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Summary 
Reservoir characterisation is a data driven process which involves the integration of different datasets to describe 
the subsurface. One of the difficulties of integrating geological data with the wave-equation based seismic inversion 
is that geological information is invariably interpreted as a layer-based model, whereas the wave-equation is 
defined and solved on a grid. Mapping a layer-based model space onto a grid-based space leads to highly non-
Gaussian, multi-modal distribution functions, even when the layer-based properties have simple Gaussian 
distributions. 
In this paper an analytic method is presented that translates the prior layer-model based distributions to grid-based 
prior distributions. From the unconstrained seismic inversion result a Gaussian likelihood function is constructed 
and the method to find the maximum a posterior estimate (MAP) and its uncertainty is described. As geological 
prior information we use well data, a geological concept of the environment of deposition and structural seismic 
interpretation in the form of some horizons to guide the prior model in between wells.   
Given the prior model, a measure for the probability of the data is formulated. When this process is repeated for 
various prior scenarios, the probability of the scenario, given the data, can be calculated for every location.  
 



 

Introduction 
 
For reservoir-oriented seismic inversion usually the only constraints used are sparseness constraint on 
the reflectivities and hard constraints on the properties in the model space. In this paper a new 
Bayesian framework is presented which allows one to include interpreted layer based prior models in 
seismic inversion. As geological prior information we use well data, a geological concept of the 
environment of deposition and structural seismic interpretation in the form of some horizons to guide 
the prior model in between wells.  The prior information is not used directly to steer the inversion 
process, but is used in a Bayesian way, updating the likelihood function obtained from unconstrained 
seismic inversion, to a posterior probability density function from which the Maximum a Posteriori 
(MAP) estimate and its uncertainty can be derived. 

Wave-Equation-Based AVP inversion and Likelihood Function 
 
The WEB AVP inversion used in this study is based on the full elastic wave-equation. Like most 
other AVP inversions, it is based on a locally 1.5D data model, over a target interval comprising the 
reservoir with top and bottom seals. As a general rule the grid-spacing should be one fifth of the 
shortest wave-length in the data, including shear waves. The method is based on the integral 
representation of the elastic wave-equation, which is solved iteratively, with linearised inversions of 
the data, for the properties, in between updates of the total elastic field in the object. For every 
linearised inversion a kernel is defined based on the  currently best estimate of the total field. 

After the last linearised inversion we have the output vector in the gridded model space, the minimum 
of the objective function and the kernel used in the last inversion. From these ingredients a Gaussian 
likelihood function can be constructed that represents the solution, with its uncertainty, to the 
unconstrained inversion problem. The likelihood function is given by: 
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Where m0 is the output vector of the inversion result, Cm is the covariance matrix in model space, d is 
the seismic data.  We can construct it analytically from the data residual after the inversion and the 
pseudo hessian (Pratt et. al. 1998), which is the kernel (K) of the inversion data equation, multiplied 
by its adjoint and Emin is the minimum of the objective function after the inversion.   

Finally, it should be mentioned that the wave-equation based inversion naturally inverts for the 
properties that define the wave-equation.  For the integral representation of the elastic wave-equation 
these properties are the compressibility (inverse of the bulk modulus), the shear compliance (inverse 
of the shear modulus) and the density. 
 

Grid-based prior probability distributions 
 
As mentioned before, geological information derived from wells and a general concept of the 
environment of deposition will inevitably be interpreted as a layered model, where means and 
standard deviations are assigned to the layer properties and thicknesses. The standard deviations of the 
layer properties can easily be determined from the vertical variability observed within the layers in the 
wells and these quantities are assumed to have Gaussian distributions. The distributions of the layer 
thicknesses can be described by truncated Gaussians, where the area under the originally Gaussian 
curve, extending over negative thicknesses, is mapped onto a delta function at zero-thickness. This 
allows the concept of assigning a finite chance for that layer to be absent, but leaves us with a non-
Gaussian distribution.  For a single grid point analytically this can be expressed as a weighted sum of 
Gaussians. 
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where ki is the property probability density for the ith layer and wi is the weight corresponding to the ith 
layer, j denotes the jth grid node. The wij are the weights which explains the probability of having a ith 
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layer  at jth grid point. The joint probability distribution for the whole model vector at a specific 
location, for any property k ,  is given by: 
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For the prior joint probability density for all depths, at a specific lateral location, we get a product of 
sums of Gaussians, constituting a highly non-Gaussian, multi-modal distribution. The assumption that 
all gridpoints are statistically independent may not be strictly true, but it leads to good results and 
simplifies the analysis considerably, because this very complex function can be described analytically. 
 
Grid-based posterior probability distributions and Scenario Testing 
Bayes' Rule, usually written as:                     
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=                         (4)       

where m is the grid-based model vector and d is the data, and normalising factor as the denominator 
P(d ). The unnormalised grid-based posterior probability density function is the product of the very 
complex non-Gaussian grid-based prior distribution eq.(2) and the Gaussian seismic likelihood 
function eq.(1), which is also defined in the grid-based model space.  

( )
( )

( )
1

0 0
11

( 0.5( ) ( ))  |  (
2

)
T

Nzm
jjNz

m

m m C m mP m d P k z
Cπ

−

=−

− − −
= ∏exp    (5) 

To find the MAP estimate the posterior distribution needs to be maximised using gradient based 
method. The procedure adopted in this paper is to use the unconstrained seismic inversion result (i.e. 
the Maximum Likelihood Estimator) as starting point for a Conjugate Gradient (CG) search for the 
nearest maximum of the posterior distribution. The gradient can be calculated analytically due to the 
assumption that all gridpoints are statistically independent. The second derivative at MAP will be a 
measure for the uncertainty of the solution.   
Scenario testing can be implemented by estimating the P(d) which is usually considered a 
normalisation factor to make the posterior a proper probability density function, calculated as: 
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Eq. (6) tells us that the probability of the data is a functional of the prior scenario and is calculated as 
the overlap between the prior and the likelihood function. It is quite expensive to evaluate the 
probability of data computationally, so we approximate the probability of data as the geometric mean 
of the mahalanobis distance between prior and likelihood function. If we can calculate this quantity 
for different scenarios and renormalise the probabilities to add up to one when summed over all 
scenarios, we can assign probabilities to different scenarios for a given data.  This procedure can be 
carried out for every lateral location, giving a map of scenario probabilities. 
 
Book Cliffs synthetic experiment 
The new method was tested on a very detailed model based on a real outcrop and even further 
downscaled, based on a realistic geological scenario (Feng et al. 2015). In Figure 2, top left, we see 
part of the true compressibility contrasts against the background  of the Book Cliffs model. Clearly 
visible are the thin coal seams in the section over the first 50 m, which are very soft (high 
compressibility).  
Synthetic data in the tau/p domain was generated over this model with the help of the Kennett 
method, which is also an exact full elastic method, but very different from the wave-equation based 
solution in the inversion. The zero-offset section for the synthetic data is shown in Figure 1. Having 
seen the coal seams in the wells on either side of the section, a seismic interpretation can be 
attempted, tracking the presence of these seams along the section. The interpreted horizons are 
horizon 1,2 and 3 as shown in figure 1 with horizon 3 pinching out in between wells . 
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A prior model is built based on a layering observed in the wells and interpolated between the wells 
with the help of the interpreted horizons. The layer property standard deviations (covariances) for the 
prior distribution are measured from the variability observed in the wells within the layers.  For the 
standard deviations of the layer thicknesses we test two different scenarios; one where we recognize 
the coal seams and assign very small standard deviations to the thicknesses, and one where we are not 
so sure and allow a much wider range of variation in the prior model. 
The unconstrained wave-equation based inversion result from this synthetic data, the Maximum 
Likelihood Estimator, is shown in Figure 2, top right. In Figure 2 middle left, we see the mean 
realisation of the prior model of Scenario 1, where we assumed small standard deviations for the 
thicknesses of the layers in the prior model, in particular for the thin coal seams. We should realise 
that there is more information in the prior model than is observable in the mean realisation. 
In Figure 2, middle right, we see the posterior result from the procedure presented in this paper. 
Clearly the result has improved when compared with the unconstrained maximum likelihood result.  
The same exercise was repeated for another prior model scenario, where the prior uncertainty for the 
thicknesses of the thin layers was much larger, as borne out by the more fuzzy appearance of the mean 
realisation for this prior in Figure 2, bottom left.  Finally, we see the maximum posterior realisation 
for this scenario in Figure 2, bottom right.  Interestingly, the greater uncertainty in the layer 
thicknesses in Scenario 2 has not greatly reduced the resolution shown by the posterior, but in the 
covariances of the posterior, not shown here, this would be visible. 
 
 
  
 

Figure 1 Zero-offset synthetic seismic section. Interpreted 
horizons are indicated by the thin white lines. 

 
 
 
 
We are now going to analyse the probabilities of these two scenarios, given the data, for every CMP 
location.  As pointed out in the previous section, the probability of the data, given the scenario, 
defined in Eq. (6), is approximated by the Mahanalobis distance between the means of the likelihood 
function and the prior.  The result is shown in Figure 3.  
Since Scenario 1 expresses the prior knowledge that there are thin layers, this scenario is closer to the 
truth and therefore fits the data, which is based on the truth, better.  This applies all along the profile 
investigated, but, of course, it would be interesting to find that in part of the line, or area, one scenario 
would be more likely, whereas in another part of the line, or area, another scenario would fit the data 
better. 
 
Conclusions 
The transformation of layer-based prior models to grid-based prior models leads to strong non-linear 
(non-Gaussian) behaviour. Rather than using this information as a non-linear constraint in an already 
non-linear inversion, we decided go the Bayesian route and construct a highly non-Gaussian posterior 
distribution from the highly non-Gaussian prior distribution and the Gaussian likelihood function 
resulting from unconstrained inversion. We then still face the issue of finding the maximum posterior 
probability realisation from the posterior. This problem is addressed by electing to use the 
unconstrained seismic inversion result as a starting point in search for the  maximum of the posterior 
distribution. Although the unconstrained inversion result is already a good result, bringing in prior 
information based on two wells on either side of the section and guided by some picked seismic 
horizons, improves the resolution significantly. Two different posteriors were produced, based on 
different prior model scenarios. Both prior models improved the posterior result, but when the 
scenario probabilities are estimated it turns out that the data shows a clear preference for the scenario 
containing coal seams with little thickness variation, in agreement with the true model. Both scenarios 
increased the resolution of the inversion and removed some of the low wave-number artefacts visible 
in Figure 2, top right.  

Horizon 1 

Horizon 2 

Horizon 3 
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Figure 3:Probabilities of the two scenarios (1: blue, 2: red), given the 
data. 

Figure 2: Top left: True compressibility contrasts for part of the Book Cliffs model.  Top right: Unconstrained inversion 
result from synthetic seismic.  Middle left: Mean  realisation for the prior probability density functions for Scenario1.  
Middle right: Maximum posterior realisation for Scenario 1.  Bottom left: Mean  realisation for the prior probability 
density functions for Scenari21.  Bottom right: Maximum posterior realisation for Scenario 2. 
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