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In this Letter, we report on an algorithm and its implemen-
tation to reconstruct the wavefront as a continuous function
from a bitmap image of the Hartmann–Shack pattern. The
approach works with arbitrary raster geometry and does
not require explicit spot definition and phase unwrapping.
The system matrix, defining the coefficients of wavefront
decomposition in the system of basis functions, is obtained
as a result of a series of convolutions and thresholding oper-
ations on the reference and sample images. © 2020 Optical
Society of America

https://doi.org/10.1364/OL.383464

Modal reconstruction of the wavefront ϕ = ϕ(x , y ) from the
Hartmann–Shack (HS) data is performed in the form

ϕ =

N∑
i=1

aiψi , (1)

where a= (a1, . . . , a N) is the vector of coefficients, and {ψi }

is the set of basis functions. In practice, the basis functions ψi
can be represented by δ functions defined in the nodes of a two-
dimensional grid, resulting in zonal reconstruction [1,2]. The
basis functions can have the form of trigonometric functions [3],
Zernike polynomials, or Karhunen–Loeve functions for modal
reconstruction [4]. In adaptive optical systems, the basis func-
tions are presented by the influence functions of a wavefront
corrector, usually a deformable mirror with N actuators [5].

The measurement principle used in this work is based on the
registration of averaged wavefront tilts with the reconstruction
performed in terms of continuous functions. Special process-
ing methods for the detection of discontinuous and vortex
wavefronts with the use of HS sensors [6] are not considered
here.

The HS sensor encodes the information about the wavefront
in the shifts s j of the focal spots under the j -th subaperture A j
of the microlens array (MLA). Each of the shifts is proportional
to a noisy measurement of the wavefront gradient, averaged over
the j -th subaperture:

s j ∝

∫
A j

∇ϕ(x , y ) dxdy + n j

=

∑
i

ai∇ jψi + n j , j = 1, . . . J , (2)

where n= (n1, . . . , n J ) denotes the measurement noise, and
∇ jψi is a shorthand notation for the gradient of the i -th basis
function, averaged over the j -th subaperture:

∇ jψi
def
=

∫
A j

∇ψi (x , y )dxdy . (3)

Assuming that the slopes measurement is affected by noise,
the linear system of Eq. (2) can be solved by the least-squares
method:

â= arg min
a

∑
j

∣∣∣∣s j −
∑

i

ai∇ jψi

∣∣∣∣2, (4)

which reduces to

9 â= b, (5)

with the elements of matrix9 and vector b given by

9i,k =
∑

j

〈∇ jψi ,∇ jψk〉, bi =
∑

j

〈∇ jψi , s j 〉. (6)

The expression for 9i,k is directly derived from Eq. (4),
and the vector of coefficients bi can be intuitively explained
as the decomposition of the measured vector s over the set of
derivatives of the basis functions∇ψi .

In this work, we set a goal to calculate all matrix compo-
nents in Eq. (6) by performing purely bitmap operations on the
intensity distributions registered by the HS sensor without any
explicit definition of spot positions and their bounding boxes.
To reach this goal, we first show how to use bitmap processing
to calculate the x and y components of the displacement of the
center of gravity (COG) of a single light spot. These displace-
ments are proportional to the partial derivatives of the wavefront
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in Eq. (2). Assume that in the absence of an aberration, the spot
with intensity I0(x , y ) is localized approximately in the centre
of a circle C of radius A, specified as circA(x − x0, y − y0),
where

circA(x , y )=
{

1 x 2
+ y 2
≤ A2

0 otherwise. (7)

If the intensity distribution of the displaced spot is denoted
as I (x , y ), the shift (1x , 1y ) of its COG restricted to area C is
defined as [7]

1x =

∫
C I xdxdy∫
C Idxdy

−

∫
C I0xdxdy∫
C I0dxdy

,

1y =

∫
C I y dxdy∫
C Idxdy

−

∫
C I0 y dxdy∫
C I0dxdy

. (8)

The result of Eq. (8) can be sampled at point (x0, y0) as the
difference of ratios of two functions obtained from the intensity
distributions convoluted with the top-hat function circA. The
accuracy of1x and1y can be estimated as

δ ∼
p
B

p2

πρ2
, (9)

where p is the sensor pixel pitch, ρ� p is the radius of the
light spot on the sensor, and B is the signal-to-noise ratio of
the sensor. For a spot that uses the whole dynamic range of the
sensor, without saturation, the quantization noise prevails,
and B ≈ 2b/2, where b is the sensor bit depth. For a standard
8-bit camera with a pixel pitch of p = 5 µm, spot radius of
ρ ≈ 7 µm, and b = 8 bit, we obtain the estimate for δ ≈ 7 nm.

Such sampling can be approximated with integration over a
small region around the origin (x0, y0), defined by the selection
mask function S(x , y ), which is set equal to 1 in the vicinity of
the origin, and to 0 everywhere else. We define the mask as

S =
{

1 I0
max(I0)

≥ k1
I0∗circA

max(I0∗circA)
& I0 > k2 max(I0),

0 otherwise.
(10)

where & stands for logical “and,” k1 ≈ 1 is the first threshold-
ing coefficient defining the mask selectivity, and 0< k2 ≤ 1
is the second thresholding coefficient serving to cut off spots
with weak integral intensity. In our experiments, we used
k1 = 0.95, k2 = 0.2. The value of k1 should be maximized,
and the value of k2 minimized, to satisfy the condition that the
majority of spots is detected within the aperture of interest.
Expression (10) is a variant of classical blob detection procedure,
described in more detail elsewhere (see for example [8]). Then
the estimates to local derivatives can be defined by masking
operation:

1x (x , y )≈ S(x , y ) ·
(

I x ∗ circA

I ∗ circA
−

I0x ∗ circA

I0 ∗ circA

)
,

1y (x , y )≈ S(x , y ) ·
(

I y ∗ circA

I ∗ circA
−

I0 y ∗ circA

I0 ∗ circA

)
, (11)

where · stands for a point-wise multiplication. Expressions
[Eq. (11)] are valid if the pitch P is larger than the convolution
kernel size A, and the expected spot shifts are smaller than A:

P > A>
√
(1x )2max + (1y )2max. (12)

Expression (12) is satisfied in the majority of existing indus-
trial HS sensors, where usually A= P/2, and the spot shifts are
limited to the area of individual lenslet.

If the mask, defined by Eq. (10), identifies only one pixel per
subaperture, the expression (11) provides the optimum preci-
sion because it is equivalent to the traditional COG algorithm
[7]. However, for a mask that includes a number of pixels, the
spot position is defined simultaneously in a number of shifted
with respect to each other areas. Obviously, in this situation, the
error due to finite mask size is negligible if the mask spot size is
much smaller than the lenslet pitch.

Applying Eqs. (10) and (11) to the registered intensity distri-
bution, one can calculate the fields of1x and1y over the whole
area of the mask S. These fields can be directly used for calcula-
tion of the components of the system matrix in the right side of
Eq. (5), corresponding to the sensor response to an unknown
aberration. These components have meaning of scalar products
of the spot displacements with the displacements produced by
the basis functions:∑

j

〈s j ,∇ jψi 〉 ≈
1

F

∫
S

(
1x

∂ψi

∂x
+1y

∂ψi

∂ y

)
dxdy , (13)

where 1x and 1y are defined by Eq. (11), and F is the focal
length of the microlens array, or in the case of a Hartmann
sensor, F is the distance from the Hartmann mask to the sensor.

The components of the left-side matrix 9 in Eq. (5) can be
calculated once for a system of basis functions, as element-wise
cross-products of the masked derivatives of basis functions:∑

j

〈∇ jψi ,∇ jψk〉 ≈

∫
S
〈∇ψi ,∇ψk〉dxdy . (14)

Expressions (13) and (14) allow to replace the scalar prod-
ucts of the spot shifts by integration over the whole area of the
processed image, without any explicit definition of spot posi-
tions. To save the computation time, the gradients of the basis
functions ∇ψi , i = 1, . . . , N can be tabulated and stored in
memory. The final integration over the mask area S, reduced
to element-wise matrix multiplication, can be done after the
reference spot pattern is registered, and the mask S is defined
according to Eq. (10). These matrix operations can be easily vec-
torized for efficient implementation. Expressions [Eqs. (13) and
(14)] completely define the system of linear equations [Eq. (5)]
as a series of bitmap operations on the registered intensity
distributions, and the set of basis functions.

Figure 1 illustrates the use of Eqs. (10) and (11) for the calcu-
lation of the spot displacement field for a simulated low-order
HS pattern obtained for pure defocus. Both the mask S and the
image describing the displacements of spots are obtained by
bitmap operations on the input images, without any definition
of vector entities, such as spot centers, localization areas, etc. All
functions of these elements are taken over by the binary bitmap
mask S.

For practical testing, we assembled a Michelson interferom-
eter, schematic of which is shown in Fig. 2. The setup is formed
by a reference flat mirror and deformable mirror, to facilitate
testing of the setup with a variety of different aberrations. Two-
arm setup allows to separate the registration of the HS patterns
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Fig. 1. Simulated reference (top left) and sample (top right) HS
patterns, corresponding to pure defocus aberration. The mask S is gen-
erated according to Eq. 10 (bottom left), and the field of displacements
1y is reconstructed according to Eq. 11 (bottom right). Since the
displacements are both positive and negative, the zero level is shown as
gray in this image.

Fig. 2. Experimental interferometer for algorithm verification.

corresponding to the reference and sample wavefronts, by
blocking the opposite arm of the interferometer. Also, the setup
allowed registration of the interferometric pattern, correspond-
ing to the aberration introduced by the deformable mirror, for
independent method verification. The HS sensor was assembled
with a microlens array MLA-150-5C (Thorlabs) with a pitch of
150 µm and a focal length of 4.1 mm with a grayscale camera
UI-1540LE with a pixel pitch of ∼5.1 µm (produced by IDS
imaging) having the 8-bit image depth. The full sensor aperture
was formed by∼1500 microlenses.

The reconstruction result, obtained on the basis of 177
Zernike polynomials, is shown in Fig. 3. The number of poly-
nomials was chosen to be significantly smaller than the number
of subapertures, to find the balance between the spatial band-
width of the reconstruction, and the aliasing error due to regular
periodic HS pattern [4]. The result demonstrates the stability
of reconstruction and the ability of the algorithm to reconstruct
the finest details of the object with an amplitude of a fraction of a
wavelength.

Fig. 3. Experimentally registered interferogram (top), matching an
experimentally registered HS pattern (middle) of 1000× 1024 pixels
with 729 active spots, and its reconstruction (bottom) based on 177
Zernike polynomials. Note that the reconstruction is sensitive enough
to reconstruct a low-amplitude high-frequency defect in the center of
the object.

Mathematically, the convolution-based definition of
spot positions is equivalent to the standard COG centroid-
ing [7], with the elements of mask S defined as single pixels
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Fig. 4. Masked experimentally registered SH pattern, its recon-
struction based on 177 Zernike polynomials, and reconstruction
error (vertical scale enlarged 30 times) due to pattern masking. The
rms reconstruction error due to masking does not exceed 8.1 nm, or
∼ λ/75 for λ= 633 nm.

corresponding to delta functions centered at the lenslets. Since
the mask definition Eq. (10) does not guarantee that the mask
elements are formed by single pixels at the lenslet centroids,
the COG model cannot be used to characterize the expected
precision of reconstruction. Instead, the modified COG model
should be used, in which the position of each centroid is defined
as a COG position averaged over the area of corresponding
mask element. The proposed method has a very useful prop-
erty of self-calibrating adaptation of the mask geometry to real

centroids, as they are presented in the reference pattern. This
property allows implementation that works with practically any
geometry of spot pattern, including pseudo-random configu-
rations [4]. Since the positions and the quantity of spots are not
predefined, the algorithm automatically adapts to the existing
configuration of spot pattern in the field of view. The signifi-
cant input parameters are the sensor pixel size and the distance
from the mask (lenslet) to the image sensor and the minimum
expected pitch of the lenslet P , limiting the size of convolution
kernel A. Since the algorithm requires a reference image of the
HS pattern, such an image should be registered experimentally
with a reference surface, or calculated theoretically, based on
the known parameters of the HS sensor. Figure 4 illustrates this
property. We have masked some parts of the HS sensor pattern
(∼10% of all spots), both in the reference and sample images,
and compared the result of reconstruction with the original, as
shown in Fig. 3. The algorithm properly adapted to the change
in the spot pattern, and it properly reconstructed the aberration.
The resulting rms surface error caused by the masking 10% of
spots, did not exceedλ/75.

The described method, representing a deep modification of
the centroiding method [7], excludes explicit spot indexing and
centroiding operation, making the reconstruction insensitive to
spot indexing errors due to disappearing spots and spot data mis-
interpretation, especially for HS arrays with a large number of
spots. The method also compares positively with the matching
filtering method [3] as it does not include solving of an ill-posed
problem of phase unwrapping.

In conclusion, in this Letter, we present an adaptive algo-
rithm of wavefront reconstruction from the intensity data of
a HS sensor, based on as a series of bitmap-image-processing
operations. Unlike the majority of existing algorithms, our
approach does not define spot positions as vectors, but instead,
the components of reconstruction matrix are calculated directly
in a series of bitmap operations. The algorithm is very simple
in implementation. It can be used in the reconstruction of HS
images with large numbers of spots and for masked and irregular
HS patterns in optical quality control and industrial testing.
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