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and optimization algorithms

Huy Q. Do, Alejandro M. Aragon, and Dingena L. Schott’

Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628CD Delft, The

Netherlands

Abstract. This research aims at developing a universal methodology for automated calibration of
microscopic properties of modelled granular materials. The proposed calibrator can be applied for different
experimental set-ups. Two optimization approaches: (1) a genetic algorithm and (2) DIRECT optimization,
are used to identify discrete element method input model parameters, e.g., coefficients of sliding and rolling
friction. The algorithms are used to minimize the objective function characterized by the discrepancy
between the experimental macroscopic properties and the associated numerical results. Two test cases
highlight the robustness, stability, and reliability of the two algorithms used for automated discrete element

method calibration with different set-ups.

1 Introduction

Use of the discrete element method (DEM) has been
rising within the powder, raw material and bulk material
handling industry for analyzing, and designing material
handling systems. However, a major barrier to the
effective use of DEM for industrial applications is
selecting appropriate input parameters so that
simulations can accurately reproduce the behavior of real
systems. A calibration approach is commonly chosen for
the determination of these parameters that are not easily
measured in experiment. Calibration using DEM
simulations is actually an iterative process of adjusting
input parameters such that the macroscopic results of
simulations and experiments are equivalent. "Trial and
error" empirical procedures are very time-consuming
and unpractical, particularly for DEM models involving
many parameters being calibrated. Some attempts have
been recently made to improve the calibration procedure,
e.g., experimental design [1-4], artificial neutral network
training [5], and Latin hypercube sampling and Kriging
[6]. The readers are referred to [7] for a complete review
on calibration. This study aims to improve the DEM
calibration procedure using two different optimization
methods: genetic algorithms (GAs) and the DIRECT.

2 Calibration methods

The flowchart of the calibration method is illustrated in
Fig. 1. This iterative process couples the optimization
algorithms with DEM modelling. In each iteration, the
optimization algorithm uses the objective function values
to update the design parameters, e.g., the coefficients of
rolling (p,) and sliding (u,) friction. The DEM model
inputs these parameters to provide the simulated
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macroscopic result, e.g., the angle of repose (4oR) that is
required to compute the objective function. If the
predefined stopping criterion has been reached the
process terminates, otherwise the next iteration will be
performed.
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Fig. 1. Flowchart of the calibration process.
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2.1 Genetic algorithms

Genetic algorithms are search and optimization methods
inspired by Darwin's theory of evolution of natural
selection and genetics. In GAs, an initial population of
candidate solutions evolves through generations
(iterations) towards individuals with a better fitness by
applying genetic operators such as selection, crossover,
and mutation. The fitness function is measured by an
objective function of the optimization problem being
solved. In each iteration, the better fit individuals are
stochastically selected from the current population for
breeding to create a new generation. The population is
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then updated with the new generation and used for the
next iteration of the process. The algorithm terminates
when either fitness values of the individuals satisfying a
predefined criterion have been found or a predefined
maximum number of generations has been obtained or
the best fitness value has reached a plateau such that
successive  iterations no longer produce any
improvement.

For further details of GA's theory and applications,
the readers are referred to the work of Goldberg [8]. The
core components of GA's implementation for our
calibration problems are described as the follows:

Initial population and encoding: each calibrated
parameter, i.e., i, and pg, is binary {0,1} encoded and
represents a gene. The concatenation of these two genes
creates an individual. Initially, a group of individuals is
randomly generated and should be seeded on the entire
range possible solutions.

Fitness function: defined as the discrepancy between
DEM model results and experimental measurement data.
Selection: depending on their fitness values, more fit
individuals are chosen for crossover.

Crossover: takes chromosomes from selected parents
and produces offsprings for the next generation.
Mutation: promotes genetic diversity of the solution set
and aims at preventing the GA from converging to a
local optimal solution.

2.2 DIRECT optimization

Another calibration approach used in this study is
DIRECT [9], that is an algorithm for finding the global
minimum of a multivariate function subjected to simple
bounds without wusing gradient information. The
algorithm was implemented as a subroutine within an
open-source library for nonlinear optimization, providing
a common interface for several optimization algorithms
[10].

DIRECT is a modification of the standard Lipchizian
approach, that eliminates the need to specify a Lipschitz
constant. The concept of the algorithm is to carry out
simultaneous searches on both global and local levels
using all possible constants. The DIRECT means
"Dlviding RECTangles"; this is an iterative process
partitioning the search space into a set of hyper-
rectangles containing a single sampling point at the
centre of each rectangle. Initially, the algorithm
normalizes the search space by transforming it into the
unit hypercube. The objective function is then evaluated
at the centre point of this cube. In the first iteration, the
unit hypercube is then divided into small hyper-
rectangles whose centre points are also sampled. In next
iterations, all potentially optimal hyper-rectangles are
further divided into smaller rectangles whose centre
points are sampled. During each iteration, the Graham's
scan algorithm is used to find a convex hull that
identifies a set of potentially optimal hyper-rectangles.
The iterative process continues until either the
predefined number of iterations has been reached or a
predefined criterion for the objective function or for the
variables have been achieved.

3 DEM simulations and reference

results

To illustrate the calibration approach, LIGGGHTS [11],
an open source software, is chosen to conduct the DEM
simulations using Hertz-Mindlin contact law with a
rolling resistance model [12]. To numerically reproduce
the experiments involving hundreds of thousands of sand
grains with their actual size, spherical shape is used to
reduce the computational complexity. Hourglass and
rectangular container simulations on quartz sand grains
are carried out to calibrate two main microscopic contact
model parameters, i.e., the coefficients of rolling and
sliding friction. The rolling friction coefficient of spheres
is here introduced to include the shape effect [13]. The
experimental measurement data and DEM simulation
set-ups of previous work [14] in our research group have
been used. Some properties of quartz sand used as the
DEM modelling input parameters are listed in Tables 1
and 2. Three macroscopic experimental results are being
used here as the references: 4oR of 41.57° and the
discharging time of 6.56 s for the hourglass test, and AoR
of 36° for the rectangular container test. The readers are
referred to [14] for further details of these two set-ups.

Two sample test cases for calibrating p, and pg are
proposed. In the first sample test case, only the hourglass
modelling for 25 g of sand with the hourglass neck
diameter of 5 mm is used to provide simulated values of
AoR and discharging time with varying u, and p,. The
DEM simulations were conducted at 36 sample points in
the p,-ps plane using an evenly spaced regular grid. The
contour plots in Fig. 2 and 3 illustrate the 4oR and
discharging time as functions of the two variables being
calibrated, respectively. Compared against the measured
values of AoR at 41.57° and discharging time at 6.56 s,
the reference result of the friction coefficients is
visualized in Fig. 4, which corresponds to the
intersection of the two contour lines.

The second sample test case uses the previous
hourglass investigation and another set of 6x6 DEM
simulations on the rectangular container to provide
simulated values of 4oR with varying p, and ps. The
contour plot in Fig. 5 illustrates the 4oR as functions of
these two variables. Compared against the measured
values of discharging time at 6.56 s for the hourglass and
AoR at 36° for the rectangular container, the intersection
of the two contour lines as shown in Fig. 6 is considered
as the reference result.

Table 1. Input particle size distribution of sand for DEM
simulations [14].

Particle diameter (um) 300 425 500 600

Mass fraction (%) 6.21 18.29 26.05 49.45

Table 2. Input properties of sand for DEM simulations [14].

Particle density (kg/m®) 2653
Young's modulus (N/m?) 5e7
Poisson ratio 0.3
Coefficient of restitution 0.9
Coefficient of rolling friction 0.0-0.5
Coefficient of sliding friction 0.2-07
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Fig. 2. AoR in degree as a function of the rolling and sliding
coefficients from the hourglass simulations [14].
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Fig. 3. Discharging time in second as a function of the rolling

and sliding coefficients from the hourglass simulations [14].
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Fig. 4. Reference result defined by the intersection of
simulated two contour-lines of A4oR and discharging time
referred from the experimental results for hourglass [14].
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Fig. 5. AoR in degree as a function of the rolling and sliding
coefficients from the rectangular container simulations.
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Fig. 6. Reference result defined by the intersection of
simulated two contour-lines of hourglass discharging time and
rectangular container 4oR referred from the experimental
results.

4 Results and Discussion

DEM simulations are time-consuming. To reduce
computational time during the calibration process, the
grids of 6x6 sample points in Fig. 2 and 3 are reused for
bilinear interpolating values of AoR and discharging time
for arbitrary p, and p.

4.1 Calibration using hourglass - first sample
test case

4.1.1 Result from GA

Table 3. Input parameters for the GA.

Population size 500
Maximum of generation 30
Chromosome length 20
Crossover probability 1.0
Mutation probability 0.005
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Input parameters for the GA are listed in Table 3. A
population size of 500 individuals is found to be large
enough to be distributed stochastically on the search
space. Using its length of 20 bits, a chromosome
allocates 10 bits for encoding L, in the range from 0.0 to
0.5 and 10 other bits for encoding s in the range from
0.2t00.7.

The fitness function (Fj,) has been chosen as the total
discrepancies on AoR and discharging time (7dis)
between the numerical results and experimental
measurement data from the hourglass as:

Fﬁt =|AoR

o —41.57|+|Tdis,,, — 6.56| (1)

100 GA runs are repeatedly performed to search for
the possible solutions considering stochastic oscillation.
After 30 iterations of all runs, the optimal fitness value
has reached a plateau of 0.020+ 0.015, such that
successive iterations no longer produce any
improvement. The computed rolling and sliding friction
coefficients associated with the optimal fitness are
0.28440.002 and 0.543+0.003, respectively. The result is
in good agreement with the reference result as shown in
Fig. 4.

4.1.2 Result from DIRECT

The objective function is defined the same way as the
fitness function in equation (1). The relative tolerance of
the two optimization variables are set to 10~ to define a
stopping criterion for the algorithm.

Terminating after 259 evaluations, DIRECT outputs
the optimal objective value of 0.01, corresponding to the
rolling and sliding friction coefficients of 0.286 and
0.541, respectively. These results are in good agreement
with GA's outcomes in 4.1.1.

4.2 Calibration using hourglass and rectangular
container - second sample test case

4.2.1 Result from GA

The fitness function has now been redefined as the total
discrepancies between the numerical results and
experimental measurement data on discharging time
from the hourglass and AoR from the rectangular
container as:

siml sim2 36 (2)

F, =|Tdis,,, —6.56|+|AoR

100 GA runs are carried out targeting the new fitness
function. After 30 iterations of all runs, the computed
rolling and sliding friction coefficients are 0.277+0.004
and 0.502+0.003, respectively, and their associated
optimal fitness value is 0.007+£0.005. As expected, the
result is in good agreement with the reference result as

shown in Fig. 6.

4.2.2 Result from DIRECT

The objective function is defined the same way as the
fitness function in equation (2). DIRECT has terminated
after 275 evolutions. The calibrated values of the
coefficients of rolling and sliding friction and their
associated optimal value are 0.281, 0.496 and 0.015,
respectively; this result is identical to the GA's outcome
in4.1.2.

5. Conclusions

This research has demonstrated that the micro properties
of quartz sand in DEM model can be automatically
calibrated using two methods, i.e., GA and DIRECT
optimizations. Both of them are capable of identifying
accurately the optimal values within a fairly small
number of iterations. The algorithms are robust and
stable since they need to evaluate only the fitness or
objective function without computing its derivatives.
Interpolation grids of the bulk properties resulted from
DEM simulations can be incorporated within GA and
DIRECT optimizations to reduce the computational cost.
The findings of this paper show that the calibration
methods can be deployed for a large set of unknown
input parameters and other experimental set-ups.
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