuous functions.

3. If Ω is a general discrete, measurable space, then we can take F (Ω) = B(Ω), i.e., the
space of bounded measurable functions. Note however that while are working in a
discrete measurable space, we have that B(Ω) = Cb(Ω), since every set in Ω is open.

One can verify that for each case, our choice of function space is a Banach space when
equipped with the infinity norm || · ||∞, defined by

||f ||∞ := sup
x∈Ω
|f(x)|.

Proposition 2.1. The family of operators {St, t ≥ 0} as defined in 2.2 is a Markov semi-
group on (F (Ω), || · ||∞).
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Proof. The linearity of the operators comes from the linearity of the expectation, and the
properties (S1) and (S4)− (S6) follow directly from the definition of St, so we only have to
prove the semigroup property and the strong continuity of {St, t ≥ 0}.

In order to prove the semigroup property, we use the tower property of conditional
expectation and the Markov property of X to see that for every x ∈ Ω we have the following:

St+sf(x) = Ex[f(Xt+s)] = Ex
[
E[f(Xt+s)|Ft]

]
= Ex

[
E[f(Xt+s)|Xt]

]
. (2.3)

Now note that by the homogeneity of X

E[f(Xt+s)|Xt] = EXt [f(Xs)] = Ssf(Xt),

so by filling this back into 2.3 we indeed find that

St+sf(x) = Ex[f(Xt+s)] = Ex
[
Ssf(Xt)

]
= St (Ssf(x)) .

For the strong continuity, note first of all that f ∈ F (Ω) is continuous for every possible
function space F (Ω) that we have considered. Furthermore, if the process starts from X0 = x,
by the right-continuity of X we have that limt↓0Xt = x. Therefore, by the dominated
convergence theorem, we find that

lim
t↓0

Stf(x) = lim
t↓0

Ex[f(Xt)] = f(x),

which shows the pointwise right-continuity in 0. The proof to go from here to uniform
right-continuity can be found in Section 1 of chapter IX in [28].

By Proposition 2.1 we have shown that for every Markov process {Xt, t ≥ 0} there exists a
Markov semigroup {St, t ≥ 0}given by 2.2. It turns out that the other direction is also true,
and the connection between a Markov semigroup and Markov process is even one-to-one.
This result can be found in the book of Liggett [18, Theorem 1.5]

Theorem 2.2. Suppose {St, t ≥ 0} is a Markov semigroup on (F (Ω), || · ||∞), then there
exists a unique homogeneous, right-continuous Markov process {Xt, t ≥ 0} such that

Stf(x) = Ex[f(Xt)]

for all f ∈ F (Ω), t ≥ 0 and x ∈ Ω.

2.1.2 Markov generators and the Hille-Yosida Theorem

The semigroup property of the Markov semigroup motivates the existence of an operator
L : F (Ω)→ F (Ω), such that the informal relation ‘St = etL’ holds. By this relation, L would
be defined as follows:

Lf = lim
t↓0

Stf − f
t

(2.4)

This operator is known as the (infinitesimal) generator of the Markov semigroup {St, t ≥ 0},
since it determines the behavior in the future of the corresponding Markov process for an
infinitesimal time interval, and intuitively we can in this way generate the whole process via
the Markov property.

Example 2.1. In this example, we will look at the continuous-time Markov chain {Xt, t ≥ 0}
with “transition rates”, i.e., we define the rates c(x, y) > 0 for every x, y ∈ Ω, and set
cx =

∑
y∈Ω c(x, y). Here we assume that cx <∞ for all x ∈ Ω. If at any point in time t, the

process is at Xt = x, then it will wait an exponential time, distributed by exp(cx), before

jumping to another point, where it will jump to y ∈ Ω with probability π(x, y) = c(x,y)
cx

.
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We will now compute the generator L as it is given in 2.4 for these type of Markov
processes. First note that the probability that more than one jump is made in the time
interval [0, t] can be bounded above by Ct2 for some C > 0. If we then denote Kt as the
number of jumps made in [0, t], then by the law of total expectation, we have that for any
x ∈ Ω,

Stf(x)− f(x) =

∞∑
k=0

Ex [f(Xt)|Kt = k]P(Kt = k)− f(x)

= Ex [f(Xt)|Kt = 1]P(Kt = 1) + Ex [f(Xt)|Kt = 0]P(Kt = 0)− f(x) +O(t2)

=
(
1− e−cxt

)∑
y∈Ω

c(x, y)

cx
f(y)

+ e−cxtf(x)− f(x) +O(t2)

=
1− e−cxt

cx

∑
y∈Ω

c(x, y)
(
f(y)− f(x)

)+O(t2)

Now since limx↓0
1−e−x
x = 1, we find that

Lf(x) = lim
t↓0

Stf(x)− f(x)

t
=
∑
y∈Ω

c(x, y)
(
f(y)− f(x)

)
(2.5)

Remark 2.3. If we furthermore assume that our state space Ω = {x1, x2, ..., xn} is finite,
then every function f ∈ F (Ω) can be represented as a column vector (f(xi))1≤i≤n, and the
generator L is the following matrix

L =


−n c(x1, x2) · · · c(x1, xn)

c(x2, x1) −n · · · c(x2, xn)
...

...
. . .

...
c(xn, x1) c(xn, x2) · · · −n


In Example 2.1, we see that the (possibly) infinite sum given in 2.5 might not exist for

all f ∈ F (Ω), and hence the generator is not defined on the whole of F (Ω). One example of
a generator where this is even more clear, is the following:

Example 2.2. Let Ω = R, then Ω is a locally compact space, so for our functions space we
can choose F (Ω) = Cb(Ω). Now define the Markov semigroup {St, t ≥ 0} by the deterministic
operator that for every t ≥ 0 sends f ∈ Cb(Ω) to the following function

Stf(x) = f(x+ t),

for every x ∈ Ω. Then

Lf(x) = lim
t↓0

f(x+ t)− f(x)

t
= f ′(x),

but only if f ′(x) exists for every x ∈ Ω, i.e., f must be continuously differentiable. But this
is not the case for every f ∈ Cb(Ω).

In order to avoid this problem, we restrict the functions that L can work on by defining
the domain of the generator L as follows:

D(L) :=

{
f ∈ F (Ω) : lim

t↓0

Stf − f
t

exists

}
. (2.6)
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Markov generators formalized

We can formalize the theory we have discussed above by giving the definition of a Markov
generator.

Definition 2.4. Let D(L) ⊂ F (Ω), then the operator L : D(L)→ F (Ω) is called a Markov
generator if the following properties hold:

(G1). 1 ∈ D(L) and L1 = 0,

(G2). D(L) is dense in F (Ω),

(G3). L is a closed operator, i.e., {(f, Lf) : f ∈ D(L)} is closed.

(G4). R(I − λL) = F (Ω) for all λ ≥ 0,

(G5). If f ∈ D(L), λ ≥ 0 and (I − λL)f = g, then

min
x∈Ω

f(x) ≥ min
x∈Ω

g(x).

By an application of the Hille-Yosida theorem, there exists a one-to-one correspondence
between a Markov semigroup and a Markov generator [21, Theorem 2.2].

Theorem 2.3.

1. For every Markov semigroup {St, t ≥ 0}, the operator L given by 2.4 is a Markov
generator with domain D(L) as given in 2.6.

2. For every Markov generator L, the process {St, t ≥ 0} given by

St = lim
n→∞

(
I − t

n
L

)−n
(2.7)

is a Markov semigroup.

3. For f ∈ D(L), we have that Stf ∈ D(L) and

d

dt
Stf = StLf = LStf. (2.8)

Moreover, Stf is the unique solution to this equation.

We see that we can ultimately obtain the following diagram, showing the relations be-
tween a Markov process, semigroup and generator.

{Xt, t ≥ 0} {St, t ≥ 0} L

Stf(x) = Ex [f(Xt)]

pt(x,A) = St1A(x)

Lf = limt↓0
Stf−f
t

St = limn→∞
(
I − t

nL
)−n

Figure 2.1: one-to-one correspondence of Markov process, semigroup and generator.
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Cores

For a given Markov generator L, it is not always easy to characterize the whole domain D(L)
explicitly, as it is given in 2.6. However, it is usually enough to only look at the operator L
defined on a certain subspace D ⊂ D(L), called a core.

Definition 2.5. A set D ⊂ D(L) is a core of the generator L if the closure of the following
restriction L

∣∣
D

is again the generator L, i.e., the graph {(f, Lf) : f ∈ D} is dense in the
closed graph {(f, Lf) : f ∈ D(L)}. This can be .. for all (f, Lf) with f ∈ D(L), there exists
a sequence {(fn, Lfn), n ∈ N} with all fn ∈ D such that (fn, Lfn)→ (f, Lf).

Example 2.3. Let K be a finite set. If we consider a continuous-time Markov chain on the
compact state space Ω = KZ, with transition rates c(x, y) for all x, y ∈ Ω, then as we have
seen in Example 2.1, the generator L is given by

Lf(x) =
∑
y∈Ω

c(x, y)
(
f(y)− f(x)

)
, (2.9)

where D(L) is the set of all f ∈ B(Ω) for which ||Lf ||∞ <∞. However it is easier to assume
that f is a local function, i.e., functions that only depend on finitely many coordinates in Z.
If this is the case, then the sum in 2.9 is a finite sum, hence f ∈ D(L). By an application
of the Stone-Weierstrass theorem, it can also be shown that the local functions are dense in
C(Ω), so if we now take

D := {f ∈ C(Ω) : f is a local function},

then D is a core of L.

Trotter-Kurtz theorem

The theorem of Trotter-Kurtz tells us that convergence of a Markov generator on a core
implies the convergence of the corresponding Markov semigroup and process.

Theorem 2.4. Let
(
{Xn

t , t ≥ 0}
)
n∈N, X be Markov processes on a compact space Ω, with

corresponding Markov semigroups
(
{Snt , t ≥ 0}

)
n∈N, {St, t ≥ 0} and generators

(
Ln
)
n∈N, L,

respectively. Furthermore, let D be a core for L, then the following are equivalent:

− for all f ∈ D there is a sequence (fn)n∈N with fn ∈ D(Ln) such that fn → f and
Lnfn → Lf .

− Snt f → Stf for every f ∈ F (Ω), uniformly for t ∈ [0, T ].

− if Xn
0 → X0 in distribution, then Xn → X in distribution in DΩ (path space, see

appendix A.3.2).

Proof. The proof can be found in [14, Theorem 19.25]

2.2 Invariant and ergodic measures

For a Markov process {Xt, t ≥ 0} on Ω, the initial state can be given by a distribution
X0 ∼ µ with µ ∈ P(Ω), the space of Borel probability measures on Ω (see Appendix A.3).
Let {St, t ≥ 0} be the Markov semigroup corresponding to the Markov process {Xt, t ≥ 0}
and define µSt ∈P(Ω) as the distribution of the process at time t, i.e., Xt ∼ µSt, then this
is the unique probability measure such that for all f ∈ F (Ω) we have that∫

fdµSt =

∫
Stfdµ.

In this section we will look at starting distributions µ that are invariant and ergodic with
respect to the process X.
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2.2.1 Invariant measures

The notion of invariance in mathematics means that it remains unchanged after a certain
operation. In the case of Markov processes, this leads to the following definition:

Definition 2.6. Let {St, t ≥ 0} be a Markov semigroup and let µ ∈P(Ω), then we say that
µ is invariant (with respect to {St, t ≥ 0}) if∫

fdµSt =

∫
fdµ

for all t ≥ 0 and f ∈ F (Ω). We denote the set of invariant measures by I .

From this definition, we see that if µ is an invariant measure, then the distribution of the
process remains the same, i.e., Xt ∼ µ for all t ≥ 0.

Proposition 2.5. I is convex. If furthermore Ω is a compact, then I is also non-empty
and compact.

Proof. Let µ1, µ2 ∈ I , and for λ ∈ (0, 1) define the probability measure µλ ∈ P(Ω) as
µλ = λµ1 + (1− λ)µ2. Furthermore, let t ≥ 0 and f ∈ F (Ω), then∫

fdµλSt = λ

∫
fdµ1St + (1− λ)

∫
fdµ2St = λ

∫
fdµ1 + (1− λ)

∫
fdµ2 =

∫
fdµλ.

So indeed µλ ∈ I for all λ ∈ (0, 1), and so I is convex.

Now assume that Ω is compact. Then we have that P(Ω) is also compact. To see this,
we will use that by Theorem A.7 P(Ω) is compact if it is tight, i.e., for all ε > 0, there exists
a compact set K ⊂ Ω such that for all µ ∈ P(Ω) we have that µ(K) ≥ 1 − ε. But this is
trivial since Ω itself is compact.

The non-emptyness of I now follows from the so-called “Bogolioubov-Krylov” argument.
Let ν ∈P(Ω), and define the measures

µT :=
1

T

∫ T

0
νSsds,

then we have that for every f ∈ F (Ω),∣∣∣∣∫ StfdµT −
∫
fdµT

∣∣∣∣ =
1

T

∣∣∣∣∫ T

0

∫
St+sfdνds−

∫ T

0

∫
Ssfdνds

∣∣∣∣
≤ 1

T

(∫ t

0

∫
|Ssf |dνds+

∫ T+t

T

∫
|Ssf |dνds

)
≤ 2t||f ||∞

T
,

(2.10)

where we have used the semigroup property of {St, t ≥ 0} and the fact that Ss is a contraction
for every s ≥ 0. We see here that if we let T →∞, then the right-hand side of 2.10 goes to
zero, hence any limit point of a subsequence µTn → µ is invariant. Such a limit point exists
since P(Ω) is compact.

Finally, in order to show that the space I is compact, all we have to show is that it is
closed in the weak topology on P(Ω), since P(Ω) is compact. Let {µn, n ∈ N} be a sequence
of probability measures in I such that µn

w−→ µ with µ ∈ P(Ω), i.e., for all f ∈ C(Ω) we
have that ∫

fdµ = lim
n→∞

∫
fdµn.
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If we have that f ∈ C(Ω) then also Stf ∈ C(Ω). Therefore, since every µn ∈ I ,∫
Stfdµ = lim

n→∞

∫
Stfdµn = lim

n→∞
fdµn =

∫
fdµ,

hence µ ∈ I , and so I is closed.

Proposition 2.6. µ ∈ I if and only if for all f ∈ D(L),∫
Lfdµ = 0. (2.11)

Proof. Assume that µ ∈ I , then for every f ∈ D(L) we have that∫
Lfdµ =

∫
lim
t↓0

1

t

(
Stf − f

)
dµ = lim

t↓0

1

t

(∫
Stfdµ−

∫
fdµ

)
= 0,

where we could interchange the limit and integral since the convergence from Stf−f
t → Lf

is uniform, so we can apply the dominated convergence theorem.

Conversely, suppose that 2.11 holds, then by 2.8, we have that for all f ∈ D(L)∫
(Stf − f)dµ =

∫ ∫ t

0
(LSsf)dsdµ =

∫ t

0

(∫
LSsfdµ

)
ds = 0,

where we have used Fubini for the second equality. This implies that∫
Stfdµ =

∫
fdµ,

for all f ∈ D(L). Now since D(L) is dense in F (Ω), for any f ∈ F (Ω) we can take a sequence
{fn, n ∈ N} ⊂ D(L) such that fn → f uniformly. Furthermore, since St is a contraction, we
have that

sup
n∈N
||Stfn||∞ ≤ sup

n∈N
||fn||∞ <∞.

So by the dominated convergence theorem, we have that∫
Stfdµ = lim

n→∞

∫
Stfndµ = lim

n→∞

∫
fndµ =

∫
fdµ,

which shows that µ ∈ I .

Of course, as we have discussed earlier, it is not always easy to determine the whole set
D(L). Therefore it is again useful to turn to a core D for this property.

Proposition 2.7. Let D be a core for the generator L, then µ ∈ I if 2.11 holds for all
f ∈ D .

Proof. Since D is dense in D(L), for every f ∈ D(L) there exists a sequence {fn, n ∈ N} such
that fn → f and Lfn → Lf , both uniformly. Therefore, again by the dominated convergence
theorem we have that ∫

Lfdµ = lim
n→∞

∫
Lfndµ = 0,

which shows that 2.11 holds for all f ∈ D(L), and so µ ∈ I .
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Reversibility

A notion even stronger than invariance is that of reversibility.

Definition 2.7. A measure µ ∈P(Ω) is called reversible (with respect to {St, t ≥ 0}) if for
all f, g ∈ F (Ω). ∫

(Stf)gdµ =

∫
f(Stg)dµ.

By putting g ≡ 1 we can conclude that a reversible measure is invariant. The main idea
behind a reversible measure is that, while an invariant measure remains the same moving
forward in time, a reversible measure also has this property while moving backward in time.
This is why, if a process is following a reversible measure, we often say the process is in
“equilibrium”.

Reversibility can also be shown by looking at the generator and turning to a core D .

Proposition 2.8. µ ∈P(Ω) is reversible if and only if for all f, g ∈ D ,∫
g(Lf)dµ =

∫
(Lg)fdµ.

Proof. The proof is similar to that of Proposition 2.6 and Proposition 2.7

2.2.2 Ergodic measures

If we have a measure µ ∈ P(Ω) and take f ∈ F (Ω), then since ||f ||∞ < ∞ we have that
f ∈ Lp(Ω, µ) for p ≥ 1. It turns out that for µ ∈ I , we can even extend the semigroup
{St, t ≥ 0} to Lp(Ω, µ) by the following proposition.

Proposition 2.9. Let µ ∈ I , then St is a contraction with respect to || · ||p for each p ≥ 1
and t ≥ 0.

Proof. Let p ≥ 1 and t ≥ 0. For any x ∈ Ω and f ∈ C(Ω) ∩ Lp(Ω, µ), Jensen’s inequality
tells us that

|(Stf)(x)|p = |Ex [f(Xt)]|p ≤ Ex [|f(Xt)|p] = (St|f |p) (x).

Now by the invariance of the measure µ we see that

||Stf ||p =

∫
|Stf |pdµ ≤

∫
St|f |pdµ =

∫
|f |pdµ = ||f ||p,

which proves the proposition.

Since for any set A ∈ F we have that 1A ∈ Lp(Ω, µ), by the above theorem we see that
the semigroup {St, t ≥ 0} can also work on indicator functions. With that in mind, we can
now define what it means for a set A ∈ F to be invariant.

Definition 2.8. We call a set A ∈ F invariant (with respect to {St, t ≥ 0}) if for all t ≥ 0
we have that St1A = 1A a.s.. Similarly, we call a function f ∈ Lp(Ω, µ) invariant if for all
t ≥ 0 we have that Stf = f .

The invariance of a set A implies that if the corresponding Markov process {Xt, t ≥ 0}
has a starting value X0 ∈ A, then Xt ∈ A for all t ≥ 0 with probability 1, i.e., it (almost)
never leaves the set A. Note that it is also easy to see that if A is invariant, then also Ac is
invariant.

Definition 2.9. A probability measure µ ∈ I is ergodic (with respect to {St, t ≥ 0}) if for
all invariant sets A ∈ F either µ(A) = 1 or µ(A) = 0.
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From this definition follows the following equivalence.

Proposition 2.10. µ ∈ I is ergodic if and only if for any p ≥ 1, all invariant functions
f ∈ Lp(Ω, µ) are µ-a.s. constant.

Proof. Suppose that µ is ergodic and f ∈ Lp(Ω, µ) is an invariant function. Define the sets
Ba for a ∈ R as follows:

Ba := {x ∈ Ω : f(x) ≤ a}.

Since Stf = f we have that Ba is an invariant set, which by ergodicity of µ implies that
µ(Ba) = 0 or µ(Ba) = 1. Now define

a0 := inf {a ∈ R : µ(Bc
a) = 0} ,

and note that

{x ∈ Ω : f(x) = a0} = Ba0\
∞⋃
n=1

Ba0− 1
n
.

Since µ(Bc
a0) = 0 and µ(Ba0− 1

n
) = 0 for all n ≥ 1, we find that

µ({x ∈ Ω : f(x) = a0}) = 1,

hence f is µ-a.s. constant.
For the other direction, if all invariant functions in Lp(Ω, µ) are µ-a.s. constant and

A ∈ F is an invariant set, then since 1A ∈ Lp(Ω, µ) either 1A = 1 or 1A = 0 µ-a.s.. This
implies that µ(A) = 1 or µ(A) = 0, so indeed µ is ergodic.

Birkhoff ergodic theorem

It was Birkhoff who first proved that the Boltzmann hypothesis, stating that the time-average
of a process equals the space-average, needed ergodicity of the measures [4].

Theorem 2.11. Let µ ∈ I be ergodic, then for any f ∈ L1(Ω, µ) we have that µ-a.s.

lim
T→∞

1

T

∫ T

0
Stf(x)dt =

∫
fdµ

Proof. The idea of the proof can be found in [8, Chapter 3].

Extremal points of I

In Proposition 2.5, we have seen that the set of invariant measures is convex. It turns out
that the extreme points of this set are exactly the ergodic measures. Before we prove this,
we will need to prove two lemmas.

Lemma 2.12. If µ ∈ I and A ∈ F is an invariant set, then for the corresponding Markov
process {Xt, t ≥ 0} with X0 ∼ µ we have that 1A(X0) = 1A(Xt) P-a.s. for all t ≥ 0. As a
consequence, if furthermore µ(A) > 0, then µ(·

∣∣A) ∈ I .

Proof. For A ∈ F we have that

Eµ
[
(1A(X0)− 1A(Xt))

2
]

= Eµ
[
1A(X0) + 1A(Xt)− 21A(X0)1A(Xt)

]
(2.12)

In general, we have that Eµ
[
1A(X0)

]
= µ(A), and if A is now invariant, then

Eµ
[
1A(Xt)

]
=

∫
Ex
[
1A(Xt)

]
dµ(x) =

∫
St1A(x)dµ(x) =

∫
1A(x)dµ(x) = µ(A),
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and similarly

Eµ
[
1A(X0)1A(Xt)

]
=

∫
1A(x)St1A(x)dµ(x) =

∫
1A(x)dµ(x) = µ(A).

By filling this back into 2.12, we find that

Eµ
[
(1A(X0)− 1A(Xt))

2
]

= µ(A) + µ(A)− 2µ(A) = 0,

hence 1A(X0) = 1A(Xt) P-a.s.
If we furthermore have that µ(A) > 0, then for all f ∈ F (Ω), we have that∫

Stfdµ(·
∣∣A) =

∫
(Stf) · 1Adµ = Eµ

[
f(Xt)1A(X0)

]
.

By now filling in that 1A(X0) = 1A(Xt) and using that µ ∈ I , we see that∫
Stfdµ(·

∣∣A) = Eµ
[
f(Xt)1A(Xt)

]
=

∫
St(f · 1A)dµ =

∫
f1Adµ =

∫
fdµ(·

∣∣A),

i.e., µ(·
∣∣A) ∈ I .

Lemma 2.13. If µ, µ1 ∈ I , µ is ergodic and µ1 << µ, i.e., µ(B) = 0 implies that µ1(B) = 0
for B ∈ F , then µ = µ1.

Proof. If µ is ergodic, then by Theorem 2.11 we find that for any A ∈ F and µ-a.s.,

lim
T→∞

1

T

∫ T

0
St1A(x)dt =

∫
1Adµ = µ(A),

i.e., if we define the following set

CA :=

{
x ∈ Ω : lim

T→∞

1

T

∫ T

0
St1A(x)dt = µ(A)

}
,

then µ(CA) = 1. By the fact that µ1 << µ, we then also have µ1(CA) = 1. Since µ1 ∈ I ,
for every T > 0 we have the following,

1

T

∫ T

0

∫
St1Adµ1dt =

1

T

∫ T

0

∫
1Adµ1dt = µ1(A).

On the other hand, by the dominated convergence theorem and Fubini, we also find that

lim
T→∞

1

T

∫ T

0

∫
St1Adµ1dt =

∫
lim
T→∞

1

T

∫ T

0
St1Adtdµ1 =

∫
µ(A)dµ1 = µ(A).

So we find that µ(A) = µ1(A), and since we have taken A ∈ F arbitrary, we can conclude
that µ = µ1.

Proposition 2.14. µ ∈ I is ergodic if and only if it is an extremal point of I .

Proof. Assume that µ ∈ I is ergodic but not an extremal point of I , i.e., there exists
µ1, µ2 ∈ I such that µ1, µ2 6= µ and

µ = λµ1 + (1− λ)µ2

for some λ ∈ (0, 1). By this relation, we see that µ1 << µ, and so by applying Lemma 2.13
we then find that µ = µ1, which is a contradiction. Therefore µ is an extremal point of I .

For the other direction, assume that µ ∈ I is not ergodic, i.e., there is an invariant set
A ∈ F with 0 < µ(A) < 1. Then we can write µ as the decomposition

µ = µ(·
∣∣A)µ(A) + µ(·

∣∣Ac)µ(Ac).

By Lemma 2.12, we see that both µ(·
∣∣A), µ(·

∣∣Ac) ∈ I , which means that µ is not an extremal
point of I .
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Proposition 2.14 shows us that knowing the ergodic measures of a process can tell a lot
about the invariant measures. Especially if Ω is compact, since by Proposition 2.5 this tells
us that I is also compact, and so by the Krein-Milman theorem, I is equal to the closed
convex hull of its extremal points, i.e., we can write every µ ∈ I as the convex combination
of ergodic measures.

Mixing

The following property is an even stronger one than ergodicity.

Definition 2.10. A probability measure µ ∈ I is mixing (with respect to {St, t ≥ 0}) if for
all f, g ∈ L2(Ω, ν) we have

lim
t→∞

∫
g(Stf)dµ =

∫
gdµ

∫
fdµ

If we would fill in f = 1A and g = 1B for some arbitrary set A,B ∈ F , then this equality
can be written as

lim
t→∞

µ(B ∩ S−1
t A) = µ(B)µ(A),

which looks fairly similar to an independence result of A and B. This is what the notion of
mixing really does, it turns any set A ∈ F into something fairly independent of an arbitrary
set B ∈ F .

Proposition 2.15. µ ∈ I is ergodic if it is mixing.

Proof. Let f ∈ L2(Ω, µ) be an invariant function. By writing g = f in the definition of
mixing, we see that ∫

f2dµ = lim
t→∞

∫
f(Stf)dµ =

(∫
fdµ

)2

,

i.e., E[f2] = (E[f ])2. So f has zero variance, therefore it is a.s. constant. By Proposition
2.10, we then see that µ is ergodic

2.3 Duality

Duality is an important tool in the analysis of Interacting Particle Systems. It allows us to
associate a so-called dual process to our process of interest, such that a problem regarding
the original process can be reformulated as a problem in terms of the, often much simpler,
dual process. We start with the general definition of duality.

Definition 2.11. Suppose X and Y are Markov processes on the state spaces Ω1 and Ω2,
and with Markov semigroups {St, t ≥ 0} and {Ŝt, t ≥ 0} respectively, then X and Y are said
to be dual to one another with respect to the bounded measurable function D : Ω1×Ω2 → R
if

StD(·, y)(x) = ŜtD(x, ·)(y),

for all x ∈ Ω1 and y ∈ Ω2. In this case we call D the duality function.

However, it is often much easier to show duality with respect to the generator of the
process.

Proposition 2.16. Let L and L̂ be the generators of the Markov processes X and Y
from Definition 2.11 respectively. If D(·, y), StD(·, y) ∈ D(L) for all y ∈ Ω2, t ≥ 0 and
D(x, ·), ŜtD(x, ·) ∈ D(L̂) for all x ∈ Ω1, t ≥ 0, then X is dual to Y with duality function D
if

LD(·, y)(x) = L̂D(x, ·)(y),

for all x ∈ Ω1 and y ∈ Ω2.
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Proof. The proof can be found in [13, Proposition 1.2].

In the case of Proposition 2.16 we will say, with abuse of notation, that L and L̂ are dual
to one another with respect to duality function D.

2.3.1 Self-duality

A Markov process X on Ω is self-dual if (as the name suggests) it is dual to itself. Usually
however, for the ‘dual process’ we do not look at the whole set Ω but only at a subset.

Definition 2.12. A Markov process X is called self-dual if there exists a subset Ω′ ⊂ Ω and
a duality function D : Ω′ × Ω→ R such that

StD(·, y)(x) = StD(x, ·)(y),

for all x ∈ Ω′ and y ∈ Ω.

The real power of the self-duality lies in the choice of the subset Ω′. This subset is usually
chosen in such a way that the dynamics of the process would be easier to work with. In
Section 2.5 we will look at a process that is self-dual and see why this is a useful property.

2.4 Density profiles and hydrodynamic limits

For this section, we look at particle configurations on Z where the particles are indistinguish-
able, i.e., we set Ω = NZ

0 and view η ∈ Ω as a set of particles on the lattice Z where for every
x ∈ Z the value η(x) is the number of particles at site x.

In this section, we discuss how to pass from the “micro world” of particle configurations
on Ω to the “macro world” of density profiles on R.

2.4.1 Density profiles

To go from the micro-world to the macro-world we introduce a scaling parameter N . The
rescaling is than as follows: for any macro-point x ∈ R the corresponding micro-point is
bxNc ∈ Z. More precisely, we define, for {ηN : N ∈ N} a sequence of configurations in Ω,
the sequence of measures {πN , N ∈ N} on 1

NZ as follows:

πN =
1

N

∑
x∈Z

ηN (x)δ x
N
.

We call these measures the empirical mesures. If we let N → ∞ then, under suitable
conditions, these measures will converge to some measure in R. We can denote these measures
by ρ(x)dx with ρ : R → R≥0 some non-negative function. We will call such a function a
(macroscopic) density profile.

Definition 2.13. Let ρ : R→ R≥0 be a density profile.

1. A sequence of configurations {ηN , N ∈ N} is said to correspond to ρ if for all smooth
test functions φ ∈ C∞c (R)∫

φ(x)dπN (x)→
∫
φ(x)ρ(x)dx, as N →∞.

2. A sequence of probability measures {νN , N ∈ N} is said to correspond to ρ if for the
sequence of stochastic variables {ηN , N ∈ N}, where ηN ∼ νN for every N , and for all
smooth test functions φ ∈ C∞c (R)∫

φ(x)dπN (x)
P−→
∫
φ(x)ρ(x)dx, as N →∞.
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The convergence in the first part of the definition is also called vague convergence (see
Appendix A.4), and the convergence in the second part is some sort of vague convergence in
probability. In both cases we will denote it as

lim
N→∞

πN = ρ(x)dx.

Example 2.4. Let η ∈ Ω be the configuration such that η(x) = 1 for all x ≥ 0 and η(x) = 0
for all x < 0, then this corresponds to the density profile ρ(x) = 1x≥0. Indeed, by the
Riemann approximation of the integral we see that∫

φ(x)dπN (x) =
1

N

∑
x∈Z

φ( xN )1x≥0 →
∫
φ(x)1x≥0dx.

Z

1

R

1

Figure 2.2: Transition from micro-configuration η (left) to macro-density ρ (right).

It is important to notice that for a given density profile ρ(x), there is not just one
corresponding configuration η ∈ Ω. It is therefore not a one-to-one mapping but a “many-
to-one” mapping. To see this, we will give another example of a configuration corresponding
to the density profile from Example 2.4.

Example 2.5. Let η ∈ Ω be the configuration such that η(x) = 2 for all even x ≥ 0 and
η(x) = 0 otherwise, then this also corresponds to the density profile ρ(x) = 1x≥0. To see
this, note that since φ is continuous, we have that limN→∞

∣∣φ( xN )− φ(x+1
N )
∣∣ = 0, and so∫

φ(x)dπN (x) =
1

N

∑
x∈2Z

2φ( xN )1x≥0

=
1

N

∑
x∈2Z

(
φ( xN ) + φ(x+1

N )
)
1x≥0 +

1

N

∑
x∈2Z

(
φ( xN )− φ(x+1

N )
)
1x≥0

→
∫
φ(x)1x≥0dx+ 0.

Other configurations corresponding to the same density profile include η ∈ Ω for which
η(x) 6= 1 for finitely many x ≥ 0 and η(x) = 0 otherwise.

Lastly, we will also look at examples of probability distributions corresponding to the
same density profile.

Example 2.6. If for the configuration η, we let η(x) follow a Poisson(1) distribution, inde-
pendently for every x ≥ 0, and set η(x) = 0 for x < 0, then this again corresponds to the
density profile ρ(x) = 1x≥0. To see this, we first look at the expectation

E
[∫

φ(x)dπN (x)

]
=

1

N

∑
x∈Z

E [η(x)]φ( xN ) =
1

N

∑
x∈Z

φ( xN )1x≥0 →
∫
φ(x)1x≥0dx. (2.13)
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For the variance, since all the η(x) are independent, the variance of the sum is the sum of
the variances, hence

Var

[∫
φ(x)dπN (x)

]
=
∑
x∈Z

Var

[
1

N
η(x)φ( xN )

]
=

1

N2

∑
x∈Z

φ2( xN )1x≥0.

Since we already know by the Riemann integral of φ2(x) that

1

N

∑
x∈Z

φ2( xN )1x≥0 →
∫
φ2(x)1x≥0dx,

we see that the variance approximates this integral times 1
N , for very large N , which will in

turn go to zero as N →∞, i.e.,

Var

[∫
φ(x)dπN (x)

]
≈ 1

N

∫
φ2(x)1x≥0dx→ 0. (2.14)

Combining 2.13 and 2.14 gives us that∫
φ(x)dπN (x)

L2

−→
∫
φ(x)1x≥0dx,

and since convergence in L2 implies convergence in probability, we indeed find that∫
φ(x)dπN (x)

P−→
∫
φ(x)1x≥0dx.

By the same calculations, we can generalize this example to any probability distribution
ν with the property that if η ∼ ν, then E[η(x)] = 1 for all x ≥ 0 and E[η(x)] = 0 otherwise,
and Var [η(x)] <∞ for all x ∈ Z.

2.4.2 Hydrodynamic limits

The main idea of hydrodynamic limits is to see how the density profile of the microscopic
configurations {ηt, t ≥ 0} with initial distribution ν changes over time. It is sometimes the
case that this density profile follows a partial differential equation. This is rather interesting
if you think about it in the following way: on the microscopic scale level of configurations the
dynamics are random, but on the macroscopic scale of densities the behavior is completely
deterministic.

The first thing to consider is the rescaling of time. It is often the case that in a fixed
time t, a single particle of a Markov process of configurations can only move a distance of
order

√
t away from the origin. For example, think about a rate-1 random walker. However,

since we are rescaling space with a factor 1
N to get a density profile, we will need to rescale

time with a factor N2 in order to let enough particles move far enough to actually have
a significant impact on the macroscopic density profile, because a random walk moves a
distance of order N in a time N2. Therefore we will be looking at the time-rescaled Markov
process {ηN2t, t ≥ 0}. The hydrodynamic limit is now concerning with the rescaled versions
of the empirical measures

πNt :=
1

N

∑
x∈Z

ηN2t(x)δ x
N

(2.15)

and looks at the behavior of the corresponding density profile ρt defined by

lim
N→∞

πNt = ρt(x)dx,

i.e., for all t ≥ 0, φ ∈ C∞c (R) and ε > 0,

lim
N→∞

P
(∣∣∣∣∫ φdπNt −

∫
φ(x)ρt(x)dx

∣∣∣∣ ≥ ε) = 0.

We see this behavior as the macro-evolution of the process.
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2.5 Simple Symmetric Exclusion Process

In this section we will really look at an example of an Interacting Particle System, namely
the Exclusion Process. This process can be seen as a number of particles moving around on
a lattice, where only a finite number of particles are allowed to be on the same site at the
same time. This example can be seen as a paradigm for the rest of this thesis.

For our example, we will take the lattice to be Zd, and we will set the maximum number
of particles at every site to be one. In this case, the state space of this process will be the
set of configurations Ω = {0, 1}Zd , where for η ∈ Ω we say there is a particle at state x ∈ Zd
if η(x) = 1 and no particle if η(x) = 0.

Furthermore we will assume that the particles can only move to a nearest neighbor with
rate 1, given that there is not already a particle at this site. This specific example is called
the Simple Symmetric Exclusion Process (SSEP).

Most of the the theory of this chapter is derived from [18, 21].

2.5.1 Generator of SSEP

In order to define the generator of the SSEP, we first need to further understand what
happens when a particle is about to jump. Every particle wants to jump from its starting
site with rate 1 to a nearest neighbor, but if there is already a particle at this site, no jump
will happen. It turns out that this is the same interaction as exchanging the occupancies
of the two sites in question with rate 1. Figure 2.3 shows the effect of exchanging the
occupancies. If there is only one particle present at the neighboring sites, then this is the
same as a jump occurring from one site to the other, and if there are two or no particles
present, then this is the same as no jump occurring.

Figure 2.3: The effect of exchanging occupancies of two sites for the four possible cases of
there being a particle present (black) or not present (white) at each site.

With this in mind, for η ∈ Ω we now define ηx,y as the configuration in Ω obtained by
interchanging the occupancies at x and y, i.e.,

ηx,y(z) :=


η(z) if z /∈ {x, y},
η(x) if z = y,

η(y) if z = x.

If we furthermore denote by x ∼ y the relation that x, y ∈ Zd are nearest neighbors, then we
can define the generator of the SSEP working on a local function f ∈ C(Ω) as

Lf(η) =
∑
x∼y

f(ηx,y)− f(η). (2.16)

The set of local functions is also a core for this generator.
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2.5.2 Duality of SSEP

Here we will discuss the duality of the SSEP. It turns out that this process is self-dual. As
in Definition 2.12, we will need a subset Ω′ ⊂ Ω and a duality function D : Ω×Ω′ → R. The
subset Ω′ has to be chosen in such a way that the process does become easier to analyze in
a certain way. We therefore take

Ω′ = Ωf :=
{
ξ ∈ Ω : ξ(x) 6= 0 for finitely many x ∈ Zd

}
, (2.17)

i.e., Ωf is the subset of configurations in Ω with only finitely many particles.
Before we give the duality result, we first introduce the following notation. For η, ξ ∈ Ω

we say that the relation ξ ≤ η holds if for any x ∈ Zd, η(x) = 1 implies that ξ(x) = 1, i.e.,
wherever there is a particle in η there is also a particle in ξ.

Theorem 2.17. The SSEP is self-dual with Ωf ⊂ Ω defined as in 2.17 and duality function
D : Ωf × Ω→ R defined as

D(ξ, η) :=
∏

x;ξ(x)=1

η(x) = 1ξ≤η.

Proof. According to Proposition 2.16, all we have to show is that for any η ∈ Ω and ξ ∈ Ωf

we have that
LD(ξ, ·)(η) = LD(·, η)(ξ).

If we take L as defined in 2.16, since we only consider finite configurations ξ ∈ Ωf , we have
that both sums LD(·, ξ)(η) and LD(η, ·)(ξ) are finite, hence they exists. Therefore we only
have to show that ∑

x∼y
D(ξ, ηx,y)−D(ξ, η) =

∑
x∼y

D(ξx,y, η)−D(ξ, η).

It turns out that this is fairly trivial, since 1ξ≤ηx,y = 1ξx,y≤η, which can be seen by considering
all the possible cases for η(x), η(y), ξ(x) and ξ(y).

This duality result is used quite often to prove result regarding the SSEP, since it helps
to reformulate a problem for the general case, with possibly infinitely many particles, to the
case with only finitely many particles. In the next bit, we will see how this can be used to
prove the ergodicity of measures.

2.5.3 Invariance and ergodicity of product Bernoulli measures

For an arbitrary function ρ : Z→ [0, 1], we define the νρ as the product Bernoulli measures
with density profile ρ, i.e.,

νρ :=
⊗
x∈Zd

Ber
(
ρ(x)

)
. (2.18)

In this part we will prove that these measures are invariant and even ergodic if ρ is a constant.
We will eventually make use of the duality result that we have proven in the previous part.

Proposition 2.18. For all ρ ∈ [0, 1] constant, νρ is an invariant measure for the SSEP.

Proof. Let f be a local function on Ω, then∫
Lfdνρ =

∑
x∼y

∫ (
f(ηx,y)− f(η)

)
dνρ(η),

where we could interchange the integral and sum because f is a local function, so the sum
only has finitely many non-zero elements. The claim now follows from the fact that the
product Bernoulli measure with a constant parameter is invariant under permutations and
then applying Proposition 2.7.
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Using the same method as above, we can even prove that the measures νρ are reversible
if ρ is constant.

Proposition 2.19. For all ρ ∈ [0, 1] constant, νρ is a reversible measure for the SSEP.

Proof. Let f and g be a local functions on Ω, then∫
g(Lf)dνρ =

∑
x∼y

∫ (
g(η)f(ηx,y)− g(η)f(η)

)
dνρ(η).

By again using that νρ is invariant under permutations, and the fact that interchanging
occupancies twice is the same as doing nothing, we have∫

g(η)f(ηx,y)dνρ =

∫
g(ηx,y)f(η)dνρ.

Therefore, we indeed find that∫
g(Lf)dνρ =

∑
x∼y

∫ (
g(ηx,y)f(η)− g(η)f(η)

)
dνρ(η) =

∫
(Lg)fdνρ,

so by Proposition 2.8, we see that νρ is reversible.

To prove the ergodicity of νρ, we will actually show that it is mixing. Then by Proposition
2.15, we indeed find that it is ergodic. Before we prove the mixing property however, we will
need the following.

Lemma 2.20. For ξ, ξ′ ∈ Ωf finite configurations and {ξ′t, t ≥ 0} the SSEP starting from
ξ′, we have that

lim
t→∞

P
(
ξ ⊥ ξ′t

)
= 1.

Proof. Since ξ, ξ′ are finite configurations, we can write ξ =
∑n

i=1 δxi and ξ′ =
∑m

j=1 δyj
for some xi, yj ∈ Zd and n,m ∈ N. We furthermore write ξ′t =

∑m
j=1 δyj(t), where every

{yj(t), t ≥ 0} is the processes corresponding to the individual particles of ξ′t starting from yj
respectively. This then tells us that

P
(
ξ 6⊥ ξ′t

)
= P(yj(t) = xi, for some i, j) ≤

∑
i,j

P(yj(t) = xi),

All we have to show now is that P(yj(t) = xi)→ 0 as t→∞, for every i, j. To see this,
note that every process {yj(t), t ≥ 0} is irreducible but not positive recurrent, which follows
from the fact that a d-dimensional random walk is also not positive recurrent. These two
properties combined tell us that the Markov process does not have a stationary measure. A
consequence of this is that for all x ∈ Zd,

P(yj(t) = x)→ 0

as t→∞, which ultimately proves the lemma.

Proposition 2.21. For all ρ ∈ [0, 1] constant, νρ is mixing with respect to the SSEP.

Proof. Before we prove the mixing property for functions in L2(Ω, µ), we first prove it for
the duality functions D(·, ξ) and D(·, ξ′), with ξ, ξ′ ∈ Ω some finite configurations. First note
that ∫

D(ξ, η)dνρ(η) = ρ|ξ|,

∫
D(ξ′, η)dνρ(η) = ρ|ξ

′|. (2.19)
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Now, by self-duality we have that∫
D(ξ, η)StD(ξ′, ·)(η)dνρ(η) =

∫
D(ξ, η)StD(·, η)(ξ′)dνρ(η),

where since the SSEP has conserves the number of particles, we can write for any η ∈ Ω,

StD(·, η)(ξ′) =
∑
|ξ′′|=|ξ′|

pt(ξ
′, ξ′′)D(ξ′′, η),

i.e., we sum over all configurations ξ′′ ∈ Ω that have the same number of particles as ξ′, and
{pt(·, ·)}t≥0 are the transition probabilities of the SSEP. By Fubini we therefore find that∫

D(ξ, η)StD(ξ′, ·)(η)dνρ(η) =
∑
|ξ′′|=|ξ′|

pt(ξ
′, ξ′′)

∫
D(ξ, η)D(ξ′′, η)dνρ(η)

We now have two complementary cases. The first case is where the two configurations ξ
and ξ′′ do not have any particles in common. We will denote this relation by ξ ⊥ ξ′′. Notice
that in this case

D(ξ, η)D(ξ′′, η) = D(ξ + ξ′′, η).

We therefore find that∑
|ξ′′|=|ξ′|

pt(ξ
′, ξ′′)

∫
D(ξ, η)D(ξ′′, η)dνρ(η) · 1ξ⊥ξ′′

=
∑
|ξ′′|=|ξ′|

pt(ξ
′, ξ′′)

∫
D(ξ + ξ′, η)dνρ(η)1ξ⊥ξ′′

= P
(
ξ ⊥ ξ′t

)
· ρ|ξ|+|ξ′|,

(2.20)

with {ξ′(t), t ≥ 0} the SSEP starting from ξ′. On the other hand we have that∑
|ξ′′|=|ξ′|

pt(ξ
′, ξ′′)

∫
D(ξ, η)D(ξ′′, η)dνρ(η) · 1ξ 6⊥ξ′′ ≤ P

(
ξ 6⊥ ξ′(t)

)
= 1− P

(
ξ ⊥ ξ′t

)
, (2.21)

since D(ξ, η) ≤ 1 for all ξ, η ∈ Ω. By combining everything, we find that

lim
t→∞

∣∣∣∣∫ D(ξ, ·)StD(ξ′, ·)dνρ −
∫
D(ξ, ·)dνρ

∫
D(ξ′, ·)dνρ

∣∣∣∣
≤ lim

t→∞

∣∣∣P(ξ ⊥ ξ′t) · ρ|ξ|+|ξ′| − ρ|ξ|+|ξ′|∣∣∣+ 1− P
(
ξ ⊥ ξ′t

)
The claim now follows from Lemma 2.20.

By linearity of the integral and the Markov semigroup {St, t ≥ 0}, it is clear that the
mixing property also holds for the linear combinations

pn =
n∑
i=1

aiD(ξ1,i, ·), qm =
m∑
j=1

bjD(ξ2,j , ·),

with all ξ1,i, ξ2,j ∈ Ω finite configurations. Furthermore, we have that every local function can
be represented as pn above, that the local functions are dense in C(Ω) (by Stone-Weierstrass),
and that C(Ω) is dense in L2(Ω, µ) since Ω is compact. Therefore, the proof for the general
case f, g ∈ L2(Ω, µ) now follows from a density argument. In Section 4.1.2, we show this in
detail for the run-and-tumble particle process.
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From the mixing property follows the ergodicity of νρ. It turns out that these measures
are the only ergodic measures for the SSEP.

Theorem 2.22. Let ν ∈ I be ergodic with respect to the SSEP, then there exists a ρ ∈ [0, 1]
such that ν = νρ.

Proof. The idea of the proof of this theorem can be found in [21, Chapter 4]. In Chapter 4
we will show a similar result for the run-and-tumble particle process.

Since we are working on a compact space Ω, this means by Proposition 2.14 that we
now know the full set of invariant measures. Namely, µ ∈ I if and only if it is a convex
combination of the set of probability measures {νρ, ρ ∈ [0, 1]}.

2.5.4 Hydrodynamic limit

For this part we will look at the one-dimensional SSEP, i.e., Ω = {0, 1}Z. Furthermore, let
ρ : R→ R≥0 be a density profile and define the following probability measures on Ω:

νNρ :=
⊗
x∈Z

Ber
(
ρ( xN )

)
. (2.22)

By similar calculations as in Example 2.6, it can be shown that these probability distributions
correspond to the density profile ρ(x).

Theorem 2.23. Let {ηN , N ∈ N} be a sequence of configurations such that ηN ∼ νNρ for all

N ∈ N, and let πNt be defined as in 2.15, then

lim
N→∞

πNt = ρt(x)dx,

where ρt(x) is a weak solution to the heat equation, i.e.,

∂

∂t
ρt(x) =

1

2

∂2

∂x2
ρt(x),

with initial condition

ρ0(x) = ρ(x).

Proof. The proof can be found in [23, Chapter 8]. We will use this line of proof to show the
hydrodynamic result for the run-and-tumble particle process in Chapter 5.

Apart from the hydrodynamic limit for the SSEP, it is also interesting to look at the
evolution of local equilibrium distributions. For y ∈ Z, define the operator θy : Ω → Ω as
θyη(x) = η(x + y) for any η ∈ Ω and x ∈ Z. Then define the operator τy : C(Ω) → C(Ω)
such as

τyf(η) = f(θyη),

for all f ∈ C(Ω).

Definition 2.14. Let ρ : R → R≥0 be a density profile, then a sequence of probability
measures {νN : N ∈ N} is a local equilibrium distribution for the SSEP, associated to the
density profile ρ, if for all y ∈ Z and local functions f ∈ C(Ω), we have that

lim
N→∞

∫
τbyNcfdν

N =

∫
fdνρ(y),

with νρ(y) as defined in 2.18 with the constant ρ(y).
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The idea of a local equilibrium distribution is that for a small area (small compared to 1
N )

around the macropoint y ∈ R, the distribution of particles is very close to that of νρ(y). This
measure is an invariant measure according to Proposition 2.18, so in this area we therefore
have some sort of “local equilibrium”.

First of all, we have that the probability measures defined in 2.22 are local equilibrium
distributions. To see this, we will prove the following proposition.

Proposition 2.24. For any y ∈ Z and local function f ∈ C(Ω), we have that

lim
N→∞

∫
τbyNcfdν

N
ρ =

∫
fdνρ(y),

Proof. We will prove that for all finite configurations ξ ∈ Ωf we have that∫
τbyNcD(ξ, ·)dνNρ →

∫
D(ξ, ·)dνρ(y).

Then, because every local function can be written as a linear combinations of duality func-
tions, we obtain the general result.

We will write ξ =
∑n

i=1 δxi for xi ∈ Z, then

τbyNcD(ξ, η) = τbyNc

n∏
i=1

η(xi) =
n∏
i=1

η(xi + byNc).

Therefore we find that

lim
N→∞

∫
τbyNcD(ξ, ·)dνNρ = lim

N→∞

n∏
i=1

ρ
(
xi+byNc

N

)
=

n∏
i=1

ρ(y) =

∫
D(ξ, ·)dνρ(y),

which proves the proposition.

We then have the following evolution of the local equilibrium distributions.

Theorem 2.25. For any given density profile ρ : R→ R≥0 we have that

lim
N→∞

∣∣∣∣∫ fdνNρ SN2t −
∫
fdνNρt

∣∣∣∣ = 0,

where ρt(x) is a weak solution to the heat equation with initial condition ρ0(x) = ρ(x).
More generally, if {νN : N ∈ N} is a local equilibrium distribution associated to the

density profile ρ, then {νNSN2t : N ∈ N} is a local equilibrium distribution associated to the
density profile ρt, where ρt solves the heat equation.

Proof. A proof of this theorem can be found in [19]



Chapter 3

Duality for run-and-tumble
particles

Now that we have the necessary prior knowledge about Markov processes, we can finally
define the interacting particle system from Section 1. Since we are working with the state
space Ω = NV0 , with V = Zd×S, we will define the Markov semigroup {St, t ≥ 0} of the run-
and-tumble particle process on functions f ∈ B(Ω), and the generator L on local functions,
i.e., functions that only depend on finitely many coordinates in Z × S. This generator can
be written as the sum of three individual parts. Namely, for f a local function, we have

Lf = λLaf + γLif + κLf, (3.1)

where λ, γ, κ ∈ R≥0 are constants and the three operators La, Li and L are again Markov
generators.

− La is the active part of the generator. It gives the particles of a configuration η ∈ Ω its
active motion (“run”) in a certain direction by letting a particle move from its initial
position, say (x, σ), to its new position (x + σ, σ). This comes down to the following
generator,

Laf(η) =
∑
x,σ

η(x, σ)
[
f(η − δ(x,σ) + δ(x+σ,σ))− f(η)

]
. (3.2)

− Li is the internal part of the generator. This part describes the transitions from one
internal state σ ∈ S to some other state σ′ ∈ S at each location x ∈ Zd, so

Lif(η) =
∑
x,σ 6=σ′

η(x, σ)cx(σ, σ′)
[
f(η − δ(x,σ) + δ(x,σ′))− f(η)

]
. (3.3)

Here the rates cx(σ, σ′) can either restrict or encourage the jump between two internal
states σ, σ′ ∈ S at position x ∈ Z. We will require these rates to be symmetric, i.e.,
cx(σ, σ′). In most examples, we will choose the uniform rates cx(σ, σ′) = 1 everywhere.

− L is the diffusion generator. This is the random walk generator

Lf(η) =
∑
x 6=y,σ

η(x, σ)c(x, y)
[
f(η − δ(x,σ) + δ(y,σ))− f(η)

]
, (3.4)

where we require the transition rates c(x, y) to be symmetric again. Furthermore, for
existence we require that supx

∑
y c(x, y) < ∞ and that c(x, y) = 0 if x − y > R for

some predetermined R ∈ R. The easiest example is where c(x, y) = 1
2 if x and y are

nearest neighbors, and 0 otherwise.

Remark 3.1. In order to save some space, we will from now on use the following notation,

η(x1,σ1),(x2,σ2) := η − δ(x1,σ1) + δ(x2,σ2).

26
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Remark 3.2. The number of parameters in 3.1 is redundant. If we assume κ > 0, then we
can also write

L′f :=
1

κ
Lf = λ′Laf + γ′Lif + Lf

where λ′ = λ
κ and γ′ = γ

κ . This shows that up to a rescaling of time only two parameters are
left.

In this chapter, we will prove a duality result of this process by showing that a duality
result holds for the three generators independently. Afterwards, we will look at an alternative
approach of proving the duality by introducing a so-called deterministic system, and see how
this can be used in general for independently moving particles.

3.1 The duality result

To understand the duality, we will first look at a graphical representation of a single run-
and-tumble particle on Z with internal state {−1, 1} in Figure 3.1, where for simplicity we
have taken κ = 0. Here we see for every site x ∈ Z two internal state, where the particle
moves to the right if it is in the blue (right) internal state, and it moves to the left if it is in
the red (left) internal state, both with exponential waiting times. Furthermore, the particle
switches between the two internal states along the black arrows in-between, which again have
exponential waiting times. We can now determine the path of the run-and-tumble particle
by following the arrows from top to bottom.

For the dual particle, we want it to follow the same path, but now from the bottom
to the top. Therefore, we want the arrows to occur with the same rates, but now in the
opposite direction. This lead to the following generator L̂ for the dual process, defined on
local functions f on Ω as follows:

L̂f := λL̂af + γLif + κLf. (3.5)

· · · Z× {−1, 1}· · ·

· · · Z× {−1, 1}· · ·

t t̂

Figure 3.1: Graphical representation of a single run-and-tumble particle with κ = 0, following
the arrows from top to bottom, and a dual particle, following the same path against the
arrows from bottom to top.
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Here L̂i and L are the same internal and diffusion generators as given in 3.3 and 3.4, and
L̂a is the active operator that sends a particle in the opposite direction, i.e.,

L̂af(η) =
∑
x,σ

η(x, σ)
[
f(η(x,σ),(x−σ,σ))− f(η)

]
.

In order to make the dual process easier to analyze, we will only define it on the space
of finite configurations ξ ∈ Ωf , as defined in 2.17. To achieve duality between the two
generators, we still need a duality function. Define for k, n ∈ N the function d(k, n) as
follows,

d(k, n) :=

{
n!

(n−k)! if k ≤ n,
0 if k > n.

(3.6)

We then have that the function D : Ωf × Ω→ R, defined as

D(ξ, η) =
∏
v∈V

d
(
ξ(v), η(v)

)
, (3.7)

is the duality function. The duality result between L and L̂ now follows from the following
theorem.

Theorem 3.1. 1. La is dual to L̂a with duality function D .

2. Li is self-dual with duality function D .

3. L is self-dual with duality function D .

Remark 3.3. The duality result is the reason why we require the transition rates cx(σ, σ′)
and c(x, y) in 3.3 and 3.4 to be symmetric. Without this property, the self-duality of these
two generators with respect to D will not hold. In the proof of the self-duality of Li we will
see why this is the case.

Remark 3.4. From now on we will write {Ŝt, t ≥ 0} as the Markov semigroup corresponding
to the Markov process generated by L̂. Furthermore we will write {p̂t(v, v′) : v, v′ ∈ V, t ≥ 0}
as the corresponding transition probabilities.

Remark 3.5. A direct consequence of the duality result is that for any v, v′ ∈ V we have
that

pt(v, v
′) = p̂t(v

′, v).

Indeed, by putting η = δv an ξ = δv′ in 3.7 we have that D(ξ, η) = 1v=v′ , and hence
StD(ξ, ·)(η) = pt(v, v

′) and ŜtD(·, η)(ξ) = p̂t(v
′, v).

Before we get to the proof of Theorem, 3.1, we will first prove the following lemma that
will help us with our calculations.

Lemma 3.2. for k, l,m, n ∈ N we have that

k
d(k − 1,m)d(l + 1, n)

d(k,m)d(l, n)
− nd(k,m+ 1)d(l, n− 1)

d(k,m)d(l, n)
= l − n

Proof. By a straightforward calculation, we find that

k
d(k − 1,m)d(l + 1, n)

d(k,m)d(l, n)
− nd(k,m+ 1)d(l, n− 1)

d(k,m)d(l, n)

=
k m!·n!

(m−k+1)!(n−l−1)! − n
(m+1)!(n−1)!

(m−k+1)!(n−l−1)!

m!·n!
(m−k)!(n−l)!

= (k −m− 1) · n− l
m− k + 1

= l − n,

which proves the lemma
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The rest of this section will be dedicated to proving the individual parts of Theorem 3.1.

3.1.1 Duality of La

We will first prove the duality result of the active part of the generator, i.e., we will show
that the following relation

LaD(ξ, ·)(η) = L̂aD(·, η)(ξ),

holds. Since we are only interested in finite configurations ξ ∈ Ω, it is enough to show that
for every σ ∈ S we have the following equality,∑

x

η(x, σ)
[
D(ξ, η(x,σ),(x+σ,σ))−D(ξ, η)

]
=
∑
x

ξ(x, σ)
[
D(ξ(x,σ),(x−σ,σ), η)−D(ξ, η)

]
.

(3.8)

In order to prove this, we have to make a distinction between two cases, namely the case
where D(ξ, η) > 0 and where D(ξ, η) = 0.

The case where D(ξ, η) > 0

If D(ξ, η) > 0, then 3.8 is equivalent to showing that∑
x

η(x, σ)
D(ξ, η(x,σ),(x+σ,σ))

D(ξ, η)
− ξ(x+ σ, σ)

D(ξ(x+σ,σ),(x,σ), η)

D(ξ, η)
+ ξ(x+ σ, σ)− η(x, σ) = 0.

First of all, it is useful to note that for any x ∈ Zd, we have D(ξ, η(x,σ),(x+σ,σ)) = 0 if and
only if D(ξ(x+σ,σ),(x,σ), η) = 0. If we assume they are both zero for some y ∈ Zd, then we get
that

η(y, σ)
D(ξ, η(y,σ),(y+σ,σ))

D(ξ, η)
− ξ(y + σ, σ)

D(ξ(y+σ,σ),(y,σ), η)

D(ξ, η)
+ ξ(y + σ, σ)− η(y, σ)

= ξ(y + σ, σ)− η(y, σ).

Since D(ξ, η) > 0 we know that ξ(x, σ) ≤ η(x, σ) for all x ∈ Zd and σ ∈ S, and
D(ξ(y+σ,σ),(y,σ), η) = 0 tells us that ξ(y, σ) + 1 > η(y, σ). Combining these two facts gives us
that ξ(y, σ) = η(y, σ), therefore,

η(y, σ)
D(ξ, η(y,σ),(y+σ,σ))

D(ξ, η)
− ξ(y + σ, σ)

D(ξ(y+σ,σ),(y,σ), η)

D(ξ, η)
+ ξ(y + σ, σ)− η(y, σ)

= ξ(y + σ, σ)− ξ(y, σ).

(3.9)

On the other hand, if we have that D(ξ, η(z,σ),(z+σ,σ)) > 0 for some z ∈ Zd, then we must
also have that D(ξ(z+σ,σ),(z,σ), η) > 0. For convenience we will now write

ξ(z, σ) = k, η(z + σ) = m,

ξ(z + σ, σ) = l, η(z + σ, σ) = n.

By using Lemma 3.2, we then get the following:

η(z, σ)
D(ξ, η(z,σ),(z+σ,σ))

D(ξ, η)
− ξ(z + σ, σ)

D(ξ(z+σ,σ),(z,σ), η)

D(ξ, η)

= m
d(k,m− 1)d(l, n+ 1)

d(k,m)d(l, n)
− l d(k + 1,m)d(l − 1, n)

d(k,m)d(l, n)

= m− k
= η(z, σ)− ξ(z, σ),
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so

η(z, σ)
D(ξ, η(z,σ),(z+σ,σ))

D(ξ, η)
− ξ(z + σ, σ)

D(ξ(z,σ),(z−σ,σ), η)

D(ξ, η)
+ ξ(z + σ, σ)− η(z, σ)

= η(z, σ)− ξ(z, σ) + ξ(z + σ, σ)− η(z, σ)

= ξ(z + σ, σ)− ξ(z, σ).

(3.10)

If we combine 3.9 and 3.10, we see that

∑
x

η(x, σ)
D(ξ, η(x,σ),(x+σ,σ))

D(ξ, η)
− ξ(x+ σ, σ)

D(ξ(x+σ,σ),(x,σ), η)

D(ξ, η)
+ ξ(x+ σ, σ)− η(x, σ)

=
∑
x

ξ(x+ σ, σ)− ξ(x, σ)

= 0,

where the last equality holds since ξ is a finite configuration.

The case where D(ξ, η) = 0

If D(ξ, η) = 0, to show that 3.8 holds, it is sufficient to show that

η(x, σ)D(ξ, ηx,σ)− ξ(x+ σ, σ)D(ξx+σ,σ, η) = 0 (3.11)

holds for every x ∈ Zd. As before, we know that for any x we have that D(ξ, η(x,σ),(x+σ,σ)) = 0
if and only if D(ξ(x+σ,σ),(x,σ), η) = 0. If they are both zero for some x ∈ Z, then trivially

η(x, σ)D(ξ, η(x,σ),(x+σ,σ))− ξ(x+ σ, σ)D(ξ(x+σ,σ),(x,σ), η) = 0.

So assume that D(ξ(x+σ,σ),(x,σ), η) > 0. We write again

ξ(x, σ) = k, η(x, σ) = m,

ξ(x+ σ, σ) = l, η(x+ σ, σ) = n.

then 3.11 is equivalent to showing that

m · d(k,m− 1)d(l, n+ 1)− l · d(k + 1,m)d(l − 1, n) = 0.

D(ξ(x+σ,σ),(x,σ), η) > 0 implies that ξ(x+σ, σ)−1 ≤ η(x, σ) for all y ∈ Zd, and sinceD(ξ, η) =
0 we have that ξ(x+σ, σ) > η(x, σ), so by combining these two facts, we see that ξ(x+σ, σ) =
η(x+ σ, σ) + 1, i.e., l = n+ 1. Therefore

m · d(k,m− 1)d(l, n+ 1)− l · d(k + 1,m)d(l − 1, n)

= m · d(k,m− 1)d(l, l)− l · d(k + 1,m)d(l − 1, l − 1)

= m · (m− 1)!

(m− k − 1)!
· l!− l · m!

(m− k − 1)!
· (l − 1)!

= 0.

We see that 3.11 indeed holds, and this concludes the proof of the duality.
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3.1.2 Duality of Li

In order to prove the self-duality of Li, i.e.,

LiD(ξ, ·)(η) = LiD(·, η)(ξ),

we will show that for every x ∈ Zd and σ, σ′ ∈ S we have that

ξ(x, σ)cx(σ, σ′)
[
D(ξ(x,σ),(x,σ′), η)−D(ξ, η)

]
+ ξ(x, σ′)cx(σ′, σ)

[
D(ξ(x,σ′),(x,σ), η)−D(ξ, η)

]
= η(x, σ)cx(σ, σ′)

[
D(ξ, η(x,σ),(x,σ′))−D(ξ, η)

]
+ η(y, σ)cx(σ′, σ)

[
D(ξ, η(x,σ′),(x,σ))−D(ξ, η)

]
.

(3.12)

We will only focus on the case where D(ξ, η) > 0, D(ξ(x,σ),(x,σ′), η) > 0 and D(ξ, η(x,σ),(x,σ′)) > 0.
The proof of the other cases will then work similarly as those of La. We write

ξ(x, σ) = k, η(x, σ) = m,

ξ(x, σ′) = l, η(x, σ′) = n.

By the symmetry of the transition rates cx(σ, σ′) = cx(σ′, σ), 3.12 comes down to showing
that

k
[
d(k − 1,m)d(l + 1, n)− d(k,m)d(l, n)

]
+ l
[
d(k + 1,m)d(l − 1, n)− d(k,m)d(l, n)

]
= m

[
d(k,m− 1)d(l, n+ 1)− d(k,m)d(l, n)

]
+ n

[
d(k,m+ 1)d(l, n− 1)− d(k,m)d(l, n)

]
,

which, after dividing everything by d(k,m)d(l, n) and some reordering, is the same as

k
d(k − 1,m)d(l + 1, n)

d(k,m)d(l, n)
− nd(k,m+ 1)d(l, n− 1)

d(k,m)d(l, n)
+ n− k

= m
d(k,m− 1)d(l, n+ 1)

d(k,m)d(l, n)
− l d(k + 1,m)d(l − 1, n)

d(k,m)d(l, n)
+ l −m.

(3.13)

Using Lemma 3.2, we have that

k
d(k − 1,m)d(l + 1, n)

d(k,m)d(l, n)
− nd(k,m+ 1)d(l, n− 1)

d(k,m)d(l, n)
= l − n,

and similarly

m
d(k,m− 1)d(l, n+ 1)

d(k,m)d(l, n)
− l d(k + 1,m)d(l − 1, n)

d(k,m)d(l, n)
= m− k.

Filling these back into 3.14, we indeed get our result.

Remark 3.6. Notice that if cx(σ, σ′) 6= cx(σ′, σ) for some x ∈ Zd and σ, σ′ ∈ S, then 3.12
would become

kcx(σ, σ′)
d(k − 1,m)d(l + 1, n)

d(k,m)d(l, n)
− ncx(σ′, σ)

d(k,m+ 1)d(l, n− 1)

d(k,m)d(l, n)
+ n− k

= mcx(σ, σ′)
d(k,m− 1)d(l, n+ 1)

d(k,m)d(l, n)
− lcx(σ′, σ)

d(k + 1,m)d(l − 1, n)

d(k,m)d(l, n)
+ l −m.

(3.14)

However, this equation is not always true, and therefore the duality would not hold.

3.1.3 Duality of L

Similar to the case of Li, the self-duality of L is a consequence of the symmetry property of
the rates c(x, y) = c(y, x) for all x, y ∈ Zd.
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3.2 Duality with the deterministic system

While the proof of the duality result that we have given above is correct, it is computational.
Here we will give an alternative approach to prove the duality of the processes generated by
L and L̂ respectively. We will do this by introducing the so-called “deterministic system”.

The deterministic system is a semigroup {ψt, t ≥ 0} on bounded operators g : B(V )→ R,
which lets a function f ∈ B(V ) follow the motion determined by the Kolmogorov Backward
equation of the run-and-tumble particle process. i.e., for every t ≥ 0 and g : B(V )→ R we
define

(ψtg) (f) := g(ft), with for all v ∈ V : ft(v) :=
∑
v′∈V

pt(v, v
′)f(v′). (3.15)

First we will show that we have a duality result between this deterministic system and a
run-and-tumble process {ηt, t ≥ 0}

Proposition 3.3. Let η ∈ Ω and f ∈ B(V ) such that f(v) 6= 1 for only finitely many v ∈ V ,
then

StD(f, ·)(η) = ψtD(·, η)(f),

where
D(f, η) =

∏
v∈V

f(v)η(v).

Proof. Note that the particles of the process {ηt, t ≥ 0} all move independently. Therefore,
if we label positions of the particles in ηt as vi(t), we find that

StD(f, ·)(η) = EηD(f, ηt) = Eη
∏
v∈V

f(v)ηt(v) = Eη
∏
i

f(vi(t)) =
∏
i

Evif(vi(t)).

By the definition of ft, found in 3.15, we see that Evif(vi(t)) = ft(vi), therefore

StD(f, ·)(η) =
∏
i

ft(vi) =
∏
v∈V

ft(v)η(v) = D(ft, η) = ψtD(·, η)(f).

which completes the proof.

Single dual particle case

From this duality result with the deterministic system, we can recover the duality from
Theorem 3.1. We will first do this for the case where we only have a single dual particle.

Proposition 3.4. For η ∈ Ω and vi ∈ V we have that

StD(δvi , ·)(η) = ŜtD(·, η)(δvi).

Proof. From Proposition 3.3, we find that

Eη

[∏
v∈V

f(v)ηt(v)

]
=
∏
v∈V

(∑
v′∈V

pt(v, v
′)f(v′)

)η(v)

(3.16)

By now taking the derivative with respect to the variable f(vi), with vi ∈ V , and afterwards
filling in f(v) = 1 for all v ∈ V , then on the left-hand side we get

∂

∂f(vi)
Eη

[∏
v∈V

f(v)ηt(v)

]∣∣∣∣∣
f≡1

= Eη

[
∂

∂f(vi)

∏
v∈V

f(v)ηt(v)

]∣∣∣∣∣
f≡1

= Eη[ηt(vi)]
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and on the right hand-side

∂

∂f(vi)

∏
v∈V

(∑
v′∈V

pt(v, v
′)f(v′)

)η(v)
∣∣∣∣∣∣
f≡1

=
∑
v∈V

∂

∂f(vi)

(∑
v′∈V

pt(v, v
′)f(v′)

)η(v) ∏
v′′ 6=v

(∑
v′∈V

pt(v
′′, v′)f(v′)

)η(v′′)
∣∣∣∣∣∣
f≡1

=
∑
v∈V

pt(v, vi)η(v).

(3.17)

Now write {p̂t(v, v′) : v, v′ ∈ V, t ≥ 0} as the family of transition probabilities of a single
particle process generated by the dual generator L̂, as given in 3.5. Now let v = (x, σ) and
v′ = (x′, σ′) be two particles in V . If v = v′, then

L1{v′}(v) = L̂1{v}(v′) = −31v=v′ = −3,

and if v 6= v′, then we have that

L1{v′}(v) = 1{(x′,σ′)}(x+ σ, σ) + 1{(x′,σ′)}(x, σ
′) + 1{(x′,σ′)}(x

′, σ)

and

L̂1{v}(v′) = 1{(x,σ)}(x
′ − σ′, σ′) + 1{(x,σ)}(x

′, σ) + 1{(x,σ)}(x, σ
′),

so we can conclude that

L1{v′}(v) = L̂1{v}(v′).

By Proposition 2.16, we then find that for a run-and-tumble particle v(t) and a dual particle
v′(t) starting from v and v′ respectively, we have that

Ev
[
1{v′}

(
v(t)

)]
= Êv′

[
1{v}

(
v′(t)

)]
,

which implies that pt(v, v
′) = p̂t(v

′, v).

By now going back to 3.17 and filling in this equality, it follows that

∂

∂f(vi)

∏
v∈V

(∑
v′∈V

pt(v, v
′)f(v′)

)η(v)
∣∣∣∣∣∣
f≡1

=
∑
v∈V

pt(v, vi)η(v) =
∑
v∈V

p̂t(vi, v)η(v) = Êvi
(
η(vi(t))

)

where we have used Êvi to denote the expectation of a particle, starting from vi, under the
process generated by L̂. Since for any x ∈ N0 we have that d(x, 1) = x, we indeed find that

StD(δvi , ·)(η) = Eη
[
D(δvi , ηt)

]
= Êδvi

[
D(δvi(t), η)

]
= ŜtD(·, η)(δvi)

which is what we wanted to prove.

Alternative proof of the duality result

We will now give the idea of how we can recover the full duality result from the duality in
Proposition 3.3.

Theorem 3.5. For any η ∈ Ω and ξ ∈ Ωf we have that

StD(ξ, ·)(η) = ŜtD(·, η)(ξ).
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Proof. We will look at n particles at position vi, i.e., ξ = nδvi . By taking the n-th order
derivative with respect to f(vi) on the left-hand side of 3.16 and afterwards setting f ≡ 1
again, we find that

∂n

∂f(vi)n
Eη

[∏
v∈V

f(v)ηt(v)

]∣∣∣∣∣
f≡1

= Eη

[
∂n

∂f(vi)n

∏
v∈V

f(v)ηt(v)

]∣∣∣∣∣
f≡1

= Eη
[
d(ηt(vi), n)

]
. (3.18)

For the right-hand side we have that

∂n

∂f(vi)n

∏
v∈V

(∑
v′∈V

pt(v, v
′)f(v′)

)η(v)
∣∣∣∣∣∣
f≡1

=
n∑

m=1

∑
v(1),...,v(m)∈V

v(i) 6=v(j)

∑
k1+...+km=n

(
n

k1, ..., km

) m∏
j=1

∂kj

∂f(vi)kj

(∑
v′∈V

pt(v
(j), v′)f(v′)

)η(v(j))

∣∣∣∣∣∣∣∣
f≡1

=

n∑
m=1

∑
v(1),...,v(m)∈V

v(i) 6=v(j)

∑
k1+...+km=n

(
n

k1, ..., km

) m∏
j=1

d
(
η(v(j)), kj

)
pt

(
v(j), vi

)kj

=

n∑
m=1

∑
v(1),...,v(m)∈V

v(i) 6=v(j)

∑
k1+...+km=n

(
n

k1, ..., km

) m∏
j=1

d
(
η(v(j)), kj

)
p̂t

(
vi, v

(j)
)kj

,

where we have again used that pt(v, v
′) = p̂t(v

′, v) for all v, v′ ∈ V . Notice that this last line
is the expected value of D(η, ξt) if {ξt, t ≥ 0} starts from ξ and is generated by L̂, i.e., we
find that

∂n

∂f(vi)n

∏
v∈V

(∑
v′∈V

pt(v, v
′)f(v′)

)η(v)
∣∣∣∣∣∣
f≡1

= Êξ
[
D(η, ξt)

]
. (3.19)

Combining 3.18 and 3.19, we indeed find that

Eη
[
D(ηt, ξ)

]
= Êξ

[
D(η, ξt)

]
.

If we look at ξ ∈ Ωf any finite configuration of particles, i.e., ξ =
∑n

i=1 δvi for some n ∈ N
and vi ∈ V , then the duality result can be found by taking the derivative with respect to
each f(vi) on both the left-hand side and right-hand side of the equation 3.16.

3.2.1 The dual deterministic system

We have already shown that from the duality result between the deterministic system and
the process itself, we can recover the duality given in Theorem 3.1. Here we will show that
we can go even further. We introduce the dual deterministic system, which is the semigroup
{ψ̂t, t ≥ 0} given by

(ψ̂tg)(f̂) := g(f̂t), with for all v ∈ V : f̂t(v) :=
∑
v′∈V

p̂t(v, v
′)f̂(v′).

for all g : B(V )→ R and f ∈ B(V ).

It turns out that we have a duality result between the two deterministic systems, and
that from this result we can again recover the duality between the two processes generated
by L and L̂.
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Proposition 3.6. Let f, f̂ ∈ B(V ) be such that f̂(v) 6= 0 for only finitely many v ∈ V , then

ψtD(·, f̂)(f) = ψ̂tD(f, ·)(f̂),

where

D(f, f̂) = exp

(∑
v∈V

f(v)f̂(v)

)
.

Proof. First of all

ψtD(·, f̂)(f) = exp

(∑
v∈V

∑
v′∈V

pt(v, v
′)f(v′)f̂(v)

)
,

and since pt(v, v
′) = p̂t(v

′, v),

ψ̂tD(f, ·)(f̂) = exp

(∑
v∈V

∑
v′∈V

p̂t(v, v
′)f̂(v′)f(v)

)
= exp

(∑
v∈V

∑
v′∈V

pt(v
′, v)f̂(v′)f(v)

)

where since f̂(v) 6= 0 for only finitely many v ∈ V , we can interchange the finite and infinite
sum, which then tells us that indeed ψtD(·, f̂)(f) = ψ̂tD(f, ·)(f̂).

We see that we end up with the diagram of dualities given in Figure 3.2.

{St, t ≥ 0}

{ψt, t ≥ 0}

{Ŝt, t ≥ 0}

{ψ̂t, t ≥ 0}

D D

D

D

Figure 3.2: Duality results between the Markov semigroups and deterministic processes with
the corresponding duality functions.

Remark 3.7. It can be shown that all the dualities in Figure 3.2 are equivalent to one
another. Results of this type can be used to simplify proofs for duality results of independent
particle systems.



Chapter 4

Ergodic theory of the
run-and-tumble particle process

In the last chapter we have proven a duality result of the run-and-tumble particle process.
Just as in the case of the Exclusion Process in Section 2.5, we will use this result repeatedly
in this chapter to determine the ergodic measures of the process. For this chapter, we assume
that the

For ρ : V → R≥0 an arbitrary bounded function, define the probability distribution µρ
on Ω as the product Poisson measures with density profile ρ, i.e.,

µρ =
⊗
v∈V

Pois
(
ρ(v)

)
. (4.1)

4.1 Invariance and ergodicity of product Poisson measures

4.1.1 Propagation of product Poisson measures

If we take µρ as the initial distribution of the process generated by L as given in 3.1, then
one can wonder about the time evolution of this distribution µρSt. It turns out that this
distribution will again be a product Poisson distribution µρt , where the density profile ρt
can be attained by letting the dual Markov semigroup {Ŝt, t ≥ 0} work on the initial density
profile ρ, i.e., the following theorem holds.

Theorem 4.1. Let µρ be as in 4.1, then for any t ≥ 0 we have that µρSt = µρt, with

ρt(v) = Ŝtρ(v) for all v ∈ V .

This result is an application of Doob’s theorem, which says that independent Markovian
particle evolutions preserve Poisson measures. A more general result of this can be found
e.g. in [5].

Proof of Theorem 4.1. Using duality, we see that for any ξ ∈ Ωf we have that∫
D(ξ, ·)dµρSt =

∫
StD(ξ, ·)(η)dµρ(η)

=

∫
ŜtD(·, η)(ξ)dµρ(η)

=

∫
Êξ
[
D(ξt, η)

]
dµρ(η)

= Êξ
[∫

D(ξt, η)dµρ(η)

]
,

36
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where we could interchange the integral and expectation in the last equality by Fubini. Since
ξ is a finite configuration, we can write ξ =

∑n
i=1 δvi , for some n ∈ N and vi ∈ Ω for all i.

By conservation of the number particles, this means that ξt =
∑n

i=1 δvi(t), with {vi(t), t ≥ 0}
the path of a dual run-and-tumble particle, starting from vi(0) := vi. Using Proposition A.1,
this gives us that∫

D(ξ, ·)dµρSt = Êξ
[∫

D(ξt, η)dµρ(η)

]
= Êξ

[
n∏
i=1

ρ(vi(t))

]
. (4.2)

We know that the dual particles vi(t) all move independently, therefore we find that∫
D(ξ, ·)dµρSt =

n∏
i=1

Êvi
[
ρ(vi(t))

]
=

n∏
i=1

Ŝtρ(vi). (4.3)

By using Proposition A.1 in the reverse direction this time, we see that µρSt is again a

product Poisson distribution with density profile ρt(v) = Ŝtρ(v).

From Theorem 4.1 we can immediately conclude the following

Corollary 4.2. If ρ is constant, then µρ is St-invariant.

4.1.2 Ergodicity of Poisson measures

In the previous section we have seen that if µρ is defined as in 4.1 and ρ is constant, then µρ
is an invariant measure for the run-and-tumble particle process. In this section we will see
that these measures are also ergodic. To prove this we will actually show a stronger result,
namely that the measures are mixing.

Theorem 4.3. if ρ is constant, then µρ is mixing with respect to St.

Proof. For this proof, we will work with a similar method as the proof of Proposition 2.21,
i.e., we will first look at the case where g = D(ξ, ·) and f = D(ξ′, ·), with ξ, ξ′ ∈ Ωf finite
configurations. By duality we have that

StD(ξ′, ·)(η) = ŜtD(·, η)(ξ′) =
∑
|ξ′′|=|ξ′|

p̂t(ξ
′, ξ′′)D(ξ′′, η), (4.4)

We can view this infinite sum as an integral and so, since p̂t(ξ
′, ξ′′)D(ξ, η)D(ξ′′, η) is a non-

negative, measurable function, Fubini then tells us that∫
D(ξ, ·)

(
StD(ξ′, ·)

)
dµρ =

∑
|ξ′′|=|ξ′|

pt(ξ
′, ξ′′)

∫
D(ξ, η)D(ξ′′, η)dµρ(η).

We now again have the two complementary cases, namely the case where ξ ⊥ ξ′′ or where
ξ 6⊥ ξ′′. Since the function D is a product over the whole particle state space V , the relation
ξ ⊥ ξ′′ implies that

D(ξ, η)D(ξ′′, η) = D(ξ + ξ′′, η).

Therefore, by Proposition A.1 we find that, just like in 2.20,∑
|ξ′′|=|ξ′|

pt(ξ
′, ξ′′)

∫
D(ξ, η)D(ξ′′, η)dµρ(η) · 1ξ′⊥ξ′′

=
∑
|ξ′′|=|ξ′|

pt(ξ
′, ξ′′)

∫
D(ξ + ξ′′, η)dµρ(η) · 1ξ⊥ξ′′

= P̂
(
ξ ⊥ ξ′t

)
ρ|ξ|+|ξ

′|,

(4.5)
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On the other hand, if ξ′ 6⊥ ξ′′, then similarly as in 2.21, we can simply upper bound the
whole thing,∑

|ξ′′|=m

pt(ξ
′, ξ′′)

∫
D(ξ, η)D(ξ′′, η)dµρ(η) · 1ξ′ 6⊥ξ′′ ≤ Cξ,ξ′

(
1− P(ξ ⊥ ξ′t)

)
. (4.6)

Here however, we have the constant

Cξ,ξ′ := sup
|ξ′′|=|ξ′|

{∫
D(ξ, η)D(ξ′′, η)dµρ(η)

}
. (4.7)

This constant is finite due to the fact that by the Hölder inequality,∫
D(ξ, η)D(ξ′′, η)dµρ(η) = ||D(ξ, ·)D(ξ′′, ·)||1 ≤ ||D(ξ, ·)||2 · ||D(ξ′′, ·)||2,

and ||D(ξ, ·)||2 < ∞ and ||D(ξ′′, ·)||2 < ∞, which is evident by the fact that if |ξ| = n for
some n ∈ N, then D(ξ, ·)2 is at most a (multivariate) polynomial of order 2n. Therefore, by
Lemma A.2, we can find finite configurations ξ1, ξ2, ..., ξ2n such that

D(ξ, ·)2 =

2n∑
k=1

D(ξk, ·).

Since we have that
∫

D(ξk, η)dµρ(η) <∞ for all k, we indeed find that ||D(ξ, ·)||2 <∞, and
by a similar argument we have that ||D(ξ′′, ·)||2 <∞.

Combining 4.5 and 4.6 gives us that

lim
t→∞

∣∣∣∣∫ D(ξ, ·)(StD(ξ′, ·))dµρ −
∫

D(ξ, ·)dµρ
∫

D(ξ′, ·)dµρ
∣∣∣∣

≤ lim
t→∞

∣∣∣P̂ (ξ′ ⊥ ξt) ρ|ξ|+|ξ′| − ρ|ξ|+|ξ′|∣∣∣+ Cξ,ξ′
(
1− P(ξ′ ⊥ ξt)

)
The convergence now follows from a result similar to Lemma 2.20 for the dual run-and-tumble
particle process. This result can be proven in the exact same way.

This concludes the proof for the case where g = D(ξ, ·) and f = D(ξ′, ·), and by some
standard computations, we can also find that it holds for

g =

p∑
i=1

D(ξi, ·), f =

q∑
j=1

D(ξ′j , ·),

where ξi, ξ
′
j ∈ Ωf for all i, j. Therefore, by Lemma A.2, the statement also holds for the

(multivariate) polynomials.
The rest of the proof now follows from a density argument. We start by taking two

arbitrary functions f, g ∈ L2(Ω, µρ). It is a known fact that if a measure has a moment
generating function, then the polynomials are dense in L2, see e.g. ([2, Corollary 2.3.3]).
Since this is the case for our measure µρ, we can take two sequences of polynomials {pn}n∈N
and {qn}n∈N such that

||f − pn||2 → 0, ||g − qn||2 → 0

as n→∞. We start with the following.∣∣∣∣∫ g(Stf)dµρ −
∫
fdµρ

∫
gdµρ

∣∣∣∣
≤
∣∣∣∣∫ g(Stf)dµρ −

∫
qn(Stpn)dµρ

∣∣∣∣+

∣∣∣∣∫ qn(Stpn)dµρ −
∫
pndµρ

∫
qndµρ

∣∣∣∣
+

∣∣∣∣∫ pndµρ

∫
qndµρ −

∫
fdµρ

∫
gdµρ

∣∣∣∣ .
(4.8)
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Here we see that the second term goes to zero, as we let t go to infinity, by what we have
already proven. We therefore need to show that the first and the last term can be bounded,
uniformly for t ≥ 0, in such a way that it still goes to zero as n goes to infinity. The first
term can be upper bounded as follows.∣∣∣∣∫ g(Stf)dµρ −

∫
qn(Stpn)dµρ

∣∣∣∣
≤
∣∣∣∣∫ g(Stf)dµρ−

∫
g(Stpn)dµρ

∣∣∣∣+

∣∣∣∣∫ g(Stpn)dµρ−
∫
qn(Stpn)dµρ

∣∣∣∣
≤
∫ ∣∣g(St(f − pn)

)∣∣ dµρ +

∫
|(g − qn)(Stpn)| dµρ

=
∣∣∣∣g(St(f − pn)

)∣∣∣∣
1

+ ||(g − qn)(Stpn)||1.

By now applying Hölder’s inequality twice and using the fact that St is a contraction on
L2(Ω, µρ) by Proposition 2.9, we find that∣∣∣∣∫ g(Stf)dµρ −

∫
qn(Stpn)dµρ

∣∣∣∣ ≤ ||g||2 · ||f − pn||2 + ||g − qn||2 · ||pn||2.

Here we have that ||g||2 < ∞ and ||pn||2 → ||f ||2, so the right-hand side will go to zero as
we take n→∞.

For the last term of 4.8, we have that∣∣∣∣∫ pndµρ

∫
qndµρ −

∫
fdµρ

∫
gdµρ

∣∣∣∣
≤
∣∣∣∣∫ pndµρ

∫
qndµρ −

∫
fdµρ

∫
qndµρ

∣∣∣∣+

∣∣∣∣∫ fdµρ

∫
qndµρ −

∫
fdµρ

∫
gdµρ

∣∣∣∣
≤
∫
|f − pn|dµρ

∫
|qn|dµρ +

∫
|f |dµρ

∫
|g − qn|dµρ

= ||f − pn||1 · ||qn||1 + ||f ||1 · ||g − qn||1.

Since we are working on a probability space, pn
L2

−→ f implies pn
L1

−→ f , and so also qn
L1

−→ g,
therefore this upper bound will also go to zero as n→∞.

From this we can conclude that

lim
t→∞

∣∣∣∣∫ g(Stf)dµρ −
∫
fdµρ

∫
gdµρ

∣∣∣∣ = 0,

hence µρ is mixing with respect to {St, t ≥ 0}.

By Proposition 2.15 we now know that the measures µρ are ergodic with respect to the
Markov semigroup {St, t ≥ 0}. The logical follow-up question is if these are the only ergodic
measures for this process. Using the same method as Kuoch and Redig in [16], we will see
that this is the case if we restrict our space of probability measures in the following way:

Ptemp(Ω) :=

{
µ ∈P(Ω) : for any n ∈ N, sup

|ξ|=n

∫
D(ξ, ·)dµ <∞

}
(4.9)

We call the probability measures in this set tempered measures. The fact that µρ ∈Ptemp(Ω)
for every ρ ≥ 0 is evident from Proposition A.1. Our main goal this section is then to prove
the following theorem.

Theorem 4.4. Let µ ∈ Ptemp(Ω) be ergodic with respect to the run-and-tumble particle
system, then there exists a constant ρ ≥ 0 such that µ = µρ.

Before we do this, we will first need to introduce some theory about coupling.
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4.2 Coupling of run-and-tumble particles

Coupling is a method of comparing two random elements with one another, and it is used in
many different areas of probability theory [12]. We start with its definition.

Definition 4.1. Let {ξt, t ≥ 0} and {ηt,≥ 0} be two stochastic processes. A coupling is a

pair (ξ̂t, η̂t) such that ξt
d
= ξ̂t and ηt

d
= η̂t for all t ≥ 0.

We are interested in when a coupling is so-called “successful”. This means at some point
in time, the two parts of the coupling meet and never split up.

Definition 4.2. We say there exists a succesful coupling of the processes {ξt, t ≥ 0} and
{ηt, t ≥ 0} if there exists a coupling {(ξ̂t; η̂t), t ≥ 0} such that

Pξ;η
(
∃τ > 0 ∀t ≥ τ : ξ̂t = η̂t

)
= 1.

we call the corresponding τ the coupling time of {ξt, t ≥ 0} and {ηt, t ≥ 0} .

To actually achieve a successful coupling, all we need is for τ = min{t ≥ 0 : ξt = ηt} to
be P-a.s. finite. From that point on, by the graphical representation of the run-and-tumble
particle process given in Figure 3.1, we can let the particles in the coupling (ξ̂τ+t, η̂τ+t) follow
the same arrows, so they will stay together for all t > 0.

In this section, we will prove that a successful coupling of independent run-and-tumble
particles exists. We will do this by first looking at the very simple case where we couple two
particles on V = Z × {−1, 1}. After that we will prove that a successful coupling exists for
two particles in the general 1-dimensional case, and use this to prove it for any two finite
configurations with the same number of particles in the 1-dimensional case.

4.2.1 Coupling of two particles on Z× {−1, 1}

Let {(Xt, σ
X
t ), t ≥ 0} and {(Yt, σYt ), t ≥ 0} be two particles in the state space Z × {−1, 1},

with starting positions (x, σx), (y, σy) respectively, following the process generated by the
generator for one run-and-tumble particle, i.e.,

Lf(x, σ) = λ
(
f(x+ σ, σ)− f(x, σ)

)
+ γ
(
f(x,−σ)− f(x, σ)

)
+ κ
(
f(x+ 1, σ) + f(x− 1, σ)− 2f(x, σ)

)
.

Note that here we have taken the simple random walk generator as the diffusion generator,
and the rates cx(1,−1) = cx(−1, 1) = 1. This is mainly for a more convenient graphical
representation, since the proof of a successful coupling works the same for any symmetric
random walk generator and symmetric rates cx(1,−1) = cx(−1, 1).

Now define the following process {(Zt, σt), t ≥ 0} on Z × {−1, 0, 1} as Zt = Xt − Yt
and σt = 1

2(σXt − σYt ). Note that this process is a continuous-time Markov chain that can
graphically described as in Figure 4.1.
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· · · Z× {1} =: Z1

· · · Z× {0} =: Z0

· · · Z×{−1} =: Z−1

· · ·

· · ·

· · ·

γ

γ

2κ 2κ+ 2λ

2κ+ λ 2κ+ λ

2κ+ 2λ 2κ

Figure 4.1: Graphical representation of the motion of (Zt, σt).

A succesfull coupling of {(Xt, σ
X
t ), t ≥ 0} and {(Yt, σYt ), t ≥ 0} is now equivalent to

proving that (Zτ , στ ) = (0, 0) for some a.s. finite time τ > 0, i.e., we need to show that the
random walk {(Zt, σt), t ≥ 0} is recurrent. We will first show this for the even simpler case
where κ = 0.

The case where κ = 0

If κ = 0, then the graphical description of Figure 4.1 becomes the following:

· · · Z1

· · · Z0

· · · Z−1

· · ·

· · ·

· · ·

γ

γ

2λ

λ λ

2λ

Figure 4.2: Graphical representation of the motion of (Zt, σt) when κ = 0.

Since it is clear that the Markov process {σt, t ≥ 0} is recurrent, we can assume without
loss of generality that we start from the point (Z0, 0) ∈ Z0. From this point, with probability

γ
2λ+2γ , the next jump that occurs takes us to Z1. Once it goes up there, it will make a random
number of jumps to the right before returning to Z0. Since all the jumps are i.i.d., where
a jump to the right happens with probability 2λ

2λ+γ and down with probability γ
2λ+γ , this

number follows a Geometric distribution with parameter γ
2λ+γ .

By the same reasoning, if we start at Z0, the next jump takes us to Z−1 with probability
γ

2λ+2γ . There it will also make a number of jumps to the left, which is is Geometrically

distributed with parameter γ
2λ+γ , before returning to Z0.

Now let X be distributed as follows:

− X is uniform on {−1, 1} with probability 2λ
2λ+2γ ,

− X is uniform on
{
−Geo

(
γ

2λ+γ

)
,Geo

(
γ

2λ+γ

)}
with probability 2γ

2λ+2γ .

Define the random variables Xk ∼ X i.i.d. for all k ∈ N and consider the the following
discrete random walk {Zn, n ∈ N0} on Z,

Zn = Z0 +

n∑
k=1

Xk.
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From the definition of the random variable X, we can easily deduce that E [X] = 0 and
E [|X|] <∞. By the result of Chung and Fuchs on random walks on Z given in [7], this tells
us that the discrete random walk {Zn, n ∈ N0} is recurrent.

We can view {Zn, n ∈ N0} as the discrete version of the Markov process {(Zt, σt), t ≥ 0},
where it is only interested in the times where the process is at Z0.

· · · Z1

· · · Z0

· · · Z−1

· · ·

· · ·

· · ·

Zn Zn+1

Figure 4.3: Example of a jump of the discrete process {Zn, n ∈ N}.

By this observation, it is clear that the recurrence of {Zn, n ∈ N0} implies the recurrence
of {(Zt, σt), t ≥ 0}. Therefore we can conclude that we have a successful coupling of the two
particles {(Xt, σ

X
t ), t ≥ 0} and {(Yt, σYt ), t ≥ 0}.

The case where κ 6= 0

For κ 6= 0 the same strategy works, but the distribution of X is different. Whereas in the
previous version, the jumps in Z1 were only to the right, now they can also be to the left.
From Figure 4.1 we can deduce that the number of jumps taken before returning to Z0 is

still a Geometric distribution, but now with parameter γ
4κ+2λ+γ . Set N ∼ Geo

(
γ

4κ+2λ+γ

)
and let m be distributed as follows

P(m = 1) =
2κ+ 2λ

4κ+ 2λ
, P(m = −1) =

2κ

4κ+ 2λ
.

By now setting the random variables mi ∼ m be i.i.d. for all i ∈ N and

S =
∞∑
k=0

k∑
i=1

mi1{N = k},

we can define X as follows

− X is uniform on {−1, 1} with probability 4κ+2λ
4κ+2λ+2γ ,

− X is uniform on {−S, S} with probability 2γ
4κ+2λ+2γ .

It is clear that X is symmetric, and since |S| ≤ N , we also have that E [|X|] <∞. Therefore,
if we define {Zn, n ≥ N0} in the same way as before, it is again recurrent and we attain a
successful coupling of {(Xt, σ

X
t ), t ≥ 0} and {(Yt, σYt ), t ≥ 0}.

4.2.2 Coupling of two particles on Z× S

Now we consider the general case where the internal state space S an arbitrary finite subset
of Z. It turns out that through a similar method as the one described in the previous case,
we can again achieve a successful coupling of two particles.

Let (Xt, σ
X
t ) and (Yt, σ

Y
t ) be two particles in Z× S following the process generated by
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Lf(x, σ) = λ
(
f(x+ σ, σ)− f(x, σ)

)
+ γ

∑
σ′∈S

(
f(x, σ′)− f(x, σ)

)
+ κ
(
f(x+ 1, σ) + f(x− 1, σ)− 2f(x, σ)

)
.

Define the Markov process (Zt, σt) on Z×S2 as Zt = Xt−Yt and σt = (σXt , σ
Y
t ). Since S

is a finite set we can order the elements, i.e., we can set S = {σ1, σ2, .., σn} for some n ∈ N.
We see that for any z ∈ Z, the active part of the process (Zt, σ1, σ2) can be graphically
described as

· · · Z× (σ1, σ2)· · ·

λλ

z z + σ1z − σ2

Figure 4.4: Rates of the active part on Z× (σ1, σ2).

while for (Zt, σ2, σ1) we have

· · · Z× (σ2, σ1)· · ·

λλ

z z + σ2z − σ1

Figure 4.5: Rates of the active part on Z× (σ2, σ1).

For the internal part, we have that S2 is a finite set and the Markov process (σXt , σ
Y
t )

is irreducible, since for any two (σi1 , σj1), (σi2 , σj2) ∈ S2, we can get from one to the other
with positive probability, e.g. through the following path

(σi1 , σj1)
γ−→ (σi2 , σj1)

γ−→ (σi2 , σj2).

This tells us that the process (σXt , σ
Y
t ) is recurrent. Therefore we can assume without loss

of generality that (σX0 , σ
Y
0 ) = (σ1, σ1), and if we then look at the first jump of the internal

state
ς1 := min{t > 0 : (σXt , σ

Y
t ) 6= (σ1, σ1)},

then the following stopping time

τ1 := min{t > ς1 : (σXt , σ
Y
t ) = (σ1, σ1)}

is a.s. finite.
Now we look at the distribution of the position Zτ1 . The claim is that it is symmetric

around its starting position Z0. To see this, we take an arbitrary excursion on the internal
space S2

(σ1, σ1)→ (σi1 , σj1)→ (σi2 , σj2)→ ...→ (σim , σjm)→ (σ1, σ1)

where m ∈ N. Then we note that with equal probability, the following excursion

(σ1, σ1)→ (σj1 , σi1)→ (σj2 , σi2)→ ...→ (σjm , σim)→ (σ1, σ1)

could take place. With Figures 4.4 and 4.5 in mind, it indeed follows that Zτ1 = Z0 +X+R,
where X is a symmetric random variable given by the active motion of the particles, and R
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is a symmetric random variable given by the symmetric random walk generated by L from
3.4 up until time τ1.

Now define, recursively for n ≥ 2, the stopping times

ςn := min{t > τn−1 : (σXt , σ
Y
t ) 6= (σ1, σ1)},

and
τn := min{t > ςn : (σXt , σ

Y
t ) = (σ1, σ1)}.

Defining the discrete process Z = {Zn, n ∈ N} as Zn := Zτn and taking the random variables
Xk ∼ X and Rk ∼ R for all k ∈ N, we find that

Zn = Z0 +
n∑
k=1

Xk +Rk,

i.e., Z is a symmetric random walk on Z. The recurrence of Z now follows from the following
lemma, combined with the result of Chung and Fuchs [7].

Lemma 4.5. We have that E
[
|X +R|

]
<∞.

Proof. Let M be the length of the excursion on S2 up until τ1, and define

Jmax := max{|σ|, |x− y| : σ ∈ S, x, y ∈ Z with c(x, y) > 0}.

This Jmax is the distance of the largest possible jump between two sites (from both the

active motion and the random walk). Furthermore, define N ∼ Geo
(

2γ(|S|−1)
4κ+2λ+2γ(|S|−1)

)
and

set Nk ∼ N for all k ∈ N. These Nk resemble the number of jumps on Z the two particles
will take with internal states (σi, σj) before one particle switches to another internal state.
We then have that

|X +R| ≤
∞∑
m=1

m∑
k=1

JmaxNk1{M=m},

so, since M is independent of every Nk, we have that

E
[
|X +R|

]
≤
∞∑
m=1

m∑
k=1

JmaxE
[
Nk1{M=m}

]
=

∞∑
m=1

m · JmaxE
[
N
]
P(M = m) = JmaxE[N ]E[M ].

Here it is clear that E[N ] < ∞, and the fact that E[M ] < ∞ follows from the fact that M
is a first-hitting time for a Markov chain on the finite state space S2, which has a finite first
moment. This indeed shows that E

[
|X +R|

]
<∞.

From the recurrence of Z, it follows that there exists an r ∈ N such that τr is a.s. finite,
and Zτr = 0. Since we defined the stopping time τr in such a way that σXτr = σYτr = σ1, we
have that

(Xτr , σ
X
τr) = (Yτr , σ

Y
τr),

therefore we indeed have a successful coupling.

4.2.3 Coupling finitely many particles on Z× S

Now that we have proven that we have a successful coupling of two run-and-tumble particles,
we can extend to a successful coupling of two configurations of particles {ξt, t ≥ 0} and
{ζt, t ≥ 0}. Of course, due to preservation of particles, the two configurations have to
contain the same number of particles, say n ∈ N. The successful coupling now follows from
a method called the Ornstein-coupling (See [12, Chapter 3]). This method works as follows:
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First we write the two configurations as two n-dimensional vectors, where the components
are independent run-and-tumble particles, i.e.,

ξt =


(X

(1)
t , σ

(X,1)
t )

(X
(2)
t , σ

(X,2)
t )

...

(X
(n)
t , σ

(X,n)
t )

 , ζt =


(Y

(1)
t , σ

(Y,1)
t )

(Y
(2)
t , σ

(Y,2)
t )

...

(Y
(n)
t , σ

(Y,n)
t )

 .

Then we let the processes evolve until the first coördinates of the two vectors coincide, i.e.,

(X
(1)
t , σ

(X,1)
t ) = (Y

(1)
t , σ

(Y,1)
t ) for some time t > 0. The time until this happens is a.s. finite

by what we have already proven, and since all the particles in the vectors are independent,
we can from there on let the first coördinates remain together while the other coördinates
continue to evolve without being affected.

Afterwards, we wait until the second coördinates of the two vectors coincide, and so on,
until the point that all coördinates coincide. Since there are only finitely many particles,
this will still happen in an a.s. finite time. We therefore achieve a successful coupling of the
processes {ξt, t ≥ 0} and {ζt, t ≥ 0}.

4.2.4 Coupling of two particles on Zd × S

A successful coupling of two run-and-tumble particles on Zd × S for d ≥ 3 has not yet been
found. For d = 2 one could copy the method in Section 4.2.2 and show that E

[
|X +R|2

]
<∞

holds, but for d ≥ 3 this would not work since a random walk in Zd would not be recurrent.
In the case of a simple random walk, a successful coupling does exists. This is achieved,

much like in the coupling of finitely many particles in Z above, by an Ornstein-coupling.
For details on this, see [12, Section 3.2]. This method would not work for run-and-tumble
particles since all the coordinates are dependent of the internal state. Therefore we can not
couple the internal states first, so after we have coupled the first coordinates, the internal
state between the particles can still differ and split them up again.

There are also examples of two run-and-tumble particles where no successful coupling
exists. For instance, set κ = 0 and let S = {e1,−e1} with e1 the basis vector, then a
successful coupling is impossible if the particles differ in any of the other coordinates.

However, one would still suspect that, if κ > 0 and the random walk is simple, a successful
coupling could take place. Evidence of this claim has nonetheless not yet been found.

4.3 Full ergodic theory

In Section 4.1.2 we have already seen that the measure µρ as defined in 4.1 is ergodic for the
run-and-tumble particle process if ρ ≥ 0 is a constant. In this section we will prove Theorem
4.4 which says that, in the space of tempered measures defined in 4.9, these measures are
the only ergodic measures. In order to prove this theorem, we will need some knowledge
of harmonic functions. For this section, we will assume that we are in a scenario where a
successful coupling exists.

Definition 4.3. Let {ξt, t ≥ 0} be a dual run-and-tumble process starting from ξ ∈ Ωf , then
a function g : Ωf → R is harmonic if for every t ≥ 0 it satisfies

Êξ
[
g(ξt)

]
= g(ξ).

Proposition 4.6. if µ is an invariant measure for the Markov semigroup {St, t ≥ 0}, then
the following function,

µ̂(ξ) =

∫
D(ξ, η)dµ(η) (4.10)
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is harmonic.

Proof. By Fubini we have that

Êξ [µ̂(ξt)] = Êξ
[∫

D(ξt, η)dµ(η)

]
=

∫
Êξ
[
D(ξt, η)

]
dµ(η) =

∫
ŜtD(·, η)(ξ)dµ(η).

Now, by using duality and the fact that µ is invariant, we find that∫
ŜtD(·, η)(ξ)dµ(η) =

∫
StD(ξ, ·)(η)dµ(η). =

∫
D(ξ, η)dµ(η) = µ̂(ξ),

so µ̂ is indeed harmonic.

Now we will use the result from the previous section, where we have proven that there
exists a successful coupling between two arbitrary configurations in Ωf with the same number
of particles. The following theorem now gives us a useful consequence of this property with
respect to bounded harmonic functions. For this theorem, define Ωn as the configurations in
Ωf with n particles, i.e.,

Ωn = {ξ ∈ Ωf : |ξ| = n}.

Theorem 4.7. If there exists a successful coupling, then bounded harmonic functions g on
Ωn are constant.

Proof. Let g be a bounded harmonic function and take ξ, ζ ∈ Ωn. By the succesful coupling,
there exists a stopping time τ with P(τ < ∞) = 1 such that P(ξt = ζt) = 1 for all t ≥ τ .
Since g is harmonic, we have that

|g(ξ)− g(ζ)| =
∣∣Êξ [g(ξt)]− Êζ [g(ζt)]

∣∣ =
∣∣Êξ;ζ [g(ξt)− g(ζt)]

∣∣
If t ≥ τ , then Êξ;ζ [g(ξt)− g(ζt)] = 0, so we only have to look at the case where t < τ .
Furthermore, since g is bounded we get the upper bound g(ξt)− g(ζt) ≤ 2||g||∞. Therefore
we find that

|g(ξ)− g(ζ)| =
∣∣∣Êξ;ζ [(g(ξt)− g(ζt)

)
1{t<τ}

]∣∣∣ ≤ 2||g||∞P(t < τ)

Due to the fact that τ is a.s. finite, by now letting t→∞ we see that |g(ξ)− g(ζ)| = 0. This
proves the theorem.

This theorem tells us that if g : Ωf → R is a bounded harmonic function, then it is a
function that only depends on the number of particles in the configurations ξ ∈ Ωf , i.e.,
there exists a function f : N→ R such that for all ξ ∈ Ωf we have that g(ξ) = f(|ξ|). If we
assume that µ ∈Ptemp(Ω), then by definition we have that µ̂, as given in 4.10, is a bounded
harmonic function. We therefore can find an f : N→ R such that∫

D(ξ, η)dµ(η) = f(|ξ|). (4.11)

We are now ready to give the proof of Theorem 4.4.

Proof of Theorem 4.4. Assume that µ ∈ Ptemp(Ω) is an ergodic measure with respect to
{St, t ≥ 0}. In this proof we will show that the function f : N→ R as given in 4.11 has the
property that for any ξ, ξ′ ∈ Ωf ,

f(|ξ|+ |ξ′|) = f(|ξ|) · f(|ξ′|). (4.12)

If this is the case, then we know that the function f is of the form f(|ξ|) = ρ|ξ| for some
ρ ≥ 0. By Proposition A.1, this then finishes the proof.
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In order to prove that 4.12 holds, we will look at the following limit,

lim
T→∞

∫
D(ξ, η) · 1

T

∫ T

0
StD(ξ′, η)dtdµ(η). (4.13)

This limit will help us since, by the fact that µ is ergodic, the Birkhoff ergodic theorem
(Theorem 2.11) tells us that

lim
T→∞

1

T

∫ T

0
StD(ξ′, η)dt =

∫
D(ξ′, η)dµ(η) = f(|ξ′|)

By now applying the dominated Convergence Theorem to 4.13, we then find that

lim
T→∞

∫
D(ξ, η) · 1

T

∫ T

0
StD(ξ′, η)dtdµ(η) =

∫
D(ξ, η) · f(|ξ′|)dµ(η) = f(|ξ|) · f(|ξ′|).

Therefore, if we can show that we also have

lim
T→∞

∫
D(ξ, η) · 1

T

∫ T

0
StD(ξ′, η)dtdµ(η) = f(|ξ|+ |ξ′|),

then by the uniqueness of limits, we indeed get our result. The rest of the proof is now
dedicated to showing that the above limit holds.

Using 4.4 together with Fubini, we find that∫
D(ξ, η) · 1

T

∫ T

0
StD(ξ′, η)dtdµ(η) =

∑
ξ′′∈Ωf

1

T

∫ T

0
p̂t(ξ

′, ξ′′)

∫
D(ξ, η)D(ξ′′, η)dµ(η)dt.

(4.14)
Just like in the proof of Proposition 2.21 and Theorem 4.3, we now look at the two comple-
mentary cases ξ′′ ⊥ ξ and ξ′′ 6⊥ ξ. If ξ′′ ⊥ ξ, then∑

ξ′′⊥ ξ

1

T

∫ T

0
p̂t(ξ

′, ξ′′)

∫
D(ξ, η)D(ξ′′, η)dµ(η)dt

=
∑
ξ′′⊥ ξ

1

T

∫ T

0
p̂t(ξ

′, ξ′′)

∫
D(ξ + ξ′′, η)dµ(η)dt

= f(|ξ|+ |ξ′)| ·
∑
ξ′′⊥ ξ

1

T

∫ T

0
p̂t(ξ

′, ξ′′)dt

= f(|ξ|+ |ξ′|) · 1

T

∫ T

0
P̂(ξ ⊥ ξ′t)dt,

(4.15)

where we have used Fubini for the last equality.
Now we again use the fact that P̂(ξ ⊥ ξ′t)→ 1 as t→∞, to see that for any ε > 0 there

exists an S > 0 such that for all t > S we have that

|P̂(ξ ⊥ ξ′t)− 1| < ε.

Therefore, we can divide the integral in the last line of 4.15 into two parts, and in this way
show that we have the following,

lim
T→∞

∣∣∣∣ 1

T

∫ T

0
P̂(ξ ⊥ ξ′t)dt− 1

∣∣∣∣ = lim
T→∞

∣∣∣∣ 1

T

∫ T

0

(
P̂(ξ ⊥ ξ′t)− 1

)
dt

∣∣∣∣
≤ lim

T→∞

1

T

∣∣∣∣∫ S

0

(
P̂(ξ ⊥ ξ′t)− 1

)
dt

∣∣∣∣+
1

T

∫ T

S
|P̂(ξ ⊥ ξ′t)− 1|dt

< lim
T→∞

1

T

∣∣∣∣∫ S

0

(
P̂(ξ ⊥ ξ′t)− 1

)
dt

∣∣∣∣+
T − S
T

ε

= ε.
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Since this is true for all ε > 0 we find that 1
T

∫ T
0 P̂(ξ ⊥ ξ′t)dt→ 1, which by filling this back

into 4.15, gives us that

lim
T→∞

∑
ξ′′⊥ ξ

1

T

∫ T

0
p̂t(ξ

′, ξ′′)

∫
D(ξ, η)D(ξ′′, η)dµ(η)dt = f(|ξ|+ |ξ′|). (4.16)

Now for the second case, if ξ′′ 6⊥ ξ then through a similar calculation as in 4.15, we find
that

lim
T→∞

∑
ξ′′ 6⊥ξ

1

T

∫ T

0
p̂t(ξ

′, ξ′′)

∫
D(ξ, η)D(ξ′′, η)dµ(η)dt ≤ lim

T→∞
Cξ,ξ′ ·

1

T

∫ T

0
P(ξ 6⊥ ξ′t)dt = 0

(4.17)

where we can take Cξ,ξ′ as the constant defined in 4.7
Filling 4.16 and 4.17 into 4.14, we ultimately get that

lim
T→∞

∫
D(ξ, η) · 1

T

∫ T

0
StD(ξ′, η)dtdµ(η) = f(|ξ|+ |ξ′|),

which ends the proof



Chapter 5

Hydrodynamic limits of
run-and-tumble particles

The main idea of density profiles and hydrodynamic limits is given in Section 2.4. For the
run-and-tumble particles this is a little bit different because we are working on the particle
state space V = Z × S instead of just Z. We deal with that problem by looking at a
density profile indexed by σ ∈ S. To see how this work, let {ηN : N ∈ N} be a sequence of
configurations in Ω, then we will define the empirical measures {πNσ : N ∈ N} as follows,

πNσ :=
1

N

∑
x∈Z

ηN (x, σ)δ x
N
.

We then say that the density profile ρ(x, σ) : Z× S → R≥0 corresponds to {ηN : N ∈ N} if
for all σ ∈ S, we have the following convergence, as given in Definition 2.13,

lim
N→∞

πNσ = ρ(x, σ)dx.

The question of the hydrodynamic limit is now what we can say about the macroscopic
evolution of the density profiles ρ(x, σ) for every σ ∈ S, i.e., if we look at the run-and-tumble
particle process {ηt, t ≥ 0} with some initial distribution µ, then what can we say about
ρt(x, σ) defined by

lim
N→∞

πNσ,t = ρt(x, σ)dx,

where πNσ,t is given by

πNσ,t :=
1

N

∑
x∈Z

ηNN2t(x, σ)δ x
N
.

Afterwards, we will look at the behavior of the overall macroscopic density, i.e., we will
look at the evolving density profile ρt(x) : R→ R defined by

ρt(x) =
∑
σ∈S

ρt(x, σ).

This density profile gives us the density of all particles at time t and location x ∈ Z, disre-
garding their internal states σ ∈ S.

Remark 5.1. In the scenario described above we will need a rescaling of the parameters
found in the generator 3.1. Since the active part La generates a process where the particles
only walk in one direction with rate 1, speeding this process up with a factor N2 will send
the particles off to infinity too fast. In order to prevent this, we set λ→ λ

N . Furthermore, the
internal part Li only lets the particles move around the internal state space S, and therefore

49
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it does not need to be sped up at all, therefore we set γ → γ
N2 . We then write {SN2t, t ≥ 0}

as the Markov semigroup generated by the process

LN = κN2L+ λNLa + γLi.

Furthermore, for this chapter, we again assume that the random walk is simple and that
cx(σ, σ′) = 1 for all x ∈ Z and σ, σ′ ∈ S.

5.1 The statement

For a given bounded and continuous density profile ρ : R×S → R, we will define the following
probability measures on Ω,

µNρ :=
⊗

(x,σ)∈V

Pois
(
ρ( xN , σ)

)
.

We will then look at the run-and-tumble processes {ηNN2t : t ≥ 0} starting from ηN ∼ µNρ
for all N ∈ N. It is easy to see that {ηN : N ∈ N} corresponds to the density profile ρ. In
this chapter we will show that the hydrodynamics of the run-and-tumble particle process are
given by the following PDE for every σ ∈ S,

∂

∂t
ρt(x, σ) =

κ

2

∂2

∂x2
ρt(x, σ)− λσ

∂

∂x
ρt(x, σ) + γ

∑
σ′ 6=σ

(
ρt(x, σ

′)− ρt(x, σ)
)
, (5.1)

with initial condition
ρ0(x, σ) = ρ(x, σ). (5.2)

This statement comes down to the following theorem.

Theorem 5.1. For every t ≥ 0, σ ∈ S, ε > 0 and test function φ ∈ C∞c (R×S), we have that

lim
N→∞

P

(∣∣∣∣∣ 1

N

∑
x∈Z

ηNN2t(
x
N , σ)φ( xN , σ)−

∫
φ(x, σ)ρt(x, σ)dx

∣∣∣∣∣ ≥ ε
)

= 0, (5.3)

where ρt(x, σ) is a weak solution to 5.1 with initial condition 5.2.

Remark 5.2. Notice that this equation also depends on all the other ρt(x, σ
′) with σ′ 6= σ,

i.e., we get a system of PDEs for the density profiles that all depend on each other. This
can be represented as follows,

∂

∂t
ρt(x, ·) = Aρt(x, ·) + γCρt(x, ·), ρ0(x, σ) = ρ(x, σ) for all x ∈ R, σ ∈ S (5.4)

Here ρt(x, ·) is the column vector where the entries are the individual density profiles for
every σ ∈ S, i.e., ρt(x, ·) =

(
ρt(x, σ)

)
σ∈S , the operator A is the differential operator

Aρt(x, ·) =
κ

2

∂2

∂x2
ρt(x, ·)− λ

∂

∂x

(
σ ◦ ρt(x, ·)

)
(5.5)

where the operation ◦ is the hadamard product, i.e., termwise multiplication, σ = (σ)σ∈S ,
and lastly C is the following matrix,

C =


−(|S| − 1) 1 · · · 1

1 −(|S| − 1) · · · 1
...

...
. . .

...
1 1 · · · −(|S| − 1)

 . (5.6)
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In order to prove Theorem 5.1, we will use the method that is used by Seppäläinen
in [23, Chapter 8] to prove the hydrodynamics of the Exclusion Process. This is done
by proving convergence of the empirical measures πNσ,t in the path space. Namely, every

π̄Nσ = {πNσ,t : t ≥ 0} is a path in the path space DM, with M the set of Borel measures on R.

Therefore, we also have that π̄N = (π̄Nσ )σ∈S is a path in the path space DMS , with MS the
Borel measures on R× S.

We now say that path ᾱ ∈ DMS is a weak solution to 5.4 if it satisfies the initial condition
for all σ ∈ S, i.e.,

ᾱσ(0) := ρ0(x, σ)dx,

and for all t ≥ 0 and φ ∈ C∞c (R× S), we have that

ᾱ(t, φ)− ᾱ(0, φ)−
∫ t

0

[
ᾱ(s,A∗φ) + γCᾱ(s, φ)

]
ds = 0,

where we define

ᾱ(t, φ) =

∫
φᾱ(t),

and

A∗φ(x, ·) :=
κ

2

∂2

∂x2
φ(x, ·) + λ

∂

∂x

(
σ ◦ φ(x, ·)

)
.

Using a similar method as in [1], we can prove that there exists a unique weak solution to
5.4. Theorem 5.1 is now a corollary of the convergence of π̄N to this weak solution, therefore
we will show that the following result holds.

Theorem 5.2. Let ᾱ ∈ DMS be the unique weak solution to 5.4, then

lim
N→∞

P
(
sMS (π̄N , ᾱ) ≥ ε

)
= 0,

where sMS is the Skorokhod distance as defined in A.6.

In this chapter, we will first prove some results needed for the proof of 5.2. In Section
5.6, we will give this proof and show how we can use this result to prove Theorem 5.1.

5.2 Introducing the Dynkin martingale

For convenience, we will from now on use the following notation for φ ∈ C∞c (R× S),

πNσ,t(φ) :=

∫
φ(·, σ)dπNσ,t =

1

N

∑
x∈Z

φ( xN , σ)ηNN2t(x, σ).

If we introduce the Dynkin martingale, as it is explained in Appendix A.2, we get that the
following stochastic process

MN
σ,t = πNσ,t(φ)− πNσ,0(φ)−

∫ t

0
LNπNσ,s(φ)ds (5.7)

is a martingale. In this section we will then prove the following proposition.

Proposition 5.3. For all t ≥ 0, N ∈ N and σ ∈ S, we have that

MN
σ,t = πNσ,t(φ)− πNσ,0(φ)−

∫ t

0

[
πNσ,s(A

∗
σφ) + γ

∑
σ′ 6=σ

[
πNσ′,s(φ)− πNσ,s(φ)

] ]
ds+O(tN−1), (5.8)

where the equality is in probability, and the operator A∗σ is the differential operator given by

A∗σ =
κ

2

∂2

∂x2
+ λσ

∂

∂x
.
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Proof. We start with the following calculation of LNπNσ,s(φ),

LNπNσ,s(φ) = κN2 1

N

∑
x∈Z

φ( xN , σ)
[
ηNN2s(x+ 1, σ) + ηNN2s(x− 1, σ)− 2ηNN2s(x, σ)

]
+ λN

1

N

∑
x∈Z

φ( xN , σ)
[
ηNN2s(x− σ, σ)− ηNN2s(x, σ)

]
+ γ

1

N

∑
x∈Z

φ( xN , σ)
∑
σ′ 6=σ

[
ηNN2s(x, σ

′)− ηNN2s(x, σ)
]
.

By now reordering the summation terms, we find that

LNπNσ,s(φ) = κN
∑
x∈Z

[
φ(x+1

N , σ) + φ(x−1
N , σ)− 2φ( xN , σ)

]
ηNN2s(x, σ)

+ λ
∑
x∈Z

[
φ(x+σ

N , σ)− φ( xN , σ)
]
ηNN2s(x, σ)

+ γ
∑
σ′ 6=σ

1

N

∑
x∈Z

φ( xN , σ)
[
ηNN2s(x, σ

′)− ηNN2s(x, σ)
]
.

(5.9)

In this equation, there are forward and backward differences of the function φ around the
points x

N for every x ∈ Z. By writing out the truncated Taylor series of φ(x+1
N ), φ(x−1

N ) and
φ(x+σ

N ) around these points, we have that

φ(x+1
N , σ) = φ( xN , σ) +

1

N
φ′( xN , σ) +

1

2N2
φ′′( xN , σ) +

1

6N3
φ′′′(y1, σ),

φ(x−1
N , σ) = φ( xN , σ)− 1

N
φ′( xN , σ) +

1

2N2
φ′′( xN , σ) +

1

6N3
φ′′′(y2, σ),

φ(x+σ
N , σ) = φ( xN , σ) +

1

N
σφ′( xN , σ) +

1

2N2
σ2φ′′(y3, σ).

(5.10)

for some y1, y2, y3 ∈ R. By filling these back into 5.9, we find that

LNπNσ,s(φ) = κ
1

N

∑
x∈Z

1

2
φ′′( xN , σ)ηNN2s(x, σ)

+ λ
1

N

∑
x∈Z

σφ′( xN , σ)ηNN2s(x, σ)

+ γ
∑
σ′ 6=σ

1

N

∑
x∈Z

φ( xN , σ)
[
ηNN2s(x, σ

′)− ηNN2s(x, σ)
]

+R1(φ,N, s, σ)

which can be written as

LNπNσ,s(φ) = πNσ,s(A
∗
σφ) + γ

∑
σ′ 6=σ

[
πNσ′,s(φ)− πNσ,s(φ)

]
+R1(φ,N, s, σ). (5.11)

Here R1(φ,N, s, σ) is a rest term that has all the truncation terms from the Taylor series
in 5.10 in it. However, since φ ∈ C∞c (R), we also have that φ′′, φ′′′ ∈ C∞c (R), i.e., they are
uniformly bounded. Therefore we can upper bound this rest term by

R1(φ,N, s, σ) ≤ C1
1

N2

∑
x∈Z

(||φ′′′||∞ + ||φ′′||∞||)ηNN2s(x, σ), (5.12)

for some C1 ∈ R. By now taking the limit of N →∞, we find that for every 0 ≤ s ≤ t that

R1(φ,N, s, σ)
P−→ 0,
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i.e., R(φ,N, s, σ) = O(N−1) in probability. Therefore, by filling 5.11 into 5.7, we find that

MN
σ,t = πNσ,t(φ)− πNσ,0(φ)−

∫ t

0

πNσ,s(A∗σφ) + γ
∑
σ′ 6=σ

[
πNσ′,s(φ)− πNσ,s(φ)

]
+O(N−1)

 ds

= πNσ,t(φ)− πNσ,0(φ)−
∫ t

0

πNσ,s(A∗σφ) + γ
∑
σ′ 6=σ

[
πNσ′,s(φ)− πNσ,s(φ)

] ds+O(tN−1),

which finishes the proof.

5.3 Vanishing martingale

On the right-hand side of 5.8 we can already recognize the PDE given in 5.1. What we
need to show now is that the Dynkin martingale on the right-hand side MN

σ,t , given in 5.7,
vanishes as N → ∞. In order to see that this is true, notice first of all that clearly for any
N ∈ N we have that E

[
MN
σ,0

]
= 0. By the fact that a martingale has a constant expectation,

this tells us that E
[
MN
σ,t

]
= 0 for all t ≥ 0 and N ∈ N. Therefore, the Dynkin martingale

vanishes as a consequence of the following lemma.

Lemma 5.4. For any 0 < T <∞,

lim
N→∞

E

[
sup
t∈[0,T ]

(
MN
σ,t

)2]
= 0.

Proof. We can apply Doob’s maximal inequality to find that

E

[
sup
t∈[0,T ]

(
MN
t

)2]
= E

( sup
t∈[0,T ]

MN
σ,t

)2
 ≤ 4E

[(
MN
σ,T

)2]

where by the Itô isometry we have that

E
[(
MN
σ,T

)2]
= E

[(∫ T

0
dMN

σ,t

)2
]

= E
[∫ T

0
d
〈
MN
σ

〉
t

]
= E

[〈
MN
σ

〉
T

]
.

Here
〈
MN
σ

〉
is the quadratic variation process of MN

σ , as explained in Appendix A.2.1, which
by Theorem A.6 is given by

〈
MN
σ

〉
T

=

∫ T

0

[
LN
(
πNσ,s(φ)

)2 − 2πNσ,s(φ) · LNπNσ,s(φ)
]
ds.

Now, in general, for a generator L of the form Lf(η) =
∑

η′∈Ω c(η, η
′)
(
f(η′)− f(η)

)
, we

have that

Lf2(η)− 2f(η)Lf(η) =
∑
η′∈Ω

c(η, η′)
(
f2(η′)− f2(η)

)
− 2

∑
η′∈Ω

c(η, η′)
(
f(η′)f(η)− f2(η)

)
=
∑
η′∈Ω

c(η, η′)
(
f(η′)− f(η)

)2
.
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In our case this would mean that

LN
(
πNσ,s(φ)

)2 − 2πNσ,s(φ) · LNπNσ,s(φ)

= κN2
∑
x∈Z

ηNN2s(x, σ)
1

N2

( [
φ(x+1

N , σ)− φ( xN , σ)
]2

+
[
φ(x−1

N , σ)− φ( xN , σ)
]2 )

+ λN
∑
x∈Z

ηNN2s(x, σ)
1

N2

[
φ(x+σ

N , σ)− φ( xN , σ)
]2

+ γ
∑
σ′ 6=σ

1

N2

∑
x∈Z

φ( xN , σ)2
[
ηNN2s(x, σ

′) + ηNN2s(x, σ)
]
.

Just like in 5.10, we can find the following truncated Taylor series,

φ(x+1
N , σ) = φ( xN , σ) +

1

N
φ′( xN , σ) +

1

2N2
φ′′(y4, σ)

φ(x−1
N , σ) = φ( xN , σ)− 1

N
φ′( xN , σ) +

1

2N2
φ′′(y5, σ)

for some y4, y5 ∈ R. Using these, along with the last truncated Taylor series found in 5.10,
we find that

LN
(
πNσ,s(φ)

)2 − 2πNσ,s(φ) · LNπNσ,s(φ)

= κ
∑
x∈Z

ηNN2s(x, σ)

([
1

N
φ′( xN , σ) +

1

2N2
φ′′(y4, σ)

]2

+

[
− 1

N
φ′( xN , σ) +

1

2N2
φ′′(y5, σ)

]2
)

+ λ
1

N

∑
x∈Z

ηNN2s(x, σ)

(
1

N
σφ′( xN , σ) +

1

2N2
σ2φ′′(y3, σ)

)2

+ γ
∑
σ′ 6=σ

1

N2

∑
x∈Z

φ( xN , σ)2
[
ηNN2s(x, σ

′) + ηNN2s(x, σ)
]

= κ
4

N2

∑
x∈Z

ηNN2s(x, σ)φ′( xN , σ)2

+ λ
2

N3

∑
x∈Z

ηNN2s(x, σ)φ′( xN , σ)2

+ γ
∑
σ′ 6=σ

1

N2

∑
x∈Z

φ( xN , σ)2
[
ηNN2s(x, σ

′) + ηNN2s(x, σ)
]

+R2(φ,N, s),

(5.13)

where we have used (a+ b)2 ≤ 2a2 + 2b2 numerous times, and by a similar reasoning as for
R1(φ,N, s) in 5.12, we have that there exists some C2 ∈ R such that

R2(φ,N, s) ≤ C2
1

N4

∑
x∈Z
||φ′′||2∞ηNN2s(x, σ). (5.14)

From 5.13 and 5.14 we can deduce that, as N →∞,

LN
(
πNσ,s(φ)

)2 − 2πNσ,s(φ) · LNπNσ,s(φ)
P−→ 0.

Therefore, by Fubini and the dominated convergence theorem, we see that

lim
N→∞

E
[〈
MN
σ

〉
T

]
= lim

N→∞

∫ T

0
E
[
LN
(
πNσ,s(φ)

)2 − 2πNσ,s(φ) · LNπNσ,s(φ)
]
ds = 0,

and the result follows.
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5.4 Tightness

For a fixed N ∈ N and σ ∈ S, we have that the process π̄Nσ := {πNσ,t : t ≥ 0} has its paths in

the path-space DM, with M the Borel measures on R. We define QNσ to be the probability
distribution of this process, i.e., for a Borel set B ⊂ DM

QNσ (B) := P
(
π̄Nσ ∈ B

)
Proposition 5.5. The sequence of probability measures {QNσ : N ∈ N} is tight in DM.

Before we get to the proof of this proposition, we will first show that the following
inequality holds.

Lemma 5.6. Let {ηNt : N ∈ N, t ≥ 0} be a sequence of run-and-tumble particles with every
ηNt a configuration of particles on 1

NZ × S and initial conditions ηN0 ∼ µNρ . Then for all

N ∈ N, t ≥ 0 and x, y ∈ 1
NZ we have that

EµNρ
[
ηNt (x, σ)

]
≤ ||ρ||∞ (5.15)

EµNρ
[
ηNt (x, σ)2

]
≤ ||ρ||2∞ + ||ρ||∞ (5.16)

Proof. The first inequality follows directly from Theorem 4.1 and the fact that the operator
Ŝt is a contraction. For the other inequality, we have that

EµNρ
[
ηNt (x, σ)2

]
=

∫
StD(2δ(x,σ), ·)(ηN )dµNρ (ηN ) +

∫
StD(δ(x,σ), ·)(ηN )dµNρ (ηN )

Now by duality we have that∫
StD(2δ(x,σ), ·)(ηN )dµNρ (ηN ) =

∫
ŜtD(·, ηN )(2δ(x,σ))dµ

N
ρ (ηN )

and ∫
StD(δ(x,σ), ·)(ηN )dµNρ (ηN ) =

∫
ŜtD(·, ηN )(δ(x,σ))dµ

N
ρ (ηN ).

So if we then let X(1) and X(2) be two independently moving particles generated by the dual
run-and-tumble process on 1

NZ × S, both starting from (x, σ), then by Proposition A.1 we
have that

EµNρ
[
ηNt (x)2

]
≤ Ê(x,σ),(x+y,σ)

[∫
D(δ

X
(1)
t

+ δ
X

(2)
t
, ηN )dµNρ (η) +

∫
D(δ

X
(1)
t
, ηN )dµNρ (η)

]
= ρ(X

(1)
t )ρ(X

(2)
t ) + ρ(X

(1)
t )

≤ ||ρ||2∞ + ||ρ||∞

Which proves the lemma.

Proof of Proposition 5.5. By Theorem A.9 and Lemma A.10, one way of proving tightness
of the sequence {QNσ : N ∈ N} is by showing that the following two assertions hold:

1. For every ε > 0 and t ≥ 0 there exists a compact set K ⊂M such that

lim inf
N→∞

P(πNσ,t ∈ K) ≥ 1− ε.

2. For every ε > 0 and 0 < T <∞ there exists a δ > 0 such that

lim sup
N→∞

P(ω(π̄Nσ , 2δ, T + 1) ≥ ε) ≤ ε,

with
ω(α, δ, T ) = sup{dM

(
α(s), α(t)

)
: s, t ∈ [0, T ], |t− s| < δ},
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We start by proving the first one. Fix ε > 0 and t ≥ 0, and for some A > 0 let KA be
the following set

KA =
{
µ ∈M : µ([−k, k]) ≤ A(2k + 1)k2 for all k ∈ N

}
.

By Theorem A.14 we see that KA is relatively compact, and the compactness of KA then
follows from the fact that KA is sequentially closed. By Markov’s inequality we now have
that

P(πNσ,t([−k, k]) ≥ A(2k + 1)k) ≤ 1

A(2k + 1)k2
E
[
πNσ,t([−k, k])

]
=

1

A(2k + 1)k2N

∑
x∈[−kN,kN ]∩Z

E
[
ηNN2t(x, σ)

]
≤ 1

A(2k + 1)k2N
(2k + 1)N ||ρ||∞

=
1

Ak2
||ρ||∞.

Here we have used the inequality in 5.15. We therefore have that

P(πNσ,t /∈ KA) ≤
∞∑
k=1

P(πNσ,t([−k, k]) ≥ A(2k + 1)k) ≤ 1

A
||ρ0(·, σ)||∞

∞∑
k=1

1

k2
<∞.

By now taking A big enough, we then have that for all N ∈ N that P(πNσ,t /∈ KA) < ε, which
proves the first part.

For the second part, by filling in the definition of the metric dM as found in A.8, we find
that

ω(π̄Nσ , 2δ, T + 1)

= sup
s,t∈[0,T+1]

|t−s|<2δ

∞∑
j=1

2−j
(

1 ∧
∣∣∣πNσ,N2t(φj)− π

N
σ,N2s(φj)

∣∣∣)

≤ 2−m +

m∑
j=1

sup
s,t∈[0,T+1]

|t−s|<2δ

2−j
(

1 ∧
∣∣∣πNσ,N2t(φj)− π

N
σ,N2s(φj)

∣∣∣)

≤ 2−m +

m∑
j=1

sup
s,t∈[0,T+1]

|t−s|<2δ

∣∣∣πNσ,N2t(φj)− π
N
σ,N2s(φj)

∣∣∣ .
(5.17)

Here we have taken m arbitrarily, so the first term can be made as small as we want. We
now want to show that the expecation of the sum vanishes as we let N → ∞ and δ ↓ 0.
Afterwards, the claim can be shown by using the Markov inequality.
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By reintroducing the Dynkin martingale found in 5.7, we have that

E

 sup
s,t∈[0,T+1]

|t−s|<2δ

∣∣πNσ,t(φj)− πNσ,s(φj)∣∣2


≤ 2E

 sup
s,t∈[0,T+1]

|t−s|<2δ

∣∣MN
σ,t −MN

σ,s

∣∣2
+ 2E

 sup
s,t∈[0,T+1]

|t−s|<2δ

∣∣∣∣∫ t

s
LNπNσ,r(φj)dr

∣∣∣∣2


≤ 4E

 sup
s,t∈[0,T+1]

|t−s|<2δ

(
MN
σ,t

)2
+
(
MN
σ,s

)2+ 2E

 sup
s,t∈[0,T+1]

|t−s|<2δ

∣∣∣∣∫ t

s
LNπNσ,r(φj)dr

∣∣∣∣2


≤ 8E

[
sup

t∈[0,T+1]

(
MN
σ,t

)2]
+ 2E

 sup
s,t∈[0,T+1]

|t−s|<2δ

∣∣∣∣∫ t

s
LNπNσ,r(φj)dr

∣∣∣∣2


(5.18)

where we have used the fact that (a+ b)2 ≤ 2(a2 + b2) twice. By Lemma 5.4, the first term
goes to zero as N →∞. For the second term, by filling in 5.11 we find that∣∣∣∣∫ t

s
LNπNσ,r(φj)dr

∣∣∣∣2 =

∫ t

s

πNσ,r(A∗σφj) + γ
∑
σ′ 6=σ

[
πNσ′,r(φj)− πNσ,r(φj)

]
+R1(φj , N, r)

 dr

2

≤ 3

[∫ t

s
πNσ,r(A

∗
σφj)dr

]2

+ 3

∫ t

s
γ
∑
σ′ 6=σ

[
πNσ′,r(φj)− πNσ,r(φj)

]
dr

2

+ 3

[∫ t

s
R1(φj , N, r)dr

]2

(5.19)

where we have used the fact that (a + b + c)3 ≤ 3(a2 + b2 + c2). By the upper bound on
R1(φj , N, r) in 5.12, we can see that the last term vanishes when N →∞.

For the other two terms, we have that[∫ t

s
πNσ,r(A

∗
σφj)dr

]2

=
1

N2

[∫ t

s

∑
x∈Z

A∗σφj(
x
N ) · ηNN2r(x, σ)dr

]2

,

and∫ t

s
γ
∑
σ′ 6=σ

[
πNσ′,r(φj)− πNσ,r(φj)

]
dr

2

=
1

N2

∑
σ′ 6=σ

∫ t

s
γ
∑
x∈Z

φj(
x
N )
(
ηNN2r(x, σ

′)− ηNN2r(x, σ)
)
dr

2

.

Since φj only has a compact support, there exists a k ∈ N such that supp(φj) ∈ [−k, k]. It is
easy to see that the supports of φ′j and φ′′j are also inside this interval [−k, k], therefore we
do not have to sum over all possible x ∈ Z, but we only have to sum over all x ∈ [−kN, kN ].
Furthermore, by the Cauchy-Schwarz inequality, we have in general that,(∑

i∈I
ai

)2

=

(∑
i∈I

1 · ai

)2

≤

(∑
i∈I

1

) 1
2

·

(∑
i∈I

a2
i

) 1
2

2

= |I| ·
∑
i∈I

a2
i .

Using this in our situation gives us that[∫ t

s
πNσ,r(A

∗
σφj)dr

]2

≤ 2k + 1

N

∑
x∈[−kN,kN ]

[∫ t

s
A∗σφj(

x
N ) · ηNN2r(x, σ)dr

]2

≤ 2k + 1

N

∑
x∈[−kN,kN ]

∫ t

s

(
A∗σφj(

x
N )
)2
dr ·

∫ t

s

(
ηNN2r(x, σ)

)2
dr,

(5.20)
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where we have used the Hölder inequality for the last line. Similarly, we also find that∫ t

s
γ
∑
σ′ 6=σ

[
πNσ′,r(φj)− πNσ,r(φj)

]
dr

2

≤ 2k + 1

N

∑
x∈[−kN,kN ]

∫ t

s
γ2φj(

x
N )2dr ·

∑
σ′ 6=σ

∫ t

s

(
ηNN2r(x, σ

′)
)2
dr −

∫ t

s

(
ηNN2r(x, σ)

)2
dr


(5.21)

Combining the bounds in 5.20 and 5.21 with 5.19 and using the fact that φj , φ
′
j and φ′′j

are bounded, there exists a constant C(φj , T ) such that for |t− s| < 2δ we have that∣∣∣∣∫ t

s
LNπNσ,r(φj)dr

∣∣∣∣2 ≤ 2k + 1

N

∑
x∈[−kN,kN ]

δC(φj , T )

[
2

∫ t

s

(
ηNN2r(x, σ)

)2
dr +

∫ t

s

(
ηNN2r(x, σ

′)
)2
dr

]

Therefore we find that

E

 sup
s,t∈[0,T+1]

|t−s|<2δ

∣∣∣∣∫ t

s
LNπNσ,r(φj)dr

∣∣∣∣2


≤ 2k + 1

N
δC(φj , T )

∑
x∈[−kN,kN ]

E

 sup
s,t∈[0,T+1]

|t−s|<2δ

(
2

∫ t

s

(
ηNN2r(x, σ)

)2
dr +

∫ t

s

(
ηNN2r(x, σ

′)
)2
dr

)
≤ 2k + 1

N
δC(φj , T )

∑
x∈[−kN,kN ]

E

[
2

∫ T+1

0

(
ηNN2r(x, σ)

)2
dr +

∫ T+1

0

(
ηNN2r(x, σ

′)
)2
dr

]

≤ 2k + 1

N
δC(φj , T )

∑
x∈[−kN,kN ]

2

∫ T+1

0
E
[(
ηNN2r(x, σ)

)2]
dr +

∫ T+1

0
E
[(
ηNN2r(x, σ

′)
)2]

dr

≤ 2k + 1

N
δC(φj , T )

∑
x∈[−kN,kN ]

3(T + 1)(||ρ||2∞ + ||ρ||∞)

≤ 3δ(2k + 1)2C(φj , T )(T + 1)(||ρ||2∞ + ||ρ||∞),

where we have used the inequality in 5.16 to upper bound E
[(
ηNN2r(x, σ)

)2]
and E

[(
ηNN2r(x, σ

′)
)2]

.

By filling this back into 5.18, we find that

lim
δ↓0

lim sup
N→∞

E

 sup
s,t∈[0,T+1]

|t−s|<2δ

∣∣πNσ,t(φj)− πNσ,s(φj)∣∣2


≤ lim
δ↓0

24δ(2k + 1)2C(φj , T )(T + 1)(||ρ||2∞ + ||ρ||∞)

= 0.

(5.22)

So, by going back to 5.17 and using the Markov inequality, we get the following:

P(ω(π̄Nσ , 2δ, T + 1) ≥ ε) ≤ 1

ε

2−m +
m∑
j=1

E

 sup
s,t∈[0,T+1]

|t−s|<2δ

∣∣πNσ,t(φj)− πNσ,s(φj)∣∣


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by now taking m such that 2−m < ε2 and using 5.22 we see that

lim
δ↓0

lim sup
N→∞

P(ω(π̄Nσ , 2δ, T + 1) ≥ ε) < ε,

which ultimately proves the tightness result.

Now we define the sequence of probability measures {QN : N ∈ N} to be the distribution
for the path process π̄N =

(
π̄Nσ
)
σ∈S , i.e., for any B ⊂ DMS we have

QN (B) = P(π̄N ∈ B).

This sequence the property that for any N ∈ N and cylindrical set B =×σ∈S Bσ, where
every Bσ ⊂ DM, we have that

QN (B) =
∏
σ∈S

QNσ (Bσ).

Therefore, Proposition 5.5 has the following corollary.

Corollary 5.7. The sequence of probability measures {QN : N ∈ N} is tight in DMS .

Proof. Set ε > 0. By definition A.4, the tightness of {QNσ : N ∈ N} implies the existence of
a compact set Kσ ∈ DM such that for all N ∈ N we have that

QNσ (Kσ) ≥
(
1− ε

) 1
|S| .

Since this is true for all σ ∈ S, by taking K =×σ∈SKσ, we have that K ⊂ DMS is compact,
and

QN (K) =
∏
σ∈S

QNσ (Kσ) ≥ 1− ε,

hence {QN : N ∈ N} is tight.

5.5 Coinciding Limit points

From Theorem A.7 we know that the tightness of the sequence of probability measures
{QN : N ∈ N} leads to the compactness of its closure, which in turn implies that there exists
a subsequence {QNk : k ∈ N} that converges weakly, i.e., QNk

w−→ Q for some probability
measure Q ∈ P(DMS ). In this section we will prove that Q-a.s. the paths α ∈ DMS are
continuous and weak solutions to 5.4.

Firstly, we define the metric dMS on MS as

dMS (µ,ν) = max
σ∈S

dM(µσ, νσ), (5.23)

for all µ,ν ∈MS , where dM is the metric on M, defined in A.8. To now prove the continuity
result, define the function G : DMS → [0, 1] as follows

G(α) := sup
t≥0

e−tdMS

(
α(t),α(t−)

)
,

with α(t−) the left limit of the path α at time t, i.e., limr↑tα(r). Furthermore, we set
CMS ⊂ DMS as the set of the paths that are continuous.

It is important to note that the function G is bounded, since by definition of the metric,
found in A.8, we have that dM ≤ 1. The function G can also characterize wether a path is
continuous in the following way:
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Proposition 5.8. α ∈ CMS if and only if G(α) = 0. Furthermore, G is continuous

Proof. Let α ∈ CMS , then it is clear that α(t−) = α(t) so we indeed find that G(α) = 0.
For the other direction, assume that G(α) = 0, then dM

(
α(t),α(t−)

)
= 0 for all t ≥ 0, i.e.,

α is everywhere left-continuous. Since every α ∈ DMS is automatically right-continuous by
definition of DMS , this proofs our first claim.

To see that G is continuous, we use a result found in [9]. Here it is shown that the metric

s∗(α,β) = inf
λ∈Λ

{
sup

0≤t≤T
|α(t)− β(λ(t))|+ sup

0≤t≤T
|t− λ(t)|

}

is equivalent to the metric s(α, β) given in A.6, and therefore also induces the Skorokhod
topology. Under this new metric, the following inequalities are satisfied:

G(α) ≤ G(β) + s∗(α,β),

G(β) ≤ G(α) + s∗(α,β).

Therefore, if we take α,β ∈ DM such that s∗(α,β) < ε, then |G(α) − G(β)| < ε, which
proves the continuity of G.

With these properties of G, we are now able to prove that every path α ∈ DMS is Q-a.s.
continuous.

Lemma 5.9. Q(CMS ) = 1

Proof. Since the function G is bounded, we can apply the dominated convergence theorem
to find that

EQ[G] = lim
k→∞

EQ
Nk [G] = lim

k→∞
ENk [G(π̄Nk)],

where since dM ≤ 1 we have that for any T > 0 that

G
(
π̄Nk

)
= sup

t≥0
e−tdMS

(
πNkt ,πNk

t−

)
≤ sup

0≤t≤T
dMS

(
πNkt ,πNk

t−

)
+ e−T ,

and so

EQ[G] ≤ max
σ∈S

lim
k→∞

E

 sup
0≤s,t≤T
|t−s|<δ

dM

(
πNkσ,t , π

Nk
σ,s

)+ e−T .

Similarly as in 5.22 the expectation vanishes as k → ∞ for any T > 0, and since we have
taken T arbitrarily, we find that EQ[G] = 0, i.e., G = 0 Q-a.s., so by Proposition 5.8 we have
that Q-almost every α ∈ DMS is continuous.

Now for φ ∈ C∞c (R× S), δ > 0 and T > 0, we consider the following set:

H(φ, δ, T ) :=

{
α ∈ DMS : sup

0≤t<T

∣∣∣∣∣∣∣∣α(t,φ)−α(0,φ)−
∫ t

0

[
α(s,Aφ) + γCα(s,φ)

]
ds

∣∣∣∣∣∣∣∣
S

≤ δ

}
.

Here the operator A and the matrix C are the ones defined in 5.5 and 5.6 respectively, and
the S-norm is defined as ||α(t, φ)||S = maxσ∈S |ασ(t, φ)|. We can see this H(φ, δ, T ) as the
α ∈ DMS that, for a specific test function φ, almost satisfy the PDE from 5.4, up to time
T . If we can show that Q

(
H(φ, δ, T )

)
= 1, then since we can take δ arbitrarily small and T

arbitrarily large, we can conclude that Q-almost every path α ∈ DMS satisfies the PDE for
a given test function.
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Afterwards, the result has to be extended to all φ ∈ C∞c (R × S) simultaneously. We
can do this by turning to a countable set {φj , j ∈ N} ⊂ C∞c (R × S) such that for any
φ ∈ C∞c (R × S) there exists a subsequence {φjk , k ∈ N} such that for any α ∈ DMS and
t ≥ 0, α(t, φjk)→ α(t, φ) and

α(t, Aφjk) + γCα(s, φjk)→ α(t, Aφ) + γCα(s, φ)

uniformly. The proof that such a countable set exists is given in [23].

So all we need to show is that Q
(
H(φ, δ, T )

)
= 1. Before we can do this, we must first

show that the set H(φ, δ, T ) is closed.

Lemma 5.10. For any φ ∈ C∞c (R× S), δ > 0 and T > 0, the set H(φ, δ, T ) is closed under
the Skorokhod topology of the path space DMS .

Proof. Let {αn, n ∈ N} ⊂ H(φ, δ, T ) be a sequence such that αn → α for some α ∈ DM.
Our aim is to show that α ∈ H(φ, δ, T ), i.e., we have to show that for all t ∈ [0, T )∣∣∣∣∣∣∣∣α(t, φ)−α(0, φ)−

∫ t

0

[
α(s,Aφ) + γCα(s,φ)

]
ds

∣∣∣∣∣∣∣∣
S

≤ δ. (5.24)

According to Lemma A.8, there exists a sequence {λn, n ∈ N} ⊂ Λ such that θ(λn)→ 0 and

dMS

(
αn(λn(t)),α(t)

)
→ 0. (5.25)

By plugging in the definition of θ, found in A.5, we find that

sup
0≤s<t

∣∣∣∣log

(
λn(t)− λn(s)

t− s

)∣∣∣∣→ 0, (5.26)

which implies that λn converges uniformly to the identity function on the interval [0, T ], so
in particular we find that for n ∈ N large enough, λn(t) < T for all t ∈ [0, T ). Therefore,
since αn ∈ H(φ, δ, T ) we see that∣∣∣∣∣

∣∣∣∣∣αn(λn(t), φ)−αn(0, φ)−
∫ λn(t)

0

[
αn(s,Aφ) + γCαn(s,φ)

]
ds

∣∣∣∣∣
∣∣∣∣∣
S

≤ δ. (5.27)

If we now show that the left-hand side of 5.27 converges to the left-hand side of 5.24,
then we have our desired result. First of all, by 5.25 we already have that

αn(λn(t), φ)→ α(t, φ),

and since every λn : [0,∞)→ [0,∞) is bijective and continuous by definition of Λ, we must
have that λn(0) = 0 for all n ∈ N, so we also get that

αn(0, φ)→ α(0, φ).

All that is left now is the convergence

lim
n→∞

∫ λn(t)

0

[
αn(s,Aφ) + γCαn(s,φ)

]
ds =

∫ t

0

[
α(s,Aφ) + γCα(s,φ)

]
ds.

First of all, by the Lipschitz continuity given in 5.26 we know that that λ′n is defined at
least Lebesgue-a.e. with λ′n(t) → 1 for all t ∈ [0, T ), and that λn is absolutely continuous.
Furthermore, since λn : [0,∞)→ [0,∞) is bijective with λn(0) = 0, it is also monotonically



62 CHAPTER 5. HYDRODYNAMIC LIMITS OF RUN-AND-TUMBLE PARTICLES

increasing. By these properties, we can apply the change-of-variables formula (for details,
see [22, Theorem 7.26]). This tells us that∫ λn(t)

0

[
αn(s,Aφ) + γCαn(s,φ)

]
ds =

∫ t

0

[
αn(λn(s), Aφ) + γCαn(λn(s),φ)

]
λ′n(s)ds

(5.28)
By Proposition A.13, we can find an m = m(φ) and another test function φm ∈ C∞c (R× S)
such that for n big enough

||αn(λn(s), Aφ)||S ≤ ||Aφ||∞ ·
(
||α(s, φm)||S + 2mdMS

(
αn(λn(s)),α(s)

))
,

so also for some n1 big enough, we find that supn≥n1
||αn(λn(s), Aφ)||S <∞. With the same

proposition, we can also find that there exists an n2 big enough such that supn≥n2
||γCαn(λn(s),φ)||S <

∞, hence we can apply the dominated convergence theorem to find that

lim
n→∞

∫ t

0

[
αn(λn(s), Aφ) + γCαn(λn(s),φ)

]
λ′n(s)ds =

∫ t

0

[
α(s,Aφ) + γCα(s,φ)

]
ds.

Together with 5.28, this now proves the claim.

Corollary 5.11. For any φ ∈ C∞c (R× S), δ > 0 and T > 0 we have that Q
(
H(φ, δ, T )

)
= 1

Proof. Now that we have shown that the set H(φ, δ, T ) is closed, we can apply the Portman-
teau Theorem (Theorem A.11) to see that

Q
(
H(φ, δ, T )

)
≥ lim sup

k→∞
QNk

(
H(φ, δ, T )

)
= lim sup

k→∞
P

(
sup

0≤t<T

∣∣∣∣∣∣∣∣πNkt (φ)− πNk0 (φ)−
∫ t

0

[
πNks (Aφ)ds+ γCπNks (φ)

]
ds

∣∣∣∣∣∣∣∣
S

≤ δ

)

= lim sup
k→∞

P

(
max
σ∈S

sup
0≤t<T

∣∣∣MNk
σ,t +O(tN)k−1)

∣∣∣ ≤ δ)
Here we have used Proposition 5.3 for the last equality.By Lemma 5.4 and the Markov
inequality we then have that

P

(
max
σ∈S

sup
0≤t<T

∣∣∣MNk
σ,t +O(tN−1

k )
∣∣∣ > δ

)
≤ 2

δ2

(
max
σ∈S

E

[
sup

0≤t<T

(
MNk
σ,t

)2
]

+O(T 2N−2
k )

)
→ 0,

so Q
(
H(φ, δ, T )

)
= 1.

From this section, we can conclude that Q-a.s. every path α ∈ DMS is continuous and
a weak solution to 5.4. Since we took an arbitrary weak limit point Q of the sequence
{QN : N ∈ N} we actually find that QN

w−→ δᾱ, with ᾱ the unique weak solution. We now
have the results needed to prove the main theorems.

5.6 Proof of hydrodynamics

We will first give the proof of Theorem 5.2

Proof of Theorem 5.2. . The proof of this theorem is now an application of the Portmanteau
Theorem (Theorem A.11). Define Bε(ᾱ) as the open ball around ᾱ ∈ DMS of radius ε > 0
with respect to the Skorokhod distance sMS , i.e.,

Bε(ᾱ) := {α ∈ DMS : sMS (α, ᾱ) < ε},
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then clearly its complement Bε(ᾱ)c is closed. By the Portmanteau Theorem, we then have
that

lim sup
N→∞

P
(
sMS (π̄N , ᾱ) ≥ ε

)
= lim sup

N→∞
QN
(
Bε(ᾱ)c

)
.

Now, since QN
w−→ δᾱ, we have that for every ε > 0,

lim sup
N→∞

QN
(
Bε(ᾱ)c

)
= 0,

which proves the theorem.

Now we can finally prove the main result.

Proof of Theorem 5.1. Notice that 5.3 can be written in terms of π̄N and ᾱ (the unique
weak solution of 5.4 in the path space DMS ) in the following way,

lim
N→∞

P
(
||πNt (φ)− ᾱ(t, φ)||S ≥ ε

)
= 0, (5.29)

for every ε > 0 and φ ∈ C∞c (R× S).

Define the set B(t, φ) as follows,

B(t, φ) =
{
α ∈ DMS : ||α(t, φ)− ᾱ(t, φ)||S ≥ ε

}
,

then 5.29 is equivalent to

lim
N→∞

QN
(
B(t, φ)

)
= 0.

If we can now show that B(t, φ) is a Q-continuity set for every t ≥ 0 and φ ∈ C∞c (R × S),
i.e., Q

(
∂B(t, φ)

)
= 0, then by the Portmanteau Theorem we find that

lim
N→∞

QN
(
B(t, φ)

)
= Q

(
B(t, φ)

)
= 0,

where the last equality follows from Theorem 5.2.

To prove that B(t, φ) is a Q-continuity set, all we have to show is that ᾱ /∈ ∂B(t, φ), i.e.,
there is no sequence {αn : n ∈ N} ⊂ B(t, φ) such that αn → ᾱ in the Skorokhod topology.
So assume that such a sequence does exists. Since ᾱ is Q-a.s. continuous by Lemma 5.9, by
an application of Lemma A.8 and the definition of dMS , as given in 5.23, we find that for all
t ≥ 0 and φ ∈ C∞c (R× S),

αn(t, φ)→ ᾱ(t, φ).

This means that there exists n big enough such that αn /∈ B(t, φ), which gives us a contra-
diction. Therefore B(t, φ) is a Q-continuity set, and the proof is finished.

5.7 Propagation of local equilibrium

For this section we will look at the evolution of local equilibrium distributions. Before we do
this, let us first define what it means for a sequence of probability distributions {µN : N ∈ N}
to be a local equilibrium distribution for the run-and-tumble particle process

For η ∈ Ω, define θ : Ω→ Ω as θyη(x, σ) = η(x+ y, σ) for every x ∈ Z and σ ∈ S. Then
define τy : B(Ω)→ B(Ω) as follows,

τyf(η) = f(θyη).
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Definition 5.1. Let ρ : R × S → R≥0 be a density profile, then a sequence of probability
measures {µN : N ∈ N} is a local equilibrium distribution for the run-and-tumble particle
process, associated to the density profile ρ, if for all y ∈ Z and local (multivariate) polynomial
f , we have that

lim
N→∞

∫
τbyNcfdµ

N =

∫
fdµρ(y,·),

with µρ(y,·) as defined in 4.1 with the function ρ(y, ·) : S → R≥0.

Proposition 5.12. For any y ∈ Z and local polynomial f , we have that

lim
N→∞

∫
τbyNcfdµ

N
ρ =

∫
fdµρ(y,·)

Proof. Notice that by Lemma A.2 we only have to prove it for f(η) = D(ξ, η) where ξ ∈ Ωf

is any finite configuration. By writing ξ =
∑m

i=1 δ(xi,σi), we have that

τbyNcD(ξ, η) = τbyNc

m∏
i=1

η(xi, σi) =

m∏
i=1

η(xi + byNc, σi),

and so by applying Proposition A.1 twice, we find that

lim
N→∞

∫
τbyNcD(ξ, ·)dµNρ = lim

N→∞

m∏
i=1

ρ(xi+byNcN , σi) =

m∏
i=1

ρ(y, σi) =

∫
D(ξ, ·)dµρ(y,·),

which finishes the proof.

Theorem 5.13. Let ρ : R×S → R≥0 be a smooth and bounded density profile, with bounded
derivatives, then for every t ≥ 0 and every local polynomial f , we have that

lim
N→∞

∣∣∣∣∫ fdµNρ SN2t −
∫
fdµNρt

∣∣∣∣ = 0,

where ρt is the solution to 5.4, with initial condition ρ0 = ρ.

Proof. By Theorem 4.1, we know that for any N ∈ N we have that µNρ SN2t = µρNt , where

ρNt ( xN , σ) = ŜN2tρ( xN , σ), i.e.,

ρNt ( xN , σ) = Ê x
N ,σ

[
ρ
(
XN2t
N , σt

)]
.

By now going from a macropoint x ∈ R to its corresponding micropoint x→ bxNc, we find
that

lim
N→∞

ρNt

(
bxNc
N , σ

)
= lim

N→∞
Ê bxNc

N ,σ

[
ρ
(
XN2t
N , σt

)]
.

To calculate this limit, we turn to the generator L̂N of the single dual particle
(
XN2t
N , σt

)
working on the function ρ,

L̂Nρ( xN , σ) = κN2
(
ρ(x+1

N , σ) + ρ(x−1
N , σ)− 2ρ( xN , σ)

)
+ λN

(
ρ(x−σN , σ)− ρ( xN , σ))

+ γ
∑
σ′ 6=σ

ρ( xN , σ
′)− ρ( xN , σ).
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Making use of Taylor series again,

ρ(x+1
N , σ) = ρ( xN , σ) +

1

N

∂

∂x
ρ( xN , σ) +

1

N2

∂2

∂x2
ρ( xN , σ) +

1

N3

∂3

∂x3
ρ(y1, σ),

ρ(x−1
N , σ) = ρ( xN , σ)− 1

N

∂

∂x
ρ( xN , σ) +

1

N2

∂2

∂x2
ρ( xN , σ)− 1

N3

∂3

∂x3
ρ(y2, σ),

ρ(x−σN , σ) = ρ( xN , σ)− 1

N
σ
∂

∂x
ρ( xN , σ) +

1

N2
σ2 ∂

2

∂x2
ρ(y3, σ),

we find that

L̂Nρ( xN , σ) = κ
∂2

∂x2
ρ( xN , σ)− λσ ∂

∂x
ρ( xN , σ) + γ

∑
σ′ 6=σ

ρ( xN , σ
′)− ρ( xN , σ) +R(N, ρ),

where

R(N, ρ) ≤ 2

N

(∣∣∣∣∣∣∣∣ ∂3

∂x3
ρ(·, σ)

∣∣∣∣∣∣∣∣
∞

+

∣∣∣∣∣∣∣∣ ∂2

∂x2
ρ(·, σ)

∣∣∣∣∣∣∣∣
∞

)
→ 0.

This tells us that the generator L̂N converges to the generator of the PDE in 5.4. By the
theorem of Trotter-Kurtz (Theorem 2.4), we therefore find that

lim
N→∞

Ê bxNc
N ,σ

[
ρ
(
XN2t
N , σt

)]
= ρt(x, σ),

where ρt solves the PDE.

So, let f = D(ξ, ·) for some ξ =
∑m

i=1 δ(xi,σi) some finite configuration, then by Proposi-
tion A.1 we have that

lim
N→∞

∣∣∣∣∫ fdµNρ SN2t −
∫
fdµNρt

∣∣∣∣ = lim
N→∞

∣∣∣∣∣
m∏
i=1

ρNt (xiN , σi)−
m∏
i=1

ρt(
xi
N , σi)

∣∣∣∣∣ = 0,

which proves the theorem.

5.8 The equation of the total density

For this section we will look at the case where S = {−1, 1}, In this case the system of PDEs
given by 5.1 becomes the following.

∂

∂t
ρt(x, 1) =

κ

2

∂2

∂x2
ρt(x, 1)− λ

∂

∂x
ρt(x, 1) + γ

(
ρt(x,−1)− ρt(x, 1)

)
,

∂

∂t
ρt(x,−1) =

κ

2

∂2

∂x2
ρt(x,−1) + λ

∂

∂x
ρt(x,−1) + γ

(
ρt(x, 1)− ρt(x,−1)

)
.

We then define the following sum and difference functions,

ρt(x) = ρt(x, 1) + ρt(x,−1), ∆t(x) = ρt(x, 1)− ρt(x,−1).

By taking the first derivative in time for both of these functions we find that

∂

∂t
ρt(x) =

κ

2

∂2

∂x2

(
ρt(x, 1)− ρt(x,−1)

)
− λ ∂

∂x

(
ρt(x, 1)− ρt(x,−1)

)
=
κ

2

∂2

∂x2
ρt(x)− λ ∂

∂x
∆t(x),

(5.30)
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and

∂

∂t
∆t(x) =

κ

2

∂2

∂x2

(
ρt(x, 1)− ρt(x,−1)

)
− λ ∂

∂x

(
ρt(x, 1) + ρt(x,−1)

)
+ 2γ

(
ρt(x,−1)− ρt(x, 1)

)
=

(
κ

2

∂2

∂x2
− 2γ

)
∆t(x)− λ ∂

∂x
ρt(x).

(5.31)

If we now also look at the second derivative in time for ρt(x) and filling in the first derivatives
found above, we find that

∂2

∂t2
ρt(x) =

κ

2

∂2

∂x2

∂

∂t
ρt(x)− λ ∂

∂x

∂

∂t
∆t(x)

=
κ2

4

∂4

∂x4
ρt(x) + λ2 ∂

2

∂x2
ρt(x) +

(
κ
∂2

∂x2
− 2γ

)
λ
∂

∂x
∆t(x).

(5.32)

By 5.30 we have that

λ
∂

∂x
∆t(x) =

κ

2

∂2

∂x2
ρt(x)− ∂

∂t
ρt(x),

so by filling this back into 5.32 we find that

∂2

∂t2
ρt(x) = −κ

2

4

∂4

∂x4
ρt(x) + (λ2 + γκ)

∂2

∂x2
ρt(x)− 2γ

∂

∂t
ρt(x) + κ

∂2

∂x2

∂

∂t
ρt(x),

which can be rewritten as(
∂

∂t
+ 2γ − κ ∂

2

∂x2

)
∂

∂t
ρt(x) = −κ

2

4

∂4

∂x4
ρt(x) + (λ2 + γκ)

∂2

∂x2
ρt(x) (5.33)

Through similar steps we can also derive that the difference function ∆t follows the exact
same PDE, i.e.,(

∂

∂t
+ 2γ − κ ∂

2

∂x2

)
∂

∂t
∆t(x) = −κ

2

4

∂4

∂x4
∆t(x) + (λ2 + γκ)

∂2

∂x2
∆t(x) (5.34)

Remark 5.3. Since these PDEs have a second derivative in time, we both need initial values
for the function itself ρ0(x) as for the first derivative in time ∂

∂tρ0(x). Intuitively this makes
sense for our model, since we will need to know how many particles will move in which
direction at t = 0.

5.8.1 Connection to other PDEs

If we set κ = 0, i.e., we assume there is no general diffusion of the particles, then the system
of PDEs from 5.30 and 5.31 becomes the following

∂

∂t
ρt(x) = −λ

∂

∂x
∆t(x),

∂

∂t
∆t(x) = −2γ∆t(x)− λ

∂

∂x
ρt(x).

This system is a special case of the Telegrapher’s equations, which are being used to model
the current and the voltage along a transmission line. By the methods we have used above,
twe can combine these equations to make the following two independent but equivalent PDEs

(
∂

∂t
+ 2γ

)
∂

∂t
ρt(x) = λ2

∂2

∂x2
ρt(x),

(
∂

∂t
+ 2γ

)
∂

∂t
∆t(x) = λ2

∂2

∂x2
∆t(x).
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If we furthermore assume that γ = 0, i.e., the particles can never change the direction in
which they are moving, then these PDEs will become equal to the wave equation, which is
the model of a vibrating string,

∂2

∂t2
ρt(x) = λ2 ∂

2

∂x2
ρt(x).

The general solution of the wave equation is the following consist of a right- and a left-moving
wave, i.e., there exist functions F,G ∈ C(R) such that

ρt(x) = F (x+ λt) +G(x− λt).

This relation is quite intuitive to our model, since the right-moving wave will be caused by
particles that can only move to the right, and similarly the left-moving wave will be caused
by particles moving to the left.



Chapter 6

Summary and concluding remarks

In this thesis we have looked at three distinct properties of a run-and-tumble particle system.
In Chapter 3 we have proved a duality result in two different ways, in Chapter 4 we looked
at the ergodic measures of the process, and in Chapter 5 we have proved the hydrodynamic
limit. In this Chapter we will discuss all these subjects separately.

Duality

In Chapter 3 we have proven a duality result between the run-and-tumble particle process
and the same process, but where only the active jumps occur in the opposite direction. For
the dual process we only looked at finite configurations ξ. The duality function corresponding
to this result is equal to

D(ξ, η) =
∏
v∈V

d
(
ξ(v), η(v)

)
,

where

d(k, n) :=

{
n!

(n−k)! if k ≤ n,
0 if k > n.

We have given two different proofs of this.

Main line of proof

The first proof was on the level of generators. Through straight-forward calculations and
taking into account all the possible cases, we have shown that

LD(ξ, ·)(η) = L̂D(·, η)(ξ).

Since this proof was rather cumbersome, we also used an alternative approach.
We defined another process {ψt, t ≥ 0} as

(ψtg) (f) := g(ft), with for all v ∈ V : ft(v) :=
∑
v′∈V

pt(v, v
′)f(v′),

and called it the deterministic system. Here pt(v, v
′) are the transition probabilities of a

single run-and-tumble particle. We showed that there is a duality result between this system
and the run-and-tumble particle process, with the following duality function,

D(f, η) =
∏
v∈V

f(v)η(v).

Afterwards we proved that, by simply taking the right derivatives, we could go from this
duality result to the duality result which we were after.
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Lastly we also introduced the dual deterministic system, given by

(ψ̂tg)(f̂) := g(f̂t), with for all v ∈ V : f̂t(v) :=
∑
v′∈V

p̂t(v, v
′)f̂(v′),

where p̂t(v, v
′) are te transition probabilities of a single dual run-and-tumble particle. The

final duality result we then showed was that between the two deterministic systems, with
duality function

D(f, f̂) = exp

(∑
v∈V

f(v)f̂(v)

)
.

It turned out that all these duality results are equivalent to one another.

Concluding remarks

For the proofs of the duality result between the deterministic system and the run-and-tumble
particle process and of the duality result between the two deterministic systems, the only
two properties of the processes that we used were that the particles move independently, and
that pt(v, v

′) = p̂t(v
′, v) for all v, v′ ∈ V . For any two processes with these properties, by the

same steps we could prove the same results.

Ergodic theory

In Chapter 4 we defined the following product Poisson measures

µρ =
⊗
v∈V

Pois
(
ρ(v)

)
, (6.1)

where ρ was some bounded, non-negative function. Using duality, we could show that µρ was
an invariant measure for the run-and-tumble particle process if and only if ρ was constant.
Afterwards we showed that these measures were also ergodic if ρ was constant by showing
they are mixing. The proof of this relied on the fact that the particles spread out under the
run-and-tumble dynamics.

Then we turned to the space tempered measures, i.e., measures µ such that for all n ∈ N,
sup|ξ|=n

∫
D(ξ, η)dµ(η) is finite. Using the same method as Kuoch and Redig in [16], we

proved that in this subspace of measures, the measures µρ with ρ constant are the only
ergodic measures. first showed that the product Poisson measures were the only ergodic
measures in this space by.

Main line of proof

We started by showing that we have a successful coupling of finite configurations. To prove
this we first started with a successful coupling of two particles (Xt, σ

X
t ) and (Yt, σ

Y
t ) in Z×S.

We defined the process Zt = Xt− Yt and for some σ1 ∈ S, we defined the following stopping
times in a recursive manner,

ςn := min{t > τn−1 : (σXt , σ
Y
t ) 6= (σ1, σ1)},

and

τn := min{t > ςn : (σXt , σ
Y
t ) = (σ1, σ1)},

with τ0 = 0. We set {Zn, n ∈ N} as the discrete random walk defined as Zn = Zτn and we have
showed that this is a symmetric random walk on Z, where the transition probabilities have a
finite first moment. Therefore, by a result from Chung and Fuchs in [7], this walk is recurrent
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and hence there is a successful coupling. Afterwards, we have shown that a successful coupling
of finitely many particles holds by performing a component-wise Ornstein-coupling.

We have used this coupling to show that for any tempered measure µ, the function

µ̂(ξ) =

∫
D(ξ, η)dµ(η),

working on finite configurations ξ, only depends on the number of particles |ξ|, i.e., there is
a function f : N→ R such that µ(ξ) = f(|ξ|). To prove that any ergodic tempered measure
µ is a product Poisson measure with some constant parameter ρ, it was enough to show that
f(|ξ|) = ρ|ξ|, since this is a characterizing property of the product Poisson measures. This
was done by showing that for any two finite configurations ξ, ξ′,

f(|ξ|+ |ξ′|) = lim
T→∞

∫
D(ξ, η) · 1

T

∫ T

0
StD(ξ′, η)dtdµ(η) = f(|ξ|) · f(|ξ′|),

which followed from both the Birkhoff ergodic theorem and the fact that particles spread
out under the run-and-tumble dynamics.

Concluding remarks

We set out to find all the ergodic measures of the run-and-tumble particle system, but
underway we met with some difficulties. The first one was the coupling of particles in Zd
with d ≥ 3. In the case of a symmetric random walk, if we have a coupling in one dimension,
we can find a coupling d dimensions by performing a component-wise Ornstein-coupling
(see [12, Section 3.2]). For two general d dimensional run-and-tumble particles this does
not necessarily work. Namely, even if the first coordinates of the two particles are coupled
at some point, the internal states can still be different and eventually decouple the first
coordinates. We also gave an example of two run-and-tumble particles where a successful
coupling is not possible, so the question of how and when a successful coupling exists for
d ≥ 3 is still an open problem.

Another problem we encountered was that, since we are working on Ω = NV where the
number of particles at any site is unbounded, we could only prove our result on the space
of tempered measures, since we needed the functions µ̂(ξ) =

∫
D(ξ, η)dµ(η) to be bounded.

Outside of this space there might still be other ergodic measures, and hence we might not
yet know the full space of invariant measures.

Hydrodynamic limit

In Chapter 5 we set out to proof the hydrodynamic limit for the run-and-tumble particle
system on the particle state space Z×S. We only did this for the following initial conditions:
we defined the probability measures

µNρ :=
⊗

(x,σ)∈V

Pois
(
ρ( xN , σ)

)
, (6.2)

and let the sequence of configurations {ηN , n ∈ N} such that ηN ∼ µNρ . We did a rescaling
of space for every internal state in S using the empirical measures, defined as

πNσ :=
1

N

∑
x∈Z

ηN (x, σ)δ x
N
.

where δ is the Dirac measure, and then limN→∞ π
N
σ → ρ(x, σ)dx (in the manner defined as

in Definition 2.13). Afterwards we also performed a rescaling of time with a factor N2, and
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then we needed the following change of parameters, λ → λ
N and γ → γ

N2 , which gave the
generator

LN = κN2L+ λNLa + γLi.

The hydrodynamic limit then became a question of the convergence of the following
empirical measures,

πNσ,t :=
1

N

∑
x∈Z

ηNN2t(x, σ)δ x
N
.

It turned out that these converge to a weak solution, ρt(x, σ), of a system of PDEs where
for every σ ∈ S we had

∂

∂t
ρt(x, σ) =

κ

2

∂2

∂x2
ρt(x, σ)− λσ

∂

∂x
ρt(x, σ) + γ

∑
σ′ 6=σ

(
ρt(x, σ

′)− ρt(x, σ)
)

(6.3)

with initial value ρ0(x, σ) = ρ(x, σ). We proved this using the method by Seppäläinen in
[23].

Main line of proof

This proof used the Dynkin martingale from Apendix A.2.2, i.e.,

MN
σ,t = πNσ,t(φ)− πNσ,0(φ)−

∫ t

0
LNπNσ,s(φ)ds,

where πNσ,t(φ) :=
∫
φ(·, σ)dπNσ,t. We then showed that we had the following equality

MN
σ,t = πNσ,t(φ)− πNσ,0(φ)−

∫ t

0

[
πNσ,s(A

∗
σφ) + γ

∑
σ′ 6=σ

[
πNσ′,s(φ)− πNσ,s(φ)

] ]
ds+O(tN−1),

where A∗σ = κ
2
∂2

∂x2
+λσ ∂

∂x . Afterwards we proved that the quadratic variation of MN
σ,t vanishes

(and hence the martingale also goes to 0 in probability). We used this result to actually prove
convergence in the path-space; using a tightness argument, we showed that the path-space
measures of π̄N =

(
π̄Nσ
)
σ∈S , where π̄Nσ = {πNσ,t : t ≥ 0}, converged to the Dirac measure of

the unique weak solution of the system of PDEs given by 6.3. This we used to prove the
hydrodynamic limit.

Further results

After we had proven the hydrodynamic limits, we also looked at the propagation of local
equilibrium measures. Using convergence of generators, we showed that the local equilibrium
measures µNρ in 6.2 converge weakly, under the run-and-tumble dynamics, to µρt as in 6.2,
where ρt solves the hydrodynamic limit with initial condition ρ.

Lastly we have looked at the evolution of the total density of particles for the case where
S = {−1, 1}, i.e., we have looked at ρt(x) = ρt(x, 1) + ρt(x,−1). By using the results of the
hydrodynamic limit, and also introducing the difference function ∆t(x) = ρt(x, 1)−ρt(x,−1)
we were able to find that the total density adheres to the following PDE,(

∂

∂t
+ 2γ − κ ∂

2

∂x2

)
∂

∂t
ρt(x) = −κ

2

4

∂4

∂x4
ρt(x) + (λ2 + γκ)

∂2

∂x2
ρt(x),

and so does ∆t(x).
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Concluding remarks

In this thesis we have only looked at the case where the particles are in Z× S. Seppäläinen
gives in his book a method of proving the hydrodynamic limit for particles in Zd × S.
However, more steps and assumptions are needed for this proof, including proving the so-
called “gradient condition” [23, Section 8.2]. Hence, further research could be done in proving
the hydrodynamic limit for run-and-tumble particles in higher dimensions.



Appendix A

A.1 Factorial Poisson moments

It is a well known fact that the Poisson distribution is a solution to a moment problem, i.e.,
X ∼ Pois(λ) for some λ > 0 if and only if X has the following moments,

E [Xn] =

n∑
k=0

{
n

k

}
λk,

with
{
n
k

}
the Stirling numbers given by{

n

k

}
=

1

k!

k∑
i=0

(−1)i
(
k

i

)
(k − i)n.

In this section we will show a similar result for the factorial moments of the poisson dis-
tribution. We will immediately prove this for the product poisson distribution, given by
4.1.

Proposition A.1. Let ρ be a density profile and µ be an arbitrary probability measure on V ,
then µ = µρ, with µρ defined as in 4.1, if and only if for every finite configuration ξ ∈ Ωf

given by ξ =
∑n

i=1 δvi, with vi ∈ V for all i, the equality∫
D(ξ, η)dµ(η) =

n∏
i=1

ρ(vi) (A.1)

holds, with the function D defined as in 3.7.

Before we prove this theorem, we first give a standard result about the Stirling numbers.
The proof of this will be omitted from this report.

Lemma A.2. for m,n ∈ N, one has

n∑
k=0

{
n

k

}
d(k,m) = mn,

with d(k,m) defined as in 3.6.

Proof of Proposition A.1. Let ξ ∈ Ω be a finite configuration. Since µρ is a product Poisson
measure, the η(v) are independent for all v ∈ V , therefore∫

D(ξ, η)dµρ(η) =
∏
v∈V

∫
d(ξ(v), η(v))dµρ(η) =

∏
v∈V

∞∑
k=ξ(v)

d(ξ(v), k)P(η(v) = k). (A.2)
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If we now look at the infinite series, we find that

∞∑
k=ξ(v)

d(ξ(v), k)P(η(v) = k) =

∞∑
k=ξ(v)

k!

(k − ξ(v))!

ρ(v)k

k!
e−ρ(v)

= ρ(v)ξ(v)e−ρ(v)
∞∑
k=0

ρ(v)k

k!

= ρ(v)ξ(v).

Filling this back into A.2 indeed gives us the following equality.∫
D(ξ, η)dµρ(η) =

∏
v∈V

ρ(v)ξ(v) =
n∏
i=1

ρ(vi).

For the other direction, assume A.1 holds for all finite ξ ∈ Ω. By Lemma A.2, we have
that for any v ∈ V and n ∈ N

η(v)n =

n∑
k=0

{
n

k

}
d
(
kδv, η(v)

)
.

Therefore, if we take v1, ..., vm ∈ V and n1, ..., nm ∈ N, then∫ m∏
i=1

η(vi)
nidν(η) =

∫ m∏
i=1

ni∑
ki=0

{
ni
ki

}
d(kiδvi , η(vi))dν(η)

=
∑

k1,...,km

∫ m∏
i=1

{
ni
ki

}
d(kiδvi , η(vi))dν(η)

=
∑

k1,...,km

(
m∏
i=1

{
ni
ki

})
·
∫
D

(
m∑
i=1

kiδvi , η

)
dν(η).

Now we can use A.1 to see that∫ m∏
i=1

η(vi)
nidν(η) =

∑
k1,...,km

m∏
i=1

{
ni
ki

}
ρ(vi)

ki =
m∏
i=1

ni∑
ki=1

{
ni
ki

}
ρ(vi)

ki ,

where the sum is also the ni’th moment of a Poisson distribution with parameter ρ(vi), i.e.,
the following holds,

ni∑
ki=1

{
ni
ki

}
ρ(vi)

ki =

∫
η(vi)

nidµρ(η).

Again using the independence of all η(vi) under µρ, we find that∫ m∏
i=1

η(vi)
nidν(η) =

∫ m∏
i=1

η(vi)
nidµρ(η),

thus we see that the moments of ν and µρ agree.

The proof is not quite finished, since we only showed that if A.1 holds then the moments
of ν and µρ agree. However it turns out that this is enough to conclude that ν = µρ. To see
this, we use the following result by Kleiber and Stoyanov, given in [15].
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Theorem A.3. Suppose F is the distribution function of the n-dimensional random vector
(X1, ..., Xn) and denote by Fj the distribution function of the random variable Xj for all j.
Then F is uniquely determined by its moments, which we will refer to as M-det, if and only
if all Fj are.

This theorem tells us that if the Poisson distribution is M-det, then any random vec-
tor (X1, ..., Xn) of independent Poisson random variables is as well. Then, by using the
Kolmogorov extension theorem, we can conclude that µρ is M-det.

In order to see that a Poisson distribution is M-det, we use Carleman’s condition.

Carleman’s Condition. Let ν be a measure on R≥0 such that all moments mn :=
∫∞

0 xndν(x)
are finite. Then ν is M-det if

∞∑
n=1

m
− 1

2n
n =∞.

An easy computation shows that this condition is satisfied if ν is a Poisson measure with
parameter λ > 0 (and if λ = 0, uniqueness is trivial). It turns out however that if the moment
generating function of a measure exists, then Carleman’s Condition is automatically satisfied.
Since this is the case for a Poisson measure, we are done.

A.2 The Dynkin martingale

In this section we will introduce the notions of a martingale and its quadratic variation and
prove that for a given Markov process there exists a corresponding martingale, which is called
the Dynkin martingale. Next we will show that this martingale is square integrable and that
there exists a simple formula for its quadratic variation.

A.2.1 Quadratic variation of martingales

Definition A.1. A continuous stochastic process M = {Mt, t ≥ 0} on (Ω,F ,P) is called
a martingale with respect to a filtration {Ft, t ≥ 0} if it is an Ft-adapted process in
L1(Ω,F ,P) such that the so-called martingale property is satisfied, i.e., for all 0 ≤ s ≤ t we
have the following:

E[Mt|Fs] = Ms

The main idea of a martingale is that it has a constant expectation and that the best
prediction for the future at any given point in time is the present state. Before we can define
the quadratic variation, we need the following norm on partitions of intervals.

Definition A.2. Let P = {t0, t1, ..., tn} be a partition of the interval [0, t] such that we have
0 = t0 < t1 < ... < tn = t. The mesh size of such a partition is a norm || · ||m that is defined
as follows

||P ||m = max
1≤k≤n

|tk − tk−1|.

While the quadratic variation can be defined for any real-valued stochastic process, we
will only give its definition for continuous martingales.

Definition A.3. Let M be a continuous real-valued martingale on (Ω,F ,P), then the
quadratic variation of M is a stochastic process 〈M〉 = {〈M〉t , t ≥ 0} defined by the following
convergence in probability

〈M〉t := lim
||P ||m→0

n∑
k=1

(Xtk −Xtk−1
)2,
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Theorem A.4. Let M be a continuous real-valued martingale on (Ω,F ,P) such that every
Mt ∈ L2(Ω,F ,P) for all t ≥ 0 and M0 = 0, then the quadratic variation 〈M〉 is the a.s-
unique predictable process starting at zero such that M2 − 〈M〉 is a martingale.

Proof. The proof can be found in [26, Proposition 3.8].

A.2.2 The Dynkin martingale

Theorem A.5. Let X = {Xt, t ≥ 0} be an Ft-adapted Markov process on (Ω,F ,P), gener-
ated by L. Then for any f ∈ D(L), the process M defined as

Mt := f(Xt)− f(X0)−
∫ t

0
Lf(Xs)ds

is a real-valued martingale on (Ω,F ,P) with respect to the filtration {Ft, t ≥ 0}.

Proof. The adaptiveness of the process follows from the fact that Xt is Ft-adapted. To see
that Mt is in L1(Ω,F ,P), we have that

E[|Mt|] ≤ 2||f ||∞ + t||Lf ||∞ <∞.

So all we have to show is the martingale property. Let 0 ≤ s ≤ t, then

E[Mt −Ms|Fs] = E
[
f(Xt)− f(Xs)−

∫ t

s
Lf(Xr)dr

∣∣Fs

]
= E [f(Xt)|Fs]− E[f(Xs)|Fs]−

∫ t−s

0
E [Lf(Xr+s)|Fs] dr,

where we have used Fubini in the last equality. Now since {Xt, t ≥ 0} is a Markov process
with respect to the filtration {Ft, t ≥ 0} the expectation given the whole past Fs is equal
to the expectation given Xs, i.e.,

E[Mt −Ms|Fs] = E [f(Xt)|Xs]− E[f(Xs)|Xs]−
∫ t−s

0
E [Lf(Xr+s)|Xs] dr

= St−sf(Xs)− f(Xs)−
∫ t−s

0
SrLf(Xs)dr.

By the Hille-Yosida theorem, we then have that∫ t−s

0
SrLf(Xs)dr =

∫ t−s

0

∂

∂r
Srf(Xs)dr = St−sf(Xs)− f(Xs).

Hence we indeed find that
E[Mt −Ms|Fs] = 0,

therefore M is a martingale with respect to {Ft, t ≥ 0}.

The martingale we have introduced in this theorem is called the Dynkin martingale. If
we make some further assumptions on the generator L, we get a formula for the quadratic
variation of this process.

Theorem A.6. If L is the generator of the Markov process X such that f ∈ D(L) implies
that f2 ∈ D(L), and take f ∈ D(L), then the quadratic variation of the Dynkin martingale
is given by

〈M〉t =

∫ t

0

[
Lf2(Xs)− 2f(Xs)Lf(Xs)

]
ds.
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Proof. Set the stochastic process A as the process in the theorem, i.e.,

At :=

∫ t

0

[
Lf2(Xs)− 2f(Xs)Lf(Xs)

]
ds.

Since At is an integral from 0 to t of a uniformly bounded function of Xs, we have that
A0 = 0 and that the process A is Ft-adapted and left-continuous, hence predictable. The
process M2 is given by

M2
t = f(Xt)

2 − 2f(Xt)

∫ t

0
Lf(Xs)ds+

(∫ t

0
Lf(Xs)ds

)2

− f(X0)Mt. (A.3)

We then have that

E
[
|M2

t |
]
≤ ||f ||2∞ + 2t||f ||∞||Lf ||∞ + t||Lf ||2∞ + ||f ||∞E[|Mt|] <∞,

so Mt ∈ L2(Ω,F ,P) for all t ≥ 0. Therefore by Theorem A.4, all we have to show is that
M2 −A is a martingale. Notice that from A.3 we can write

M2
t = f2(Xt)− 2Mt

∫ t

0
Lf(Xs)ds−

(∫ t

0
Lf(Xs)ds

)2

− f(X0)Mt. (A.4)

We now use the fact that

2Mt

∫ t

0
Lf(Xs)ds+

(∫ t

0
Lf(Xs)ds

)2

=

∫ t

0
d

(
2Mr

∫ r

0
Lf(Xs)ds+

(∫ r

0
Lf(Xs)ds

)2
)
.

By the product and chain rule, we have that

d

(
2Mr

∫ r

0
Lf(Xs)ds+

(∫ r

0
Lf(Xs)ds

)2
)

= 2

∫ r

0
Lf(Xs)dsdMr + 2Lf(Xr)Mrdr + 2Lf(Xr)

∫ r

0
Lf(Xs)dsdr,

so we find that

2Mt

∫ t

0
Lf(Xs)ds+

(∫ t

0
Lf(Xs)ds

)2

= 2

∫ t

0

∫ r

0
Lf(Xs)dsdMr +

∫ t

0
2Lf(Xr)

(
Mr +

∫ r

0
Lf(Xs)ds

)
dr

= 2

∫ t

0

∫ r

0
Lf(Xs)dsdMr +

∫ t

0
2f(Xs)Lf(Xs)ds

Filling this back into A.4 gives us

M2
t = f2(Xt)− 2

∫ t

0

∫ r

0
Lf(Xs)dsdMr −

∫ t

0
2f(Xs)Lf(Xs)ds− f(X0)Mt

= f2(Xt)−
∫ t

0
Lf2(Xs)ds− 2

∫ t

0

∫ r

0
Lf(Xs)dsdMr +

∫ t

0
Lf2(Xs)− 2f(Xs)Lf(Xs)ds− f(X0)Mt,

where the third term is equal to At, i.e.,

M2
t −At = f2(Xt)−

∫ t

0
Lf2(Xs)ds− 2

∫ t

0

∫ r

0
Lf(Xs)dsdMr − f(X0)Mt.

Notice how the first two terms are the Dynkin martingale corresponding to the function
f2 ∈ D(L). Furthermore, the term f(X0)Mt is a martingale and the stochastic integral∫ t

0

∫ r
0 Lf(Xs)dsdMr is also a martingale, therefore M2

t − At is a sum of martingales, which
is again a martingale.
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A.3 Path-space tightness

Here we will define the notion of tightness, and we will ultimately give a characterization of
a tight sequence of probability measures on path-spaces. Throughout this section, we will
assume (Y, d) to be a complete, seperable metric space.

A.3.1 Tightness of probability measures

We define P(Y ) as the space of Borel probability measures on Y . We equip P(Y ) with the
so-called Prokhorov metric, defined by

r(µ, ν) = inf
{
ε > 0 : ν(K) ≤ µ(K(ε)) + ε for very closed K ⊂ Y

}
,

where K(ε) is the ε-neighborhood of F , i.e.,

K(ε) := {x ∈ Y : d(x, y) < ε for some y ∈ K}.

We have that a sequence of probability measures {µn : n ∈ N} converges in this metric to a
distribution µ if and only if it converges weakly, i.e., for all f ∈ Cb(Y )∫

fdµn →
∫
fdµ.

We shall write this as µn
w−→ µ

Definition A.4. A set U ⊂ P(Y ) is called tight if for every ε > 0 there exists a compact
set K ⊂ Y such that for all µ ∈ U we have that µ(K) ≥ 1− ε.

By the fact that (Y, d) is a complete and seperable metric space, we get that (P(Y ), r) is
one as well. That means that we get the following theorem as an application of Prokhorov’s
Theorem.

Theorem A.7. If (P(Y ), r) is a complete and seperable, then a collection U ⊂ P(Y ) is
tight if and only if the closure of U is compact in (P(Y ), r).

Proof. The proof can be found in [3, section 5]

From this theorem we find that if we have a sequence of probability measures {µn : n ∈ N}
that is tight, then there exists a subsequence that {µnk : k ∈ N} such that µnk

w−→ µ for some
µ ∈P(Y ).

A.3.2 Path spaces and the Skorokhod topology

We define the set DY as the following:

DY = {α : [0,∞)→ Y
∣∣ ω is right-continuous and has left-limits}.

We see DY as a path space of stochastic processes taking values in Y . We also refer to the
α ∈ DY as being càdlàg, which comes from the french “continue à droite, limite à gauche”
(translation: “continuous on the right, limit on the left”).

The space DY is metrizable in the following way. First we assume without loss of gener-
ality that the metric d on Y satisfies that d(x, y) ≤ 1 for all x, y ∈ Y (otherwise we can take
the metric d ∧ 1). If we define Λ as the collection of strictly increasing, bijective Lipschitz
functions λ : [0,∞)→ [0,∞) satisfying

θ(λ) := sup
0≤s<t

∣∣∣∣log

(
λ(t)− λ(s)

t− s

)∣∣∣∣ <∞, (A.5)
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and for α, β ∈ DY , λ ∈ Λ and 0 < u <∞ we set

sY (α, β, λ, u) = sup
t≥0

d
(
α(t ∧ u), β(λ(t) ∧ u)

)
,

then we can define the following metric on DY :

sY (α, β) = inf
λ∈Λ

{
θ(λ) ∧

∫ ∞
0

e−us(α, β, λ, u)du

}
. (A.6)

This metric is called the Skorokhod distance between two paths α and β, and it was introduced
by P. Billingsly [3]. It is named this way since it induces the Skorokhod topology, which was
introduced by A.V. Skorokhod [24] in order to study the convergence in distribution of
stochastic jump-processes, e.g. continuous-time Markov chains.

Convergence under this metric can be characterized by the following lemma.

Lemma A.8. Let {αn, n ∈ N} ⊂ DY and α ∈ DY , then sY (αn, α) → 0 if and only if there
exists a sequence {λn, n ∈ N} ⊂ Λ such that γ(λn)→ 0 and

sup
0≤t≤T

d
(
αn(λn(t)), α(t)

)
→ 0

for all T > 0.

Proof. The proof can be found in [23, Lemma A.2].

Again by the fact that (Y, d) is a complete, seperable metric space, we find that (DY , s) is
one as well, therefore we are able to apply Theorem A.7 for the metric space (P(DY ), r). The
following theorem then gives us a characterization of tight sequences of probability measures
on P(DY ).

Theorem A.9. The sequence of probability measures {Qn : n ∈ N} ⊂P(DY ) is tight if and
only if the following two conditions are satisfied:

1. For every ε > 0 and t ≥ 0 there exists a compact set K ⊂ Y such that

lim inf
n→∞

Qn{α ∈ DY : ζ(t) ∈ K} ≥ 1− ε.

2. For every ε > 0 and 0 < T <∞ there exists a δ > 0 such that

lim sup
n→∞

Qn{α ∈ DY : ω′(ζ, δ, T ) ≥ ε} ≤ ε,

where

ω′(α, δ, T ) = inf
P

sup
{
d
(
α(s), α(t)

)
: s, t ∈ [ti−1, ti) for some i

}
with P = {t0, t1, ..., tn} ranging over all the partitions with 0 = t1 < ... < tn−1 < T ≤ tn
and mini |ti − ti−1| > δ.

Proof. The proof can be found in [10, Corollary 7.4]

Instead of working with ω′, in our proof tightness proof in Section 5.4 we work with the
simpler function

ω(α, δ, T ) := sup{d
(
α(s), α(t)

)
: s, t ∈ [0, T ], |t− s| < δ}, (A.7)

which has the following useful property
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Lemma A.10. If δ ≤ 1
2 then we have the following inequalities:

ω′(α, δ, T ) ≤ ω(α, 2δ, T + 2δ) ≤ ω(α, 2δ, T + 1).

Proof. Let k =
⌈
T
2δ

⌉
, then we have that T ≤ k · 2δ ≤ T + 2δ. Now, the following partition

P = {ti = i · 2δ : 1 ≤ i ≤ k},

satisfies the requirements of Theorem A.9. But clearly for this partition we have

sup
{
d
(
α(s), α(t)

)
: s, t ∈ [ti−1, ti) for some i

}
≤ sup

{
d
(
α(s), α(t)

)
: s, t ∈ [0, T+2δ], |t−s| < δ

}
,

so we find that

ω′(α, δ, T ) ≤ ω(α, 2δ, T + 2δ).

The second inequality of the lemma follows from the fact that ω(α, δ, T ) is an increasing
function of T .

A.3.3 Portmanteau Theorem

If we have weak convergence µn
w−→ µ of some sequence of probability measures, then the

Portmanteau Theorem gives us a number of useful properties of these measures

Theorem A.11. Let {µn, n ∈ N} ⊂P(Y ) and µ ∈P(Y ), then the following are equivalent:

1. µn
w−→ µ,

2.
∫
fdµn →

∫
fdµ for all bounded, uniformly continuous f ,

3. lim supn→∞ µn(K) ≤ µ(K) for all closed K ⊂ Y ,

4. lim infn→∞ µn(O) ≥ µ(O) for all closed O ⊂ Y ,

5. limn→∞ µn(A) = µ(A) for all µ-continuity sets A ⊂ Y .

Here a set A ⊂ Y is called a µ-continuity set if µ(∂A) = 0.

Proof. The proof can be found in [3, Theorem 2.1].

A.4 Borel measures on R and vague convergence

We denote M as the set of Borel measures on R, i.e., the set of [0,∞]-valued measures µ on
the Borel sets B(R) with the property that µ(B) < ∞ for any bounded Borel set B. We
can induce this metric with the following metric:

dM(µ, ν) :=

∞∑
j=1

2−j
(

1 ∧
∣∣∣∣∫ φjdµ−

∫
φjdν

∣∣∣∣) , (A.8)

with {φj , j ≥ 1} a certain sequence of test functions, i.e., φj ∈ C∞c (R) (for more information,
see [23, section A.10]).

Proposition A.12. (M, dM) is a complete, seperable metric space

Proof. The proof can be found in [23, Proposition A.26].
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Convergence with respect to this metric comes down to the following: Let {µn, n ∈ N}
be a sequence of Borel measures, then dM(µn, µ)→ 0 as n→∞ for some µ ∈M if and only
if for all φ ∈ C∞c (R) we have ∫

φdµn →
∫
φdµ.

A proof of this can be found in [23, Lemma A.24]. This type of convergence is called vague
convergence.

If we have vague convergence of the Borel measures µn, we have the following proposition
that will help us bound

∫
φdµn for n big enough

Proposition A.13. Suppose that dM(µn, µ) → 0. For any test function φ ∈ C∞c (R), there
exists and m = m(φ) and another test fuction φm ∈ C∞c (R) such that for any n ∈ N with
dM(µn, µ) < 2−m ∣∣∣∣∫ φdµn

∣∣∣∣ ≤ ||φ||∞ · (∫ φmdµ+ 2mdM(µn, µ)

)
A.4.1 Relative Compactness

Definition A.5. In a metric space (Y, d), we say that a set V ⊂ Y is relatively compact if
its closure V is compact.

In the metric space (M, dM) we have a very useful characterization for relative compact-
ness of a set.

Theorem A.14. A set V ∈ M is relatively compact if and only if for all compact sets
K ∈ B(R) we have that

sup
µ∈V

µ(K) <∞.

Proof. The proof can be found in [23, Proposition A.25].
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