
Computer Engineering
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ce.et.tudelft.nl/

2010

MSc THESIS

Quantitative Analysis and Visualization of
Memory Access Patterns

Marco Corina

Abstract

Faculty of Electrical Engineering, Mathematics and Computer Science

CE-MS-2010-15

As the rate of improvement of processor performance has greatly
exceeded the rate of improvement of memory performance, the com-
munication between the (general-purpose) processor and the mem-
ory sybsystem became the main obstacle for achieving overall system
performance improvements. Conversely, more and more modern ap-
plication require a considerable amount of computing power. The in-
troduction of heterogeneous reconfigurable systems are increasingly
gaining popularity due to their ability to speed up the execution of
an application. However, the widespread utilization of such systems
through the industry seems inconvenient due to the shortage of tools
guiding developers throughout the entire development process. Fur-
thermore, the introduction of heterogenous reconfigurable systems
does not still solve the processor-memory dilemma. Hence, there is
a compelling need for tools that facilitate the development of ap-
plications of heterogeneous platforms and that help the developer
gain more insight in the memory access behaviour of an application.
In this thesis, a set of sophisticated memory access analysis tools
is presented, which provide detailed analysis on the memory access
behaviour of an application. This toolset is developed in the context
of the Delft Workbench and hArtes. The development of one of the

tools in the toolset is the main contribution to this thesis. In this thesis, the toolset will be described and
motivated. Emphasis will be put on the tool that is developed during this thesis. Finally, a case study on
a real application is conducted, showing the potentialities of the tool.

Quantitative Analysis and Visualization of

Memory Access Patterns

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

Marco Corina

born in The Hague, The Netherlands

Computer Engineering
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Quantitative Analysis and Visualization of

Memory Access Patterns

by Marco Corina

Abstract

A
s the rate of improvement of processor performance has greatly exceeded the rate of im-
provement of memory performance, the communication between the (general-purpose) pro-
cessor and the memory sybsystem became the main obstacle for achieving overall system

performance improvements. Conversely, more and more modern application require a consider-
able amount of computing power. The introduction of heterogeneous reconfigurable systems are
increasingly gaining popularity due to their ability to speed up the execution of an application.
However, the widespread utilization of such systems through the industry seems inconvenient due
to the shortage of tools guiding developers throughout the entire development process. Further-
more, the introduction of heterogenous reconfigurable systems does not still solve the processor-
memory dilemma. Hence, there is a compelling need for tools that facilitate the development
of applications of heterogeneous platforms and that help the developer gain more insight in the
memory access behaviour of an application. In this thesis, a set of sophisticated memory access
analysis tools is presented, which provide detailed analysis on the memory access behaviour of
an application. This toolset is developed in the context of the Delft Workbench and hArtes. The
development of one of the tools in the toolset is the main contribution to this thesis. In this
thesis, the toolset will be described and motivated. Emphasis will be put on the tool that is
developed during this thesis. Finally, a case study on a real application is conducted, showing
the potentialities of the tool.

Laboratory : Computer Engineering
Codenumber : CE-MS-2010-15

Committee Members :

Advisor: Koen Bertels, CE, TU Delft

Chairperson: Koen Bertels, CE, TU Delft

Member: Eelco Visser, ST, TU Delft

Member: Georgi Kuzmanov, CE, TU Delft

i

ii

To my parents

iii

iv

Contents

List of Figures vii

List of Tables ix

Acknowledgements xi

1 Introduction 1

1.1 Problem Definition . 2

1.2 Thesis outline . 3

2 Background 5

2.1 The Need for Heterogenous Reconfigurable Architectures 5

2.2 The MOLEN Processor and Programming Paradigm 7

2.3 Memory Communication Bottleneck . 9

2.3.1 Hardware Exploitation Methods 9

2.3.2 Software Exploitation Methods . 11

2.3.3 Concluding Remarks . 14

2.4 Motivation for Improved Memory Analysis 15

2.5 Hardware/Software Co-design . 15

2.5.1 Design Space Exploration . 16

2.5.2 Hardware/Software Partitioning and Mapping 16

2.6 Delft Workbench . 17

2.7 hArtes . 20

2.8 Motivation for Dynamic Memory Analysis Tools 21

2.9 Conclusion . 22

3 Analysis Techniques 23

3.1 Program Analysis . 23

3.2 Dynamic Binary Instrumentation . 24

3.2.1 DynamoRIO . 25

3.2.2 Valgrind . 25

3.2.3 pin . 26

3.3 Pin . 26

3.3.1 Evaluation of Pin . 28

3.3.2 Comparison of Pin against Other DBIs 28

3.3.3 Pro et Contra of Pin . 29

3.4 Pin Instrumentation API . 29

3.5 Calling Pin . 31

3.6 Conclusion . 32

v

4 QUAD: Sophisticated Memory Patterns Analysis Tools 33
4.1 QUAD - Quantitative Usage Analysis of Data 33

4.1.1 QUAD Objective . 34
4.1.2 QUAD Design and Implementation 34
4.1.3 How QUAD Works . 36
4.1.4 QUAD’s Example Outputs . 37

4.2 tQUAD . 38
4.2.1 tQUAD Objectives . 38
4.2.2 tQUAD Design and Implementation 39
4.2.3 How tQUAD Works . 41
4.2.4 tQUAD’s Example Output . 42

4.3 Concluding Remarks - The xQUAD Tool 42

5 The xQUAD Tool 45
5.1 Introduction and overview of xQUAD . 45
5.2 Background Information . 46

5.2.1 Object File Overview . 46
5.2.2 DWARF Debugging Format . 49
5.2.3 DWARF Consumer Library . 51

5.3 xQUAD Architecture . 52
5.3.1 xQUAD Design and Implementation 53
5.3.2 DWARF Debugging Information Module 54
5.3.3 Pin API calls and Analysis Routines 58
5.3.4 How xQUAD Works: Functionalities and Restrictions 60

5.4 xQUAD Analysis Output Examples . 61
5.4.1 Memory Map Report File . 61

5.5 Detailed Variable report file . 63
5.6 Conclusion . 63

6 Case Study: Wave Field Synthesis 65
6.1 Introduction to Wave Field Synthesis . 65
6.2 Experimental Setup . 66
6.3 Memory Access Behaviour of WFS . 67
6.4 Ranking of Memory Intensive WFS Kernels 70
6.5 Conclusion . 73

7 Conclusion and Future Work 75
7.1 Conclusion . 75
7.2 Future Work . 76

Bibliography 80

vi

List of Figures

2.1 The MOLEN machine organization . 8
2.2 The DWB Architecture . 17
2.3 The DWARV Toolset . 19
2.4 The hArtes Toolchain . 20

3.1 Pin’s Architecture . 27
3.2 Pin example of instrumentation and analysis routines 30

4.1 Profiling Framework of QUAD within DWB 35
4.2 Architectural overview of QUAD . 35
4.3 Implementation overview of QUAD . 36
4.4 XML format of producer/consumer binding 38
4.5 Profiling Framework of tQUAD within DWB 39
4.6 Architectural overview of tQUAD . 39
4.7 tQUAD instruction instrumentation pseudocode 40
4.8 tQUAD routine instrumentation . 41

5.1 Sections and segments of an ELF . 48
5.2 Segments of an executable object file mapped in memory 49
5.3 DWARF DIEs sample output . 50
5.4 C Program and DWARF description of program 51
5.5 Architectural overview of xQUAD . 52
5.6 Example of the MONITOR file passed to the xQUAD tool 54
5.7 xQUAD main function . 55
5.8 DWARF Depth-First Tree Traversal . 56
5.9 xQUAD memory map example . 61
5.10 Example of memory visualization . 62

6.1 Principle of WFS . 66
6.2 Snapshots of the heap memory usage of WFS 67
6.3 Snapshots of the heap memory usage of WFS 68
6.4 Snapshots of the stack memory usage of the WFS 70
6.5 Snapshots of the stack memory usage of the WFS 71
6.6 Snapshots of the stack memory usage of the WFS 72

vii

viii

List of Tables

4.1 Phases in the execution path of the hArtes wfs application. 42

5.1 Example of statistics for the wav load function from the WFS application 62
5.2 Example of statistics for the wav load function from the WFS application 63

6.1 Memory usage statistics for the hArtes wfs application. 68
6.2 Flat profile for the hArtes wfs application. 69
6.3 Rank of WFS kernels . 72

ix

x

Acknowledgements

First of all, I would like to thank my advisor Prof. Koen Bertels, for his support and
guidance during this thesis. Further, I would like to thank Arash Ostadzadeh for his
invaluable help, it would have been much harder without his assistance. Also, I would
like to thank Roel Meeuws for being there when I needed help. Last but not least, I
would like to thank my friends and family for their support.

Marco Corina
Delft, The Netherlands
June 18, 2010

xi

xii

Introduction 1
In the past decennia, the quest for greater performance processors continuously grew to
very complex architectures and phenomenal speeds1. However, the rate of improvement
of processors speed exceed the rate of improvement of DRAM (Dynamic Random Access
Memory) memories speed. This processor-memory gap[21] is continuously becoming a
problem in the sense that it is the primary obstacle in improving the overall performance
of computing systems. Ideally, a perfect memory system would supply immediately data
requested by the processor. However, this is technologically as well as economically an
infeasible solution. The advent of cache memories has alleviated the bottleneck caused by
the slowness of memory systems, resulting in a memory hierarchy with multiple levels of
caches, exposing the principle of locality2. Unfortunately, a memory hierarchy including
caches does not still solve the memory-wall problem, meaning that the speed of an
application is still bounded by the speed of the memory system. This is especially true
for many data-intensive applications with memory behaviours that are characterized by
large working sets and streaming data accesses, which cannot fit into the on-chip caches3.

Conversely, modern applications require even more processing power than ever. This
means that even though processors work at an edge speed, which is practically as fast as
it can get with this technology, it is still not enough to cope with the latest developments
and desires.

To cope with this problem, there is a need for an alternative architecture other than
only the conventional general-purpose processor architecture. Even multi-core architec-
tures do not deliver the expected improvements, as most applications are not parallelized,
or they cannot be parallelized efficiently to unleash the power of multi-core systems.
Hence applications cannot fully benefit from multi-core architectures. Besides the need
for an increased computational power, today, there is also an increasing demand in (mo-
bile) embedded technology. This brings other aspects into the design of an architecture
that are to be considered, one of which is lower power consumption. This aspect makes
a conventional architecture an unfeasible solution for embedded systems in general.

Designers have therefore increasingly used ASICs (Application Specific Integrated
Circuits) along with a general-purpose processor to gain performance speed-up for, e.g.,
expensive media encoding and decoding algorithms and signal processing. These het-
erogeneous systems permit to deploy multiple types of processing elements within a
single target platform, allowing each element to perform the task(s) to which it is best

1Furthermore, the reached sub-atomic sizes of modern processors has also put an horizon to Moore’s
prediction about technological advance, which requires a new way of increasing computing performance.

2Briefly, this principle states that accessed memory words will be accessed again quickly (temporal
locality) and that memory words adjacent to an accessed word will be accessed soon after the access in
question (spatial locality)

3Due to the low density and high cost of SRAM, L2 cache memory is usually limited between 4 and
12 MB on state-of-the-art processors, which is not large enough for many multimedia applications.

1

2 CHAPTER 1. INTRODUCTION

suited[35]. Elements that constitute these systems can be, for instance, ASICs, Field
Programmable Gate Arrays (FPGAs), Graphic Processing Units (GPUs), Digital Signal
Processors (DSPs), and the conventional commodity processors.

Each of the above mentioned components has it advantages, like high flexibility (as
in the case of general-purpose processors) or high performance (e.g. ASICs). However,
reconfigurable logic in the form of FPGAs is becoming increasingly popular as a com-
puting component. Favoured by the technological advance of the latest years, FPGAs
have increased tremendously in size and speed. Additionally, today FPGAs have built-in
logic that is tailored to the needs of different application domains, including embedded
processing cores, high-performance arithmetic units, specialized I/O functionalities, etc.
Thanks to this and to the fact that FPGAs can achieve high performances by exploiting
both fine-grained as coarse-grained parallelism present in applications, they have been
a very centered topic in the research community, favouring the evolution of the concept
of reconfigurable computing. Due to its potential to greatly accelerate a wide variety of
applications[37, 11], this discipline is rapidly increasing. Reconfigurable computing aims
at filling the gap between the performance of hardware while maintaining the software
flexibility and upgradability. This is achieved by mapping the computational intensive
tasks of an application onto the reconfigurable units and maintaining the parts of the
application (or tasks) that cannot be performed efficiently on the reconfigurable logic in
the general-purpose processor, like data-dependent control and memory accesses. Fur-
thermore, reconfigurable hardware presents advantages like reduced energy and power
consumption, which are vital for mobile and embedded systems.

1.1 Problem Definition

While presenting various advantages over custom hardware design, reconfigurable com-
puting also facilitates the growth of heterogeneous computing. However, the widespread
utilization of such systems through the industry seems to be inconvenient due to the
shortage of tools guiding developers throughout the entire development process. De-
veloping reconfigurable hardware requires knowledge of hardware design methods and
tools that most system programmers do not have. A remedy to this problem would
be to develop an hybrid programming model that abstract hardware away. Unfor-
tunately, current programming models are still immature and do not permit to fully
exploit the capabilities of hybrid general-purpose processors and FPGA designs[23, 4].
Furthermore, the introduction of heterogeneous reconfigurable architectures will still suf-
fer from the processor-memory gap[19], even though the evolution of FPGA technology
will supposedly include substantial memory resources by which the memory wall may
be alleviated[46].

Hence, the need for tools that facilitate the development of applications on hetero-
geneous platforms on one side and tools that help the developer gain more insight in
the memory utilization of an application and on how to optimize this on the other side,
is of huge importance. Inspecting the behaviour of an application in general, and the
actual pattern of memory accesses in particular, is an essential aspect of carrying out
effective optimizations for the application development of reconfigurable systems. As a
result, many research initiatives are emerging that target support tool for application

1.2. THESIS OUTLINE 3

behaviour analysis from different perspectives.
The Delft Workbench (DWB) project (Chapter 2.6) at Delft University of Technology

and the hArtes project (Chapter 2.7) target the research and development of heteroge-
neous reconfigurable systems throughout the entire design cycle, from code profiling to
compilation. These toolchains are designed and developed considering the actual hard-
ware/software co-execution on real, heterogeneous, hardware. Hence, both DWB and
hArtes should be aware of the memory characteristic behaviour of applications during
their profiling stages, which would be accomplished by including some dynamic profil-
ing tools. They would provide important information to developers for making critical
decision during various hardware/software co-design stages, by considering not only a
computationally intensive task but also taking into consideration the memory behaviour
of the task(s).

For this purpose, a set of memory behaviour analyzers are developed at Delft Uni-
versity of Technology, with the primary intention to deliver detailed information about
the memory usage of applications, and possibly discovering memory-related bottlenecks.
The results retrieved from these tools can be of invaluable importance during hard-
ware/software partioning steps as well as for gaining information about application code
optimizations.

1.2 Thesis outline

This thesis is organized as follows. Chapter 2 discusses the issues introduced in this
introduction in more details, and presents some related research around memory opti-
mization. Also it introduces the field of hardware/software co-design, focusing on the
research and tools done at Delft University of Technology. Chapter ?? introduces anal-
ysis techniques that can be used for the development of tools. In this chapter, more
emphasis is put on the specific analysis methods used during this thesis. Chapter 4
presents the work done at Delft University of Technology regarding dynamic memory
analysis inside DWB and hArtes. Chapter 5 presents a tool which augments the analysis
of the tools described in Chapter 4. The tool in Chapter 5 is the main contribution of
this thesis. Chapter 6 validates the tool in Chapter 5 by investigating a real application.
Finally, Chapter 7 summarizes the work done in this thesis and discusses the results and
future directions in this development.

4 CHAPTER 1. INTRODUCTION

Background 2
As introduced ealier, the advent of heterogeneous systems incorporating reconfigurable
hardware promises great opportunity for application speed-up. However, the ever in-
cresing gap between processor and memory performance makes the memory subsystem
the main limiting factor for performance improvement. Even worse, as this gap continues
to grow, this memory-wall will critically degrade the performance of the systems. This
problem becomes even more significant when the target architecture has reconfigurable
hardware coupled with a general purpose processor. In fact, the communication between
reconfigurable unit(s), memory and processor constitute, with a high probability, a com-
munication bottleneck of the system, which would automatically lead to computational
stalls, degrading the performance of the whole system.

Besides being a limiting factor in terms of performance, the memory usage of systems
characterize also the power consumption of these systems. These factors are especially
important in embedded systems, as the demand for high-performance, low-power devices
continues to grow. Hence, techniques must be found to prevent or limit the incurring
stalls.

Additionally, for heterogeneous reconfigurable systems to be widely accepted in the
industry, tools are needed that guide developers through the entire process. These tools
can be categorized under hardware/software co-design methodology tools.

This chapter reviews the concept of heterogenous reconfigurable computing, along
with its advantages compared to traditional computing architectures. Next, a review is
done on the related research around the memory communication bottleneck problem, and
various techniques for improving the memory access patterns of programs are introduced,
both at software and at hardware level. Subsequently, the hardware/software method-
ology is presented, briefly explaining two areas in this methodology which are closely
related to the design process of heterogeneous reconfigurable computing, i.e. hardware/-
software partitioning and design space exploration. Furthermore, this chapter describes
the ongoing research in Delft University of Technology related to reconfigurable com-
puting, i.e. the MOLEN processor, the Delft Workbench and the hArtes, an European
project.

2.1 The Need for Heterogenous Reconfigurable Architec-

tures

The ever increasing demand for high performance systems has been tackeled since a few
decades. As the complexity of applications increases, achieving overall high performance
systems requires to change the archictectural design on which these applications are
deployed. This is especially true for multimedia applications.

5

6 CHAPTER 2. BACKGROUND

As mentioned before, a conventional architecture containing a software programmed
general-purpose processor does not offer the desired speed-ups, as the clock speed and/or
throughput of the processor is not enough to cope with these computation- and data-
hungry applications. However, this class of processors offer a very flexible solution to the
developer, as executing different operations is allowed by executing different instructions
on its Instruction Set Architecture (ISA) without changing its hardware. If a certain
operation cannot be executed with a specific instruction, the same operation can be
executed by a sequence of instructions1.

On the other hand, Application Specific Integrated Circutis (ASICs) are very efficient
in terms of computational performance, size and power consumption, as they are designed
specifically for one (or some) dedicated computational task(s). However, once fabricated,
these devices cannot be adjusted. If the need occurs, the entire system needs to be
redesigned. This expensive process in terms of non-recurring engineering costs and time-
to-market represents the main drawback of ASIC designs.

Reconfigurable architectures, in turn, fills the gap between hardware and software
solutions, by offering software-like flexibility at a performance rate comparable to hard-
ware solutions. The growth of this field is driven largely by the latest developements in
Field Programmable Gate Array (FPGA) technology, which permit to implement com-
modity off-the-shelf FPGA as the main reconfigurable device, reducing time-to-market
and costs of reconfigurable systems.

FPGAs excel at implementing applications as highly parallel circuits, thus yield-
ing fast performance. Especially for streaming applications with a lot of data paral-
lelism, where the same repetitive transformations are applied to a large amount of data.
However, for applications that do not exhibit enough data parallelism, FPGAs perform
poorly. Therefore, for the more sequential operations, a GPP is a better choice as the
clock rate of an FPGA is usually one order of magnitude less then the clock rate of a
GPP. Hence, the intrinsic characteristics of the application determine the FPGA perfor-
mance, and thus the choice for the right architecture. Applications determine how much
raw parallelism exists, how exploitable it is, and how fast the clock can operate[19].

In order to have a flexible architecture, which would permit to obtain such per-
formances while offering support for a wide range of applications, the combination of
general-purpose processors and reconfigurable hardware units into a heterogenous archi-
tecture achieves this. In such an architecture, the GPP performs various data-dependent
control and non-parallelizable operations while the (parallel) computational intensive
segments of an application are mapped into the reconfigurable hardware. The MOLEN
polymorphic processor[42] is an example of a heterogeneous platform, incorporating both
a general-purpose processor and a reconfigurable processing unit. Several architectures
are proposed in this field ([20, 18, 26, 8] are examples thereof), however it is not the
intention of this thesis to present a complete overview of architectures that augment
a programmable processor with one (or more) reconfigurable hardware units. As the
MOLEN polymorphic processor is the target processor platform in the work presented
in this thesis, its architecture will be described in the next section.

1This is of course peculiar to the architecture type. To some extend, an ISA may be more application

specific than other ISAs (e.g. embedded computing vs. desktop computing). Nevertheless, this class of
processors are all considered general-purpose.

2.2. THE MOLEN PROCESSOR AND PROGRAMMING PARADIGM 7

2.2 The MOLEN Processor and Programming Paradigm

Reconfigurable hardware coexisting with a core general-purpose processor has been con-
sidered by several researcher as a good candidate for speeding up applications[11, 37].
The MOLEN polymorphic processor[42] is such an architecture, which defines how
a general-purpose processor (GPP) interacts with one or more (reconfigurable) co-
processors. Among the introduced heterogenous architectures, the MOLEN architecture
presents various contribution to the shortcomings in the existing reconfigurable comput-
ing solutions. These shortcomings are summarized and described below.

Opcode Space Explosion Traditionally, a common approach to reconfigurable com-
puting is to introduce a new instruction for each portion of the application mapped
on the FPGA. The consequence is that, to implement a broad number of applica-
tions, the opcode space of the application’s specific instructions occupies a consid-
erable part of the FPGA space. The designer and the compiler are limited by this
unused space.

No modularity Each approach has its own specific definition and implementation tar-
geting a specific reconfigurable hardware. This makes porting an application to a
new reconfigurable platform a burdensome job.

Limitation of the number of parameters In a number of approaches, only a limited
number of input and output parameters is possible.

No support for parallel execution Many architectures do not take into account the
possibility of a parallel execution of data-independent sequential operations, which
is an important and powerful feature of FPGAs.

The MOLEN machine organization, depicted in figure 2.1, is composed mainly from
the Core Processor, i.e. a general-purpose processor, and the Reconfigurable Processor
(RP). Instructions and data are fetched from memory by the Instruction Fetch and the
Data Fetch, respectively. The Arbiter performs a partial decoding of the instructions
and issue them to the corresponding unit, i.e. to the general-purpose processor or recon-
figurable processor. The Memory Unit is responsible for distributing (collecting) data.
The reconfigurable processor consists further from a Custom Configured Unit (CCU)
and a ρµ-code processor. The CCU consists of a reconfigurable hardware unit (e.g. an
FPGA) and a memory unit. An application’s code runs on the GPP except the parts
of the application that are chosen to be implemented in hardware in order to speed up
program execution. Data exhange between the GPP and the RP is performed via the
exchange registers (XREGs).

In order to target the ρµ-code processor, the MOLEN Programming Paradigm[41]
is proposed. This is a sequential consistency paradigm for programming reconfigurable
processors, possibly including a general-purpose processor. This paradigm permits the
execution of hardware operations in parallel, and is intended (currently) for single pro-
gram execution. To overcome the earlier mentioned opcode explosion shortcoming of
other reconfigurable programming paradigms, the MOLEN programming paradigm re-
quires only a one-time ISA (Instruction Set Architecture) extension of, at most, eight

8 CHAPTER 2. BACKGROUND

Figure 2.1: The MOLEN machine organization

instruction (denoted as polymorphic ISA, or πISA) to provide a large user reconfigurable
operation space. Nevertheless, the smallest set of MOLEN instructions needed to pro-
vide a working scenario for an arbitrary number of applications consists of four basic
instruction, namely the SET, EXECUTE, MOVTX, and MOVFX.

The SET phase, initiated by a SET instruction, provides a general approach for load-
ing an arbitrary number of configurations to the reconfigurable part of the reconfigurable
processor. This instruction requires a single parameter, i.e. the beginning address of the
configuration microcode. By detection of a SET instruction, the Arbiter reads every se-
quential memory address until detection of the end op microinstruction, which denotes
the termination of the code supposed for hardware execution. The ρµ-code unit will then
ensure that the data fetched from memory is redirected to the reconfigurable unit mem-
ory2. After completion of the SET phase, the CCU is configured to perform a specific
operation. The actual operation is performed in the EXECUTE phase initiated by the
EXECUTE instruction. This instruction refers to a single parameter, i.e. the address of
the microcode to execute on the CCU, which is configured earlier during the SET phase.
The microcode sequence is also terminated by the end op instruction. The MOVTX and
MOVFX instruction are used for moving values to and from the general-purpose register
and exchange registers (XREGs).

2MOLEN only uses BRAM on the FPGA for data and instruction memory. This limits the instruction
size to the number of available BRAM

2.3. MEMORY COMMUNICATION BOTTLENECK 9

2.3 Memory Communication Bottleneck

While important, increasing the computational speed of an application, by mapping
parts of this application in reconfigurable hardware when a certain degree of parallelism
is exhibited, is not the only aspect that must be taken into account. To efficiently use
the parallel hardware capabilities, the system must provide enough data to the compu-
tational units. This puts a performance bound on the input/output capabilities of the
system, i.e. computational power will have no benefit unless the required data is fed to
the hardware units timely. Applications that use large data sets with few or no data
dependence, a peculiarity of multimedia applications, are an example that need enough
memory bandwidth for exploitation of parallelism. On heterogeneous reconfigurable ar-
chitecture, this need becomes even more evident, as different processing elements are
present on the same platform, which need to communicate with the main memory mod-
ule. Usually, an increase in processing elements (of whatever nature they are) is directly
proportional to the need for increasing I/O capabilities. Thus, the performance of an
application mapped into a heterogeneous reconfigurable platform is largely determined
by how much exploitable parallelism is available, and by the ability of the system to
provide data to keep the parallel hardware operational[19]. The latter is the processor-
memory communication bottleneck that could result as the main obstacle for performance
improving, if not degrading, the overall system performance.

As the exponential factor by which processors have increased their performance is
much higher than the exponential factor of perfomance improvement of memory, so-
lutions for solving the processor-memory bottleneck have been extensively studied in at
least the last three decades. Hardware as well as software solutions are applied, although
these solutions only seem to alleviate this phenomenon, keeping it as the main obstacle
for achieving speed-up of systems. The ideal solution for this problem would be to dis-
cover a memory technology that has a high capacity and whose speed scale with that of
a processor. Unfortunatly technology has not come that far yet.

To cope with this gap, many research has been carried out for a better exploitation
of the memory subsystem, improving the communication between memory and (general-
purpose) processor.

In the next sections, a few methods are briefly introduced which address the ame-
lioration of the processor-memory interface. Along with the introduction of these meth-
ods, an explanation is also given why these systems are not fully capable of filling the
processor-memory gap.

2.3.1 Hardware Exploitation Methods

An explanation of hardware exploitation techniques will be given in this section. These
techniques aim at improving the communication latency between the processor and the
memory subsystem. The following examples will give an overview to the most known
techniques, and provide by no mean an exhaustive background in this topic.

Caches To limit the latency of data accesses, processors make use of a hierarchy of
memories. This hierarchy consists of on-chip and off-chip memories. Because off-chip

10 CHAPTER 2. BACKGROUND

memories stall the processor for a long time (100-200 processor cycles), creating a hierar-
chical memory subsystem with (multilevel) caches improves the access latency[21]. Cache
parameters such as cache size, line size and associativity, can significantly influence the
overall systems performance with respect to both power and execution time. In modern
day processors, there is even a deeper hierarchy of caches, with the consequence that
cache miss latencies have become extremely large when compared to processor clocks. As
a consequence, to achieve good performance, an application must exhibit such a memory
reference that is able to exploit caches well, i.e. the reference pattern must exhibit high
spatial, temporal and processor locality[24].

Hence the benefit that an application can gain from caches depends on the intrinsic
nature of the application. In this sense, the programmer has the possibility to achieve
better performance by restructuring the data or code of the application and thus to
change the memory reference pattern.

However, even though the space caches in state-of-the-art processors can reach up to
80% of the total logic, these large caches are not effective for applications that present a
streaming data access nature and large working sets[34].

Scratch-pad Memory The above described caches are traditionally part of a famil-
iar target architecture consisting of a processor core, data cache(s), and external main
memory. However, this target architecture is not always present, especially in case
of embedded systems. In fact, as embedded systems are often designed for a specific
application, the designer may use a more unconventional architecture that suits the spe-
cific application under consideration. One such alternative is scratch-pad memory [33].
Scratch-pad is an on-chip memory, and is sometimes also referred to as on-chip SRAM.
It referes to data memory on-chip mapped in a different memory space than the off-
chip memory, but that uses the same address and data busses as the off-chip memory.
The main difference between scrath-pad and data cache is that the former guarantees a
single-cycle access time, whereas data caches are subject to cache misses, thus increasing
the memory latency.

Convey Memory Controllers The Convey HC-1 Computer[8], a hybrid architec-
ture integrating an FPGA-based, reconfigurable coprocessor with an industry standard
Intel R©64 processor, implements its own high bandwidth memory subsystem that log-
ically shares a cache-coherent global memory space between the host, general-purpose
processor, and the coprocessor. To support the bandwidth demands of the coprocessor,
8 Memory Controllers support a total of 16 DDR2 memory channels, which provide an
aggregate of over 80GB/sec of bandwidth. To improve efficiency of the memory sub-
system, the memory controllers support standard DIMMs as well as Convey designed
Scatter-Gather DIMMs (SG-DIMMs). The SG-DIMMs allow access to physical memory
by individual words instead of 64-byte cache lines (as the host does). Accessing by 8-byte
blocks reduces the ineffiencies encountered when accessing memory by non-unity strides
(or randomly) with a cache-based system.

2.3. MEMORY COMMUNICATION BOTTLENECK 11

2.3.2 Software Exploitation Methods

Besides techniques that change the hardware for achieving a better usage of the memory
subsystems, there also exists software-based techniques that do the same. Even small
changes in an application can result in considerable performance gains. Changing an
application to optimally use the underlying memory sub-system can be especially useful
in data intensive applications where large amount of data is accessed in a streaming
fashion. Hence, applying software transformations to an application can result in a
better exploitation of data locality, thereby improving its memory specific behaviour,
with reasonably contained costs compared to a hardware method. Transformations can
be either done manually, performed at a high level of abstraction, i.e. at the source code
level, before compile-time, or automatically, meaning that the compiler itself performs
the optimizations to the source code at compile-time. Customizing the code to efficiently
exploit the memory hierarchy can deliver significant performance gains, both in terms
of speed as of power.

Program transformation can be divided into control transformation and data layout
transformation. In control transformations, the access patterns of a program is changed
in order to improve cache reuse. This is mostly applied to loops, as these usually represent
the most time consuming parts of an application. Data layout transformation on the
other hand, reorder the placement of data and/or instructions in the off-chip memory, in
order to improve cache reuse without having to change the order of memory references.

Both data layout transformations and control loop transformations have the desirable
property of reducing the memory bandwith requirements for a particular application.
Following, some widely used control and data transformations are introduced.

Control Transformations The primary emphasis is on loops, since that is generally
where the most of the execution time is spent. Traditionally, loop transformations have
been the main technique used to improve locality by changing the access pattern as a
result of changing the order of execution of loop interations. The effect of loop trans-
formations is local, i.e., a loop transformation affects only the loop nest to which it is
applied, and both temporal and spatial locality may improve as a result.

Loop Interchange Loop interchange modifies a nested loop by switching the place
of the inner loop with the outer loop. This technique can result in maximizing the use
of data in a cache block. The following example shows how this technique is applied.

/∗ Before ∗/
f o r (j = 0 ; j < 100 ; j++)

f o r (i = 0 ; i < 5000; i++)
x [i] [j] = 2∗x [i] [j] ;

/∗ After ∗/
f o r (i = 0 ; i < 5000; i++)

f o r (j = 0 ; j < 100 ; j++)
x [i] [j] = 2∗x [i] [j] ;

Loop Fusion This technique combines two or more loops into a sigle one. For this
transformation to be legal, two conditions must be satisfied. First, the loops must iterate

12 CHAPTER 2. BACKGROUND

over the same values. Second, the loop bodies must not have dependencies that would
be violated if they are executed together[45]. The example below demostrates this.

/∗ Before ∗/
f o r (i = 0 ; i < 100 ; i++)

x [i] = y [i] ;
f o r (i = 0 ; i < 100 ; i++)

z [i] = y [i]+2;

/∗ After ∗/
f o r (i = 0 ; i < 100 ; i++)

x [i] = y [i] ;
z [i] = y [i]+2;

The main benefits of this optimization are data locality improvements and reduced
loop overhead. However, it can be the case for some architctures that provide better
performance if the loop is splitted in two instead. This is explained next.

Loop Fission Loop fission (or loop distribution) is the opposite of loop fusion, i.e.
decomposing a sinle loop into smaller loops. This can result in a better data locality ex-
ploitation when the loops iterate over large values. Also, in case of multi-core processors,
the two loops can be executed in parallel on each processor.

/∗ Before ∗/
f o r (i = 0 ; i < 100 ; i++)

x [i] = y1 [i] ;
z [i] = y2 [i] ;

/∗ After ∗/
f o r (i = 0 ; i < 100 ; i++)

x [i] = y1 [i] ;
f o r (i = 0 ; i < 100 ; i++)

z [i] = y2 [i] ;

Loop Tiling Also known as loop blocking, this loop transformation breaks up a
loop into a set of nested loops, with each inner loop performing the operations on a
subset of the data[45].

/∗ Before ∗/
f o r (i = 0 ; i < 100 ; i++)

f o r (j = 0 ; j < 100 ; j++)
x [i] = y [i] [j] ∗ z [i] ;

/∗ After ∗/
f o r (i = 0 ; i < 100 ; i += 2)

f o r (j = 0 ; j < 100 ; j += 2)
f o r (k = i ; k < min(i + 2 ,n) ; k++)

f o r (h = j ; h < min(j + 2 ,n) ; h++)
x [k] = y [k] [h] ∗ z [k] ;

Here, the original loop is broken into tiles of size two. Each loop is splitted into
two loops. The result is is a completely different pattern of accesses accross the y
array: instead of waling across one entire row, the transformed code walks through rows
and columns according to the tile structure. This transformation is useful when the
loops iterates over large values that exceed the size of the cache, allowing to control the
behaviour of the caches during the loop execution.

2.3. MEMORY COMMUNICATION BOTTLENECK 13

Loop Unrolling This transformation technique unwinds the body of loops at the
expends of a larger binary size. This transformation results in less loop overhead code (or
no overhead code at all, in case of a complete unrolled loop). The example demostrates
this.

/∗ Before ∗/
f o r (i = 0 ; i < 100 ; i++)

x [i] = y [i] ;

/∗ After ∗/
f o r (i = 0 ; i < 100 ; i += 5)

x [i] = y [i] ;
x [i] = y [i +1] ;
x [i] = y [i +2] ;
x [i] = y [i +3] ;
x [i] = y [i +4] ;

Function Inlining Function inlining (a very similar technique to loop unrolling)
refers to replacing a function call with its body. This transformation has the advantage of
reducing the execution time, memory accesses and power consumption of applications by
avoiding run-time management of the call stack for the inlined function, at the expense
of larger binary size and less readability. To inline a function, the programmer inserts
either a keyword to instruct the compiler for function inlining, or by manually writing
the body of the function.

Data Transformations The use of data layout transformations is another type of
optimization that aims at changing the memory layout of data without affecting the order
of instructions. The results obtained by using this transformation technique depends on
the specific memory access patterns of the application as well as to how the system uses
of the memory subsystem for storing the data.

When dealing with data tranformation a distinction is usually made between row-
major, column-major or block-based data layout. In the next paragraphs these tech-
niques are briefly described.

Row-major Data Layout This data layout places the elements of a row in consec-
utive memory locations. When this layout is used by compilers (for instance, a compiler
for the C programming language), attention must be paid on how an array is accessed.
Following is an example that exaplains this.

/∗ Before ∗/
f o r (j = 0 ; j < 100 ; j++)

f o r (i = 0 ; i < 100 ; i++)
x [i] [j] = x [i] [j] + 1 ;

Provided that array x is stored in row-major format, the example would show poor
spatial locality as the values of the outer loop (i.e., the row values) are not placed in
consecutive memory locations. Changing the data layout to column-major format will
solve the problem. Note that the same can be accomplished by using the earlier described
loop interchange transformation.

14 CHAPTER 2. BACKGROUND

Column-major Data Layout In programming languages where the default data
layout is column-major (e.g. Fortran), the inverse of the described row-major data layout
applies. In this case, the elements in a column are place consecutively in memory. Hence,
the example showed previously would show a good spatial locality in a colum-major case.

Block Data Layout In case of multiple arrays that have a different accessing
pattern, changing to row- or column major formats does not solve the problem. Further-
more, in case of a large matrix stored in memory, assuming, for instance, in a row-major
layout, column elements accesses can cause cash conflicts. Instead of operating on entire
rows or columns, a block data layout operates on submatrices or blocks, and each element
in these blocks are placed on contiguous memory locations. The example below, from
[21], shows this technique.

/∗ Before ∗/
f o r (i = 0 ; i < N; i = i +1)

f o r (j = 0 ; j < N; j = j +1)
{

r = 0 ;
f o r (k = 0 ; k < N; k = k + 1)

r = r + y [i] [k]∗ z [k] [j] ;
x [i] [j] = r ;

} ;

In this example, the cache miss frequency depends on N and the size of the cache. In
case the cache cannot hold the three N x N matrices, the code can be changed to operate
on submatrices of B x B. This is showed below.

/∗ After ∗/
f o r (j j = 0 ; j j < N; j j = j j+B)

f o r (kk = 0 ; kk < N; kk = kk+B)
f o r (i = 0 ; i < N; i = i +1)

f o r (j = j j ; j < min (j j+B,N) ; j = j +1)
{

r = 0 ;
f o r (k = kk ; k < min(kk+B,N) ; k = k + 1)

r = r + y [i] [k]∗ z [k] [j] ;
x [i] [j] = x [i] [j] + r ;

} ;

Morton Data Layout Morton data layout has a similar concept to block data
layout. This technique divides the original matrix into four quadrants and lays out these
submatrices contiguously in memory. Each of these submatrices is further recursively
divided and laid out is the same way. At the end of recursion, elements of the submatrix
are stored contiguously. Because of the similarities with the arrangement of blocks in
block data layout, Morton data layout can be considered as a variant thereof. The only
difference is in the order of the blocks.

2.3.3 Concluding Remarks

Due to the ever increasing demand for high performance systems, techniques for speed-
ing up the execution of applications on both conventional and embedded systems have
been researched for decades. This research is still ongoing, as the complexity of applica-
tions continue to grow. Especially for data dominated applications, like multimedia and

2.4. MOTIVATION FOR IMPROVED MEMORY ANALYSIS 15

telecommunication algorithms, finding a method for speeding up the executions of these
applications is a very centered topic in the research community. The main bottleneck
of these applications is the huge amount of transfers requirements from and to (on-
chip and off-chip) memory that results performance degradation and in extreme energy
consumption.

Furthermore, processing an application on a heterogeneous architecture containing
reconfigurable devices results in a different data processing flow compared to traditional
architectures. There is also an additional traffic routing compared to the communication
traffic found in conventional architectures. Thus, memory subsystem should preserve the
inherent advantages of the reconfigurable architectures that are primarily designed for
data intensive computations. Therefore, it is important to provide the required data
bandwidth to these devices, supporting respective parallelization and run-time adjusta-
bility of the memory access according to the needs of the application in question. In
this scope, it is a prerequisite to optimize the memory accesses in order to provide the
required data-flow for the most data-hungry computational units.

2.4 Motivation for Improved Memory Analysis

The techniques discussed above, both hardware- and software-based, do improve the
communication bottleneck only to a certain degree. As the complexity of applications
increases in the near future, their memory access patterns will evidently also be more dif-
ficult to predict. Hence, a more in-depth analysis of memory access patterns is required,
which would help developers gaining a more detailed insight into how to tackle the well-
known memory-wall problem. Moreover, with the advent of heterogeneous computing
systems containing reconfigurable hardware, the need for utility tools that facilitate the
application development process, tuning and optimization become of invaluable impor-
tance. Furthermore, these tools should also be able to perform an thorough analysis of
the memory access behaviour of data-intensive applications, which, as already discussed,
is unmissable. Also, detailed information on the memory access behaviour inside a func-
tion can deliver important information for optimization purposes on a fine grain scale
and for discovering possible unusual behaviour of data objects used in such a function.
Performing an analysis only on a function grain would hide the internal memory access
behaviour of the function.

2.5 Hardware/Software Co-design

The ongoing complexity of embedded systems, due to the increasing size of integrated
circuits, increasing software complexity and decreasing time-to-market requirements and
product costs, motivates the need for a new design paradigm. This paradigm should
take both the hardware and software aspects of the design cycle into a high-level design
methodology, having the goal to shorten the time-to-market while reducing the effort
and costs of the design.

With the advent of heterogeneous reconfigurable computing, the development of an
application for such a hybrid system is typically started with high-level code (like C) that

16 CHAPTER 2. BACKGROUND

specifies the application. This application is then analysed (profiled) to see which parts of
the application (or parts of a task) present a bottleneck. Once discovered the part of the
code that results in a (possible) bottleneck, this part(s) are then implemented in hard-
ware. Such a joint design is naturally called Hardware/Software (HW/SW) Co-design.
The methodology aims at meeting system-level objectives by exploiting the synergism
of hardware and software through their concurrent design[12], while considering their
dependencies and overall system performance.

The two primary fields in which HW/SW Co-design has focussed are on alleviating
the process of exploring the design space and on partitioning of an application onto a
heterogeneous platform. In the next two sections these two topics are introduced.

2.5.1 Design Space Exploration

An important step in any development process is Design Space Exploration (DSE). In
the context of heterogeneous reconfigurable systems design, it is essential to perform a
DSE. During this phase early decision such as partitioning an application over different
computational components, like CPUs, FPGAs, ASICs, or DSPs are made. Exhaustive
DSE is necessary in order to identify the various design parameters such as execution
time, memory, bandwidth, etc. This process is called Hardware/Software Partitioning,
and requires the evaluation of the cost of implementing a task on each components. This
process iteratively evaluate a very large design space, therefore a fast cost evaluation
is essential. DWB uses code profiling to predict hardware characteristics and identify
hot-spots to speed up this process. Estimates for hardware resource consumption, for
example, can be used to omit functions that are too large to fit on an FPGA, or too
small to exploit any degree of parallelism. DSE uses prediction models for its analysis.
Early and fast estimation is essential for any DSE, for both minimizing the overhead of
space exploration and for the process of partitioning due to their highly iterative nature.

2.5.2 Hardware/Software Partitioning and Mapping

Hardware/Software partitioning is the process of dividing an application between a pro-
cessor component (in software) and one or more custom co-processor components (in
hardware) to achieve an implementation that best satisfies requirements of performance,
size, designer effort, and other metrics. A custom co-processor is a processing circuit
that is customized to execute critical application computations far faster than if those
computations had been executed on a general-purpose processor. FPGA technology en-
courages hardware/software partitioning by simplifying the job of implementing custom
co-processors, which can be done just by downloading bits onto an FPGA rather than by
manufacturing a new integrated circuit or by wiring a printed-circuit board. In fact, new
FPGAs even support integration of processors within an FPGA itself, either as separate
physical components alongside the FPGA fabric (hard-core processors) or as circuits
mapped onto the FPGA fabric just like any other circuit (soft-core processors). High-
end computers have also begun integrating microprocessors and FPGAs on boards[8],
allowing application designers to make use of both resources when implementing appli-
cations.

2.6. DELFT WORKBENCH 17

Hardware/software partitioning is a difficult task, due to the large number of possible
partitions. In its simplest form, hardware/software partitioning considers an application
as comprising a set of regions and maps each region to either software or hardware such
that some cost criteria (e.g., performance) is optimized while some constraints (e.g., size)
are satisfied. Partitioning considers two application categories: sequential programs,
where an application is a program written in a sequential programming language such
as C, C++, or Java and where partitioning maps critical functions and/or loops to co-
processors, and parallel programs, where an application is a set of concurrently executing
tasks and where partitioning maps some of those tasks to co-processors. Doing this
partitioning manually is a hard job, and while this still happens widely, tools to automate
this process are intensively researched and developed. The Delft Workbench and the
hArtes toolchain are (semi) automatic tools that accomplish this, and will be described
later in this chapter.

2.6 Delft Workbench

The Delft Workbench[7] is a semi-automatic tool platform for integrated hardware/-
software co-design targeting heterogeneous computing systems containing reconfigurable
components. It is based on the Molen Programming Paradigm[41], and it address the
entire design cycle (holistic process) from profiling and partitioning to synthesis and
compilation of the application. This toolset is designed and developed with a view of ac-
tual hardware/software co-execution on a real hardware platform. Hence, the generated
designs respect the physically available memory bandwidth and interface specification of
the MOLEN polymorphic processor prototype. The design flow of the Delft Workbench
is shown in Figure 2.2.

Figure 2.2: The DWB Architecture

18 CHAPTER 2. BACKGROUND

The Delft Workbench focuses on four main steps within the entire heterogeneous
system design, namely:

• Code Profiling and Cost Modeling [25].

• Graph Transformations and Optimization[31, 28, 16].

• Retargetable Compiler [32].

• VHDL Generation[39].

As a starting point, during Code Profiling and Cost Modelling in the context of DWB
an application written in a high-level language will be profiled so to identify the parts of
the application that are good candidates to be mapped on the reconfigurable hardware.
This decision is based on estimating the speed-up that would be achieved if a certain part
of the application would be implemented in hardware and on estimating the hardware
availability itself, given the limited hardware resources. Hence, the goal is to partition
the application so that some parts of the application will be accelerated in hardware
while maintaining the other parts on a conventional processor. ’Part’ can refer to an
entire function as well as to part of a function. Multiple parts from different functions
can be combined together as well and implemented in hardware. Two different profiling
options are available in DWB, viz. static and dynamic. The static part of the profiling
stage in DWB is involved with finding at an early stage hardware cost and performance
estimates[25], i.e. it supports the developer in deciding if a certain task will fit into
the reconfigurable device and the expected speed-up that will be achieved. Because this
profiling step is able to make estimations from high-level languages like C, it can drive
early HW/SW partitioning, but it also helps designers in re-factoring code, estimating
project feasability, or driving optimization. The dynamic profiling path focusses on the
run-time behaviour of applications, and, therefore, require a longer profiling time that
the static profiling. The dynamic profiling stage uses the gprof [17] general profiler to
identify hot-spots and frequently executed functions. In section 2.8, a motivation will be
done on why a general profiler like gprof is not employable for discovering memory-related
bottlenecks.

During the Graph Transformation and Optimization, the candidate parts of the ap-
plication for hardware implementation are analysed to find out if the proposed code
segments can be clustered, when sharing common characteristics. These clusters, if se-
lected, will be implemented as new instructions on the reconfigurable instruction set3.
This phase is the graph restructuring step. Next, an optimization step is performed to
spot parallelization opportunities. Once the kernels have been clustered and formatted
into new instructions into the instruction set, these instructions are further investigated
to spot parallelism. As loops represent an important opportunity for parallelism, loop
transformation techniques are applied to loops containing the new generated reconfig-
urable instructions. During this step it is investigated if the entire loop can be imple-
mented in hardware, according to the available hardware resources and latency or if

3Unlike general-purpose processors, which have a fixed instruction set, reconfigurable devices have a
flexible, extendible and application specific instruction set which can even change at run-time

2.6. DELFT WORKBENCH 19

the loop can be only partially implemented on the reconfigurable hardware. Particular
attention must be paid when partitioning a certain application part into hardware, as
this can affect the entire cycle time. Cycle time can slow down as the code segment exe-
cuted on the reconfigurable device grows in size, resulting in an overall slower execution.
Afterwards, the design flow forks into two parts: a retargetable compiler and a VHDL
generation.

After making the decision of which parts of the code segment to implement in hard-
ware, this code needs to be removed from the original source code and replaced by the
appropriate reconfigurable hardware call. The Retargetable Compiler then generates the
new object code which contains the call to the reconfigurable hardware for the newly
identified instructions. It is a task of the compiler to decide on scheduling and mapping
of these instructions for the execution on the reconfigurable hardware. This process is
denoted as spatio-temporal compilation.

Where the first fork concerned the compiler scheduling of the SET and EXECUTE
instruction, the second fork, i.e. VHDL generation phase, generates hardware description
of the kernels. First, the hardware description logic of the kernels is searched inside
an IP-cores library which, if available, can be directly instantiated. If the IP-cores
library cannot provide this implementation, there are two possibilities: automatic code
generation or manual code generation. The automatic code generation is performed
by the DWARV toolset[47] and is envisioned for fast prototyping and fast development.
The toolset consists of two module: the Data Flow Graph (DFG) Builder and the VHDL
Generator. The input to the toolset is pragma annotated C code, which specifies the
code segments to be implemented in hardware. Figure 2.3 depicts this toolset.

Figure 2.3: The DWARV Toolset

As a first step, the DFG Builder processes the input code. This module performs
high-level hardware-independent optimizations on the code and transforms it into an
intermediate representation (IR), suitable for hardware mapping. The IR is a hierarchical
data-flow graph (HDFG), which is further processed by the VHDL generator. This
tool performs low-level hardware-dependent optimizations and generates the final VHDL
code. Nevertheless, hand-crafted hardware logic is the preferred method when very high
quality results and performance are required.

20 CHAPTER 2. BACKGROUND

2.7 hArtes

The hArtes project[6] addresses research and development issues of embedded systems,
aiming to lay the foundation of a new holistic approach for embedded systems design,
providing a tool-chain which accepts applications coded in a multiplicity of high-level
algorithm descriptions and produces semi automatically a best fit of such an application
into a heterogeneous reconfigurable embedded system. The hArtes project is closely
related to DWB, as it targets the same heterogeneous systems. However, it also takes into
account digital signal processing hardware and provide its own heterogeneous platform.
Figure 2.4 illustrates the overall hArtes toolchain flow.

Figure 2.4: The hArtes Toolchain

The hArtes tool-chain is composed of the following three toolboxes:

1. algorithm exploration and translation

2. design space exploration (DSE)

2.8. MOTIVATION FOR DYNAMIC MEMORY ANALYSIS TOOLS 21

3. system synthesis (SysSyn)

The input of this tool-chain is a high level application algorithm, described in one
of several supported formats and languages, such as, graphical description, SciLab or
Matlab code, or hand-crafted C. The internal representation of the application algorithms
is C code, annotated with pragmas by the tools in the toolchain. The objectives of each
hArtes Tool-Box can be summarized as follows:

• The Algorithm exploration and translation Toolbox provides tools to assist the
designers to instrument and possibly improve the high-level input algorithm, and
to translate this algorithm into a unified internal description in C.

• The Design space exploration Toolbox provides an optimal HW/SW partitioning of
the input algorithm for each reconfigurable heterogeneous system considered. The
input of the DSE Toolbox is the C description of the application algorithm, anno-
tated with specification directives from the algorithm exploration and translation
toolbox, and models of the reconfigurable heterogeneous system platform.

• The System synthesis Toolbox processes the optimized partitioning of the appli-
cation provided by the previous Toolbox and provides files required to map the
application algorithm on the components of the considered reconfigurable hetero-
geneous system with respect to its partitioning, i.e. program executables, configu-
ration bitstreams, memory images, etc.

The profiling step inside hArtes is similar to DWB, with the only exception that it
includes the gcov [2] tool, a code coverage tool that provides information such as how
often each line of code executes. Section 2.8 will motivate why this stage in hArtes, as
it is the case with DWB, needs additional tools to perform an analysis that take into
account the problem of memory-related bottlenecks.

The hArtes tool-chain, as the Delft WorkBench toolchain, targets the Molen machine
organization and the Molen programming paradigm. In fact, the Molen co-processors
are not limited to be only reconfigurable implementations, they can actually be various
types of augmenting hardware units. For example, in the context of hArtes, a digital
signal processor (DSP) and reconfigurable hardware units are considered as Molen co-
processors identically.

2.8 Motivation for Dynamic Memory Analysis Tools

Both DWB and hArtes prune their design space by performing a profiling step of the
application during their development process. Run-time profiling information for DWB
and hArtes is collected using general profiling tools, which analyze the application at
functional level and provide application statistics like execution time of functions, help-
ing identifying application hot-spots. However, these general profilers provide only a
cumulative execution time, without distinguishing on the time spent for computation
and memory access time. Hence, these kind of profilers cannot be employed to discover
potential memory related bottlenecks.

22 CHAPTER 2. BACKGROUND

At Delft University of Technology, an ongoing research tackles this problem by devel-
oping a set of tools that aim at providing detailed information about the memory access
behaviour of applications.

The Quantitative Usage Analysis of Data (QUAD)[30] tool, is a sophisticated memory
access pattern analyzer with the primary goal of detection actual data communication
dependencies between functions. This tool is supposed to be an integral part of the
profiling step in the DWB and hArtes development process, along with the mentioned
gprof profiler. Besides QUAD, the tQUAD [29] tool is developed that aims at providing
detailed timing information of a single function as well as its memory bandwidth usage
during an application execution. Both tools will be described in more details in Chapter
4.

The main contribution to this thesis is the development of the xQUAD tool. This
tools augments the memory analysis of the previous two tools by delivering even more
detailed information. xQUAD provides information about the general memory usage
of an application, in both flat file format as with the help of a visualization feature.
Furthermore, it provides detailed memory usage statistics in both functions level as at
variables level. This tool will be described thoroughly in Chapter 5.

2.9 Conclusion

In the last decades, the rate of improvements of processors’ performances has greatly
exceeded the rate of improvement of memory performance. This gap, which is likely to
increase in the near future, is the main obstacle in improving the overall performance
of applications running on both embedded and conventional systems. Conversely, appli-
cations show an increasing need in computational power. The advent of heterogeneous
architectures incorporating reconfigurable devices has demonstrated to greatly accelerate
the computational aspects of these applications. However, heterogeneous reconfigurable
systems as they are, do not solve the memory-wall problem. In fact, this problem is
even more evident with the introduction of these alternative architectures, as there are
more computational processing units that need to communicate with the memory sub-
system. If not dealt accordingly, this communication bottleneck will degrade most, if not
all, of the gained computational performances. Therefore, the need of tools that help the
development of the heterogeneous systems and, additionally, give detailed information
about the memory access patterns of the application are of invaluable importance.

The ongoing research at Delft University of Technology tries to tackle this problem
by the developement of sophisticated memory analysis tools which are able to provide
detailed memory informations about applications. The QUAD and tQUAD tools will
be described in Chapter 4. The xQUAD tool is developed during this thesis project and
represent therefore the main contribution to this thesis. Hence it is described in greater
detailes in Chapter ??.

Analysis Techniques 3
As both hardware and software systems grow increasingly complex, tools that help de-
velopers analyse and improve programs behaviour are invaluable. These tools imple-
ment some kind of program analysis to retrieve information about applications. For
the purpose of building the memory analysis tools introduced in Chapter 2 (which will
be described in Chapter 4 and 5), an analysis framework is used, which abstracts the
intricacies of the underlying hardware. Various types of analysis frameworks exists,
which will be introduced in the following chapter. Nevertheless, more emphasis is put on
the Pin[22] Dynamic Binary Instrumentation (DBI) framework (see 3.3) that has been
chosen for building a set of memory analysis tools.

3.1 Program Analysis

Program analyses can be categorized into two types, according to when the analysis is
performed: static analysis and dynamic analysis. Static analysis techniques do not rely
on the execution of the application on real hardware. They rather analyse the source
code, or some form of object code, to decide the set of possible execution paths and to
obtain an upper bound on the execution in a specified hardware model. This technique
is used especially when there is the need to guarantee a termination of the execution of
a task, i.e. estimating the Worst Case Execution Time (WCET) of an application[44].
Dynamic techniques instead, analyze a program while it executes. These techniques aim
at providing precise information about programs at execution-time. Dynamic analysis
tools instrument the program for collecting program information, i.e. they insert extra
code into the program. This process can be performed at various stages either in the
source code, at compile-time, at post-link time, or at run-time.

There are basically two instrumentation approaches, viz.

• Source instrumentation involves instrumenting the source code of programs.

• Binary instrumentation involves instrumenting executables directly.

The two instrumentation approaches can be further categorized into static and dy-
namic techniques. Source Instrumentation is a technique that augments directly the
source code of the application. The advantage of this approach is that the user can
access all language-level information allowed by the programming language of the appli-
cation. For instance, a developer can augment the source code ensuring that a certain
range of functions output determined values to a report/log file. This method brings in
a major drawback, namely the burden of work that the programmer has to do. Further-
more, in case only the executable is available, this approach cannot be employed, as the
developer has no access to the source code of the application.

23

24 CHAPTER 3. ANALYSIS TECHNIQUES

As mentioned, binary instrumentation can be divided into static and dynamic. Static
Binary Instrumentation (SBI) frameworks can be considered the precursors of many
Dynamic Binary Instrumentation (DBI) frameworks, and many DBI frameworks have
models that are similar to SBI frameworks. Analysis based on static instrumentation has
many limitations compared to its dynamic variant. As SBIs instrument the binary before
run-time, the possibility exists that code and data of an executable can get mixed, and
a static tool may not be able to distinguish the two. In this thesis, emphasis is put on
Dynamic Binary Instrumentation, as this will be the employed technique for the memory
analysis tools described in Chapter 4 and 5.

3.2 Dynamic Binary Instrumentation

Dynamic Binary Instrumentation (DBI), in contrary to SBI, occurs at run-time. While
the application is running, the analysis code is injected into the executable. The majority
of DBI systems employ a Just-In-Time (JIT) compiler for inserting instrumentation
code into the dynamically generated code from the application. DBI is advantageous
as it permits to, among others, discover code at run-time, attach to running processes,
running the executable unaltered (i.e. there is no need to re-compile or re-link), and
to analyse all the application code. For these reasons, Dynamic Binary Instrumentation
frameworks are gaining popularity as means of constructing analysis tools (e.g. profilers),
which are categorized under Dynamic Binary Analysis (DBA) tools. However, DBA tools
suffer from performance slow-down, as the cost of instrumentation is incurred at run-
time. Basically, the overhead of a DBI based tool can be divided into two stages: the
overhead for the instrumentation routines and the overhead caused by the user-defined
analysis routines.

Developing a DBI framework from scratch for a specific DBA tool is a cumbersome
job to achieve. Therefore, over the last decade generic DBI frameworks have been devel-
oped to mitigate this problem and to speed up the process of DBA development. This
is facilitated by the fact that instrumenting an application is the same for all DBAs,
independently of what the precise purpose of the specific DBA tool is. Furthermore,
most used DBI (see for instance [22, 27, 9]) have similar internal engines. Basically, a
DBI framework intercepts a block of code (or code fragment, as it is sometime referred
to) and inserts instrumentation code before execution (Just-In-Time). This modified
code is stored in a code cache that preserves frequently executed blocks of code for fu-
ture use. When the execution of the instrumented block is finished, another block is
intercepted and instrumented. Instrumentation can occur in different levels of granular-
ity (instruction, basis block, routine, etc.), providing the developer with a broad choice
for developing DBA tools, according to their needs. Instrumenting at a certain level of
granularity generally implies monitoring everything at that level of granularity, which
explains the high slow-down penalty that DBA tools have to pay.

There are two approaches to dynamic instrumentation: probe-based and jit-based.
Probe-based instrumentation works by dynamically replacing instructions in the original
program with branches (probes) that point to the instrumentation code. This method
presents several drawbacks compared to jit-based instrumentation. First, instrument-
ing via a probe-based method is not transparent because the application’s instructions

3.2. DYNAMIC BINARY INSTRUMENTATION 25

are modified by the branches pointing to the instrumentation code. Further, on archi-
tectures with variable instructions size, replacing an instruction with a longer branch
instruction may cause to overwrite the subsequent instructions. Finally, branching to
instrumentation code may be implemented in multiple levels. This means that a branch
may in turn branch to another instruction, etc., resulting in a significant performance
overhead. This drawbacks make these systems not suitable for pervasive fine-grained
instrumentation (where every executed instruction is instrumented). In contrast, jit-
based instrumentation is mode suitable for fine-grained instrumentation, as it works by
dynamically compiling the binary and can insert instrumentation code anywhere in the
binary.

DBI frameworks basically use two fundamental ways for representing and instrument-
ing code. One method is disassemble-and-resynthesize, which converts machine code to
an intermediate representation (IR), adds instrumentation to this IR, and then converts
back the IR into machine code. The original instructions from the client application are
discarded and the final code is generated exclusively from the IR. Valgrind[27] uses this
methods.

Another method is copy-and-annotate (used by, e.g., Pin[22] and DynamoRIO[9]),
where each instruction is copied as ’it is’ and annotated with a description of its effects.
Exceptions are made for control flow instructions that need to be changed. Tools use
the annotations to guide their instrumentation.

Following, a brief description into some widely used and maintained DBI framework
is given, according to recent literature.

3.2.1 DynamoRIO

DynamoRIO [9] is a Dynamic Binary Optimization and Instrumentation framework op-
erating on unmodified native binaries and implemented for both IA-32 Windows and
Linux. DynamoRIO is capable of running large desktop applications. The goal of Dy-
namoRIO is to observe and potentially manipulate every single application instruction
prior to its execution. To achieve this, DynamoRIO caches translations of frequently
executed basic blocks code so they can be directly executed in the future. It works on
almost unmodified x86 code - only control-flow instructions are modified.

3.2.2 Valgrind

Valgrind [27] is a DBI framework for building heavyweight DBA tools. In fact, Valgrind
is designed with particular attention to heavyweight tools, with the unique support for
shadow values tools. These kind of tools involve large amounts of analysis data that
is accessed and updated in irregular interval patterns. Example is the shadowing of
every register and memory value with a meta-value. Therefore, lightweight tools built
with Valgrind run comparatively slower than when these tools are built with other DBI
frameworks. However, Valgrind’s developers aim at the fact that Valgrind can be used
for more interesting, robust, heavyweight tools that are difficult or impossible to build
with other DBI frameworks such as Pin and DynamoRIO [27].

Valgrind is available under the GNU General Public License (GPL), and runs on x86
and AMD64 with Linux, PPC 32/64 with Linux/AIX.

26 CHAPTER 3. ANALYSIS TECHNIQUES

DBA tools are constructed as Valgrind plug-ins, forming a basic view of

Valgr ind cor e + too l plug−i n = Valgr ind too l

The execution of a Valgrind DBA tool is as follows: at start-up, the Valgrind’s core,
the tool plug-in and the client program are loaded into the same address space; the tool
then recompiles the machine code of the client one basic block at a time, in a just-in-time,
execution-driven fashion; the Valgrind framework disassembles the basic block code into
an intermediate representation (IR) which is instrumented by the tool plug-in, and then
converted back into machine code. The resulting translated code is stored in a code
cache to be rerun as necessary.

An important thing to know about Valgrind is that a tool cannot use anything from
the C library. Valgrind provides an implementation of a reasonable subset of the C
library.

3.2.3 pin

Pin[22] is a DBI that emphasizes ease-of-use, portability, transparency, efficiency, and
robustness. Pin uses dynamic compilation for binary instrumentation and code caching
for code reusability. Pin is the DBI framework used for the development of the QUAD
toolset (see Chapters 4 and 5). Hence it is explained in more detailed in the next section.

3.3 Pin

Pin provides a portable and efficient DBI platform for building a variety of DBA tools
(also called Pintools in Pin’s jargon) that works with unmodified Linux, Windows and
MacOS binaries on multiple architectures, namely IA32, 64bit x86, Itanium R©, and
ARM1 architectures. Furthermore it instruments multi-threaded applications. This
framework abstracts away from the details of the target architecture (whenever pos-
sible), allowing the developer to concentrate on the development of the tools without
having to be aware of the intricacies of the underlying system. Pin preserves the orig-
inal application behaviour by providing instrumentation transparency. The application
uses the same addresses (both instruction and data) and the same values (both register
and memory) as it would in an un-instrumented execution. Furthermore, Pin does not
modify the application stack, as some application may intentionally reference to memory
addresses beyond the top of the stack.

Pin is designed to be easy-to-use. The user writes instrumentation and analysis rou-
tines. Instrumentation routines determine where to place calls to analysis routines, e.g.
before an instruction; analysis routines define what to do when instrumentation is acti-
vated. Analysis routines are customizable by the user and are called while the program
executes. The arguments to analysis routines can be, among others, the instruction
pointer, effective memory address of the instruction, memory or stack value, address of a

1The development for ARM stopped years ago, which made the instrumentation framework incom-
patible with the latest version of GCC

3.3. PIN 27

Figure 3.1: Pin’s Architecture

branch instruction, system calls values. Instrumentation is performed by a just-in-time
(JIT) compiler.

Instrumentation with Pin can be done at different levels of granularity. The finest
level of granularity is instrumentation at instruction level, i.e. instrumenting the ap-
plication one instruction at a time. Further, it is possible to instrument code at trace
level2, at procedure level, and at an entire image level.

Figure 3.1 illustrates Pin’s software architecture. At the highest level, Pin consists of
a virtual machine (VM), a code cache, and an instrumentation API invoked by Pintools.
The VM consists of a JIT compiler, an emulator, and a dispatcher. The input to the
JIT compiler is not bytecode, however, but a native executable. Furthermore, Figure 3.1
shows that Pin, Pintool and the application are all present in the same address space.
While they share the same address space, they do not share any libraries. Making these
libraries private avoids undesired interaction between these three components.

Pin intercepts the execution of the first instruction of the application and re-compiles
the executable generating basic blocks code starting at this instruction, and instrument-
ing the code according to the specified instrumentation type. This trace is almost iden-
tical to the original one, except that it runs under the control of Pin, which means that
Pin ensures that it regains control when a branch exits the sequence. After Pin gains
control of the application, the virtual machine coordinates its components to execute
the application. The JIT is responsible for compiling and instrumenting the application,
while the dispatcher launches the application modified by the JIT compiler. In case
that a branch exits an earlier generated basic block, the JIT fetches a new code block,
which is instrumented by the Pintool (if required) and the cycle is repeated. To improve
performance, the generated code and its instrumentation are saved in a code cache for
future execution of the same sequence of instructions to improve performance.

2A trace is defined as a straight-line sequence of instructions executed sequentially. Pin guarantees
that traces only enter at the top, but may have multiple exits.

28 CHAPTER 3. ANALYSIS TECHNIQUES

3.3.1 Evaluation of Pin

Running an instrumented application usually shows a considerable slowdown. This de-
pends on the nature of the instrumented application, as on the overhead caused by
the analysis routines in the Pintool. It appears that most of the slowdown is caused
on execution of the code, rather than code compilation (which includes inserting the
instrumentation code). Hence some performance improvements are done during the
compilation phase of the application. Optimization techniques are register reallocation,
inlining, liveness analysis, and instruction scheduling. This results in instrumented code
running very fast, compared to other DBIs.

In [22] an evaluation of Pin’s performance is shown. Two cases are taken into consid-
eration: Pin performance with and without instrumentation code. Without instrumenta-
tion, the overhead of Pin on some typical benchmarks is dependent on the amount of code
reusability. It is shown that for applications that have a relatively short execution time,
and thus insufficient opportunity for code reuse, Pin pays a high cost in re-allocating
registers compared to other tool that do not re-allocate registers. Nevertheless, register
re-allocation is important as it provides Pin and Pintools more virtual registers than
the number of physical registers. In case of enough code reusability, it can be seen that
most of the time spent in Pin’s execution is in the code cache. The effects of register
re-allocation and indirect linking become apparent when evaluating the performance on
the ARM architecture, where these two optimization are not yet implemented on ARM.
This causes the VM to resolve all indirect control transfers, making the execution time
spent for register re-allocation dominant on ARM.

Evaluation of Pin with instrumentation is done using a standard basic-block counting
tool, which outputs the execution count of every basic block in the application. The
evaluation of this tool without any optimization and with optimization techniques like
inlining, liveness analysis and scheduling shows an average slowdown improvement from
10.4x to 2.5x for integer and from 3.9x o 1.4x for floating point3.

3.3.2 Comparison of Pin against Other DBIs

Furthermore, Pin’s performance is compared against DynamoRIO and Valgrind using the
standard basic-block counting tool. Withouth instrumentation, the performed analysis
shows that both Pin and DynamoRIO outperform Valgrind significantly. Overall, Dy-
namoRIO is faster than Pin, as this framework was primarily designed for optimization
(furthermore, DynamoRIO does not perform register re-allocation). When considering
the performance slowdown with instrumentation, is becomes apparent that Pin signif-
icantly outperforms both DynamoRIO and Valgrind: on average Valgrind slows the
application down by 8.3x, DynamoRIO by 5.1x, and Pin by 2.5x. In contrast to the
other tools, Pin automatically inlines the calls to the block entries and performs liveness
analysis, demonstrating a main advantage of Pin: it provides efficient instrumentation
without shifting the burden to the Pintool writer. Regarding Valgrind, [27] confirms
the above mentioned comparisons. However, the Valgrind’s developers specify that the
basic-block counting tool, a so called lightweight tool, is exactly the kind of tool Val-

3The higher overhead on the integer is due to the many more indirect branches and returns

3.4. PIN INSTRUMENTATION API 29

grind is not targeted at, and therefore will never be as fast as Pin or DynamoRIO[27].
Furthermore, it is stressed that Valgrind’s targets are heavyweight tools, which should
take advantage of the characteristics of Valgrind for building robust tools relatively easy,
providing powerful instrumentation capabilities and allowing reasonable performance.

3.3.3 Pro et Contra of Pin

Pin’s call-based model of instrumentation is simpler than other tools where the user
inserts instrumentation by adding and deleting statements in an intermediate language.
However, it is equally powerful in its ability to observe architectural state and it free
the user from the need to understand the idiosyncrasies of an instruction set or learn an
intermediate language. The inserted code may overwrite scratch registers or condition
codes; Pin automatically saves and restores states around calls so these side effects do
not alter the original application behaviour. The Pin model makes it possible to write
efficient and architecture-independent instrumentation tools, regardless of whether the
instruction set is RISC, CISC, or VLIW.

As mentioned before, Pin implements register allocation, inlining, liveness analysis,
and instruction scheduling to optimize jitted code. This fully automated approach distin-
guishes Pin from other DBIs which requires the user’s assistance to boost performance.
For example, Valgrind [27] need user intervention in order to perform inlining; similarly,
DynamiRIO [9] requires the tool developer to manually inline and save/restore applica-
tion’s registers. Another feature that distinguishes Pin is the ability to attach and detach
to a process. Hence it is possible to attach Pin to a process any time, perform the desired
analysis and, eventually, detach. The application incurs instrumentation overhead only
during the period that Pin is attached. This is especially useful when instrumenting
large, long-running applications.

Pin is further an easy-to-use framework, which permits users to write tools in a more
compact way when compared to other tools. For example, a simple tool in Pin for
memory tracing requires 30 lines of code, while in Valgrind it requires 100 lines of code
[27].

Pin does only provide limited access to symbol and debug information, which means
that no function’s API for retrieving variable names is available. This requires an alter-
native choice. For this purpose, DWARF is chosen, and will be explained in Chapter
5.2.2.

3.4 Pin Instrumentation API

As already mentioned, one of the advantages of Pin is its rich API. These API can be
divided into generic APIs and architecture-specific APIs. Generic APIs are architec-
ture independent and abstracts away the underlying instruction set idiosyncrasies and
allows context information such as register contents to be passed to the injected code
as parameters. Determining memory accesses (e.g. read/write) or control-flow changes
(e.g. branch of call instructions) for example can be achieved with the basic APIs.

30 CHAPTER 3. ANALYSIS TECHNIQUES

// This f unc t i on i s c a l l e d when the app l i c a t i on e x i t s
VOID Fin i (INT32 code , VOID ∗v)
{

c e r r << ”End of ins t rumentat i on ” << endl ;
}

// Ana lys i s Routine
s t a t i c VOID RecordTrace (VOID ∗ ip , VOID ∗addr)
{

c e r r << ”IP and E f f e c t i v e Address o f Memory I n s t r u c t i o n are ” << endl ;
c e r r << ”IP : ” << i p << endl ;
c e r r << ”EA: ” << addr << endl ;

}

// Instrumentat ion r ou t i n e
VOID In s t r u c t i o n (INS ins , VOID ∗v)
{

i f (INS IsMemoryRead (i n s))
{
INS In s e r tP r ed i ca t edCa l l (ins ,

IPOINT BEFORE,
(AFUNPTR) Analys i s ,
IARG INST PTR, //IP passed to ana l y s i s r ou t i n e
IARG MEMORYREAD EA, //Memory addres s passed to ana l y s i s r ou t i n e
IARG UINT32 ,
IARG END) ;

}
}

i n t main (i n t argc , char ∗ argv [])
{

PIN InitSymbols () ;
i f (PIN Ini t (argc , argv)) r e turn Usage () ;

INS AddInstrumentFunction (In s t r u c t i on , 0) ;
PIN AddFiniFunction (Fini , 0) ;
// Star t the program . Never r e tu r n s
PIN StartProgram () ;
r e turn 0 ;

}

Figure 3.2: Pin example of instrumentation and analysis routines

Architecture-specific API are available in two kind: API for IA-32 and Intel R©644 ISA
and API for the IA-64 ISA (Itanium Processor Family).

Pin APIs are call-based, i.e. tools are build using instrumentation routines and
analysis routines5. Instrumentation routines define where instrumentation is inserted,
e.g. before memory instructions. Analysis routines specify what to do when the instru-
mentation is activated, e.g. increase a counter each time a specific memory address is
encountered. Figure 3.2 demonstrates a minimal implementation of the Pin API to show
an example of instrumentation and analysis routines.

Pin provides limited access to an application’s symbol table. The only supported
symbol object information with Pin is information about function symbols. Other types

4Intel began using this name for 64 bit processors since late 2006. Before, Intel referred to 64-bit
processor as EM64T (Extended Memory 64 Technology)

5This notion is borrowed from ATOM

3.5. CALLING PIN 31

of symbols (e.g. data symbols) must be retrieved using an external method other than
Pin. Nevertheless, to access function names through Pin, PIN InitSymbols must be
called.

To initialize the Pin framework, PIN Init is called.

Pin permits to instrument an application on different granularities, i.e. instrumenting
at image level, trace level, routine level, and at instruction level.

Image instrumentation permits to instrument an entire application image. The in-
strumentation API call is done with the IMG AddInstrumentFunction . A Pintool
can analyse the sections inside an image, which in turn contains routines that the tool
can inspect. Routines, in turn, consist of instructions, that are made available to the
tool. The example below shows this nested analysis.

IMG Name(SEC Img(RTN Sec (rtn))

Image instrumentation requires the Pin InitSymbols call to be called before Pin Init.

Trace instrumentation permits to instrument an application one trace at a time.
Traces are a sequence of instructions, beginning at the target of a taken branch and
ending with an unconditional control-flow changing instruction, including calls and re-
turns. Pin makes sure that a trace is only entered at the top, but it may contain
multiple exits. In case that a branch occurs in the middle of the trace, Pin reconstructs
a new trace that begins at the branch targets, and end, again, with an unconditional
branch. Pin breaks the trace into basic blocks, which is a sequence of code with a
single entry and a single exit, terminating at a (conditional or unconditional) control-
flow changing instruction. Instrumenting at trace level is achieved with a call to the
TRACE AddInstrumentFunction API call.

Making an instrumentation call to the RTN AddInstrumentFunction API per-
mits the user to analyse an application based on its functions (or routines). Pin finds
routines by using the symbol table information. Pin InitSymbols() must be called be-
forehand. RTN can be used at instrumentation and at analysis time. Symbol objects
provide information about function symbols in the application. Hence, if information
about other symbols is needed (e.g. data symbols), they have to be retrieved without
the help of Pin.

Finally, Pin permits analysis based on instruction granularity, achieved with the
INS AddInstrumentFunction API. This lets the tool inspect one instruction at a
time. It can be accessed only at instrumentation time.

Besides analyzing a program behaviour, Pin allows also to make changes to it. This
may consists of adding or deleting instructions, changin register or memory values, and
changing of the control flow.

3.5 Calling Pin

Running a program under the supervision of Pin is done via a few (terminal-based)
commands, as the following example demonstrate.

32 CHAPTER 3. ANALYSIS TECHNIQUES

pin −t p i n too l −− app l i c a t i on

The commands above call the pin instrumentation engine with the -t parameter,
which is used to call the pintool, i.e., the instrumentation tool. Afterwards, the – appli-
cation parameter calls the application to be analysed.

3.6 Conclusion

As the complexity of applications grow, analyzing these applications becomes propor-
tionally complex. To cope with this complexity, developers have start building analysis
frameworks, which abstract away the hardware complexities, speeding up the develop-
ment of new and reliable analysis tools. The work done in this project revolves around
Dynamic Binary Analysis, which is accomplished by using a Dynamic Binary Instru-
mentation framework. Among the available frameworks, the Pin[22] framework is used,
a portable, efficient, easy-to-use, and transparent DBI framework. In the next two chap-
ters, this framework is used as the underlying platform for building three sophisticated
memory access analysis tools. These Dynamic Binary Analysis tools provide a detailed
and comprehensive analysis about applications’ memory access behaviour.

QUAD: Sophisticated Memory

Patterns Analysis Tools 4
The main focus of the work proposed in this thesis is on the profiling process inside the
Delft Workbench and the hArtes toolchains. Profiling information about the memory
usage of applications can deliver valuable insights when performing hardware/software
partitioning of these applications. In this context different tools are developed, that
provide the developer with a detailed analysis memory access patterns of applications.

The first described tool, QUAD, is a memory access tracing tool that provides a
comprehensive quantitative analysis of memory access patters of an application with the
primary goal of detecting pure data dependencies at function level.

The tQUAD tool is designed as a complementary profiler in the Delft Workbench
dynamic profiling framework along with QUAD to deliver detailed temporal memory
bandwidth usage information for each kernel in an application.

Finally, during this thesis research, the xQUAD tool is developed which augments
the analysis generated by the previous two tools by providing both an high level memory
map representation of application and detailed memory usage information inside a certain
kernel, i.e., on a variable level. As this tool is an integral part of this thesis research, it is
briefly introduced in this chapter, together with the other tools, for consistency reasons
and it is described in more details in Chapter 5.

These tools are built upon the Pin[22] Dynamic Binary Instrumentation (DBI) frame-
work and can be classified as a Dynamic Binary Analysis (DBA) tools, which analyse
an application at the machine code level. More information about these techniques were
provided in Chapter ??. Furthermore, the tools described in this chapter are intended to
be an integral part of the profiling stage of the Delft Workbench and hArtes toolchains
(Chapter 2.6 and 2.7).

Following, the QUAD[30] and the tQUAD[29] tools are presented, describing their
implementaion detailes as well as their usage. Also, the xQUAD tool is introduced,
which will be described in more detail in Chapter 5.

4.1 QUAD - Quantitative Usage Analysis of Data

The QUAD [30] (Quantitative Usage Analysis of Data) tool is a sophisticated memory
access tracing analyser that provides a comprehensive quantitative analysis of memory
access patterns. The primary goal of this tool is to detect actual data communication
dependencies between kernels.

This section describes QUAD’s objectives, implementational details and usage.

33

34 CHAPTER 4. QUAD: SOPHISTICATED MEMORY PATTERNS ANALYSIS

TOOLS

4.1.1 QUAD Objective

In the previous chapters of this thesis, the need for tools that are able to provide de-
tailed memory behaviour information of application became clear. Especially with the
introduction of heterogenous archictectures incorporating a (or more) reconfigurable de-
vice(s), the need for these kind of tools is even more evident.

Traditionally, a general profiler like gprof [17] is employed for the detection of appli-
cation hot-spots. However, these tools are not able to distinguish between computation
time and memory access time, and cannot be used to discover potential bottlenecks.

Furthermore, most existing memory access analysis tools focus only on detecting
memory bottlenecks, memory faults, bugs and leaks, without providing detailed infor-
mation regarding the data-dependencies in application’s memory usage [43, 10]. One of
the early simple tools developed for understanding memory access patterns of Fortran
programs is presented in [13]. Another tool similar to QUAD is Embla [15], which al-
lows the user to discover data dependencies in sequential programs, thereby exposing
opportunities for parallelization. Embla performs the analysis dynamically, and records
dependencies at run-time as they arise. However, QUAD aims at discovering the actual
data dependency1, which is different from the conventional data dependency referred to
in Embla and other similar tools. Data dependency is estimated in the sense of produc-
er/consumer binding.

Even though QUAD can be employed to spot coarse-grained parallelism opportunities
in an application, it practically provides a more general-purpose framework that can
be utilized for optimizations of various reconfigurable systems, by estimating effective
memory access related parameters, e.g. the amount of unique memory addresses used
in data communication between two cooperating functions. QUAD can also be used to
estimate how many memory references are executed locally compared to the amount of
references that have to go to the main memory.

The work conducted with QUAD revolves mainly around (dynamic) profiling. There-
fore, as QUAD is intended to be part of the DWB and hArtes toolchain analysis flow,
the tool is integrated accordingly as depicted in figure 4.1. In section 2.6 and 2.7 more
information about this can be found.

Following, the design and implementation of QUAD are discussed.

4.1.2 QUAD Design and Implementation

QUAD is built as a Dynamic Binary Analysis (DBA) tools using the Pin Dynamic
Instrumentation (DBI) framework, described earlier in this chapter.

QUAD aims at discovering actual data dependence, which is estimated in the sense of
producer/consumer binding. More precisely, QUAD reports which function is consuming
the data produced by another function. The exact amount of data transfer and the
number of Unique Memory Addresses (UMA) used in the transfer process are calculated.
Based on the efficient Memory Access Tracing (MAT) module implemented in QUAD,
which tracks every single access (read/write) to a memory location, a variety of statistics

1By definition, a data dependency is the situation in which a program segment (instruction, block,
function, etc.) refers to data produced by a preceding segment. Actual data dependency arises when a
function consumes data that is produced by another function earlier.

4.1. QUAD - QUANTITATIVE USAGE ANALYSIS OF DATA 35

Figure 4.1: Profiling Framework of QUAD within DWB

related to the memory access behavior of an application can be measured, e.g. the ratio
of local to global memory accesses in a particular function call.

Figure 4.2 illustrates the architectural overview of QUAD along with the components
in Pin. At the highest level, there is a Virtual Machine (VM), a code cache, and an
instrumentation API. Compare this with Figure 3.1 to see how QUAD fits along the
Pin framework inside the same address space. The main component inside QUAD is
the MAT module, which is responsible for building and maintaining dynamic trie data
structures to provide relevant memory access information as fast as possible. The trie
data structure acts as a shadow memory for each byte accessed within the address space
of an application.

Figure 4.2: Architectural overview of QUAD

QUAD contains instrumentation and analysis routines implemented using the Pin
API. This API calls allows, as explained in Section 3.3, to make an analysis based on dif-
ferent level of granularities. QUAD uses two API calls, INS AddInstrumentFunction() for
instruction level instrumentation and RNT AddInstrumentFunction() for routine level
instrumentation, which set calls to the instrumentation routines Instruction() and Up-
dateCurrentFunctionName(), respectively. In turn, these two instrumentation routines

36 CHAPTER 4. QUAD: SOPHISTICATED MEMORY PATTERNS ANALYSIS

TOOLS

calls two main analysis routines, namely RecordMemRef() and EnterFunc() which are
responsible for updating tracing information of memory references and maintaining an
internal call graph respectively. Figure 4.3 gives an overview of the implementation of
QUAD.

Figure 4.3: Implementation overview of QUAD

As shown in Figure 4.3, the main module consists of the initialization of the Pin DBI
framework, command line parsing, call graph initialization, instrumentation functions
registration and starting the application. Registration of the instrumentation function
is done via the Pin API interface, as showed in Figure 4.2. QUAD registers for two
types of instrumentation, viz. Instruction and Routine instrumentation, by calling the
INS AddInstrumentFunction() and RTN AddInstrumentFunction() API functions, re-
spectively. In turn, these two APIs set up calls to the Instruction() and UpdateCurrent-
FunctionName() instrumentation routines. First, the UpdateCurrentFunctionName()
routine is called, which implements an analysis routine responsible for maintaining an in-
ternal call stack representation. Subsequently, the Instruction() routine is called, which
is reponsible for inspecting the application at instruction granularity for memory ref-
erences instructions. Everytime a memory instruction is detected, the RecordMem()
analysis routine is called. This analysis routine is responsible for identifying the function
that is involved with the currently detected memory instruction, and to pass the required
information to the Memory Access Tracing (MAT) module.

The MAT module is involved in detecting and extracting memory reference informa-
tion during the execution of an application. This module utilizes a trie data structure
for fast storage and retrieval of memory accesses[30].

4.1.3 How QUAD Works

To start QUAD, a similar manner is used as described in Section 3.5, namely

pin -t [QUAD-path] QUAD.so [QUAD-options] – [application-name]
[application-options]

on a Linux system and

pin -t [QUAD-path] QUAD.dll [QUAD-options] – [application-name]
[application-options]

4.1. QUAD - QUANTITATIVE USAGE ANALYSIS OF DATA 37

on a Windows system2.
The command-line options for the QUAD tool are:

• -filter uncommon functions - This option filters out uncommon function names
which are unlikely to be defined by the user. Examples are function names be-
ginning with underscore(s), question mark, etc. This is useful if the user wants
to restrict the analysis only on functions that are actually part of the applica-
tion that is analysed, excluding library function. The default value for this op-
tion is set to true. Hence, to see all the functions in the main image file the
’-filter uncommon functions 0’ option will allow this.

• -include external images - This option enables tracing of functions that are
contained in external images file(s). By default, only the functions in the
main image file are traced and reported. This option together with the
’-filter uncommon functions’ provides more flexibility to include/exclude re-
quired/unwanted functions in the report files. This option also has considerable
impact on the reported quantitative bindings data and the corresponding produc-
ers/consumers.

• -ignore stack access - This option make it possible to exclude accesses to the local
stack memory, providing a view of the data transferred via non-stack region.

• -use monitor list [file name] - This option allows users to make a report file based
on some predefined functions, excluding all other (uninteresting) functions. The
function names to monitor are specified in a text file, with each function declared
on a single line.

• -xmlfile - This option permits to specify the name of the XML output file. By
default this output file is named ’dek arch.xml’.

4.1.4 QUAD’s Example Outputs

The memory reference information gathered by QUAD during the execution of an ap-
plication are reported in two separate formats. All the producer/consumer bindings
information is stored in an XML file. This makes it easy for third-party application to
import this data for further interpretation and processing. Figure 4.4 gives an example
of a XML file generated with QUAD.

In the above figure, a BINDING is established when a function writes to a memory
location which is later read by another function. The writing function is detoted with
a PRODUCER tag, while the CONSUMER tag denotes the function reading the data.
DATA TRANSFER is the total amount of data being read by the CONSUMER, while
the UMA tag shows the number of Unique Memory Addresses in the transferred data.

Furthermore, the binding information explained above will also be stored in .dot
format. This allow developers to visualize the XML file, showing the actual bindings
between function in a graphical way.

2To access symbolic information on Windows, Pin uses ’dbghelp.dll’. This DLL is not distributed
with the kit, and must be get separately. Using ’dbghelp.dll’ in an instrumented process is not safe and
can cause deadlocks in some cases.

38 CHAPTER 4. QUAD: SOPHISTICATED MEMORY PATTERNS ANALYSIS

TOOLS

<?xml ve r s i on=” 1 .0 ” encoding=”ISO−8859−1” ?>
<!DOCTYPE ORGANIZATION SYSTEM ” a r ch i t e c t u r e . dtd ”>
<ORGANIZATION>

<PROFILE>

<QUAD>
<BINDING>

<PRODUCER>x264 va l idate parameter s </PRODUCER>
<CONSUMER>x264 ratecontro l new </CONSUMER>
<DATA TRANSFER>72</DATA TRANSFER>
<UMA>72</UMA>

</BINDING>

<BINDING>

<PRODUCER>x264 va l idate parameter s </PRODUCER>
<CONSUMER>x264 macroblock cache load </CONSUMER>
<DATA TRANSFER>28800</DATA TRANSFER>
<UMA>464</UMA>

</BINDING>

</QUAD>

</PROFILE>

</ORGANIZATION>

Figure 4.4: XML format of producer/consumer binding

4.2 tQUAD

The tQUAD tool provides detailed timing information of a single kernel execution as
well as its memory bandwidth usage during the execution of an application.

4.2.1 tQUAD Objectives

Similar to the reasons explained earlier for QUAD, tQUAD [29] is a tool that aims
at facilitating the development of heterogeneous reconfigurable computing systems. In
fact, by providing timing information and memory bandwidth usage of a kernel during
its execution, tQUAD can address the issue of efficient scheduling and mapping of tasks
onto heterogenous reconfigurable architectures.

tQUAD is, as QUAD, developed in the context of the DWB and hArtes toolchains,
and is intended to be part of the dynamic profiling phases of these toolchains. Figure 4.5
positions tQUAD inside the DWB process. More information about DWB and hArtes
is provided in Chapter 2.6 and 2.7.

As can be seen in Figure 4.5, tQUAD is designed as a complementary profiler in
the DWB dynamic profiling framework along with QUAD. While the aim in QUAD is
revealing the quantitative information about data communication between kernels, the
purpose of tQUAD is to extract the timing information of a single kernel execution as well
as its memory bandwidth usage during an application execution. These information can
lead to the discovery of long executing kernels, and its data transfer. Subsequently, these
information have an invaluable importance in design space exploration decisions of task
scheduling and mapping process in heterogeneous reconfigurable systems. Furthermore,
these information can be used by the application developer for optimizing the application
code.

4.2. TQUAD 39

Figure 4.5: Profiling Framework of tQUAD within DWB

4.2.2 tQUAD Design and Implementation

The architectural overview of tQUAD is similar to that of QUAD, as can be seen in
Figure 4.6. Same as QUAD, tQUAD implements calls to instrumentation APIs that
permit the tool to hook itself at run-time with the Pin framework.

Figure 4.6: Architectural overview of tQUAD

Besides the standard Pin system initialization, i.e. PIN Init() and PIN InitSymbols
(see 3.3), tQUAD implements two API calls: INS AddInstrumentFunction() for instruc-
tion level instrumentation and RNT AddInstrumentFunction() for routine level instru-
mentation. These two API calls are used to set up calls to the instrumentation routines
Instruction() and UpdateCallStack(), respectively.

Figure 4.7 shows the body of the Instruction() instrumentation routine. The Instruc-
tion() instrumentation routine sets up the call to the analysis routine IncreaseRead()
every time an instruction that references memory read is executed. There is a similar
process in the case of memory write reference. Instruction() also monitors instructions
for the return from a function to maintain the integrity of the internal call stack. When
Pin starts the execution of an application, the JIT calls Instruction() to insert new in-

40 CHAPTER 4. QUAD: SOPHISTICATED MEMORY PATTERNS ANALYSIS

TOOLS

structions into the code cache. If the instruction references memory or signaling the
return from a function, tQUAD inserts a call to the corresponding analysis routine be-
fore the instruction, passing the required arguments which can be the Instruction Pointer
(IP), the number of bytes read or written, and a flag showing whether or not the in-
struction is a prefetch. The corresponding analysis routines return immediately upon
detection of a prefetch state for an instruction. INS InsertPredicatedCall() injects the
analysis routine and ensures that the analysis routine is invoked only if the instruction is
predicated true. When local stack area memory accesses have to be excluded, the Stack
Pointer (REG STACK PTR) is also passed as an extra argument to the analysis routine
for subsequent processing. Furthermore, Instruction() is responsible to initiate the time
simulation and memory bandwidth snapshot managements.

VOID In s t r u c t i o n (INS ins , VOID ∗v)
{

INS In s e r tCa l l (ins , IPOINT BEFORE, (AFUNPTR) IncTotal InstCount , IARG END) ;
i f (INS IsRet (i n s)) // r eturn from rou t i n e s i s monitored

INS In s e r tP r ed i ca t edCa l l (ins , IPOINT BEFORE, (AFUNPTR) Return ,
IARG INST PTR, IARG END) ;

i f (! No Stack Flag) // s tack acc e s s e s ok
{

i f (INS IsMemoryRead (i n s) | | INS IsStackRead (i n s))
INS In s e r tP r ed i ca t edCa l l (ins , IPOINT BEFORE, (AFUNPTR) IncreaseRead ,

IARG MEMORYREAD SIZE, IARG UINT32 , INS IsPre f e tch (i n s) ,IARG END) ;
i f (INS HasMemoryRead2 (i n s))

INS In s e r tP r ed i ca t edCa l l (ins , IPOINT BEFORE, (AFUNPTR) IncreaseRead ,
IARG MEMORYREAD SIZE, IARG UINT32 , INS IsPre f e tch (i n s) ,IARG END) ;

i f (INS IsMemoryWrite (i n s) | | INS IsStackWrite (i n s))
INS In s e r tP r ed i ca t edCa l l (ins , IPOINT BEFORE, (AFUNPTR) IncreaseWrite ,

IARG MEMORYWRITE SIZE, IARG UINT32 , INS IsPre f e tch (i n s) ,IARG END) ;
} // end o f Stack i s ok !
e l s e // i gnor e s tack acc e s s e s
{

i f (INS IsMemoryRead (i n s))
INS In s e r tP r ed i ca t edCa l l (ins , IPOINT BEFORE, (AFUNPTR) IncreaseReadSP ,

IARG REG VALUE,REG STACK PTR,IARG MEMORYREAD EA,IARG MEMORYREAD SIZE,
IARG UINT32 , INS IsPre f e tch (i n s) ,IARG END) ;

// s im i l a r c a l l s f o r NS HasMemoryRead2 & INS IsMemoryWrite (i n s)
} // end o f i gnor e s tack
// check f o r the snapshot point
INS In s e r tCa l l (ins , IPOINT BEFORE, (AFUNPTR) S l i c e checkpo i n t , IARG END) ;

}

Figure 4.7: tQUAD instruction instrumentation pseudocode

The code for the UpdateCallStack() instrumentation routine is presented in Figure
4.8. The UpdateCallStack() instrumentation routine sets up the call to the analysis
routine EnterFC() every time a function is called during program execution. This is
necessary to update the internal call stack. Since tQUAD ignores the functions which
are not in the main image file of the program, flag is used as a signal to indicate the
location of the newly-called function. The name of the function, as reported by Pin, is
also passed for the internal call stack update process.

4.2. TQUAD 41

VOID UpdateCal lStack (RTN rtn ,VOID ∗v)
{

bool f l a g ;
char ∗rNtemp ;
s t r i n g rName ;
f l a g =(! ((IMG Name(SEC Img(RTN Sec(rtn))) . f i nd (mainImg)) == s t r i n g : : npos)) ;
rName=RTN Name(rtn) ;
rNtemp=new char [s t r l e n (rName . c s t r ()) +1] ;
s t r cpy (rNtemp , rName . c s t r ()) ;
RTN Open(rtn) ;
// I n s e r t a c a l l at the entry point o f a r ou t i n e to update Ca l l Stack
RTN InsertCal l (rtn , IPOINT BEFORE, (AFUNPTR)EnterFC , IARG PTR, rNtemp ,

IARG BOOL, f l ag , IARG END) ;
RTN Close (r tn) ;

}

Figure 4.8: tQUAD routine instrumentation

4.2.3 How tQUAD Works

To start tQUAD the same method as described in Section 3.5 and as the QUAD tool is
used. It is repeated here for the sake of consistency.

pin -t [QUAD-path] QUAD.so [QUAD-options] – [application-name]
[application-options]

on a Linux system and

pin -t [QUAD-path] QUAD.dll [QUAD-options] – [application-name]
[application-options]

on a Windows system.

tQUAD supports the following command line options:

• -filter uncommon functions - This option filters out uncommon function names
which are unlikely to be defined by the user. Examples are function names be-
ginning with underscore(s), question mark, etc. This is useful if the user wants
to restrict the analysis only on functions that are actually part of the applica-
tion that is analysed, excluding library function. The default value for this op-
tion is set to true. Hence, to see all the functions in the main image file the
’-filter uncommon functions 0’ option will allow this.

• -slice - This option allows to perform an analysis based on an interval. This interval
is based on the number of instructions, i.e. the user chooses at which interval he/she
wants to get a snapshot of the analysis results.

• -ignore stack access - This option make it possible to exclude accesses to the local
stack memory, providing a view of the data transferred via non-stack region.

42 CHAPTER 4. QUAD: SOPHISTICATED MEMORY PATTERNS ANALYSIS

TOOLS

Table 4.1: Phases in the execution path of the hArtes wfs application.

average memory bandwidth usage maximum memory
phase % phase activity read access write access bandwidth usage (R+W) aggregate

phase span span kernel span stack incl.stack excl.stack incl.stack excl. stack incl. stack excl. MBW

initialization 53-144 0.007
ffw 92 1.8071 1.2422 0.4807 0.1811 2.4704 1.6376

2.6018
ldint 1 0.0798 0.0162 0.0516 0.0176 0.1314 0.0338

wave load 552-14660 1.1103 wav load 14109 2.0993 1.0358 1.0355 0.9929 3.1566 2.0664 3.1566

wave propagation 540-274868 21.5891
vsmult2d 1570 0.1799 0.0655 0.1182 0.0503 0.3996 0.1548

1.4530calculateGainPQ 1600 0.3708 0.0815 0.2633 0.0847 0.7714 <0.2116
PrimarySource deriveTP 235 0.0870 0.0240 0.0547 0.0208 0.2820 0.0980

WFS
main
processing

14663-
592803

45.4983

fft1d 278781 2.4179 0.3876 0.3501 0.1331 2.8738 <0.6428

<84.1862

DelayLine processChunk 115546 2.0859 0.2356 0.2339 0.1180 <3.3316 1.7050
bitrev 116755 1.8677 0.2521 0.7457 0.1934 <2.8778 0.4966

zeroRealVec 36304 2.1529 0.0145 0.7233 0.3610 <2.9386 <0.4028
AudioIo setFrames 616 21.5553 21.8035 21.0646 21.5860 <53.2686 <52.7330

perm 116776 0.3252 0.0280 0.0956 0.0545 <0.6556 <0.1466
cadd 41076 0.9882 0.3590 0.6686 0.2753 1.6946 0.6514
cmult 41073 1.1456 0.3590 0.7080 0.2753 1.8946 0.6594

Filter process 42583 0.7789 0.3609 0.1332 0.1141 <0.9768 0.5064
Filter process pre 1487 1.1113 1.6384 1.6267 1.6290 <3.3862 <3.3302

zeroCplxVec 4132 1.7693 0.0141 0.5913 0.3926 2.6874 <0.4710
r2c 2716 1.9250 0.1510 0.4474 0.2983 <2.9386 <0.5642
c2r 2318 1.9251 0.1774 0.3549 0.1769 2.9138 0.4658

AudioIo getFrames 502 0.8701 0.8296 0.8268 0.8137 1.7482 1.6866
wave save 592804-

1270674
53.3469 wav store 677871 1.7492 1.0033 0.8064 0.7765 2.7244 1.9044 2.7244

4.2.4 tQUAD’s Example Output

As explained in the introduction to this section, tQUAD is able to provide memory
bandwith information for each kernel during its execution time. Also, it finds the timing
and activity span of kernels. This data is collected in text files which can be later
converted into graphs and/or tables. An example output of tQUAD, taken from [29], is
presented in Table 4.1.

In Table 4.1 phase span indicates the starting and ending time slices for the phase; %
phase span is the percentage of the phase time interval to the program whole execution
time span; activity span represents the number of time slices in which the kernel is
active (accesses memory); memory bandwidth usage is measured in bytes per instruction;
aggregate MBW represents the summation of all kernels’ maximum memory bandwidth
usages in the phase including the stack area accesses.

4.3 Concluding Remarks - The xQUAD Tool

The two tools described in this chapter allow to analyse applications memory behaviours.
QUAD specifically addresses the detection the actual data communication dependencies
between functions, while tQUAD’s goal is to find the execution time of kernels along with
their memory bandwidth usage. Both tools deliver important information that can be
used during critical decision in HW/SW co-design stages, particularly for HW/SW task
partitioning, mapping and scheduling of applications onto heterogeneous reconfigurable
platforms.

Nevertheless, the described tools do not have capabilities for recognizing low-level
source code information and, therefore, it is difficult to discretize where inside a kernel a
certain memory behaviour appears. By providing low-level source information, memory
locations can be coupled with the variable name that occupies this location.

Hence, the xQUAD tool augments the analyses performed by the earlier described
tools by delivering even more detailed information about an application’s memory usage.

4.3. CONCLUDING REMARKS - THE XQUAD TOOL 43

xQUAD is able to provide detailed memory usage on a function-level, allowing to spot
which memory location is occupied by which variable, how many times this variable
is referenced, and the type of operation done on the memory location, i.e. read or
write. Furthermore, xQUAD provides information about the complete memory map of
an application, i.e. the memory location that are used by functions in terms of time.
These can help gaining insights about the total memory usage of applications on a high
level. Additionally, the tool can provide memory statistics that summarize, per kernel,
the number of used memory addresses divided per stack, heap and data memory region,
along with the number of total accesses and the average of accesses per memory location.

As this tool is developed during this thesis project, it is described in more details in
the following chapter.

44 CHAPTER 4. QUAD: SOPHISTICATED MEMORY PATTERNS ANALYSIS

TOOLS

The xQUAD Tool 5
This chapter presents the xQUAD tool, a tool that provides detailed memory usage infor-
mation of applications. xQUAD can be seen as an extension to the QUAD and tQUAD
tools (presented in Chapter 4), as it augments the analysis provided by those tools with
finer grained memory informations. Nonetheless, xQUAD can be used independently
to provide a global view about the memory usage of an application, as well as detailed
information about memory usage of variables. Along with the memory usage analysis,
it also provides low-level source information about variables. Pin does not provide any
functionality for reading data symbols from object files, hence these data symbols are
retrieved directly from the object file, i.e., without the intervention of the Pin framework.

This chapter gives first a global overview into the xQUAD tool. Afterwards, back-
ground information about object files in general and about the ELF object file format in
particular, is provided. Also, the DWARF debugging information is introduced, along
with the library used to read DWARF debugging symbols. Subsequently, the xQUAD
architecture an is explained and a description of the usages of the tool is presented.

5.1 Introduction and overview of xQUAD

The xQUAD tool augments the memory analysis generated by QUAD and tQUAD tools.
It provides memory access information of an application on a variable granularity as well
as data about about the global memory usage. These data is output in flat text files,
which purposes are twofold, as they permit the developer to read these files as well
as to visualize them. Visualizing an application’s memory behaviour can give a global
overview on the memory access patterns of the application, possibly discovering potential
memory bottlenecks. Afterwards, the user can always turn back to the flat files which
give the precise information.

By providing these files in a simple text format, the user can then parse these files
extracting the needed information, like the number of accesses on local memory, the
frequency of accesses on heap, the ratio of usage of different memory segments, etc.
These information, along with the information provided by QUAD and tQUAD, can be
used as a guide for revising the application code or, dependent on the developer’s need,
it can be used as a preliminary step in the HW/SW partitioning and mapping process
of the application.

Because one of the purposes of this tool is to give a clear understanding of the mem-
ory usage inside functions, on variable’s level, it is important for the tool to have some
recognition of source-level information. The Pin DBI framework does not provide func-
tions API for retrieving data symbols information. Therefore, source-level information
as variable names must be extracted from the debugging section of the object file. One
prerequisite is that the application must be compiled with the debugging information

45

46 CHAPTER 5. THE XQUAD TOOL

flag on, which permits the compiler to augments the object file with a debugging section.
In case of an ELF executable, compiled with GCC, the standard debugging format is
DWARF version 2[39] (see Section 5.2.2), unless otherwise specified.

Following, this chapter will give a background introduction into the format of object
files and of the debugging information section inside it. As this tool currently supports
only ELF object files, no other object file formats are considered in the subsequent
sections.

5.2 Background Information

As the Pin Dynamic Binary Instrumentation framework does not provide an interface to
the data symbols information of an object file, an alternative method is implementated
for retrieving low-level sorce code information. Provided that the application contains
a debugging information section, xQUAD extract these information by implementing a
module for this purpose. The extraction of the debugging data happens in a transparent
way, i.e., the developer is not aware of this process.

Next section explains briefly the format of an ELF object file and the position of the
debugging section inside it. Subsequently, the DWARF Debugging Information format
is presented, along with the interface used to retrieve these debugging information. The
next subsections should provide enough information to the reader for the rest of the
chapter.

5.2.1 Object File Overview

An object file contains the object code and the data produced by a compiler and assem-
bler. More specifically it contains:

• Header information - General information about the file.

• Object code - Binary instructions and data generated by a compiler or assembler

• Relocation - Information about addresses that have to be fixed up when the linker
changes the addresses of the object code.

• Symbols - Global symbols kept by linker while running

• Debugging Information - Other information about the code needed for debugging
purposes. This includes source file and line numbers information, local symbols,
and other low-level source code information.

The above information are typical for object files, although there may be an object
file containing little or no information beyond the object code. The structure of object
files is determined by the target architecture at which these object files are supposed
to work. In this thesis we consider the ELF object format1. ELF object files can be

1As introduced before, in this thesis report we will consider only the ELF object format. Nevertheless,
the information reported in this paragraph can be considered applicable, for most parts, to different object
formats

5.2. BACKGROUND INFORMATION 47

of three types, namely relocatable, executable, and shared objects. Relocatable files hold
code and data suitable for linking with other object files to create an executable file or a
shared object file. These files are denoted by the .o extension. Executable files have all
relocations done and all symbols resolved, except perhaps shared library symbols that
are to be resolved at run-time. Shared object files contain code and data that are used
by the linker to process this data and code with other relocatable and shared objects,
creating another object file. Also, the linker may use the data and code of a shared
object file to be dynamically linked with an executable and other shared object files,
creating a process image. Shared objects are denoted by the .so extension. Even though
these different types of object files serve for different purposes, their internal structure
is in many ways similar. Therefore, in this thesis focus is put only on executable object
files.

From a linker perspective, ELF executables are divided into sections, used by the
linker for building a program. From a program execution perspective, ELF executa-
bles are divided into segments, where each segment usually groups multiple sections
together[38]. Typically, object files have a ratio of 7-9 segments and 35-40 sections2.
Typical sections contained in executable objects are the .text section containing the pro-
gram code, the .data section containing initialized global and static variables, and the
.bss section containing uninitialized global and static variables. When the object file is
compiled with debugging information on, an additional section .debug appears in the
object file. This section is, however, not present in any segment, as debugging infor-
mation are not included in the memory space of the application’s image. A high level
representation of the two views of an ELF file is showed in figure 5.1. To be noted in the
figure that the .debug section in the linking view is not mapped into the exection view.

Upon running an executable, the loader loads these segments into memory creating
a process image in the memory. Upon loading and running the executable, the kernel
looks at the executable header, locates the .text section within the executable, loads it
into the appropriate portions of memory, and marks these pages as read-only. It then
locates the .data section in the executable and loads it into the user’s address space,
this time in read-write memory. Finally, it finds the location and size of the .bss section
from the image header, and adds the appropriate pages of memory to the user’s address
space. Even though the user has not specified the initial values of variables placed in
.bss, by convention the kernel will initialize all of this memory to zero. Local variables
are not stored in any section in the executable, but are created at run-time.

An ELF header resides at the beginning and holds a road map describing the file’s
organization. Sections hold the information of an object file for the linking view: instruc-
tions, data, symbol table, relocation information, and so on. A program header table, if
present, tells the system how to create a process image. Files used to build a process im-
age (when executing a program) must have a program header table; relocatable files do
not need one. A section header table contains information describing the file’s sections.
Thus, the section header table lets one locate all the file’s sections. Every section has
an entry in the table; each entry gives information such as the section name, the section
size, etc., and occupies one contiguous (possibly empty) sequence of bytes within a file.

2Information acquired empirically

48 CHAPTER 5. THE XQUAD TOOL

Figure 5.1: Sections and segments of an ELF

Sections in a file may not overlap. No byte in a file resides in more than one section.
Files used during linking must have a section header table; other object files may or
may not have one. NB. Sections and segments do not have a specified order. Only the
ELF header has a fixed position in the file. Hence, the organization of Figure 5.1 may
differ. Special sections hold program and control information. Special sections are, for
example, .bss, .data, .debug, .fini, .init, .rodata, .text, etc. .bss holds uninitialized data
that contribute to the program’s memory image. By definition, the system initializes
the data with zero when the program begins to run, the section occupies no file space.
.data holds initialized data that contribute to the program’s memory image. .fini holds
executable instructions that contribute to the terminating process of the application.
That is, when a program exits normally, the system arranges to execute the code in this
section. .init, holds executable instructions that contribute to the process initialization
code. That is, when a program starts to run, the system arranges to execute the code
in this section before calling the main program entry point (main in C). .rodata holds
read-only data that typically contribute to a non-writable segment in the process image.
The section .text holds the text, or executable instructions, of a program.

Hence, the loader maps each segment in the object file into memory. The segments
essentially become memory areas of an executable[40]. Figure 5.2, taken from [40],
depicts the memory layout of a program that is about to begin execution.

Local variables, temporaries, function parameters, spilled registers, etc. are allocated
on the stack memory. Furthermore, a heap space is dynamically allocated on demand, as

5.2. BACKGROUND INFORMATION 49

Figure 5.2: Segments of an executable object file mapped in memory

soon as the first call to a memory allocation function, like malloc. Note that the lowest
part of the virtual memory address space is unmapped; this is still part of the address
space of the process, but has not been assigned to any physical address, so any references
to it will be illegal. This is typically a few KB of memory from address zero up and is
used to catch references through null pointers.

5.2.2 DWARF Debugging Format

After the brief description of an object file contruction, this section introduces general
information about the standard debugging format associated to ELF, i.e., DWARF (De-
bugging With Arbitrary Record Format)[39, 14] version 23. The DWARF debugging in-
formation specification is a portable debugging information format. Originally designed
for the Intel 32-bit architectures, it has been extended for other platforms including
MIPS, ARM, SPARC and PPC, and for 64-bit architectures.

When the ELF executable is compiled with the debugging flag on, besides the sections
describing code, data and stack segments, the executable also includes a debugging
section. Although DWARF is most commonly associated with ELF, it is independent
of the object file format. DWARF provides debugging entries to define low-level source
code representation, like, among others, source file and line number information, local
symbols, and descriptions of data structures.

3DWARF 2 format was specified in 1995, prior to the 1998 ratification of the ISO C++ standard.
Thus, version 2.0 does not include specification for some important C++ language constructs such as
namespace or mutable class attributes. The DWARF version 3.0 format, which is under review, addresses
the version 2.0 language deficiencies and provides a format to sufficiently cover the debugging information
required for more recently developed languages such as Java.

50 CHAPTER 5. THE XQUAD TOOL

The DWARF section inside an object file consists in turn from different subsections,
which are all prefixed by the .debug keyword. Each .debug section contains three
elements, namely DIE sections, DIEs and DIE attributes. A .debug section contains DIE
sections, a DIE sections contains DIE, and DIEs have attributes. The most important
DWARF section is the .debug info section, which is the DWARF core data containing
the actual debugging information. These debugging information are contained in a data
structure called Debugging Information Entry (DIE), which is used to represent each
compilation unit, variable, type, procedure, etc. The DIEs (intended to exists in the
.debug info section) are organized in a tree structure: the root of the tree is the debug
section, which contains DIE sections (or Compilation Units). The example in Figure
5.3 is an output from the dwarfdump tool. The format is modified to resemble the tree
structure of the .debug info section.

Figure 5.3: DWARF DIEs sample output

From the output in Figure 5.3, it can be noted that the root of the DWARF structure
is, in this case, a .debug info section. As mentioned before, .debug info contains one or
more DIE sections describing Compilation Unit(s) (CU). Each DIE is described by a tag.
Hence, a DW TAG compile unit describes a compilation unit DIE. Each DIE has a num-
ber of attributes, denoted in DWARF by DW AT attribute. This is the description of
the first DIE, i.e. of the compilation unit DIE. Next, the DW TAG subprogram DIE de-
scribes the next level in the tree hierarchy. Again, this DIE is augmented with attributes,
like DW AT name, which describe the function in question (main in this case). The next
nested (child) DIE of the DW TAG subprogram DIE is the DW TAG variable DIE, with
its attribute describing the variable in the source code. Then, after having described all
the children of the parent DIE (i.e. DW TAG subprogram) in question, the next sibling

5.2. BACKGROUND INFORMATION 51

DIE is processed, which is the example above is again of type DW TAG subprogram.
Following this depth-first algorithm, the entire tree is described. As most modern pro-
gramming languages are block structured, DWARF also follows this model. Hence each
DIE, except the topmost root DIE representing the CU of the source file, is contained
within a parent DIE and may contain children DIEs. DIEs are tree nodes, which may
represent types, variables, or functions of a set of attributes, describing the type, name,
source line number, location address or references to another DIE (e.g. a reference to a
datatype specification). Figure 5.4 shows a sample C program and the related DWARF
description of the program.

Figure 5.4: C Program and DWARF description of program

5.2.3 DWARF Consumer Library

Following the DWARF structure described before, applications can be build which read
and process DWARF information, by using the libdwarf consumer library interface[3]4.
This section briefly summarizes the key functions in the library for reading DWARF
information.

The first step of every DWARF process is to retrieve the debug descriptor of type
Dwarf Debug from which the DWARF data can be further obtained. The libdwarf library
defines a function for this purpose, namely dwarf init() which returns the debug descrip-
tor. Ending a DWARF operation is accomplished by calling the function dwarf finish().
The debug descriptor contains all the needed DIE information. As explained in the pre-
vious section, every program consists of multiple CUs (even if the application consists
of one file, there are other CUs regarding library files).

4For creating DWARF debugging sections, a dedicated library is available, see [3] for more information.

52 CHAPTER 5. THE XQUAD TOOL

The function darf next cu header, called recursively, permits to process each CU in
the program. Afterwards, starting from the available CU, functions are called which
process each individual DIE in the current CU, by a depth-first tree traversal. Library
functions used to accomplish this traversal are dwarf child() and dwarf siblingof().

5.3 xQUAD Architecture

The architecture of xQUAD consists of three main parts:

• A module for retrieving DWARF Debugging Information

• Pin’s instrumentation functions

• QUAD’s analysis functions called from the instrumentation

Figure 5.5 shows the architectural overview of xQUAD and its connection with the
Pin framework and the module for retrieving DWARF Debugging Information. Similar
to the tools in Chapter 4, xQUAD communicates with Pin’s API that permits the tool
at run-time to be hooked-up with the Pin framework.

Figure 5.5: Architectural overview of xQUAD

The Pin framework is described in 3.3, but is repeated here the for convenience. At
the highest level, there is a Virtual Machine (VM), a code cache, and an instrumentation
API. The VM consists of a Just-In-Time (JIT) compiler, an emulator, and a dispatcher.
After Pin gains control of the application, the VM coordinates its components to execute
this application. The JIT compiles and instruments the application code, which is then
launched by the dispatcher. The compiled code is stored in the code cache. Entering
(leaving) the VM from (to) the code cache involves saving and restoring the application
register state. The emulator interprets instructions that cannot be executed directly. It
is used for system calls which require special handling from the VM. Since Pin does not
reside in the kernel of the operating system, it can only capture user-level code. As Figure
5.5 shows, three binary programs are present when an instrumented program is running:
the guest application, Pin, and the xQUAD tool. Pin is the engine that instruments the
application. xQUAD contains the instrumentation and analysis routines and it is linked
with a library that allows xQUAD to communicate with Pin.

5.3. XQUAD ARCHITECTURE 53

5.3.1 xQUAD Design and Implementation

The design and implementation of the tools described in this thesis have all a similar
implementation, as they are all based on the same dynamic analysis framework (see
Chapters 3 and 4). However, each tool has its own peculiarity which distincts it from
the others. xQUAD, as mentioned before, can be used to perfom two types of analysis:

• Detailed variable memory usage information inside a function

• A memory map of the application

Performing an analysis that produce variable memory information for all the func-
tions in an application will result soon in a gigantic report file, and most probably
unfeasible to read (assuming one can open it, as it can be as big as several tenths of
GB). Therefore, the tool must be able to filter out information according to the user
needs. Hence, before running the tool, the user is required to define the functions and
the variables he/she wants to analyse. These functions and variables are specified in
a text file, called the MONITOR file, by following a few simple text formatting rules
which are necessary for the tool to correctly read and store the variables of a function
to be analysed. Figure 5.6 gives an example MONITOR file describing its format. In
this example it is assumed that analysis will be performed on two functions, namely the
main and consumer 2 functions, which are prefixed with a #. In case all variables in
a function needs to be traced, the user should pass this to the tool with the ##ALL-
VARS## keyword. If only specific variables need to be analysed, these variables need
to be specified individually, below the function name, and each variable on a single line.
In case the user wants to analyse the behaviour of global variables, passing the #GLOB-
ALVARS keyword to the tool and specifying these global variables, each on a single line,
will accomplish the task. As tracing memory addresses of variables can result in a pro-
duction of huge files, instructing the tool to analyse the application selectively based on
specified variables, will results in a more readable flat file report and a shorter analysis
time.

Upon starting, the tool performs some preliminary works as report file initialization,
command-line parsing, initialization of data-structures used to hold analysis data and
initialization of the Pin framework. As described in Chapter 4, initialization of the Pin
framework consists of calling two API functions, i.e. Pin initSymbols(), which initializes
the symbol table code, and Pin Init(), for system initialization.

Subsequently, xQUAD parses the MONITOR file and stores the information inside
this file into a linked-list data structure, which will be used during execution of the tool
to steer the analysis. Figure 5.7 shows a code snippet of the main function of xQUAD.
It should be noted that this code snippet is a representative portion of the actual code,
although detail of the file and data structure memory allocation checks are omitted for
brevity.

As can be seen from Figure 5.7, following various initialization processes, xQUAD
makes the call for processing the debugging information from an object file. The following
section explains the implementational details of the DWARF Module.

54 CHAPTER 5. THE XQUAD TOOL

Figure 5.6: Example of the MONITOR file passed to the xQUAD tool

5.3.2 DWARF Debugging Information Module

The process of retrieving DWARF Debugging Information happens, as mentioned earlier,
in a transparent way, i.e., the user is not aware of this process and the only requirement
is that the object file is compiled with the debugging information. The module for
extracting debugging information is based on dwarfdump, an open source tool which
prints DWARF information from the .debug section of an object file in human readable
format, using the libdwarf C library[3]. However, dwarfdump is used only as a starting
point, as dwarfdump provides very generic output. Hence it has been decided to build
a new module from scratch tailored to QUAD’s needs, omitting unnecessary DWARF
information.

The libwarf library contains API functions for reading and writing applications using
DWARF 2 information, using the libdwarf consumer library and the libwarf produces
library [3], respectively. xQUAD needs only to read DWARF information, hence in this
section only functions from the consumer library are described.

The first call to the libdwarf library regards the initializtion of the DWARF process,
which returns a handle for accessing debugging information, associated with a file de-
scriptor of the application. This handle is the main object from which all the reading
process is done. As explained in 5.2.2, the .debug info section of the application consists
of multiple Computational Units (CUs), which all contain debugging information that
are to be extracted. Therefore, the debugging information handle is passed to a function
for the extraction of each CU.

In the most simple case, where an application consists of only one source file, i.e.
one .c/.cpp file, the application will have a single CU of interest, and a number of
CUs corresponding to libraries. These libraries CU are excluded from the debugging
information parsing process.

In 5.2.2 it is explained that each CU consists of several (siblings) Debugging Infor-
mation Entries (DIE), which in turn can contain other child DIEs. This forms a tree
of DIEs, which is traversed by a depth-first algorithm. The DWARF library provides

5.3. XQUAD ARCHITECTURE 55

i n t main (i n t argc , char ∗ argv [])
{

char temp [1 0 0] ;
s t r i n g var moni tor f i l ename ;

//open f i l e f o r d e t a i l e d an a l y s i s and i n i t i l i z a t i o n o f f i l e
varTrace . open (”/home/marco/Desktop/QUAD VarTraceAndTiming . txt ”) ;
varTrace<<”\n\ t\ t \ tVar i ab l e Tracing and Timing Report\n\n” ;
varTrace<<”MEMORY ADDRESS”<<setw (25)

<<”VARIABLE NAME”<<setw (15)
<<”R/W”<<setw (18)
<<”RTN COUNT”<<setw (23)
<<”TIME STAMP”<<”\n\n”<<endl ;

// I n i t i l i z e Pin symbols t ab l e and framework
PIN InitSymbols () ;

i f (PIN Ini t (argc , argv)) r e turn Usage () ;

// Store s l i c e value
VarTrace Snapshot Interva l=ato i (KnobSl ice . Value () . c s t r ()) ;

//Get name of the MONITOR l i s t f i l e to use
var moni tor f i l ename=KnobVarMonitorList . Value () ;

//Data s t r u c t u r e s i n i t i a l i z a t i o n
Cal lStack . push (” Out o f th e ma i n f unc t i on s cope ”) ; // put the f i r s t r ecord in

our c a l l s t a c k
// assume ’ Out o f th e ma i n f unc t i on s cope ’ as the f i r s t cur r ent r ou t i n e
cur r ent f name=” Out o f th e ma i n f unc t i on s cope ” ;

mem addr struct = new MEMADDR;

mem addr struct−>map addr . i n s e r t (pai r<s t r i ng ,UINT64>(” sample address ” , 0)) ;
map func addr couple [cur r ent f name] = mem addr struct ;

/∗Command l i n e par s ing code omitted ∗/

/∗ Code f o r par s ing o f MONITOR f i l e and f o r i n i t i a l i z a t i o n o f Memory Map f i l e s
are omitted ∗/

// Star t Debugging Information p r oc e s s i ng
i n i t add r 2va r (temp , comp dir name) ;

// Cal l to Pin APIs f o r r e g i s t e r i n g ins t rumentat i on f unc t i on s
RTN AddInstrumentFunction (Reg i s te rFunct i onCal l , 0) ;
INS AddInstrumentFunction (TraceTimingInstruct ion , 0) ;

PIN AddFiniFunction (Fini , 0) ;

c e r r << endl << ” S ta r t i ng Var i ab l e Tracing and Analys i s Appl i cat i on ” << endl ;

PIN StartProgram () ;

r e turn 0 ;
}

Figure 5.7: xQUAD main function

functions as dwarf child and dwarf siblingof which accomplish the task of traversing the
tree. Figure 5.8 depicts this process. Next, for each CU, a table is constructed holding
variable names and an offset with respect to the current frame base address. The current

56 CHAPTER 5. THE XQUAD TOOL

frame base address is retrieved through the call of a Pin API (described later) and the
actual address of the variable will be then calculated by adding this address to the via
Pin retrieved base pointer address.

Figure 5.8: DWARF Depth-First Tree Traversal

Subsequently, each DIE, and for each of its children, a function is called for processing
the DIE data. As mentioned earlier, each DIE represents types, variables, functions,
etc., which is specified by a tag. The tool retrieves the tag by calling the library function
dwarf tag and filters out DIEs with a:

• DW TAG subprogram tag, for rerieving debugging data about functions

• DW TAG variable tag, for, not surprisingly, retrieving debugging data about vari-

5.3. XQUAD ARCHITECTURE 57

ables

Furthermore, in case of a DW TAG variable, an additional distinction is made for
local and global variables. The implementation details for processing functions and
(global/local) variables are described next.

Functions When processing a subprogram DIE (i.e. a function), the tool compares
the name of the function DIE (by calling the DWARF library function dwarf diename)
with the function names stored in the data structures parsed from the MONITOR file.
Upon processing a function DIE in which we are interested, i.e. predefined in the mon-
itor list, this function name is stored in the data structured containing the informa-
tion parsed from the monitor file. Additionally, it is checked for the presence of the
DW MIPS linkage name attribute, which represents the internal name representation
assigned by the compiler. In case of a C++ compilation, function names are mangled
to simplify the compiler’s process5. This attribute, if present, is also stored in the data
structures as in a later stage of the analysis there is the need to compared function names
stored in these data structures with function names that are recognizeable by the Pin
framework, which are also mangled.

After determining if the name of the function matches a function’s name stored in
the MONITOR file, the tool needs to filter out the variable names accordingly.

Local Variables A DW TAG variable tag denotes a variable, either local or global.
When a local variable is encountered, this variable DIE is a child DIE corresponding
to a parent subprogram DIE. In this case, by using the library function dwarf attrlist
a list of attributes corresponding to this variable DIE is retrieved. Then, for each at-
tribute in the attribute in the list, by the function dwarf whatattr, a call to a function is
made for processing these attributes of the variable DIE. Each variable DIE (global or
local) has a location attribute (DW AT location). When it regards a local variable, the
DW AT location location attribute, as mentioned before, will contain an offset value.
This value is stored in a data structure holding variable names/offset values pairs. The
case for global variables requires a slightly different approach, which will be described
next.

Global Variables In case of a global variable, the variable DIE presents some other
attributes that are not present in case of a local variable. Additionally, DWARF builds
up different variable DIEs in case an application is compiled with GCC or G++. This
is taken into account by the tool.

When an application is compiled with G++, the global variable is described by
DWARF in two steps. First, DIEs are built with an attribute DW AT declaration, along
with other common variable descriptions like variable name, line number, data type, and
so on. This attribute is only present in the case of G++ compilation, which is used
by the tool to discriminate between GCC/G++ compiled binaries. In this case, the
DIE does not have a location attribute, which is stored in another DIE, containing the

5as C++ provides function overloading, multiple functions may have the same name. It is therefore
necessary to provide an unique name for each function. This process is called name mangling

58 CHAPTER 5. THE XQUAD TOOL

DW AT specification attribute. This attribute appears only in DIEs in this situation.
This regular structure simplifies somewhat this process, and the fixed global address
from the DW AT location attribute can be retrieved and stored, as mentioned before,
along with the variable name of the global variable.

In case of an application compiled with GCC, the process of retrieving the global
variables addresses is very straightforward compared to the two steps method de-
scribed above. In this case, the DIE describing the global variable directly contains
the DW AT location attribute. Hence, the global variable address can be directly stored
in the corresponding data structure.

The process described here recursively repeats for each DIE in the current Computa-
tional Unit (CU). When the current CU has no DIE left, the process is again repeated for
each CU present in the application. Finally, when every CU is processed, the DWARF
process is terminated and the file descriptor for the application is closed. At this point
all the debugging information is kept in memory, which are used subsequently during
the analysis done with the Pin framework.

5.3.3 Pin API calls and Analysis Routines

After completion of the process of reading the debugging information, the tool starts
the instrumentation process. As explained in 3.3, Pin permits the user to instru-
ment at different granularities. xQUAD instruments the application at two differ-
ent granularities, namely at routine level and at instruction level, by calling the
API functions RTN AddInstrumentation() and INS AddInstrumentation(), respectively.
RTN AddInstrumentation calls the RegisterFunctionCall every time a new routine is ex-
ecuted. The purpose for this function call is to keep an own version of the call stack for
routines’ calls. Here the name of the currently executing routine is retrieved by calling
the API function RTN name and then by using RTN Open, the routine is opened to
be processed. RTN InsertCall inserts a call relative to the earlier opened routine, and
calls the analysis function FunctionCallStack. The RTN InsertCall function call is shown
below.

RTN InsertCal l (rtn , IPOINT BEFORE,
(AFUNPTR) FunctionCal lStack ,
IARG INST PTR, IARG PTR,
name char ,
IARG END)

Afterwards the currently executing routine rtn is closed by calling the RTN Close,
which must be called before opening any other routines.

The necessity for having an own version of the call stack arises from the fact during
analysis it is required to know if a currently executing function has been called for the
first time, meaning it is producing memory accesses also for the first time. The other
possibility is that a function returned from a callee, meaning that the data accesses
currently produced must be accounted for an previous call.

In FunctionCallStack the tool builds the actual function call stack. Off course the
function calls stored in the call stack are to be matched with the functions defined in the
MONITOR file by the user. In this case, the previously stored mangled name is compared
with the currently executing function that Pin provides (through RTN name). In case

5.3. XQUAD ARCHITECTURE 59

that we have no mangled name stored it means that the mangled name is not present
and thus the comparison can be done simply based on (unmangled) function names.
Upon a match, these functions are stored in a call stack, so that a flow of function call
will be available.

After having built our own function call stack, the INS AddInstrumentation API
function is called. This function allows instrumentation analysis at instruction level. This
instrumentation API calls the instrumented function TraceTimingInstruction, which is
responsible for calling analysis routines based on the current executing instruction. Upon
entering the instrumented routine, there is a call to

INS In s e r tCa l l (ins ,
IPOINT BEFORE,
(AFUNPTR) timingCount ,
IARG END)

The timingCount analysis function is responsible for maintaining a time stamp
counter and a slice counter. The time stamp counter holds the number of instructions
executed till a certain point in time. This effectively implements a timing functionality
to the tool, based on the number of instruction. The slice counter, conversely, is used
to hold a timer in case the user wants to analyse an application based on a certain
slice interval. For instance the user may want to analyse the application every 10000
instructions.

The tool also checks for return instructions (INS IsRet(ins)). This check is done to
be able to store the return address of a function, used for building the memory map. As
explained above, retrieving the last address of a function with DWARF does not appear
to be reliable, because of the possibility that the last address of the function retrieved
with DWARF may be a NOP instruction, which is never executed by Pin, as Pin does
not instrument instructions that are never executed. The call to the analysis routine is
shown below.

INS In s e r tP r ed i ca t edCa l l (ins ,
IPOINT BEFORE,
(AFUNPTR) Return ,
IARG INST PTR,
IARG END)

The InsertPredicatedCall is called only if the instruction is predicated true,
i.e. if the instruction is actually executed. The analysis routine Return finds the
name of the current routine specified by the current instruction pointer, using the
RTN FindNameByAddress Pin’s API. Then, for each function defined in the MONITOR
file, this analysis routine stores a high program counter value using Pin’s StringFromAd-
drint function and pushes this function into the own representation of the call stack.

As mentioned before, xQUAD’s main purpose is to analyse the memory usage of vari-
ables in an applications. Hence, each instruction operating on memory is instrumented
and filtered by using Pin’s INS IsMemoryRead/Write and INS IsStackRead/Write. In
case an instruction has two memory read operations, the INS HasMemoryRead2 is used.
If the above are true, the following call to the analysis routine is made in case of a
memory read operationg:

60 CHAPTER 5. THE XQUAD TOOL

INS In s e r tP r ed i ca t edCa l l (ins ,
IPOINT BEFORE,
(AFUNPTR) RecordTrace ,
IARG INST PTR,
IARG UINT32 ,
’R ’ ,
IARG MEMORYREAD EA,
IARG UINT32 ,
INS IsPre f e tch (i n s) ,
IARG END)

The INS InsertPredicatedCall assures that the analysis routines is only called upon
an actual execution of the instruction. Depending on the type of memory operation, i.e.
Read of Write, the character ’R’ or ’W’ is sent. Also, in case of a write operation on mem-
ory the IARG MEMORYWRITE EA parameter is sent, representing the effective mem-
ory address where the write operation occurs; conversely, IARG MEMORYREAD EA
represents the effective memory address of the occurring read operation. The parameter
INS IsPrefetch(ins) is true if we are dealing with a prefetch instruction.

The analysis routine RecordTrace stores this information in a structure, in case the
INS IsPrefetch(ins) is false, i.e. the instruction is not a prefetch instruction. xQUAD
excludes memory prefetching instructions as these can pollute the memory access pattern.

5.3.4 How xQUAD Works: Functionalities and Restrictions

Running xQUAD is done in a similar way as explained for QUAD and tQUAD in Chapter
4.1 and 4.2, and stated below.

pin -t [xQUAD-path] xQUAD.so [xQUAD-options] – [application-name]
[application-options]

As mentioned before, xQUAD supports a couple of command-line options, according
to the type of analysis the user wants to perform. These command-line options are:

• -memory map - This option instructs the tool to create a memory map of the
application. When this is desired, the tool produces one file in which all the
memory usage inside a function are reported. This file is then post-processed to
produce three file containing the stack addresses, heap addresses, and the data
addresses per function. Later, these files can be used for visualization purposes.

• -variable monitor list - This option enables the users to have a report file based on
some predefined functions and varibles, excluding all other (undesired) functions/-
variables. The function and variable names to monitor are specified in a text file,
following some simple rules which are described in Section 5.3.1.

• -slice - This option enable the user to specify the slice number based on which an
analysis is made.

One restriction of the xQUAD tool is that it is developed to work on x86 platforms
running Linux. However, both Pin and DWARF are known to run on multiple platforms,
therefore, the possibility to port xQUAD to other platforms should not be very difficult.

5.4. XQUAD ANALYSIS OUTPUT EXAMPLES 61

5.4 xQUAD Analysis Output Examples

As explained in the introduction of this chapter, the xQUAD tool generates different flat
files that describe the memory usage of an application both in general and in detailed
levels. Basically, the outputs of the tool can be divided according to the command-line
options described above, i.e., a memory map of the entire application and a detailed mem-
ory report file on function and/or variable level. As these files contain the entire memory
trace of the application, several information can be parsed out from here, according to
the developers need.

In the rest of this section, both analysis outputs are explained by giving examples of
the produced files as well as potential usage of these files. In Chapter 6, these files are
applied to the analysis of a real-life case study.

5.4.1 Memory Map Report File

Instructing the tool to perform a memory map analysis of an application will generate
an flat file containing all the addresses used in a function, per function call. An example
of a memory map file is showed in Figure 5.9. Furthermore, as can be seen in the figure,
the frequency of the used memory addresses is also provided, giving a clear idea of the
type of the type of addresses used in a function and their intensity on a certain memory
location.

wav load
0x000000000060ed20 56
0x00002b1724b64b00 45
0x00002b17250bd89c 1
0x00002b17250c35a4 1
0x00002b17250cddfc 1
0 x00007 f f f 3db fb408 1
0 x00007 f f f 3db fb7c0 51
0 x00007 f f f 3db fb7c8 195
0 x00007 f f f 3db fb7d8 89
waveprop
0 x00007 f f f 3db fb778 1
vmag2d
0 x00007 f f f 3db fb530 1
vsub2d
0 x00007 f f f 3db fb538 1
w f sC l o ca l i z eSou r c e s
0 x00007 f f f 3db fb688 1
vmag2d
0 x00007 f f f 3db fb500 1
r2c
0 x00007 f f f 3db fb7cc 2
b i t r ev
0 x00007 f f f 3db fb75c 3
perm
0 x00007 f f f 3db fb788 1
b i t r ev
0 x00007 f f f 3db fb758 1
0 x00007 f f f 3db fb75c 3

Figure 5.9: xQUAD memory map example

62 CHAPTER 5. THE XQUAD TOOL

However, such a memory map file can get quite big, and most times it becomes
unfeasible to inspect. In fact, as explained before, it is adviced to perform a memory
map analysis based on time slice snapshot, generating a more contained memory map
file. The example in figure 5.9 is taken from an analysis made with a time slice snapshot
of every 10000 instructions. Also, even though the produced file is generated with a real
application (see Chapter 6), it should be mentioned that the showed memory map is
adjusted to give a general idea of the file, and thus some addresses are omitted.

Nevertheless, after having generated a memory map file, the developer may want to
filter out addresses based on their memory region. This will show in detail the typeof
memory used by a certain function. Additionally, statistics can be gained about this
usage, e.g., the ratio of used local memory versus main memory. Table 5.2 demonstrates
this by using a function from the Wave Field Synthesis (WFS) application, which is
described in more detailed in the case study in Chapter 6.

Table 5.1: Example of statistics for the wav load function from the WFS application
nr of addresses total nr of accesses

Stack addresses 138 20597714
Heap addresses 502127 730790
Data addresses 57 33559334

Besides generating flat, text based files, users may want to visualize the generated
memory map files so to gain a faster and more abstract idea of the general memory
behaviour. An example borrowed from Chapter 6 is showed in Figure 5.4.1. In Chapter
6 more examples are described and exaplained more in detail.

Figure 5.10: Example of memory visualization

The xy-axes in Figure 5.4.1 represents a certain memory region space of an application
(heap, stack, or data region). The z-axis represents the number of accesses on this
particular memory location.

5.5. DETAILED VARIABLE REPORT FILE 63

5.5 Detailed Variable report file

The other option in xQUAD is to produce a detailed flat file, describing the details of
the memory usage on variables level. The file contains information like

• Effective Address of the variable

• Name of the variable augmented with the function name it belongs to

• Type of operation done on the specific memory location, i.e. read/write

• Number of time a specific variable is referenced

• Timestamp at which a certain variable emmory address access is done

An excerpt from a detailed variable memory usage file is showed in Table ??. This
example is also taken from the WFS application, which is described in the next chapter.

Table 5.2: Example of statistics for the wav load function from the WFS application
MEMORY ADDRESS VARIABLE NAME R/W COUNT TIME STAMP

0x7ffffff19638 k::fft1d R 615 1006400000
0x7ffffff19620 u::fft1d R 615 1006410000
0x7ffffff19620 u::fft1d W 615 1006420000

Such a detailed file can be filtered, again according to the specific needs of the
developer, so that detailed information on variables and timing in which these variables
are active can be retrieved. Of course, the user may want to run the xQUAD tool for a
specific variable only, omitting other variables and thus producing a more contained file.

5.6 Conclusion

This chapter described the xQUAD tool, a tool that reports detailed memory usage data
of applications. xQUAD augments the analysis provided by the QUAD and tQUAD tools
(see Chapter 4) with both a global analysis about applications and a detailed analysis
of the memory usage inside a kernel. It permits to selectively perform an analysis based
on a MONITOR file, that the user is required to provide before executing the tool.

The data generated by xQUAD can be filtered out to get specific information about
the memory behaviour of an application, according to the user needs. These informa-
tion can be applied during stages in a HW/SW co-design methodology, like partitioning,
mapping and scheduling of an application on a heterogeneous platform containing re-
configurable devices. Furthermore, the produced information can serve as an hint for
optimizing applications.

The architecture and implementation of xQUAD is similar to the tools described
in Chapter 4, developed using the Pin[22] DBI framework, described in Chapter ??.
However, the Pin framework does not provide any API for accessing low-level source code
information. Hence, to provide xQUAD with such a facility, an external module (i.e.,
outiside the Pin framework) is implemented, using the DWARF Debugging Information
library.

64 CHAPTER 5. THE XQUAD TOOL

xQUAD is developed and tested on IA32 and Intel 64 platforms, with a Linux op-
erating system. As a future work, this tool can be ported to other operating systems
and/or other architectures. In fact, the Pin framework provides support for multiple
architectures and binaries (see Chapter 3.3).

The next chapter discusses the usage of xQUAD on a case study on the Wave Field
Synthesis[5] audio processing application.

Case Study: Wave Field

Synthesis 6
This chapter demonstrates the usage of the tool described in Chapter 5 on the hArtes
Wave Field Synthesis (WFS) audio processing application. The main goal is to present
a detailed memory usage behaviour of this application. The extracted information can
be applied during critical decisions in HW/SW Co-design stages, especially for HW/SW
partitioning, mapping and scheduling of the application for an heterogeneous reconfig-
urable platform. Furthermore, the information acquired during this analysis can be
used to spot memory related bottlenecks and to revise the application code so that data
communication to/from the memory subsystem, is improved.

This case study will show the potentialities of the xQUAD tool by inspecting the
behaviour of the memory accesses of the WFS application. In particular, the tool is used
to show the global memory usage of the application, and the intensity and behaviour of
the memory usage in different memory regions (i.e. stack, heap, data).

Additionally, a ranking method is presented which tries to extract the memory penalty
factor for a kernel from the cumulative execution time retrieved with the gprof general
profiler. This could give an indication of the memory intensity of a kernel relative to its
execution time. However, this metric does not reflect any particular quantitative value
of measurement, but it only computes an index by taking the ratio of memory accesses
over gprof time. This index is therfore only applicable for comparison purposes between
kernels, which permits to draw up a ranking method.

6.1 Introduction to Wave Field Synthesis

The Wave Field Synthesis[5] concept is a 3D audio rendering technique characterized
by the creation of a virtual source and a virtual room. WFS is based on the Huygens
principle, which, informally, states that each point in a wave front can be considered
as a primary source for the creation of new, secondary waves, which in turn become a
primary source for other waves. Hence, an advancing wave can be seen as constructed
by the summation of all the secondary waves arising from previously primary source
waves. This principle is reproduced by loudspeaker arrays that generate a complete
sound field in the listening zone which is identical to an appropriate real sound event.
By recording a sound emitted from a source (S) with an array of n microphones (M), and
then by reproducing these recorded microphone signals with an array of equally arranged
n loudspeakers, the synthesized wave front is created and propagated through a listening
area. In any place in the listening area, a listener perceives a realistic reproduction of
the primary virtual sound source. In other words, as the listener moves, for instance,
along the loudspeaker array, he/she hears the sound in the same direction as it was
originally propagated by the virtual sound source, i.e. when the listeners moves towards
the location of a virtual source the amplitude of the sound increases in a realistic way[36].

65

66 CHAPTER 6. CASE STUDY: WAVE FIELD SYNTHESIS

Figure 6.1, adapted from [36], depicts the described situation.

Figure 6.1: Principle of WFS. Source S1 and S2 emit a spherical wave, while source S3
propagate a plane wave. These three sources propagate their signal, which is captured
and recorded by an array of microphones M. These signals are then reproduced by an
equally arranged array of loudspeakers L, propagated into a listening area. In this area,
listener X and Y perceive a realistic sound, e.g. listener X perceives the sound from
virtual source S1 differently than listener Y, as the direction of the waves is reproduced
accordingly.

The hArtes WFS application provided by Fraunhofer IDMT[1] implements a self-
contained wave field synthesis system.

6.2 Experimental Setup

The experiments were executed on an Intel 64-bit Core 2 Quad CPU Q9550 @ 2.83GHz
with a main memory of 8GB, running Linux kernel v2.6.18-164.6.1.e15. The hArtes WFS
source code was compiled with gcc v4.1.2. To be able to read debugging information, the
source code is compiled with the -g flag enabled. Also, to use the gprof general profiler,
the program is compiled with the -pg flag on. xQUAD is executed with a time slice
interval ranging from 500 to 10000 instructions per time slice. Furthermore, xQUAD is
run with the -memory map and the variable monitor list command-line options, which
used to enable an analysis based on the general memory behaviour of the application
and for retrieving detailed information about variable memory tracing, respectively. The
hArtes WFS runs in off-line mode. This means that the input audio source is read from a
file instead of an audio device. In all the experiments, one primary source and thirty-two
secondary source (S and L respectively, see Figure 6.1) are assumed, in an acoustical
area of 50 square meters.

6.3. MEMORY ACCESS BEHAVIOUR OF WFS 67

6.3 Memory Access Behaviour of WFS

Running xQUAD with the command line option -memory map enables the production
of the memory map file, which describes the memory access behaviour of WFS during
its execution. By post-processing this file, we create three different files where each of it
contains memory accesses from a particular memory region, viz., stack, heap, and data
memory addresses. As a first step, to get a first impression into the global memory
usage of WFS, we visualize these distinct memory flat files. Figures 6.3 and 6.3 show
snapshots of the usage of the heap memory address space taken at different times during
the execution of WFS. The memory locations are mapped on the xy-axes, while the
intensity of each memory address is revealed by the z-axis. It turns out that from the
begin till approximately the half of the execution time there is a sparse usage of heap
memory addresses, while during the second half of the execution time this usage becomes
more intensive for a certain range of heap addresses.

(a) Near the begin of execution time (b) Near the half of execution time

Figure 6.2: Snapshots of the heap memory usage of WFS for the first half of the execution
time

The behaviour of intensive heap addresses usage is accounted to the wav store func-
tion, which becomes active, approximately at the middle of the execution time of WFS
and is the only active function till the end of the execution. This can be explained by the
fact that wav store saves the output audio signals produced during its execution from
the buffers allocated in memory to an output file in the wav format. To accomplish this,
it uses mostly individual heap addresses, which explains the intensive heap usage.

Table 6.1 summarizes all the memory accesses of WFS along with the number of indi-
vidual memory addresses used. This table confirms the discussed behaviour of wav store,
as we can see that the number of individual memory addresses for accessing the main
memory is considerably higher compared with the other functions. These results are
recorded with a time slice length of 500 instructions, i.e. these results are describing
almost completely the actual behaviour of WFS w.r.t. its memory usage. Nevertheless,

68 CHAPTER 6. CASE STUDY: WAVE FIELD SYNTHESIS

(a) Near the begin of execution time (b) Near the half of execution time

Figure 6.3: Snapshots of the heap memory usage of WFS for the second half of the
execution time

using a larger time slice, and thus reducing analysis time and disk space usage, can still
give an attendable average of memory usage1. It should be avoided, however, to choose
a too large time slice, as then possibly too much information will be lost.

Table 6.1: Memory usage statistics for the hArtes wfs application.
stack heap data

kernel number of total number number of total number number of total number
addresses of accesses addresses of accesses addresses of accesses

wav store 38 3160179 35935 291844 537 131932
fft1d 33 2192660 6 13 9 59
DelayLine processChunk 41 893129 3 5 9 25
bitrev 26 922918 7 32443 10 64303
zeroRealVec 19 324462 3 281 7 504
AudioIo setFrames 14 665 32 32 5 12
perm 22 126662 5 17 10 50
cadd 24 86742 5 16155 10 32378
cmult 24 123200 6 16173 10 32251
Filter process 20 81054 5 19 9 47

The values in this table are recorded with an analysis based on a time slice of 500 instruction cycles.

Interesting to see in Table 6.1 is the behaviour of the AudioIO setFrames function.
This function is responsible for copying interleaved audio signal parts into corresponding
audio frame in memory. As explained earlier, this study is conducted assuming thirty-
two secondary sources (i.e. an array of 32 loudspeakers). Hence, AudioIO setFrames
needs 32 distinct addresses for accomplishing its job.

Besides heap, inspecting the local memory of an application can also give interesting
insights. The information is also summzrized in Table 6.1. However, the information in

1The produced memory map file for WFS with a slice of 500 instructions is almost 50MB. In case of
storing each instruction the produced file can grow up into the GB range. It is therefore advisable to
choose a larger time slice

6.3. MEMORY ACCESS BEHAVIOUR OF WFS 69

Table 6.1 can be misleading, as it does not take into account the number of times that
a specific function is called. Therefore, WFS is also compiled with profiling information
on to make possible the use of the gprof general profiler. The results of executing gprof
on WFS are summarized in Table 6.2.

Here, wav store and fft1d are the top two kernels. These two kernels take approxi-
mately sixty percent of the whole execution time of the application. Furthermore, Table
6.2 does report the number of times a specific function is invoked. At a first sight, in
Table 6.1, the bitrev function shows a high frequency of stack usage. However, this func-
tion is called over 2 million times, which reduces the number of local memory accesses to
only a few per call. To gain this information on a high level of abstractness, i.e. without
diving directly into numeric values of memory usage, again the visualization feature can
be used.

Table 6.2: Flat profile for the hArtes wfs application.

self self total
kernel %time seconds calls ms/call ms/call
wav store 31.91 0.28 1 277.25 277.25
fft1d 28.23 0.25 984 0.25 0.25
DelayLine processChunk 14.23 0.12 493 0.25 0.38
bitrev 8.19 0.07 2015232 0.00 0.00
zeroRealVec 7.44 0.06 15782 0.00 0.00
AudioIo setFrames 4.01 0.03 493 0.07 0.07
perm 2.07 0.02 984 0.02 0.09
cadd 0.79 0.01 1009664 0.00 0.00
cmult 0.73 0.01 1009664 0.00 0.00
Filter process 0.71 0.01 493 0.01 0.73
wav load 0.44 0.00 1 3.80 3.80
Filter process pre 0.35 0.00 493 0.01 0.35
zeroCplxVec 0.28 0.00 495 0.00 0.00
r2c 0.16 0.00 490 0.00 0.00
c2r 0.14 0.00 493 0.00 0.00
AudioIo getFrames 0.14 0.00 489 0.00 0.00
ffw 0.08 0.00 2 0.35 0.35
vsmult2d 0.02 0.00 7026 0.00 0.00
calculateGainPQ 0.02 0.00 6994 0.00 0.00
PrimarySource deriveTP 0.02 0.00 236 0.00 0.00
ldint 0.01 0.00 1 0.10 0.10

Figure 6.3 shows a typical starting situation of the WFS application, where the most
of the stack usage is accounted for a recurring sequence of the functions bitrev, perm,
fft1d, and DelayLine processChunk.

Snapshots are also taken during approximately the half of the execution time for the
same functions. As Figure 6.3 shows, the memory behaviour of these functions remains
the same. This is true for the entire execution of the application, and also for most
other functions, especially for those functions responsible for mathematical operations
or preliminary work on the audio frames, which mostly conduct the same operations for
each function call.

The last execution phases of the discussed functions show a memory access behaviour,
depicted in Figure 6.3, which is consistent with the behaviour of these functions in the
other two cases. However, as we explained before through the usage of the heap memory

70 CHAPTER 6. CASE STUDY: WAVE FIELD SYNTHESIS

(a) bitrev (b) perm

(c) fft1d (d) DelayLine processChunk

Figure 6.4: Snapshots of the stack memory usage of the WFS during begin of the exe-
cution time

visualization, the last active function producing interesting memory usage in the program
is wav load. In Figure 6.3 it becomes apparent that this function exhibits an intensive
memory usage behaviour also for local memory.

6.4 Ranking of Memory Intensive WFS Kernels

We also tried to calculate the time spent on memory operations w.r.t. the time spent
for computations. The gprof profiler provides a cumulative time for each kernel, failing
to distinguish between time spent on computations and time spent on memory oper-
ations. Selection of potential candidates for hardware implementation based on only
the computational intensity cannot be regarded as an accurate metric in the context of
reconfigurable computing systems. The reason for this is the high communication data
that a system must provide to reconfigurable devices. See Chapter 2 for more informa-
tion. Finding the time that is spent on a memory access is an arduous task, as this time
depends extensively on the intrinsic nature of the underlying platform. This becomes
even harder when operating on CISC systems. As no easy way exists for estimating the

6.4. RANKING OF MEMORY INTENSIVE WFS KERNELS 71

(a) bitrev (b) perm

(c) fft1d (d) DelayLine processChunk

Figure 6.5: Snapshots of the stack memory usage of the WFS during approximately half
of the execution time

time taken for a memory access, we developed a ranking system to help the estimation of
the time spent on memory w.r.t. the time spent on calculations. Under the assumption
that

number of memory accesses ∼ time2

total cumulative time ∼ time

we find an index that can be used as a metric for discriminating between the memory
intensiveness of kernels. This index is calculated by

memory accesses

total cumulative time

The total cumulative time is retrieved from the gprof profiler in Table 6.2, while the
memory access data is listed in Table 6.1. In this case, the stack accesses of the kernels
are not taken into account, as most time penalty is expected to be for accessing the
heap and data segment of the memory subsystem. In Table 6.3, theMemory Accesses

2Given two variables y and x, y ∼ x denotes the proportionality relation between these two variables.

72 CHAPTER 6. CASE STUDY: WAVE FIELD SYNTHESIS

(a) bitrev (b) fft1d

(c) DelayLine processChunk (d) wav load

Figure 6.6: Snapshots of the stack memory usage of the WFS during the end of the
execution time

column reports the sum of the heap and memory accesses, while the gprof Time is
the cumulative time spent on executing a kernel (see Table 6.2). The Index column
indicates the memory intensiveness of the kernel relative to the cumulative time spent
in the kernel.

Table 6.3: Rank of WFS kernels

Kernel Number of gprof Time Index
Memory Accesses in sec.

wav store 423776 0.28 1513486
bitrev 96746 0.07 1382086
zeroRealVec 785 0.06 13083
AudioIo setFrames 44 0.03 1467
fft1d 72 0.25 288
DelayLine processChunk 30 0.12 250

Table 6.3 sorts the kernels from the most intensive kernels to the least intensive, based
on the calculated Index. As expected, wav store is still accounted as the most expen-
sive kernel in terms of memory usage. Interestingly, fft1d and DelayLine processChunck,
which were accounted as the second and third most expensive kernels (according to gprof
profiling information) drop to the last of this list when we consider our Indexing scheme.

6.5. CONCLUSION 73

This means that the time spent for memory accesses relative to the total, cumulative
time spent in the kernels, is not dominating, which makes these kernels good candidates
for hardware implementation. Additionally, it was confirmed by Table 6.1 where fft1d
and DelayLine processChunck show an intensive behaviour on local memory and access
rarely the main memory. However, to effectively take advantage of the hardware im-
plementation of these two kernels, their input buffer should be also be implemented on
chip.

6.5 Conclusion

This chapter discussed the usage of the xQUAD memory analysis tool applied to the
Wave Field Synthesis audio processing application. By producing a memory map of
the application, interesting information can be gained on the memory usage behaviour
of the application. Visualizing this memory map revealed that during the end of the
application’s execution time, a high intensity of main memory addresses usage occurs.
By parsing the memory map file, statistical information about the memory usage of the
application could be gained, which showed that this intensive memory usage was due to
a specific function. Furthermore, it is showed how, by mean of visualization, a certain
recurrent pattern could be revealed about the usage of local memory addresses.

Finally, we presented an indexing system that permitted us to make a ranking of
kernels based on their memory usage. This revealed that the most computationally
intensive kernel (wav load) it also shows the most memory instensive behaviour amonng
all kernels. However, the second and third most computational intensive kernels doe not
exhibit a high memory behaviour, which would them make a good solution for hardware
implementation.

In future work, the analysis conducted here can be extended and validated through
other analyses, possibly coupling the xQUAD tool together with the QUAD and tQUAD
tools described in Chapter 4.

74 CHAPTER 6. CASE STUDY: WAVE FIELD SYNTHESIS

Conclusion and Future Work 7
In this chapter a conclusion is drawn about the work in this thesis. Furthermore, some
suggestions for future work are presented.

7.1 Conclusion

The primary obstacle for improving overall computing system performances arises from
the communication bottleneck between a (general-purpose) processor and the memory
subsystem. This bottleneck is even more evident with the introduction of heterogenous
architectures containing reconfigurable devices. To alleviate this problem, a thorough
analysis of the memory access patterns of an application is of vital importance.

The aim of this thesis project was the development of a detailed memory access
analyzer, xQUAD, which augments the analysis done by QUAD and tQUAD. QUAD,
tQUAD and xQUAD are intended to be an integral part of the dynamic profiling stage
of the Delft Workbench and the hArtes toolchains. These toolchains currently profile
applications using a general profiler, which does not distinguish between computation
time and memory access time. Therefore, during this stage it is not possible to reveal
possible memory-related bottlenecks of an application. Hence the need for these tools
to have some dynamic memory access analyzer tool.

xQUAD is able to perform a memory access analysis at two levels of detail. The
finest level performs a memory access behaviour of the variable inside a function. To
produce more readable data, xQUAD augments the memory analysis with low-level
source information. Furthermore, xQUAD is able to produce a global memory map of
the application, where the data access patterns of each function is output to (text) flat
report files.

Detailed information on the memory access behaviour inside a function can deliver
important information for optimization purposes on a fine grain scale and for discovering
possible unusual behaviour of data objects used in such a function. Performing an
analysis only on a function grain would hide the internal memory access behaviour of
the function.

The xQUAD is furthermore tested with the Wave Field Synthesis application. In
this case study the memory access patterns of WFS is inspected, both by visualizing the
memory access patterns and by collecting statistics on the memory usage. Visualizing
the memory behaviour of WFS revealed that near the end of its execution time, WFS
shows an intensive main memory usage. Later, this intensive memory usage appeared
to be produced by a single specific function. Visualization of the local memory showed
a recurrent memory access behaviour.

Finally, an indexing system is presented, which permitted us to rank the kernels
inside WFS.

75

76 CHAPTER 7. CONCLUSION AND FUTURE WORK

7.2 Future Work

In this section, some directions for future research and improvements are presented.
Due to lack of time, it was not possible to perform more case studies. However,

performing a set of case studies on several applications could reveal some common char-
acteristics about their memory access behaviour. Interesting would be to perform case
studies among a set of application in the multimedia domain.

Furthermore, the metric used in the case study described in Chapter 6 could be
improved. In fact we know the number of accesses to the local memory and the number
of those which access the main memory. Retrieving the number of cycles needed for a
main memory access could permit us to distinguish the memory access time from the
computation time.

Finally, the xQUAD tool could be ported to other architectures and operating sys-
tems. Currently, the xQUAD tool is developed and tested on x86 architectures running
a Linux operating system. Porting xQUAD to other architectures requires to use a Pin
framework that supports that architecture. The xQUAD application is for most part
portable to other architecture, as the Pin framework will internally handle most of the
conversion necessities. Nevertheless, xQUAD (and the QUADs toolset in general) uses
some archicture specific instructions, which would require to be changed accordingly.
Porting xQUAD to other operating systems really depends on the supported object
file format of the target OS. In case ELF is not supported, a new module for reading
debugging information form the object file would be necessary.

Bibliography

[1] Fraunhofer Institute for Digital Media Technology,
http://www.idmt.fraunhofer.de/eng/research_topics/wave_field_synthesis.htm.

[2] gcov, http://gcc.gnu.org/onlinedocs/gcc/Gcov.html.

[3] David Anderson, A consumer library interface to dwarf, (2010).

[4] David Andrews, Douglas Niehaus, and Peter Ashenden, Programming models for
hybrid cpu/fpga chips, Computer 37 (2004), no. 1, 118–120.

[5] A. J. Berkhout, D. de Vries, and P. Vogel, Acoustic control by wave field synthesis,
The Journal of the Acoustical Society of America 93 (1993), no. 5, 2764–2778.

[6] K.L.M. Bertels, G.K. Kuzmanov, E. Moscu Panainte, G. N. Gaydadjiev, Y. D.
Yankova, V.M. Sima, K Sigdel, R. J. Meeuws, and S. Vassiliadis, Profiling, compila-
tion, and hdl generation within the hartes project, FPGAs and Reconfigurable Sys-
tems: Adaptive Heterogeneous Systems-on-Chip and European Dimensions (DATE
07 Workshop), April 2007, pp. 53–62.

[7] K.L.M. Bertels, S. Vassiliadis, E. Moscu Panainte, Y. D. Yankova, C. Galuzzi,
R. Chaves, and G.K. Kuzmanov, Developing applications for polymorphic proces-
sors: the delft workbench, (2006), 7.

[8] Tony M. Brewer, Instruction set innovations for the convey hc-1 computer, IEEE
Micro 30 (2010), 70–79.

[9] Derek Bruening, Timothy Garnett, and Saman Amarasinghe, An infrastructure for
adaptive dynamic optimization, CGO ’03: Proceedings of the international sympo-
sium on Code generation and optimization (Washington, DC, USA), IEEE Com-
puter Society, 2003, pp. 265–275.

[10] A.N.M. Imroz Choudhury, Kristin C. Potter, and Steven G. Parker, Interactive
visualization for memory reference traces, Computer Graphics Forum 27 (2008),
no. 3, 815–822.

[11] Katherine Compton and Scott Hauck, Reconfigurable computing: a survey of sys-
tems and software, ACM Comput. Surv. 34 (2002), no. 2, 171–210.

[12] Giovanni De Micheli and Rajesh K. Gupta, Hardware/software co-design, (2002),
30–44.

[13] Brewer Dongarra, O. Brewer, O. Brewer, J. Dongarra, J. Dongarra, D. Sorensen,
and D. Sorensen, Tools to aid in the analysis of memory access patterns for fortran
programs, Parallel Computing 9 1 (1988), 25–35.

[14] Michael J. Eager, Introduction to the dwarf debugging format, (2007).

77

http://www.idmt.fraunhofer.de/eng/research_topics/wave_field_synthesis.htm
http://gcc.gnu.org/onlinedocs/gcc/Gcov.html

78 BIBLIOGRAPHY

[15] Karl-Filip Faxén, Konstantin Popov, Sverker Jansson, and Lars Albertsson, Embla
- data dependence profiling for parallel programming, CISIS ’08: Proceedings of
the 2008 International Conference on Complex, Intelligent and Software Intensive
Systems (Washington, DC, USA), IEEE Computer Society, 2008, pp. 780–785.

[16] C. Galuzzi and K.L.M. Bertels, A framework for the automatic generation of
instruction-set extensions for reconfigurable architectures, International Workshop
on Applied Reconfigurable Computing (ARC), March 2008, pp. 280–286.

[17] Susan L. Graham, Peter B. Kessler, and Marshall K. Mckusick, Gprof: A call graph
execution profiler, SIGPLAN Not. 17 (1982), no. 6, 120–126.

[18] S. Hauck, T. W. Fry, M. M. Hosler, and J. P. Kao, The chimaera reconfigurable func-
tional unit, FCCM ’97: Proceedings of the 5th IEEE Symposium on FPGA-Based
Custom Computing Machines (Washington, DC, USA), IEEE Computer Society,
1997, p. 87.

[19] Scott Hauck and Andre DeHon, Reconfigurable computing: The theory and practice
of fpga-based computation, Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2007.

[20] John R. Hauser and John Wawrzynek, Garp: A mips processor with a reconfigurable
coprocessor, 1997, pp. 12–21.

[21] John L. Hennessy and David A. Patterson, Computer architecture: A quantitative
approach (the morgan kaufmann series in computer architecture and design), Mor-
gan Kaufmann, May 2007.

[22] Chi keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa, and Reddi Kim Hazelwood, Pin: Building
customized program analysis tools with dynamic instrumentation, In Programming
Language Design and Implementation, ACM Press, 2005, pp. 190–200.

[23] William H. Mangione-Smith, Brad Hutchings, David Andrews, André DeHon, Carl
Ebeling, Reiner Hartenstein, Oskar Mencer, John Morris, Krishna Palem, Viktor K.
Prasanna, and Henk A. E. Spaanenburg, Seeking solutions in configurable comput-
ing, Computer 30 (1997), no. 12, 38–43.

[24] Margaret Martonosi, Anoop Gupta, and Thomas Anderson, Memspy: analyzing
memory system bottlenecks in programs, SIGMETRICS Perform. Eval. Rev. 20
(1992), no. 1, 1–12.

[25] R. J. Meeuws, K Sigdel, Y. D. Yankova, and K.L.M. Bertels, High level quantita-
tive interconnect estimation for early design space exploration, Proc. of ICFPT ’08,
December 2008, pp. 317–320.

[26] Bingfeng Mei, Serge Vernalde, Diederik Verkest, Hugo De Man, and Rudy Lauw-
ereins, Adres: An architecture with tightly coupled vliw processor and coarse-grained
reconfigurable matrix, 2003, pp. 61–70.

BIBLIOGRAPHY 79

[27] Nicholas Nethercote and Julian Seward, Valgrind: a framework for heavyweight dy-
namic binary instrumentation, PLDI ’07: Proceedings of the 2007 ACM SIGPLAN
conference on Programming language design and implementation (New York, NY,
USA), ACM, 2007, pp. 89–100.

[28] S. A. Ostadzadeh, R. J. Meeuws, K Sigdel, and K.L.M. Bertels, A multipurpose
clustering algorithm for task partitioning in multicore reconfigurable systems, Proc.
of CISIS, 2009, pp. 663–668.

[29] S. Arash Ostadzadeh, Marco Corina, Carlo Galuzzi, and Koen Bertels, tquad -
memory bandwidth usage analysis, 2010.

[30] S. Arash Ostadzadeh, Roel Meeuws, Carlo Galuzzi, and Koen Bertels, Quad - a
memory access pattern analyser, Proc. of ARC 2010, 2010, pp. 269–281.

[31] S. Arash Ostadzadeh, Roel J. Meeuws, Kamana Sigdel, and Koen Bertels, A clus-
tering framework for task partitioning based on function-level data usage analysis,
Proc. of FPGA ’09, 2009, pp. 279–279.

[32] E. Moscu Panainte, K.L.M. Bertels, and S. Vassiliadis, The molen compiler for
reconfigurable processors, ACM Transactions in Embedded Computing Systems
(TECS) (2007).

[33] Preeti Ranjan Panda, Nikil D. Dutt, and Alexandru Nicolau, On-chip vs. off-chip
memory: the data partitioning problem in embedded processor-based systems, ACM
Trans. Des. Autom. Electron. Syst. 5 (2000), no. 3, 682–704.

[34] Parthasarathy Ranganathan, Sarita Adve, and Norman P. Jouppi, Performance of
image and video processing with general-purpose processors and media isa exten-
sions, Computer Architecture, International Symposium on 0 (1999), 0124.

[35] Amar Shan, Heterogeneous processing: a strategy for augmenting moore’s law, Linux
J. 2006 (2006), no. 142, 7.

[36] G. Theile and WittekH., Wave field synthesis: A promising spatial audio rendering
concept, Acoustical Science and Technology (2004), 393–399.

[37] T.J. Todman, G.A. Constantinides, S.J.E. Wilton, O. Mencer, W. Luk, and P.Y.K.
Cheung, Reconfigurable computing: architectures and design methods, IEE Proceed-
ings - Computers and Digital Techniques 152 (2005), no. 2, 193–207.

[38] Tools Interface Standards Committee, Executable and linkable format(ELF).

[39] Inc. Unix International, Dwarf debugging information format, vesion 2, (1993).

[40] Peter van der Linden, Expert c programming: deep c secrets, Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1994.

[41] S. Vassiliadis, G. N. Gaydadjiev, K.L.M. Bertels, and E. Moscu Panainte, The
molen programming paradigm, Proceedings of the Third International Workshop on
Systems, Architectures, Modeling, and Simulation, July 2003, pp. 1–10.

80 BIBLIOGRAPHY

[42] S. Vassiliadis, S. Wong, G. N. Gaydadjiev, K.L.M. Bertels, G.K. Kuzmanov, and
E. Moscu Panainte, The molen polymorphic processor, IEEE Transactions on Com-
puters (2004), 1363– 1375.

[43] Guru Venkataramani, Ioannis Doudalis, Yan Solihin, and Milos Prvulovic, Mem-
tracker: An accelerator for memory debugging and monitoring, ACM Trans. Archit.
Code Optim. 6 (2009), no. 2, 1–33.

[44] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan
Thesing, David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heck-
mann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat,
and Per Stenström, The worst-case execution-time problem—overview of methods
and survey of tools, ACM Trans. Embed. Comput. Syst. 7 (2008), no. 3, 1–53.

[45] Wayne Wolf, Computers as components: principles of embedded computing system
design, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2001.

[46] Rong Yan and Seth Copen Goldstein, Mobile memory: Improving memory locality
in very large reconfigurable fabrics, FCCM, 2002, pp. 195–204.

[47] Y. D. Yankova, G.K. Kuzmanov, K.L.M. Bertels, G. N. Gaydadjiev, Y. Lu, and
S. Vassiliadis, Dwarv: Delftworkbench automated reconfigurable vhdl generator, In
Proceedings of the 17th International Conference on Field Programmable Logic and
Applications (FPL07), August 2007, pp. 697–701.

	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Problem Definition
	Thesis outline

	Background
	The Need for Heterogenous Reconfigurable Architectures
	The MOLEN Processor and Programming Paradigm
	Memory Communication Bottleneck
	Hardware Exploitation Methods
	Software Exploitation Methods
	Concluding Remarks

	Motivation for Improved Memory Analysis
	Hardware/Software Co-design
	Design Space Exploration
	Hardware/Software Partitioning and Mapping

	Delft Workbench
	hArtes
	Motivation for Dynamic Memory Analysis Tools
	Conclusion

	Analysis Techniques
	Program Analysis
	Dynamic Binary Instrumentation
	DynamoRIO
	Valgrind
	pin

	Pin
	Evaluation of Pin
	Comparison of Pin against Other DBIs
	Pro et Contra of Pin

	Pin Instrumentation API
	Calling Pin
	Conclusion

	QUAD: Sophisticated Memory Patterns Analysis Tools
	QUAD - Quantitative Usage Analysis of Data
	QUAD Objective
	QUAD Design and Implementation
	How QUAD Works
	QUAD's Example Outputs

	tQUAD
	tQUAD Objectives
	tQUAD Design and Implementation
	How tQUAD Works
	tQUAD's Example Output

	Concluding Remarks - The xQUAD Tool

	The xQUAD Tool
	Introduction and overview of xQUAD
	Background Information
	Object File Overview
	DWARF Debugging Format
	DWARF Consumer Library

	xQUAD Architecture
	xQUAD Design and Implementation
	DWARF Debugging Information Module
	Pin API calls and Analysis Routines
	How xQUAD Works: Functionalities and Restrictions

	xQUAD Analysis Output Examples
	Memory Map Report File

	Detailed Variable report file
	Conclusion

	Case Study: Wave Field Synthesis
	Introduction to Wave Field Synthesis
	Experimental Setup
	Memory Access Behaviour of WFS
	Ranking of Memory Intensive WFS Kernels
	Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

