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 A B S T R A C T

In this paper, we investigate the phase equilibrium problem for multicomponent mixtures under specified 
internal energy (𝑈), volume (𝑉 ), and mole numbers (𝑁1, 𝑁2,… , 𝑁𝑛), commonly known as the UVN-flash 
problem. While conventional phase equilibrium calculations typically use pressure–temperature-mole number 
(𝑃𝑇𝑁) specifications, the UVN formulation is essential for dynamic simulations of closed systems and energy 
balance computations. Existing approaches, including those based on iterative pressure–temperature updates 
and direct entropy maximization, can suffer from computational inefficiencies due to inner Newton iterations 
needed to solve for temperature 𝑇  at specified internal energy 𝑈 and volume 𝑉 .

In this work, we present a reformulation of the UVN-flash problem that eliminates the need for the inner 
Newton iterations, addressing a computational bottleneck. We begin with stability analysis and discuss a 
strategy to generate the initial guess for the UVN-flash from the stability analysis results. We then reformulate 
the UVN-flash problem in TVN-space as constrained entropy maximization. We provide a detailed derivation 
of Michelsen’s Q-function using the method of Lagrange multipliers, illustrating its direct application in solving 
the UVN-flash problem. Furthermore, we discuss the numerical methods used, including gradient and Hessian 
computations. The reformulation is validated against benchmark cases, demonstrating improved efficiency.
1. Introduction

We investigate the phase equilibrium calculations for multicompo-
nent mixtures under specified internal energy (𝑈), volume (𝑉 ), and 
mole numbers (𝑁1, 𝑁2,… , 𝑁𝑛), commonly referred to in the literature 
as the UVN-flash problem. Compared to the more conventional PTN-
flash (e.g., [1–3]) (where pressure, temperature, and mole numbers are 
specified), the UVN specification is less commonly addressed. However, 
it plays a crucial role in various thermodynamic applications where 
energy and volume are specified, such as in the dynamic simulation 
of closed systems and energy balance calculations in process design. 
Notably, the UVN-flash formulation proves to be particularly valu-
able in non-isothermal problems, such as those encountered in the 
dynamic simulation of tanks and CO2 injection in geological storage. 
Key contributions in this area include [4–8].

Additionally, the UVN-flash problem has been explored in the work 
of several researchers, often alongside other non-isothermal flash for-
mulations such as PHN, PSN, or TVN flashes. Early foundational work 
by Brantferger et al. [9] introduced the unconstrained minimization 
approach for PHN-flash calculations, later extended by Castier [10], 
Smejkal et al. [11] and Paterson et al. [12]. Further developments in 
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RAND-based formulations for non-isothermal flashes, including UVN-
flash, were presented by Paterson et al. [13–15]. Furthermore, Lipovac 
et al. [16] recently proposed a unified framework for PHN and UVN 
flashes, solving phase stability and flash problems simultaneously. Fathi 
et al. [17] investigated volume-based flash methods applicable to UVN 
scenarios. These studies have collectively advanced the understanding 
of multiphase equilibrium under non-isothermal constraints, though 
UVN-flash remains less explored compared to its PHN counterpart.

Michelsen [18] proposed a general framework to address flash prob-
lems under various specifications, including UVN. His approach utilizes 
the PTN-flash in an inner loop while iteratively updating pressure and 
temperature in an outer loop. This strategy combines both a nested-loop 
method using the Q-function and a direct Newton iteration approach, 
with the latter being employed whenever possible for efficiency. The 
advantage of this method is that it leverages existing PTN-flash solvers. 
However, the nested iterations inherent in the Q-function method can 
become computationally expensive. Notably, within the same seminal 
work, Michelsen also tabulated Q-functions for UVN flash based on 
temperature and volume (TV-based) variables (see Table 3 in [18]), 
though their explicit derivations were not provided.
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One of the earliest works addressing the UVN-flash problem is by 
Saha et al. [19]. In this paper, the authors developed heuristics to 
estimate pressure and temperature corresponding to specified UVN con-
ditions. Their approach combined successive substitution (fixed-point 
iteration) for updating equilibrium 𝐾-values with Newton’s method 
for pressure and temperature updates. However, they often encoun-
tered convergence to trivial solutions, limiting the robustness of their 
method.

Bi et al. [20] reformulated the UVN-flash problem using the Rachford
Rice equation while ensuring pressure equilibrium and enforcing in-
ternal energy and volume constraints. Their approach employed fixed-
point iteration with soft tolerance, followed by Newton’s method for 
refinement.

A significant contribution on UVN flash is found in the work of 
Castier [10], who proposed direct entropy maximization as an al-
ternative approach. In his method, the algorithm adaptively adds or 
removes phases as needed during the computation. However, obtaining 
a good initial phase split requires a reasonable estimate of pressure and 
temperature, which has to be determined using heuristics. In cases of 
numerical difficulties, Castier’s method switches to a PTN-flash solver 
for the inner loop while adjusting pressure and temperature in the outer 
loop, ensuring that 𝑈 and 𝑉  approach their specified values. Once 
sufficient estimates for 𝑃  and 𝑇  are found, the algorithm returns to 
direct entropy maximization.

Another important contribution is by Smejkal et al. [11], who 
also applied direct entropy maximization for both stability and flash 
calculations. They used the stability analysis results as initial guesses 
for the flash calculations, demonstrating the utility of entropy-based 
methods in UVN-flash scenarios. This approach requires an inner New-
ton iteration to determine temperature by solving 𝑈 (𝑇 , 𝑉 ,𝐍) = 𝑈 for 
given 𝑈, 𝑉 ,𝐍 which poses an additional computational burden within 
the overall optimization, particularly in challenging scenarios or with 
poor initial estimates, as noted by Castier [10]. While Newton’s method 
is typically efficient and converges in a few iterations with a good initial 
guess, even a couple of additional iterations per flash computation can 
become costly in large-scale applications such as reservoir simulations, 
where millions of such evaluations are required; avoiding inner Newton 
iterations can offer significant computational advantages.

Building upon the theoretical groundwork laid by Michelsen,
Medeiros et al. [21] significantly extended the Q-function methodology 
to address open thermodynamic systems, encompassing both reactive 
and non-reactive chemical species. Their approach leveraged Legendre 
transformations to derive generalized formulations applicable under 
a variety of imposed thermodynamic specifications. In addition, they 
provided a derivation for the Q-functions previously introduced by 
Michelsen [18]. Their derivation mandates the use of two Lagrange 
multipliers, and they provided the expressions for these Lagrange 
multipliers.

In this work, we revisit the UVN-flash problem by reformulating it 
as a constrained entropy maximization problem in the TVN-space. We 
then cast it as an unconstrained saddle-point problem using a single 
Lagrange multiplier. Furthermore, we provide an explicit derivation of 
the Lagrange multiplier without using the Legendre transforms. This 
reformulation of the UVN-flash problem within the TVN-space elimi-
nates the need for nested Newton iterations to compute the temperature 
𝑇  consistent with a given internal energy 𝑈 , volume 𝑉  and mole 
numbers 𝐍. It thus removes a computational bottleneck inherent in 
both Michelsen’s Q-function approach [18] and the method of Castier’s 
unconstrained minimization [10]. This advantage becomes especially 
significant when using complex equations of state.

The structure of the paper is as follows. We begin with a precur-
sor to stability analysis in Section 3, where we present the relevant 
formulations and the generation of initial guesses for both stability 
and flash calculations. This is followed by a recap of the UVN flash 
formulation in natural variables in Section 4. Next, in Section 5, we re-
formulate the UVN-flash problem in TVN-space by using the method of 
2 
Lagrange multipliers. In Section 6, we provide a detailed derivation of 
Michelsen’s Q-function, illustrating its direct application in solving the 
UVN-flash problem. We then discuss the numerical approach, including 
the necessary gradient and Hessian computations (derived in Appendix 
A). Finally, we present the results in Section 7 and conclude with key 
findings and implications in Section 8.

2. Preliminaries

For the sake of clarity, in this section, we define the following 
concepts in the context of UVN-flash.

2.1. Trial phase

The trial phase is an incipient phase introduced to assess the thermo-
dynamic stability of a system. It involves perturbing the composition of 
the system and evaluating whether the introduction of this new phase 
leads to an increase in entropy (for UVN flash calculations). If the 
entropy increases, the system is unstable as a single phase, and phase 
separation is favorable.

2.2. Reference phase

The reference phase (⋆) represents a hypothetical single-phase sys-
tem characterized by the total internal energy 𝑈⋆, volume 𝑉 ⋆ and total 
mole numbers 𝐍⋆ = (𝑁⋆

1 ,… , 𝑁⋆
𝑛 ).

2.3. Stability analysis

Stability analysis is typically performed prior to flash calculations, 
as it determines the stability of a multicomponent mixture across 𝑝
phases, where 𝑝 represents the number of phases in the system. The 
primary objective of this analysis is to establish whether the mixture 
will remain in 𝑝 phases or separate into 𝑝 + 1 phases. In most cases, 
we focus on systems with at most two phases, typically a vapor–liquid 
mixture. In such cases, stability analysis determines whether the mix-
ture can remain as a single phase or will separate into a vapor–liquid 
equilibrium.

A crucial aspect of stability analysis is its role in providing an initial 
guess for subsequent flash calculations. If instability is detected, the 
analysis often yields valuable information about the incipient phase, 
such as its temperature, concentration, and internal energy density, 
which can significantly aid in the convergence of the flash calculation 
algorithm.

2.4. Flash calculation

When a stability test indicates that a mixture is thermodynami-
cally unstable, a flash calculation is performed to determine the phase 
equilibrium of the multicomponent mixture under specified conditions, 
such as pressure and temperature, internal energy and volume, or 
entropy and volume. The flash calculation calculates the amounts and 
compositions of each phase, assuming the system reaches equilibrium.

In this study, the UVN flash problem is addressed using an equation 
of state derived from the Helmholtz energy function. Specifically, we 
will use the Peng–Robinson [22] Equation of State (EOS) for all our 
results. This EOS enables the computation of thermodynamic properties 
for given 𝑇 , 𝑉 , and 𝐍. For specified values of internal energy 𝑈 , volume 
𝑉 , and mole numbers 𝐍, the phase split calculations proceed as follows. 
The details of the algorithm can be found in Castier [10] and Smejkal 
et al. [11].

1. Initial Stability Test: Assess the stability of the single-phase 
mixture. 
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2. Iterative Phase Adjustment and Equilibrium:

(a) If unstable: Introduce a new phase, using stability anal-
ysis results for an initial guess.

(b) Equilibrium Calculation: Determine phase equilibrium 
(temperature, volumes, compositions) for the current
number of phases.

(c) Stability Re-evaluation and Phase Count Update: Check
the stability of the resulting phase split by testing the 
stability of one arbitrarily selected phase from the equi-
librium.

• Phase Addition: If the selected phase is unstable, 
add another phase.

• Delayed Phase Merging: After at least three it-
erations of equilibrium calculations for the cur-
rent number of phases, attempt to merge a phase 
whose mole fraction is below a specified threshold 
(e.g., 10−6) and distribute its total energy, volume 
and moles uniformally among remaining phases. If 
the total entropy increases1 upon merging, remove 
the candidate phase.

(d) Repeat: Continue equilibrium calculation and stability 
re-evaluation until a stable phase split is achieved.

3. Termination: Output the stable equilibrium state (temperature, 
phase volumes, and compositions).

Accordingly, we begin with stability analysis in the next section, 
followed by the flash procedure in the subsequent section.

3. Stability analysis precursor

Stability analysis is a fundamental step in assessing the thermody-
namic stability of a mixture and determining whether phase separation 
occurs. A detailed discussion and performance comparison of various 
phase stability analysis methods are beyond the scope of this paper; 
interested readers are referred to dedicated literature on this topic 
(e.g., Nichita [23], Smejkal et al. [11], Michelsen and Mollerup [3]). 
In this section, we briefly present the formulation of the UVN stability 
problem, discuss initialization strategies, and outline an algorithm to 
generate initial guesses for flash calculations based on stability analysis 
results.

The UVN stability problem can be reduced to the TVN stability 
problem as follows. For given 𝑈⋆, 𝑉 ⋆ and 𝐍⋆, we can solve 

𝑈 (𝑇 , 𝑉 ⋆,𝐍⋆) = 𝑈⋆, (1)

for 𝑇 , as discussed by Mikyska [24] and Nichita [25]. Therefore, we 
provide the formulation of TVN stability analysis in the following 
subsection.

3.1. TVN stability formulation

In this section, we briefly discuss the formulation of TVN stability 
as UVN stability can be reduced to TVN stability [23]. The TPD (Tan-
gent Plane Distance) function for volume-based stability analysis was 
originally introduced by Nagarajan et al. [26] for PT conditions and 

1 For UVN flash problems, the total entropy should increase. For other 
specifications, the corresponding thermodynamic potential should evolve ap-
propriately from one iteration to the next: for example, Helmholtz free energy 
in TVN, Gibbs free energy in TPN, and enthalpy in PSN should decrease, 
whereas entropy in PHN should increase.
3 
later extended to TVN conditions by Nichita et al. [27,28]. The TPD 
function, denoted by 𝐷 at temperature 𝑇 , is given by: 

𝐷(𝑇 , 𝒄′) = −
(

𝑃 ′ − 𝑃⋆) +
𝑛
∑

𝑖=1

(

𝜇′
𝑖 − 𝜇⋆

𝑖
)

𝑐′𝑖 , (2)

where 𝜇′
𝑖 = 𝜇𝑖(𝑇 , 1, 𝒄′) and 𝜇⋆

𝑖 = 𝜇𝑖(𝑇 , 1, 𝒄) are the chemical potentials of 
component 𝑖 in the trial and reference phases, respectively. Similarly, 
𝑃 ′ = 𝑃 (𝑇 , 1, 𝒄′) and 𝑃⋆ = 𝑃 (𝑇 , 1, 𝒄) denote the pressures in the two 
phases. The molar concentration of component 𝑖 in the trial phase is 
given by 𝑐′𝑖 =

𝑁 ′
𝑖

𝑉 ′ , where 𝑁 ′
𝑖  is the mole number of component 𝑖

and 𝑉 ′ is the molar volume of the trial phase. Similarly, the molar 
concentration of component 𝑖 in the reference phase is given by 𝑐𝑖 = 𝑁𝑖

𝑉 ,
where 𝑁𝑖 is the mole number of component 𝑖 and 𝑉  is the molar volume 
of the reference phase. The concentration vectors are denoted by
𝒄 = {𝑐1,… , 𝑐𝑛} for the reference phase, and
𝒄′ = {𝑐′1,… , 𝑐′𝑛} for the trial phase.

A non-negative value of 𝐷 indicates that the reference phase is 
stable. The existence of a state with 𝐷 < 0 can be detected by examining 
the stationary points of 𝐷. The stationary points of 𝐷 are given by 
𝜕𝐷
𝜕𝑐′𝑖

= 0, ∀𝑖 ∈ {1,… , 𝑛}. (3)

Mikyska et al. [24] reformulated the stability condition (Eq.  (3)) using 
the volume function 𝛷𝑖, related to the fugacity coefficient 𝜙𝑖 via 

𝛷𝑖 =
1

𝑍𝜙𝑖
, 𝑍 = 𝑃𝑉

𝑛𝑅𝑇
. (4)

Their stability equation in terms of 𝛷𝑖 is given by: 

ln
𝑐′𝑖
𝑐𝑖

+ ln𝛷𝑖(𝒄) − ln𝛷𝑖(𝒄′) = 0, ∀𝑖 = 1,… , 𝑛. (5)

This system (5) can be solved using the Newton–Raphson method. At 
each iteration step 𝑘, the update direction 𝛥𝒄′,𝒌 is obtained by solving: 

𝐉(𝒄′,𝒌)𝛥𝒄′,𝒌 = −𝐅(𝒄′,𝒌), (6)

where the residual vector 𝐅 has components: 

𝐹𝑖(𝒄′) = ln
𝑐′𝑖
𝑐𝑖

+ ln𝛷𝑖(𝒄) − ln𝛷𝑖(𝒄′), ∀𝑖 ∈ {1,… , 𝑛}, (7)

and the Jacobian matrix 𝐉 is given by: 

𝐽𝑖𝑗 (𝒄′) =
𝛿𝑖𝑗
𝑐′𝑗

−
𝜕 ln𝛷𝑖(𝒄′)

𝜕𝑐′𝑗
, (8)

where 𝛿𝑖𝑗 is the Kronecker delta. The update step is then performed as: 

𝒄′𝑘+1 = 𝒄′,𝒌 + 𝜆𝑘𝛥𝒄′,𝒌, (9)

where 𝜆𝑘 ∈ (0, 1] is a step size, possibly determined by line search. For 
further details on this, we refer the reader to [24]. The pseudocode 
for stability analysis is provided in the appendix as Algorithm 2. The 
convergence of the stability test strongly depends on the choice of an 
appropriate initial guess for 𝒄′. Effective initialization is crucial for 
numerical stability and robustness in stability analysis.

3.2. Initialization for stability analysis

In this section, we discuss the initialization strategy for TVN stability 
analysis. We adopt the simplex-based initialization method proposed 
by Smejkal et al. [11], which leverages the geometric properties of the 
feasibility domain of admissible molar concentrations. In this approach, 
the feasible domain is represented as an 𝑛-simplex, where 𝑛 denotes the 
number of components in the mixture. Initial guesses are generated by 
computing the barycenter of the simplex and the midpoints between 
the barycenter and each of the 𝑛 + 1 vertices. This procedure yields 
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Fig. 1. Depiction of the initial guesses for 𝐜′ in a binary mixture where the two 
components have molar volumes 𝑏1 and 𝑏2, respectively.
Source: Adapted from [29].

𝑛+ 2 initial estimates, ensuring a well-distributed set of starting points 
for the stability analysis.

The admissible molar concentrations 𝑐′𝑖  must satisfy the following 
conditions: 
𝑛
∑

𝑖=1
𝑐′𝑖𝑏𝑖 < 1, 𝑐′𝑖 ≥ 0, 𝑏𝑖 > 0, ∀𝑖 ∈ {1,… , 𝑛}, (10)

where 𝑏𝑖 denotes the co-volume of the component 𝑖 from the Peng–
Robinson EOS. Fig.  1 (adapted from [29]) illustrates the initial con-
centration guesses for a binary mixture. The four points marked with 
circles: the barycenter 𝐶 and the midpoints 𝑀0,𝑀1, and 𝑀2, are used 
sequentially as initial guess to perform the stability analysis. The results 
of the stability analysis are then used to generate the initial guess for 
phase split calculations. These results, however, are in the form of 
concentration and temperature of the trial phase. A procedure is needed 
to convert the stability analysis results into the initial guess for phase 
split calculations, which is addressed in the following subsection.

3.3. Initial guess for flash from stability analysis

The results of the stability analysis provide the initial guess required 
for phase split calculations. A good initial guess is crucial for ensuring 
convergence in the numerical optimization procedures used in phase 
split calculations, as discussed in Section 6. However, the results from 
stability analysis are not immediately suitable as initial guesses for flash 
calculations. Stability analysis provides the concentrations of the incip-
ient phase along with the specific internal energy; but an additional 
parameter, the volume of the trial phase, is needed to initiate phase 
split calculations.

We begin by assuming that the trial phase occupies half of the total 
system volume. The mole numbers of each phase are determined by 
multiplying the phase volume with the species concentrations obtained 
from the stability test. The internal energy of each phase is then 
computed using the internal energy density and phase volume. Next, 
the phase temperature is determined by solving Eq. (1) and finding 
a temperature consistent with the given internal energy, volume, and 
mole numbers. This provides a complete initial estimate.

This initial estimate is then iteratively refined to find a two-phase 
split with a higher total entropy than the reference single phase, while 
satisfying the feasibility conditions (10) at each step. At each step, the 
total entropy of the two-phase system is evaluated. If the entropy in-
creases and all feasibility conditions are met, the solution is accepted. If 
these criteria are not satisfied, the trial phase volume is further halved, 
and the internal energy and mole numbers are adjusted accordingly. 
4 
This iterative process continues until a feasible phase split is achieved 
or until the predefined iteration limit is reached. This pseudocode is 
outlined in Algorithm 1. Alternatively, the procedure can be initiated 
with a small volume of the incipient phase, which is then iteratively 
doubled until convergence. However, a comparative analysis of these 
initialization strategies is beyond the scope of the present work. The 
stability analysis in our implementation serves exclusively to generate 
a good initial guess for the subsequent flash calculations. 

Algorithm 1 Initial Guess Generation and Feasibility Check for Phase 
Equilibrium
Require: Total internal energy 𝑈⋆ [J], volume 𝑉 ⋆ [m3], and mole 

numbers 𝐍⋆ = [𝑁⋆
1 ,… , 𝑁⋆

𝑛 ], the trial phase concentration vector 
𝐜 [mol/m3] and the trial phase internal energy density 𝑢 [J/m3].

Ensure: Feasible initial guess for phase split or termination if no 
solution exists

1: Compute temperature 𝑇 ⋆ = for given 𝑈⋆, 𝑉 ⋆,𝐍⋆ of the reference 
phase by solving Eq.  (1).

2: Compute entropy 𝑆⋆ = 𝑆(𝑇 ⋆, 𝑉 ⋆,𝐍⋆) of the reference phase using 
the equation of state (EOS)

3: Initialize the trial phase 𝐼 as follows:
𝑉 𝐼 = 0.5 ⋅ 𝑉 ⋆

𝐍𝐼 = 𝑉 𝐼 ⋅ 𝐜
𝑈 𝐼 = 𝑢 ⋅ 𝑉 𝐼

4: Initialize iteration count: 𝑛iters ← 0
5: while 𝑛iters < max_iters do
6:  Compute total entropy for the two-phase system:

𝑆two-phase = 𝑆(𝑈 𝐼 , 𝑉 𝐼 ,𝐍𝐼 ) + 𝑆(𝑈⋆ − 𝑈 𝐼 , 𝑉 ⋆ − 𝑉 𝐼 ,𝐍⋆ − 𝐍𝐼 )

7:  Compute entropy difference: 𝛥𝑆 = 𝑆two-phase − 𝑆⋆

8:  Update phase properties vector 𝐱 for the trial phase:
𝐱 =

[

𝐍𝐼 , 𝑉 𝐼 , 𝑈 𝐼 ]

9:  Check feasibility of 𝐱 using equations Eq.  (10).
10:  if 𝛥𝑆 > 0 and 𝐱 is feasible then
11:  Return feasible initial guess 𝐱
12:  if 𝑉 𝐼∕𝑉 ⋆ < 10−8 then
13:  Terminate: No feasible solution found
14:  Update phase properties:

𝑉 𝐼 ← 𝑉 𝐼∕2

𝑈 𝐼 ← 𝑢 ⋅ 𝑉 𝐼

𝐍𝐼 ← 𝑉 𝐼 ⋅ 𝐜

15:  Increment iteration count: 𝑛iters ← 𝑛iters + 1
16: Return failure: No feasible solution found

The final feasible solution obtained from the stability analysis serves 
as the initial guess for phase split calculations. However, since the 
initialization is adapted from a TVN stability formulation, it may not 
always provide a suitable ascent direction for entropy in UVN prob-
lems. In such rare cases where Algorithm 1 fails to yield a good 
initial estimate, a fallback to the nested loop approach proposed by 
Castier [10] can be employed. This method involves solving an inner 
isothermal flash problem to compute phase volumes and internal ener-
gies, thereby generating a coarse UVN initial estimate. The practicality 
of this fallback is supported by the availability of established PTN flash 
routines. For the test problems considered in this work, this fallback 
was not necessary. In the following section, we review the phase split 
calculation method presented by Castier [10] and Smejkal et al. [11], 
which serves as the foundational framework for our work.
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4. Direct entropy maximization formulation for UVN flash calcu-
lations

The UVN flash problem can be formulated as a direct entropy 
maximization problem, constrained by specified system properties as 
discussed by Castier [10], Smejkal et al. [11] and more recently by 
Paterson et al. [12]. Consider a multicomponent mixture composed of 𝑛
species, distributed across 𝑝 phases and a total energy 𝑈⋆, total volume 
𝑉 ⋆ and the mole numbers vector 𝐍⋆. The total entropy of the system, 
denoted as 𝑆(UVN), can be expressed as: 

𝑆(UVN) =
𝑝
∑

𝑘=1
𝑆(𝑈𝑘, 𝑉 𝑘,𝐍(𝑘)), (11)

where 𝑈𝑘, 𝑉 𝑘, and 𝐍(𝑘) = {𝑁 (𝑘)
1 ,… , 𝑁 (𝑘)

𝑛 } represent the internal energy, 
volume, and mole numbers of each component in phase 𝑘, respectively. 
The superscript (UVN) highlights the fact that entropy here is expressed 
as a function of 𝑈, 𝑉 ,𝐍. Additionally, the problem is subject to the 
following constraints: 

𝑈⋆ =
𝑝
∑

𝑘=1
𝑈𝑘, 𝑉 ⋆ =

𝑝
∑

𝑘=1
𝑉 𝑘, 𝑁⋆

𝑖 =
𝑝
∑

𝑘=1
𝑁 (𝑘)

𝑖 , 𝑖 = 1,… , 𝑛. (12)

To simplify the problem, we can apply these constraints and reformu-
late the problem as an unconstrained optimization problem. This is 
done by writing the properties of phase 𝑝 as a function of the properties 
in the other phases. For the entropy function, this reads: 

𝑆(UVN)
unc =

[𝑝−1
∑

𝑘=1
𝑆(𝑈𝑘, 𝑉 𝑘,𝐍(𝑘))

]

+ 𝑆(𝐱(𝜉)), (13)

where 
𝐱(𝜉) ∶=

(

𝑈 (𝜉), 𝑉 (𝜉),𝐍(𝜉)) , (14)

where 𝑈 (𝜉) ∶= 𝑈⋆ −
∑𝑝−1

𝑘=1 𝑈
𝑘, 𝑉 (𝜉) ∶= 𝑉 ⋆ −

∑𝑝−1
𝑘=1 𝑉

𝑘 and 𝐍(𝜉) ∶=
{𝑁⋆

1 −
∑𝑝−1

𝑘=1 𝑁
(𝑘)
1 ,… , 𝑁⋆

𝑛 −
∑𝑝−1

𝑘=1 𝑁
(𝑘)
𝑛 }. Throughout this text, we denote 

the total system entropy, when expressed as a function of the reduced 
set of independent variables {𝑈𝑘, 𝑉 𝑘,𝐍(𝑘)}𝑝−1𝑘=1 for the unconstrained 
optimization problem, as 𝑆unc. Here, the subscript unc signifies the use 
of this reduced variable set, and the superscript (𝜉) denotes properties 
of the remaining phase 𝑝 as defined by (14).

The unconstrained optimization problem now involves solving for 
the (𝑝 − 1)(𝑛 + 2) unknowns: 𝑈𝑘, 𝑉 𝑘, and 𝐍(𝑘) for each phase 𝑘 ∈
{1, 2,… , 𝑝−1}. Formally, we want to solve the following unconstrained 
optimization problem: 
𝐱 = argmax

𝐲
𝑆(UVN)
unc (𝐲), (15)

where 𝐲 now entails all the (𝑝−1)(𝑛+2) unknowns. The solution to this 
optimization problem will be discussed in detail in Section 6. We will 
refer to this approach as the UVN approach throughout the rest of the 
paper.

Before proceeding further, we highlight a difficulty inherent to this 
approach. Given that the equation of state is in the form 𝑓 (𝑇 , 𝑉 ,𝐍), 
Eq. (13) requires writing the entropy 𝑆 as a function of 𝑈 , 𝑉  and 𝐍. 
Therefore, the approach requires determining the temperature 𝑇  by 
solving the equation:
𝑈 (𝑇 , 𝑉 ,𝐍) = 𝑈

for given 𝑈, 𝑉 and 𝐍. Once 𝑇  is determined, the equation of state can 
then be used to compute the corresponding entropy. This process results 
in a nested Newton method where each iteration of the outer optimiza-
tion problem requires multiple iterations of the inner solver to achieve 
convergence, thereby increasing the computational complexity of the 
solution procedure. We refer to this process as implicit temperature 
calculation throughout the paper.

To circumvent this difficulty, we reformulate the optimization prob-
lem directly in terms of 𝑇 , 𝑉 ,  and 𝐍. This reformulation avoids the 
need to perform multiple implicit temperature calculations and will be 
discussed in the next section.
5 
5. Reformulation of entropy maximization: Transition from un-
constrained UVN to constrained TVN space

This section discusses the reformulation of UVN-flash problem in 
terms of the variables inherent to the Helmholtz energy-based equa-
tion of state (EOS), specifically in the TVN-space. This reformulation 
circumvents the need for repeated implicit temperature calculation to 
determine the temperature at each iteration. The objective function in 
this formulation is given by: 

𝑆(TVN)
unc =

[𝑝−1
∑

𝑘=1
𝑆
(

𝑇 , 𝑉 (𝑘),𝐍(𝑘))
]

+ 𝑆
(

𝑇 , 𝑉 (𝜉),𝐍(𝜉)) , (16)

subject to the constraint 𝑈⋆ =
∑𝑝

𝑘=1 𝑈
(

𝑇 , 𝑉 (𝑘),𝐍(𝑘)). Note that the 
constraints for the total volume 𝑉 ⋆ and total moles 𝐍⋆ are directly 
incorporated in the arguments of the entropy of phase 𝑝. However, the 
constraint of internal energy has not yet been incorporated. Rewriting 
this constraint in functional form yields 

(𝐱) ∶=
[𝑝−1
∑

𝑘=1
𝑈
(

𝑇 , 𝑉 (𝑘),𝐍(𝑘))
]

+ 𝑈
(

𝑇 , 𝑉 (𝜉),𝐍(𝜉)) − 𝑈⋆. (17)

The solution ̂𝐱 satisfies the following constrained optimization problem: 

max
𝐱

𝑆(TVN)
unc (𝐱) subject to (𝐱) = 0, (18)

where the optimization variable 𝐱 ∶=
(

𝑇 , 𝑉 (1),𝐍1,… , 𝑉 (𝑝−2),𝐍𝑝−2,… ,
𝑉 (𝑝−1),𝐍𝑝−1) is a vector of (𝑝 − 1)(𝑛 + 1) + 1 unknowns.
This constrained optimization problem can be reformulated as an 

unconstrained saddle point problem using the method of Lagrange 
multipliers. The Lagrangian function is defined as: 
(𝐱, 𝜆) = 𝑆unc(𝐱) + 𝜆(𝐱), (19)

where 𝜆 is the Lagrange multiplier. For convenience, where possible we 
omit the superscript (TVN) from the objective function. However, it is 
included when needed to ensure clarity. To find the optimum of the 
original constrained problem, we need to find the stationary points of 
the Lagrangian by solving the following system of equations:
∇𝐱,𝜆 = 0,

where ∇𝐱,𝜆 =
(

∇𝐱,
𝜕
𝜕𝜆

)

. The gradient ∇𝐱 of the Lagrangian with 
respect to 𝐱 is given by:

∇𝐱 =
(

𝜕
𝜕𝐱1

, 𝜕
𝜕𝐱2

,… , 𝜕
𝜕𝐱(𝑝−1)(𝑛+1)+1

)

.

The condition ∇𝐱,𝜆 = 0 leads to two sets of equations.

1. Stationarity Condition: 
∇𝑆unc(𝐱) = −𝜆∇(𝐱). (20)

This ensures that the gradient of the objective function 𝑆unc is 
parallel to the gradient of the constraint .

2. Primal Feasibility Condition: 
(𝐱) = 0. (21)

This ensures that the constraint is satisfied.

This formulation leads to a system of (𝑝 − 1)(𝑛 + 1) + 2 equations. 
Specifically, for 𝑝 = 2, the system contains one additional equation 
compared to the approach of Smejkal et al. [11]. For 𝑝 = 3, the number 
of equations is the same in both approaches. However, for 𝑝 ≥ 4, our 
approach requires solving 𝑝−3 fewer equations as compared to Smejkal 
et al. [11].

To summarize, this section presented the reformulation of entropy 
maximization in TVN-space for the UVN-flash problem. The next sec-
tion begins with a discussion of the numerical optimization procedure, 
followed by a derivation of the Lagrange multiplier, a simplification 
of the Lagrangian, and an analysis of the stationary conditions of the 
resulting objective function.
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6. Computational framework

This section outlines the optimization of the objective function, as 
defined in Eq.  (13) for Smejkal’s approach and Eq.  (19) for our method. 
Additionally, we derive an explicit expression for the Lagrange multi-
plier and use it to simplify the Lagrangian in our approach, making the 
implementation more straightforward. Finally, we conclude this section 
by performing a consistency check of the formulation. For simplicity, 
we assume the number of phases is known a priori, as determined by 
a stability analysis.

6.1. Numerical optimization

Formally, we seek to solve the following unconstrained optimization 
problem: 

𝐱 = argmax
𝐲

 (𝐲), (22)

where  is the objective function. To solve this, we need to find the 
stationary points of the gradient of the objective function, denoted as 
𝑔(𝐱). This gradient is expressed as: 

𝑔(𝐱) =
⎧

⎪

⎨

⎪

⎩

∇𝑆(Smejkal)
unc (𝐱UVN ), UVN,

∇𝑆(Ours)
unc (𝐱TVN ) + 𝜆∇(𝐱TVN ), Ours,

(23)

where 𝐱UVN  and 𝐱TVN  are the respective independent variables for 
each case:

𝐱UVN ∶= (𝐍1, 𝑉 (1), 𝑈 (1),… ,𝐍𝑝−1, 𝑉 (𝑝−1), 𝑈 (𝑝−1)), (24a)

𝐱TVN ∶= (𝐍1, 𝑉 (1),… ,𝐍𝑝−2, 𝑉
(𝑝−2),𝐍𝑝−1, 𝑉 (𝑝−1), 𝑇 ). (24b)

Here, 𝐍𝑘 represents the mole vector in phase 𝑘, while 𝑈 (𝑘) and 𝑉 (𝑘)

correspond to the internal energy and volume of phase 𝑘, respectively. 
We will revisit the alternate forms of 𝑔(𝐱) for our approach in the next 
section where we derive the Lagrange multiplier 𝜆.

The optimization problem can now be written as solving 𝑔(𝐱) = 0. 
This is a nonlinear system which can be solved using a nonlinear solver, 
such as Newton–Raphson or a variant. To apply the Newton–Raphson 
method, we need the gradient of 𝑔(𝐱). The gradient of 𝑔(𝐱) is the Hessian 
of the objective function  , given by:

H(𝐱) =
[

𝜕2
𝜕𝐱𝑖𝜕𝐱𝑗

]

.

In this context, the Hessian for both optimization approaches is ex-
pressed as: 

H(𝐱) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜕2𝑆(UVN)
unc (𝐱)
𝜕𝐱𝑖𝜕𝐱𝑗

, UVN 

𝜕2𝑆(TVN)
unc (𝐱)

𝜕𝐱𝑖𝜕𝐱𝑗
+ 𝜆

𝜕2(𝐱)
𝜕𝐱𝑖𝜕𝐱𝑗

, Ours

(25)

where 𝐱 is defined as per Eq.  (24), and the entropy function 𝑆unc(𝐱) is 
given by Eq.  (13) in Smejkal’s formulation and by Eq.  (16) in our ap-
proach. The additional term in our formulation accounts for the contri-
bution of the constraint function (𝐱) through the Lagrange multiplier 
𝜆, ensuring that the optimization respects the imposed constraints.

Eq.  (23) can be solved using a non-linear solver. We employ New-
ton’s method, which updates the solution iteratively as follows: 

𝐱𝑘+1 = 𝐱𝑘 + 𝛼𝑘𝛥𝐱𝑘, (26)

where 𝛼𝑘 is the step size and the update direction 𝛥𝐱𝑘 satisfies: 

H(𝐱 )𝛥𝐱 = −𝑔(𝐱 ), (27)
𝑘 𝑘 𝑘

6 
where H(𝐱𝑘) is the Hessian and 𝐠(𝐱𝑘) is the gradient. If H(𝐱𝑘) is sin-
gular or ill-conditioned, alternative approaches such as Levenberg–
Marquardt regularization, modified Cholesky decomposition, or quasi-
Newton methods (e.g., BFGS) can be employed [11,23]. However, no 
such issues were encountered in our test cases. For implementation, 
we use Newton’s method from NLsolve.jl in Julia, with third-order 
backtracking Line Search. It is important to note that when Newton’s 
method is combined with Line Search, the underlying optimization 
often minimizes a merit function (typically the sum of squares of the 
residuals). Stationary points of this merit function can include not 
only the true solutions to the original system but also local maxima 
or spurious solutions, which is a critical consideration in problems 
like phase stability where identifying correct equilibria is vital (see, 
e.g., [30]). While this potential issue exists, in our test cases, the algo-
rithm consistently converged to valid solutions without encountering 
spurious ones. The good initial guess generated from stability analysis 
results likely contributed to this robust behavior.

The gradients and Hessian can be computed using automatic differ-
entiation (AD).2 However, we provide the derivations of the gradients 
for our approach in Appendix  A along with the outline of the Hessian 
matrix, as we intend to use these gradients (of entropy and the con-
straint function) to compute the Lagrange multiplier, which is further 
discussed in the following section.

6.2. Derivation of the Lagrange multiplier

In this section, we discuss the computation of the Lagrange multi-
plier 𝜆. Expanding the stationarity condition (20), we get

𝜕𝑆unc

𝜕𝑁 (𝑘)
1

= −𝜆 𝜕
𝜕𝑁 (𝑘)

1

, … ,
𝜕𝑆unc

𝜕𝑁 (𝑘)
𝑛

= −𝜆 𝜕
𝜕𝑁 (𝑘)

𝑛

, (28a)

𝜕𝑆unc

𝜕𝑉 (𝑘)
= −𝜆 𝜕

𝜕𝑉 (𝑘)
, (28b)

𝜕𝑆unc
𝜕𝑇

= −𝜆 𝜕
𝜕𝑇

. (28c)

From Eq.  (28c), we isolate 𝜆 as: 

𝜆 = −
𝜕𝑆unc∕𝜕𝑇
𝜕∕𝜕𝑇

(29)

Substituting the expressions from Eqs. (A.3) and (A.10) into Eq. (29), 
we get 

𝜆 = − 1
𝑇
. (30)

The explicit dependence of the Lagrange multiplier 𝜆 on temper-
ature 𝑇  removes the need to treat 𝜆 as an independent optimization 
variable. This simplification reduces the dimensionality of the problem, 
as 𝜆 is no longer an unknown but is instead directly determined 
by 𝑇 . By substituting (30) into the stationarity condition (20), the 
optimization process becomes more efficient, as we discuss in detail 
in the following section.

6.3. Objective function reformulation

With this choice of the Lagrange multiplier 𝜆, Eq.  (19) simplifies to 

(𝐱) = 𝑆unc(𝐱) −
1
𝑇
(𝐱), (31)

where 𝐱 is given by (24). As 𝜆 is now a fixed parameter and not a free 
variable to be determined, the function (𝐱) no longer corresponds to 

2 Automatic differentiation computes exact derivatives of a function by ap-
plying the chain rule to the sequence of operations performed in the program, 
without the approximation errors associated with numerical methods like finite 
differences. In our case, we use forward-mode AD to obtain derivatives at 
machine precision.
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the standard Lagrangian used in constrained optimization. To avoid 
confusion, we refer to it as the Lagrange function. Substituting the 
expressions for the reduced entropy 𝑆unc(𝐱) from (16) and the constraint 
(𝐱) from (17), we get 

(𝐱) =
𝑝−1
∑

𝑘=1
𝑆
(

𝑇 , 𝑉 (𝑘),𝐍(𝑘)) + 𝑆
(

𝑇 , 𝑉 (𝜉),𝐍(𝜉))

− 1
𝑇

(𝑝−1
∑

𝑘=1
𝑈
(

𝑇 , 𝑉 (𝑘),𝐍(𝑘)) + 𝑈
(

𝑇 , 𝑉 (𝜉),𝐍(𝜉)) − 𝑈⋆

)

.

(32)

Rearranging terms and combining the entropy and internal energy 
contributions, we obtain 

(𝐱) =
𝑝
∑

𝑘=1

[

𝑆
(

𝑇 , 𝑉 (𝑘),𝐍(𝑘)) −
𝑈
(

𝑇 , 𝑉 (𝑘),𝐍(𝑘))

𝑇

]

+ 𝑈⋆

𝑇
. (33)

Next, recalling the thermodynamic relation 𝐴 = 𝑈 −𝑇𝑆, where 𝐴 is the 
Helmholtz free energy, we get 

(𝐱) =
𝑝
∑

𝑘=1

[

𝑆
(

𝑇 , 𝑉 (𝑘),𝐍(𝑘)) −
𝐴
(

𝑇 , 𝑉 (𝑘),𝐍(𝑘)) + 𝑇𝑆
(

𝑇 , 𝑉 (𝑘),𝐍(𝑘))

𝑇

]

+𝑈⋆

𝑇

(34)

Upon simplifying the terms involving entropy and Helmholtz energy, 
we arrive at 

(𝐱) = −
𝑝
∑

𝑘=1

𝐴
(

𝑇 , 𝑉 (𝑘),𝐍(𝑘))

𝑇
+ 𝑈⋆

𝑇
. (35)

Rearranging the terms gives 

(𝐱) = 𝑈⋆

𝑇
−

𝑝
∑

𝑘=1

𝐴
(

𝑇 , 𝑉 (𝑘),𝐍(𝑘))

𝑇
. (36)

Finally, segregating the residual terms corresponding to the 𝑝th phase, 
we get 

(𝐱) =
𝑈⋆ −

(

∑𝑝−1
𝑘=1 𝐴

(

𝑇 , 𝑉 (𝑘),𝐍(𝑘)) + 𝐴
(

𝑇 , 𝑉 (𝜉),𝐍(𝜉))
)

𝑇
. (37)

Notably, this function is identical in form to the Q-function intro-
duced by Michelsen [18]. We refer to this as the Helmholtz energy-
based Q-function (𝐴𝑄, for short). Correspondingly, we designate 
the function represented by (32) as Entropy-based Q-function (𝑆𝑄
for short). Michelsen presented this function without a derivation. 
Medeiros et al. [21] later presented the derivation of the Q-function 
within TPN-framework using two Legendre transformations. They also 
mentioned that a single Legendre transform would be required in TVN-
space. In this paper, we have shown that in TVN-space, the Q-function 
can be derived using only one Lagrange multiplier. While the final 
forms of the Q-functions are similar, the derivation paths differ due to 
different underlying thermodynamic basis, i.e., TPN vs TVN framework.

Both 𝑆𝑄 and 𝐴𝑄 are mathematically equivalent as 𝐴𝑄 is de-
rived directly from 𝑆𝑄 by using the relation 𝐴 = 𝑈 − 𝑇𝑆. The 
Lagrange multiplier 𝜆 is explicitly determined as −1∕𝑇 , effectively 
reducing the number of unknowns by one compared to the standard 
constrained optimization formulation Eq.  (23), where 𝜆 is treated as 
an additional unknown alongside the state variables. Additionally, the 
𝑆𝑄 approach requires more function evaluations compared to the 
𝐴𝑄. Specifically, 𝑆𝑄 involves evaluating both the entropy and the 
internal energy of each phase, while 𝐴𝑄 requires only the evaluation 
of the Helmholtz energy. This suggests that the 𝐴𝑄 formulation is 
computationally more efficient than 𝑆𝑄. Consequently, we restrict 
our numerical results in Section 7 to 𝐴𝑄 formulation.

To maximize the entropy, the saddle point of the Lagrange function 
must be found by solving the system of equations ∇(𝐱) = 0. The 
Hessian matrix in this formulation simplifies significantly as below: 

H(𝐱) =
[

𝜕2(𝐱)
]

. (38)

𝜕𝐱𝑖𝜕𝐱𝑗

7 
Both Michelsen and Mederios et al. discussed a nested loop approach 
where a PT-flash can be solved in the inner loop. Additionally, they 
mentioned the use of a more efficient Newton’s method and employing 
the nested loop approach as a fallback strategy. In this work, we restrict 
our focus to Newton’s method. However, the convergence of Newton’s 
method relies on the availability of sufficiently accurate initial esti-
mates, as also noted by [10,11,18,21,30]. For a broader discussion of 
numerical techniques for saddle point problems, we refer the interested 
reader to the review by Benzi et al. [31]. Fortunately, the results 
obtained from the stability analysis provide high-quality initial guesses. 
Furthermore, for transient simulations e.g., pipeline transportation of 
multicomponent mixture, the results from previous time steps serve as 
a good initial guess. The analysis of the stationary conditions of the 
Lagrange function will be presented in the following subsection.

6.4. Analysis of stationary conditions and thermodynamic consistency

In this subsection, we analyze the stationary conditions of the 
function  defined in Eq. (31) to verify the thermodynamic consistency 
of our formulation. We demonstrate that setting the gradient of  with 
respect to all variables to zero recovers the necessary and sufficient 
conditions for thermodynamic equilibrium, including satisfaction of the 
total internal energy constraint and adherence to conditions of thermal, 
mechanical, and chemical equilibrium. To demonstrate consistency, we 
first show that the formulation with the Lagrange function defined as 
per Eq. (31) inherently satisfies the constraint of the total internal en-
ergy. The gradient of the Lagrange function with respect to temperature 
𝑇  is given by: 
𝜕
𝜕𝑇

=
𝜕𝑆unc
𝜕𝑇

− 1
𝑇

𝜕
𝜕𝑇

+ 
𝑇 2

. (39)

Substituting expressions from (A.3) and (A.10), we get
𝜕
𝜕𝑇

= 1
𝑇

𝑝
∑

𝑘=1
𝐶𝑣

(

𝑇 , 𝑉 (𝑘),𝐍(𝑘)) − 1
𝑇

𝑝
∑

𝑘=1
𝐶𝑣

(

𝑇 , 𝑉 (𝑘),𝐍(𝑘)) + 
𝑇 2

= 
𝑇 2

, (40)

where 𝐶𝑣 represents the heat capacity at constant volume. Using the 
optimality condition, 𝜕𝜕𝑇 = 0 yields: 

𝑇 2

= 0 ⟹  = 0. (41)

In words, setting the derivative 𝜕
𝜕𝑇  to zero at a stationary point re-

covers the constraint  = 0, ensuring that stationary points satisfy 
the total internal energy balance. Next, we verify consistency with 
respect to thermodynamic equilibrium by computing the gradients with 
respect to the volume and the mole numbers. The gradient of the 
Lagrange function with respect to the volume 𝑉 (𝑘): 
𝜕

𝜕𝑉 (𝑘)
=

𝜕𝑆unc

𝜕𝑉 (𝑘)
− 1

𝑇
𝜕

𝜕𝑉 (𝑘)
. (42)

Substituting the expressions from Eqs. (A.6) and (A.14), we obtain

𝜕
𝜕𝑉 (𝑘)

= 𝜕𝑃 (𝑘)

𝜕𝑇
− 𝜕𝑃 (𝜉)

𝜕𝑇
− 1

𝑇

(

𝑇
(

𝜕𝑃 (𝑘)

𝜕𝑇

)

𝑉 (𝑘) ,𝐍

− 𝑃 (𝑘) −

(

𝑇
(

𝜕𝑃 (𝜉)

𝜕𝑇

)

𝑉 (𝜉) ,𝐍
− 𝑃 (𝜉)

))

.

Here, the superscript (𝜉) denotes evaluation at 𝐱(𝜉). After simplification, 
this reduces to 
𝜕

𝜕𝑉 (𝑘)
= 𝑃 (𝑘)

𝑇
− 𝑃 (𝜉)

𝑇
. (43)

Similarly, the gradient of the Lagrange function with respect to the 
mole number 𝑁 (𝑘)

𝑖  of component 𝑖 in phase 𝑘 is:

𝜕
(𝑘)

= −
𝜕𝜇(𝑘)

𝑖
𝜕𝑇

+
𝜕𝜇(𝜉)

𝑖
𝜕𝑇

− 1
𝑇

(

𝜇(𝑘)
𝑖 − 𝑇

𝜕𝜇(𝑘)
𝑖

𝜕𝑇
−

(

𝜇(𝜉)
𝑖 − 𝑇

𝜕𝜇(𝜉)
𝑖

𝜕𝑇

))
𝜕𝑁𝑖
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= −
𝜇(𝑘)
𝑖
𝑇

+
𝜇(𝜉)
𝑖
𝑇

. (44)

Combining these results, the full gradient of the Lagrange function
∇𝐱(𝐱) is: 

∇𝐱(𝐱) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∇𝐱(1)

⋮

∇𝐱(𝑝−2)

∇𝐱(𝑝−1)

𝜕
𝜕𝑇

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (45)

where the individual entry 

∇𝐱(𝑘) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−
𝜇(𝑘)
1
𝑇

+
𝜇(𝜉)
1
𝑇

⋮

−
𝜇(𝑘)
𝑛
𝑇

+
𝜇(𝜉)
𝑛
𝑇

𝑃 (𝑘)

𝑇
− 𝑃 (𝜉)

𝑇

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (46)

and 𝜕𝜕𝑇  is given by Eq.  (40). The final gradients of the Lagrange function
are structurally identical to those reported by Smejkal et al. [11], 
with the key distinction that our formulation allows all functions to 
be evaluated directly as a function of 𝑇 , 𝑉  and 𝐍, whereas, Smejkal’s 
formulation requires an inner Newton iteration to first determine 
the temperature. The optimality condition ∇𝐱(𝐱) = 0 leads to the 
following system of equations. 
𝜇(1)
1 = 𝜇(2)

1 = ⋯ = 𝜇(𝜉)
1 , (47a)

𝜇(1)
2 = 𝜇(2)

2 = ⋯ = 𝜇(𝜉)
2 , (47b)

⋮ (47c)

𝜇(1)
𝑛 = 𝜇(2)

𝑛 = ⋯ = 𝜇(𝜉)
𝑛 , (47d)

𝑃 (1) = 𝑃 (2) = ⋯ = 𝑃 (𝜉), (47e)

 = 0 (recovered from 𝜕
𝜕𝑇

= 0). (47f)

These conditions represent the necessary and sufficient criteria for 
thermodynamic equilibrium: equality of temperature (implicit as 𝑇  is 
a single variable), equality of pressure across all coexisting phases, 
equality of chemical potential for each component across all coexisting 
phases, and satisfaction of the total internal energy constraint. This 
correspondence demonstrates that the stationary points of  coincide 
with thermodynamic equilibrium states, thereby validating the consis-
tency of our formulation with established thermodynamic principles. 
The same analysis applies to the Helmholtz-based Q-function 𝐴𝑄 in 
(37). Please refer to Appendix  B for details.

With the theoretical framework established, we now proceed to the 
results section, where we present numerical results obtained using the 
methodology discussed in this section which leverages the Lagrange 
function defined in Eq.  (37).

7. Results

In this section, we present the results obtained using the approach 
discussed in previous section and compare them with existing liter-
ature. Our treatment focuses exclusively on the two-phase test cases 
examined by Castier [10], Smejkal et al. [11], and Bi et al. [20]. These 
problems have also been discussed by Nichita [23] and Bi et al. [29] in 
the context of stability analysis. Specifically, we consider Problems 1–6 
8 
Table 1
Specification: Problems 1–4.
 Property Problem 1 Problem 2 Problem 3 Problem 4
 𝑈[J] −756500.8 −1511407.6 −331083.7 −636468.0
 𝑉 [cm3] 52869.0 4268.1 80258.1 9926.71
 𝑁𝑐1 [mol] 10.0 0.95 15.1 10.0
 𝑁𝐻2𝑆 [mol] 90.0 99.05 84.9 90.0

Table 2
Specification: Problems 5-6.
 Property Problem 5 Problem 6
 𝑈 [J] −16272506.4 24858.2
 𝑉  [cm3] 479845 289380.3
 𝑁𝐶2

 [mol/m3] 10.8 10.8
 𝑁𝐶3𝐻6

 [mol/m3] 360.8 360.8
 𝑁𝐶3

 [mol/m3] 146.5 146.5
 𝑁𝑖𝐶4

 [mol/m3] 233 233
 𝑁𝑛𝐶4

 [mol/m3] 233 233
 𝑁𝐶5

 [mol/m3] 15.9 15.9

Table 3
Specification: Pure component CO2.
 Property 𝑈 [J] 𝑉  [m3] 𝑁CO2

 [mol] 
 Value −87211375.744478 1 10000  

from these studies, along with a pure component test case introduced 
by Smejkal et al. [11]. These problems are defined in Table  1, 2 and 3. 
Notably, no variable scaling was employed during the optimization pro-
cess in our approach. This contrasts with methods like that of Smejkal 
et al. [11], who used variable scaling via a Jacobi preconditioner.

We begin by discussing the outcomes of the stability analysis, 
which serve as the foundation for determining the initial phase split. 
These results are then used to perform flash calculations, the details of 
which are presented subsequently. Finally, we validate our results with 
literature, followed by a discussion of the speedup gains.

For all calculations, the Peng–Robinson equation of state (EOS) [22],
based on Helmholtz energy, is employed. Additional details regarding 
this EOS can be found in Appendix  D.

7.1. Stability analysis

While phase stability analysis is a necessary preliminary step to ob-
tain suitable initial guesses for the flash calculations in our framework, 
a detailed analysis of phase stability methods is outside the scope of 
this paper. For completeness, we first present the results of the stability 
analysis before proceeding to the flash results. We have obtained these 
results (for all the formulations) using the methodology discussed in 
Section 3. Our study reports the local minimum for each problem, with 
the results summarized in Tables  4–6. For each case, we report the 
computed values of temperature, component concentrations, and the 
tangent plane distance function 𝐷, as defined in Eq.  (2), with the results 
reported to two significant digits. However, for values smaller than 1, 
the results are reported to four significant digits. In all cases, our local 
minima are in close agreement with the values (either global or local) 
reported by Nichita [23] for the multicomponent case and Smejkal 
et al. [11] for the single component case. The stability analysis reveals 
minimal discrepancies in concentration values, with errors remaining 
below 0.085%. The largest errors occur in Problem 6, with the highest 
being 0.085% for 𝑐′𝐶5

. In the following section, we utilize these stability 
results to initialize the phase split calculations.

7.2. Flash calculations

In this section, we present the initial guesses derived from stability 
analysis, generated using the Algorithm 1 described in Section 3.3. 
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Table 4
Results of stability analysis: Nichita [23] vs our results.
 Problem 1 Problem 2 Problem 3 Problem 4
 Property Nichita Current Nichita Current Nichita Current Nichita Current  
 𝑇  [K] 151.83 151.83 291.91 291.91 297.84 297.84 361.80 361.80  
 𝑐′𝑐1  [mol/m3] 104.13 104.12 146.11 146.18 188.14 188.14 1011.37 1011.36  
 𝑐′𝐻2𝑆

 [mol/m3] 564.39 564.35 736.15 736.58 1057.84 1057.84 10056.7 10037.91 
 𝐷 [Pa/K] 875.34 875.45 26771.1 26722 0.0 2.08e−12 0.5063 0.467  
Table 5
Results of stability analysis Nichita [23] vs our results.
 Problem 5 Problem 6
 Property Nichita Current Nichita Current

 𝑇 [K] 122.97 122.97 394.54 394.54
 𝑐′𝐶2

 [mol] 0.3294 0.3294 46.41 46.41
 𝑐′𝐶3𝐻6

 [mol] 3.10 3.10 1739.38 1738.53
 𝑐′𝐶3

 [mol] 0.9066 0.9066 719.16 718.79
 𝑐′𝑖𝐶4

 [mol] 0.3860 0.3860 1262.45 1261.59
 𝑐′𝑛𝐶4

 [mol] 0.2934 0.2934 1305.65 1304.69
 𝑐′𝐶5

 [mol] 0.0038 0.0038 101.09 101.00
 𝐷[Pa/K] 35298.75 35298.74 16.3045 16.10

Table 6
Results for pure CO2 from stability analysis. Smejkal et al. [11] vs our results.
 Property Smejkal Current  
 𝑇  [K] 280.0 280.0  
 𝑐′ [mol/m3] 19469.17 19487.12 
 𝐷 [Pa/K] 4608.22 4608.27  

While Smejkal et al. [11] highlight the use of stability analysis to obtain 
initial guesses for flash calculations, their work does not explicitly 
provide these values for all the test cases, limiting the reproducibility 
of their results. To bridge this gap, we report the detailed initial guesses 
obtained from our stability analysis, followed by the results of the cor-
responding flash calculations. The initial guesses are comprehensively 
summarized in Tables  7–9, with the results reported to four significant 
digits.

Flash calculations are performed based on these initial guesses. For 
all results presented here, we have used the Helmholtz energy-based 
Q-function defined as per Eq. (37). Tables  10–12 present the results 
using Newton method with a third-order backtracking line search. The 
stopping criterion is set to a relative tolerance of 1 × 10−8. The results 
are reported to six significant digits. In addition to the internal energy, 
volume and mole numbers, we also report the entropy of the reference 
phase and the two-phase system, denoted as 𝑆𝐼  and 𝑆𝐼𝐼 , respectively. A 
reasonable agreement is observed with the results reported by Smejkal 
et al. [11] for problems 1–6.

To further evaluate the generality of our method, we also consider 
a single-component test case, as discussed by Smejkal et al. [11], with 
specifications defined in Table  3. The stability analysis (see Table  6) 
reveals that the fluid is unstable as a single-phase fluid. Based on this 
analysis, an initial phase split was obtained, as shown in Table  9. Flash 
calculations are subsequently performed using this initial phase split, 
and the results are presented in Table  13. Our findings show excellent 
agreement with the results reported in the literature [11].

7.2.1. Speedup
We now turn our attention to the computational speedup achieved 

by our TVN approach compared to the UVN formulation. Both formu-
lations are compared by directly using the same nonlinear solver in
Julia employing Newton’s method with line search. The results, sum-
marized in Tables  14 and 15, were obtained using Newton–Raphson 
9 
with a relative tolerance of 1 × 10−6 and per-variable, scale-invariant 
convergence criteria. Specifically, convergence is declared when, for 
each variable 𝑖,
|𝐹𝑖(𝑥𝑘)|

|𝐹𝑖(𝑥0)| + 𝜖
< 10−6,

|𝑥𝑘+1𝑖 − 𝑥𝑘𝑖 |

|𝑥𝑘𝑖 | + 𝜖
< 10−6,

where 𝐹 ∶ R𝑛 → R𝑛 is the nonlinear system of equations being solved, 
𝐹𝑖 denotes its 𝑖𝑡ℎ component, 𝑥𝑘𝑖  is the 𝑖𝑡ℎ component of the iterate at 
step 𝑘 and 𝜖 is a small constant (e.g., machine precision) added to pre-
vent division by zero. While moderate, a tolerance of 1×10−6 is standard 
in comparative studies and sufficient to obtain physically meaningful 
results, ensuring a fair comparison of computational performance.

Both the TVN and UVN formulations require a comparable number 
of outer iterations across all test cases. A notable advantage of the TVN 
approach, however, lies in its circumvention of inner iterations, which 
represent a significant computational bottleneck in the UVN method. 
These inner iterations correspond to the total number of nonlinear 
function evaluations invoked by automatic differentiation (AD) during 
the inner Newton steps—specifically in the evaluation of the gradient 
and Hessian. Corresponding to each outer iteration in the UVN method, 
there are four evaluations of the inner nonlinear function defined by Eq. 
(D.4): two gradients (one per phase) and two Hessians (one per phase). 
Each of these inner evaluations entails determination of the phase 
temperatures 𝑇1 and 𝑇2 by solving Eq.  (1). It is important to note that 
the number of inner iterations reported in Table  14 is implementation-
dependent. A potential strategy is to initialize the inner Newton solver 
with temperature values carried over from the previous outer iteration. 
This approach, however, introduces a risk of numerical instability, 
especially in early iterations where the temperatures of the two phases 
may differ significantly. Consequently, the present study adopted a 
fixed initial temperature guess, e.g., 𝑇 = 300.0, for all inner solves. 
However, for dynamic simulations, employing the temperature from 
the previous time step as the initial guess is a generally recommended 
practice. Under such conditions, a reduction in the number of inner 
iterations is anticipated. Nonetheless, the theoretical minimum number 
of inner iterations remains 4𝑂𝐼 , where 𝑂𝐼  denotes the number of outer 
iterations.

In contrast, the TVN approach circumvents this nested computa-
tional structure entirely, thereby diminishing both memory allocation 
and computational expenditure. Whereas the UVN method necessitates 
between 26 and 149 inner iterations across all test cases, the TVN 
formulation incurs no such computational overhead. For example, in 
Problem P5, the TVN approach achieves convergence about 30 times 
faster than the UVN method. This demonstrates the efficiency of the 
TVN formulation for the considered set of test problems.

It is worthwhile to note that variable scaling, where all variables are 
normalized by their respective total specified quantities, can improve 
the numerical stability and convergence behavior of the UVN method. 
However, as shown in Table  15, the UVN implementation exhibits 
scale-invariant results, with minimal impact of scaling on execution 
times across all test problems. While scaling does not significantly affect 
performance or convergence on the set of problems examined in this 
study, it may still offer benefits for numerical robustness in challenging 
cases.
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Table 7
Initial guesses obtained from stability analysis for Problems 1, 2, 3, and 4.
 Property Problem 1 Problem 2 Problem 3 Problem 4
 Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2
 𝑁𝑐1 [mol] 0.0003 9.9997 0.0195 0.9305 0.0005 15.0995 1.2549 8.7451
 𝑁𝐻2𝑆 [mol] 28.5304 61.4696 0.0982 98.9518 0.0583 84.8417 12.4787 77.5213
 𝑉 [m3] 0.0008 0.0520 0.0001 0.0041 2.45e−6 0.08026 0.0012 0.0087
 𝑈[J] −717694 −38806 −379.56 −1.511e6 −891.17 −330193 −94307.8 −542160
Table 8
Initial guesses from stability analysis for Problems 5 and 6.
 Property Problem 5 Problem 6
 Phase 1 Phase 2 Phase 1 Phase 2
 𝑁𝐶2

 [mol] 0.6328 10.2672 0.8394 9.9624
 𝑁𝐶3𝐻6

 [mol] 84.6926 276.1074 31.4435 329.3565
 𝑁𝐶3

 [mol] 22.4028 124.0972 13.0002 133.4998
 𝑁𝑖𝐶4

 [mol] 26.3615 206.6385 22.8175 210.1825
 𝑁𝑛𝐶4

 [mol] 82.5333 150.4667 23.5972 209.4028
 𝑁𝐶5

 [mol] 9.1875 6.7125 1.8268 14.0732
 𝑉  [m3] 0.0150 0.4648 0.0181 0.2713
 𝑈 [J] −8.2275e6 −8.0450e6 −211881.92 236740.12
Table 9
Initial guesses obtained from stability analysis for pure component (CO2).
 Property Phase 1 Phase 2  
 𝑁𝐶𝑂2

 [mol] 2435.89 7564.11  
 𝑉  [cm3] 0.125 0.875  
 𝑈 [J] −3.129 × 107 −5.592 × 107 

Furthermore, the TVN approach benefits from having inherently 
‘‘well-behaved’’ optimization variables. For instance, temperature typ-
ically varies within a relatively narrow range-on the order of a few 
hundred Kelvins, whereas internal energy spans a much broader do-
main, often involving large-magnitude negative and positive values. 
Consequently, no explicit variable scaling was applied during the opti-
mization process for the test cases considered.

8. Conclusion

In this work, we presented a reformulation of the UVN-flash prob-
lem in TVN-space. We simplified the numerical approach by transi-
tioning from the unconstrained UVN space to the constrained TVN 
space. This reformulation eliminates the need for implicit temperature 
determination for given 𝑈, 𝑉  and 𝐍 at inner iterations of UVN-flash 
calculations, thereby significantly improving the efficiency of flash 
calculations.

We applied the method of Lagrange multipliers to transform the 
constrained optimization problem into a saddle point problem. By 
deriving the necessary gradients and Hessian, we obtained an explicit 
expression for the Lagrange multiplier in terms of temperature, elim-
inating the need to treat it as an independent variable. This led to 
the entropy-based Q-function (𝑆𝑄), which upon further simplification 
yielded the Helmholtz energy-based Q-function (𝐴𝑄) originally pro-
posed by Michelsen. The saddle points of the 𝐴𝑄 function correspond 
to the maximization of entropy and are found by solving a system of 
nonlinear equations resulting from the stationarity conditions of the 
Lagrangian.

We also provided an explicit algorithm for generating high-quality 
initial guesses directly from stability analysis results. This crucial step 
greatly facilitates the convergence of the flash algorithm. We subse-
quently applied the reformulated approach to a set of test cases from 
the literature and validated the results against published data. We 
employed the Newton method with line search for solving the resulting 
nonlinear system and observed consistent convergence on all test cases.
10 
Finally, we compared TVN reformulation against the UVN ap-
proach, which involves the entropy maximization in its natural vari-
ables (𝑈, 𝑉 , and 𝐍). Our results show that the TVN formulation delivers 
substantial improvements in computational performance on all the 
test cases, making it a promising alternative for efficient and scalable 
UVN-flash calculations.
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Table 10
Comparison of flash results for Problems 1 and 2: Smejkal et al. [11] vs. our results.
 Problem 1 Problem 2
 Smejkal Current Smejkal Current

 𝑈 [J] −211544.585681 −211544.596326 −1510985.753624 −1510985.755666
 𝑉  [cm3] 51366.638771 51366.638597 4165.673900 4165.674425
 𝑁𝑐1  [mol] 9.664320 9.664319 0.930730 0.930730
 𝑁𝐻2𝑆 [mol] 54.315978 54.315976 98.941685 98.941685

 𝑆𝐼 [J K−1] −4847.824318 −4847.824867 −7391.709463 −7391.709647
 𝑆𝐼𝐼 [J K−1] −4335.499136 −4335.499558 −7390.326639 −7390.326837

 𝑇phase 1 [K] 297.997716 297.997717 298.000861 298.000876 
 𝑇phase 2 [K] 297.997716 297.997717 298.000856 298.000875 
 𝑃phase 1 [Pa] 2500170.787203 2500170.880449 2500317.847486 2500318.645643 
 𝑃phase 2 [Pa] 2500170.787153 2500170.880622 2500317.776275 2500318.640970 
Table 11
Comparison of flash results for Problems 3 and 4: Smejkal et al. [11] vs. our results.
 Problem 3 Problem 4
 Smejkal Current Smejkal Current

 𝑈 [J] −330516.922985 −330516.953672 −390660.034825 −390689.64236
 𝑉  [cm3] 80256.537494 80256.537579 6414.083981 6414.415486
 𝑁𝑐1  [mol] 15.099651 15.099651 6.448582 6.448928
 𝑁𝐻2𝑆 [mol] 84.862887 84.862889 56.390527 56.394270

 𝑆𝐼 [J K−1] −2613.988230 −2613.988418 −4579.402758 −4579.403289
 𝑆𝐼𝐼 [J K−1] −2613.987835 −2613.988023 −4579.402147 −4579.402679

 𝑇phase 1 [K] 297.996887 297.99689 361.997885 361.997922 
 𝑇phase 2 [K] 297.996887 297.99689 361.997885 361.997922 
 𝑃phase 1 [Pa] 2500125.243552 2500125.055235 10130505.626170 1013051.326715 
 𝑃phase 2 [Pa] 2500124.858262 2500125.511354 10130505.626049 1013051.327506 
Table 12
Comparison of flash results for Problems 5 and 6: Smejkal et al. [11] vs. our results.
 Problem 5 Problem 6
 Smejkal Current Smejkal Current

 𝑈 [J] −379886.931385 −380012.963119 174870.975415 174842.436972
 𝑉  [cm3] 401197.390420 401192.630291 273147.423428 273150.189814
 𝑁𝐶2

 [mol] 4.203436 4.242459 10.064693 10.066498
 𝑁𝐶3𝐻6

 [mol] 68.225832 68.231202 333.710698 333.715455
 𝑁𝐶3

 [mol] 24.416960 24.419097 135.325654 135.327702
 𝑁𝑖𝐶4

 [mol] 18.529159 18.531724 213.665513 213.668936
 𝑁𝑛𝐶4

 [mol] 13.885437 13.887650 213.118914 213.122442
 𝑁𝐶5

 [mol] 0.325600 0.325674 14.391190 14.391459

 𝑆𝐼 [J K−1] −73647.697512 −73640.643944 −9052.552759 −9052.541673
 𝑆𝐼𝐼 [J K−1] −54939.068244 −54937.804163 −9052.431373 −9052.420341

 𝑇phase 1 [K] 299.999735 300.004829 394.998501 394.998498 
 𝑇phase 2 [K] 299.999735 300.004829 394.998501 394.998498 
 𝑃phase 1 [Pa] 700082.833469 700360.612384 4230233.608414 4230243.484716 
 𝑃phase 2 [Pa] 700082.833469 700360.612385 4230233.576530 4230243.508068 
Table 13
Comparison of flash results for pure CO2: Smejkal vs. our results.
 Property Smejkal Current

 𝑈 [J] −16873789.390417 −16873791.656255
 𝑉  [cm3] 481283.619636 481283.486064
 𝑁𝐶𝑂2

 [mol] 2818.038884 2818.038719

 𝑆𝐼 [J/K] −584388.217059 −584388.23982
 𝑆𝐼𝐼 [J/K] −583476.321606 −583476.346351

 𝑇phase 1 [K] 299.040785 299.04079 
 𝑇phase 2 [K] 299.040785 299.04079 
 𝑃phase 1 [Pa] 6570486.596964 6570487.390738 
 𝑃phase 2 [Pa] 6570486.595448 6570487.390738 
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Table 14
Iteration counts for TVN (𝐴𝑄) and UVN formulations using line search.
 Problem TVN UVN Outer UVN Inner 
 P1 10 9 110  
 P2 4 4 40  
 P3 4 4 26  
 P4 9 10 69  
 P5 10 10 149  
 P6 5 5 52  
 PCO2 9 8 108  
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Table 15
Execution time comparison (in milliseconds) for TVN (𝐴𝑄) and UVN formulations 
using line search. The execution time reported is the average over 100 repetitions.
 Problem TVN (ms) UVN no scale (ms) UVN scaled (ms) 
 P1 0.18 2.20 2.06  
 P2 0.07 0.92 2.00  
 P3 0.04 0.75 0.70  
 P4 0.14 1.83 2.98  
 P5 1.23 40.19 39.99  
 P6 0.68 15.93 17.04  
 PCO2 0.05 1.00 0.99  

Appendix A. Gradient computation for the Lagrangian function

In this section, we discuss the evaluation of the gradients of the en-
tropy function defined by Eq.  (16) and the constraint function defined 
by Eq.  (17). These gradients are needed to compute the value of the 
Lagrange multiplier 𝜆. The gradient ∇𝑆unc(𝐱) of the entropy function 
𝑆unc(𝐱) is defined as: 

∇𝑆unc(𝐱) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∇𝑆(1)
red
⋮

∇𝑆(𝑝−2)
red

∇𝑆(𝑝−1)
red

𝜕𝑆unc
𝜕𝑇

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,∀𝑘 ∈ {1,… , 𝑝 − 1}, (A.1)

where ∇𝑆(𝑘)
unc ∈ R𝑛+1, and 𝜕𝑆unc

𝜕𝑇 =
∑𝑝

𝑘=1
𝜕𝑆(𝑘)

𝜕𝑇 ∈ R, and where 𝑆(𝑘) =
𝑆
(

𝑇 , 𝑉 (𝑘),𝐍(𝑘)) is the entropy of the phase 𝑘. The individual entries of 
∇𝑆(𝑘)

unc are given as below. 

∇𝑆(𝑘)
red =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜕𝑆unc

𝜕𝑁 (𝑘)
1

⋮

𝜕𝑆unc

𝜕𝑁 (𝑘)
𝑛

𝜕𝑆unc

𝜕𝑉 (𝑘)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜕𝑆(𝑘)
red

𝜕𝑁 (𝑘)
1

−
𝜕𝑆(𝜉)

red

𝜕𝑁 (𝜉)
1

⋮

𝜕𝑆(𝑘)
red

𝜕𝑁 (𝑘)
𝑛

−
𝜕𝑆(𝜉)

red

𝜕𝑁 (𝜉)
𝑛

𝜕𝑆(𝑘)
red

𝜕𝑉 (𝑘)
−

𝜕𝑆(𝜉)
red

𝜕𝑉 (𝜉)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (A.2)

We can simplify the partial derivatives using thermodynamic identities 
as follows:

𝜕𝑆unc
𝜕𝑇

=
𝑝−1
∑

𝑘=1

𝜕𝑆
(

𝑇 , 𝑉 (𝑘),𝐍(𝑘))

𝜕𝑇
+

𝜕𝑆
(

𝑇 , 𝑉 ⋆ −
∑𝑝−1

𝑘=1 𝑉
(𝑘),𝐍(𝜉)

)

𝜕𝑇

= 1
𝑇

𝑝
∑

𝑘=1
𝐶𝑣

(

𝑇 , 𝑉 (𝑘),𝐍(𝑘)) . (A.3)

Furthermore, the thermodynamic identity for the volume derivative of 
entropy is given by: 
( 𝜕𝑆
𝜕𝑉

)

𝑇 ,𝐍
=
( 𝜕𝑃
𝜕𝑇

)

𝑉 ,𝐍
. (A.4)

Next, for the derivative with respect to 𝑁 , we can substitute 𝑆 in terms 
of Helmholtz energy 𝐴 as follows: 

( 𝜕𝑆
𝜕𝑁

)

𝑇 ,𝑉
=

⎛

⎜

⎜

⎜

⎝

𝜕
(

− 𝜕𝐴
𝜕𝑇

)

𝑉 ,𝑁

𝜕𝑁

⎞

⎟

⎟

⎟

⎠𝑇 ,𝑉

. (A.5)

Since 𝑉  is constant, we consider only 𝑇  and 𝑁 as variables, yielding:

( 𝜕𝑆
𝜕𝑁

)

𝑇
=

⎛

⎜

⎜

⎜

𝜕
(

− 𝜕𝐴
𝜕𝑇

)

𝑁
𝜕𝑁

⎞

⎟

⎟

⎟

= −
𝜕𝜇
𝜕𝑇

.

⎝ ⎠𝑇
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Finally, the gradient of the reduced entropy for phase 𝑘 is given by: 

∇𝑆(𝑘)
red =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜕𝑆unc

𝜕𝑁 (𝑘)
1

⋮

𝜕𝑆unc

𝜕𝑁 (𝑛)
𝑛

𝜕𝑆unc

𝜕𝑉 (𝑘)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−
𝜕𝜇1(𝑇 , 𝑉 (𝑘),𝐍(𝑘))

𝜕𝑇
+

𝜕𝜇1
𝜕𝑇

(𝐱(𝜉))

⋮

−
𝜕𝜇𝑛(𝑇 , 𝑉 (𝑘),𝐍(𝑘))

𝜕𝑇
+

𝜕𝜇𝑛
𝜕𝑇

(𝐱(𝜉))

𝜕𝑃 (𝑇 , 𝑉 (𝑘),𝐍(𝑘))
𝜕𝑇

− 𝜕𝑃
𝜕𝑇

(𝐱(𝜉))

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (A.6)

It is interesting to note that, while Smejkal’s approach expresses the 
gradient of 𝑆unc using the terms of the form 𝑎

𝑏 , our formulation in-
stead involves partial derivatives of the form 𝜕𝑎𝜕𝑏 . For instance, in our 
approach, the derivative of 𝑆unc with respect to 𝑁 (𝑘)

1  is expressed as
𝜕𝑆unc

𝜕𝑁 (𝑘)
1

= −
𝜕𝜇1(𝑇 , 𝑉 (𝑘),𝐍(𝑘))

𝜕𝑇
+

𝜕𝜇1(𝐱(𝜉))
𝜕𝑇

,

whereas in Smejkal’s approach, it is given by
𝜕𝑆unc

𝜕𝑁 (𝑘)
1

= −
𝜇1(𝑈 (𝑘), 𝑉 (𝑘),𝐍(𝑘))

𝑇
+

𝜇1(𝐱(𝜉))
𝑇

.

This pattern persists across other derivatives as well, underscoring a 
fundamental difference in the treatment of thermodynamic variable de-
pendencies between the two methodologies. We remark here that 𝑈 (𝑘)

is defined differently for both approaches. For Smejkal’s approach, it is 
the unknown of the optimization problem, whereas for our approach it 
is defined as 𝑈 (𝑘) ∶= 𝑈 (𝑇 , 𝑉 (𝑘),𝐍(𝑘)). Having computed the gradients of 
the entropy function, we now turn our attention to the computation of 
the gradient of the constraint function : 

∇(𝐱) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∇(1)

⋮
∇(𝑝−2)

∇(𝑝−1)

𝜕
𝜕𝑇

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, ∀𝑘 ∈ {1,… , 𝑝 − 1}, (A.7)

where ∇(𝑘) ∈ R𝑛+1 and 𝜕𝜕𝑇 =
∑𝑝

𝑘=1
𝜕𝑈 (𝑘)

𝜕𝑇 ∈ R, 𝑈 (𝑘) ∶= 𝑈 (𝑇 , 𝑉 (𝑘),𝐍(𝑘)), 
and 

∇(𝑘) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜕
𝜕𝑁 (𝑘)

1

⋮

𝜕
𝜕𝑁 (𝑘)

𝑛

𝜕
𝜕𝑉 (𝑘)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜕(𝑘)

𝜕𝑁 (𝑘)
1

− 𝜕(𝜉)

𝜕𝑁 (𝜉)
1

⋮

𝜕(𝑘)

𝜕𝑁 (𝑘)
𝑛

− 𝜕(𝜉)

𝜕𝑁 (𝜉)
𝑛

𝜕(𝑘)

𝜕𝑉 (𝑘)
− 𝜕(𝜉)

𝜕𝑉 (𝑘)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (A.8)

We can simplify these gradients using standard thermodynamic identi-
ties. First, recall that the heat capacity at constant volume, 𝐶𝑣, is given 
by the following thermodynamic relation: 

𝐶𝑣 =
( 𝜕𝑈
𝜕𝑇

)

𝑉 ,𝐍
. (A.9)

Consequently, the partial derivative of the constraint with respect to 
temperature becomes: 

𝜕
𝜕𝑇

=
𝑝
∑

𝑘=1
𝐶 (𝑘)
𝑣 . (A.10)

Next, utilizing the thermodynamic identity 
( 𝜕𝑈 )

= 𝑇
( 𝜕𝑃 )

− 𝑃 , (A.11)

𝜕𝑉 𝑇 ,𝐍 𝜕𝑇 𝑉 ,𝐍
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we obtain the following expression for the partial derivative of the 
constraint with respect to volume: 
𝜕(𝑘)

𝜕𝑉 (𝑘)
=
(

𝜕𝑈 (𝑘)

𝜕𝑉 (𝑘)

)

𝑇 ,𝐍
= 𝑇

( 𝜕𝑃
𝜕𝑇

)

𝑉 (𝑘) ,𝐍
− 𝑃 . (A.12)

For the partial derivative of the constraint with respect to the mole 
number of component 1 in phase 𝑘, we proceed as follows:

𝜕(𝑘)

𝜕𝑁 (𝑘)
1

=

(

𝜕𝑈 (𝑘)

𝜕𝑁 (𝑘)
1

)

𝑇 ,𝑉 (𝑘)

=

(

𝜕𝐴(𝑘) + 𝑇𝑆(𝑘)

𝜕𝑁 (𝑘)
1

)

𝑇 ,𝑉 (𝑘)

=

(

𝜕𝐴(𝑘)

𝜕𝑁 (𝑘)
1

)

𝑇 ,𝑉 (𝑘)

+ 𝑇

(

𝜕𝑆(𝑘)

𝜕𝑁 (𝑘)
1

)

𝑇 ,𝑉 (𝑘)

= 𝜇(𝑘)
1 − 𝑇

(

𝜕𝜇(𝑘)
1

𝜕𝑇

)

, (A.13)

where 𝜇(𝑘)
1  is the chemical potential of component 1 in phase 𝑘. Similar 

expressions hold for components 2,… , 𝑝−1. Finally, we can summarize 
the gradient of the constraint with respect to the generalized state 
variables: 

∇(𝑘)(𝐱) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜇(𝑘)
1 − 𝑇

𝜕𝜇(𝑘)
1

𝜕𝑇
−

(

𝜇(𝜉)
1 − 𝑇

𝜕𝜇(𝜉)
1

𝜕𝑇

)

⋮

𝜇(𝑘)
𝑛 − 𝑇

𝜕𝜇(𝑘)
𝑛

𝜕𝑇
−

(

𝜇(𝜉)
𝑛 − 𝑇

𝜕𝜇(𝜉)
𝑛

𝜕𝑇

)

𝑇
(

𝜕𝑃 (𝑘)

𝜕𝑇

)

𝑉 (𝑘) ,𝐍
− 𝑃 (𝑘) −

(

𝑇
(

𝜕𝑃 (𝜉)

𝜕𝑇

)

𝑉 (𝜉) ,𝐍
− 𝑃 (𝜉)

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(A.14)

Appendix B. Gradient of the Helmholtz-based Q-function

This appendix provides analytical expressions for the gradient of the 
Helmholtz-energy-based Q-function (𝐱), defined as: 

(𝐱) =
𝑈⋆ −

(

∑𝑝−1
𝑘=1 𝐴

(

𝑇 , 𝑉 (𝑘),𝐍(𝑘)) + 𝐴
(

𝑇 , 𝑉 (𝜉),𝐍(𝜉))
)

𝑇
, (B.1)

where 𝑉 (𝜉) ∶= 𝑉 ⋆ −
∑𝑝−1

𝑘=1 𝑉
(𝑘), 𝐍(𝜉) ∶= 𝐍 −

∑𝑝−1
𝑘=1 𝐍

(𝑘).

Partial derivative with respect to temperature:
𝜕
𝜕𝑇

= −𝑈⋆

𝑇 2
− 1

𝑇
𝜕𝐴
𝜕𝑇

+ 𝐴
𝑇 2

= −𝑈⋆

𝑇 2
+ 𝑆

𝑇
+ 𝐴

𝑇 2

= 𝐴 + 𝑇𝑆 − 𝑈⋆

𝑇 2
= 𝑈 − 𝑈⋆

𝑇 2
, (B.2)

where 𝑆 =
∑𝑝

𝑘=1 𝑆
(𝑘), 𝐴 =

∑𝑝
𝑘=1 𝐴

(𝑘), and 𝑈 =
∑𝑝

𝑘=1 𝑈
(𝑘). Thus, the 

stationarity condition 𝜕
𝜕𝑇 = 0 enforces conservation of total internal 

energy, i.e., 𝑈 = 𝑈⋆.

Partial derivatives with respect to phase volumes: For 𝑘 = 1,… , 𝑝−
1,

𝜕
𝜕𝑉 (𝑘)

= 1
𝑇

[

𝜕𝐴
𝜕𝑉 (𝑘)

(

𝑇 , 𝑉 (𝜉),𝐍(𝜉)) − 𝜕𝐴
𝜕𝑉 (𝑘)

(

𝑇 , 𝑉 (𝑘),𝐍(𝑘))
]

= 𝑃 (𝑘) − 𝑃 (𝜉)

𝑇
, (B.3)

where 𝑉 (𝜉) = 𝑉 ⋆ −
∑𝑝−1

𝑘=1 𝑉
(𝑘) is the residual phase volume, and 𝑃 (𝑘) =

− 𝜕𝐴
𝜕𝑉 (𝑇 , 𝑉 (𝑘),𝐍(𝑘)) denotes the pressure in phase 𝑘.

Partial derivatives with respect to mole numbers: For each com-
ponent 𝑖 in phase 𝑘 = 1,… , 𝑝 − 1, the gradient with respect to 𝑁 (𝑘)
𝑖
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is:

𝜕
𝜕𝑁 (𝑘)

𝑖

= 1
𝑇

[

𝜕𝐴
𝜕𝑁 (𝑘)

𝑖

(

𝑇 , 𝑉 (𝜉),𝐍(𝜉)) − 𝜕𝐴
𝜕𝑁 (𝑘)

𝑖

(

𝑇 , 𝑉 (𝑘),𝐍(𝑘))
]

=
𝜇(𝜉)
𝑖 − 𝜇(𝑘)

𝑖
𝑇

, (B.4)

where 𝜇(𝑘)
𝑖 = 𝜕𝐴

𝜕𝑁 (𝑘)
𝑖

(𝑇 , 𝑉 (𝑘),𝐍(𝑘)) denotes the chemical potential of 
component 𝑖 in phase 𝑘.
Interpretation. These expressions demonstrate that stationarity of 
corresponds to thermodynamic equilibrium, enforcing:

• Equality of pressure across all phases: 𝑃 (1) = ⋯ = 𝑃 (𝜉),
• Equality of chemical potentials for each component across phases: 
𝜇(1)
𝑖 = ⋯ = 𝜇(𝜉)

𝑖  for all 𝑖,
• Conservation of total internal energy: 𝑈 = 𝑈⋆.

These conditions are both necessary and sufficient for thermody-
namic equilibrium under the specified constraints, thereby confirming 
the consistency of the Helmholtz-based Q-function. The pseudocode for 
this Q-function is provided in Algorithm 3.

Appendix C. Hessian of the Helmholtz-based Q-function

The Hessian matrix 𝐻(𝐱) ∈ R[(𝑝−1)(𝑛+1)+1]×[(𝑝−1)(𝑛+1)+1] of the
Helmholtz-Based Q-function  defined by Eq.  (37), admits the follow-
ing block structure:

H(𝐱) =
⎡

⎢

⎢

⎣

H𝑁,𝑁 H𝑁,𝑉 H𝑁,𝑇
H𝑉 ,𝑁 H𝑉 ,𝑉 H𝑉 ,𝑇
H𝑇 ,𝑁 H𝑇 ,𝑉 H𝑇 ,𝑇

⎤

⎥

⎥

⎦

.

Each block has the following structure:
H𝑁,𝑁  ((𝑝 − 1)𝑛 × (𝑝 − 1)𝑛):

H(𝑘,𝓁)
𝑁,𝑁 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜕2
𝜕𝑁 (𝑘)

1 𝜕𝑁 (𝓁)
1

⋯
𝜕2

𝜕𝑁 (𝑘)
1 𝜕𝑁 (𝓁)

𝑛
⋮ ⋱ ⋮

𝜕2
𝜕𝑁 (𝑘)

𝑛 𝜕𝑁 (𝓁)
1

⋯
𝜕2

𝜕𝑁 (𝑘)
𝑛 𝜕𝑁 (𝓁)

𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

H𝑁,𝑉  ((𝑝 − 1)𝑛 × (𝑝 − 1)) and H𝑁,𝑇  ((𝑝 − 1)𝑛 × 1):

H(𝑘,𝓁)
𝑁,𝑉 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜕2
𝜕𝑁 (𝑘)

1 𝜕𝑉 (𝓁)

⋮
𝜕2

𝜕𝑁 (𝑘)
𝑛 𝜕𝑉 (𝓁)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, H(𝑘)
𝑁,𝑇 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜕2
𝜕𝑁 (𝑘)

1 𝜕𝑇
⋮

𝜕2
𝜕𝑁 (𝑘)

𝑛 𝜕𝑇

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

H𝑉 ,𝑉  ((𝑝 − 1) × (𝑝 − 1)) and H𝑉 ,𝑇  ((𝑝 − 1) × 1):

H(𝑘,𝓁)
𝑉 ,𝑉 = 𝜕2

𝜕𝑉 (𝑘)𝜕𝑉 (𝓁)
, H(𝑘)

𝑉 ,𝑇 = 𝜕2
𝜕𝑉 (𝑘)𝜕𝑇

.

H𝑇 ,𝑇  (1 × 1):

H𝑇 ,𝑇 = 𝜕2
𝜕𝑇 2

.

For practical implementation, the computation of required gradients 
and Hessians is performed using automatic differentiation (AD). AD 
tools are employed due to their established robustness, computational 
efficiency, and their ability to evaluate analytical derivatives to ma-
chine precision. In this work, we have used the ForwardDiff.jl
package [32] for AD.

Appendix D. Peng–Robinson equation of state

We employ the Peng–Robinson equation of state (EOS) [11], which 
is formulated as follows: 

𝑃 (𝑇 , 𝑉 ,𝑁 ,… , 𝑁 ) = 𝑁𝑅𝑇 −
𝑎(𝑇 )𝑁2

, (D.1)
1 𝑛 𝑉 − 𝐵 𝑉 2 + 2𝐵𝑉 − 𝐵2
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where 𝑇  is the temperature, 𝑉  is the volume, 𝑁𝑖 represents the number 
of moles of component 𝑖 in the system, 𝑅 is the universal gas constant 
and 𝑁 is the total number of moles in the system. The parameters 
𝑎(𝑇 ) and 𝐵 characterize intermolecular forces and volume exclusion, 
respectively. The parameters 𝑎(𝑇 ) and 𝐵 are defined as follows: 
𝐵 = 𝑏𝑁, (D.2a)

𝑎 =
𝑛
∑

𝑖=1

𝑛
∑

𝑗=1
𝑥𝑖𝑥𝑗𝑎𝑖𝑗 , (D.2b)

𝑎𝑖𝑗 = (1 − 𝛿𝑖𝑗 )
√

𝑎𝑖𝑎𝑗 , (D.2c)

𝑎𝑖(𝑇 ) = 0.45724
𝑅2𝑇 2

crit,𝑖
𝑃crit,𝑖

[

1 + 𝑚𝑖

(

1 −
√

𝑇𝑟,𝑖
)]2

, (D.2d)

𝑏 =
𝑛
∑

𝑖=1
𝑥𝑖𝑏𝑖, (D.2e)

𝑏𝑖 = 0.0778
𝑅𝑇crit,𝑖
𝑃crit,𝑖

, (D.2f)

where 𝑥𝑖 = 𝑁𝑖∕𝑁 is the mole fraction of component 𝑖. 𝑇crit,𝑖, 𝑃crit,𝑖 and 
𝑇𝑟,𝑖 = 𝑇 ∕𝑇crit,𝑖 are the critical temperature, critical pressure and the 
reduced temperature of component 𝑖, and 𝛿𝑖𝑗 is the Kronecker delta. 
The parameter 𝑚𝑖 accounts for the acentric factor 𝜔𝑖 as: 

𝑚𝑖 =

{

0.37464 + 1.54226𝜔𝑖 − 0.26992𝜔2
𝑖 , 𝜔𝑖 < 0.5,

0.3796 + 1.485𝜔𝑖 − 0.1644𝜔2
𝑖 + 0.01667𝜔3

𝑖 , 𝜔𝑖 ≥ 0.5.
(D.3)

The residual internal energy, 𝑈 , in the context of the Peng–Robinson 
EOS is expressed as follows.

𝑈 (𝑇 , 𝑉 ,𝑁1,… , 𝑁𝑛) = 𝑁
𝑇𝜕𝑇 (𝑎) − 𝑎

2
√

2𝑏
ln
[

𝑉 + 𝛿1𝐵
𝑉 + 𝛿2𝐵

]

− 𝑁𝑅(𝑇 − 𝑇0) +
𝑛
∑

𝑖=1
𝑁𝑖 ∫

𝑇

𝑇0
𝑐ig𝑝,𝑖(𝜉) 𝑑𝜉 +𝑁𝑢0, (D.4)

where 𝜕𝑇 (𝑎) is the temperature derivative of 𝑎(𝑇 ), 𝑇0 is a reference 
temperature, 𝛼𝑖𝑘 are empirical constants, 𝛿1 = 1 +

√

2and𝛿2 = 1 −
√

2. 
The residual entropy, 𝑆, is given as

𝑆(𝑇 , 𝑉 ,𝑁1,… , 𝑁𝑛) = 𝑁𝑅 ln
[𝑉 − 𝐵

𝑉

]

+𝑁
𝜕𝑇 (𝑎)

2
√

2𝑏
ln
[

𝑉 + 𝛿1𝐵
𝑉 + 𝛿2𝐵

]

+ 𝑅
𝑛
∑

𝑖=1
𝑁𝑖 ln

𝑉 𝑃0
𝑁𝑖𝑅𝑇

+
𝑛
∑

𝑖=1
𝑁𝑖 ∫

𝑇

𝑇0

𝑐ig𝑝,𝑖(𝜉)

𝜉
𝑑𝜉, (D.5)

where 𝑐ig𝑝,𝑖(𝑇 ) is the ideal gas heat capacity of component 𝑖 and 𝑃0 is a 
reference pressure. The heat capacity 𝑐ig𝑝,𝑖(𝑇 ) can be written as: 

𝑐ig𝑝,𝑖(𝑇 ) =
3
∑

𝑘=0
𝛼𝑖𝑘𝑇

𝑘. (D.6)

Now, we can simplify the integral in (D.4) as

∫

𝑇

𝑇0
𝑐ig𝑝,𝑖(𝜉) 𝑑𝜉 =

3
∑

𝑘=0
𝛼𝑖𝑘

𝑇 𝑘+1 − 𝑇 𝑘+1
0

𝑘 + 1
,

and the integral in (D.5) as

∫

𝑇

𝑇0

𝑐ig𝑝,𝑖(𝜉)

𝜉
𝑑𝜉,= 𝛼𝑖0 ln

(

𝑇
𝑇0

)

+
3
∑

𝑘=1
𝛼𝑖𝑘

𝑇 𝑘 − 𝑇 𝑘
0

𝑘
.

The coefficients 𝛼0, 𝛼1, 𝛼2, 𝛼3 for the fluids considered in this work 
are listed in Table  D.16, while the parameters of the Peng–Robinson 
equation of state are summarized in Table  D.17. It is important to 
note that the arguments of logarithmic terms must remain positive in 
Eqs. (D.4) and (D.5). If this condition is violated, the current step should 
be rejected or appropriately truncated to maintain physical consistency. 
The reference state is specified at 𝑇0 = 298.15K and 𝑃0 = 1 bar, where 
the molar internal energy is defined as
𝑢 = 𝑢(𝑇 , 𝑃 ) = ℎ(𝑇 , 𝑃 ) − 𝑅𝑇 = −𝑅𝑇 = −2478.95687512 Jmol−1.
0 0 0 0 0 0 0

14 
Table D.16
Correlation coefficients 𝑐ig𝑝  [11].
 Component 𝛼0 𝛼1 𝛼2 𝛼3  
 C1 19.25 5.213 × 10−2 1.197 × 10−5 −1.132 × 10−8 
 H2S 31.94 1.463 × 10−3 2.432 × 10−5 −1.176 × 10−8 
 C2 5.409 1.781 × 10−1 −6.938 × 10−5 8.713 × 10−9  
 C3H6 3.710 2.345 × 10−1 −1.160 × 10−4 2.205 × 10−8  
 C3 −4.224 3.063 × 10−1 −1.586 × 10−4 3.215 × 10−8  
 iC4 −1.390 3.847 × 10−1 −1.846 × 10−4 2.895 × 10−8  
 nC4 9.487 3.313 × 10−1 −1.108 × 10−4 −2.822 × 10−8 
 nC5 −3.626 4.873 × 10−1 −2.580 × 10−4 5.305 × 10−8  
 CO2 19.80 7.344 × 10−2 −5.602 × 10−5 −1.715 × 10−8 

Table D.17
Parameters of Peng–Robinson EOS [11].
 Component 𝑇crit [K] 𝑃crit [bar] 𝜔 [-]  
 C1 190.4 46.0 0.011 
 H2S 373.2 89.4 0.081 
 C2 305.4 48.8 0.099 
 C3H6 364.9 46.0 0.144 
 C3 369.8 42.5 0.153 
 iC4 408.2 36.5 0.183 
 nC4 425.2 38.0 0.199 
 nC5 469.7 33.7 0.251 
 CO2 304.14 73.75 0.239 

This definition ensures that the molar enthalpy of the ideal gas at the 
reference conditions is zero [11], i.e., ℎ(𝑇0, 𝑃0) = 0. Furthermore, the 
molar entropy of each pure component as an ideal gas is also set to 
zero at this state, 𝑠ideal𝑖 (𝑇0, 𝑃0) = 0.

The expressions for the Helmholtz free energy and the chemical 
potential are provided in the book by Michelsen and Møllerup [3]. 
For completeness, we reproduce them here. The residual part of the 
Helmholtz free energy is given by: 

𝐴(𝑇 , 𝑉 ,𝑁1,… , 𝑁𝑛) = −𝑁𝑅𝑇 ln
[𝑉 − 𝐵

𝑉

]

−𝑁
𝑎(𝑇 )

2
√

2𝑏
ln
[

𝑉 + 𝛿1𝐵
𝑉 + 𝛿2𝐵

]

(D.7)

The residual part of chemical potential of the 𝑖th component can 
be calculated as the partial derivative of the Helmholtz free energy 𝐴
with respect to 𝑁𝑖, keeping temperature 𝑇 , volume 𝑉 , and all other 
mole numbers constant:

𝜇𝑖(𝑇 , 𝑉 ,𝑁1,… , 𝑁𝑛) =
(

𝜕𝐴(𝑇 , 𝑉 ,𝑁1,… , 𝑁𝑛)
𝜕𝑁𝑖

)

𝑇 ,𝑉 ,𝑁𝑗≠𝑖

=𝑅𝑇
(

𝜕𝐹 (𝑇 , 𝑉 ,𝑁1,… , 𝑁𝑛)
𝜕𝑁𝑖

)

𝑇 ,𝑉 ,𝑁𝑗≠𝑖

, (D.8)

where the dimensionless Helmholtz energy is defined as 𝐹 ∶= 𝐴∕(𝑅𝑇 )
(see [3]).

The partial derivative of 𝐹  with respect to 𝑁𝑖 is given by: 
𝜕𝐹
𝜕𝑁𝑖

= −𝑔 −𝑁𝑔𝐵𝐵𝑖 −
𝐷
𝑇
𝑓𝐵𝐵𝑖 −

𝑓
𝑇
𝐷𝑖, (D.9)

where

𝑓 = 1

2
√

2𝐵
ln
(

𝑉 + 𝛿1𝐵
𝑉 + 𝛿2𝐵

)

, (D.10)

𝑔 = ln
(𝑉 − 𝐵

𝑉

)

, (D.11)

𝑔𝐵 = − 1
𝑉 − 𝐵

, (D.12)

𝑓𝑉 = 1
𝑅(𝑉 + 𝛿1𝐵)(𝑉 + 𝛿2𝐵)

, (D.13)

𝑓𝐵 =
𝑓 + 𝑉 𝑓𝑉

𝐵
, (D.14)

𝐷𝑖 = 2
𝑛
∑

𝑗=1
𝑁𝑗𝑎𝑖𝑗 , (D.15)

𝑏 = (1 − 𝑙 )(𝑏 + 𝑏 )∕2, (D.16)
𝑖𝑗 𝑖𝑗 𝑖 𝑗
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𝐵𝑖 =
2
∑𝑛

𝑗=1 𝑁𝑗𝑏𝑖𝑗 − 𝐵

𝑁
. (D.17)

Appendix E. Pseudocode for stability analysis

For completeness, we have included a concise pseudocode outline 
for the stability analysis in this section. Step 3 of the pseudocode is 
implemented using the NLsolve.jl solver.

Algorithm 2 Stability Analysis under UVN Specification
Require: Specified internal energy 𝑈spec, volume 𝑉spec, total composi-

tion 𝒛spec, and thermodynamic model
1: Estimate temperature 𝑇spec consistent with 𝑈spec, 𝑉spec, 𝒛spec
2: Generate a set of trial concentrations {𝒄(𝑗)} using a scaled simplex 
centered at the barycenter

3: for each trial concentration 𝒄(𝑗) do
4:  Find the trial phase concentrations 𝒄′, by solving the nonlinear 
system Eq.  (5) at 𝑇 = 𝑇spec using Newton’s method, following the 
procedure in Section 3.1: 

1. Set initial concentration guess 𝒄′,0, iteration counter 𝑘 ← 0
and the solution 𝒄⋆ ← 𝒄′,0.

2. Set tolerance: 𝑥𝑡𝑜𝑙 ← 1 × 10−8, 𝑓𝑡𝑜𝑙 ← 1 × 10−8, 𝜖 ← ×10−10

3. Repeat for 𝑘 = 0, 1, 2,…  until convergence:
(a) Compute the Newton step 𝛥𝒄′,𝑘 by solving:

𝐉(𝒄′,𝑘)𝛥𝒄′,𝑘 = −𝐅(𝒄′,𝑘)

(b) Update the concentration vector using a suitable step 
length 𝜆𝑘 (Line search with third order Backtracking):
𝒄′,𝑘+1 = 𝒄′,𝑘 + 𝜆𝑘𝛥𝒄′,𝑘

(c) Terminate if, for every component 𝑖,

|

|

𝐹𝑖(𝒄′,𝑘)||
|

|

𝐹𝑖(𝒄′,0)|| + 𝜖
< 𝑓𝑡𝑜𝑙,

|

|

|

𝑐′,𝑘+1𝑖 − 𝑐′,𝑘𝑖
|

|

|

|

|

|

𝑐′,𝑘𝑖
|

|

|

+ 𝜖
< 𝑥𝑡𝑜𝑙,

Once converged, assign the final concentration vector 
𝒄⋆ ← 𝒄′,𝑘.

5:  Compute internal energy density 𝑢∗ ← 𝑈 (𝑇spec, 1.0, 𝒄⋆).
6:  Evaluate tangent plane distance 𝐷∗ as per Eq.  (2)
7:  if 𝐷∗ ≥ 0 then
8:  Mark system as phase-unstable for this trial
9:  Store 𝒄∗ and 𝐷∗

10: return Maximum 𝐷∗, corresponding 𝒄∗, and list of all unstable 
points

Appendix F. Pseudocode for 𝑨𝑸

The pseudocode for the 𝐴𝑄 formulation is briefly outlined in 
this section. For a robust implementation, the automatic addition and 
removal of phases, even during two-phase calculations, is critical, as 
detailed in Section 2.4. We have excluded this aspect from the current 
pseudocode to maintain focus on the core formulation. For details, we 
refer the reader to Castier [10]. Note that the objective function for 
line search can be either the sum of squares of the residual or, as in 
this work, a cubic polynomial approximation, following the approach 
discussed in detail in Numerical Recipes [33].

Data availability

No data was used for the research described in the article.
15 
Algorithm 3 Pseudocode for 𝐴𝑄
Require: Total internal energy 𝑈⋆ [J], volume 𝑉 ⋆ [m3], and mole 

numbers 𝐍⋆ = [𝑁⋆
1 ,… , 𝑁⋆

𝑛 ], the trial phase concentration vector 
𝐜 [mol/m3] and the trial phase internal energy density 𝑢 [J/m3]

1: Generate initial guess using Algorithm 1: 𝑥 ← 𝑥(0)

2: Define gradient (see Appendix  B) using AD (Note: AD gives exact 
derivative to machine precision.)
𝑔(𝑥) = ForwardDiff.gradient(, 𝑥)

3: Define Hessian (see Appendix  C) using AD
𝐻(𝑥) = ForwardDiff.hessian(, 𝑥)

4: Initialize iteration count: 𝑛iters ← 0
5: Set tolerance: 𝑥𝑡𝑜𝑙 ← 1 × 10−8, 𝑓𝑡𝑜𝑙 ← 1 × 10−8

6: while 𝑛iters < max_iters do
7:  Compute Newton step 𝛿𝑥 by solving 𝐻(𝑥) 𝛿𝑥 = −𝑔(𝑥)
8:  𝑥new ← 𝑥 + 𝛿𝑥
9:  Feasibility Check:
10:   Let 𝑥trial = 𝑥 + 𝛿𝑥.
11:   If 𝑥trial does not satisfy conditions Eq.  (10) or
12:   any logarithmic argument in Eq.  (D.4) or Eq.  (D.5) is not 

positive for 𝑥trial:
13:   Reduce step size for 𝛿𝑥 using line search with third-order 

backtracking (see [33]) and retry this step.
14:  Else:
15:  𝑥new = 𝑥trial
16:  Convergence Check:
17:  grad_converged ←

‖𝑔(𝑥new)‖∞
‖𝑔(𝑥(0))‖∞+𝜖 < 𝑓𝑡𝑜𝑙

18:  step_converged ←
‖𝑥new−𝑥‖∞
‖𝑥‖∞+𝜖 < 𝑥𝑡𝑜𝑙

19:   If grad_converged or step_converged
20:   return 𝑥new, 𝑛iters
21:  Update current solution: 𝑥 ← 𝑥new
22:  Increment iteration count: 𝑛iters ← 𝑛iters + 1
23: return failure ⊳ Maximum iterations reached without 

convergence
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