

Random Grapns
owith
1ime-Varying

—[tNess

by

Runsheng Wang

to obtain the degree of Master of Science
at the Delft University of Technology,
to be defended publicly on Monday July 20, 2020 at 10:00 AM.

Student number: 4806727

Project duration: December 1, 2019 — July 20, 2020
Thesis committee: Prof. dr. F. H. J. Redig, TU Delft

Dr. A. Cipriani, TU Delft, supervisor
Dr. H. N. Kekkonen, TU Delft

This thesis is confidential and cannot be made public until July 31, 2020.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

]
TUDelft

http://repository.tudelft.nl/

Preface

This report represents my MSc Thesis for the Master of Science in Applied Mathematics degree at Delft
University of Technology. | have spent almost eight months on the random graphs and finally made
some progress in the theoretical area. The proof and simulations are not part of my ambition, but the
step in an unknown section makes me excited.

For the successful completion of this thesis, | was privilleged to be guided by my daily supervisor
Dr. Alessandra Cipriani, to whom | want to express my gratitude. Her knowledge, guidance, patience,
and positive attitude during the whole project was of utmost importance for the successful realization
of the thesis. | would also like to thank my other thesis committee members: Prof. Frank Redig and
Dr. Hanne Kekkonen. Their strict requirements are essentially determinant on writing the thesis.

It was a hard time for students and employees at TU Delft, due to the COVID-19. My father passed
away in April, and | was not even able to meet him one last time. Also, | was stuck in a third country
because of the quarantine policy and took a risk staying with others. | would say thank you to all
the medical personnel for the protection from the virus. | would say thank you to my family in China,
because you are always there no matter what has happened. | would say thank you to my friends,
because it was also you who encouraged me to cheer up to continue my study.

Runsheng Wang
Delft, July 2020

Contents

1 Introduction

2 Mathematical Definition and Properties
2.1 Definitionsof Models.
2.2 Models and Notations
2.3 PropertiesoftheModels
2.3.1 Preferential AttachmentModel.
2.3.2 Bianconi-BarabasiModel.

I G M mooO m > O

2.3.3 Recursive FitnessModel.
2.3.4 RandomRecursiveTree e

Model Simulation

3.1 Selection Function
3.2 Preferential AttachmentModel.
3.3 RandomRecursive Tree
3.4 Bianconi-BarabasiModel.
3.5 Recursive FitnessModel.
3.6 InverseModel.

Results and Discussion

4.1 Degree Distribution.
4.2 Fitness Distribution.
43 NpSequence e
4.4 Heightof RandomTrees.
45 InverseModel.

Conclusion

Code of Random Pick process

Code of Preferential Attachment Model
Code of Random Recursive Tree

Code of Bianconi Barabasi Models
Code of Recursive Fitness Models
Code of Inverse Model

Code of Comparisons

Code of Preferential Attachment Inverse Model Simulations

Bibliography

Chapter 1

Introduction

One of the well-known random graph models is Erdés-Rényi random graph (ER graph) [9], which plays
an important role in social network simulations. The ER graph is a random graph with fixed vertices
and a probability p € (0,1) of existence of an edge between any two nodes. ER graph is the first
mathematical attempt to model real-life networks. One important feature of a graph is the degree,
which represents the popularity of a node. It is proven that the degree sequence of the ER graph does
not have a heavy tall, i.e. there is no t > 0, such that

P(D(i) > k) ~ k™%, ask > (1.1)

where D (i) denotes the degree of node i, and k € N. Heavy tails are common in empirical networks, so
ER graph is a kind of expected model but resembles few natural cases. For example, in search engines
and some other applications, only degree is insufficient to express nodes’ tendency to get more links.
Thus, the fitness is introduced in a random graph to make a node more or less attractive for attachment.
Normally, fitness values of each node are assigned by sampling from a fixed distribution. According
to different fithess laws, random graphs with fitness can be divided into many types. But most of the
random graphs with fithess share a common property: their degree sequences follow some power-
law, satisfying the equation (1.1), and different models may have different tail exponents [6]. This is an
interesting phenomenon. Another feature of random graph models is the decay of the degree sequence
itself, and the degree sequence of a model may obtain a tail exponent of node i, i.e. with some fixed
time ¢, there exist some positive constant ¢ and g, such that

D(i) ~ ci™™. (1.2)

This paper mainly focuses on the special property of some representative random trees.

The random recursive tree (RRT) and the preferential attachment model (PAM) can be two spe-
cial models of dynamic random trees. Many researches have been made on both models, especially
asymptotic results, so they could be nice benchmarks in this paper. As named, at eachtime stept € N,
a RRT allows a new node to come into the network and attach itself to any of the old nodes uniformly
at random. Pittel in 1994 has proved that the RRT does not have a power-law but an exponential tail of
degree sequence [13]. Many people like Berry [2] and Janson [12] tested the same property, and our
independent proof of this fact is in the Section 2. Also, another property of RRT was proven by Devroye
in 1987 that RRTs have a height of O (log(t)), where t means the number of nodes [10]. PAM was de-
veloped from the so-called Yule process, conceived by Yule [16] in 1925. In the standard PAM, also
known as Albert-Barabasi model [3], the tree branches from one original node and grows in time: in
each new step, one new node is attached to any of the old nodes with a probability proportional to their
degrees at that time. The PAM has a significant power-law in degree distribution [15]. In particular, the
tail of the degree distribution of the Albert-Barabasi model decays like k~3, where k means the degree,
k large (equation (2.9)). That leads to another main feature that older nodes will have more probability
to gain degree by attachment of new nodes, which is the so-called 'rich-get-richer’ phenomenon. There
are still some restrictions to PAM, one of which could be the fixed tail exponent. In modern applications,
it is required to reach various tail exponent of power-law, so PAM needs to be extended to some further
models. Again by Barabasi and his colleague Bianconi [4], an extra fitness function was added in the

1

2 1. Introduction

attachment probability in order to vary the tail exponent. A sequence of independent fitness values
coming from some fixed distribution are introduced into PAM as weights of the degree. It is proven
that the tail exponent of the power-law changes after adding the fitness function, and the number can
be influenced by the choices of fitness distribution [4][6]. Moreover, if the fithess sequence follows a
recursive formula, the model becomes a recursive fitness model (RFM). This is a new type of random
recursive tree on which little research has been done. As named, a RFM assigns a fithess value to a
new node as output of a function of the node’s father’s fithess value. Hence, the fitness sequence is
not fixed at the start, but follows a recursive process. Obviously, both of PAM and Bianconi-Barabasi
Model (BBM) have a time-independent fitness choice, but one can also make the fitness sequence
vary over time. Fontanari and Cipriani [7] first introduced the idea of time-dependent fitness sequence.
That means for a specific node, the fitness value may change at two different times. Finally, these
are so-called random graphs with time-varying fitness. In Section 2 and 4, it is discussed whether the
structure is well-defined and if it influences the power-law. There is a huge quantity of random trees in
this category, but we enumerate only one special case for research: Preferential Attachment Inverse
Model (PAMinv). The PAMinv is invented from the PAM. The fitness value of a node comes from the
expectation of its degree sequence in PAM. By definition in Section 2, one could see that the fitness
value is not deterministic but varies by time t.

RFM and IM are new models, and IM is even first developed in this paper in order to make an inter-
polation of tail of degree sequence from PAM toward an exponential tail (RRT). At the same time, the
fitness sequence and height of these models are also discussed in detail.

The paper is divided into four main sections except the introduction. In Section 2, definitions of
these models are given and some propositions, especially on the tail exponents, are discussed mathe-
matically. Then in Section 3, there are descriptions about the models’ generating algorithm and details
on the simulation of random trees. After that, in Section 4, the main results from the simulation are
displayed and fully discussed, including some intuitive comparison among these models and their own
features. Finally, there is a conclusion section to make a summary of all the results, and raise problems
that still wait for further exploration.

Chapter 2

Mathematical Definition and
Properties

In this section, we mainly introduce the definitions of the models mentioned above, their properties,
and mathematical deduction.

2.1 Definitions of Models

Hereby we would like to first set up an algorithm to combine these models together. In particular, we
aim to construct a time-evolving random tree branching from only one node with a degree of 2 (a self-
loop). After that, each new node has to attach itself to one of the previous nodes except itself according
to the probability (2.1).

The construction algorithm is as follows: F; is the fithess vector, whose elements are fitness values of
graph nodes at time t. G, means the random graph at time t with its vertices set V, and edge set E;.
D, (j) means the degree of vertex j at time t, i.e. the number of edges attached to vertex j. Meanwhile,
for all t € N, the fitness function at time ¢, f; : V, = R*, is non-negative.

Algorithm 1: Construction of General Random Trees
1 Initialization:;
2 Gy = (W, Ey) —({11L(1,1));
B <A}
Recursive loop:;
fort > 1do
F —{fi(v)}forallv € V,_q;
node t attached to node j € V;_; chosen with probability

fe()De-1(j)
Zvevt_1 ft(W)D¢—1(v)

N o a b~ W

P(t -) = (2.1)

8 | V<V U{t}
9 Er —E. 4 U{(t,)}
10 end

The random tree is born with one node with a self-loop, but we still call the model a tree, since
the remaining branching process follows the tree definition: so it has no loops. The reason why it is
compulsory to put a self-loop here is to prevent a single point with zero degree, and that could lead to
no possibility to get a new attachment and therefore, the tree would end. Also, graphs given by the
construction algorithm are well-defined, because each vertex is labelled by the step t of its birth, and

3

4 2. Mathematical Definition and Properties

by assumption, the time-dependent variable
Ze=) fiIDes(v) 2.2)
VEVr_q

is always positive and increasing.
Obviously, we do not put any special restriction on the fitness functions. Different choices of fitness
functions could lead to different models. Following are some special kinds of random tree models.

Definition 2.1.1. (Preferential Attachment Model) Given the construction Algorithm 1, the random tree
is called a preferential attachment model if all the fithess functions are constantly equal to one.

In this case, the attachment probabilities become
De—1(j)
Zvevt_l Di_1(v)

That indicates that the new node chooses its attachment partner depending only on the partners’ de-
gree. This will lead to some interesting results that will be discussed in later parts.

P(t - j) = (2.3)

Definition 2.1.2. (Random Recursive Tree) Given the construction Algorithm 1, the random tree is
called a random recursive tree if the fithess functions are specially chosen as follows: the fitness of
node i attime t is

fe@) = (2.4)

De—y (D)
Normally, one could see another definition of RRT: a random recursive tree is a rooted tree chosen
uniformly at random from the trees with a given number of vertices. It is not hard to notice that the two
definitions are equivalent, if we apply the fitness back to (2.1):
fDPea() _ Dea(I/Dea() 1
Yvev, [tWD1(v) ey, , De-1(W)/Den () t—1

This means that the choice of the attachment is uniform at random as the second definition says.

P(t - Jj) =

(2.5)

Definition 2.1.3. (Bianconi-Barabasi Model) Given the construction Algorithm 1, the random tree is
called a Bianconi-Barabasi model if the fithess functions are i.i.d. random variables sampled from
some fixed distribution, i.e. given some probability distribution v on [0, +0), forany i < ¢,

£i()=f@) ~v, iid. (2.6)

The Bianconi-Barabasi model (BBM) is an important modification of the PAM, and becomes more
applicable in dynamic areas. A sequence of time-independent fitness functions are introduced to work
as weights in the attachment choosing process. Uniform, exponential, and some other distributions v
have been tested by Barabasi [4], and different choices of distribution affect the tail exponent of the
model’s degree sequence. We would now like to extend the BBM as follows.

Definition 2.1.4. (Recursive Fitness Model) Given the construction Algorithm 1, the random tree is
called a recursive fitness tree (RFM) if the fitness functions are chosen by the following rule: for time t
and node i (i < t), there is a parent function 7 : V, = V;, and r(i) gives the parent of node i in a graph.
Then there exists some function F : R* - R*, such that,

fO=F(f@®)), fO=1 (2.7)

This is a new model that cannot be described by any formulas above. The RFM shares a feature
with BBM that the fitness does not vary with time, which means if a fitness value is assigned to a node, it
will never change, even though the node’s degree might change. However, the RFM is slightly different
from BBM, since the fitness comes from a recursive process rather than a fixed distribution.(Normally,
the recursive process cannot be described by some distribution.)

Some RFM examples can be listed here.

2.2. Models and Notations 5

* Plus-1 Model: one of the simplest RFM. The fitness of a new node is one more than its father’s
fitness, i.e. The recursive function is F(x) = x + 1.

* Plus-i Model: its recursive function is F(x) = x + n(t).

« Plus-i? Model: its recursive function is F(x) = x + (7(t))?.
» Times-2 Model: its recursive function is F(x) = 2x.

» Times-i Model: its recursive function is F(x) = m(t)x.

Those are five models with fitness that comes from a recursive formula. One could set up more complex
RFMs according to different recursive functions.

Definition 2.1.5. (Inverse Model) Given the construction Algorithm 1, the random tree is called an
Inverse Model (IM), if the fithess functions are specially chosen as follows: for time t and node i(i < t)

o 1
O = Bl @2

Here d means the degree sequence of the benchmark model (PAM).

The expectation of the degree sequence of the benchmark model (PAM) can be computed[15], since
these models have clear fithess-independent attachment choosing process. Thus, the special model
can be defined as Preferential Attachment Inverse Model (PAMinv). This model is introduced in order
to be compared with PAM. In fact, the attachment probabilities are on average the same as that of PAM.

Generally, random trees with fitness can be divided into 3 main categories according to the choice
of fitness sequence: A fixed distribution leads to the BBM, where RRT and PAM can be two special
cases of this style. A recursive process leads to the RFM, where the Plus-1 Model can be a special
case. Finally, the fithess sequence can also update itself time-dependently, when the IMs can be such
a kind. In this paper, we mainly focus on the properties of these kinds of models, especially the power-
law of the degree sequence. Thus, such representative models mentioned above will be taken into
consideration, although there are still plenty of special models of random trees.

2.2 Models and Notations

Here is a summary of all the models mentioned in this paper and a list of symbols used in the paper.

Table 2.1: MODELS in the paper

Benchmark Model Preferential Attachment Model (PAM)

Random Recursive Tree (RRT)

Bianconi-Barabasi Model with exponential(2) distribution (BBM-

Bianconi-Barabasi Model (BBM) exp2)

Bianconi-Barabasi Model with standard uniform distribution (BB-
Muni)

Plus-1 Model (Plus-1)

Plus-i Model (Plus-i)

Recursive Fitness Model (RFM) | Plus-i? Model (Plus-i?)

Times-2 Model (Times-2)

Times-i Model (Times-i)

Inverse Model (IM) Preferential Attachment Inverse Model (PAMinv)

Table 2.1 summarizes all the random trees in the paper, and the words in brackets refer to the short
names of models.

6 2. Mathematical Definition and Properties

Table 2.2: NOTATIONS

Symbol Meaning

i,j, . Nodes of some random graph

(9)) The edge between nodes i and j of some random graph

D¢ (i) The degree of node i at iterationtime t,i = 1,2, ...,t

F The fitness vector with elements of fitness values of graph nodes at time t
G, The random graph at time ¢t

v The vertices set of random graph G;

E; The edges set of random graph G;

fi The fitness function at time t

f: () The fitness value of node i at time ¢

(i) The parent function, indicating the parent of node i in some random graph
F(x) The recursive function of some RFM

Ny (t) The number of nodes with degree k at time t in some random graph

N (t) The number of nodes with degree no less than k at time t in some random graph

diam(G) The diameter of a random graph G
dist(i,j) The distance between nodes i and j

H, The height of some random graph at time ¢t
PAM; Sigma algebra generated by PAM at time t
RFM, Sigma algebra generated by RFM at time ¢
RRT, Sigma algebra generated by RRT at time ¢t

2.3 Properties of the Models

We are highly interested in the tail exponent of random trees. Some of the results are well-known and
proven, but others are still left to detect. In this section, we begin to list the known theorems and then
mathematically prove the remaining properties on the power-law of the degree sequence.

2.3.1 Preferential Attachment Model

Theorem 2.3.1. (Power-law of PAM) For the Preferential Attachment Model defined by Definition 2.1.1,
its degree sequence follows a power-law with index —3,i.e.

i N (t)
im =

tooo f

k3 (2.9)

where N, (t) means the number of nodes with degree k at time t.

A number of scientists, such as Barabasi [4] and van der Hofstad [15], have proved the theorem in
different ways. This theorem indicates that the degree sequence of PAMs undoubtedly has a heavy tail.
For the standard PAM, the limit of expectation of its degree sequence can be mathematically estimated
in Theorem 2.3.3, but a pre-knowledge has to be mentioned first.

Theorem 2.3.2. (Degree of PAM) The total degree of standard PAM at time t equals 2t.

Proof. This theorem is a quite intuitive result and easy to prove. Obviously, a standard PAM at time
t has t nodes, and each node except the first and the last one has an attachment to its parent and
another attachment to its child. For the first node, it has a self-loop, and an attachment with its child.
For the last node, it has only one attachment with its parent. Hence, totally the PAM at time t has a
degree of 2(t —2) + 3+ 1 = 2t. O

2.3. Properties of the Models 7

Theorem 2.3.3. (Expectation of PAM degree sequence) For the standard PAM, as t - « and a large
I:y
. t 1
E[D.(D] ~ (7)? (2.10)

The proof is based on the Theorem 8.1 of van der Hofstad [15], and this is a special case withm = 1
and § = 0.

Proof. (follows the proof by van der Hofstad) First, split the expectation and we can compute that for
t>1i,

E[D¢11(D)|De ()] = D¢ (@) + E[De11 (1)) — D (DD (D] (2.11)
=D (i) + 3 ‘() 7 (Theorem 2.3.2) (2.12)
2t + 2
—Dt(1)2t+1 (2.13)
2(t+1
= Dt(i)%. (2.14)

Also, we can compute the following value: for each i € Z*

] 2i
[E[Di(l)]—1+2(i_1)+1 =51 (2.15)
Then, it is enough to set up a non-negative martingale over t
2s+1
M(©) = Di(D)]_[oD (2.16)

s=i—-1

M, (i) is a martingale over time t because of the following 3 points. First, we denote the sigma algebra
generated by the PAM tree configuration at time t as PAM,. By definition, M, (i) is PAM,; measurable,
because variable D;(i) € PAM, is in the sigma algebra. Second, it follows the conditional expectation
property, i.e.

E[M;11 (D) |M ()] = E[M¢41 ()| D¢ (D]

2s+1
=]E[Dt+1(i)|Dt(i)] m
2 1
= D, (i) Z(E i 1) H T 1) (by equation (2.14))

2s+1 .
= D,()]—[e =M@,

s=i—1
Third, the expectation of M, (i) is finite. Moreover, apply equation (2.15), we have

. , , G20 -1D+1
E[M (D] = E[E[M(DID;(D]] = E[Dy(D]———— =1 <. (2.17)
Then, it is important to compute the constant part of the martingale M,(i). By using the definition of
Gamma function, we have

25+1 ﬁ s+1/2 T+ Q)
26+ Ll s+1 re+nra-3

s=i—-1

(2.18)

8 2. Mathematical Definition and Properties

Apply equation (2.18) back to M;(t) (2.16), and take the expectation on both side, it is not hard to get
the following result:
It + 1) —)
E[D,({)] = ——=. (2.19)
L+ I
We will use the Stirling formula of Gamma function [1]. For any real number x > 0 (actually it is also
true for a complex number z with R(z) > 0), we have

n2n © arctan %
+ —2dy
0o e —1

2 1
H@=J;i§%1+m;» (2.21)

By using (2.21), we have

(EHEe+ 0(—)) a t-3
F(;-I; a) _ \/7 tra’’ _ (t+a) (t1+ a) (1+ O(%)) = ta(1 + 0(%)) (2.22)
© JT()G+M)) t2

Applying (2 22) back to (2.19), we can get the result mentioned by van der Hofstad: the expectation

InT(x) =(x— %) Inx—x+ 1 (2.20)

of Dt(L)/tz converges almost surely to
casem=1

(. If we apply (2.22) again, we can get the final result for

EID.(0)] ~ (5)2. (2.23)
O

Again, we are also interested in the height of PAM. Dommers and van der Hofstad [8] have proven
that the diameter of PAM is O(logt). The definition of a diameter of a graph and the theorem are as
follows.

Definition 2.3.1. (Diameter of graph) The diameter of a graph G is defined as follows:

diam(G) = mg‘a({dist(i,j)|dist(i,j) < oo} (2.24)
LJj

where dist(i,j) denotes the graph distance between node i and j.

Definition 2.3.2. The height of a graph G is defined as follows:

H(G) = meavx{dist(io,j)|dist(i0,j) < o, i is the origin} (2.25)
]

With Definition 2.3.1, the upper bound of the diameter of PAM can be estimated in the following
theorem.

Theorem 2.3.4. (Diameter of PAM)(Dommers et al., 2009) There exists a constant c,, such that with
high probability, the diameter of standard PAM at time t is at most c, logt.

The proof can be referred to Dommers and van der Hofstad’s paper [8]. By Definition 2.3.1 and
2.3.2, diameter includes height of a graph, which means that the height of PAM increases by a logarithm
function.

2.3.2 Bianconi-Barabasi Model

Since PAM is a special case of the BBM, properties of Bianconi-Barabasi Models can be extended from
the PAM’s features. However, the introduction of fitness sequence brings some differences. According
to the behavior of degree sequence, the BBMs can be divided into two main phases: The innovation-
pays-off phase and the fit-get-richer phase. First, one BBM follows the innovation-pays-off phase if the

2.3. Properties of the Models 9

fithess may play a role overwhelming the degree sequence in connecting the new node, which would
lead to condensation [5][4]. Condensation is another important phenomenon of random trees, but that
is not in the scope of this paper. One could refer to the theorems and conjectures in other papers [4][7].
Second, the fit-get-richer phase describes the most cases of BBMs, including the PAM: a node with a
specific fitness value will get more attachments if it already has many edges. The following theorem
[4] shows the conditions and tail exponents of BBMs in fit-get-richer phase.

Theorem 2.3.5. (Fit-get-richer Phase) Suppose Q to be the set of fitness values from which f can be
chosen. With all the assumptions of BBM, let T = [Q] and 1 < T < +oo indicate the size of the fitness
function set, h = sup,_... f(t) < +oo, q(t) € Q is the probability of f(t), where Q admits a strictly
positive continuous density on (0, h). If

T
t)q(t
090
Lih—f(®)
then, the BBM falls in the fit-get-richer phase with a tail exponent of A,f~1(t), where A, is the largest
solution of the following equation

- f®a®) _
Lido—[@©

Theorem 2.3.5 gives a mathematical estimation of the tail exponent of some BBM, which varies
over different choices of fithess distribution v. It is easy to see that BBM is fit-get-richer if Q is a single
element or uniform distribution. The proof is in detail given by Mr. Borgs and his colleagues [5] by using
Pdlya urn process [11]. Here we state the definition of the process, which will be useful for the latter
proof in Section 4.5.

1 (2.26)

Definition 2.3.3. (Pdlya Urn Process) There are r < +oo bins. Each bin i < r is assigned a fixed
activity a;, 0 < a; < +o0. Forn = 0, let

Xn = (Xn,l' "-'Xn,r)

where X,, ; is the number of balls in bin i at time n. The initial load is given by X,, which may be random
or deterministic. The it" bin also has a random vector §; = (&i1, -, €ir) wWith independent integer
elements ¢; ;. The process is defined as follows. At time n, we pick one bin. Bin i is chosen with
probability proportional to a;X;,_, ;, a is some fixed sequence with r terms. If bin i is picked, we draw
an independent copy ¢! of ¢; and update {X,,},,-o according to

Xn=Xn 1+ E{l

Normally, balls are added or at least not withdrawn from the system, and this refers to the non-
extinction condition:

§;=0, i#j (2.27)
s
Z &, = 0. (2.28)
=1

In Pdlya urn process, a transformation matrix A plays an important role, and the matrix A describes the
expected operation among each bin, i.e. the transformation from X,, to X,,,, for any n > 0.

Definition 2.3.4. (Matrix A given by Janson 2004) Given Definition 2.3.3, the transformation matrix A
is a r X r square matrix

A= {a;E[§;]1}] j=1-

In our case, r mainly denotes the largest degree number plus 1 in our models, i.e. r = max(D(j)) +
1. Obviously, if forall j = 1,2, ..,7, a; = 1, then 4;; = E[§;;] and the jt" column of A is the expected
change when balls in bin j is drawn. With conditions (2.27),(2.28) and Perron-Frobenius Theory, A
has a largest real eigenvalue 1,, such that every other eigenvalue 1 satisfies: ReA < 1;. The largest
eigenvalue and its corresponding eigenvector play a central role in the following theorem.

10 2. Mathematical Definition and Properties

Theorem 2.3.6. (Janson 2004) With assumption of (A1)-(A6) and the condition on essential non-

n

extinction, X? — A,1v,, where A, and v, denote the largest eigenvalue and its corresponding eigenvector
of branching matrix A related to process X,,.

The proof of this theorem is extremely complex, and can be found in Janson’s paper [11]. After that,
Borgs and his colleagues use this theorem to prove the asymptotic properties of Bianconi-Barabasi
Model [5].

2.3.3 Recursive Fithess Model

Similar to the PAM, there are two steps to get the power-law of the RFM degree sequence. First, it is
essential to prove that for each node, its degree should converge toward the expectation value. Then,
we can somehow compute the expectation of the degree sequence. So the first step is the following
theorem. The proof is mainly based on van der Hofstad chapter 8 [15]. We first state Hoeffding’s
inequality [14], and it is used to prove the theorem, but we do not prove it here.

Lemma 2.3.7. (Hoeffding’s Inequality) Let X, ..., X,, be independent random variables bounded by the
interval [a, b]. We define the empirical mean of these variables by

- 1
Xp = ;(Xl + -+ X))

Then we have
2t2

P(X, —E[X,]=t) <e ®-0?

where E[X,] denotes the expectation of X,,.. The inequalities can be also stated in terms of the sum
Sp =X+ -+ X,
2t2

P(S, — E[Sp] = t) < e n0-a?
Theorem 2.3.8. (Convergence of RFM) In any RFM, for any constant C > /8, ast — oo,
P(ml?x [N, (t) — E[N,(2)]] = C/tlogt) = 0o(1) (2.29)
Proof. First of all, we denote the sigma algebra generated by the RFM tree configuration at time t as

RFM,.
Notice that when k > t 4+ 1, we have N, (t) = 0. Thus,

[F’(ml?xwk(t) — E[Ng(®)]| = Cytlogt) = P(gi:aﬁ [N (t) — E[Ni(t)]] = C+/tlogt) (2.30)
< Z P(IN, () — E[N,(D)]] = C/t1og?) (2.31)
k=1

Then, it is enough to prove that forany k <t + 1,

P(|N,.(£) — E[N, (t)]| = Cy/tlogt) = o(t™1) (2.32)

We establish a Doob Martingale, forn =0, ..., t:
M, = E[N,(t)|RFM,]. (2.33)

First, by definition, there is always a number N, = 0 denoting the number of vertices with degree k at
time t for each model of n = 0, ..., t, which means N, (t) is measurable with respect to RFM,,. Then it
is essential to prove the finite expectation.

E[|Mp|] = E[My] = E[E[Nk(O)|RFMy]] = E[N,(t)] < t < oo. (2.34)

2.3. Properties of the Models 11

Notice that the RF M, , tree is obtained from the RFM,, model, which means that RFM,, is a subset of
RFM, ., we have

E[Mn+1|RFMy] = E[E[Ny (t)|IRFMp11]|RFM;] (2.35)
= E[N,(t)|RFM,] (Tower Property) (2.36)
=M, (2.37)

By (2.34) and (2.37), we conclude that {M,,}!,_, is a martingale with respect to the models {RFM,,}},_,.
The above was the core part of the proof, and the key point is the establishment of the martingale M,,.

Then, we can again get

Ni(t) = E[N(t)] = M¢ — Mo (2.38)
And due to the branching process of RFM model, we have the inequality: forn =1, ..., ¢t
M, — M,,_1] <2 (2.39)
Then, Hoeffding’s inequality Lemma 2.3.7 can be applied to (2.32), for any ¢ > 0
c2
P(|N,(t) —E[N,(D)]| =) < 2e 8t (2.40)
Take ¢ = Cy/tlogt in (2.40) and C? > 8, we get
c? c?
P(|N(t) — E[N,(t)]] = Cy/tlogt) < 2™ '8'% =2¢" % = o(t™1) (2.41)
O

When it comes to the second step to compute the expectation of degree sequence, Hofstad man-
ages to find a time-independent sequence p, and proves the convergence of E[N,(t)] toward p, over
time iteration. However, for the RFM, a major problem is that we do not have a method to calculate the
probability distribution of the fitness sequence because of the recursive process of the fitness. Although
it is impossible to get the analytical solution, the numerical solution in the Results part may show some
directions.

2.3.4 Random Recursive Tree
Similar to the PAM, RRT is a well-known model with plenty of features. We first give a formula of the
expectation of the degree sequence, and then state the tail behavior.

Theorem 2.3.9. In the RRT model with only one root vertex, we set D;(t) as the degree of node i at
iteration time t, then its expectation is a harmonic number, or more precisely for large t

-1 _ t-1
E[D;(0)] = 1 + Z S = (2.42)
=t l
Proof. First of all, we notice the following relation
1
Di(t)+1, wp. -
Di(t+1) = ; . (2.43)

Di (t), w.p. 1-— E

Here, w.p. means 'with probability’. Then we can compute the following conditional expectation by
using (2.43):

E[D;(t + 1)|D;(®)] = Di(¢) + E[D;(t + 1) — D;(6)|D; (1)] (2.44)
= Dy(6) + (1 - % +0) (2.45)

=D;(t) + % (2.46)

12 2. Mathematical Definition and Properties

After that, apply the conditional property to (2.46), we get

E[D;(t + 1|D;(t — 1)] = E[E[D;(t + 1)|D;()]|D;(t — D] (2.47)
= E[D;(®)|D;(t —)] + % (2.48)
=D 1 ! ! 2.49
= i(t—)+m+? ()

Continue to use (2.49) for t — 1 times on E[D;(t)|D;(t — 1)], we get part of our result:
t-1

.=1+Z s (2.50)

t-1
E[D; ()] = E[D;(t)|D; ()] = D; (i) + Z
j=i j=i

~.| =
~.| =

Here by definition, D;(i) = 1. Meanwhile, according to the logarithm increments property of Harmonic

series, we have
< 1 t—1
1+Z]—_~1n . (2.51)
j=i

i
O

Then, we define N (t) = Zle 1p,(t=k» Which means the number of vertices with degree at least k
at time t. Then, with (2.51) we have

t t
Nz (t) ~ Z Lgipt))=k ~ Z L 1y, = ligoper-x ~ te'™ . (2.52)
i=1 i=1 '

Above is a short explanation of the exponential tail of the RRT model. To prove it mathematically, we
need the following definition and theorems.

First of all, define a random proportion of vertices with degree k at time t as follows:

t
1
P.() = 7 Z Ip;t)=k- (2.53)
i=1

Then, we immediately have the following equations

t
Ne(®) =) o = the(t), (2.54)
i=1
E[N(©)] = E[tR(0)] (2.55)

Meanwhile, we write the sigma algebra generated by RRT model at time t as RRT;.

With these definitions, we want to prove the following theorem about the degree sequence in RRT.

Theorem 2.3.10. For RRT model, there exists a unique sequence {p,}y-, with respect to degree k,
and a constant C > 0, such that, ast —» o

Int
P(max P (t) —pk| 2 € /T) =o(1) (2.56)

As a branching process, RRT model still has the special Proposition 2.3.8, and by the relation (2.54)
and (2.55), to prove Theorem 2.3.10, it is enough to prove the following proposition:

Proposition 2.3.11. /n the RRT model, there exists a constant C such that forallt > 1 and all k € N,

[E[N, ()] = tpie| < € (2.57)

2.3. Properties of the Models 13

Then, combine Proposition 2.3.8 and 2.3.11 together, we can easily get Theorem 2.3.10. But at
the beginning, suppose that Proposition 2.3.11 is true, which means that E[N,(t)] = tp;, we first prove
Theorem 2.3.10.

Proof. (Theorem 2.3.10) Again, we split the conditional expectation, which makes a good preparation
for induction.

E[Ng(t + 1)|RRT;] = Ni(t) + E[Ny(t + 1) — N (t)|RRT¢] (2.58)
By definition, N, (t + 1) could be larger, smaller, or equal to N, (t). Thus, the problem is again split into
three different conditions:

* k > 1. The incoming vertex attaches to a node with degree k — 1, which means its degree rises
to k attime t + 1, and N, (t + 1) grows by one. This happens with probability N"‘Tl(t)

* k > 1. The incoming vertex attaches to a node with degree k, which means its degree rises to

k+1attime t + 1, and N (t + 1) decreases by one. This happens with probability —N"t(t).

* k =1. N (t + 1) will grow by one, except the case that the vertex attached to the new node also

has a degree 1. This happens with probability 1 — —Nlt(t).

We can combine the three conditions together. Setting p, = 1, then

Ny _1(t) — N (¢t Ny(t
EIN(t + 1) ~ NeOIRRT;] = 15, O8Oy T, (259)
Ny_1(t) — N, (t
_ N 1()t k(®) (2:60)
Then, apply the tower property of conditional expectation to (2.60),
E[N(t + 1)] = E[N, ()] + E[N,(t + 1) — N, (1)] (2.61)
= E[N, (t)] + E[E[N,(t + 1) — Ni.(t)|RRT:]] (2.62)
Ni_1(t) — N (t
= E[Ne ()] + E[M] (2.63)
t—1 1
= ——E[Ne(D)] + TE[Ne—1 ()] (2.64)
And with assumption of p,, we can get the following equation with respect to (2.64)
Pk = —Dk + Pk-1 (2.65)

Then, we obtain the recursive formula defining the sequence {p; };-,. With the assumption that p, = 1,
we have forany k € N
e =27k (2.66)

The recursive solution is unique. O

After that, we can turn to the proof of the Proposition 2.3.11.

Proof. (Proposition 2.3.11) First define a sequence of variables ¢,:
Then, Proposition 2.3.11 is equivalent to proving that there exists a constant C such that

ml?x|ek(t)| <C. (2.68)

14 2. Mathematical Definition and Properties

To prove (2.68), induction in t is performed.
First of all, according to (2.65), we have the equation below

(t + Dpg = tpx + Pr = tPk — Pk + Pr-1 (2.69)
Then, make a subtraction between (2.64) and (2.69), we get

t
Ek(t + 1) =

€x(t) + %ek_l(t) (2.70)
When t = 1, by definition, the RRT model starts from one node with a self-loop, so
E[Ny(D)] = 1=y =2P(k=2) <2 (2.71)
And we know that 0 < p,, < 1, so we can get the initialization thatatt = 1, and forall k > 1
lex (D] = [E[Ne(D] = pi| < max{E[Ny ()], pi} < 2 (2.72)
This means that claim (2.57) is true when ¢ > 2 fort = 1.

Then, suppose the claim (2.57) is true for any t < T, we want to prove that it is still true fort = T+ 1.
Again apply triangular inequality to (2.70), we getfor T > 1

T—-1 1
lex (T + DI = | —— (M) + pex-a (D] (2.73)
- 1

<| (D + |7 €1 (D) (2.74)

Iyl 2.75

S 7 T (2.75)

=C (2.76)

So by induction, for any t > 0, and k € N, the claim (2.57) is true. O

Then, combining the two propositions together, we can get Theorem 2.3.10. After that, we can say
mathematically for RRT model, the expectation of the number of vertices with degree k at time t has a
light tail.

The next theorem by Devroye in 2012 [10] decribes the convergence of height of RRT.
Theorem 2.3.12. (Height of RRT) Let H, denote the height of RRT at time t, then

Hy
>
logt

e a.s. (2.77)

Chapter 3

Model Simulation

In this section, the simulation process of models above is introduced. According to the definitions
of these random trees and pseudo code 1, it becomes key points to establish the fitness sequence.
Python is used to make the simulation, and codes are attached in the appendix. It is clear that the
process is divided into three parts: initialization, loops, and visualization. We mainly focus on details
of the loops in this section. Additionally, intuitive images of random tree models are also shown in this
section. Most images are composed of 1000 vertices colored red and several edges colored blue. A
thousand could be a proper quantity, because more nodes are too crowded in an image, and fewer
nodes cannot show well the scale-free trend.

First, some packages are used in the simulation and visualization process. Numpy is used for
handling data, Matplotlib is used for visualization, Seaborn is used to generate empirical density curves,
Collections is used for counting, Math and Scipy can be used for complex computation, Random is used
to generate random numbers from some specific distribution, and finally Networkx is used to build the
graph. Then, some important variables in the program are also introduced in advance. In all programs
in the appendix, T denotes the largest iteration steps, deg denotes the degree vector based on the
nodes of random graph at time ¢, fit denotes the fithess vector based on the nodes of random graph
at time t, prob denotes the vertices’ weight vector which indicates the possibility of each node to get a
new edge, index gives the node to which the new vertex attaches itself, and G means the whole graph.
By using these variables, we can describe the models above.

3.1 Selection Function

One of the key points of the simulation procedure can be the choice of new edges. We write a single
file A in the appendix with 2 selection functions inside. Both of the functions aim to select a node as
the parent of a new node to construct a new edge according to the probability sequence.

The first function in line 12 is named random-pick with two variables: a list, sequence, and an
array, probabilities. Here the elements in sequence are nodes of the random tree, and elements of
probabilities are the probabilities of these nodes to be selected as the parent of a new node, i.e. ifi € V;
is a node of some random tree, and p is its corresponding element in probabilities, then p = f(i)D;.
Let P denote the sum of the probabilities vector. We first pick a random value x uniformly from the
interval [0, P] and initialize a parameter, cumulative probability, as 0. In the loop, item is a variable to
run through the list sequence, and meanwhile, item-probability spans the selection array probabilities.
Then, the loop can be described as follows:

item

cumulative probability = Z fG)D;.
j=1

Once the cumulative probability is larger than the random value x, then the output is the item where
the loop stops.

15

16 3. Model Simulation

The second function in line 23 is named random-picks with the same variables. The function makes
random selection in another way, where the choice function from the random package is used. We
establish a table by traversing the elements in list sequence and array probabilities. As shown in line
24, for each element x in list sequence, there is a natural number y € probabilities, which denotes
denotes the multiplicity of x € sequence in the table. Then, by using choice function, we uniformly pick
an element from the table. Compared to first function, there is a drawback of the algorithm that the
probabilities vector should only contain positive integers.

3.2 Preferential Attachment Model

The program in Appendix B simulates the standard PAM with Definition 2.1.1. The figure 3.1 below
provides an intuitive view of a PAM with 1000 vertices.

stdPAM graph visualization

Figure 3.1: Simulation of standard Preferential Attachment Model

It is clear to find out an origin and some 'important’ nodes with higher degrees than other nodes,
which indicates a significant scale-free feature. A new node tends to attach itself to an old node with
larger degree rather than an end of a branch. The figure comes from the following process.

In the program line 22, we first initialize the degree vector as zeros with a size of T. By algorithm
1, the degree of the first node should be 2 (self-loop). Then, we set up a blank graph. In line 30, the
fithess sequence is initialized as ones, by Definition 2.1.1. After that, the probability sequence is also
initialized as zeros, and the first element is again assigned as 2, the result of fithess times degree.
In the following part, line 41 defines some useful variables, including a vector ind, the distance between
each node and the origin. Here, the maximun of ind shows the height of the random tree.

Then it turns to the loop in line 44, the most important part of the simulation procedure. First, it is
essential to transfer the array range(t + 1) into a list in order to be inserted into the random-picks func-
tion. Then it follows a condition structure to find out the index by using the random selection functions.
We have to specially consider the t = 0 condition, simply because in this case, prob|[0] is a single el-
ement, and we should convert it into an array manually. Now that we have got the index, the selected
parent of this loop. According to Algorithm 1, the degree of the chosen node increases by one, and the
degree of the new node becomes one. Then in line 54 and 55, the new node and edge are added to
the graph G. And the height mark ind of a new node is marked one more than its parent’s value. Again
in line 57, a sub-loop is conducted to update the prob vector as the multiplication of degree values and
corresponding fitness values.

3.3. Random Recursive Tree 17

The output of the program includes deg, the degree sequence of the random tree, fit, the fitness
sequence of the random tree, and max(ind), the height of the tree. It also outputs a number of figures,
but those are left for the discussion section.

3.3 Random Recursive Tree

The program in Appendix C simulates the standard PAM with Definition 2.1.2. The figure 3.2 below
provides an intuitive view of a RRT with 1000 vertices.

RRT graph visualization

Figure 3.2: Simulation of Random Recursive Tree

In the figure 3.2, it is easy to notice some branches structure, but it is hard to find the origin. That
means RRT almost loses the scale-free feature. By definition, a new node has equal probability to
attach it self to any old node. The figure is simulated from the following procedure.

In the program, it is clear that most steps are the same as PAM. Actually, by definition, the only
difference among the random tree models in this paper is the generating method of fithess sequence.
In line 29, the selection probability sequence prob is defined as ones and deterministic, which means
all the vertices share the same possibility to connect the new node. We write down the vector fit in
line 33 in order to make a record of the fitness sequence and its trend. Comparison is made in the next
section. It is worthy to mention that in RRT, the fitness values become decimals, so that we use a data
type float64 for storage(line 33).

3.4 Bianconi-Barabasi Model

The BBM is a kind of model with a fithess sequence following some fixed probability distribution v. In
this paper, we take the exponential distribution with parameter 2 and standard uniform distribution as
examples of v to show intuitive images and common features of the BBM. The simulation programs in
Appendix D are almost the same, so we combine them together to make comments as follows.

As mentioned, the difference from the PAM is the fitness settings. According to Definition 2.1.3 and
equation (2.6), v; ~ Exp(2) and v, ~ Uniform[0,1]. Thus, in line 30, random function in the Numpy
package is used to generate a sequence of random numbers with the probability distribution mentioned
above. Then, it follows the same procedure as PAM.

18 3. Model Simulation

BBM_exp2 graph visualization BBM_uni graph visualization

(a) Simulation of Bianconi-Barabasi Model with Expo- (b) Simulation of Bianconi-Barabasi Model with standard
nential(2) fitness distribution uniform fitness distribution

Figure 3.3: Simulation of Bianconi-Barabasi Model

Figure 3.3 gives an intuitive view of both BBMs with 1000 vertices. Compared to the standard
PAM figure 3.1, the BBM with uniform distribution seems less scale-free, but the BBM with exponential
distribution shows stronger scale-free phenomenon. Details are not discussed in this paper, but we
can give some intuitive mathematical explanation. Suppose f.,, ~ v; and f,,; ~ v,. According to
Theorem 2.3.5, the tail exponent of BBM is proportional to f~*(t). Although f,,, and f,,; have the
same expectation i.e. E[fexp] = E[funi] = % fexp has more probability to choose a value close to zero
than f,,;. By reverse, the tail exponent of BBM with exponential distribution tends to become larger

than that of BBM with uniform distribution. That coincides with Bianconi and Barabasi’s results that the
distribution strongly influences the power-law of degree sequence [4].

3.5 Recursive Fithess Model

Similar to the BBM, the RFM also represents a kind of random trees which have a recursive fitness
sequence. In this part, we would like to take three special models as examples to show the simulation
process, as well as the intuitive features. The first model is the Plus-1 Model. Given the Definition
2.1.4, the recursive function of Plus-1 Model is

f@®) =fE®)+1. (3.1)
The second tree is the Plus-i Model, which has a recursive law as
f(@©) = f(m() + m(D). (3.2)
And the last tree is the Times-2 Model, which has a recursive law as
f@©) =2f(m(®). (3.3)

The Plus-1 and Plus-i models are recursively additive processes, but the Times-2 model is a recursively
multiplicative process. Also, Plus-1 and Times-2 models use a constant in the recursive formula, but
the Plus-i model uses a variable instead. In a nutshell, the three models can be the representatives of
RFM, and show some common features. Even though the recursive processes of the three models are
quite simple, it is impossible to analytically find out a mathematical formula of the degree sequence of
these models. Hence, it is important to make such simulation as follows.

From Appendix E, one could find the programs of RFMs. It can be seen that all the procedures are
the same as PAM except the assignment of fitness values. Around line 57 or 59 in the loop of the three
programs, the fitness of Plus-1 Model increases by one according to equation (3.1), the fitness of Plus-i
Model increases by the number of index according to (3.2), and the fitness of Times-2 Model doubles
according to (3.3).

3.6. Inverse Model 19

Figure 3.4 shows the intuitive images of the three models. The Times-2 image consists of only
170 vertices because not of time complexity but the computer memory. The running computer is a
HP Zbook g5 with a 6-core Intel i7-8750H 2.20GHz CPU, 16GB RAM, and x64 system framework.
However, the computation requirement of the Times-2 Model increases to an exponent power. If 1000
nodes is set, the largest fitness value could be estimated between 21°° and 21°°° both of which require
a cache space more than 100. That is far more than the ability of the computer.

Look back at the figures. It is clear that three models are still scale-free, but the Plus-i Model seems
to be the least scale-free and close to the RRT figure 3.2. Details are discussed in the next Section.

Plus-i graph visualization +i graph visualization

(a) Simulation of Plus-1 Model (b) Simulation of Plus-i Model

Times-2 graph visualization

(c) Simulation of Times-2 Model

Figure 3.4: Simulation of Recursive Fitness Model

3.6 Inverse Model

In this paper, the Inverse Model mainly refers to the PAMinv. By Definition 2.1.5, the fitness values of
PAMinv are the reciprocals of expectation of the degree values of PAM. By doing so, we aim to find a
model with some smaller tail exponents than benchmarks. In Section 2, the expectation of the degree
sequence of standard PAM over time t has been calculated in Theorem 2.3.3. It is easy to combine
them together and get the formula of fithess sequence.

For the PAMinv, the fitness value of node j at iteration time t is as follows.

I'(t + 0.5 ()
L+ DG —0.5)

fe(G) = (3.4)
One can find the corresponding expression in the program in Appendix F line 61. Because of the
reference rule of Python, we uset = t+1andj =j + 1 in the code. In the same line, we use a special
function gammaln from the Scipy package instead of the direct function gamma. The reason to do
so is still on the time complexity. It is well acknowledged that Gamma function (or factorial function)

20 3. Model Simulation

consumes greatest time in numerical computation, and that is why the running computer breaks down
when the iteration goes to around 200 by using gamma function. However, the gammaln function uses
the asymptotic expansion (2.20) to reduce the time complexity, and hence we can handle the case with
over 10000 iterations. Then, the formula transfers to

fi(H) =exp(nT(t+0.5) +InT() —InT(t + 1) —InT({ — 0.5)). (3.5)

The equation (3.5) is equivalent to the expression in the line 61.

PAMinv graph visualization RRTplus graph visualization

(a) Simulation of Preferential Attachment Inverse Model (b) Simulation of Random Recursive Inverse Tree

Figure 3.5: Simulation of Inverse Models

Figure 3.5 shows the intuitive images of the PAMinv. Hardly can we observe the scale-free feature
from the images. But the clustering trend still shows differences from the RRT model, which means the
tail exponents of the two models might be larger than RRT but smaller than the PAM. More evidence
would be discussed in the Section 4 to support the conjecture.

Chapter 4

Results and Discussion

A person can be described by his/her weight, shape, hair color, and so on. Similarly, a random tree also
has its characteristics. In this section, we mainly focus on four features of random trees, including the
degree sequence, the fitness sequence, the N, sequence, and the height sequence. The behavior of
the four sequences largely determines the shape of arandom tree, whether it is scale-free or not. Plenty
of figures are put up in order to give an intuitive explanation of the convergence, and comparisons are
conducted between different models with benchmark models as RRT and PAM.

Most figures are plotted from models with 10000 iteration steps. In other words, here are results from
random graphs with 10000 vertices, and the sample could be large enough to support the following
conclusions. However, there are still some exceptions in the RFM cases. For the same reason in the
Section 3, the Plus-i Model can be simulated only up to 2000 nodes, and the Times-2 Model has only
130 nodes. 130 is a relatively small number to show some unique features of Time-2 Model, but that
is enough to show some common characteristics of the RFMs together with Plus-1 and Plus-i Model.

4.1 Degree Distribution

The degree distribution mainly refers to the distribution of degrees of nodes of random graphs at time
T (T = 10000 unless otherwise stated). Deep researches on benchmark models in this area have
been almost fully conducted, so results related to the PAM and RRT do not appear in this part. We are
highly interested in the degree sequence behavior of models with dynamical fitness values, including
the Bianconi-Barabasi Models, the Recursive Fitness Models, and the Inverse Models. Results in this
part respond to the mathematical deductions in Section 2 whether a model’s degree sequence follows
a power-law. Obviously, the degree of a random graph D;(j) has two variables: the iteration time ¢ and
Jj, the node of graph. Normally, the degree distribution in this part refers to the equation (1.2). However,
the degree sequence over time t for some fixed node is sometimes also important and shows some
properties of random graph.

21

22

4. Results and Discussion

10000

BBM_exp2 degree sequence

10000

BBEM_uni degree sequence

8000 8000

6000

2]
]

Freguency
Freguency

4000 4000

2000 2000

o 200 400 B00 800 o 200 400 600 800 1000
degrees degrees

(b) Degree Histogram of Bianconi-Barabasi Model with stan-
dard uniform fitness distribution

(a) Degree Histogram of Bianconi-Barabasi Model with ex-
ponential(2) fitness distribution

Figure 4.1: Degree Histogram of Bianconi-Barabasi Model

BEM_exp2 Degree scatter BBM_uni Degree scatter

* 1P { o k
® BEM expZ degree scatter ® BEM_uni degree scatter
10° . ® o0,
L]
10
no wn
310 '™ 3
on on
at a
[=] [=]
10t
10t
-
- —
107 N 107 ——
107 10t 10¢ 10° 10 107 10t 10° 10° 10

T-number of iter T-number of iter

(b) Degree Scatter of Bianconi-Barabasi Model with stan-
dard uniform fitness distribution

(a) Degree Scatter of Bianconi-Barabasi Model with expo-
nential(2) fitness distribution

Figure 4.2: Degree Scatter of Bianconi-Barabasi Models

Figure 4.1 and Figure 4.2 show basic features of Bianconi-Barabasi Model. We first plot the fre-
quency histograms of two BBMs in Figure 4.1. From both pictures, it is easy to see that nodes in BBM
tend to have small degrees rather than a large degree, which means a node in BBM has only few
neighbors. That is nice, but it is not enough to say the BBM escapes the power-law. Comparing the
two figures in Figure 4.1, one can also notice that the largest degree of BBM with uniform distribution is
much smaller than that of the BBM with exponential distribution. We also see that there is one node in
BBM with exponential distribution with more than 4000 children, and this is a sign of scale-free feature.
Then, it is necessary to look at the trend of the degree sequence. We make a log-log plot of de-
gree sequences of both BBMs over the nodes (base is 10). In log-log plot, it is clear to see a tail
exponent as the slope of a line, i.e. a power function y = x¢ is transformed into a linear function
logy = y' = ax’ = alogx in a log-log figure. In both figures of Figure 4.2, it is clear that the scatter
points of degrees shape as a line, which means the two BBMs’ degree sequences follow some power-
law. And this results coincides with the conclusion by Barabasi [4]. However, it is not essential to find
out the precise tail exponent of these models. By Theorem 2.3.5, in BBMs, the tail exponent depends
on the reciprocal of the fitness value, f~1(j), which means it may vary from node to node.

4.1. Degree Distribution

23

Plus-1 degree sequence Plus-i degree sequence
10000 1
1750
8000 - 1500
1250
= 6000 4 =
£ £ 1000
g g
&= 4000 4 = 750
500
2000 1
250
0 r r T r 0- ; T r r
0 10 0 0 a0 50 0 5 10 15 20 =
degrees degrees
(a) Degree Histogram of Plus-1 Model (10000 nodes) (b) Degree Histogram of Plus-i Model (2000 nodes)

Times-2 degree sequence

100 A

Frequency

20 4

2 4 5] 8 10 12
degrees

(c) Degree Histogram of Times-2 Model (130 nodes)

Figure 4.3: Degree Histogram of 3 examples of Recursive Fitness Models

24 4. Results and Discussion

Plus-1 Degree scatter Plus-i Degree scatter
R R 10° . R R
----- regression line ==+ regression line
@ Plus-1 degree scatter @ Plus-i degree scatter

1079 o

10!

Degrees
Degrees

10t

10°

100 =

107 10t 10° 10° 10% 107 10t 10° 10°
MNodes of graph at time T MNodes of graph at time T

(a) Degree Scatter of Plus-1 Model (10000 nodes) with (b) Degree Scatter of Plus-i Model (2000 nodes) with re-

regression slope -0.6099864496694771 gression slope -0.6129365038829095
Times-2 Degree scatter PAM Degree scatter
S regressicn line . ----- regression line
. . @ Times-2 degree scatter 107 . ® PAM degree scatter
100 LI ™
o
..
o
n [1T] i
o ey o
2 T 10t
[a _ [a]
10° —— 10° ——
10° 10t 17 10° 10t 10° 10° 10*
Nodes of graph at time T Nodes at time T

(c) Degree Scatter of Times-2 Model (130 nodes) with re- (d) Degree Scatter of Preferential Attachment Model with
gression slope -0.6059477221731087 regression slope -0.6064811008550601 (10000 nodes)

Figure 4.4: Degree Scatter of 3 examples of Recursive Fitness Models and Preferential Attachment Model as benchmark.

At first, it is essential to mention that with the proof of Theorem 2.3.8, it is worthy to put energy on
the degree sequence. Otherwise in case of deviation of degree sequence, we cannot find the trend
of models. Figure 4.3, and 4.4 show basic features of Recursive Fitness Model. Similar to the BBMs,
the nodes of 3 RFMs at time T also tend to have small degrees. However, the largest degree of RFMs
becomes smaller than BBMs, despite the smaller sample size. This common phenomenon means for
RFMs, most nodes attach themselves to few neighbors, but a small quantity of vertices would have
larger degrees. This directly leads to a scale-free feature. The point will be tested again by the N,
sequence.

Then, we plot the log-log Degree-Nodes scatter figures of the RFMs and PAM as benchmark in
Figure 4.4. Regression lines are added to these figures to make analyses on the tail exponents and
asymptotic results of RFMs. Obviously, one could find the slope of regression line of PAM is around
—0.6, but it should be —0.5 according to Theorem 2.3.3. This is not a contradiction, simply because

1

it is mentioned as an expected value in Theorem 2.3.3 and the (%)5 is also an asymptotic result over
iteration time t. Figure 4.7 and 4.4 are plotted from only 10000 or fewer nodes, and the sample could
be too few to reach the limitation. Also, we make the regression line based on all the nodes of RFMs
and PAM, which means some outliers may make sense. But in a nutshell, the regression lines produce
a glance of the power-law of the degree sequence of the RFMs. Compared to PAM, the slope of the
regression lines of RFMs seems to have little fluctuation. This means the degree sequence of RFM
would have a power-law almost the same as PAM, i.e. DRFM(j) ~ jHram,

Additionally from the Figure 4.4, the degree sequences of RFMs are plotted from 102 nodes to 10*
nodes, but get almost same regression slope. Since we do not know a lot about the Recursive Fitness
Models, it is reasonable to give the following conjecture:

4.1. Degree Distribution 25

Conjecture 4.1.1. For all Recursive Fitness Models with an increasing recursive function, their degree
sequence follows some power-law, i.e. there exists some positive constant c = c,,(Model) depending
on the RFMs and a positive constant u = urpy, Such that for some fixed time t

DEFM () ~ emj™*

This result shows great difference from BBM. All the results except for the conjecture will be dis-
cussed in N, sequence part as well.

PAMinv degree sequence PAMinv Degree scatter

e regression line
8000 1P @ PAM degree scatter

Degrees

10t

Frequency

2000

10°

0 5 10 15 0 5 0 1w 0t 107 10° 10¢
degrees Modes of graph at time T

(a) Degree Histogram of Preferential Attachment Inverse (b) Degree Scatter of Preferential Attachment Inverse

Model Model with regression slope -0.5949249127652172
PAM Degree scatter
e regression line
s o ® PAM degree scatter

10 .-.._~
H
nEJ' 10t
fal

L]
-—
107 —

107 10t 10° 10° 10
Nodes at time T

(c) Degree Scatter of Preferential Attachment Model with
regression slope -0.6064811008550601

Figure 4.5: Degree Figures of Preferential Attachment Inverse Model and benchmark

Figure 4.5 shows basic features of Preferential Attachment Inverse Model with PAM here as a
benchmark. Figure 4.5a indicates the common phenomenon that most nodes in PAMinv get a small
degree, and the higher degree values are, the fewer nodes get the degree. Moreover, the largest de-
gree becomes significantly smaller than the PAM and RFMs, which could be an important hint on the
shape of a tree. There should be at least a core in a tree with a large number of neighbors, if the tree
has a big maximum degree value. But it is still far from saying about the scale-freeness.

We then plot the log-log Degree-Nodes scatter figures of Preferential Attachment Inverse Model and
PAM together with regression lines in Figure 4.5. The regression slopes indicate that the asymptotic
degree sequence of PAMinv might be the same as the asymptotic of PAM, since both have the same
regression slope. However, as one can notice in Figure 4.6b, the degree sequence of PAMinv does
not agree with the degree sequence of PAM for the first several nodes. This contributes a deviation
against the regression line. The scatter points cannot form a straight line but a curve in the log-log plot,
which means that there might be some other addition in the relation of D;(j), i.e. there exist a positive
parameter cp; = cp;(T) > 0 depending on iteration time T, and a positive constant 1 > 0, such that for

26 4. Results and Discussion

fixed time T, the degree sequence of PAMinv {D; (j)}]T-=1 satisfies

Dr(j) ~ cpi(T)j ™ +0(G7H). (4.1)

In RFMs, considering Figure 4.4, it appears that the second term o(j™#) turns zero for a large node,
so the scatter points form a straight line in log-log plot figures, but for PAMiny, the final element makes
great sense to escape from the line into a curve. However, in asymptotic cases, the o(j7#) becomes
negligible, and shows the regression slope as above.

degree scatter degree scatter
& RRT degree scatter & RRT degree scatter
17 @ Plus-1 degree scatter @ PAMinv degree scatter
@ Plus-i degree scatter 10 PAM degree scatter
* 200 PAM degree scatter
® o0
L] =
Q 10 L N T \‘&‘_‘ § * oae
& LT 5. " ®ee
& [& 10
-_— - ’
|) P | -
10° —— -
10°
10° 10! 10° 10° 10 10° 10! 107 10° 1
Nodes of graph at time T Nodes of graph at time T

(a) Degree Scatter of Recursive Fitness Models and (b) Degree Scatter of Preferential Attachment Inverse
benchmarks Model and benchmarks

degree scatter

@ RRT degree scatter
PAM degree scatter

degrees

® o0
g H

10°

107 1t 107 107 10
Nodes of graph at time T

(c) Degree Scatter of benchmark models

Figure 4.6: Degree Sequence Comparisons

In Figure 4.6, comparisons are made among different kinds of models, and PAM and RRT as bench-
mark models are also plotted together. Regression lines do not appear in this figure in order to make it
clear. One can refer to previous figures to check the asymptotic results. The BBMs also do not appear
in this comparison part, simply because the degree sequence properties of BBM have already been
adequately discussed in other papers, such as the one by Bianconi and Barabasi [4].

Basically, as shown in Figure 4.6a, marked blue, the degree sequence of RRT has an exponential
tail, which is different from any other model mentioned in this paper. There is an intersection between
RRT and PAM in Figure 4.6¢, and the two models also have different asymptotic properties. In Figure
4.6a, two representatives of RFM, Plus-1 and Plus-i, are shown as red line and green line. Putting
them together, it is clear that the yellow line almost covers the red line after the first some nodes, which
means the degree sequence of Plus-1 Model should have similar tail exponent as PAM. One could
notice that the green line is a bit lower than the red and yellow lines, but follows almost the same trace.
This is because of the fewer nodes to plot the Plus-i Model due to the computer memory. Neither of
these RFMs goes close to the RRT.

In Figure 4.6b, PAMinv is plotted to show the difference. It is not very clear that the tail of PAMinv lies
between RRT and PAM or covered by the PAM. But the initial part of red line imitates the trend of blue

4.2. Fitness Distribution 27

line, which means for initial nodes, the attachment selection of PAMinv should be almost uniformly at
random from previous nodes. But later PAMinv gets close to the PAM process.

4.2 Fitness Distribution

In the Section 3, it is introduced that the program also outputs a fitness sequence fit. Normally, the
fit denotes the fitness values of each node at time T (T = 10000 in most cases). Depending on
the models, the fithess values of a node become a constant drawn from some fixed distribution or
a recursive function, and will not change overtime or vary over iteration steps. There are a lot of
researches on constant (PAM) and fixed distribution (BBM) cases, so we focus on the models with
time-varying fitness. Thus, results from RFM and PAMinv are put up in this part, and we ignore the
PAM, RRT, and BBM results here.

Plus-1 fitness sequence Plus-1 fitness distribution
2500 0.30 4

2000 4

s
Ln
=
=

-
2 Z
u w
g g 015
& 1000
010
5001 0.05
0- 0.00 ; ; ; ;
o 5 10 15 20 o 5 10 15 20
Fitness Fitness
(a) Fitness Histogram of Plus-1 Model (10000 nodes) (b) Fitness Distribution of Plus-1 Model (10000 nodes)
Plus-i fitness sequence Times-2 fitness sequence
100
800 4
a0 1
& 8001 ol
] T
3 3
£ 400] g
= £ g0
200 4 10
0- 0
o 5000 10000 15000 20000 o 2500 5000 7500 10000 12500 15000
Fitness Fitness
(c) Fitness Histogram of Plus-i Model (2000 nodes) (d) Fitness Histogram of Times-2 Model (130 nodes)

Figure 4.7: Fitness Histogram of 3 examples of Recursive Fitness Models

Figure 4.7 are 3 histograms and 1 distribution of fitness sequence of 3 examples of RFMs at time T.
We plot the frequency of fithess values of the 3 models. Fitness of Plus-1 Model suggests a Gaussian
distribution with a median of around 12, while in the other two models, the fitness values follow some
other distributions with a high density towards zero. In the Plus-1 Model, the phenomenon means
most nodes get a height of 11, and fewer nodes get a height around 11. This coincides with the height
distribution in Section 4.4. Then, for the Plus-i model, one can notice a second peak around fitness
value 7500. According to the model, this means quite a few nodes tend to attach themselves to some
specific parent with some special fitness choice. This phenomenon still links to a scale-free feature.
Combining Figure 4.7b,c together, we can see that most nodes have small fitness values (less than
1000). By Definition 2.1.4, this means new nodes still tend to surround the original node (with a fitness
value 1), and could be the reason why RFMs are still scale-free models.

28 4. Results and Discussion

PAMinv fitness sequence

1750

1500

1250

Freguency
1]

7 g

(=] (=]

500

0.4 0.6
Fitness

Figure 4.8: Fitness Histogram of Preferential Attachment Inverse Model at time t

Figure 4.8 provides all the information about PAMinv fithess sequence. As Definition 2.1.5, the
PAMinv has a time-varying fithess sequence. The left figure shows the fitness sequence of each node
attime T, and the right figure shows the fitness sequence of original node fromtimet =1tot =T. We
plot the frequency of fitness values in the left figure, where one can clearly notice a ’triangle’ between
0 and 1. Since the reciprocal of the expectation of D, (i) is applied in this model, the distribution strictly
coincides with the equation (2.19), if we compute i = 1,2, ..., T.

4.3 N, Sequence

N, (t) refers to the number of vertices of a random trees with degree number k at time t. The following
equation gives the relation between N, and D(j) at time t.

t
Ny = Z Lo (=ky (4.2)
=1

By Theorem 2.3.1, the N;, sequence of PAM has a tail exponent of -3. For BBMs, RFMs, and even the
PAMinv, the sequence of Ne® can be simulated, and the limiting behavior of N"T(t) can also inferred from
the simulations. Many researches have been done on the BBMs, so in this part, we mainly focus on the
N, sequence behavior of RFMs and PAMinv. The N, sequence comes from the degree sequence, and
as a consequence, the N, sequence responds to properties of models shown by the degree sequence.

Nk/t-k log-log plot

107
= RRT

PAM

107!

1072

1073

Nkft-number of nodes deg over k at time t

=

=
1
I

100 10! 107
k-degrees

Figure 4.9: N, Distribution log-log plot of PAM and RRT

Although it is not the key point in this paper, we still put the benchmark models here to show some
standard data. Similar to the degree sequence, the RRT outputs the blue curve in the log-log plot. On
the other hand, the orange line represents the PAM and shows a regression slope around -2.5 out of
the same reason in the degree sequence part. -3 should be an asymptotic value for a large iteration

4.3. N, Sequence 29

time t and node j, but apparently 10000 is not large enough, Due to the computer memory, it is not
applicable to run a huge amount of iteration numbers, so we just set the slope as the basement value
of comparison.

BBM_exp2 Nk/ft-k loglog plot BBM_uni Nkjt-k loglog plot

107 100
1t 107t

z -2

Z 10 ; 10
102 1073
107 1074
10° 10t 107 10° 107 10t 107 10°
k-degrees k-degrees

(a) Ny Distribution log-log plot of Bianconi-Barabasi Model (b) Ny Distribution log-log plot of Bianconi-Barabasi Model
with exponential(2) fitness distribution with standard uniform fitness distribution

Figure 4.10: N;, Distribution log-log plot of 2 examples of Bianconi-Barabasi Models

As shown in Figure 4.10, N, sequences of both BBMs with exponential and standard uniform fitness
distribution have a heavy tail. Compared to the BBM-stduni, the figure of BBM-exp shows a convex
curve rather than a straight line, which indicates a larger tail exponent. It is unclear to make comparison
through the two figures, Figure 4.10a and b. Thus, we turn to the Figure 4.14a. This picture shows that
the tail exponent of N, sequence of BBMs strongly resembles that of PAM. However, significant different
could be seen between two BBMs. Bias toward PAM become clear for the BBM with exponential fitness
distribution. As shown in Bianconi and Barabasi’s paper [4], the tail exponent of BBMs varies with the
fithess distribution.

30

4. Results and Discussion

Plus-1 Nkjt-k scatter

Plus-i Nk/ft-k scatter

a
10 .. e regression line 1w . ----- regression line
& Plus-1 Mkt & Plus-i Nigt
107 . e,
10!
. .
) .
102 e *
e e e "
. 107 ®eoe
103 .3 ., @
wrs .
[o] . LR
107 o000 10 “we
& Sé. @
10° 10t 10° 10t
k-degrees k-degrees

(a) Ny Scatter of Plus-1 Model (10000 nodes) with regres-
sion slope -2.4843674772247915

(b) Ny Scatter of Plus-i Model (2000 nodes) with regres-
sion slope -2.3760571002731883

Times-2 Nk/ft-k scatter

. ----- regressicn line
e Times-2 Nkt
L]
10t ' .
g ‘.
“o.
b []
..
102
L] LN
10° 10t

k-degrees

(c) Ny Scatter of Times-2 Model (130 nodes) with regres-
sion slope -2.0720278195132433

Figure 4.11: N, Scatter of 3 examples of Recursive Fithess Models

4.3. N, Sequence 31

Plus-1 Nkjt-k loglog plot Plus-i Nk/t-k loglog plot

a
10 — Plus-1 Nkt loglog 009 —— Plus-i Nit loglog

----- regression line e s+ regression line

10t
107t

107*

M/t

107
10

1073

10

107 10t 107 10t
k-degrees k-degrees

(a) N Distribution log-log plot of Plus-1 Model (10000 (b) N, Distribution log-log plot of Plus-i Model (2000
nodes) nodes)

Times-2 Nkjt-k loglog plot

— Times-2 Nkt loglog
----- regression line

10t

Mkt

1072

10° 10t
k-degrees

(c) Ni Distribution log-log plot of Times-2 Model (130
nodes)

Figure 4.12: N, Distribution log-log plot of 3 examples of Recursive Fitness Models

Figure 4.12 and 4.11 show some basic features of RFMs. In both figures, we plot the regression line

and the slopes are labelled in the captions. As for the slopes, the Times-2 model has a large fluctuation
period, if running programs for several times. The reason might be the small quantity of simulation
points. Thus, the slope of Times-2 Model will not be taken into consideration. But even looking at
the remaining two models, the regression slopes are quite close to the PAM, but a bit smaller. This
highly coincides with the results shown in degree sequence part: the RFMs have almost the same
tail exponent as PAM. But the RFMs might have a heavier tail than PAM, according to the regression
slopes in Figure 4.11. The result is reinforced in the comparison part by Figure 4.14.
Still in Figure 4.11, together with Figure 4.12, some new results can be reached. One could notice that
the regression slopes of RFMs might change a lot when choosing a totally different iteration number ¢.
As we use the N, /t as the dependent variable, this means that the variable N, (t) can be split into a
function of t and a function of k, where the function of t has a power over or below 1. In other words,
we can make such conjecture:

Conjecture 4.3.1. For all the Recursive Fitness Models with a non-constant increasing recursive func-
tion, the number of nodes with degree k at time t can be defined as the composition of two independent
functions | and g:

Ne(t) = () g(k), where I(t) = t%, a>0,a# 1

32 4. Results and Discussion

PAMInv Nk/t-k scatter PAMinv Nk/t-k logleg plot
) S R regression line 100 —— PAMinv Nk/t loglog
1w . & PAMinv Nkt ----- regression line
. B
107 . 10
.
o
; . . ; 1072
10- L.
.._ .
ee
""--._o 07*
3
1w .
®
L J . 10-%
10° 10t 10° 10t
k-degrees k-degrees

(a) Ny Scatter plot of Preferential Attachment Inverse (b) N, Distribution log-log plot of Preferential Attachment
Model with regression slope -2.834284686143112 Inverse Model

Figure 4.13: N, sequence plot of Preferential Attachment Inverse Model

Figure 4.13 shows some basic features of PAMinv. First, it is clear that the regression slope is a
bit larger than the PAM, which means the N, sequence of PAMinv would have a lighter tail than PAM.
This also coincides with the results in degree sequence part. Second, one may notice that the slight
concavity of the curve in the log-log plot of PAMinv. Compared to the regression line, the blue curve is
rather concave. The special phenomenon leads to a polynomial of N, function, i.e. the expression of
equation (4.1) is once more hinted at.

Nk/t-k log-log plot Nk/t-k log-log plot
o — mRT w100 — BRT
E —— BEMexp E — Plus-1
" —— BBMuni w —— Plus-i
- 3
g w0 PAM = 107 PAM
=] =3
(=] [=]
o o
5 -]
01072 g 1072
= =
2 2
k=] B
510 5 10
E E
=3 =2
c g
; 10 ; 107
10° 1t 10 10° 10° 1t 1
k-degrees k-degrees

(a) Ny Distribution log-log plot of Bianconi-Barabasi Mod- (b) Ny, Distribution log-log plot of Recursive Fitness Models
els and benchmarks and benchmarks

Nkjt-k log-log plot

w 10° — RRT
g —— PAMinv
=] PAM
= -1
5 10
=3
(=]
on
LE}
=1
0 1072
=
a
5
s
5 10
E
=2
£
g 107*
10° 10t 10
k-degrees

(c) N, Distribution log-log plot of Preferential Attachment
Inverse Model and benchmarks

Figure 4.14: N, Distribution log-log plot Comparisons

4.4. Height of Random Trees 33

In Figure 4.14, comparisons are made among different kinds of models, and PAM and RRT as
benchmark models are also plotted together. In Figure 4.14a, the two BBMs lie in each side of PAM
line, which shows that the N;, sequence of these two BBMs has a heavy tail almost the same as PAM.
In Figure 4.14b, the Plus-1 and [lus-i Models largely imitate the path of PAM line and end up to the left.
This also indicates a heavy tail of RFMs and approximately equal tail exponent to PAM. Due to the fact
that different models may have different tree sizes, for example, the Plus-i Model, N, sequence cannot
be compared directly. However, the division of N, by t makes the element comparable among models
despite different sample sizes. In Figure 4.14c, the PAMinv line lies between RRT line and PAM line
from beginning to end. This could be an interesting phenomenon which can be summarized in the
following conjecture. These conclusions highly coincide with the results given by degree sequence in
Section 4.1.

Conjecture 4.3.2. The tail exponent of Preferential Attachment Inverse Model (PAMinv) lies between
that of Preferential Attachment Model (PAM) and the exponential tail.

4.4 Height of Random Trees

Height is another important special feature of a random graph. By Definition 2.3.2, the height H; de-
scribes the length of a tree. Intuitively, from the figures in Section 3, with similar Algorithm 1, a tree
with a smaller height tends to have larger branches , which means to be less scale-free. Thus, it is
essential to take a view of the increments of the heights of our models. All the results in this section
refer to simulations. Some conjectures are also included in this section, but further arguments would
be left for later researches.

PAM Tree Height over Iteration RRT Tree Height over Iteration

1 75

12 150

L 0 » 125
<4 B

5 8 5 100
£ E

3 6 3 7s
= =

4 50

2 25

0 2000 000 5000 8000 10000 0 2000 4000 5000 8000 10000
T-number of iter T-number of iter
(a) Height of Preferential Attachment Model (b) Height of Random Recursive Tree

Figure 4.15: Height of Benchmark Models

The Figure 4.15 shows the height-iterative steps relation for the benchmark models, PAM and RRT.
In both figure a and b, we plot the height of PAM and RRT over 10000 iterations, which equals 10000
nodes in the graphs. As shown in both figures, the height of PAM and RRT has staircase increments,
which means the models do not prolong themselves during some time. In the first few iterative steps, the
height roars fast, but later the height slows down to climb the stairs. This shape indicates a significant
logarithm function over the iteration steps, and the result undoubtedly coincides with Theorem 2.3.4
and Theorem 2.3.12. Compared to PAM, the RRT has a maximum height at around 18 with 10000
iterations, which is a bit larger than 14 of PAM. Here we can make a conjecture justified by the previous
simulations:

Conjecture 4.4.1. (Height of PAM Vs RRT) The coefficient c, in Theorem 2.3.4 could be smaller than
the constant e, i.e. 0 < ¢y < e.

Figure 4.16 shows the height sequence of the Bianconi-Barabasi Models. We again take the BBM
with exponential(2) fitness distribution and the BBM with standard uniform fitness distribution as ex-
amples. Similar to the benchmark models, the heights of BBMs still show staircase increments. The

34 4. Results and Discussion

height of both BBMs also lifts up at first and the acceleration becomes smaller and smaller afterwards.
So it is reasonable to give the following conjecture.

Conjecture 4.4.2. (Height of Bianconi-Barabasi Model) For any Bianconi-Barabasi Model with a fitness
distribution v, there exists a positive constant cg = cg(v) > 0, such that with high probability, the height
of the BBM at time t is at most cp logt.

Comparing the Figure 4.16a,b, we can hardly find any differences. Both models have the same
supreme, and neither of them show some special tendency. Considering the same mean of the fitness
distribution of two models, one could also raise a stronger guess based on Conjecture 4.4.2 that we
can reinforce the condition of c; to depend on the expectation of fitness distribution. Moreover, one
could still guess if the constant cz; does not need any restrictions.

BBM_exp2 Tree Height over Iteration BBM_uni Tree Height over Iteration

height of tree
(]

height of tree
o

o 2000 4000 6000 BOOO 10000 o 2000 4000 G000 8000 10000
T-number of iter T-number of iter

(a) Height of Bianconi-Barabasi Model with exponen- (b) Height of Bianconi-Barabasi Model with standard uni-
tial(2) fitness distribution form fitness distribution

Figure 4.16: Height of Bianconi-Barabasi Models

Figure 4.17 shows the height sequence of 3 examples of Recursive Fitness Models. It is really
unexpected that the height of the Plus-1 Model significantly increases linearly over the iteration steps,
which escapes the logarithm height functions: that is,

HtPlus—l ~t.

A linear increment means that almost every new node attaches itself to some 'main’ branch and forms
a string. However, the intuitive Figure 3.4a does not show such obvious trend. A mathematical reason
cannot be covered in this paper, but Plus-1 Model has some interesting properties with respect to the
height sequence and its fithess distribution.

4.4. Height of Random Trees 35

Plus-1 Tree Height over Iteration Plus-i Tree Height over Iteration

10000 30

8000

height of tree
height of tree
=
(%3]

0 2000 4000 G000 8000 10000 0 250 500 750 1000 1250 1500 1750 2000

T-number of iter T-number of iter

(a) Height of Plus-1 Model (10000 nodes) (b) Height of Plus-i Model (2000 nodes)

Times-2 Tree Height over Iteration

height of tree

40 50 80 100 120
T-number of iter

=
[
=R

(c) Height of Times-2 Model (130 nodes)

Figure 4.17: Height of Recursive Fitness Model

Compared to the Plus-1 Model, the remaining two models seem to have a logarithmic height. Due
to the computer memory restrictions, only 2000 nodes and 130 nodes are simulated for the two models.
That might be a bit insufficient to reveal the whole picture of the height behavior of Plus-i and Times-2,
but one can already notice a familiar curve in Figure 4.17b,c. Moreover, apart from the Plus-1 Model,
the rest RFMs get a larger height than PAM, BBMs, or even PAMinv. Thus, we can get the following
two conjectures.

Conjecture 4.4.3. For any Recursive Fitness Model, except Plus-1, with a non-constant fitness recur-
sive function F, there exists a positive constant cp = cx(F) > 0, such that with high probability, the
height of the RFM at time t is at most cy logt.

Conjecture 4.4.4. There is a non-constant real recursive function F, such that F induces a Recursive
Fitness Model M, and M forms a random tree G with only 0(1) nodes outside the backbone of n nodes.

PAMinv Tree Height over Iteration

height of tree
w o~ B R B
T T N — T)

]
wn

0 2000 4000 6000 8000 10000
T-number of iter

Figure 4.18: Height of Preferential Attachment Inverse Model

36 4. Results and Discussion

The Figure 4.18 shows the height sequence of Preferential Attachment Inverse Model. Compared
to the PAM, the supreme of the PAMinv at time t is larger, and the horn of the curve seems sharper,
which means the curvature could be larger. Mathematically, this indicates a positive coefficient in front
of time t. One may give the conjecture.

Conjecture 4.4.5. For the Preferential Attachment Inverse Model, there exists a positive constant
cg = cg(F) > 0 and a positive coefficient m > 0, such that with high probability, the height of the RFM
at time t is at most cp logmt.

4.5 Inverse Model

In this part, we mainly focus on the PAMinv. By definition, the expectation of the degree sequence in the
generating model divides the degree in order to offset the heavy tail exponent. PAMinv, as mentioned
in Definition 2.1.5, is based on the PAM. To make it clear, some different symbols are used in this
section. d,(i) denotes the degree number of node i at time t for PAM, and D, (i) denotes the number
for PAMinv. Then, the probability of a new node t + 1 attached to the node j chosen from {1, 2, ..., t}
can be described by the following equation

t
~ _ De(D/E[d: ()] D:(D
P(t+1 - j) = 215 where Z =z . 43
Obviously, the fitness value of a node j becomes m. We hope that the attachment selection
t

process could highly resemble the one of RRT, which means a uniformly random selection. This relies
on the following conjecture.

Conjecture 4.5.1. Given the equation (4.3), for a large t and any node j = 1,2, ..., t, the probability of
a new node t + 1 attached to node j does not depend on the node j and is almost surely the reciprocal

. . . . 1
of iteration time, i.e. .

The conjecture can be divided into two parts: First, the denominator in the right part of equation
(4.3) divided by time t converges to some constant almost surely, i.e. there exists some constant c,
such that % — ¢ a.s. Second, the numerator in the right part of equation (4.3) is independent from
node j, i.e. for a large t, for any nodes iy, i, D;(i1)/E[d:(i1)] = D¢(iy)/E[d:(i2)]-

Evidence shows that it is reasonable to make such conjecture. First of all, in the first two programs
in Appendix H, we make a simulation of the behavior of Z, for t = 3000. Restricted to the computer
memory, it is hard to set a larger iteration number, but 3000 could be enough to show the trend of Z;
sequence. In Figure 4.19a, it is clear that the Z, /t sequence fluctuates slightly around the red line with

Zt

an intercept around 1.11, which indicates the constant c in the conjecture might be 1.11, i.e. el 1.11.

4.5. Inverse Model 37

Zt trend Numerator trend

— Ziit * = D_t{j)E[d_tij)]
o MM gtt,, o - regrassion line] B O regression line

D_t{iWE[d_t(j}]

o 500 1000 1500 2000 2500 3000 0 2000 4000 B000 8000 10000
iterations nodes

(a) Simulation of Z—; of Preferential Attachment Inverse (b) Simulation of]Ef;—(g)] of Preferential Attachment In-
t

Model with a regression line of y = 1.1123 at t = 3000 verse Model with a regression line of y = 1.1116 at
t =10000

Figure 4.19: Asymptotic Simulation of Preferential Attachment Inverse Model

Then, in Figure 4.19b, a regression line is plotted. Generally, it is not a good regression result
because of the large variance, i.e. the significant differences between the line and the top points.
Also, several arms appear in Figure 4.19b, and this means regression is not an optimal choice for
interpolation. However, if we plot the regression line, the intercept coincidentally coincides with that of
Figure 4.19a. Although some slips happen here, the red line anyway indicates that the expectation of
D:(j)/E[d:(j)] in PAMinv would be a constant for a large number of t, i.e. E[D;(j)/E[d:(j)]] = 1.11 as
t — oo. If we combine the two results together, it is clear that the expectation of the probability of a new

node t + 1 attached to any old node would be % i.e. for any node j in PAMinv,

%im tE[P(t+1-)] = }im tE[]=limt

DGY/EI (D], _ . 141 _
Zs t—oo m =1L (4.4)

Above are two simulations of the PAMinv, but not a mathematical justification. To give it a proof,
a truncation of both denominator and numerator may be introduced. Theorem 2.3.3 and Chapter 8 in
van der Hofstad’s book [15] show that in PAM, for any node j,

rg -2
2

lim d,(DE"7 = E[d,())]t"7 = —rG =nas (4.5)

F]U_)E) as a variable y;. Then, we apply the Chebyshev inequality: for

Here we write the expression
anyn >0

»
P(de () — Elde ()]l >) < w - (4.6)

Here, the approximation of variance of d,(j) over time t comes from the almost surely convergence of
1 1
d:(j)t" 2 in equation (4.5). Setting n as 2% with an infinitely small term &, inequality (4.6) becomes

P(ld, () — Eld (]I > £2+%) < £k, (4.7)

If we consider a large t, the right hand side of (4.7) goes to zero, which means the probability of sub-
1
traction between d,(j) and its expectation is no larger than tz.

By using this property, we can conduct the truncation of equation (4.3). First, look at the denomi-

38 4. Results and Discussion

nator.
t
_ D()
= Z Eld, ()] o
t t
_ De() —de (D) + d, (D) — E[d, (D]
RED) Ea. 0] (4.9)
1=1 =1
t t
_ Dy(l) —d.(1) de() — E[d.(1)
- Z EEROTI Z GERO) (410
2 D(1
<t+ Z ; lz t]é[)d (l)f() (by inequality (4.7)) 4.11)
_ Dy() —d.(D)
—2t+;W. (4.12)
At the same time the numerator gives a similar result.
D(j) D:(j) = dc(j) + de() — E[d: ()]
= 413
Eld:G)] Eld: ()] @19
d:(j) —E[d:() | D:(G) —de(h)
= A
YTEGG] T EG)] @19
tz Di(j) —d:(j) , :
<14 4+ —————— (by inequality (4.7)) (4.15)
2 E[d: ()]
_ D:(j) —d:(j)
=2+ ~gao (4.16)

Obviously, in both equations appears a difficult term % which cannot be eliminated by known

conditions. Moreover, we want to estimate the probabilityt of a node attaching itself to some previous
node, and this is equivalent to the fact that we want to measure the difference between the degree
sequence of PAM and PAMinv. However, equations (4.12) and (4.16) indicate that we use the result to
estimate the condition, which forms a paradox. Chebyshev inequality might be useless in asymptotic
degree sequence of PAMinv.

Another idea may come up. One could complete the proof by means of the Pdlya urn process.
Theorem 2.3.6 is based on the case that the elements in matrix A are fixed and independent from time
t. However, in our case, the fitness sequence varies with iteration time t. It is natural to make such a
conjecture:

Conjecture 4.5.2. (Pdlya Urn Process with time-varying fitness) With the same assumption as The-
orem 2.3.6, the branching matrices A = A(t) depending on the iteration time t = 1,2,...,T, with the
largest eigenvalues 1, (t) and eigenvectors v,(t). There exists a specific number 1, and its corre-
sponding vector vy, such that

%im 21(t) = A4, %im () =1
Then, the time-varying Pdlya urn process satisfies

Xt
r - Ay, ast- oo

This conjecture could be justified by the following simulation. In the third program in Appendix H,
we give the expected format of transformation matrix A(t) over iteration time t. By definition of matrix

4.5. Inverse Model 39

A given in Janson’s paper [11], we can define the time-depending matrix A(t) as follows. ¢ refers to
Definition 2.3.3, and A(t) is a r(t) X r(t) matrix:

A(t) == {a; (O[]} 2, 4.17)

Here r(t) is the largest degree number plus 1 in the tree at time t, i.e. r(t) = max(D.(j)) + 1. A(t)
is a r(t) x r(t) sparse square matrix with r(t) rows and columns, which shows the degree number
transformation from time t to t + 1, and the non-zero elements are filled almost diagonal. ¢, is 2
because the first segment connects 2 nodes with degree 1, according to Algorithm 1. For the i row,

¢ = —Card{vertices with degree i}.

It loses the number of vertices with degree i, when a new node attaches it self to a node with degree
i. At the same time,
¢ii+1 = 1+ Card{vertices with degree i}.

Itincreases 1 plus the number of vertices with degree i, when a new node attaches itself to a node with
degree i. There is always a new node with degree 1, so ¢;; = 1. Then, E[¢};] has to multiply time-
depending weight aa;, which equals the selection probability sequence prob in PAMinv programs.

PAMinv Matrix A Eigenvalues Trend

14 —— Max eigenvalues

maximal eigenvalues

o 2000 4000 6000 8000 10000
iteration numbers

Figure 4.20: Maximal Eigenvalues within 10000 iteration steps converging toward 4.738414198337385

Figure 4.20 gives an intuitive picture of the maximal eigenvalues over 10000 iterations. One could
notice that the eigenvalues converge toward around 4.5 despite a fierce fluctuation at first. The resultin
return strongly support the Conjecture 4.5.2 that the time-varying maximal eigenvalues should converge
to some fixed value.

Chapter 5

Conclusion

As mentioned in the introduction section, the paper highly focuses on the power-law of random graphs,
including two kinds of newly developed graphs: Preferential Attachment Model (PAM), Random Recur-
sive Tree (RRT) as benchmark models, and Bianconi-Barabasi Model (BBM), and two kinds of graphs
which first appear in this paper: Recursive Fitness Model (RFM), and Inverse Model. To be precise,
two special cases of Bianconi-Barabasi Model: exponential(2) distribution and standard uniform distri-
bution are taken into consideration in this paper, and three examples of Recursive Fitness Model are
Plus-1 Model, Plus-i Model, and Times-2 Model. Then, setting the reciprocal of expectation of degree
sequence of Preferential Attachment Model as a time-varying fithess sequence, we invent a new model
to detect its power-law, and the model is called Preferential Attachment Inverse Model (PAMinv). De-
veloped methods can be applied to analyze the degree sequence of PAM and BBM, but they are not
fully applicable to the recursive models and models with time-varying fithess. These blanks will be left
to fulfill.

In this paper, the tail of RRT is proven, and investigation on the RFM and PAMinv is conducted
through both mathematical and empirical ways.
In theory, by using similar methods to prove properties of PAM, the N, sequence of RFM converges
to its expectation over time t. In simulation of the three examples of RFMs, the Plus-1 Model stands
out with an almost Gaussian distributed fitness sequence, while fitness values of other models tend to
be small for most vertices but have a tail. However, RFMs still follow a similar power-law of degree
sequence to PAM, according to simulation results.
Then, through simulation, PAMinv, as expected, shows a different power-law of degree sequence be-
tween PAM and RRT, and the tail exponent of N, sequence of PAMinv lies between that of PAM and
RRT, which means PAMinv could be a useful model to interpolate RRT from PAM. Attempts are made to

analyze the phenomenon. We simulated the asymptotic behavior of % and [Ef;—(g)] (defined in equation

(4.3)), and the simulation results support the phenomenon, but mathematical ptroof falls into a paradox.
After that, we give a conjecture on Pdlya urn process with time-varying fitness.

Finally, height of a random tree is another point on which light is thrown. Plus-1 Model, one of RFMs,
becomes again the special example, which has an almost linear height distribution over iteration time
t, while we make a series of conjectures to say all other models have a logarithmic height distribution
over time t. The result is consistent with the simulation figures, but only PAM and RRT are theoretically
proven to obtain a logarithmic height, and the proof of other models are left for further investigation.

41

© ©®© N o o A ® N =

Appendix A

Code of Random Pick process

Select an element from a weighted sequence according to the weights.

import pandas as pd
import numpy as np
import random

def random_pick(sequence, probabilities):
x = random.uniform (0,sum(probabilities))
cumulative_probability=0.0

for item,item_probability in zip(sequence, probabilities):
cumulative_probability+=item_probability
if x < cumulative_probability:
break
return item

def random_picks(sequence, probabilities):
table = [z for x,y in zip(sequence, probabilities) for z in [x]*y]
while True:
return random.choice (table)

43

© ® N o o ~ w0 N =

Appendix B

Code of Preferential Attachment
Model

Python code of standard PAM.

import pandas as pd

import numpy as np

import random

from matplotlib import pyplot as plt

import seaborn as sns

from random_pick import random_pick, random_picks
from collections import Counter

import networkx as nx

T=10000
deg = np.zeros((T+1,), dtype=np.int)

deg[0] = 2
print (deg)

G=nx.Graph ()

fit = np.ones((T+1,), dtype=np.int)
fit[0] =1
print(fit)

prob = np.zeros((T+1,), dtype=np.int)
for i in range(1,T+1):

prob[i—1] = deg[i—-1]xfit[i—1]
print(prob)
ind = np.ones((T+1,), dtype=np.int)

45

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
7
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
9
95
9
o7
98
99

100

101

102

46

B. Code of Preferential Attachment Model

#loop over T times

#index = 0
for t in range(T):
seq = list(range(t+1))
if t==0:
index = random_picks(seq, [prob[0]])
else:
index = random_picks(seq, prob[0:t])

print(index)
deg[index]=deg[index]+1
deg[t+1]=1
G.add_node(t+1)
G.add_edge(index+1, t+1)
ind[t+1]=ind[index]+1
for j in range(t+1):
prob[j]l=deg[j]* fit[j]
#prob = prob/np.sum(prob)

print(’degree sequence is as follows \n’, deg)
print(’fitness sequence is as follows \n’, fit)
print(’ height of the tree

#figures

plt.figure (1)

sns.distplot(deg, hist=True, kde=True)
plt.xlabel(degrees’)
plt.ylabel(’Density)

plt.title ('PAM degree distributions)

.figure (2)

distplot(fit, hist=True, kde=True)
.xlabel (" Fitness)

.ylabel (’Density ")

title ('"PAM fitness distribution’)

plt
sns.
plt
plt
plt.

#basic histogram

plt.figure(3)

plt.hist(deg)
plt.xlabel(' degrees’)
plt.ylabel (' Frequency’)
plt.title ('PAM degree sequence’)
plt.figure (4)

plt.hist(fit)

plt.xlabel(Fitness ")

plt.ylabel (’Frequency’)
plt.title ('PAM fitness sequence’)

plt.show ()

#hill estimator for gamma
ysort = np.sort(deg)[:: —1]

#log—log plot

linex = np.linspace(1, T+1, T+1)
plt.figure (5)

plt.loglog(linex ,ysort, basex=10, basey=10)
plt.title ('PAM degree loglog plot’)

is as follows \n’, max(ind))

sort the returns

103
104
105
106
107
108
109
110
1
112
13
14
115
116
17
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

151
152
153
154
155
156
157
158

160
161
162
163

47

#plt.plot(linex ,ysort)
#plt.yscale(’log’)

linex2 = np.linspace (1,max(deg), max(deg))
linex3 = []
degj1 = []
degj = np.zeros((max(deg) ,), dtype=np.float64)
for i in range(1,max(deg)):
for j in range (0,T):
if deg[jl==i:
degj[i—1]=degj[i —1]+1.0
if degj[i—1]1>0:
linex3 .append(i)
degj1.append(degj[i—1])
degj1=np.array(degj1)
degj2=degj1/T
degj3=np.ones((len(degj1)
for | in range(1,len(degj1
degj3 [l —1]=degj1 [l —1]/I

,), dtype=np.float64)
)

):
#plt.plot(linex ,degj)

plt.figure(7)
plt.hist(degj)
plt.title ('PAM Nk—k sequence’)

plt.figure(8)
sns. distplot(degj, hist=True, kde=True)
plt.title ('PAM Nk—k distribution ")

plt.figure (9)

plt.scatter(linex ,deg, color="blue’,label="PAM degree)
plt.legend(loc="upper right")

plt.yscale(’'log’)

plt.xscale(’log’)

plt.xlabel (’'T—-number of iter ")

plt.ylabel(degrees’)

plt.title ('PAM degree scatter’)

plt.figure (10)

plt.scatter(linex3 ,degj2,color="blue’,label="PAM Nk/T")
logL2=np.log10(linex3)

logB2=np.log10(degj2)

m2, c2 = np.polyfit(logL2, logB2, 1)

y_fit2 = pow(10,m2+xlogL2 + c2)

plt.plot(linex3, y_fit2, ’':’,color="red’,label="regression line ")
plt.legend(loc="upper right")

plt.yscale(’log’)

plt.xscale(’'log’)

plt.xlabel('k—inf of degrees’)

plt.ylabel ('Nk/T")

plt.title ('PAM Nk/T—k scatter’)

print('Nk/T regression slope is ’',m2)

plt.figure(11)

plt.scatter(linex ,ysort,color="blue’,label="PAM degree scatter’)
logL=np.log10(linex)

logB=np.log10(ysort)

m1, c¢1 = np.polyfit(logL, logB, 1)

y_fit = pow(10, mixlogL + c1)

plt.plot(linex, y_fit, ’:’,color="red’,label="regression line ")

164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
21
212
213
214
215
216
217
218
219
220
221
222
223

48 B. Code of Preferential Attachment Model

plt.legend(loc="upper right”)
plt.yscale(’'log’)

plt.xscale(’'log’)

plt.xlabel(’Nodes at time T7")
plt.ylabel(Degrees’)

plt.title ('PAM Degree scatter’)
print(’'deg regression slope is ’',m1)

plt.figure(12)

plt.plot(linex3 ,degj2,color="blue’,label="PAM Nk/T loglog ")
plt.plot(linex3, y_fit2, ':’,color="red’,(label="regression line")
plt.legend(loc="upper right")

plt.yscale(’log’)

plt.xscale(’log’)

plt.xlabel(k—degrees’)

plt.ylabel ('Nk/T")

plt.title ('PAM Nk/T—k loglog plot")

#print ('Nk/T regression slope is ',m2)

#visualization of random graph

plt.figure(13)

nx.draw (G, with_labels=False ,edge_color="b’,node_color="r "’ ,node_size=10)
modification of graph

plt.title ('PAM graph visualization)

#height of the tree
indh = np.ones((T—-1,), dtype=np.int)
for m in range(1,T):
indh [m—1]=max(ind [0:m])
plt.figure(14)
plt.plot(indh)
plt.xlabel (’'T—number of iter’”)
plt.ylabel (' height of tree’)
plt.title ('PAM Tree Height over lteration’)

plt.figure (16)

plt.plot(indh)

plt.xscale(’'log’)

plt.xlabel (' T-number of iter log’)
plt.ylabel (' height of tree’)

plt.title ('’PAM Tree Height over Iteration’)

plt.figure(17)

plt.scatter(linex ,ysort/T,color="blue’,label="PAM degree emp scatter’)
logL1=np.log10(linex)

logB4=np.log10(ysort/T)

m4, c4 = np.polyfit(logb1, logB4, 1)

y_fit4 = pow(10, mdxlogL1 + c4)

plt.plot(linex, y_fit4, ':’,color="red’,label="regression line")
plt.legend(loc="upper right")

plt.yscale(’'log’)

plt.xscale(’'log’)

plt.xlabel ('Nodes of graph at time T7)

plt.ylabel (’Emp Degrees’)

plt.title ('PAM Empirical Degree scatter’)

print(’deg regression slope is ',m4)

plt.figure(19)
plt.plot(linex3 ,degj3,color="blue’,label="PAMinv Nk/t loglog’)

#

224
225
226
227
228
229
230
231
232
233
234

236
237

49

logL7=np.log10(linex3[0:10])
logB7=np.log10(degj3[0:10])

m7, c¢7 = np.polyfit(logL7, logB7, 1)
y_fit7 = pow(10,m7+*np.log10(linex3) + c7)
plt.plot(linex3, y_fit7, ':’,color="red’,label="regression
plt.legend(loc="upper right’)
plt.yscale(’log’)

plt.xscale(’'log’)

plt.xlabel(k—degrees’)

plt.ylabel ('Nk/t")

plt.title ('PAMinv Nk/t—k loglog plot’)
print('Nk/t—k regression slope is’,m7)

plt.show ()

line)

© ® N o o A~ © N -

Appendix C

Code of Random Recursive Tree

Python code of RRT.

import pandas as pd

import numpy as np

import random

from matplotlib import pyplot as plt

import seaborn as sns

from random_pick import random_pick, random_picks
from collections import Counter

import math

import networkx as nx

T=10000
deg = np.zeros((T+1,), dtype=np.int)

deg[0] = 2
print (deg)

G=nx.Graph ()

prob = np.ones((T+1,), dtype=np.int)
print(prob)

fit = np.ones((T+1,), dtype=np.float64)
fit[0] = 0.5
print(fit)

ind = np.ones((T+1,), dtype=np.int)

for t in range(T):
seq = list(range(t+1))
if t==0:

51

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
7
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
9
97
98
99

101
102
103
104

52 C. Code of Random Recursive Tree

index = random_picks(seq, [prob[0]])
else:
index = random_picks(seq, prob[0:t])

print(index)
deg[index]=deg[index]+1
deg[t+1]=1

G.add_node(t+1)
G.add_edge(index+1, t+1)
#fit[t+1]=prob[t+1]/deg[t+1]
fit[index]=prob[index]/deg[index]
ind[t+1]=ind [index]+1

print(’degree sequence is as follows \n’, deg)
print(’fitness sequence is as follows \n’, fit)
print(’ height of the tree is as follows \n’, max(ind))

#figures

plt.figure (1)

sns.distplot(deg, hist=True, kde=True)
plt.xlabel(k—degrees’)
plt.ylabel(’Density’)

plt.title ('RRT degree distributions’)

plt.figure(2)

sns.distplot(fit, hist=True, kde=True)
plt.xlabel(Fitness ")
plt.ylabel(’Density)

plt.title ('RRT fitness distribution’)

#basic histogram

plt.figure(3)

plt.hist(deg)

plt.xlabel('k—degrees’)
plt.ylabel (' Frequency’)
plt.title ('RRT degree sequence’)

plt.figure (4)

plt.hist(fit)

plt.xlabel(Fitness ")
plt.ylabel (' Frequency’)

plt.title ('RRT fithess sequence’)

plt.show ()

#hill estimator for gamma
ysort = np.sort(deg)[:: —1]

#log—log plot

linex = np.linspace(1, T+1, T+1)
plt.figure (5)

plt.loglog(linex ,ysort, basex=10, basey=10)
plt.title ('RRT degree loglog plot’)
#plt.plot(linex ,ysort)

#plt.yscale(’log’)

linex2 = np.linspace (1,max(deg), max(deg))
linex3 = []

sort the

returns

105
106
107
108
109
110
1M
12
113
14
15
116
17
18
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

53

degj1 = []
degj = np.zeros((max(deg),), dtype=np.float64)
for i in range(1,max(deg)):
for j in range (0,T):
if deg[jl==i:

degj[i—1]=degj[i —1]+1.0
if degj[i—1]>0:
linex3 .append(i)
degj1.append(degj[i —1])
degj1=np.array(degj1)
degj2=degj1/T

#plt.plot(linex ,degj)

plt.figure(7)
plt.hist(degj)
plt.title ('RRT Nk—k sequence’)

plt.figure(8)
sns.distplot(degj, hist=True, kde=True)
plt.title ('RRT Nk—k distribution ")

plt.figure (9)

plt.scatter(linex ,deg, color="blue’,label="RRT degree’)
plt.legend(loc="upper right”)

plt.yscale(’log’)

plt.xscale(’'log’)

plt.xlabel (’'T-number of iter’”)

plt.ylabel(' degrees’)

plt.title ('RRT degree scatter’)

plt.figure(10)

plt.scatter(linex3 ,degj2,color="blue’,label="RRT Nk/T")
logL2=np.log10(linex3)

logB2=np.log10(degj2)

m2, ¢c2 = np.polyfit(logLb2, logB2, 1)

y_fit2 = pow(10,m2xlogL2 + c2)

plt.plot(linex3, y_fit2, ':’,color="red’,(label="regression line")
plt.legend(loc="upper right")

plt.yscale(’'log’)

plt.xscale(’log’)

plt.xlabel(k—degrees’)

plt.ylabel ('Nk”)

plt.title ('RRT Nk/T—k scatter’)

print('Nk/T regression slope is ',m2)

plt.figure(11)

plt.scatter(linex ,ysort,color="blue’,label="RRT degree scatter’)
logL=np.log10(linex)

logB=np.log10(ysort)

m1, ¢1 = np.polyfit(logL, logB, 1)

y_fit = pow(10, mi*logL + c1)

plt.plot(linex, y_fit, ’:’,color="red’ ,label="regression line ")
plt.legend(loc="upper right”)

plt.yscale(’'log’)

plt.xscale(’'log’)

plt.xlabel (’'T-number of iter’”)

plt.ylabel(Degrees’)

plt.title ('RRT Degree scatter’)

print(’'deg regression slope is ’',m1)

166
167
168
169
170
171
172
173
174
175
176

177

178
179
180
181
182
183
184
185
186
187
188
189
190

54 C. Code of Random Recursive Tree

plt.figure(12)

plt.plot(linex3 ,degj2,color="blue’,label="RRT Nk/T loglog ")
plt.plot(linex3, y_fit2, ':’,color="red’,label="regression line ")
plt.yscale(’log’)

plt.xscale(’'log’)

plt.xlabel(k—degrees’)

plt.ylabel ('Nk’)

plt.title ('RRT Nk/T—k loglog plot’)

#visualization of random graph

plt.figure(13)

nx.draw (G, with_labels=False ,edge_color="b’,node_color="r ' ,node_size=10) #
modification of graph

plt.title ('RRT graph visualization)

#height of the tree
indh = np.ones((T—1,), dtype=np.int)
for m in range(1,T):
indh [m—1]=max(ind [0:m])
plt.figure(14)
plt.plot(indh)
plt.xlabel (’T-number of iter’”)
plt.ylabel(' height of tree’)
plt.title ('RRT Tree Height over Iteration’)

plt.show ()

© ® N o o A~ © N -

Appendix D

Code of Bianconi Barabasi Models

Python code of BBM with exponential(2) fitness distribution.

import pandas as pd

import numpy as np

import random

from matplotlib import pyplot as plt

import seaborn as sns

from random_pick import random_pick, random_picks
from collections import Counter

import math

import networkx as nx

T=10000
deg = np.zeros((T+1,), dtype=np.int)

deg[0] = 2
print (deg)

G=nx.Graph ()

fit = np.random.exponential (2,T+1)
print(fit)

prob = np.ones((T+1,), dtype=np.float64)
for i in range(1,T+1):

prob[i—1] = deg[i—-1]xfit[i—1]
print (prob)

ind = np.ones((T+1,), dtype=np.int)

55

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
7
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
9
97
98
99

101
102
103
104

56 D. Code of Bianconi Barabasi Models

for t in range(T):
seq = list(range(t+1))
if t==0:
index = random_pick(seq, [prob[0]])
else:
index = random_pick(seq, prob[0:t])

print(index)
deg[index]=deg[index]+1
deg[t+1]=1
G.add_node(t+1)
G.add_edge(index+1, t+1)
for j in range(t+1):
prob[j]=deg[j]* fit[j]
ind[t+1]=ind[index]+1

print(’degree sequence is as follows \n’, deg)
print(’fitness sequence is as follows \n’, fit)
print(’ height of the tree is as follows \n’, max(ind))

#figures

plt.figure (1)

sns.distplot(deg, hist=True, kde=True)
plt.title ('BBM_exp2 degree distributions ')

plt.figure(2)
sns.distplot (fit, hist=True, kde=True)
plt.title ('BBM exp2 fitness distribution’)

#basic histogram

plt.figure(3)

plt.hist(deg)

plt.title ('BBM_exp2 degree sequence’)

plt.figure (4)
plt.hist(fit)
plt.title ('BBM_exp2 fitness sequence’)

plt.show ()

#hill estimator for gamma
ysort = np.sort(deg)[:: —1]

#log—log plot

linex = np.linspace(1, T+1, T+1)
plt.figure (5)

plt.loglog(linex ,ysort, basex=10, basey=10)
plt.title ('BBM_exp2 degree loglog plot’)
#plt.plot(linex ,ysort)

#plt.yscale(’log’)

linex2 = np.linspace(1,max(deg)+1, max(deg)+1)
degj = np.zeros((max(deg)+1,), dtype=np.int)
for i in range(1,max(deg)+1):
for j in range (0,T):
if deg[j]>=i:
degj[i—1]=degj[i—1]+1

sort the

returns

105
106
107
108
109
110
1M
12
113
14
15
116
17
18
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

151
152
153
154
155
156
157
158
159

161
162
163

57

#plt.plot(linex ,degj)

plt

plt.
plt.

plt
sns

plt.

plt

plt.

plt
plt
plt
plt
plt

plt.

plt

plt.

plt
plt
plt
plt
plt

plt.

plt

plt.

plt
plt
plt
plt
plt

plt.

plt

plt.

plt
plt
plt

.figure (7)
hist(degj)
title ('BBM_exp2 Nk—k sequence’)

.figure (8)
.distplot(degj, hist=True, kde=True)
title ('BBM_exp2 Nk—k distribution)

.figure (9)

scatter(linex ,deg, color="blue ' ,label="BBM_exp2 degree’)
.legend (loc="upper right’)

.yscale(’'log’)

.xscale('log’)

.xlabel ('T—number of iter’)

.ylabel (’degrees’)

title ('BBM_exp2 degree scatter’)

.figure (10)

scatter(linex2 ,degj, color="blue’,label="BBM_exp2 Nk')
.legend (loc="upper right")

.yscale(’'log’)

.xscale('log ")

.xlabel ("k—=inf of degrees’)

.ylabel ("Nk")

title ('BBM_exp2 Nk—k scatter’)

.figure (11)

scatter(linex ,ysort,color="blue ' ,label="BBM exp2 degree scatter’)
.legend (loc="upper right’)

.yscale(’log’)

.xscale(’'log’)

.xlabel ("T—number of iter”)

.ylabel (’Degrees’)

title ('BBM_exp2 Degree scatter’)

.figure (12)

loglog (linex2 ,degj/T,basex=10,basey=10)
.xlabel ('k—degrees’)

.ylabel ('Nk/t")

.title (’BBM_exp2 Nk/t—k loglog plot’)

#visualization of random graph

plt

.figure (13)

nx.draw (G, with_labels=False,edge_color="b’,node_color="r "’ ,node_size=10)

plt

modification of graph
.title ('BBM_exp2 graph visualization’)

#height of the tree
indh = np.ones((T—-1,), dtype=np.int)

for

plt
plt
plt
plt
plt

plt

m in range(1,T):

indh [m—1]=max(ind [0:m])

.figure (14)

.plot(indh)

.xlabel ("T-number of iter)

.ylabel (height of tree’)

.title ('BBM_exp2 Tree Height over Iteration’)

.show ()

#

© ® N o o A W N -

58 D. Code of Bianconi Barabasi Models

Python code of BBM with standard uniform fitness distribution.

import pandas as pd

import numpy as np

import random

from matplotlib import pyplot as plt

import seaborn as sns

from random_pick import random_pick, random_picks
from collections import Counter

import math

import networkx as nx

T=10000

deg = np.zeros((T+1,), dtype=np.int)
deg[0] = 2
print (deg)

G=nx.Graph ()

fit = np.random.uniform(0,1,T+1)

print(fit)
prob = np.ones((T+1,), dtype=np.float64)
for i in range(1,T+1):

prob[i—1] = deg[i—1]xfit[i—1]

print(prob)

ind = np.ones((T+1,), dtype=np.int)

for t in range(T):
seq = list(range(t+1))
if t==0:
index = random_pick(seq, [prob[0]])
else:
index = random_pick(seq, prob[0:t])

print(index)
deg[index]=deg[index]+1
deg[t+1]=1
G.add_node(t+1)
G.add_edge(index+1, t+1)
for j in range(t+1):
prob[j]=deg[j]* fit[j]
ind[t+1]=ind[index]+1

print('degree sequence is as follows \n’, deg)

61
62
63
64
65
66
67
68
69
70
7
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
9
91
92
93
94
95
%
o7
98
99

100

101

102

103

104

105

106

107

109
110
11
112
13
114
115
116
17
118
119
120
121

59

print(’fitness sequence is as follows \n’, fit)

print(' height of the tree is as follows \n’, max(ind))

#figures

plt.figure (1)

sns.distplot (deg, hist=True, kde=True)
plt.title ('BBM_uni degree distributions ')

plt.figure(2)
sns.distplot(fit, hist=True, kde=True)
plt.title (’BBM uni fitness distribution’)

#basic histogram

plt.figure (3)

plt.hist(deg)

plt.title ('BBM_uni degree sequence’)

plt.figure (4)
plt.hist(fit)
plt.title ('BBM_uni fitness sequence’)

plt.show ()

#hill estimator for gamma
ysort = np.sort(deg)[:: —1]

#log—log plot

linex = np.linspace(1, T+1, T+1)
plt.figure (5)

plt.loglog(linex ,ysort, basex=10, basey=10)
plt.title ('BBM_uni degree loglog plot’)
#plt.plot(linex ,ysort)

#plt.yscale(’log’)

linex2 = np.linspace (1,max(deg)+1, max(deg)+1)
degj = np.zeros((max(deg)+1,), dtype=np.int)
for i in range(1,max(deg)+1):
for j in range (0,T):
if deg[jl>=i:
degj[i—1]=degj[i—1]+1

#plt.plot(linex ,degj)

plt.figure(7)

plt.hist(degj)

plt.title ('BBM_uni Nk—=k sequence’)
plt.figure (8)

sns.distplot(degj, hist=True, kde=True)
plt.title ('BBM uni Nk—k distribution”)

plt.figure(9)

plt.scatter(linex ,deg, color="blue ' ,label="BBM_ uni degree’)

plt.legend(loc="upper right”)
plt.yscale(’'log’)
plt.xscale(’'log’)

plt.xlabel ('T-number of iter’”)
plt.ylabel(degrees’)

sort the

returns

122
123
124
125
126
127
128
129
130
131
132

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

151
152
153
154
155
156
157
158

160
161
162
163

60 D. Code of Bianconi Barabasi Models

plt.title ('BBM_uni degree scatter’)

plt.figure (10)

plt.scatter(linex2 ,degj, color="blue’,label="BBM_uni Nk")
plt.legend(loc="upper right’)

plt.yscale(’'log’)

plt.xscale(’log’)

plt.xlabel(’k—inf of degrees’)

plt.ylabel ('Nk’)

plt.title ('BBM_uni Nk—k scatter’)

plt.figure(11)

plt.scatter(linex ,ysort,color="blue’,label="BBM_uni degree scatter’)
plt.legend(loc="upper right")

plt.yscale(’log’)

plt.xscale(’log’)

plt.xlabel (’'T—number of iter’)

plt.ylabel(Degrees’)

plt.title ('BBM_uni Degree scatter’)

plt.figure(12)

plt.loglog(linex2 ,degj/T,basex=10,basey=10)
plt.xlabel ('k—degrees’)

plt.ylabel ('Nk/t")

plt.title ('BBM_uni Nk/t—k loglog plot”)

#visualization of random graph

plt.figure(13)

nx.draw (G, with_labels=False,edge_color="b’,node_color="r’,node_size=10) #
modification of graph

plt.title ('BBM_uni graph visualization)

#height of the tree
indh = np.ones((T—-1,), dtype=np.int)
for m in range(1,T):
indh [m—1]=max(ind [0:m])
plt.figure (14)
plt.plot(indh)
plt.xlabel ('T—number of iter ")
plt.ylabel(height of tree’)
plt.title ('BBM_uni Tree Height over lteration’)

plt.show ()

© ® N o o A~ © N -

Appendix E

Code of Recursive Fithess Models

Python code of Plus-1 Model.

import pandas as pd

import numpy as np

from numpy import =*

from matplotlib import pyplot as plt

import seaborn as sns

from random_pick import random_pick, random_picks
from collections import Counter

import math

import networkx as nx

T=10000
deg = np.zeros((T+1,), dtype=np.int)

deg[0] = 2
print (deg)

G=nx.Graph ()

fit = np.ones((T+1,), dtype=np.int)
fit[0] =1
print(fit)

prob = np.zeros((T+1,), dtype=np.int)
for i in range(1,T+1):

prob[i—1] = deg[i—1]xfit[i—1]
print(prob)

ind = np.ones((T+1,), dtype=np.int)

61

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
7
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
9
97
98
99

101
102
103
104

62

E. Code of Recursive Fithess Models

#index = 0
for t in range(T):
seq = list(range(t+1))
if t==0:
index = random_picks(seq, [prob[0]])
else:
index = random_picks(seq, prob[0:t])

print(index)
deg[index]=deg[index]+1
deg[t+1]=1
G.add_node(t+1)
G.add_edge(index+1, t+1)
fit[t+1]=fit[index]+1
ind[t+1]=ind[index]+1
for j in range(t+1):
prob[j]=deg[j]*fit[]]
#prob = prob/np.sum(prob)

print(’degree sequence is as follows \n’, deg)
print(’fitness sequence is as follows \n’, fit)
print(maximal fitness is as follows \n’, max(fit))

#figures

plt.figure (1)

sns.distplot(deg, hist=True, kde=True)
plt.xlabel(degrees’)
plt.ylabel(’Density)

plt.title ('Plus—1 degree distributions’)

plt.figure(2)

sns.distplot(fit, hist=True, kde=True)
plt.xlabel(Fitness ")

plt.ylabel(Density ")

plt.title ('Plus—1 fitness distribution ")

#basic histogram

plt.figure(3)

plt.hist(deg)

plt.xlabel(' degrees’)
plt.ylabel (' Frequency’)

plt.title ('Plus—1 degree sequence’)

plt.figure (4)

plt.hist(fit)

plt.xlabel(Fitness ")

plt.ylabel (’Frequency’)

plt.title ('Plus—1 fithess sequence’)

plt.show ()

#hill estimator for gamma
ysort = np.sort(deg)[:: —1]

#log—log plot

linex = np.linspace(1, T+1, T+1)
plt.figure (5)

plt.loglog(linex ,ysort, basex=10, basey=10)
plt.title ('Plus—1 degree loglog plot’)
#plt.plot(linex ,ysort)

sort the

returns

105
106
107
108
109
110
1M
12
113
14
15
116
17
18
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

63

#plt.yscale(’log’)

linex2 = np.linspace (1,max(deg), max(deg))
linex3 = []
degj1 = []
degj = np.zeros((max(deg),), dtype=np.float64)
for i in range(1,max(deg)):

for j in range(0,T):

if deg[jl==i:
degj[i—1]=degj[i —1]+1.0
if degj[i—1]>0:
linex3 .append(i)
degj1.append(degj[i —1])
degj1=np.array(degj1)
degj2=degj1/T

#plt.plot(linex ,degj)

plt.figure (6)

#plt.loglog(linex2 ,degj, basex=10, basey=10)
plt.plot(linex3 ,6degj2)

plt.yscale(’log’)

#plt.title ('Nk loglog plot’)

plt.title ('Plus—1 Nk—k log plot’)

plt.figure(7)
plt.hist(degj)
plt.title ('Plus—1 Nk—k sequence’)

plt.figure (8)
sns.distplot(degj, hist=True, kde=True)
plt.title ('Plus—1 Nk—k distribution)

plt.figure (9)
plt.scatter(linex ,deg, color="blue’,label="Plus—1 degree’)
plt.legend(loc="upper right")

plt.yscale(’log’)

plt.xscale(’'log’)

plt.xlabel (’'T—number of iter’)

plt.ylabel(degrees’)

plt.title ('Plus—1 degree scatter’)

plt.figure(10)

plt.scatter(linex3 ,degj2,color="blue’,label="Plus—1 Nk/t")
logL2=np.log10(linex3)

logB2=np.log10(degj2)

m2, c2 = np.polyfit(logL2, logB2, 1)

y_fit2 = pow(10,m2+xlogL2 + c2)

plt.plot(linex3, y_fit2, ':’,color="red’,(label="regression line")
plt.legend(loc="upper right’)

plt.yscale(’log’)

plt.xscale(’log’)

plt.xlabel(k—degrees’)

plt.ylabel ('Nk/t")

plt.title ('Plus—1 Nk/t—k scatter’)

print('Nk/T regression slope is ' ,m2)

plt.figure(11)

plt.scatter(linex ,ysort,color="blue’,label="Plus—1 degree scatter’)
logL=np.log10(linex)

logB=np.log10 (ysort)

m1, c¢c1 = np.polyfit(logL, logB, 1)

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

187
188

189
190
191
192
193
194
195
196
197
198
199
200
201
202

204
205
206
207
208
209
210
21
212
213
214
215
216
217

o o A W N =

64 E. Code of Recursive Fithess Models

y_fit = pow(10, mixlogL + c1)

plt.plot(linex, y_fit, ’:’,color="red’,label="regression line ")
plt.legend(loc="upper right’)

plt.yscale(’log’)

plt.xscale(’'log’)

plt.xlabel('Nodes of graph at time T')

plt.ylabel (' Degrees’)

plt.title ('Plus—1 Degree scatter’)

print(’'deg regression slope is ',m1l)

plt.figure(12)

plt.plot(linex3 ,degj2,color="blue’,label="Plus—1 Nk/t loglog ")
plt.plot(linex3, y_fit2, ':’,color="red’,(label="regression line"’)
plt.legend(loc="upper right")

plt.yscale(’log’)

plt.xscale(’log’)

plt.xlabel ('k—degrees’)

plt.ylabel ('Nk/t")

plt.title ('Plus—1 Nk/t—k loglog plot’)

#visualization of random graph

plt.figure(13)

nx.draw (G, with_labels=False,edge_color="b’,node_color="r’,node_size=10) #
modification of graph

plt.title ('Plus—1 graph visualization’)

#height of the tree
indh = np.ones((T—-1,), dtype=np.int)
for m in range(1,T):
indh [m—1]=max(ind [0:m])
plt.figure (14)
plt.plot(indh)
plt.xlabel (’'T—-number of iter ")
plt.ylabel(height of tree’)
plt.title ('Plus—1 Tree Height over lIteration’)

plt.figure (15)

plt.scatter(linex ,ysort/T,color="blue’,label="Plus—1 degree emp scatter’)
logL=np.log10(linex)

logB4=np.log10(ysort/T)

m4, c4 = np.polyfit(logL, logB4, 1)

y_fit4 = pow(10, mdxlogL + c4)

plt.plot(linex, y_fitd, ’':’,color="red’,label="regression line’)
plt.legend(loc="upper right")

plt.yscale(’log’)

plt.xscale(’'log’)

plt.xlabel ('Nodes of graph at time T7")

plt.ylabel ('Emp Degrees’)

plt.title ('Plus—1 Empirical Degree scatter’)

print(’'deg regression slope is ',m4)

plt.show ()

Python code of Plus-i Model.

—— coding: utf—8 —x—
Created on Fri Mar 6 19:33:41 2020

@author: wangr

65

#fitness function +i model

import pandas as pd

import numpy as np

from numpy import =*

from matplotlib import pyplot as plt

import seaborn as sns

from random_pick import random_pick, random_picks
from collections import Counter

import networkx as nx

SRR

T=2000

#degree vector

deg = np.zeros((T+1,), dtype=np.int)
deg[0] = 2

print (deg)

#initialize the graph
G=nx.Graph ()

#fitness vector

fit = np.ones((T+1,), dtype=np.int)
fit[0] =1

print(fit)

#probability to choose any connecting point
prob = np.zeros ((T+1,), dtype=np.int)
for i in range(1,T+1):
prob[i—1] = deg[i—1]xfit[i—1]
#prob = prob/np.sum(prob)
print(prob)

ind = np.ones((T+1,), dtype=np.int)

#loop over T times

#index = 0

for t in range(T):
seq = list(range(t+1))
if t==0:

index = random_picks(seq, [prob[0]])
else:
index = random_picks(seq, prob[0:t])

print(index)
deg[index]=deg[index]+1
deg[t+1]=1
G.add_node(t+1)
G.add_edge(index+1, t+1)
fit[t+1]=fit[index]+ index
ind[t+1]=ind[index]+1
for j in range(t+1):
prob[j]=deg[j]*fit[]]
#prob = prob/np.sum(prob)

print(’degree sequence is as follows \n’, deg)
print(’fitness sequence is as follows \n’, fit)
print(' height of the tree is as follows \n’, max(ind))

#figures

68
69
70
7
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
9
o7
98
99

100

101

102

103

104

105

107
108
109
110
m
112
113
114
115
116
"7
118
119
120
121
122
123
124
125
126
127
128

66

E. Code of Recursive Fithess Models

plt.figure (1)
sns.distplot(deg, hist=True,
plt.xlabel(degrees’)
plt.ylabel(’Density)
plt.title ('Plus—i degree distributions)

kde=True)

plt.figure(2)

sns.distplot (fit, hist=True,
plt.xlabel(Fitness)
plt.ylabel(’Density)
plt.title ('Plus—i fitness distribution”)

kde=True)

plt.figure(3)
plt.hist(deg)
plt.xlabel(' degrees’)
plt.ylabel(Frequency’)

plt.title ('Plus—i degree sequence’)
plt.figure (4)

plt.hist(fit)

plt.xlabel(’ Fitness ")

plt.ylabel (’'Frequency’)

plt.title ('Plus—i fithess sequence’)
plt.show ()

ysort = np.sort(deg)[:: —1]

CT = int(T/5)
gamma = 1/(np.mean(np.log(ysort[0:CT]/ysort[CT])))
print (gamma)

linex = np.linspace(1, T+1, T+1)
plt.figure (5)

plt.loglog(linex ,ysort, basex=10, basey=10)
plt.title ('Plus—i degree loglog plot’)

linex2 = np.linspace (1,max(deg), max(deg))
linex3 = []
degjt = []
degj = np.zeros((max(deg),), dtype=np.float64)
for i in range(1,max(deg)):
for j in range(0,T):
if deg[jl==i:

degj[i—1]=degj[i —1]+1.0
if degj[i—1]>0:
linex3 .append(i)
degj1.append(degj[i —1])
degj1=np.array(degj1)
degj2=degj1/T
n = sum(degj)
degemp=np.ones((len(degj),),dtype=np.float64)
degemp[0]=1—(degj[0]/n)
for i in range(1,len(degj)—1):
degemp[i]=1—(sum(degj[0:i])/n)

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

186
187
188
189

67

#plt.plot(linex ,degj)

plt.figure (6)

#plt.loglog(linex2 ,degj, basex=10, basey=10)
plt.plot(linex3 ,6degj2)

plt.yscale(’'log’)

#plt.title ('Nk loglog plot’)

plt.title ('Plus—i Nk—k log plot’)

plt.figure(7)
plt.hist(degj)
plt.title ('Plus—i Nk—k sequence’)

plt.figure(8)
sns.distplot(degj, hist=True, kde=True)
plt.title ("Plus—i Nk—k distribution’)

plt.figure (9)
plt.scatter(linex ,deg, color="blue ' ,label="Plus—i degree’)
plt.legend(loc="upper right’)

plt.yscale(’log’)

plt.xscale(’'log’)

plt.xlabel (’'T-number of iter’”)

plt.ylabel (' degrees’)

plt.title ('Plus—i degree scatter’)

plt.figure(10)

plt.scatter(linex3 ,degj2,color="blue’,label="Plus—i Nk/t")
logL2=np.log10(linex3)

logB2=np.log10(degj2)

m2, ¢c2 = np.polyfit(logLb2, logB2, 1)

y_fit2 = pow(10,m2+xlogL2 + c2)

plt.plot(linex3, y_fit2, ':’,color="red’,(label="regression
plt.legend(loc="upper right")

plt.yscale(’'log’)

plt.xscale(’log’)

plt.xlabel(k—degrees’)

plt.ylabel ('Nk/t")

plt.title ('Plus—i Nk/t—k scatter’)

print('Nk/T regression slope is ' ,m2)

plt.figure(11)

line ")

plt.scatter(linex ,ysort,color="blue’,label="Plus—i degree scatter’)

logL=np.log10(linex)
logB=np.log10(ysort)

m1, ¢1 = np.polyfit(logL, logB, 1)
y_fit = pow(10, mi*logL + c1)

plt.plot(linex, y_fit, ':’,color="red’,label="regression line")

plt.legend(loc="upper right")
plt.yscale(’'log’)

plt.xscale(’log’)

plt.xlabel ('Nodes of graph at time T7)
plt.ylabel(Degrees’)

plt.title ('Plus—i Degree scatter’)
print(’deg regression slope is ',m1l)

plt.figure (12)

plt.plot(linex3 ,degj2,color="blue’,label="Plus—i Nk/t loglog’)

plt.plot(linex3, y_fit2, ':’,color="red’,label="regression
plt.legend(loc="upper right’)

plt.yscale(’log’)

plt.xscale(’'log’)

line’)

190
191
192
193
194
195
196

197
198
199

201
202
203
204
205
206
207
208

210
21
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235

237
238
239
240

N o o A W N o

68 E. Code of Recursive Fithess Models

plt.xlabel (’'k—degrees’)
plt.ylabel ('Nk/t")
plt.title ('Plus—i Nk/t—k loglog plot”)

#visualization of random graph

plt.figure (13)

nx.draw (G, with_labels=False ,edge_color="b’,node_color="r "’ ,node_size=10)
modification of graph

plt.title ('Plus—i graph visualization)

#height of the tree
indh = np.ones((T—-1,), dtype=np.int)
for m in range(1,T):
indh [m—1]=max(ind [0:m])
plt.figure(14)
plt.plot(indh)
plt.xlabel (’'T—number of iter’)
plt.ylabel (' height of tree’)
plt.title ('Plus—i Tree Height over lIteration’)

plt.figure(15)

plt.scatter(linex ,ysort/T,color="blue’,label="Plus—i degree emp scatter’)
logL=np.log10(linex)

logB4=np.log10(ysort/T)

m4, c4 = np.polyfit(logL, logB4, 1)

y_fit4 = pow(10, mdxlogL + c4)

plt.plot(linex, y_fit4, ':’,color="red’,label="regression line")
plt.legend(loc="upper right”)

plt.yscale(’log’)

plt.xscale(’'log’)

plt.xlabel('Nodes of graph at time T')

plt.ylabel ('Emp Degrees’)

plt.title ('Plus—i Empirical Degree scatter’)

print(’'deg regression slope is ’',m4)

plt.figure(16)

linex4 = np.linspace(1,len(degemp)—10, len (degemp)—10)
plt.plot(degemp[0:len(degemp)—10], . ,label="Plus—i Degree SF')
logL6=np.log10(linex4)

logB6=np.log10 (degemp[0:len (degemp) —10])

m6, c6 = np.polyfit(logLb6, logB6, 1)

y_fité = pow(10, m6+*logL6 + c6)

plt.plot(linex4 , y_fit6, ':’,color="red’,label="regression line ")
plt.legend(loc="upper right")

plt.yscale(’log’)

plt.xscale(’'log’)

plt.xlabel(degrees’)

plt.ylabel(’empirical survival values’)

plt.title ('Plus—i log—log Degree Survival Function’)
print(’degemp regression slope is’,m6)

plt.show ()

#

Python code of Times-2 Model.

—x— coding: utf—-8 —x—
Created on Fri Mar 6 21:54:53 2020

@author: wangr

69

#fitness function *2 model

import pandas as pd

import numpy as np

from numpy import *

from matplotlib import pyplot as plt

import seaborn as sns

from random_pick import random_pick, random_picks
from collections import Counter

import networkx as nx

SRR

T=130

#degree vector

deg = np.zeros((T+1,), dtype=np.int)
deg[0] = 2

print (deg)

#initialize the graph
G=nx.Graph ()

#fitness vector

fit = np.ones((T+1,), dtype=np.int)
fit[0] =1

print(fit)

#probability to choose any connecting point
prob = np.zeros ((T+1,), dtype=np.int)
for i in range(1,T+1):
prob[i—1] = deg[i—1]xfit[i—1]
#prob = prob/np.sum(prob)
print(prob)

ind = np.ones((T+1,), dtype=np.int)

#loop over T times

#index = 0

for t in range(T):
seq = list(range(t+1))
if t==0:

index = random_picks(seq, [prob[0]])
else:
index = random_picks(seq, prob[0:t])

print(index)
deg[index]=deg[index]+1
deg[t+1]=1
G.add_node(t+1)
G.add_edge(index+1, t+1)
fit[t+1]=fit[index] = 2
ind[t+1]=ind[index]+1
for j in range(t+1):
prob[j]=deg[j]* fit[j]
#prob = prob/np.sum(prob)

print('degree sequence is as follows \n’, deg)
print(' fitness sequence is as follows \n’, fit)
print('maximal fitness is as follows \n’, max(fit))
print(’'length of the tree is \n’, np.log2(max(fit)))

69
70
7
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
9
o7
98
99

100

101

102

103

104

105

106

107

108

109

110

1M1

12

113

114

15

116

17

18

119

120

121

122

123

124

125

126

127

128

129

70 E. Code of Recursive Fithess Models

print(height of the tree is as follows \n’, max(ind))

#figures

plt.figure (1)

sns.distplot (deg, hist=True, kde=True)
plt.xlabel(degrees’)
plt.ylabel(’Density ")

plt.title ('Times—2 degree distributions’)

plt.figure(2)

sns.distplot(fit, hist=True, kde=True)
plt.xlabel(Fitness ")
plt.ylabel(’Density ")

plt.title ('Times—2 fitness distribution’)

#basic histogram

plt.figure(3)

plt.hist(deg)

plt.xlabel(degrees’)
plt.ylabel (' Frequency’)

plt.title ('Times—2 degree sequence’)

plt.figure (4)

plt.hist(fit)

plt.xlabel(’ Fitness ")

plt.ylabel (' Frequency’)

plt.title ('Times—2 fitness sequence’)

ysort = np.sort(deg)[:: —1]

#log—log plot

linex = np.linspace(1, T+1, T+1)
plt.figure (5)

plt.loglog(linex ,ysort, basex=10, basey=10)
plt.title ('Times—2 degree loglog plot’)
#plt.plot(linex ,ysort)

#plt.yscale(’log’)

linex2 = np.linspace (1,max(deg), max(deg))
linex3 = []
degj1 = []
degj = np.zeros((max(deg),), dtype=np.float64)
for i in range(1,max(deg)):
for j in range(0,T):
if degl[jl==i:
degj[i—1]=degj[i—1]+1.0
if degj[i—1]>0:
linex3 .append(i)
degj1.append(degj[i —1])
degj1=np.array(degj1)
degj2=degj1/T

#plt.plot(linex ,degj)
plt.figure(7)
plt.hist(degj)

plt.title ('Times—2 Nk—k sequence’)

plt.figure(8)
sns.distplot(degj, hist=True, kde=True)

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

160
161
162
163
164
165
166
167

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

184

186
187
188
189

71

plt.title ('Times—2 Nk—k distribution)

plt.figure (9)

plt.scatter(linex ,deg, color="blue’,label="Times—2 degree’)
plt.legend(loc="upper right’)

plt.yscale(’'log’)

plt.xscale(’log’)

plt.xlabel (’T-number of iter’)

plt.ylabel(degrees’)

plt.title ('Times—2 degree scatter’)

plt.figure(10)

plt.scatter(linex3 ,degj2,color="blue’,label="Times—2 Nk/t")
logL2=np.log10(linex3)

logB2=np.log10(degj2)

m2, c2 = np.polyfit(logLb2, logB2, 1)

y_fit2 = pow(10,m2+xlogL2 + c2)

plt.plot(linex3, y_fit2, ':’,color="red’,label="regression line ")
plt.legend(loc="upper right’)

plt.yscale(’log’)

plt.xscale(’'log’)

plt.xlabel (’'k—degrees’)

plt.ylabel ('Nk/t")

plt.title ('Times—2 Nk/t—k scatter’)

print('Nk/T regression slope is ' ,m2)

plt.figure(11)

plt.scatter(linex ,ysort,color="blue’,label="Times—2 degree scatter’)
logL=np.log10(linex)

logB=np.log10(ysort)

m1, c¢c1 = np.polyfit(logL, logB, 1)

y_fit = pow(10, mixlogL + c1)

plt.plot(linex, y_fit, ’:’,color="red’ ,label="regression line ")
plt.legend(loc="upper right’)

plt.yscale(’log’)

plt.xscale(’'log’)

plt.xlabel('Nodes of graph at time T7")

plt.ylabel (' Degrees’)

plt.title ('Times—2 Degree scatter’)

print(’'deg regression slope is ’,m1)

plt.figure(12)

plt.plot(linex3 ,degj2,color="blue’,label="Times-2 Nk/t loglog’)
plt.plot(linex3, y_fit2, ':’,color="red’,(label="regression line")
plt.legend(loc="upper right")

plt.yscale(’'log’)

plt.xscale(’log’)

plt.xlabel (’'k—degrees’)

plt.ylabel ('Nk/t")

plt.title ('Times—2 Nk/t—k loglog plot")

#visualization of random graph

plt.figure (13)

nx.draw (G, with_labels=False,edge_color="b’,node_color="r "’ ,node_size=10)
modification of graph

plt.title (' Times—2 graph visualization)

#height of the tree
indh = np.ones((T-1,), dtype=np.int)
for m in range(1,T):

indh [m—1]=max(ind [0:m])

190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
21
212

72 E. Code of Recursive Fitness Models
plt.figure(14)

plt.plot(indh)

plt.xlabel ('T-number of iter’)

plt.ylabel(’ height of tree’)

plt.title ('Times—2 Tree Height over Iteration’)

plt.figure(15)

plt.scatter(linex ,ysort/T,color="blue’ ' ,label="Times—2 degree emp scatter’)

logL=np.log10(linex)
logB4=np.log10(ysort/T)

m4,

c4 = np.polyfit(logL, logB4, 1)

y_fit4 = pow(10, mdxlogL + c4)

plt
plt
plt
plt
plt
plt

plt.

.plot(linex, y_fitd, ’':’,color="red’,label="regression line ")
.legend (loc="upper right’)
.yscale(’'log ")

.xscale(’'log’)

.xlabel (’Nodes of graph at time T')
.ylabel ('Emp Degrees’)

title ('Times—2 Empirical Degree scatter’)

print(’deg regression slope is ' ,m4)

plt

.show ()

© ® N o o A~ © N -

Appendix F

Code of Inverse Model

Python code of Preferential Attachment Inverse Model.

import pandas as pd

import numpy as np

from numpy import =

from matplotlib import pyplot as plt

import seaborn as sns

from random_pick import random_pick, random_picks
from collections import Counter

import math

import scipy.special as special

import networkx as nx

T=10000

deg = np.zeros((T+1,), dtype=np.int)
deg[0] = 2
print (deg)

G=nx.Graph ()

fit = np.zeros((T+1,), dtype=np.float64)

fit[0] = 0.5
print(fit)
fito =[]

prob = np.zeros((T+1,), dtype=np.float64)
for i in range(1,T+1):

prob[i—1] = deg[i—1]xfit[i—1]
print(prob)

ind = np.ones((T+1,), dtype=np.int)

73

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
7
72
73
74
75
76
v
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

74 F. Code of Inverse Model

#index = 0
for t in range(T):
seq = list(range(t+1))
if t==0:
index = random_pick(seq, [prob[0]])
else:
index = random_pick(seq, prob[0:t])

print(index)

deg[index]=deg[index]+1

deg[t+1]=1

G.add_node(t+1)

G.add_edge(index+1, t+1)

#fit[t+1]=prob[t+1]/deg[t+1]

#fit[index]=prob[index]/deg[index]

ind[t+1]=ind[index]+1

for j in range(t+1):
fit[j]=math.exp(special.gammain(t+1.5)+special.gammailn(j+1)—special.

gammaln(t+2)—special.gammaln(j+0.5))

prob[j]=deg[j]*fit[j]

fit0 .append(fit[0])

print(’degree sequence is as follows \n’, deg)
print(’fitness sequence is as follows \n’, fit)
print(height of the tree is as follows \n’, max(ind))

#figures

plt.figure (1)

sns.distplot(deg, hist=True, kde=True)
plt.xlabel(degrees’)

plt.ylabel(Density ")

plt.title ('PAMinv degree distributions’)

plt.figure(2)

sns.distplot(fit, hist=True, kde=True)
plt.xlabel(Fitness)

plt.ylabel(Density ")

plt.title ('PAMinv fitness distribution ")

#basic histogram

plt.figure(3)

plt.hist(deg)

plt.xlabel(' degrees’)
plt.ylabel (' Frequency’)

plt.title ('PAMinv degree sequence’)

plt.figure (4)

plt.hist(fit)

plt.xlabel(’ Fitness ")

plt.ylabel (’Frequency’)

plt.title ('PAMinv fitness sequence’)

plt.show ()

#hill estimator for tail index gamma
ysort = np.sort(deg)[:: —1] # sort the returns

#log—log plot
linex = np.linspace(1, T+1, T+1)
plt.figure (5)

104
105
106
107
108
109
110
m
112
113
114
115
116
"7
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

161
162
163
164

75

plt.loglog(linex ,ysort, basex=10, basey=10)
plt.title ('PAMinv degree loglog plot’)
#plt.plot(linex ,ysort)

#plt.yscale(’log’)

linex2 = np.linspace (1,max(deg), max(deg))
linex3 = []
degj1 = []
degj = np.zeros((max(deg),), dtype=np.float64)
for i in range(1,max(deg)):

for j in range(0,T):

if deg[jl==i:
degj[i—1]=degj[i —1]+1.0
if degj[i—1]>0:
linex3 .append(i)
degj1.append(degj[i —1])
degj1=np.array(degj1)
degj2=degj1/T
degj3=np.ones((len(degj1),),
for | in range(1,len(degj1)):
degj3 [l —1]=degj1[I —1]/I

dtype=np.float64)

#plt.plot(linex ,degj)

plt.figure(7)

plt.hist(degj)

plt.xlabel(k—degrees’)
plt.ylabel (’Nk number’)

plt.title ('"PAMinv Nk—k sequence’)

plt.figure (9)

plt.scatter(linex ,deg, color="blue’,label="PAMinv degree’)
plt.legend(loc="upper right’)

plt.yscale(’log’)

plt.xscale(’'log’)

plt.xlabel('Nodes of graph at time T7")
plt.ylabel(' degrees’)

plt.title ('PAMinv degree scatter’)

plt.figure(10)

plt.scatter(linex3 ,degj2,color="blue’,label="PAMinv Nk/t")
logL2=np.log10(linex3)

logB2=np.log10(degj2)

m2, ¢c2 = np.polyfit(logLb2, logB2, 1)

y_fit2 = pow(10,m2xlogL2 + c2)

plt.plot(linex3, y_fit2, ':’,color="red’,(label="regression line")
plt.legend(loc="upper right")

plt.yscale(’'log’)

plt.xscale(’log’)

plt.xlabel (’'k—degrees’)

plt.ylabel ('Nk/t")

plt.title ('PAMinv Nk/t—k scatter’)

print(’'Nk/t regression slope is ',m2)

plt.figure(11)

plt.scatter(linex ,ysort,color="blue’,label="PAM degree scatter’)
logL=np.log10(linex)

logB=np.log10(ysort)

m1, ¢1 = np.polyfit(logL, logB, 1)

y_fit = pow(10, mi*logL + c1)

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

186

187
188
189
190
191
192

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
21
212
213
214
215
216

76 F. Code of Inverse Model

plt.plot(linex, y_fit, ’:’,color="red’,label="regression line")
plt.legend(loc="upper right’)

plt.yscale(’'log’)

plt.xscale(’log’)

plt.xlabel('Nodes of graph at time T7)

plt.ylabel(Degrees’)

plt.title ('PAMinv Degree scatter’)

print(’'deg regression slope is ’,m1)

plt.figure(12)

plt.plot(linex3 ,degj2,color="blue’,label="PAMinv Nk/t loglog ")
plt.plot(linex3, y_fit2, ':’,color="red’,label="regression line ")
plt.legend(loc="upper right”)

plt.yscale(’log’)

plt.xscale(’'log’)

plt.xlabel (’'k—degrees’)

plt.ylabel ('Nk/t")

plt.title ('"PAMinv Nk/t—k loglog plot’)

#visualization of random graph

plt.figure(13)

nx.draw (G, with_labels=False ,edge_color="b’,node_color="r "’ ,node_size=10)
modification of graph

plt.title ('"PAMinv graph visualization)

#height of the tree
indh = np.ones((T—-1,), dtype=np.int)
for m in range(1,T):
indh [m—1]=max(ind [0:m])
plt.figure(14)
plt.plot(indh)
plt.xlabel (’'T—number of iter’”)
plt.ylabel (' height of tree’)
plt.title ('PAMinv Tree Height over lIteration’)

plt.figure(19)

plt.plot(linex3 ,degj3,color="blue’,label="PAMinv Nk/t loglog ")
logL2=np.log10(linex3)

logB7=np.log10(degj3)

m7, ¢7 = np.polyfit(logLb2, logB7, 1)

y_fit7 = pow(10,m7xlogL2 + c7)

plt.plot(linex3, y_fit7, ':’,color="red’,(label="regression line")
plt.legend(loc="upper right")

plt.yscale(’'log’)

plt.xscale(’'log’)

plt.xlabel (’'k—degrees’)

plt.ylabel ('Nk/t")

plt.title ('"PAMinv Nk/t—k loglog plot")

print('Nk/t—k regression slope is’,m7)

plt.show ()

#

© ® N o o A~ © N -

Appendix G

Code of Comparisons

Python code of comparisons between PAM and RRT.

import pandas as pd

import numpy as np

import random

from matplotlib import pyplot as plt

import seaborn as sns

from random_pick import random_pick, random_picks
from collections import Counter

import math

import scipy.special as special

Tp=10000

degp = np.zeros((Tp+1,), dtype=np.int)
degp[0] = 2
print (degp)

probp = np.ones((Tp+1,), dtype=np.int)
print (probp)

fitp = np.ones((Tp+1,), dtype=np.float64)
fitp[0] = 0.5
print(fitp)

indp = np.ones((Tp+1,), dtype=np.int)

for t in range(Tp):
seqp = list(range(t+1))
if t==0:
index = random_picks(seqp, [probp[0]])

77

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
7
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
9
97
98
99

100

101

102

103

104

78

G. Code of Comparisons

else:
index = random_picks(seqp, probp[0:t])

print(index)
degp[index]=degp[index]+1
degp[t+1]=1

fitp [index]=probp[index]/degp[index]
indp[t+1]=indp[index]+1

Ts=10000

degs = np.zeros((Ts+1,), dtype=np.int)
degs[0] = 2
print (degs)

fits = np.ones((Ts+1,), dtype=np.int)
fits [0] =1
print(fits)

probs = np.zeros((Ts+1,), dtype=np.int)
for i in range(1,Ts+1):

probs[i—1] = degs[i—1]xfits[i—1]
print(probs)

inds = np.ones((Ts+1,), dtype=np.int)

for t in range(Ts):

seqs = list(range(t+1))
if t==0:

index = random_picks(seqs, [probs[0]])
else:

index = random_picks(seqs, probs[0:t])

print(index)

degs[index]=degs[index]+1

degs[t+1]=1

inds[t+1]=inds[index]+1

for j in range(t+1):
probs[j]=degs[j]* fits[j]

T = max([Tp,Ts])

linex = np.linspace(1, T+1, T+1)
ysortp = np.sort(degp)[:: —1]
ysorts = np.sort(degs)[:: —1]

L = max([max(degp) ,max(degs)])

linex2 = np.linspace(1,L, L)

degjp = np.zeros((L,), dtype=np.float64)
degjs = np.zeros((L,), dtype=np.float64)

105
106
107
108
109
110
1M
12
113
14
15
116
17
18
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

79

linexs3 = []
degjs1 = []

for

i in range(1,L):
for j in range (0,T):
if degs[jl==i:
degjs[i—1]=degjs[i —1]+1.0
if degjs[i—1]>0:
linexs3 .append(i)
degjs1.append(degjs[i—1])

degjs1=np.array(degjs1)
degjs2=degjs1/T

linexp3 = []
degjp1 = []
for i in range(1,L):

for j in range (0,T):
if degpl[jl==i:
degjp[i —1]=degjp[i —1]+1.0
if degjp[i—1]>0:
linexp3 .append (i)
degjp1.append(degjp[i—1])

degjp1=np.array(degjp1)
degjp2=degjs1/T

plt

plt
plt
plt

plt.

plt

plt
plt
plt
plt
plt

plt

plt.
.yscale(’'log’)

plt

plt.
.yscale(’'log’)

plt

plt
plt
plt

plt.

plt

.figure (2)
plt.
plt.
.xlabel(’log(k)—inf of degrees’)
.ylabel (’log (Nk)—number of nodes deg over k')
.legend (loc="upper right")

loglog(linex2 ,degjp, basex=10, basey=10, label="RRT")
loglog (linex2 ,degjs, basex=10, basey=10, label="PAM")

title ('Nk—=k log—log plot”)

.figure (3)
plt.
plt.
.yscale(’'log’)

.xscale(’'log ")

.xlabel (’Nodes of graph at time T')
.ylabel ("degrees’)

.legend (loc="upper right’)

plt.

scatter(linex ,ysortp,color="blue ' ,label="RRT degree scatter’)
scatter(linex ,ysorts,color="yellow ', label="PAM degree scatter’)

title ('degree scatter’)

.figure (5)

plot(linex2 ,degjp/T, label="RRT")

plot (linex2 ,degjs/T, label="PAM")

.xlabel ("k=inf of degrees’)
.ylabel ('Nk—number of nodes deg over k')
.legend (loc="upper right’)

title ('Nk/T—k log plot"’)

.figure (6)
plt.
plt.

loglog (linex2 ,degjp/T, basex=10, basey=10, label="RRT")
loglog (linex2 ,degjs/T, basex=10, basey=10, label="PAM")

166

167

168

169

170

171

© ® N o o ~ 0 N -

80 G. Code of Comparisons

plt.xlabel (’'k—degrees’)

plt.ylabel ('Nk/t—number of nodes deg over k at time t’)
plt.legend(loc="upper right’)

plt.title ('Nk/t—k log—log plot")

plt.show

Python code of comparisons between Benchmarks and Bianconi Barabasi Models.

import pandas as pd

import numpy as np

import random

from matplotlib import pyplot as plt

import seaborn as sns

from random_pick import random_pick, random_picks
from collections import Counter

import math

Tp=10000
degp = np.zeros((Tp+1,), dtype=np.int)

degp[0] = 2
print (degp)

probp = np.ones((Tp+1,), dtype=np.int)
print (probp)

fitp = np.ones((Tp+1,), dtype=np.float32)
fitp[0] = 0.5
print(fitp)

indp = np.ones((Tp+1,), dtype=np.int)

for t in range(Tp):

seqp = list(range(t+1))
if t==0:

index = random_picks(seqp, [probp[0]])
else:

index = random_picks(seqgp, probp[0:t])

print(index)
degp[index]=degp[index]+1
degp[t+1]=1

fitp [index]=probp[index]/degp[index]
indp[t+1]=indp[index]+1

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
7
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
9
o7
98
99

100

101

102

103

104

105

106

107

108

109

110

1M1

12

113

14

81

T1=10000

deg1 = np.zeros((T1+1,), dtype=np.int)
deg1[0] = 2
print (deg1)

fit1 = np.random.exponential (2,T1+1)
print(fit1)

prob1 = np.zeros((T1+1,), dtype=np.float64)
for i in range(1,T1+1):

prob1[i—1] = deg1[i—1]xfit1[i—1]
print(prob1)

ind1 = np.ones((T1+1,), dtype=np.int)
for t in range(T1):

seql = list(range(t+1))
if t==0:

index = random_pick(seq1, [prob1[0]])

else:

index = random_pick(seq1, prob1[0:t])

print(index)

deg1[index]=deg1[index]+1

deg1[t+1]=1

ind1[t+1]=ind1[index]+1

for j in range(t+1):
prob1[j]=deg1[j]*fit1[]]

Ti=10000

degi = np.zeros((Ti+1,), dtype=np.int)
degi[0] = 2
print(degi)

fiti = np.random.uniform(0,1,Ti+1)
print(fiti)

probi = np.zeros((Ti+1,), dtype=np.float64)
for i in range(1,Ti+1):

probi[i—1] = degi[i—-1]xfiti[i—-1]
print(probi)

indi = np.ones((Ti+1,), dtype=np.int)

for t in range(Ti):
seqi = list(range(t+1))
if t==0:

index = random_pick(seqi, [probi[0]])

else:

115
116
17
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

82

G. Code of Comparisons

index = random_pick(seqi, probi[0:t])

print(index)

degi[index]=degi[index]+1

degi[t+1]=1

indi[t+1]=indi[index]+1

for j in range(t+1):
probi[j]=degi[j]* fiti[j]

Ts=10000

degs = np.zeros((Ts+1,), dtype=np.int)
degs[0] = 2
print (degs)

fits = np.ones((Ts+1,), dtype=np.int)
fits [0] =1
print(fits)

probs = np.zeros((Ts+1,), dtype=np.int)
for i in range(1,Ts+1):

probs[i—1] = degs[i—1]xfits[i—1]
print(probs)

inds = np.ones((Ts+1,), dtype=np.int)
for t in range(Ts):

seqs = list(range(t+1))
if t==0:

index = random_picks(seqs, [probs[0]])

else:

index = random_picks(seqs, probs[0:t])

print(index)

degs[index]=degs[index]+1

degs[t+1]=1

inds[t+1]=inds[index]+1

for j in range(t+1):
probs[j]=degs[j]* fits[j]

T = max([Tp,Ti,T1,Ts])
linex = np.linspace(1, T+1, T+1)

ysortp = np.sort(degp)[:: —1]
ysorti = np.sort(degi)[:: —1]
ysort1 = np.sort(deg1)[:: —1]
ysorts = np.sort(degs)[:: —1]

L = max([max(degp) ,max(deg1) ,max(degi) ,max(degs)])

linex2 = np.linspace(1,L+1, L+1)

degjp = np.zeros((L+1,), dtype=np.int)
degj1 = np.zeros((L+1,), dtype=np.int)
degji = np.zeros((L+1,), dtype=np.int)
degjs = np.zeros((L+1,), dtype=np.int)

for i in range(1,L+1):

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

206
207
208
209

210
21
212
213
214
215
216
217
218

© ® N o o ~ w0 N -

83

for j in range (0,Tp):
if degpl[j]l>=i:
degjp [i—1]=degjp[i-1]+1

for i in range(1,L+1):
for j in range (0,T1):
if degl1[jl>=i:
degj1[i—1]=degj1[i—1]+1
for i in range(1,L+1):
for j in range (0,Ti):
if degi[jl>=i:
degji[i—1]=degji[i—1]+1
for i in range(1,L+1):
for j in range (0,Ts):
if degs[j]>=i:

degjs[i—1]=degjs [i —1]+1

plt.figure(2)

plt.loglog(linex2 ,degjp/Tp,color="blue’, basex=10, basey=10, label="RRT")
plt.loglog(linex2 ,degj1/T1,color="red’, basex=10, basey=10, label="BBMexp)
plt.loglog(linex2 ,degji/Ti,color="green’, basex=10, basey=10, label="BBMuni’)
plt.loglog(linex2 ,degjs/Ts,color="yellow ', basex=10, basey=10, label="PAM")
plt.xlabel(k—degrees’)

plt.ylabel ('Nk/t—number of nodes deg over k at time t')

plt.legend(loc="upper right’)

plt.title ('Nk/t—k log—log plot")

plt.figure(3)

plt.scatter(linex ,ysortp,color="blue’,label="RRT degree scatter’)

plt.scatter(linex ,ysort1,color="red’,label="BBMexp degree scatter’)

plt.scatter(linex[0:len(ysorti)],ysorti ,color="green’,label="BBMuni degree scatter
")

plt.scatter(linex ,ysorts,color="yellow’,6 label="PAM degree scatter’)

plt.yscale(’'log’)

plt.xscale(’log’)

plt.xlabel (’'T—number of iter ")

plt.ylabel(degrees’)

plt.legend(loc="upper right")

plt.title ('degree scatter’)

plt.show

Python code of comparisons between Benchmarks and Recursive Fitness Models.

—— coding: utf—-8 —x—
Created on Thu Apr 2 16:14:44 2020

@author: wangr

import pandas as pd

import numpy as np

import random

from matplotlib import pyplot as plt

import seaborn as sns

from random_pick import random_pick, random_picks
from collections import Counter

import math

84

G. Code of Comparisons

Tp=10000
degp = np.zeros((Tp+1,), dtype=np.int)

degp[0] = 2
print (degp)

probp = np.ones((Tp+1,), dtype=np.int)
print (probp)

fitp = np.ones((Tp+1,), dtype=np.float32)
fitp [0] = 0.5
print(fitp)

indp = np.ones((Tp+1,), dtype=np.int)

for t in range(Tp):

seqp = list(range(t+1))
if t==0:

index = random_picks(seqp, [probp[0]])
else:

index = random_picks(seqp, probp[0:t])

print(index)
degp[index]=degp[index]+1
degp[t+1]=1

fitp [index]=probp[index]/degp[index]
indp[t+1]=indp[index]+1

T1=10000

deg1 = np.zeros((T1+1,), dtype=np.int)
deg1[0] = 2
print (deg1)

fit1 = np.zeros((T1+1,), dtype=np.int)
fit1[0] = 1
print(fit1)

prob1 = np.zeros((T1+1,), dtype=np.int)
for i in range(1,T1+1):

prob1[i—1] = deg1[i—1]xfit1[i—-1]
print(prob1)

ind1 = np.ones((T1+1,), dtype=np.int)

for t in range(T1):
seql = list(range(t+1))

77
78
79
80
81
82
83
84
85
86
87
88
89
9
91
92
93
94
95
9
97
98
99

100

101

102

103

104

105

107
108
109
110
m
112
113
114
115
116
"7
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

134
135
136
137

85

if t==0:

index = random_picks(seq1, [prob1[0]])
else:

index = random_picks(seq1, prob1[0:t])

print(index)

deg1[index]=deg1[index]+1

deg1[t+1]=1

fit1 [t+1]=fit1 [index]+1

ind1[t+1]=ind1[index]+1

for j in range(t+1):
prob1[j]=deg1[j]*fit1[]]

Ti=2000

degi = np.zeros((Ti+1,), dtype=np.int)
degi[0] = 2
print(degi)

fiti = np.zeros((Ti+1,), dtype=np.int)
fiti [0] =1
print(fiti)

probi = np.zeros((Ti+1,), dtype=np.int)
for i in range(1,Ti+1):

probi[i—1] = degi[i—1]*fiti[i—1]
print(probi)

indi = np.ones((Ti+1,), dtype=np.int)

for t in range(Ti):
seqi = list(range(t+1))
if t==0:
index = random_picks(seqi, [probi[0]])
else:
index = random_picks(seqi, probi[0:t])

print(index)

degi[index]=degi[index]+1

degi[t+1]=1

fiti [t+1]=fiti[index]+ index

indi[t+1]=indi[index]+1

for j in range(t+1):
probi[j]=degi[j]* fiti[j]

Ts=10000
degs = np.zeros((Ts+1,), dtype=np.int)

degs[0] = 2
print(degs)

fits = np.ones((Ts+1,), dtype=np.int)

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

186
187
188
189
190
191
192
193
194
195
196
197
198

G. Code of Comparisons

86
fits[0] = 1
print(fits)

probs = np.zeros((Ts+1,), dtype=np.int)
for i in range(1,Ts+1):

probs[i—1] = degs[i—1]xfits[i—1]
print(probs)

inds = np.ones((Ts+1,), dtype=np.int)

for t in range(Ts):

seqs = list(range(t+1))
if t==0:

index = random_picks(seqs, [probs[0]])
else:

index = random_picks(seqs, probs[0:t])

print(index)

degs[index]=degs[index]+1

degs[t+1]=1

inds[t+1]=inds[index]+1

for j in range(t+1):
probs[j]=degs[j]*fits[]]

T =max([Tp,Ti,T1,Ts])
linex = np.linspace(1, T+1, T+1)

ysortp = np.sort(degp)[:: —1]
ysorti = np.sort(degi)[:: —1]
ysort1 = np.sort(deg1)[:: —1]
ysorts = np.sort(degs)[:: —1]

L = max([max(degp) ,max(deg1) ,max(degi) ,max(degs)])
linex2 = np.linspace(1,L+1, L+1)

degjp np.zeros ((L+1 dtype=np.int)

degj1 np.zeros ((L+1 dtype=np.int)

degji np.zeros ((L+1 dtype=np.int)

degjs np.zeros ((L+1 dtype=np.int)

)
)
)
)

for i in range(1,L+1):
for j in range (0,Tp):
if degpl[jl>=i:
degjp[i—1]=degjp [i—1]+1

for i in range(1,L+1):
for j in range (0,T1):
if degl[jl>=i:
degj1[i—1]=degj1[i—1]+1

for i in range(1,L+1):
for j in range (0,Ti):
if degil[jl>=i:
degji[i—1]=degji[i—1]+1

for i in range(1,L+1):
for j in range (0,Ts):
if degs[jl>=i:
degjs[i—1]=degjs[i—1]+1

199
200
201
202
203
204
205
206
207
208
209
210
21
212
213

214
215
216
217
218
219
220
221
222

© ® N o o & © N =

87

plt.figure(2)

plt.loglog(linex2 ,degjp/Tp, color="blue’, basex=10, basey=10, label="RRT")
plt.loglog(linex2 ,degj1/T1,color="red’, basex=10, basey=10, label="Plus—1")
plt.loglog(linex2 ,degji/Ti,color="green’, basex=10, basey=10, label="Plus—i")
plt.loglog(linex2 ,degjs/Ts,color="yellow ', basex=10, basey=10, label="PAM")
plt.xlabel (’'k—degrees’)

plt.ylabel ('Nk/t—number of nodes deg over k at time t’)

plt.legend(loc="upper right")

plt.title ('Nk/t—k log—log plot")

plt.figure(3)

plt.scatter(linex ,ysortp,color="blue’,label="RRT degree scatter’)

plt.scatter(linex ,ysort1,color="red’,label="Plus—1 degree scatter’)

plt.scatter(linex[0:len(ysorti)],ysorti ,color="green’,label="Plus—i degree scatter
)

plt.scatter(linex ,ysorts,color="yellow ', label="PAM degree scatter’)

plt.yscale(’log’)

plt.xscale(’log’)

plt.xlabel(’Nodes of graph at time T")

plt.ylabel(degrees’)

plt.legend(loc="upper right”)

plt.title ('degree scatter’)

plt.show

Python code of comparisons between Benchmarks and Inverse Model.

—x— coding: utf—-8 —x—
Created on Sun Apr 19 11:25:57 2020

@author: wangr

import pandas as pd

import numpy as np

import random

from matplotlib import pyplot as plt

import seaborn as sns

from random_pick import random_pick, random_picks
from collections import Counter

import math

import scipy.special as special

SRR

#RRT mode

Tp=10000

#degree vector

degp = np.zeros((Tp+1,), dtype=np.int)
degp[0] = 2

print (degp)

#probability to choose any connecting point
probp = np.ones((Tp+1,), dtype=np.int)
print (probp)

#fitness vector

fitp = np.ones((Tp+1,), dtype=np.float64)
fitp [0] = 0.5

#for i in range(1,T+1):

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
7
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
9
91
92
93
94
95

88

G. Code of Comparisons

print(fitp)

indp = np.ones((Tp+1,), dtype=np.int)

for t in range(Tp):

seqp = list(range(t+1))
if t==0:

index = random_picks(seqp, [probp[0]])
else:

index = random_picks(seqgp, probp[0:t])

print(index)
degp[index]=degp[index]+1
degp[t+1]=1

fitp [index]=probp[index]/degp[index]
indp[t+1]=indp[index]+1

Ts=10000
degs = np.zeros((Ts+1,), dtype=np.int)

degs[0] = 2
print (degs)

fits = np.ones((Ts+1,), dtype=np.int)
fits [0] =1
print(fits)

probs = np.zeros((Ts+1,), dtype=np.int)
for i in range(1,Ts+1):

probs[i—1] = degs[i—1]xfits [i—1]
print (probs)

inds = np.ones((Ts+1,), dtype=np.int)

for t in range(Ts):

seqs = list(range(t+1))
if t==0:

index = random_picks(seqs, [probs[0]])
else:

index = random_picks(seqgs, probs[0:t])

print(index)

degs[index]=degs[index]+1

degs[t+1]=1

inds[t+1]=inds[index]+1

for j in range(t+1):
probs[j]=degs[j]*fits[j]

9
97
98
99

100

101

102

103

104

105

106

107

108

109

110

1M1

12

113

14

15

116

17

118

119

120

121

122

123

124

125

126

127

128

129

130
131
132

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

89

Tm=10000

degm = np.zeros ((Tm+1,), dtype=np.int)
degm[0] = 2
print (degm)

fitm = np.zeros((Tm+1,), dtype=np.float64)
fitm[0] = 0.5
print(fitm)

probm = np.zeros ((Tm+1,), dtype=np.float64)
for i in range(1,Tm+1):

probm[i—1] = degm[i—1]*fitm [i—1]
print (probm)

indm = np.ones((Tm+1,), dtype=np.int)

for t in range(Tm):
seqgm = list(range(t+1))
if t==0:
index = random_pick(seqm, [probm[0]])
else:
index = random_pick (seqm, probm[0:t])

print(index)

degm[index]=degm[index]+1

degm[t+1]=1

indm[t+1]=indm[index]+1

for j in range(t+1):
fitm[j]=math.exp(special.gammaln(t+1.5)+special.gammaln(j+1)—special.

gammaln(t+2)—special.gammaln(j+0.5))

probm[j]=degm[j]*fitm[]]

T = max([Tp,Tm,Ts])

linex = np.linspace(1, T+1, T+1)
ysortp = np.sort(degp)[:: —1]
ysortm = np.sort(degm)[:: —1]
ysorts = np.sort(degs)[:: —1]

L = max([max(degp) ,max(degm) ,max(degs)])
linex2 = np.linspace(1,L+1, L+1)

degjp = np.zeros((L+1,), dtype=np.int)
degjm = np.zeros((L+1,), dtype=np.int)
degjs = np.zeros((L+1,), dtype=np.int)
for i in range(1,L+1):
for j in range (0,Tp):
if degpl[jl>=i:
degjp [i —1]=degjp [i —1]+1

for i in range(1,L+1):

for j in range (0,Tm):
if degm[j]>=i:

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

90

G. Code of Comparisons

for

plt
plt.
plt.

plt.
plt

plt.
plt.

plt
plt
plt
plt.

plt
plt.
plt.
plt.
plt
plt
plt
plt.

plt
plt.
plt.
plt.
plt
plt
plt
plt
plt
plt.

plt

degjm[i—1]=degjm[i —1]+1

i in range(1,L+1):
for j in range (0,Ts):
if degs[j]>=i:
degjs[i—1]=degjs[i—1]+1

.figure (1)

plot(linex2 ,degjp, label="RRT")
yscale(’'log’)

plot(linex2 ,degjm, label="PAMinv")

.yscale(’'log ")

plot(linex2 ,degjs, label="PAM")
yscale(’'log’)

.xlabel ("k—inf of degrees’)
.ylabel (’log (Nk)—number of nodes deg over k')
.legend (loc="upper right")

title ('Nk—k log plot”)

.figure (2)

loglog (linex2 ,degjp/Tp, color="blue’, basex=10, basey=10, label="RRT")
loglog (linex2 ,degjm/Tm, color="red’, basex=10, basey=10, label="PAMinv ")
loglog (linex2 ,degjs/Ts,color="yellow’, basex=10, basey=10, label="PAM")
.xlabel ('k—degrees ")

.ylabel (’Nk/t—number of nodes deg over k at time t’)
.legend (loc="upper right")

title ('Nk/t—k log—log plot")

.figure (3)

scatter(linex ,ysortp,color="blue ' ,label="RRT degree scatter’)
scatter(linex ,ysortm,color="red’,label="PAMinv degree scatter’)
scatter(linex ,ysorts ,color="yellow ', label="PAM degree scatter’)

.yscale(’'log’)

.xscale(’'log’)

.xlabel (’Nodes of graph at time T')
.ylabel ("degrees’)

.legend (loc="upper right’)

title ('degree scatter’)

.show

© ® N o o ~ w0 N =

Appendix H

Code of Preferential Attachment
Inverse Model Simulations

Dt (J)
Python code of Eld, ()] sequence.

import pandas as pd

import numpy as np

import random

from matplotlib import pyplot as plt

import seaborn as sns

from random_pick import random_pick, random_picks
from collections import Counter

import math

import scipy.special as special

T=10000

deg = np.zeros((T+1,), dtype=np.int)
deg[0] = 2

fit = np.zeros((T+1,), dtype=np.float64)
fit[0] = 0.5

prob = np.zeros((T+1,), dtype=np.float64)
for i in range(1,T+1):
prob[i—1] = deg[i—1]xfit[i—1]

for t in range(T):
seq = list(range(t+1))
if t==0:
index
else:
index = random_pick(seq, prob[0:t])

random_pick(seq, [prob[0]])

91

42
43
44
45
46

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
7
72

© ®©® N o o ~ W N -

92 H. Code of Preferential Attachment Inverse Model Simulations

print(index)
deg[index]=deg[index]+1
deg[t+1]=1
for j in range(t+1):
fit[j]=math.exp(special.gammaln(t+1.5)+special.gammaln(j+1)—special.
gammain(t+2)—special .gammaln(j+0.5))
prob[j]=deg[j]* fit[j]

plt.figure (1)
plt.plot(range(1,T+1),prob[0:T], . ,color="blue’,label="D_t(j)/E[d_t(j)]")
m1, ¢1 = np.polyfit(range(1,T+1), prob[0:T], 1)

y_fit = mixrange(1,T+1) + c1

plt.plot(range(1,T+1), y_fit, ':’,color="red’,label="regression line ")
plt.xlabel('nodes’)

plt.ylabel ("D_t(j)/E[d_t(j)]")

plt.legend(loc="upper right")

plt.title ('Numerator trend’)

plt.show

print(m1,c1)

plt.figure(2)

plt.plot(range(1,T+1),prob[0:T], color="blue’,label="D_t(j)/E[d_t(j)]")
m2, ¢c2 = np.polyfit(range(1,T+1), prob[0:T], 1)

y_fit2 = m2+xrange(1,T+1) + c2

plt.plot(range(1,T+1), y_fit2, ’':’,color="red’,label="regression line")
plt.xlabel(’'nodes’)

plt.ylabel ("D_t(j)/E[d_t(j)]")

plt.legend(loc="upper right")

plt.title ('Numerator trend’)

plt.show

print(m2,c2)

Python code of Z, sequence.

import pandas as pd

import numpy as np

import random

from matplotlib import pyplot as plt

import seaborn as sns

from random_pick import random_pick, random_picks
from collections import Counter

import math

import scipy.special as special

N = 3000
Zt np.zeros ((N—-100,), dtype=np.float64)
Kt np.zeros ((N—100,), dtype=np.float64)

for T in range(100,N):

deg = np.zeros((T+1,), dtype=np.int)
deg[0] = 2

28
29
30
31
32
33
34
35
36
a7
38
39
40
41
42
43
44
45
46
47
48
49
50

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
7
72
73
74
75
76

77

©® N o a0 B W N =

93

fit = np.zeros((T+1,), dtype=np.float64)
fit[0] = 0.5

prob = np.zeros((T+1,), dtype=np.float64)
for i in range(1,T+1):
prob[i—1] = deg[i—-1]xfit[i—1]

for t in range(T):
seq = list(range(t+1))
if t==0:
index = random_pick(seq, [prob[0]])
else:
index = random_pick(seq, prob[0:t])

print(index)
deg[index]=deg[index]+1
deg[t+1]=1

for j in range(t+1):

fit[j]=math.exp(special.gammaln(t+1.5)+special .gammalin(j+1)—special.

gammalin(t+2)—special .gammaln(j+0.5))
prob[j]=deg[j]* fit[j]

Zt[T—100]=sum(prob)
Kt[T-100]=Zt[T—-100)/T

plt.figure (1)

plt.plot(range(100,N),Kt, color="blue ', label="2Zt/t")

m1, ¢1 = np.polyfit(range(100,N), Kt, 1)

y_fit = mi*xrange(100,N) + c1

plt.plot(range(100,N), y_fit, ':’,color="red’,label="regression line")
plt.xlabel(’iterations)

plt.ylabel("Zt/t")

plt.legend(loc="upper right")

plt.title ('Zt trend’)

plt.show

plt.figure(2)

plt.plot(range(100,N),Kt,’ .’ ,color="blue’,label="2Zt/t")

m2, c2 = np.polyfit(range(100,N), Kt, 1)

y_fit2 = m2+*range(100,N) + c2

plt.plot(range(100,N), y_fit2, ’:’,color="red’,label="regression line ")
plt.xlabel(’iterations)

plt.ylabel(’'Zt/t")

plt.legend(loc="upper right’)

plt.title ('Zt trend’)

plt.show

Python code of maximal eigenvalue sequence and corresponding eigenvectors.

import pandas as pd

59

60

61

62

63

64

65

94 H. Code of Preferential Attachment Inverse Model Simulations

import numpy as np

import random

from matplotlib import pyplot as plt

import seaborn as sns

from random_pick import random_pick, random_picks
from collections import Counter

import math

import scipy.special as special

T=10000

deg = np.zeros((T+1,), dtype=np.int)
deg[0] = 2
print (deg)

fit = np.zeros((T+1,), dtype=np.float64)
fit[0] = 0.5
print(fit)

prob = np.zeros((T+1,), dtype=np.float64)
for i in range(1,T+1):
prob[i—1] = deg[i—1]xfit[i—1]

print(prob)

ind = np.ones((T+1,), dtype=np.int)

mevalues =[]
loca = []

for t in range(T):
seq = list(range(t+1))
if t==0:
index = random_pick(seq, [prob[0]])
else:
index = random_pick(seq, prob[0:t])

print(index)
deg[index]=deg[index]+1
deg[t+1]=1
ind[t+1]=ind[index]+1
for j in range(t+1):
fit[jl=math.exp(special.gammaln(t+1.5)+special .gammaln(j+1)—special.
gammaln(t+2)—special.gammaln(j+0.5))
prob[j]=deg[j]* fit[j]
A = np.zeros ((max(deg)+1,max(deg)+1),dtype=np.float64)

aa = np.zeros((max(deg)+1,), dtype=np.float64)
Ndeg=np.ones ((max(deg)+1,), dtype=np.int)
for k in range(max(deg)+1):

if len(np.where(deg==k)[0])>0:
for n in np.where(deg==k)[0]:

66
67
68
69
70
7
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
9
95
9
o7
98
99

100

101

102

103

104

105

106

95

HitH

print(’largest eigenvalues sequence is \n’,
print(’largest eigenvalues

aa[k]=aa[k] + prob[n]
print(aa[k],k)

Ndeg[k]=len (np.where(deg==k)[0])

for i in range(max(deg)+1):
for j in range(max(deg)+1):
if i==0:
Ali,0]=2
elif i==max(deg):
Ali,0]1=1
A[i ,max(deg)]=1
else:
Ali,0]1=1

Ali,i]=—Ndeg[i]
Ali, i+1]=Ndeg[i]+1
A[i]=A[i]*aa[i]

w,v=np.linalg.eig(A)
print(’eigenvalues are \n’, w)
print(' eigenvectors are \n’', v)
print ('maximal eigenvalue
print(’max eigenvalue is
print(’corresponding eigenvector
mevalues . append (max(w))

located \n’,

is \n’, max(w))
int (np.where(w==max(w))[0][0]))
is \n’,

v[:,int(np.where(w==max(w))[0][0])])

loca.append(int (np.where(w==max(w))[0]1[0]))

locations are \n’,

mevalues)
loca)

#plots

plt.figure (1)

plt.plot(mevalues, label="Max eigenvalues’)
plt.xlabel(’iteration numbers’)
plt.ylabel(’maximal eigenvalues’)
plt.legend(loc="upper right")

plt.title ('PAMinv Matrix A Eigenvalues Trend’)

plt

.show

Bibliography

[11 Gamma function asymptotic expansions. [EB/OL]. https://dlmf.nist.gov/5.11.

[2] Louigi Addario-Berry and Laura Eslava. High degrees in random recursive trees. Random Struc-
tures & Algorithms, 52(4):560-575, 2018.

[3] Albert-Laszl6 Barabasi and Réka Albert. Emergence of scaling in random networks. science, 286
(5439):509-512, 1999.

[4] Ginestra Bianconi and A-L Barabasi. Competition and multiscaling in evolving networks. EPL
(Europhysics Letters), 54(4):436, 2001.

[5] Christian Borgs, Jennifer Chayes, Constantinos Daskalakis, and Sebastien Roch. First to market
is not everything: an analysis of preferential attachment with fitness. In Proceedings of the thirty-
ninth annual ACM symposium on Theory of computing, pages 135-144, 2007.

[6] Guido Caldarelli, Andrea Capocci, Paolo De Los Rios, and Miguel A Munoz. Scale-free networks
from varying vertex intrinsic fitness. Physical review letters, 89(25):258702, 2002.

[7] Alessandra Cipriani and Andrea Fontanari. Dynamical fitness models: evidence of universality
classes for preferential attachment graphs. arXiv preprint arXiv:1911.12402, 2019. https://
arxiv.org/abs/1911.12402.

[8] Sander Dommers, Remco Van Der Hofstad, and Gerard Hooghiemstra. Diameters in preferential
attachment models. Journal of Statistical Physics, 139(1):72—107, 2010.

[9] Paul Erd8ds and Alfréd Rényi. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad.
Sci, 5(1):17-60, 1960.

[10] Nicolas Fraiman, Omar Fawzi, and Luc Devroye. The height of scaled attachment random recur-
sive trees. Discrete Mathematics & Theoretical Computer Science, 2010.

[11] Svante Janson. Functional limit theorems for multitype branching processes and generalized
polya urns. Stochastic Processes and their Applications, 110(2):177-245, 2004.

[12] Svante Janson. Asymptotic degree distribution in random recursive trees. Random Structures &
Algorithms, 26(1-2):69—-83, 2005.

[13] Boris Pittel. Note on the heights of random recursive trees and random m-ary search trees. Ran-
dom Structures & Algorithms, 5(2):337-347, 1994.

[14] Robert J Serfling. Probability inequalities for the sum in sampling without replacement. The Annals
of Statistics, pages 39-48, 1974.

[15] Remco Van Der Hofstad. Random graphs and complex networks, volume 1. Cambridge university
press, 2016.

[16] George Udny Yule. A mathematical theory of evolution, based on the conclusions of dr. jc willis,
fr s. Philosophical transactions of the Royal Society of London. Series B, containing papers of a
biological character, 213(402-410):21-87, 1925.

97

https://dlmf.nist.gov/5.11
https://arxiv.org/abs/1911.12402
https://arxiv.org/abs/1911.12402

	Introduction
	Mathematical Definition and Properties
	Definitions of Models
	Models and Notations
	Properties of the Models
	Preferential Attachment Model
	Bianconi-Barabási Model
	Recursive Fitness Model
	Random Recursive Tree

	Model Simulation
	Selection Function
	Preferential Attachment Model
	Random Recursive Tree
	Bianconi-Barabási Model
	Recursive Fitness Model
	Inverse Model

	Results and Discussion
	Degree Distribution
	Fitness Distribution
	Nk Sequence
	Height of Random Trees
	Inverse Model

	Conclusion
	Code of Random Pick process
	Code of Preferential Attachment Model
	Code of Random Recursive Tree
	Code of Bianconi Barabási Models
	Code of Recursive Fitness Models
	Code of Inverse Model
	Code of Comparisons
	Code of Preferential Attachment Inverse Model Simulations
	Bibliography

