
Efficient Task Scheduling
in Build Systems

Arav Khanna¹
Supervisors: Soham Chakraborty¹, Dennis Sprokholt¹
¹EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 20, 2024

Name of the student: Arav Khanna
Final project course: CSE3000 Research Project
Thesis committee: Soham Chakraborty, Dennis Sprokholt, Burcu Ozkan

An electronic version of this paper can be found at repository.tudelft.nl.

1

repository.tudelft.nl

Abstract
Build systems are essential tools for compiling code-
bases of any complexity. In order to maximize per-
formance, they use parallelism to complete multiple
build steps simultaneously. In this thesis, we exam-
ine the effectiveness with which common build sys-
tems distribute work across available CPUs. We de-
sign an automatic process for fetching, compiling,
and inspecting the build steps of common C/C++
codebases, and use it to benchmark various build sys-
tems. Based on empirical performance measurements
and an analysis of the source code of these build sys-
tems, we find that the differences in task scheduling
between build systems do not significantly affect per-

formance.

1. Introduction
The performance of compilation is important. Develop-
ers rely on compilers to give them type-checking errors
and intelligent warnings; and once their code is com-
piled, it can be tested. Increasing the speed of a compiler
increases the speed at which developers get feedback
on their code and leaves them waiting less. In contexts
where many packages have to be built at once (e.g. for
binary package distributions like Arch Linux), improv-
ing the performance of compilation can lead to signifi-
cant speedups.

All but the smallest codebases rely on a build sys-
tem to manage compilation for them. Rather than in-
voking compilers by hand, developers can let a build
system do so on their behalf; it will automatically com-
pile the necessary files using the appropriate compila-
tion flags. Build systems also provide incremental and
parallel compiles (only compiling files that change, and
distributing work across available CPUs), resulting in
significant speedups.

Within a build system, the work of compilation is
broken down into many small compilation tasks. For ex-
ample, a C codebase can be compiled by building each
source file individually, then linking the resulting object
files together to form an executable or shared library.
Importantly, some of these tasks depend on each other,
and can be visualized as a dependency graph. Every
build system has a scheduling procedure which selects
tasks to execute from this graph and assigns them to
the available CPUs.

Figure 1: An example of a simplified dependency graph
for a C codebase.

There is a vast academic literature studying task sched-
uling. However, commonly used build systems like
Make¹ and Ninja² have not received academic scrutiny

¹See https://www.gnu.org/software/make/.
²See https://ninja-build.org/.

in this regard. If these build systems’ ability to speed up
compilation can be improved further, this would greatly
benefit developer experience and resource efficiency. But
there is a knowledge gap regarding the task scheduling
within these build systems from an academic perspec-
tive.

In this paper, we examine the following research
question: what are the similarities and differences
in the task schedulers used by build systems for
compiling C codebases? Empirically, we compare
and contrast these build systems in terms of 1) their
runtime performance and 2) their ability to maximize
CPU utilization. Qualitatively, we look for explanations
of these results in the task scheduling algorithms used
by these build systems. By addressing this knowledge
gap, we attempt to introduce an academic discussion of
the application of scheduling to compiler design.

This paper includes both qualitative and quantita-
tive approaches to the problem. Section 2 introduces the
specific compilers and build systems that are examined
by this paper, along with a formalization of the sched-
uling problem they have to solve. Section 3 describes
the quantitative approach taken to profiling the build
systems in question. Section 5 lays out the results of
this profiling. Section 6 analyzes these results and tries
to explain them through a study of the source code of
these build systems. Finally, Section 7 enumerates the
key takeaways from this analysis.

2. Background
This section describes the process of compilation for
common C codebases, the compilers and build systems
used to perform this task, and a formalization of the
scheduling problem these build systems have to solve.

2.1. Compiling C Code
Non-trivial C codebases have existed for decades. In or-
der to compile C code, each C source file must be indi-
vidually compiled into an object file, and these object
files then need to be archived or statically linked into
a single static or dynamic library file. Furthermore, the
compilation commands needed to build each source file
may require a number of configuration flags (e.g. to spec-
ify the optimization level, degree of compiler warnings,
and the characteristics of the machine being compiled
for). If a single source file is changed, tracking which files
must be updated is difficult to do manually, especially
for larger projects with several levels of nesting.

The Make build system was introduced in 1975 to
simplify the process of building C codebases [1]. It al-
lowed developers to store their compilation commands
in a central build description, and it would execute those
commands to only rebuild files that had become out-
dated. Furthermore, Make could execute multiple tasks
in parallel: if two files were outdated but did not depend

2

https://www.gnu.org/software/make/
https://ninja-build.org/

on each other, their compilation commands could be ex-
ecuted simultaneously. While there are multiple imple-
mentations of Make available, GNU Make³ is one of the
most common.

³See https://www.gnu.org/software/make/.

The Ninja build system4 began development in 2010,
as an alternative to Make. Unlike Make, Ninja’s build

4See https://ninja-build.org/.

descriptions are not meant to be written by hand; in-
stead, users are expected to use a separate tool that will
generate a build description for them, such as CMake.
This meant that Ninja’s build description format is
much simpler, and the entire codebase is significantly
smaller than e.g. GNU Make. Still, Ninja does the same
work of finding files to rebuild and executing tasks in
parallel.

The Tup build system5 began development in 2008,
with a distinct focus on minimizing rebuilds by detecting

5See https://gittup.org/tup/.

implicit dependencies. Tup executes compilation com-
mands within an emulated file system: when a C com-
piler tries to read an included header file, Tup will de-
tect and remember this implicit dependency, and will
automatically recompile the relevant source file when
the header file changes [2]. Tup is also fully capable of
parallelization.

The reference implementation of the Zig language6

is capable of compiling C code and has its own build sys-

6See https://ziglang.org/.

tem (configured using Zig itself). The Zig compiler uses
LLVM and so benefits from its repertoire of optimiza-
tions and tooling. Since the Zig Build System is built
into the implementation, its C compiler is inherently
parallel: it will automatically make use of all available
CPUs to compile a given set of source files. This means
that Zig can be used with or without external build sys-
tems like Make, Ninja, and Tup. Since it performs the
same work in either case, it provides a uniform environ-
ment to benchmark these build systems in.

2.2. The Scheduling Problem
Given a build description, which enumerates the arti-
facts to generate and the procedures necessary to gener-
ate them, a build system constructs a dependency graph
of the tasks to be performed and how they relate to one
another. In a dependency graph, nodes are tasks (such
as the compilation of a particular C file) and edges are
dependencies (if 𝑎 has an edge to 𝑏, then 𝑎 depends on
𝑏 and can only be executed once 𝑏 is complete). Nodes
are associated with costs, measuring the runtime of each
task.

The granularity of nodes, and thus the size of the
graph, varies between build systems. While Make, Ninja,
and Tup are generic tools that can only operate on whole
files at a time, the Zig build system has domain-specific
knowledge about its tasks and can break down compila-
tion steps per C function rather than per C source file.
Systems with more granular tasks have more opportu-
nities for parallelism and so are expected to more effi-
ciently schedule tasks.

Knowledge about the (approximate) runtime of each
task can aid schedulers, allowing them to prioritize ex-
ecuting chains of dependent tasks and to predict when
CPUs will finish executing each of their tasks. Once
again, Make, Ninja, and Tup have no domain-specific
knowledge about their tasks, and so are unable to pre-
dict their runtimes. The Zig build system could theoret-
ically predict the runtime of each of their tasks, using
heuristics on the size of each function or object being
compiled, but this information becomes available during
compilation rather than statically.

The general scheduling problem being answered
here is thus: given a static compilation graph, with par-
tial estimates of the runtime of each compilation step,
and 𝑁 identical processors to schedule compilation tasks
to, what is the optimal assignment of compilation steps
to processors, in order to minimize the time until every
task has been executed?

Because the runtime of each compilation task is not
fully predictable, and because the compilation graph
may not be available entirely ahead of time, there is
no single optimal schedule, and perfect optimality is
unachievable. This is a dynamic scheduling problem:
scheduling decisions may be made during the course of
the build process, depending on the runtime of executed
compilation tasks.

In the literature, Y.-K. Kwok and I. Ahmad [3]
consider many different static scheduling algorithms for
these kinds of dependency graphs. While they often con-
sider these graphs in terms of precedence constraints
(“task A must run after task B”), we consider them in
terms of nodes and edges. In particular, we consider dy-
namic non-preemptive scheduling for non-parallel tasks
in a DAG that does not contain conditional branches.
Tasks have unknown computational costs, negligible
communication time, without duplication. Tasks are
scheduled to a limited number of fully-connected proces-
sors. There are a number of scheduling algorithms for
this case enumerated by their survey, these are not found
in the build system implementations we explored.

3. Methodology
We measured the performance characteristics of these
build systems by using them to compile some C/C++
codebases. The methodology for the experiments per-
formed is detailed in this section. Firstly, we found a
collection of C/C++ codebases that are representative
of the general case and that can be processed uniformly
by automatic tools. As these codebases used a variety of
build systems, we designed a system for extracting rele-
vant C/C++ compilation commands from an arbitrary
build configuration. We used it to generate functionally
identical build descriptions for Make, Ninja, Tup, and
Zig. Finally, we benchmarked the runtime and CPU uti-
lization of these build systems against these packages,
and tested the hypotheses that Zig’s build system was
faster than each of the others.

In order to perform benchmarking uniformly and
reliably on a large number of codebases, an automated
process was required. But the lack of universally pre-
ferred build systems for C/C++ meant that any repre-

3

https://www.gnu.org/software/make/
https://ninja-build.org/
https://gittup.org/tup/
https://ziglang.org/

Figure 2: The process of empirically comparing build
systems for this paper.

sentative sample would contain a variety of build sys-
tems and each codebase would require human interac-
tion to build. We sidestepped this problem using the
Arch Build System7 (also known as ABS). ABS is a col-

7See https://wiki.archlinux.org/title/Arch_build_system.

lection of tools and conventions that allow developers to
describe the build process for any codebase in a simple,
uniform way. The Arch Linux distribution uses ABS to
automate the build process for the tens of thousands of
official and unofficial packages available to users. Every
Arch Linux package has an ABS configuration, and
the distribution’s popularity means that an Arch Linux
package for any popular application will be available.
We decided to use commonly-installed Arch Linux pack-
ages as our source of C/C++ codebases to benchmark.

While the use of Arch Linux packages simplifies
later steps in the experiment, there are too many to
compile and benchmark practically; in fact, it would be
wasteful of resources to do so. We ranked Arch Linux
packages based on their popularity as measured by a
community tool called pkgstats. The pkgstats project
attempts to rank Arch Linux packages based on how
many systems they are installed on (out of the roughly
16,000 systems running pkgstats) [4]. Packages that are
installed on more systems are by some measure more
important; improving their compilation process, which
is the purpose of this thesis, would be more effective in
overall resource efficiency than improving the compila-
tion process of less popular packages. We queried the
pkgstats database using its REST API and examined
the 500 most popular packages it listed. While some of
these are not C/C++ codebases, there were enough to
for the purpose of these experiments.

We now had a selection of codebases which could be
built using ABS. However, each codebase is free to use
any build system possible; the ABS configuration simply
indicates how to execute the codebase’s build system.
Furthermore, the build steps configured for ABS may in-
clude additional procedures that are not relevant to this
thesis, such as the generation of HTML documentation.
These considerations make the codebases’ existing build
descriptions unsuitable for direct use in benchmarking.
Instead, we developed a system called wizardry which
watches an arbitrary build system compile a package,
records the C/C++ compiler invocations that system
used, and reformats them into a much simpler build de-
scription for any other build system. Because only C/

C++ compilations are recorded, any build steps not rel-
evant to this thesis are implicitly omitted.

Figure 3: An overview of the wizardry system, used to
extract relevant build steps from any build system and

reformat them into an arbitrary build description.

The wizardry system works by taking advantage
of the PATH environment variable on Unix systems. We
wrote simple Python scripts to emulate clang, clang+
+, and ar (which generates static libraries), and placed
these in a directory that was then prepended to the PATH
variable. Any build system using this modified PATH vari-
able which attempts to use Clang will invoke our scripts
instead. These scripts simply record the command-line
parameters they receive, which are intended for the re-
spective compiler tool being replaced, then calls the un-
derlying compiler tool without any modification. Since
they act exactly like the underlying compiler tool, at
least from the perspective of any unsuspecting users,
they do not interfere with the build system used by the
package being inspected, and are highly reliable. These
scripts write their invocation information to a log file
in a simple binary format to ensure that parameters
containing spaces or other punctuation are not misin-
terpreted.

The primary component of wizardry is a Rust pro-
gram called reconstitute that processes recorded com-
piler invocation logs and generates build descriptions. It
addresses three major concerns in the experimental pro-
cedure for this thesis: 1) the normalization of compiler
invocations, 2) the optimization of compilation graphs,
and 3) the generation of build descriptions, all in a thou-
sand lines of Rust code. It relies heavily on existing in-
frastructure that has faced these problems before.

C/C++ compilers are difficult to model properly
because they are incredibly flexible tools. For example,
the GCC compiler accepts more than two thousand
options, which cover the C/C++ language features en-
abled, the optimizations attempted by the compiler, ar-
chitecture-specific code generation switches, and even
the logging of header file dependencies for incremental
compilation in build systems. While these switches can
affect the properties of the produced code, they are ir-

4

https://wiki.archlinux.org/title/Arch_build_system

relevant for the purpose of this thesis: they do not have
any bearing on the scheduling properties of the build
systems used. In fact, they make it more difficult to
test the hypotheses of this paper: a single instance of
the Zig build system can only consume C/C++ sources
with compatible compiler configurations, so incompati-
ble configurations in the same project prevent the build
system from scheduling multiple tasks. It is important
to normalize the compiler flags consumed so that irrel-
evant flags are removed and the remaining flags have
predictable behaviour that is easy to model.

We make use of parts of the Zig and Clang compiler
infrastructures in order to normalize the command-line
parameters parsed by reconstitute. The goal of nor-
malization is to produce a minimal configuration that
will compile without failures. Of the massive number
of available options in these compilers, very few are ac-
tually relevant: they are listed below in Table 1. In a
sample invocation like clang -Ibar -target native -o
foo foo.c, knowing that -target (an irrelevant option)
consumes the following parameter is necessary in order
to parse the rest of the command-line. The Zig compiler
stores this parsing information in a large auto-generated
array in its source code (which it derives from a simi-
lar table in the Clang source code); we extracted it by
adding a few lines of Zig code to traverse the array and
print each option. For each category of option parsing,
a plain text file containing the names of those options is
stored; these are loaded into the reconstitute program,
which replicates some of the parsing logic from the Zig
compiler.

Flags Purpose

-I and related Include directories

-D, -U Macro definitions

-E, -S, -c, -shared Output type
-std Language standard

-L, -l Linking to libraries
-o Output file name

Table 1: A complete list of the compilation flags re-
tained by the reconstitute tool when it parses compi-

lation logs.

In order to generate a build description that uses the
Zig build system, any parsed set of invocations have to
be optimized. Build systems for C/C++ universally op-
erate by first generating an object file for each source
file (in parallel), and then executing a linking step which
combines the object files. The Zig C frontend can per-
form both portions of work with a single invocation, us-
ing its own scheduler rather than that of the outer build
system. However, source files using incompatible flags
(e.g. macro definitions) cannot be compiled in the same
Zig invocation. Optimally picking invocations to merge
like this quickly becomes intractable; to produce the
best possible results, we use egg, a super-optimizer that
can efficiently represent many combinations of equiva-
lent nodes [5]. Once the invocations are parsed, we at-
tempt to merge random invocations together and store
the results in egg. After a large number of merges, we

extract the best available combination of invocations as
the final optimized build steps.

Once a compilation database representing a code-
base is constructed, it can be translated into a build
description for any build system. Simple functions for
formatting invocations in the Make, Ninja, and Tup for-
mats was implemented as the last step in reconstitute.
For optimized build descriptions taking advantage of
Zig’s scheduler, more than one invocation may exist;
they are executed by Make, so the same generation code
is reused. At this step, a list of the artifacts generated
by the regular and optimized build descriptions are also
output; these are used to prevent incremental recompi-
lation from occurring, as it is not relevant to the topic
of this thesis.

Finally, we executed the generated build descrip-
tions and benchmarked the build systems running them.
We used the Linux perf tool8 to collect information di-

8See https://perf.wiki.kernel.org/index.php/Main_Page.

rectly from the OS scheduler about which tasks were
allocated to which CPUs. We began by collecting the
total runtime of each build. is identical: they use the
same compiler (the Zig C frontend) to compile the same
codebase to the same set of artifacts. We control for
variations in disk caching by running each build system
five times and discarding the results from the first build.
Any significant difference in the runtime of the build
must be attributed to the build system itself, allowing us
to compare their overheads. In order to judge the degree
of parallelism used by each compilation, we measured
1) the CPU resources consumed by the build in total,
2) the CPU resources that were available to the build
over its runtime, and 3) the CPU resources consumed
by other processes on the system (i.e. system overhead).
These allow us to infer the degree of parallelism of the
build: if the build system perfectly scheduled tasks to
CPUs, it would consume all of the CPU resources avail-
able to it; if some CPUs were under-utilized, that idle
time is accounted for. We minimized the system over-
head by stopping unrelated processes and shutting down
unnecessary subsystems like networking and graphics,
but the measured system overhead represents potential
for better parallelism that was not made available to
the builds.

We tested six hypotheses using the benchmarking
data collected: that the Zig build system is on average
faster (has a faster runtime) than every other build sys-
tem, and that the Zig build system schedules processes
more effectively (has less idle time relative to total run-
time) than every other build system on average. We av-
eraged the four runs of each build system on each code-
base, paired the values from Zig and another build sys-
tem for each codebase, and then performed a one-tailed
Student’s t-test to determine the probability of the null
hypothesis that Zig had an equal or greater runtime or
that Zig had an equal or lesser CPU utilization (relative
to total runtime). Before performing these calculations,
we decided a significance level of 𝑝 = 0.05 – if the null
hypothesis is true with this probability or lesser, the al-
ternative hypothesis will be assumed.

5

https://perf.wiki.kernel.org/index.php/Main_Page

4. Responsible Research
The correctness, reproducibility, and ethical implica-
tions of any research are important factors to consider.
In the case of this thesis, correctness depends on the
validity of the data set as a representative sample and
of the methodology as a means of answering the stated
hypotheses. The reproducibility of this work depends on
the completeness of the description of the method used.
There are relatively minor ethical implications to this
work, but they revolve around the expenditure of energy
in terms of electricity for the experiments.

4.1. Correctness
The results of this paper are intended to be represen-
tative of C/C++ codebases from the perspective of de-
velopers. To this end, we selected codebases that many
users have installed on their systems (at least on Arch
Linux). We assume that developers often interact with
codebases that have many users, since this results in
more bug reports, feature requests, and more interac-
tions from the open-source community in terms of code
contributions.

Due to limitations of the methodology, we could not
process all of the codebases in our original data set.
Some codebases use particular compilation flags that
the reconstitute tool could not process correctly, while
others could not be inspected as they mandated the
use of the GCC compiler instead of our wrapper scripts
around Clang. It would be unreasonable to spend a sig-
nificant portion of time implementing support for this
small number of packages, when the vast majority are
successfully processed through the wizardry system.

The benchmarking performed as part of the exper-
iments here did not use incremental compilation. This
means that they always compiled every source file in the
project from scratch. This is not wholly representative of
the normal developer experience: developers are usually
working on a few projects at a time, and once they have
downloaded and built them once, incremental compiles
drastically reduce the effort necessary to recompile them
even as code is modified. However, the performance of
full compilation is still important for developers, as it is
used in continuous integration (CI) builds. We focused
on full compiles because they are significantly easier to
benchmark and are more sensitive to the scheduling al-
gorithm used.

4.2. Reproducibility
We designed the experimental procedures for this the-
sis to minimize manual intervention, allowing them to
be executed uniformly by anyone. The source code for
the experiments is available at git.sr.ht/~bal-e/build-
system-scheduling. The majority of the experiments is
implemented using a single Makefile: it generates the
list of packages to use, fetches their ABS bulid config-
urations and source code, compiles them and records
compilation graphs, uses wizardry to generate new build
descriptions, and performs benchmarking. A separate
set of tools (also in the repository) are used for extract-
ing information from the recorded performance profiles,
testing the hypotheses against them, and producing the

graphs in this paper. The steps for using these scripts to
reproduce the experiment are detailed in a README file.

4.3. Ethics
The primary ethical consideration here is the use of en-
ergy in performing the experiments. While performing
these experiments did spend (or waste) some CPU time
that could have been spent performing more valuable
processing, this is a nearly insignificant consideration
given the power efficiency of modern CPUs. Further-
more, should the results from this paper result in de-
velopers switching to faster and more resource efficient
build systems, the costs of running these experiments
will be offset entirely.

5. Results
The following results were collected on a Framework
Laptop 13, with a 4-core 2.4GHz 11th Gen Intel® Core™
i5-1135G7 running with 8 threads at 3.1GHz. The ma-
chine has 16 GB of DDR4 RAM and the experiments
were performed on an external 500 GB Samsung PSSD
T7 on BtrFS. It is running Arch Linux with the 6.8.10
upstream kernel (with manual configuration). Here is a
breakdown of the data set sampled:

Figure 4: A logarithmic violin plot of the time it took
each build system to compile, across the distribution of

packages sampled.

• The top 500 packages from pkgstats were selected.

• 477 unique “base” packages were found (some base
packages result in multiple actual packages being
built).

• 467 were successfully downloaded (some could not be
prepared due to conflicting dependency packages).

• 396 packages contained between 2,000 and 300,000
lines of C/C++ (an upper limit was imposed to re-
strict the runtime of the experiment).

• 385 packages were successfully compiled and their
compilation logs were extracted (some packages could
not be built due to unlabeled build-time dependen-
cies or compiler misconfigurations).

• 286 packages were processed by the reconstitute
script to generate new build descriptions (some failed
because of incomplete compilation logs, or because

6

https://git.sr.ht/~bal-e/build-system-scheduling
https://git.sr.ht/~bal-e/build-system-scheduling

optimizing the compilation graph led to out-of-mem-
ory errors).

• 114 packages were benchmarked with each candidate
build system (originally, more than 200 were bench-
marked; these results were discarded due to the
Zig compiler automatically caching compilation data
and misinforming compilation times, and new results
could not be generated in time).

The Zig compiler’s inherent build system is significantly
faster than Ninja, Make, and Tup. Using Student’s t-test
with paired samples, the null hypotheses (that Make,
Ninja, or Tup were individually as fast as or faster than
Zig’s build system) were rejected with 𝑝 < 0.05.

System 𝜇 Med. 𝜎 𝑡-stat. 𝑝-value

Make 17.06 8.888 24.50 −5.234 3.965 ⋅ 10−7

Ninja 17.12 8.876 24.59 −5.254 3.636 ⋅ 10−7

Tup 15.20 7.698 22.68 −3.664 1.909 ⋅ 10−4

Zig 13.52 6.020 20.30

Table 2: Statistics regarding the runtimes (in seconds)
of the build systems across all packages. All values are

rounded to four significant digits.

In addition to runtime information, we also collected
basic CPU utilization data. From the moment the build
starts, we consider any time the CPU spends outside the
build system processes to be wasted. By aggregating this
data and comparing it to the total amount of CPU time
available to the build (which is the runtime of the build
times the number of available CPUs), we can measure
the degree to which a build system takes advantage of
the available CPUs. In particular, we test the hypothe-
ses that Zig’s build system has a greater CPU utilization
than Make, Ninja, and Zig.

System 𝜇 Med. 𝜎 𝑡-stat. 𝑝-value

Make 0.7174 0.8052 0.2539 −5.264 0.999

Ninja 0.7160 0.8087 0.2531 −5.303 0.999

Tup 0.6893 0.7782 0.2500 −3.457 0.999

Zig 0.6698 0.7637 0.2599

Table 3: Statistics regarding the CPU utilizations (as
ratios between measured CPU usage and the maximum
possible) of the build systems across all packages. All

values are rounded to four significant digits.

Surprisingly, Zig consistently had a lower average CPU
utilization than any other build system: the null hypoth-
esis was not rejected in any case. This means that it was
not making better use of the available CPUs – but since
its runtime was lower on average, it is doing less work
and distributing that work across CPUs less effectively.
The same is true to a lesser degree of Tup. This is more
visibly demonstrated by Figure 5.

To gain further insight into the reason for this, we
analyzed the amount of CPU time spent within each
process during compilation. Time that could be attrib-
uted to a particular task, or to CPU idling, was averaged
across the packages, per build system, and is presented
in Figure 6.

Figure 5: A plot of the degree of CPU utilization by
each build system for each package, sorted (per build

system) from highest to lowest.

Figure 6: A breakdown of the average amount of time
spent in each kind of process, or in CPU idling, during
compilation for each build system. “other” refers to a
small amount of system noise, or near-insignificant com-

ponents such as sh.

In addition to the runtime and CPU utilization of
build systems, information was obtained about the build
experience for a large number of packages. We analyzed
the runtime of building a large number of packages
but we also analyzed the actual compilation invocations
within those packages. We test the hypotheses that the
average runtime for building a package with the Make
build system is correlated with the number of source
files or the number of lines of C/C++ code within it. In
accordance with Table 4, we reject the null hypothesis
that build runtime is not correlated with the number of
source files; however, we cannot reject the null hypothe-
sis that build runtime is not correlated with the number
of lines of C/C++ code. The number of source files in
a codebase more significantly affects its build runtime
than the number of lines of code within it; indeed, in
Figure 7 we see a number of codebases with few files
but many lines of code that compile faster than other
codebases with many files but few lines of code.

In conclusion, our results show that the Zig build
system is significantly faster than Make, Ninja, or Tup,
when used with the Zig C frontend to build common
C/C++ codebases. The following section examines why
this may be the case, and how these build systems’ in-
ternals compare and contrast. Furthermore, we find a
distinct lack of correlation between the number of lines

7

Measure 𝜌 𝑝-value

Number of source files 0.6090 1.046 ⋅ 10−12

Number of lines of code −0.1370 0.1499

Table 4: Pearson correlation coefficients and 𝑝-values for
estimating the runtime for a codebase using the Make

build system.

Figure 7: A log-log plot depicting how the runtime for
building a codebase with Make varies along the number
of source files (along the X-axis) and the number of lines

of C/C++ code (the size of the points).

of code in a codebase and its expected runtime with the
Make build system.

6. Discussion
In this section, we search for explanations for the results
we have found: that Zig’s build system is faster than
others and that it does not have a greater CPU utiliza-
tion than other systems. We attempt to explain these
properties in terms of the scheduling algorithms under-
lying these build systems.

We analyzed the source code for the Zig com-
piler and determined that its task scheduler does not
take advantage of the domain-specific knowledge avail-
able to it. Within the compiler [6], we found that
C compilation commands were added in the order
they were specified on the command line to a thread
pool (by the performAllTheWork() function in src/
Compilation.zig). The thread pool is a simple first-
come first-serve task scheduler, part of the Zig standard
library (at lib/Thread/Pool.zig); it maintains a global
queue of pending tasks, protected by a mutex, and a
set of worker threads that poll it for new tasks by
popping it from the front. The compilation tasks are
specified at the granularity of whole source files to com-
pile. The individual compilation tasks are implemented
by updateCObject() in Compilation.zig: they simply
spawn new instances of the Zig compiler which will use
the raw Clang frontend contained within it via LLVM.
As such, Zig operates very similarly to the other build
systems it is being compared to: but it hides these char-
acteristics as implementation details.

The GNU Make build system uses a depth-first tra-
versal of the dependency graph in order to select tasks
to execute. While this characteristic is relatively well-
known, we examined the source code of GNU Make 4.4

[7] to confirm this claim. In the file src/remake.c, a
high-level update_file() method is responsible for ex-
ecuting a particular rule in a Makefile (if necessary);
it calls an internal update_file_1(), which checks the
dependencies of the rule using check_dep(). This will
recursively call update_file() to ensure the dependency
is prepared. Because update_file_1() traverses depen-
dencies in the order they were specified in the Makefile,
GNU Make is performing a depth-first post-order search
through the dependency graph. The actual update work
is performed by the commands specified in the Makefile;
Make will spawn the necessary processes and continue,
unless a user-specified limit is reached or if all remaining
jobs are waiting for processes.

The Ninja build system prioritizes tasks based on
critical dependency chains. In Ninja’s source code repos-
itory [8], we found the Plan::computeCriticalPath()
function of src/build.cc. It assumes, as a simple heuris-
tic, that every build step will take the same amount of
time to execute. For each build step, it then determines
the minimum number of steps that must follow after it
for the originally requested artifact(s) to be generated.
This is the length of the critical path for that step.
Having computed this information, Ninja then performs
earliest deadline first scheduling: in order to generate
the top-level artifact as soon as possible, it will prioritize
build steps that have to occur the longest time before
that overall deadline. Of all the build systems examined,
Ninja performs the most thorough analysis of the de-
pendency graph, and uses the most intelligent scheduler
possible. However, our results show that Make is still
faster than Ninja.

While Tup performs very interesting analyses, its
source code proved very difficult to traverse. Unlike Zig,
Make, and Ninja, Tup is not very widely used, and has
not benefited from many external contributions over the
years. As such, the code is difficult to navigate and doc-
umentation is sparse. While we found some code for
managing parallelism, we were unable to find basic steps
such as fork()/exec() pairs for spawning new processes.
The technical documentation for Tup, such as [2], does
not adequately describe Tup’s scheduling mechanism,
leaving it as an additional but relatively unhelpful data
point in this thesis.

We are forced to conclude that Zig has a signifi-
cantly smaller runtime than any other build system be-
cause of its own overhead, not because of any schedul-
ing algorithm. If Make and Ninja introduced significant
overhead to the build process, then their share of CPU
time consumption would be visible in Figure 6; instead,
Zig spends more time performing the same work just
because it was invoked from an external build system.
The only explanation for this is that Zig has a signifi-
cant overhead; every time it is invoked, it spends a large
amount of time in initialization or teardown procedures.

7. Conclusion
We examined task schedulers within build systems used
to compile C codebases, and we concluded that they do
not have a significant impact on the speed of compila-

8

tion. However, we still have important takeaways from
this experiment:

1. There is a significant overhead to individual compiler
invocations. While changes to the scheduling algo-
rithm may not improve build system performance,
better integration with the tools used for compilation
yield massive speedups.

2. For this reason, the Zig Build System is a good choice
for C/C++ developers looking to improve their com-
pile times. By compiling their code faster, they will
be able to get feedback on their code more quickly,
and for even larger codebases, this will measurably
improve resource consumption.

3. While C/C++ build systems have thousands of con-
figuration options, most of them are not strictly nec-
essary: the vast majority of packages can be compiled
successfully using only the ten most important flags.

4. The methodology of this thesis is a major contribu-
tion. It can be used to experiment with a large num-
ber of real-world codebases in an automated manner
for any stage of the compilation process. For example,
this could be used to benchmark the performance dif-
ferences between two linker implementations in prac-
tice.

5. Using the reconstitute tool, it is now possible to
translate between build system descriptions arbitrar-
ily, and even to optimize them to minimize the num-
ber of compiler invocations (assuming Zig-like func-
tionality for compiling multiple source and object files
into a single object file). This can be used to experi-
ment with new build systems or potentially to help
transition a project between build systems.

Future work in this topic should consider the benefits of
breaking down tasks into smaller components: this pro-
vides more opportunities for parallelism and more pre-
dictable runtimes for each component. This may have to
be implemented first in a practical compiler implemen-
tation before it can be analyzed in an academic setting.

Bibliography
[1] S. I. Feldman, “Make – A Program for Maintaining

Computer Programs,” Software – Practice and Ex-
perience, vol. 9, 1979, [Online]. Available: https://
doi.org/10.1002/spe.4380090402

[2] M. Shal, “Build System Rules and Algorithms,”
2009. [Online]. Available: https://gittup.org/tup/
build_system_rules_and_algorithms.pdf

[3] Y.-K. Kwok and I. Ahmad, “Static scheduling algo-
rithms for allocating directed task graphs to multi-
processors,” ACM Computing Surveys, vol. 31, pp.
406–471, 1999.

[4] P. Schmitz, “Arch Linux package statistics.” [On-
line]. Available: https://pkgstats.archlinux.de/

[5] M. Willsey, C. Nandi, Y. R. Wang, O. Flatt, Z. Tat-
lock, and P. Panchekha, “egg: Fast and Extensible
Equality Saturation,” Proc. ACM Program. Lang.,

vol. 5, Jan. 2021, [Online]. Available: https://doi.
org/10.1145/3434304

[6] A. Kelley, “Zig: A general-purpose programming
language and toolchain for maintaining robust, op-
timal, and reusable software..” Jun. 2024. [Online].
Available: https://github.com/ziglang/zig

[7] “GNU Make.” Jun. 2024. [Online]. Available:
https://savannah.gnu.org/projects/make/

[8] E. Martin, “Ninja: a small build system with a focus
on speed.” Jun. 2024. [Online]. Available: https://
github.com/ninja-build/ninja

9

https://doi.org/10.1002/spe.4380090402
https://doi.org/10.1002/spe.4380090402
https://gittup.org/tup/build_system_rules_and_algorithms.pdf
https://gittup.org/tup/build_system_rules_and_algorithms.pdf
https://pkgstats.archlinux.de/
https://doi.org/10.1145/3434304
https://doi.org/10.1145/3434304
https://github.com/ziglang/zig
https://savannah.gnu.org/projects/make/
https://github.com/ninja-build/ninja
https://github.com/ninja-build/ninja

	Efficient Task Scheduling in Build Systems
	Abstract
	Introduction
	Background
	Compiling C Code
	The Scheduling Problem

	Methodology
	Responsible Research
	Correctness
	Reproducibility
	Ethics

	Results
	Discussion
	Conclusion
	Bibliography

