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S U M M A R Y
3-D controlled-source electromagnetic data are often computed directly in the domain of
interest, either in the frequency domain or in the time domain. Computing it in one domain
and transforming it via a Fourier transform to the other domain is a viable alternative. It
requires the evaluation of many responses in the computational domain if standard Fourier
transforms are used. This can make it prohibitively expensive if the kernel is time-consuming
as is the case in 3-D electromagnetic modelling. The speed of modelling obtained through such
a transform is defined by three key points: solver, method and implementation of the Fourier
transform, and gridding. The faster the solver, the faster modelling will be. It is important that
the solver is robust over a wide range of values (frequencies or times). The method should
require as few kernel evaluations as possible while remaining robust. As the frequency and
time ranges span many orders of magnitude, the required values are ideally equally spaced
on a logarithmic scale. The proposed fast method uses either the digital linear filter method
or the logarithmic fast Fourier transform together with a careful selection of evaluation points
and interpolation. In frequency-to-time domain tests this methodology requires typically 15–
20 frequencies to cover a wide range of offsets. The gridding should be frequency- or time-
dependent, which is accomplished by making it a function of skin depth. Optimizing for the
least number of required cells should be combined with optimizing for computational speed.
Looking carefully at these points resulted in much smaller computation times with speedup
factors of ten or more over previous methods. A computation in one domain followed by
transformation can therefore be an alternative to computation in the other domain domain if
the required evaluation points and the corresponding grids are carefully chosen.

Key words: Controlled source electromagnetics (CSEM); Fourier analysis; Numerical mod-
elling.

1 I N T RO D U C T I O N

The controlled-source electromagnetic (CSEM) method is one of
the common non-seismic tools in exploration geophysics, not only
in hydrocarbon exploration (Constable 2010), but also in the search
for sulfides (Gehrmann et al. 2019), water (Pedersen et al. 2005),
geothermal sources (Girard et al. 2015) or for geological purposes
(Johansen et al. 2019). While current sources with a few frequencies
are used in the deep marine environment, transient measurements
are more common in the shallow marine environment and on land
(e.g. Andréis & MacGregor 2007; Avdeeva et al. 2007; Ziolkowski
et al. 2007). One of the main reasons is the dominance of the air-
wave in shallow marine and terrestrial measurements, which can
be better separated in the time domain. CSEM is usually divided
into frequency- and time-domain methods, depending on whether
the source signal is a continuous waveform, such as a sine, or a

finite waveform, such as a pseudo-random binary sequence (PRBS).
A numerical comparison of the two methods is given by Connell
& Key (2013). Acquired CSEM data are subsequently often anal-
ysed (modelled and inverted for) in their respective domain, either
the frequency or time domain. Modellers of layered media usu-
ally exploit the horizontal shift-invariance by computing the re-
sponses in the wavenumber-frequency domain followed by a 2-D
inverse spatial Fourier transform, also called Hankel transform, to
the space-frequency domain, and a regular inverse Fourier trans-
form if time-domain data are required (e.g. Hunziker et al. 2015).
CSEM codes for arbitrary 2-D and 3-D computations, on the other
hand, often compute their responses directly in the required domain,
either frequency or time.

Electromagnetic methods in geophysics span a wide range
of model scenarios and acquisition layouts, each with its own
modelling-related implications. A well-known example is the
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aforementioned land or shallow marine case versus the deep ma-
rine case, where in the former case a dominating airwave has to be
accurately modelled, whereas it can be completely ignored in the
latter case. Recent areas of particular interest in time-domain mod-
elling that pose numerical challenges are, for instance, simulating
the fields through steel-cased wells (Heagy & Oldenburg 2019) or
the effects of induced polarization (Kang et al. 2020). The former
is challenging because of the high conductivity contrasts requiring
very detailed meshing, the latter is challenging for time-domain
modelling because the models are frequency dependent.

Under certain conditions it can be a viable alternative to model
time-domain data with a frequency-domain code, as shown by Mul-
der et al. (2008). They compared the computational complexity of
different time-domain methods with the computational complexity
of frequency-domain computation followed by a Fourier transform:
explicit time-stepping schemes (Du Fort-Frankel method as used in,
e.g. Commer & Newman 2004; Maaø 2007) and implicit schemes
(e.g. Haber et al. 2004; Um et al. 2010) have a complexity of O(n4),
matrix exponentials and Lanczos reduction schemes (e.g. Druskin
& Knizhnerman 1994) have a complexity of O(n4

√
log n), and

Fourier transforms of frequency-domain solutions have a complex-
ity O(nfn3); n is the number of gridpoints in each direction, and nf

the number of frequencies. Their conclusion was that the Fourier
transform method can be favourable if the number of required fre-
quencies is small relative to the number of gridpoints in each co-
ordinate. The conditions for fast computation of time-domain data
with a frequency-domain code are: a sufficiently powerful solver,
appropriate frequency selection and interpolation, and an automated
gridding, for which they used the multifrequency CSEM approach
presented by Plessix et al. (2007). We build upon these results but
improve the run time from hours to minutes. The main reasons for
this significant speed-up are the further reduction of required fre-
quencies by introducing lower and upper thresholds of numerically
important frequencies, an adaptive, frequency-dependent gridding
scheme that minimizes the required cells in each dimension, and
a logarithmic Fourier transform such as digital linear filters (DLF,
Ghosh 1971) or the logarithmic fast Fourier transform (FFTLog,
Hamilton 2000) to go from the frequency to the time domain. The
latter makes it also possible to only use the imaginary part of the
frequency-domain response, which has advantages when it comes
to interpolation.

In the next section, we briefly review the methodology as in-
troduced by Plessix et al. (2007) and Mulder et al. (2008) and
highlight their advantages and shortcomings. This is followed by an
outline of the methodology, our changes to the Fourier transform
and the adaptive gridding. Finally, we demonstrate the efficiency
of the approach with some numerical results. These comprise in
a homogeneous space, a layered model, a model which includes
dispersive media (induced polarization), and a 3-D model.

2 M O T I VAT I O N

Being able to model CSEM data both in the frequency domain and
in the time domain can be desirable, as both domains have advan-
tages and disadvantages. One way to achieve this is to implement
Maxwell’s equations in both domains as is done, for instance, in
SimPEG (Cockett et al. 2015) or in custEM (Rochlitz et al. 2021).
Another approach is to have Maxwell’s equations only implemented
in one domain, and use Fourier transforms to go to the other. How-
ever, this approach can be costly, as many frequencies over a wide
range are required to go from the frequency domain to the time

domain, or many times over a wide range for the opposite direc-
tion. We present a methodology which significantly reduces the
amount and range of the required frequencies through a combina-
tion of extrapolation, interpolation, and setting the responses for
high frequencies to zero. This translates into a significant reduction
in computation time. The number of required frequencies is not
the only important point for reducing computation time. Another
important aspect is the computation grid, as the required grids for
low frequencies (in our case in the order of 0.001 Hz) and high
frequencies (around 100 Hz) are hugely different. Low frequencies
can be computed on a coarser grid, but they require a much larger
domain in order to avoid boundary effects. High frequencies, on the
other hand, require denser gridding, but they are much more limited
in reach. An adaptive gridding scheme is therefore required, which
is naturally based on the skin depth, the distance after which the
amplitude of the electromagnetic field has decayed by 1/e ≈ 37 %.
The skin depth δ is a function of conductivity and frequency, and for
the diffusive approximation of Maxwell’s equations in an isotropic,
homogeneous medium is given by (e.g. Ward & Hohmann 1988)

δ =
√

2

ωμσ
≈ 503.3/

√
f σ , (1)

where σ is conductivity ( S/m), ω = 2π f is angular frequency of
frequency f (Hz) and μ is magnetic permeability ( H/m). The ap-
proximation is obtained by using the free-space value of magnetic
permeability, μ0 = 4π × 10−7 H/m.

We build our approach upon Plessix et al. (2007), who presented
such an adaptive gridding for multifrequency (and multisource)
CSEM modelling. They define the minimum cell width �min as a
fraction of the minimum skin depth δmin, where δmin should be two
to three times bigger than �min. The cells have to be smallest around
the source; in the marine case, the minimum skin depth is therefore
defined by the conductivity of seawater. However, this can yield
quite large cells for low frequencies, so special care has to be taken
around the source by defining a maximum allowed �min. The grid
dimension, on the other hand, is defined as a function of skin depth
for the average conductivity of the background, δave. They use four
times δave for the x-, y- and downward z-directions, and a fixed 50 km
for the upward z-direction to account for the airwave. To reduce the
number of cells, it is desirable to introduce stretching, at least in
the buffer zone outside of the area where source and receivers are
located.

Mulder et al. (2008) provide a computational complexity analy-
sis of various methods to model transient electromagnetic responses
directly in the time domain, and compare it to the computation of
transient EM responses in the frequency domain with a subsequent
Fourier transform. They conclude the review by stating “Although
it remains to be seen which of the four methods requires the least
computer time for a given accuracy, the frequency-domain approach
appears to be attractive.” Their approach is to minimize the com-
putation time by having, in addition to the just introduced adap-
tive gridding, an adaptive frequency selection scheme. This scheme
starts with computing the responses for a set of just five frequen-
cies, regularly sampled on a log-scale, from minimum to maximum
required frequency. All the other frequencies are interpolated with
a shape-preserving piecewise-cubic Hermite interpolation (PCHIP,
Fritsch & Carlson 1980). Testing the stability of the obtained re-
sponse by removing a single frequency-value at a time their scheme
decides if more frequencies in-between the already computed ones
are required. In this way frequencies are only added if required,
hence if certain criteria of response stability are not met. While this
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1338 D. Werthmüller, W.A. Mulder and E.C. Slob

method is good and effective for a single offset, it loses all its ad-
vantages if one tries to compute different offsets within one compu-
tation, as each offset requires a different set of adaptive frequencies.
Additionally, it hampers the parallelization over frequencies.

We present improvements to both the adaptive gridding and the
transform from frequency domain to time domain using the finite-
integration technique (Weiland 1977), which makes time-domain
modelling with a frequency-domain code viable in comparison with
time-domain codes. It is important to note that our ideas can be used
with any solver and is not bound to one or another frequency- or
time-domain solver. The ideas for the frequency selection can be
applied to time selection, and time-dependent, adaptive gridding
exists as well (e.g. Commer & Newman 2006). Our recommenda-
tions for speeding up the Fourier transform for expensive kernels
are independent of spatial complexity, as diffusive EM responses
are smooth functions of both frequency and time. However, the in-
trinsic requirement is an accurate solver over a sufficient wide range
of frequencies or times.

3 M E T H O D O L O G Y

The requirement for any transform is a robust solver of suffi-
cient accuracy over a wide range of frequencies. We use for the
numerical computations the open-source (Apache License 2.0)
codes empymod (Werthmüller 2017) and emg3d (Werthmüller et al.
2019b). The former computes semi-analytical responses of layered
models, the latter is a 3-D multigrid solver based on Mulder (2006),
which can be used as a pre-conditioner for Krylov subspace solvers
or as a solver on its own. The multigrid approach works fine for the
diffusive approximation of Maxwell’s equations, which assumes
that ωε � σ , where ε is electric permittivity ( F/m). The remain-
ing system to solve in the frequency domain is then given by the
second-order differential equation of the electric field,

iωσE + ∇ × μ−1∇ × E = −iωJs , (2)

where E is the electric field ( V/m) and Js the current source ( A/m
2); time dependence is exp (iωt). The standard multigrid approach
fails for severe stretching or strong anisotropy, for which known im-
provements such as line-relaxation and semicoarsening (Jönsthövel
et al. 2006) are implemented, with a non-standard Cholesky decom-
position to speed up the computation (Mulder et al. 2008). One of
the big advantages of the multigrid method is that it scales linearly
(optimal) with the grid size in both CPU and RAM usage (Mulder
2020). This makes it feasible to run even big models on standard
computers, without the need for big clusters. All examples in this
article are run on a laptop with an i7-6600U CPU @ 2.6 GHz (×4)
and 16 GB of memory, using Ubuntu 20.04 and Python 3.8. They
were run using a single thread, but parallelization over frequencies
is straight forward, as the computations are independent.

Note that while we use these two algorithms for the numerical
examples, any solver that provides sufficiently accurate frequency-
domain responses could be used.

3.1 Frequency selection

An important factor in terms of speed and accuracy for time-domain
responses obtained from frequency-domain computations is the se-
lection of the required frequencies. The fewer frequencies required,
the quicker we obtain the time-domain result. This is true in gen-
eral but applies in particular to expensive kernels such as is the
case in 3-D modelling, where the computation of the response of

a single frequency takes much longer than the transformation it-
self. The same applies for the reverse operation, the fewer times
required, the quicker we obtain frequency-domain results. Even
though we limit our analysis here to frequency-to-time transforma-
tions, most of the arguments are reversible and applicable to time-
to-frequency transformations. We decided to use a regular spacing
of frequencies on a log-scale, rather than an adaptive scheme. This
approach is favourable if a wide range of offsets is needed, as the
required frequencies change with offset and an adaptive frequency
selection is therefore often tailored to a single offset or a limited
range of offsets. Also, it allows for straightforward parallelization
over frequencies, which is not completely possible with an adaptive
scheme.

For the actual transform we use either the digital linear filter
(DLF) method or the logarithmic fast Fourier transform (FFTLog).
The DLF method was introduced to geophysics by Ghosh (1971),
and is arguably the most common method in EM geophysics for both
its simplicity and its speed. It is implemented for the Hankel and
Fourier transforms in most EM modelling codes (e.g. Key 2009). A
simple tool to design digital linear filters was recently presented by
Werthmüller et al. (2019a), together with a comprehensive overview
of the history and development of DLF in geophysics. FFTLog, in-
troduced by Hamilton (2000), is another transform algorithm which
proved to be powerful for the frequency-to-time domain transfor-
mation of EM responses (e.g. Werthmüller et al. 2014). In our
tests they are both about equal in speed and accuracy. DLF re-
quires a wider range and many more frequencies than the FFTLog.
Both methods share some important characteristics in comparison
with the standard FFT: the required input frequencies are equally
spaced on a logarithmic scale (natural logarithm in the case of the
DLF and decimal logarithm in the case of the FFTLog), and they
only require either the real or the imaginary part of the frequency-
domain response. We can take advantage of that by using only the
imaginary part of the frequency-domain response. The imaginary
part goes to zero when the frequency goes either to zero or to
infinity, with the advantage that knowing the endpoints makes it
possible to convert the extrapolation of missing frequencies into an
interpolation.

Any Fourier transform needs a certain range of frequencies to
obtain time-domain results. Our approach is not to minimize the
required frequencies for the transform, but to minimize the number
of frequencies for which we actually have to compute responses.
We do this in three zones: above an upper threshold fmax, we set the
frequency-domain response to zero. Below a lower threshold fmin,
we extrapolate the frequency-domain response. As we know that
the imaginary response goes towards zero for zero frequency, we
can turn it into an interpolation, for which we use PCHIP. And in-
between the thresholds, we use cubic spline interpolation in order
to only have to actually compute a few distinct frequencies per
decade (n f

dec). Using this approach, we found that computing the
responses for 15–25 frequencies is usually good enough to obtain
time-domain responses for a large range of offsets; even though the
actual transform might need up to hundreds of frequencies.

The required frequencies depend naturally on the conductivities
and on the chosen acquisition type and layout. A trial-and-error
approach with a 3-D code is very time-intensive. However, a sim-
plified, layered model for the required survey setup and a fast 1-D
modeller makes it possible to estimate these parameters easily. An
example of this is shown in Fig. 1. It shows the responses for a
marine scenario with 1 km water depth of resistivity ρ = 0.3 	 m
(ρ = σ−1) and a 100-m-thick target of 100 	 m at 1 km below the
seafloor in a background of 1 	 m . The source is 50 m above the
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Transforming expensive EM kernels 1339

Figure 1. Example frequency selection for a simple layered model (the shown model parameters are described in the text). This example shows the impulse
response at an offset of 5 km, for which it uses FFTLog from 0.001 to 10 Hz with five frequencies per decade.

seafloor, the receiver is on the seafloor, and the response is the
inline x-directed E-field. The left-hand subplot shows the imag-
inary part in the frequency domain and the right-hand subplot
the corresponding impulse response in the time domain. The red
lines are the semi-analytical responses. The blue circles indicate
the actually computed responses and the black dots the frequencies
which are interpolated or set to zero. The resulting time-domain
response has a relative error of <1 % everywhere except for very
early times.

Fig. 2(a) shows exactly the same on a linear scale for the time
and amplitude axes. It can be seen that with the chosen, computed
frequencies (blue dots) the time-domain response starts to divert
above about 100 s and below 0.3 s. It also shows the oscillating
high-frequency part, which is hard to interpolate and we therefore
set it to zero. Fig. 2(b) is the same as Fig. 2(a), but transformed with
the DLF method applying the 81-point sine-cosine filter from Key
(2009). The same frequencies were computed as in the FFTLog case
and the missing ones interpolated. The error of the corresponding
time-domain response is comparable, so either FFTLog or DLF
can be used. In the above example we used 20 frequencies, but
that many would not be required for the shown offset of 5 km, a
few of the lower and higher frequencies could be left out. With
this frequency-selection, however, we can model a wide range of
offsets. This is shown in Fig. 3, where the same kernels were used
to yield the responses at offsets r = 1.5, 3, 6 and 12 km. We only
need to compute 50 % of the required frequencies in the case of the
FFTLog, and only 14 % in the case of the DLF.

The shortest offset defines the highest required frequency, and the
largest offset the lowest required frequency. So the more one can
restrict the necessary offset range, the fewer frequencies are needed.
Another important factor is how to interpolate and extrapolate from
the computed frequencies to the frequencies required for the Fourier
transform. For the FFTLog only extrapolation for higher and lower
frequencies is required. The EM response becomes highly oscilla-
tory for high frequencies, which makes it very hard to extrapolate
the response to frequencies f > fmax. However, if fmax is chosen
judiciously, the importance of higher frequencies for the Fourier
transform can be neglected and we can set those responses to zero.
The extrapolation of frequencies f < fmin can be changed to an inter-
polation by assuming a zero imaginary response at zero frequency,
and we then use PCHIP to interpolate the missing frequencies (as

we work on a logarithmic scale we cannot choose 0 Hz nor 0 V/m,
but instead take 10 −100 Hz and 10−100 V/m). In the case of the DLF
method we also have to interpolate in between the computed fre-
quencies, for which we found it better to use a cubic spline. As can
be seen by comparing Fig. 2(a) with Fig. 2(b), using the FFTLog
or the DLF with the same actually computed frequencies results in
very similar responses.

The changes to the Fourier transform in comparison with Mul-
der et al. (2008) can be summarized in three points: (1) regular
log-scale spacing for the frequency selection; (2) DLF or FFT-
Log instead of FFT and (3) using only the imaginary part of the
frequency-domain response. The actual speed of the transform is
unimportant, as the computation of the frequency-domain responses
takes much longer than the transform itself. What matters is solely
how many frequencies are required by it to achieve the desired pre-
cision, and how long it takes to compute the responses for these
frequencies.

3.2 Gridding

The proposed Fourier transform requires a robust solver that can
compute accurate results over a wide range of frequencies (times) to
obtain time-domain (frequency-domain) responses. In our case the
solver uses a regular, stretched grid and computes the electric fields
in the frequency domain. This setup is the target of the following
gridding recommendations. Whilst they will look differently for
other mesh types or a time-domain code, some conclusions will
still hold.

The computation grid consists of a core or survey domain Ds

that should contain all source and receiver positions. The survey
domain usually has no or a very small cell stretching factor αs. The
minimum cell width is defined as

�min = δ( f, σsrc)/nδ , (3)

where σ src is the conductivity of the media in which the source
resides, and nδ is a positive number that defines how many cells
there should be per skin depth. The actual computational domain
Dc is usually much bigger than Ds in order to avoid artefacts from
the boundary condition. It can also have a much higher stretching
factor αc. In the presented examples we have chosen Dc such that
the distance for the signal diffusing from the source to the boundary
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(a) (b)

Figure 2. (a) Same as Fig. 1, but on a logarithmic scale. (b) Using DLF instead of FFTLog, but computing the same frequency range as for the FFTLog. The
resulting time-domain response has comparable accuracy.

(a) (b)

Figure 3. Normalized (a) frequency- and (b) time-domain responses for offsets r = 1.5, 3, 6 and 12 km using the parameters defined in Fig. 2(a). The coloured
symbols are the actually computed responses, the black dots are the responses which are set to zero (high frequencies) or interpolated (low frequencies). The
grey curves are the analytical responses.

and back to the receiver closest to the boundary is at least two
wavelengths, after which the amplitude of the signal is reduced to a
millionth of its initial strength. The wavelength λ to compute Dc is
given by

λ = 2πδ( f, σave) ≈ 3162/
√

f σave , (4)

where σ ave is the average conductivity, which can vary for different
directions. However, the skin-depth approach fails for air, in which
the EM field propagates as a wave at the speed of light. A largest
computational domain is therefore enforced, defining the maximum
distance from the source to the boundary; this distance is by de-
fault set to 100 km, but this can be reduced in the marine case with
increasing water depth. This also applies to the horizontal dimen-
sions, not only to the upward z-direction, and it equally applies to
very resistive basements, even in deep water. One way to circum-
vent this difficulty is the use of a primary-secondary formulation,
where the primary field, including the air wave, is computed with a
semi-analytical code for layered media. We do not consider this ap-
proach here. Note that grid stretching for complex-valued diffusion
fields is essentially what is done for wave fields with the perfectly

matched layer (PML). PML is an absorbing layer to avoid scatter-
ing from the boundary by letting the field decay to zero, which is
achieved by introducing a complex factor that causes damping. As
electromagnetic diffusion fields are damped fields by themselves, it
suffices to stretch the grid.

In summary, the adaptive gridding takes f, Ds, σ src, σ ave, nδ

and ranges for αs, αc, where we usually fix αs = 1 or keep it at
least below 1.05, and let αc be anything between [1, 1.5]. The
minimum cell width �min can further be restricted by a user-defined
range. Given these inputs, the adaptive gridding will search for
the smallest possible number of cells which fulfils these criteria.
The implemented multigrid method puts some constraints on the
number of cells, of which the adaptive gridding takes care (the
number of cells have to be powers of two multiplied by a low
prime, for example {2, 3, 5} · 2n).

The main difference with Mulder et al. (2008) is that their adap-
tive gridding searches for the optimal stretching factor α fulfilling
certain criteria, for a fixed number of cells. Our adaptive gridding,
on the other hand, searches for the smallest number of cells that still
fulfills the given criteria. The number of cells becomes therefore
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Transforming expensive EM kernels 1341

Table 1. Run times per frequency for the homogeneous space example, with
the corresponding number of cells and minimum cell width as well as the
stretching factor in the computation domain; αs = 1 everywhere.

Frequency Time nx×ny×nz �min αc

(Hz) (s) (m)

20.0 4 80× 24 ×24 20 1.26
12.6 8 96× 32 ×32 20 1.17
7.98 8 96× 32 ×32 20 1.20
5.03 8 96× 32 ×32 20 1.23
3.18 7 80× 32 ×32 24 1.23
2.00 7 80× 32 ×32 30 1.21
1.26 5 64× 32 ×32 37 1.21
0.798 5 64× 32 ×32 40 1.23
0.503 5 64× 32 ×32 40 1.26
0.318 5 64× 32 ×32 40 1.28
0.200 8 64× 40 ×40 40 1.27
0.126 8 64× 40 ×40 40 1.30
0.0798 10 80× 40 ×40 40 1.26
0.0503 11 80× 40 ×40 40 1.28

also a function of frequency. It is important to note that this is our
implementation of an adaptive grid, but there are certainly other pos-
sibilities. The relevant point for fast computations is that the adap-
tive gridding tries to minimize the number of required cells. This
is generally best done in a frequency- and conductivity-dependent
manner. To go from the model grid to the computational grid, we use
the volume-averaging technique on logarithmic resistivities, as used
in Plessix et al. (2007). While this technique ensures that the total
resistivity in the subsurface remains the same, it does not consider
effective-medium theory (Davydycheva et al. 2003), for instance,
the apparent anisotropy from a stack of finely layered formations of
varying resistivity.

4 N U M E R I C A L E X A M P L E S

4.1 Homogeneous space

The first example is the inline electric field from a source at the
origin measured by an inline receiver with an offset of 900 m in
a homogeneous space of 1 	 m . We chose this simple example to
compare it with the analytical solution and with previously pub-
lished results. We used the following values to define the required
frequencies: fmin = 0.05 Hz, fmax = 21 Hz, using FFTLog with
five frequencies per decade. This results in 14 frequencies to com-
pute from 0.05 to 20.0 Hz. The complete frequency range for the
transform, including the frequencies for which we use interpolation,
includes 30 frequencies from 0.0002 to 126.4 Hz. For the adaptive
gridding the following inputs were used: nδ = 12, minimum cell
width must be between 20 and 40 m, and αs = 1, αc = [1, 1.3]. This
yields grids with cell numbers between 46 080 (80 × 24 × 24, for
20.0 Hz) and 128 000 (80 × 40 × 40, for 0.05 Hz) cells. The run
times for each frequency, the corresponding number of cells, mini-
mum cell width, and computation domain stretching factor are listed
in Table 1. The total run time to compute this model was less than
2 min.

Fig. 4(a) shows the frequency-domain result, where the blue dots
are the computed responses and the black dots correspond to the
interpolated values or the values set to zero. Most of the com-
puted values stay below a relative error of 1 %, our chosen adaptive
gridding only starts to generate considerable errors at higher fre-
quencies. Fig. 4(b) shows the corresponding time-domain result,
where the dashed black line is the result obtained by transformation

of the frequency-domain response, on top of the red line which is
the analytical result. The relative error is mostly below 1 %, except
for early times. However, for practical reasons that is more than
enough. Fig. 5 shows the same on a logarithmic scale, with times
up to 10 s. It clearly shows that if later times are required, we would
need to adjust our Fourier transform parameters. Note that for the
gridding we chose nδ = 12, which is very dense. This was neces-
sary because we are relatively close to the source. If the offsets of
interest are larger this factor can be lowered considerably; 3–4 is
often enough.

This model corresponds to the one presented in Table 1 and in
figs 3 and 4 of Mulder et al. (2008). The response here appears to be
more accurate, their reported peak-error is roughly 1 %, whereas we
are below 0.1 % at the peak (there are no error-plots presented, so
visual inspection is all we have). However, the difference in run time
is dramatic. Summing the run times for the different frequencies of
the original figure comes to a total computation time of 3 hr 47 min
12 s; 0.01 Hz was the slowest run with 31 min 19 s, and 2.37 Hz was
the fastest run with 2 min 54 s. Our example, on the other hand, took
less than two minutes in total, where the individual frequencies took
between 4 and 11 s to run.

This massive speed-up has a couple of reasons. Computers have
become more powerful in the last 12 yr, and the codes were run
on different computers. A quick test with the old scripts on our
test machine shows that it would roughly run two to three times
faster, therefore somewhere between 1 and 2 hr. The more im-
portant facts besides different hardware are: (1) we only used 14
frequencies instead of the 26 frequencies between 0.01 and 100 Hz
of the original and (2) our adaptive gridding used significantly less
cells (f-dependent) in comparison to the fixed 2097 152 cells (1283)
used in the original example. We did not see a significant differ-
ence in the speed of the actual codes, where the kernel-algorithm
of the two implementations is the same, but in the original exam-
ple it is implemented in Matlab/C, whereas emg3d is written in
Python/Numba [Numba is a just-in-time compiler for Python code,
Lam et al. (2015)].

4.2 1-D model

The second example is a shallow marine, layered model with 200 m
of seawater (3 S/m) above a half-space of 1 S/m, an embedded target
layer at 2 km depth, 100 m thick, with a conductivity of 0.02 S/m.
The source is located 20 m above the seafloor and the receivers are
on the seafloor. We chose the frequency range such that we can
model offsets from 3 to 7 km, with fmin = 0.007 Hz and fmax = 32
Hz, using FFTLog with five frequencies per decade. This results
in computations for 19 frequencies from 0.008 to 31.8 Hz. The
complete frequency range for the transform includes 35 frequencies
from 2 × 10−5 to 126.4 Hz. For the adaptive gridding, we used
a cell width of 100 m in the core domain and stretching outside
up to a factor 1.5, where the computation domain extends up to
50 km in each direction. This yielded grids between 204 800 (higher
frequencies) and 245 760 (lower frequencies) cells. The run times
for each frequency and their corresponding parameters are listed in
Table 2.

Fig. 6 shows the result for an offset of 5 km, (a) in the frequency
domain and (b) in the time domain. The recovered response with the
3-D code captures the airwave (first peak) and the subsurface (sec-
ond peak) very accurately. At later times the error starts to increase.
We would need to compute a few additional lower frequencies if we
want to improve it. In the frequency-domain plot, it can be seen that
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Figure 4. (a) Frequency- and (b) time-domain results for the homogeneous space model. The red lines are the analytical solutions, the blue circles are the
actually computed responses, the black dots are the interpolated responses and the dashed black line the obtained time-domain response.

Figure 5. Same as in Fig. 4 (b), but on a logarithmic scale. To improve
later times we would have to compute lower frequencies; to improve earlier
times we would have to compute more frequencies per decade to get a better
resolution.

the high frequencies are not computed very accurately, but without
too much influence on the time-domain response. These frequencies
could be left out if an offset of 5 km is the only objective. However,
we also want to retrieve shorter offsets from the same computation,
for which these frequencies are required.

Fig. 7 shows the time-domain responses of the same model for
offsets of 3, 5 and 7 km, all obtained with the same frequency-
domain computations and the same frequencies for the Fourier

Table 2. Run times per frequency for the marine 1-D example, with the
corresponding number of cells and minimum cell width as well as the
stretching factor in the computation domain; αs = 1 everywhere.

Frequency Time nx×ny×nz �min αc

(Hz) (s) (m)

31.8 16 128× 40 ×40 100 1.36
20.0 17 128× 40 ×40 100 1.36
12.6 17 128× 40 ×40 100 1.36
7.98 17 128× 40 ×40 100 1.36
5.03 17 128× 40 ×40 100 1.44
3.18 17 128× 40 ×40 100 1.48
2.00 17 128× 40 ×40 100 1.49
1.26 20 128× 40 ×48 100 1.36
0.798 24 128× 40 ×48 100 1.36
0.503 27 128× 40 ×48 100 1.36
0.318 27 128× 40 ×48 100 1.36
0.200 34 128× 40 ×48 100 1.38
0.126 34 128× 40 ×48 100 1.40
0.0798 37 128× 40 ×48 100 1.41
0.0503 37 128× 40 ×48 100 1.44
0.0318 44 128× 40 ×48 100 1.44
0.0200 44 128× 40 ×48 100 1.47
0.0126 37 128× 40 ×48 100 1.48
0.00798 43 128× 40 ×48 100 1.49

transform. The computation of these frequencies took less than
9 min and it handles any offset between 3 and 7 km. It can be seen
that the chosen frequency selection is sufficient for this offset range;
again, more low frequencies could be added to improve late-time
values.

4.3 Horizontal extent of the computation domain

The skin-depth approach fails for the air layer, as explained in Sec-
tion 3.2. The reason is that the EM field in the air travels at the
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(a) (b)

Figure 6. Electric inline response at an offset of 5 km for a shallow marine, layered scenario. (a) Frequency-domain response, where the blue circles denote
computed responses and the black dots interpolated responses or responses set to zero. (b) Time-domain response.

Figure 7. Time-domain responses for offsets of 3, 5 and 7 km for the same
model as shown in Fig. 6.

speed of light as a wave, and its amplitude is only reduced through
geometrical spreading. On land and in shallow marine scenarios
one has therefore to include a sufficiently large computational do-
main. The default in our scheme is 100 km. The important point
is that this does not only apply to the upward z-direction, but also
to the horizontal directions, as the airwave bounces back horizon-
tally and would continuously emit energy into the subsurface if the
boundaries are not chosen far enough away from the receivers. If
models are computed with very resistive layers or models with

highly resistive basements, this can even apply to deep marine
scenarios.

Fig. 8 shows this effect. It is the same model as in the previous
section; however, for the adaptive gridding in the horizontal direc-
tions, ρave = 1 	 m was used instead of ρave = 10 000 	 m . Having
the boundaries too near in the horizontal directions leads to worse
results for most frequencies and entirely wrong results for high fre-
quencies. Comparison with the 1-D result in the time domain shows
that it is the airwave whose amplitude is heavily overestimated. It
can be difficult to spot these errors in the time-domain result, as
the response looks plausible. Only a comparison with the 1-D re-
sult reveals that it is actually wrong. A possibility to detect such
problems for complicated cases, where there is no semi-analytical
result to compare with, is to carry out a mesh-convergence test by
computing two or more models, moving the boundary. When the
responses stop to change, one can assume that the boundary is far
enough. Another possibility is to look at the amplitudes close to the
boundaries and ensure that they are small enough.

4.4 Induced polarization

The proposed Fourier-transform approach works independently of
spatial complexity, as diffusive electromagnetic fields are smooth
functions of both frequency and time. An interesting test it to see
whether this applies as well for dispersive media where the model
parameters depend on frequency, as is the case in induced polariza-
tion. To test this we use the Cole–Cole model (CCM, Cole & Cole
1941) which, written in terms of conductivities instead of electric
permittivities as by the original authors, is given by

σ (ω) = σ∞ + σ0 − σ∞
1 + (iωτ )c

, (5)
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Figure 8. Same model as used for Fig. 6, but with the horizontal boundaries not far enough. Although the resulting time-domain result looks plausible, the
comparison with the 1-D result shows that it significantly overestimates the amplitude of the airwave.

where σ 0 and σ∞ refer to the low-frequency and high-frequency
conductivity values, respectively, τ is the central relaxation time (s)
and c the CCM exponent describing the broadness of the relaxation
time distribution. Note that this model slightly differs from the one
phrased in terms of resistivities given by Pelton et al. (1978), see,
for example Tarasov & Titov (2013).

Commer et al. (2017) have shown that time-domain IP modelling
can be difficult, particularly for low c-values. Modelling frequency-
dependent models in the frequency domain is, for any given fre-
quency, not different from modelling a non frequency-dependent
model. However, the interesting point is to see how the Fourier trans-
form behaves to obtain time-domain data from frequency-domain
responses. As an example, we modelled the response for a land case
with air above a half-space of 1 S/m. Within the half-space is a dis-
persive, 100-m-thick layer at a depth of 300 m, with σ0 = 1.0 S/m
and σ∞ = 1.25 S/m; τ = 1, and we vary c from 0 (no IP) to 1.0,
0.75, 0.5 and 0.25. The x-directed step-off source and the receiver
at an inline offset of 900 m are placed on the surface. The real and
imaginary frequency-domain responses for this model are shown
in the left-hand column of Fig. 9. It can be seen that the effect of
the IP layer in the frequency domain is that the real part starts to
deviate from the DC value at lower frequencies. The imaginary part
decays slower towards zero when decreasing the frequency, and it
deviates from a power-law function at lower frequencies as well.
This indicates that we need lower frequency content for the Fourier
transform, the smaller c becomes.

For the Fourier transform, we used the 601-point sine-cosine
filter from Key (2009). This is a very long filter, but it seemed to
be by far the best filter for low c-values. However, designing a new
filter particularly for IP problems might be a better approach. The
selected frequency thresholds were chosen at fmin = 10−4 Hz and
fmax = 500 Hz, and within the thresholds we only computed every
6th frequency. Using these values only 27 frequencies have to be

computed, instead of the 747 frequencies required by the actual
transform. To obtain the step-off response we computed the step-on
response and subtracted it from the DC value at 1000 s (without the
need for any additional frequencies).

4.5 3-D model

The last example consists of a resistive 3-D block embedded in the
lower of two half-spaces, as depicted in Fig. 10. The target has resis-
tivity ρtg = 100 	 m , the upper half-space corresponds to seawater
with ρsea = 0.3 	 m , and the lower half-space is the background
with ρbg = 1 	 m . The source is a 100-m-long, x-directed dipole
at the origin, 50 m above the seafloor, and we are using a step-off
source function. The x-directed inline receiver is at an offset of
2 km. The dimension of the target cube is 1.1 × 1.0 × 0.4 km, lo-
cated 300 m below the seafloor in the centre between source and
receiver.

For the comparison, we use the open-source code
SimPEG (Cockett et al. 2015), which is a framework for modelling
and inversion of geophysical data such as gravity, magnetics and
CSEM. It has Maxwell’s equations implemented in both the fre-
quency and time domain. As such we can compare our result com-
puted in the frequency domain followed by a Fourier transform to a
result computed directly in the time domain. A principal difference
between SimPEG and emg3d is that the former has various direct
solvers implemented, whereas the latter is an iterative multigrid
solver. The 3-D model is therefore a rather small example in order to
be able to run it on our test machine, as the memory requirement by
the direct solver would otherwise be too high. There are not many
options out there of open-source time-domain 3-D CSEM codes,
SimPEG being the one we found to be suitable. A step-off response
was chosen as this is the response currently implemented in it.
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Figure 9. IP example for different c values, frequency-domain response on the left and time-domain response on the right. The frequencies indicated by the
blue vertical bars in the lower-left figure were used for our Fourier transform approach, requiring only the computation of 27 frequencies instead of the full 747
frequencies required by the digital linear filter method.

Figure 10. 3-D block embedded in the lower of two half-spaces. The 100-
m long, x-directed dipole source is located 50 m above the seafloor at the
origin, and the receiver is on the seafloor at an offset of 2 km.

The model was discretized with 100 × 100 × 100 m cells in
the survey domain Ds. For the time-domain model, 14 cells in x-
direction and 12 cells in y- and z-directions were used on both sides
with a stretching of 1.3 for the total computation domain Dc, which
yields a mesh of 58 344 cells. The time-steps start at 0.1 s and are:
21 × 0.01 s, 23 × 0.03 s, 21 × 0.1 s, 23 × 0.3 s, covering exactly
the desired range of 0.1–10 s. For the frequency-domain model,
the mesh is generated frequency-dependent as in the previous ex-
amples, with a maximum stretching of αc = 1.5. This results in
meshes between 18 432 cells for the highest frequencies and 76
800 cells for the lowest frequencies. The required frequencies were
obtained by using the FFTLog with five points per decade, which
results in 20 frequencies between 0.001 and 8 Hz. The actual trans-
form was carried out with the 201-point sine-cosine filter from Key
(2009).

The results are shown in Fig. 11: In (a) the 1-D background re-
sponses and the relative error using the semi-analytical result and in
(b) the responses including the target. The background comparison
shows that both 3-D codes do an acceptable job with a relative error
of a few percents at most; the result obtained through transformation
seems to be better at early times. The reason is probably the imple-
mented backward Euler scheme in the time-domain code that has
an error of order one in time. We cannot compare the errors for the
response that includes the target for lack of an analytical solution.
The 1-D background model is only included to show that there is a
significant response from the target. We therefore show the normal-
ized difference (NRMSD) between the two responses R1 and R2 as
a percentage, where NRMSD (%) = 200|R1 − R2|/(|R1| + |R2|).
The NRMSD between the two codes is below 1 % everywhere ex-
cept for early times. Both codes took roughly 4–5 min to compute
the two models (single thread). However, in this particular com-
parison, the main difference in runtime is not frequency-domain
computation versus time-domain computation, but iterative solver
versus direct solver.

5 C O N C LU S I O N S

We have shown a method to minimize the required frequencies
and their range for the computation of time-domain CSEM data
with a frequency-domain code. This can significantly reduce the
computation time and makes time-domain CSEM modelling with
a frequency-domain code competitive given a robust frequency-
domain solver, a frequency-dependent gridding function that min-
imizes the required cells, and a Fourier transform that works on
a logarithmic scale. Fast layered modelling can be used to de-
sign the required frequency range, as the Fourier transform does
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(a) (b)

Figure 11. Responses for the model outlined in Fig. 10 using time-domain and frequency-domain computations, and for the layered background also the
semi-analytical result. In the lower plot of (a) the relative error ( %) is shown in comparison to the semi-analytical result and in (b) the normalized difference
( %) between the two 3-D codes.

not know about the dimensionality of the underlying model. 20
frequencies or less are usually sufficient for a wide range of off-
sets. The values for lower frequencies can be interpolated using
PCHIP knowing that the imaginary part goes to zero for zero
frequency. The values for higher frequencies can be set to zero,
as we can neglect their influence. And values for frequencies in-
between the computed ones are best obtained with a spline in-
terpolation. The actual transform can be carried out with either
the DLF method or FFTLog, where the latter one requires usu-
ally much fewer frequencies to be interpolated. We have demon-
strated the idea of our Fourier transform method on CSEM data
transformed from the frequency domain to the time domain. How-
ever, it could equally be applied to the transform from the time
domain to the frequency domain and to other methods with simi-
lar characteristics. We believe that our proposed improvements to
the previously published methods makes simulating results in one
domain obtained through computations in the other domain fol-
lowed by a transformation a viable alternative. The methodology
is relatively simple to implement and has therefore the potential to
expand the capability of any existing code to an additional dimen-
sion.
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Jönsthövel, T.B., Oosterlee, C.W. & Mulder, W.A., 2006. Improving multi-
grid for 3-D electro-magnetic diffusion on stretched grids, in ECCOMAS
CFD 2006: Proceedings of the European Conference on Computational
Fluid Dynamics, Delft University of Technology, UUID: df65da5c-e43f-
47ab-b80d-2f8ee7f35464.

Johansen, S.E., Panzner, M., Mittet, R., Amundsen, H.E.F., Lim, A., Vik, E.,
Landrø, M. & Arntsen, B., 2019. Deep electrical imaging of the ultraslow-
spreading Mohns Ridge, Nature, 567(7748), 379–383, 10.1038/s41586-
019-1010-0.

Kang, S., Oldenburg, D.W. & Heagy, L.J., 2020. Detecting in-
duced polarisation effects in time-domain data: a modelling study
using stretched exponentials, Explor. Geophys., 51(1), 122–133,
10.1080/08123985.2019.1690393.

Key, K., 2009. 1D inversion of multicomponent, multifrequency marine
CSEM data: methodology and synthetic studies for resolving thin resistive
layers, Geophysics, 74(2), F9–F20, 10.1190/1.3058434.

Lam, S.K., Pitrou, A. & Seibert, S., 2015. Numba: a LLVM-based Python JIT
compiler, in Proceedings of the Second Workshop on the LLVM Compiler
Infrastructure in HPC, pp. 7:1–7:6, ACM, 10.1145/2833157.2833162.

Maaø, F.A., 2007. Fast finite-difference time-domain modeling for marine-
subsurface electromagnetic problems, Geophysics, 72(2), A19–A23,
10.1190/1.2434781.

Mulder, W.A., 2006. A multigrid solver for 3D electromagnetic diffu-
sion, Geophys. Prospect., 54(5), 633–649, 10.1111/j.1365-2478.2006.
00558.x.

Mulder, W.A., 2020. Numerical Methods, Multigrid, pp. 1–6, Springer In-
ternational Publishing, Cham, 10.1007/978-3-030-10475-7 153-1.

Mulder, W.A., Wirianto, M. & Slob, E., 2008. Time-domain modeling of
electromagnetic diffusion with a frequency-domain code, Geophysics,
73(1), F1–F8, 10.1190/1.2799093.

Pedersen, L.B., Bastani, M. & Dynesius, L., 2005. Groundwater exploration
using combined controlled-source and radiomagnetotelluric techniques,
Geophysics, 70(1), G8–G15, 10.1190/1.1852774.

Pelton, W.H., Ward, S.H., Hallof, P.G., Sill, W.R. & Nelson, P.H., 1978.
Mineral discrimination and removal of inductive coupling with multifre-
quency IP, Geophysics, 43(3), 588–609, 10.1190/1.1440839.

Plessix, R.-E., Darnet, M. & Mulder, W.A., 2007. An approach for 3D mul-
tisource, multifrequency CSEM modeling, Geophysics, 72(5), SM177–
SM184, 10.1190/1.2744234.

Rochlitz, R., Seidel, M. & Börner, R.-U., 2021. Evaluation of three ap-
proaches for simulating time-domain electromagnetic data using the open-
source software custEM, Geophys. J. Int., submitted .

Tarasov, A. & Titov, K., 2013. On the use of the Cole–Cole equations
in spectral induced polarization, Geophys. J. Int., 195(1), 352–356,
10.1093/gji/ggt251.

Um, E.S., Harris, J.M. & Alumbaugh, D.J., 2010. 3D time-domain simulation
of electromagnetic diffusion phenomena: a finite-element electric-field
approach, Geophysics, 75(4), F115–F126, 10.1190/1.3473694.

Ward, S.H. & Hohmann, G.W., 1988, Electromagnetic theory for geophysical
applications, in Electromagnetic Methods in Applied Geophysics, Chapter
4, Vol. 1: Theory, Investigations in Geophysics no. 3, pp. 130–311, ed.
Nabighian, M.N., SEG, 10.1190/1.9781560802631.ch4.

Weiland, T., 1977. Eine Methode zur Lösung der Maxwellschen Gleichungen
für sechskomponentige Felder auf diskreter Basis, Archiv für Elektronik
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