
 
 

Delft University of Technology

Criticality-based Predictive Maintenance Scheduling for Aircraft Components with a
Limited Stock of Spare Components

de Pater, I.I.; Carrillo Galera, M.D.M.; Mitici, M.A.

DOI
10.3850/978-981-18-2016-8_074-cd
Publication date
2021
Document Version
Final published version
Published in
Proceedings of the 31st European Safety and Reliability Conference, ESREL 2021

Citation (APA)
de Pater, I. I., Carrillo Galera, M. D. M., & Mitici, M. A. (2021). Criticality-based Predictive Maintenance
Scheduling for Aircraft Components with a Limited Stock of Spare Components. In B. Castanier, M. Cepin,
D. Bigaud, & C. Berenguer (Eds.), Proceedings of the 31st European Safety and Reliability Conference,
ESREL 2021 (pp. 55-62). (Proceedings of the 31st European Safety and Reliability Conference, ESREL
2021). https://doi.org/10.3850/978-981-18-2016-8_074-cd
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.3850/978-981-18-2016-8_074-cd
https://doi.org/10.3850/978-981-18-2016-8_074-cd


Criticality-based predictive maintenance scheduling for aircraft components with a

limited stock of spare components
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We propose a criticality-based scheduling model for aircraft component replacements. We schedule maintenance for
a fleet of aircraft, each equipped with a multi-component system. The maintenance schedule takes into account a
limited stock of spare components and the Remaining-Useful-Life prognostics for the components. We propose a
component replacement scheduling model with three stages of maintenance criticality: i) critical aircraft that are not
airworthy due to a lack of sufficient operational components, ii) predictive alerts for expected component failures,
and iii) non-critical aircraft with some failed components. An Adaptive Large Neighborhood Search (ALNS)
algorithm is developed to solve this criticality-based aircraft maintenance planning problem. The framework is
illustrated for a fleet of aircraft, each equipped with a k-out-of-N system of components. A predictive maintenance
planning is obtained within an outstanding computational time (less than 6 seconds for a fleet of 50 aircraft).
Moreover, it is shown that the proposed planning with 3-levels of criticality ensures aircraft airworthiness while
making cost-efficient use of maintenance slots.

Keywords: Predictive Aircraft Maintenance, Spare Components Management, Maintenance criticality

1. Introduction
Airlines spend approximately 3.14 million dol-
lar on maintenance per aircraft per year (IATA
(2019)). Striving for costs savings, aircraft main-
tenance is shifting to predictive maintenance
where failures of components are anticipated and
maintenance is performed accordingly. Here, on-
bard sensors are used to monitor the health condi-
tion of aircraft components.

One of the key enablers for predictive air-
craft maintenance are the Remaining-Useful-Life
(RUL) prognostics, which guide the maintenance
planners on when to perform maintenance, and
which maintenance tasks to perform. These pre-
dictive maintenance tasks are usually planned us-
ing threshold-based policies, i.e., as soon as the
degradation of a component exceeds a thresh-
old, a maintenance action is planned. These
thresholds are determined based on using Monte
Carlo simulation (Lee and Mitici (2020); Nguyen
et al. (2014)), semi-regenerative processes (Huynh
et al. (2018)), Bayesian networks (Nielsen and
Sørensen (2018)) or heuristics (Wang et al.
(2009)). Other predictive maintenance planning
methods studies employ (Partially Observable)
Markov Decision Processes (Papakonstantinou

and Shinozuka (2014); Andriotis and Papakon-
stantinou (2019)).

For aircraft maintenance, maintenance tasks are
planned during periods of time when the aircraft
is on the ground at a location suitable for main-
tenance (maintenance slots), and when there are
sufficient resources to carry out the tasks. Fixed
maintenance slots for predictive aircraft mainte-
nance planning are considered in Yiwei et al.
(2017) for the cracks in an aircraft, in Nguyen and
Medjaher (2019) for turbofan engines, in Vianna
and Yoneyama (2017) for an aircraft hydraulic
system, for aircraft bleed systems in Vianna et al.
(2015), for aircraft cooling units in de Pater and
Mitici (2021) and for aircraft brakes in Lee and
Mitici (2020).

At the same time, one of the crucial resources
to carry out the planned maintenance is the avail-
ability of spare components during these main-
tenance slots. A lack of spare components may
lead to additional delays, an increase of aircraft
unavailability and additional maintenance costs
due to component leasing (Nguyen and Medjaher
(2019)). The management of spare parts for pre-
dictive aircraft maintenance has been discussed
in Nguyen and Medjaher (2019); Vianna et al.
(2015). In Nguyen and Medjaher (2019), a Long
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Short-Term Memory Neural Network is applied
to obtain RUL prognostics of turbofan engines.
These RUL prognostics are then used to plan
maintenance for one turbofan engine and to deter-
mine the optimal moments to order a new spare.
In Vianna et al. (2015), a Large Neighbourhood
Search algorithm is applied to plan maintenance
for an aircraft in the time between flights, based on
the condition of the aircraft components. In these
studies, however, the maintenance of only a single
aircraft is considered, taking into account RUL
prognostics and and a limited stock of spare com-
ponents.Moreover, the components considered in
these studies are non-repairables. Complementary
to these papers, we consider the maintenance plan-
ning of a fleet of aircraft equipped with repairable
components, where RUL prognostics and a shared
stock of spare components are considered.

Fig. 1.: Overview - predictive maintenance plan-
ning with maintenance slots, RUL prognostics and
a stock of repairable spare components.

In this paper, we propose a predictive aircraft
maintenance planning heuristic for a fleet of air-
craft. Each aircraft is equipped with a system
of multiple, identical components that are re-
pairables, i.e., upon failure, a component is re-
placed with a spare component, and the failed
component is sent to a repair shop to be repaired.
Once repaired, the components are returned to
service. The degradation level of each component
is monitored and RUL prognostics are generated.
Based on these RUL prognostics, three levels of
aircraft/component criticality are defined. These
criticality levels are used to plan component re-
placements with an Adaptive Large Neighbour-
hood Search (ALNS) heuristic. Moreover, this
predictive maintenance planning is constraint by
the availability of maintenance slots, and by the
availability of spare components, shared between
the aircraft in the fleet (see Figure 1). We show
that our approach leads to a cost-efficient use of
the maintenance slots.

2. Problem description
We consider a fleet of aircraft, each equipped with
a system of N identical, repairable components.

The aim is to schedule maintenance for the air-
craft, i.e., to assign aircraft to maintenance slots,
and subsequently decide which component(s) to
replace in these slots. We propose a discrete-
time, rolling horizon approach where a sequence
of time-windows with a duration of PH days is
considered. For each time window, we consider as
input the set of maintenance slots available, the
updated RUL prognostics for each component at
the beginning of the time-window, the component
and aircraft criticality level, and the availability of
spare components. We are interested in minimiz-
ing the total cost of assigning aircraft (and specific
components) to maintenance slots.

2.1. Rolling horizon approach
We consider a sequence of time-windows [d0, d0+
PH) from day d0 to day d0 + PH . At the
beginning of each time-window, at day d0, the
component prognostics and criticality levels for
each component and for each aircraft are up-
dated. Then, a maintenance planning for this time-
window is generated, i.e., aircraft are assigned to
maintenance slots available in this time-window.
We shift to the next time-window as follows. We
first fix the planning of the first τ ≤ PH days, in
the time-window [d0, d0 + τ), and then go to the
next iteration. In this next iteration, the RUL prog-
nostics and criticality levels are updated, and a
maintenance planning for new time-window [d0+
τ, d0+ τ +PH) is generated. This is repeated for
several time-windows de Pater and Mitici (2021).

(a) d0 = 5

(b) d0 = 10

Fig. 2.: Illustration - rolling horizon approach for
three iterations with PH = 50 days, τ = 5 days.

Figure 2 shows our rolling horizon approach
for τ = 5 and PH = 50. In Figure 2a, the
maintenance planning is created for the planning
time-window [5, 55). All maintenance decisions
before day d0 = 5 are fixed. Then, we fix the
first five days of the maintenance planning made
at day d0 = 5 as well, i.e., we fix all maintenance
decisions during days [5, 10). In the next iteration,
at day d0 = 10, we update the prognostics and
maintenance is scheduled for the planning time-
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window [10, 60) (see Figure 2b). Again, the main-
tenance decisions of the first five days, [10, 15),
are fixed.

2.2. Multi-component aircraft system
Let A denote a fleet of aircraft, each equipped
with a multi-component system with N identical,
repairable components. Let Ca denote the set of
components in this multi-component system of
aircraft a ∈ A. We assume that each component
fails independently of the other components in the
system.

We consider maintenance planning for a k-
out-of-N system, i.e., according to the Minimum
Equipment List (MEL) at least k out of N compo-
nents need to be operational for an aircraft to be
permitted to fly (EASA (2018)). Thus, an aircraft
is permitted to fly if at least k+1 or more compo-
nents are operational. However, if exactly k com-
ponents are operational, then the aircraft is still
allowed to fly for a maximum of V days (EASA
(2018)). Once more than k components fail, or
k components are failed for more than V days,
an aircraft in in an Aircraft-On-Ground (AOG)
condition and can thus no longer fly. Many aircraft
systems are k-out-of-N systems, for example gear
landing brakes (Lee and Mitici (2020)), hydraulic
pump systems (Vianna et al. (2015)), and cooling
systems (de Pater and Mitici (2021)).

When a decision is made to replace a compo-
nent, this component is replaced with an as-good-
as-new spare component. At the same time, the re-
placed component is sent to a repair shop, restored
to an as-good-as-new condition and subsequently
added to the stock of available spare components.
We assume that a repair takes Δ days.

A component can be failed at the moment of
replacement, or it can be replaced in anticipation
of a near-future failure. When a non-failed com-
ponent is replaced, it is relatively inexpensive to
repair the component, since the damage to the
component is not significant. In contrast, when
a failed component is replaced, the damage is
large and it is thus more expensive to repair this
component. If a component is failed at the time of
replacement, an extra costs cex is thus incurred to
repair the component.

Let N sp denote the number of initially available
spare components. We say that a stock-out occurs
if a replacement of a component is planned, but
no spare component is available. When a stock-
out occurs, an additional component is leased.
The lease is terminated as soon as at least one
component has been repaired.

2.3. Components’ degradation and RUL
prognostics

Let c ∈ Ca denote a component of the multi-
component system Ca of an aircraft a ∈ A. Let

Xa,c
d denote the degradation level of component c

at the beginning of day d. We model the degrada-
tion of the components using a stationary Gamma
process with independent increments, similar to
Huynh et al. (2018): the degradation increment
between day d and day d+ 1 (i.e., Xa,c

d+1 −Xa,c
d ),

follows a gamma distribution with shape param-
eter α and scale parameter β. Moreover, we as-
sume that the degradation of an “as-good-as-new”
component is Xa,c

0 = 0. A Gamma process is
often used in literature to model the degradation
of components, such as haul truck motors (Wang
et al. (2009)), aircraft landing gear brakes (Lee
and Mitici (2020)) and LEDs (Ling et al. (2014)).

Fig. 3.: Degradation level of a component c ∈ Ca
of aircraft a ∈ A over time, from healthy to alerted
to failed.

Based on the level of degradation, a component
is said to be: i) Healthy, when the degradation
level Xa,c

d is below an alert threshold T alert.
ii) Alerted, as soon as the degradation level

Xa,c
d exceeds an alert threshold T alert. Here, the

component is expected to fail in the near future;
iii) Failed, when the degradation level Xa,c

d

exceeds a failure threshold T fail.
These 3 states of the component are shown in

Figure 3.
As soon as a component is alerted, RUL prog-

nostics are generated and updated every new plan-
ning time-window starting at day d0. Using these
RUL prognostics, we determine P fail

acd, the proba-
bility that component c ∈ Ca of aircraft a ∈ A
fails by the beginning of day d > d0, as follows
(Huynh et al. (2018)):

P fail
ac(d0+δ) = P (RUL ≤ δ|Xa,c

d0
= x)

= 1− P (Xa,c
d0+δ < T fail|Xa,c

d0
= x)

= 1− P (Xa,c
d0+δ −Xa,c

d0
< T fail − x|Xa,c

d0
= x)

= 1− Fδα,β(T
fail − x), (1)

where Fδα,β is the CDF of a Gamma distribution
with shape parameter δα and scale parameter β.

Using P fail
acd, ∀c ∈ Ca, a ∈ A, we determine

the probability that the aircraft system of N com-
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ponents fails at the beginning of a future day
d > d0, denoted by PAOG

ad . Equivalently, this is
the probability that the aircraft equipped with this
multi-component system is in an AOG-condition
at the beginning of a future day d > d0. This
probability can be calculated for a k-out-of-N
system as follows:

PAOG
ad =P

(
i ∈ {(N − k) + 1, . . . , N} components

fail before the beginning of day d , or

exactly (N − k)components fail before

the beginning of day d− V
)
.

2.4. Aircraft criticality levels

Based on P fail
acd and PAOG

ad , we define the following
three stages of criticality for an aircraft and its
components, in decreasing order of priority.

Criticality level 1: If the probability that an
aircraft a ∈ A is in an AOG-condition at the end
of the planning time-window exceeds a reliability
threshold 0 < r ≤ 1 (i.e., if PAOG

a(d0+PH) ≥ r), then

we say that the aircraft is critical.
Criticality level 2: If a component c ∈ Ca in

a non-critical aircraft a ∈ A is alerted at day
d0, it is desirable to plan a replacement for this
component as soon as possible (to prevent the cost
cex of replacing an already failed component).

Criticality level 3: If a component c ∈ Ca in
a non-critical aircraft a ∈ A is already failed at
day d0, replacing this failed component can still be
beneficial to avoid that aircraft a becomes critical
in the future.

2.5. Maintenance slots
A maintenance slot is a time interval during which
maintenance can be performed on an aircraft. We
consider 2 types of maintenance slots: aircraft-
specific slots, and generic slots. Aircraft-specific
maintenance slots are slots to which only a spe-
cific aircraft can be assigned. A generic mainte-
nance slot is a slot to which any aircraft can be
assigned. During a generic slot, at most m aircraft
can be maintained at the same time.

2.6. Maintenance costs
We assume the following maintenance costs:

i) The costs of assigning aircraft to maintenance
slots. An assignment of an aircraft to an aircraft-
specific slot incurs a cost cspec. An assignment of
an aircraft to a generic slot incurs a cost cgen. We
assume that cspec < cgen.

ii) The cost of leasing spare components, which
consists of a fixed costs of leasing a spare compo-
nent, cLf, and an additional cost for each day the
spare component is leased, cLd.

iii) The costs savings due to replacing an alerted
component in anticipation of its failure (critical-
ity level 2). Because a component replacement
requires the assignment of an aircraft to a main-
tenance slot, which costs cspec or cgen, the main-
tenance planning heuristic would tend to post-
pone replacements until the aircraft is critical
(several failed components). However, replacing
failed components is expensive (cex). We there-
fore strive to replace components in anticipation
of their failure by introducing costs savings to
the total cost of the maintenance planning. If at
current day d0 we plan to perform a component
replacement at day d ∈ [d0, d0 + PH), then the
saved repair cost we subtract from the total cost is
cex · (1− P fail

acd).
iv) The cost savings due to replacing a failed

component to avoid future critical aircraft (criti-
cality level 3). Because a component replacement
requires the assignment of an aircraft to a main-
tenance slot, which costs cspec or cgen, the main-
tenance planning heuristic would tend not replace
failed components in a non-critical aircraft (few
failed components). Accumulating failed compo-
nents, however, increases the change of having a
critical aircraft in the future. We therefore intro-
duce a cost saving of crep when replacing a failed
component of a non-critical aircraft, which we
subtract from the total costs.

v) The cost of having an aircraft in an AOG-
condition. Let cAOG denote the cost of an aircraft
being in an AOG-condition for 1 day. The cost of
aircraft a ∈ A being in an AOG-condition at day
d ∈ [d0, d0+PH) is cAOG ·PAOG

ad . In general, cAOG

is very high relative to other maintenance costs.

3. Adaptive Large Neighbour Search for
predictive aircraft maintenance

We propose an Adaptive Large Neighbourhood
Search (ALNS) heuristic (Pisinger and Ropke
(2010)) for the predictive maintenance planning
problem, based on the criticality of the aircraft
and components. In ALNS, an existing solution
is improved with an improvement heuristic, that
consists of a destroy heuristic, that first destroys
the current solution, i.e., it makes the solution
infeasible, and subsequently a repair heuristic, that
repairs the solution again, i.e., it makes the solu-
tion feasible. In ALNS, there are several destroys
and repair heuristics considered. At the beginning
of each iteration, one of the destroy and one of the
repair heuristics are randomly selected.

An overview of the ALNS heuristic is given in
Algorithm 1. Let s denote a feasible maintenance
planning for the time period [d0, d0 + PH) with
costs c(s). As input, we use an initial feasible
maintenance planning sin, created with a simple
constructive heuristic. The current solution scur

and the best solution sbest are initialized with this
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initial solution sin (line 2 in Algorithm 1).
We also consider a set DH with all destroy

heuristics, and a set RH with all repair heuristics.
In line 2, we initialize the weights wdh for all
destroy heuristics dh ∈ DH and the weights
wrh for all repair heuristics rh ∈ RH with one.
Following initialization, we aim to improve the
current solution (line 3-15 in Algorithm 1). First, a
destroy heuristic dh ∈ DH and a repair heuristic
rh ∈ RH are selected using the roulette wheel
principle with the weights of the heuristics (lines
4-5 in Algorithm 1, Ropke and Pisinger (2006)).

Next, we compute a new temporary solution
stemp by first applying the destroy, and subse-
quently the repair heuristic to the current solution
scur (line 6 in Algorithm 1). This temporary solu-
tion can be accepted or discarded. If we accept the
temporary solution (line 7-9), then the current so-
lution scur is updated. We accept a solution using
simulated annealing, as suggested by Pisinger and
Ropke (2010). Here, we initialize the temperature
Φ with the initial temperature Φin in line 2, and
update the temperature each iteration with the
decrease factor γ, 0 < γ < 1 (line 10). Next,
we update the best solution (line 11-13) and the
weights wdh of the destroy heuristic dh selected in
line 4 and wrh of the repair heuristic rh selected
in line 5 as follows (line 15):

wdh ← λ ∗ wdh + (1− λ)ω

wrh ← λ ∗ wrh + (1− λ)ω, (2)

where

ω =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ω1 if the new solution is the global best
ω2 if the new solution is better

than the current solution
ω3 if the new solution is accepted
ω4 if the new solution is rejected,

(3)
with ω1 ≥ ω2 ≥ ω3 ≥ ω4 ≥ 0. As stopping
criterion (line 15), we use a maximum number of
iterations I .

Bellow we introduce the constructive heuristic,
the destroy heuristics in DH and the repair heuris-
tics in RH .

3.1. Constructive heuristic
The constructive heuristic finds an initial feasible
solution with low costs based on the criticality
of the aircraft. First, maintenance is scheduled
for each critical aircraft (criticality level one,
see Section 2.4) in the earliest available aircraft-
specific slot. If there is no such aircraft-specific
slot available within the planning window, then
maintenance is scheduled in the earliest available
generic slot instead. In this slot, first the alerted
component(s) of the aircraft are replaced, and

Algorithm 1 Adaptive Large Neighbourhood
Search (Pisinger and Ropke (2010)).

1: input: A feasible solution sin

2: scur = sin; sbest = sin; wdh = 1 ∀dh ∈
DH; wrh = 1 ∀rh ∈ RH; Φ = Φin

3: repeat
4: Select a destroy method dh ∈ D
5: Select a repair method rh ∈ R
6: Compute stemp = rh(dh(scur))
7: if accept(stemp, scur,Φ) then
8: scur ← stemp

9: end if
10: Φ ← γ · Φ
11: if c(scur) ≤ c(sbest) then
12: sbest ← scur

13: end if
14: update wdh and wrh

15: until Number of iterations ≥ I
16: return sbest

then sufficiently many failed components such
that PAOG

d0+PH < r.
Next, the maintenance for all remaining, non-

critical aircraft with one or more alerted com-
ponents is scheduled one by one (criticality level
2). Here, each aircraft is assigned to the earliest
available aircraft-specific slot and all alerted com-
ponents are replaced. If there is no such aircraft-
specific slot available within the planning window,
then the aircraft is not assigned to any slot. The re-
placement of the failed components in non-critical
aircraft (criticality level 3) is not scheduled yet.

3.2. Destroy heuristics
We consider the following 6 destroy heuristics.
Note that these heuristics do not lead to an infea-
sible solution, as is usually the case for general
ALNS (Ropke and Pisinger (2006)). Instead, the
aim of the destroy heuristics is to either improve
the solution directly, or to allow a repair heuristic
to improve the solution.

i) Remove a stock-out This destroy heuristics
aims to directly improve the solution by prevent-
ing that a component is leased. Specifically, let
day d′ ∈ [d0, d0 + PH) be the first day in the
planning time window during which a new com-
ponent is leased. This heuristic randomly selects a
scheduled replacement during a day d < d′, and it
randomly selects a scheduled replacement during
a day d ≥ d′. Both these scheduled replacements
are removed.

ii) Remove an assignment of an aircraft to a
generic slot This destroy heuristic aims to directly
improve the solution by removing one randomly
selected assignment of an aircraft to a generic slot.

iii) Remove all scheduled replacements for a
critical aircraft This destroy heuristic removes all
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scheduled replacements for one randomly selected
critical aircraft.

iv) Randomly remove one scheduled replace-
ment This sub-heuristic randomly removes one
scheduled replacement of a component in an air-
craft.

v) Randomly remove two scheduled replace-
ments This sub-heuristic randomly removes two
scheduled replacements of two different compo-
nents, in two different aircraft.

vi) No removal This sub-heuristic does not
remove any scheduled replacements.

3.3. Repair heuristics
Usually, in ALNS a repair heuristic repairs the
solution after the destroy phase, i.e., ensures that
the solution is feasible again. Since we do not have
an infeasible solution after the destroy phase, we
instead focus solely on improving the solution.
The repair heuristics that we consider are based
on the criticality of the aircraft and components.

i) Greedy scheduling of maintenance for one
critical aircraft (criticality level 1) We randomly
select an aircraft a ∈ A that is still critical, even
with the scheduled replacements in the current so-
lution. For this aircraft, we identify and schedule
replacement(s) in a greedy way such that the cost
decreases as much as possible (or increase as little
as possible), while the solution remains feasible.
Furthermore, to avoid AOG-events, we require
that at least enough component replacements are
planned such that PAOG

a,d0+PH < r, i.e., such that
the aircraft is not critical anymore in the solution.

ii) Greedy scheduling of the replacements of
one or two alerted components (criticality level
2) We greedily schedule the replacements of 2
randomly selected, alerted components. If there
are less than 2 alerted components, we schedule
the replacement of one alerted and one failed com-
ponent, or of 2 failed components instead. The
replacements for the 2 components are scheduled
in a greedy way, i.e., such that the cost decreases
as much as possible, while the solution remains
feasible. If the costs increase when the replace-
ments of the 2 randomly selected components are
scheduled, the replacement of only one of the 2
components is scheduled in a greedy way instead.

iii) Greedy scheduling of the replacements of
one or two components We greedily schedule the
replacements of two randomly selected, alerted or
failed components (criticality level 2 and 3). The
replacements for the 2 components are scheduled
in a greedy way, i.e., such that the cost decrease
as much as possible, while the solution remains
feasible. If the costs increase when the replace-
ments of the 2 randomly selected components are
scheduled, the replacement of one component is
scheduled in a greedy way instead.

iv) No extra replacement scheduled In this
heuristic, no extra replacements are scheduled.

Table 1.: Parameter values for the maintenance
planning model

Cost parameters
cLf 4 · 104 Fixed leasing cost

cLd 103 Daily leasing costs

cgen 104 Cost of a generic slot
cspec 1 Cost of an aircraft-specific slot

cex 5 · 103 Cost savings per replaced non-failed
component

crep 2 Cost savings per replaced component

cAOG 2 · 105 Daily cost of an AOG-event

Rolling horizon parameters
PH 50 days Optimisation time-window
τ 5 days Size of the sliding step

Component-related parameters
N 4 Number of components per system
k 2 Number of components required to be

operational
Δ 28 days Repair time for a component
V 10 days Maximum number of days an aircraft

can fly with k functional components
N sp 10 Initial stock of spare components

Degradation parameters
α, β 0.1 Shape and scale parameter of the

Gamma distribution, respectively

T fail 1000 Failure threshold

T alert 950 Alert threshold

ALNS algorithm parameters
ω1=4, ω3=2 Weight-updates (see eq. (3))
ω1=4, ω3=2
λ 0.9 Factor to retain weight (see eq. (2))
I 500 Maximum number of iterations
Other parameters
m 2 Capacity of a generic slot
r 0.01 Reliability threshold

4. Case study
In this section, we consider the maintenance plan-
ning for a fleet of 50 aircraft and an initial shared
stock of N spares = 10 components. Each aircraft is
equipped with a k-out-of-N system, with k = 2,
N = 4 and V = 10. The other parameters are
given in Table 1.

4.1. Maintenance planning for one time
window with 3 levels of criticality

We illustrate the maintenance planning model for
one time window of days [845, 895). Figure 4
shows the maintenance planning created at day
845. These results for a fleet of 50 aircraft are ob-
tained in 5.03 seconds on a computer with an Intel
Core i7 processor at 2.11 GHz and 8Gb RAM.
At day 845, there is one aircraft with one failed
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Fig. 4.: Maintenance planning created at day 845. “Spares” is the number of spare components initially
available at the beginning of each day.

component (aircraft 19) where component two is
failed, and 9 aircraft with one alerted component.

Figure 4 shows the maintenance planning cre-
ated at day 845. Here, we only show the aircraft
with a failed or alerted component. At the begin-
ning of the planning time-window, there are only
a few spare components available. These are used
to replace the alerted components of aircraft 4, 6,
29, 32 and 33. For aircraft 9 and 28, there are
aircraft-specific slots available at the beginning of
the planning time-window as well. However, to
avoid leasing a spare component, the replacement
of the two alerted components for these aircraft
are postponed to later aircraft-specific slots at time
872 and 861, respectively. The probability of fail-
ure for these two alerted components is relatively
low compared to the other alerted components,
for which maintenance is scheduled earlier. When
new spare components become available, they are
used to replace the failed component in aircraft 19,
and the alerted components in aircraft 28, 9, 5 and
31. No generic slots are used in this solution, and
no components are leased.

4.2. Aircraft maintenance with 3-levels of
criticality vs. 2-levels of criticality:
Long-term performance

In this section, we evaluate the long-term perfor-
mance of our maintenance planning approach for
a fleet of 50 aircraft and a total period of 5 years
using Monte Carlo simulation.

We consider two different maintenance strate-
gies for the long-term evaluation, First, we con-
sider the case where aircraft maintenance is per-
formed using all 3-levels of criticality, as con-
sidered in Section 2.6 and 4.1. We compare this
strategy with the strategy where maintenance is
only scheduled for the first 2-levels of criticality:
i) alerted and failed components in critical aircraft,
and ii) alerted components in non-critical aircraft.

Figure 5 shows the number of replacements,
and the number of aircraft assignments to generic
maintenance slots. In both cases, no AOG-events

occur, since components are replaced before an
AOG-event occurs, due to the large cost associated
with an AOG-event. As expected, the total number
of replacements is lower when performing main-
tenance with two levels of criticality than with
three levels of criticality. On the other hand, Fig-
ure 5b shows that when performing maintenance
with 2-levels of criticality, aircraft are more often
assigned to an expensive, generic maintenance
slot than when performing maintenance with a 3-
levels of criticality.

The results show that performing maintenance
with 2-levels of criticality is slightly more benefi-
cial in terms of the total number of replacements,
while performing maintenance with 3-levels of
criticality leads to significantly less assignments
to expensive, generic maintenance slots.

5. Conclusions
We have proposed a rolling-horizon predictive air-
craft maintenance planning approach for a fleet
of aircraft, taking into account component RUL
prognostics, a limited stock of spare components
and fixed maintenance slots. Based on these RUL
prognostics, three levels of aircraft/component
criticality are defined: i) critical aircraft for which
the airworthiness is threatened due to (upcoming)
component failures, ii) alerted components in non-
critical aircraft with a predicted near-future failure
and iii) failed components in non-critical aircraft.
These criticality levels are used to plan mainte-
nance tasks with an Adaptive Large Neighbour-
hood Search heuristic.

We show that our approach is successful in
planning maintenance for a large fleet of aircraft,
while guaranteeing aircraft airworthiness. More-
over, we show that performing maintenance using
a three levels of maintenance criticality requires
significantly less expensive, generic maintenance
slots than when performing maintenance using a 2
levels of maintenance criticality.
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(a) Expected total number of replacements (T),
and the expected number of components that were
not failed at the moment of replacement (NF).

(b) Expected number of assignments of an aircraft
to a generic maintenance slot.

Fig. 5.: Long-term maintenance performance for
a period of 5 years, while scheduling maintenance
for 3 and for 2 levels of criticality.
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