

Delft University of Technology

Solving the UVN-flash problem in TVN-space

Kumar, Pardeep; Esquivel, Patricio I. Rosen

DOI
10.1016/j.fluid.2025.114528
Publication date
2026
Document Version
Final published version
Published in
Fluid Phase Equilibria

Citation (APA)
Kumar, P., & Esquivel, P. I. R. (2026). Solving the UVN-flash problem in TVN-space. Fluid Phase Equilibria,
599, Article 114528. https://doi.org/10.1016/j.fluid.2025.114528

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.fluid.2025.114528
https://doi.org/10.1016/j.fluid.2025.114528

Fluid Phase Equilibria 599 (2026) 114528

A
0

Contents lists available at ScienceDirect

Fluid Phase Equilibria

journal homepage: www.sciencedirect.com/journal/fluid-phase-equilibria

Solving the UVN-flash problem in TVN-space
Pardeep Kumar a,b ,∗, Patricio I. Rosen Esquivel c
a Delft University of Technology, Delft, The Netherlands
b Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
c Shell Projects and Technology, Amsterdam, The Netherlands

A R T I C L E I N F O

Keywords:
UV-flash
UVN reformulation
Flash
Entropy maximization
Stability analysis
Phase equilibrium calculations

 A B S T R A C T

In this paper, we investigate the phase equilibrium problem for multicomponent mixtures under specified
internal energy (𝑈), volume (𝑉), and mole numbers (𝑁1, 𝑁2,… , 𝑁𝑛), commonly known as the UVN-flash
problem. While conventional phase equilibrium calculations typically use pressure–temperature-mole number
(𝑃𝑇𝑁) specifications, the UVN formulation is essential for dynamic simulations of closed systems and energy
balance computations. Existing approaches, including those based on iterative pressure–temperature updates
and direct entropy maximization, can suffer from computational inefficiencies due to inner Newton iterations
needed to solve for temperature 𝑇 at specified internal energy 𝑈 and volume 𝑉 .

In this work, we present a reformulation of the UVN-flash problem that eliminates the need for the inner
Newton iterations, addressing a computational bottleneck. We begin with stability analysis and discuss a
strategy to generate the initial guess for the UVN-flash from the stability analysis results. We then reformulate
the UVN-flash problem in TVN-space as constrained entropy maximization. We provide a detailed derivation
of Michelsen’s Q-function using the method of Lagrange multipliers, illustrating its direct application in solving
the UVN-flash problem. Furthermore, we discuss the numerical methods used, including gradient and Hessian
computations. The reformulation is validated against benchmark cases, demonstrating improved efficiency.
1. Introduction

We investigate the phase equilibrium calculations for multicompo-
nent mixtures under specified internal energy (𝑈), volume (𝑉), and
mole numbers (𝑁1, 𝑁2,… , 𝑁𝑛), commonly referred to in the literature
as the UVN-flash problem. Compared to the more conventional PTN-
flash (e.g., [1–3]) (where pressure, temperature, and mole numbers are
specified), the UVN specification is less commonly addressed. However,
it plays a crucial role in various thermodynamic applications where
energy and volume are specified, such as in the dynamic simulation
of closed systems and energy balance calculations in process design.
Notably, the UVN-flash formulation proves to be particularly valu-
able in non-isothermal problems, such as those encountered in the
dynamic simulation of tanks and CO2 injection in geological storage.
Key contributions in this area include [4–8].

Additionally, the UVN-flash problem has been explored in the work
of several researchers, often alongside other non-isothermal flash for-
mulations such as PHN, PSN, or TVN flashes. Early foundational work
by Brantferger et al. [9] introduced the unconstrained minimization
approach for PHN-flash calculations, later extended by Castier [10],
Smejkal et al. [11] and Paterson et al. [12]. Further developments in

∗ Corresponding author.
E-mail address: pardeep@cwi.nl (P. Kumar).

RAND-based formulations for non-isothermal flashes, including UVN-
flash, were presented by Paterson et al. [13–15]. Furthermore, Lipovac
et al. [16] recently proposed a unified framework for PHN and UVN
flashes, solving phase stability and flash problems simultaneously. Fathi
et al. [17] investigated volume-based flash methods applicable to UVN
scenarios. These studies have collectively advanced the understanding
of multiphase equilibrium under non-isothermal constraints, though
UVN-flash remains less explored compared to its PHN counterpart.

Michelsen [18] proposed a general framework to address flash prob-
lems under various specifications, including UVN. His approach utilizes
the PTN-flash in an inner loop while iteratively updating pressure and
temperature in an outer loop. This strategy combines both a nested-loop
method using the Q-function and a direct Newton iteration approach,
with the latter being employed whenever possible for efficiency. The
advantage of this method is that it leverages existing PTN-flash solvers.
However, the nested iterations inherent in the Q-function method can
become computationally expensive. Notably, within the same seminal
work, Michelsen also tabulated Q-functions for UVN flash based on
temperature and volume (TV-based) variables (see Table 3 in [18]),
though their explicit derivations were not provided.
https://doi.org/10.1016/j.fluid.2025.114528
Received 26 February 2025; Received in revised form 24 June 2025; Accepted 7 Ju
vailable online 19 July 2025
378-3812/© 2025 The Authors. Published by Elsevier B.V. This is an open access a
ly 2025

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.sciencedirect.com/journal/fluid-phase-equilibria
https://www.sciencedirect.com/journal/fluid-phase-equilibria
https://orcid.org/0009-0009-7574-7102
mailto:pardeep@cwi.nl
https://doi.org/10.1016/j.fluid.2025.114528
https://doi.org/10.1016/j.fluid.2025.114528
http://creativecommons.org/licenses/by/4.0/

P. Kumar and P.I.R. Esquivel

-

Fluid Phase Equilibria 599 (2026) 114528
One of the earliest works addressing the UVN-flash problem is by
Saha et al. [19]. In this paper, the authors developed heuristics to
estimate pressure and temperature corresponding to specified UVN con-
ditions. Their approach combined successive substitution (fixed-point
iteration) for updating equilibrium 𝐾-values with Newton’s method
for pressure and temperature updates. However, they often encoun-
tered convergence to trivial solutions, limiting the robustness of their
method.

Bi et al. [20] reformulated the UVN-flash problem using the Rachford
Rice equation while ensuring pressure equilibrium and enforcing in-
ternal energy and volume constraints. Their approach employed fixed-
point iteration with soft tolerance, followed by Newton’s method for
refinement.

A significant contribution on UVN flash is found in the work of
Castier [10], who proposed direct entropy maximization as an al-
ternative approach. In his method, the algorithm adaptively adds or
removes phases as needed during the computation. However, obtaining
a good initial phase split requires a reasonable estimate of pressure and
temperature, which has to be determined using heuristics. In cases of
numerical difficulties, Castier’s method switches to a PTN-flash solver
for the inner loop while adjusting pressure and temperature in the outer
loop, ensuring that 𝑈 and 𝑉 approach their specified values. Once
sufficient estimates for 𝑃 and 𝑇 are found, the algorithm returns to
direct entropy maximization.

Another important contribution is by Smejkal et al. [11], who
also applied direct entropy maximization for both stability and flash
calculations. They used the stability analysis results as initial guesses
for the flash calculations, demonstrating the utility of entropy-based
methods in UVN-flash scenarios. This approach requires an inner New-
ton iteration to determine temperature by solving 𝑈 (𝑇 , 𝑉 ,𝐍) = 𝑈 for
given 𝑈, 𝑉 ,𝐍 which poses an additional computational burden within
the overall optimization, particularly in challenging scenarios or with
poor initial estimates, as noted by Castier [10]. While Newton’s method
is typically efficient and converges in a few iterations with a good initial
guess, even a couple of additional iterations per flash computation can
become costly in large-scale applications such as reservoir simulations,
where millions of such evaluations are required; avoiding inner Newton
iterations can offer significant computational advantages.

Building upon the theoretical groundwork laid by Michelsen,
Medeiros et al. [21] significantly extended the Q-function methodology
to address open thermodynamic systems, encompassing both reactive
and non-reactive chemical species. Their approach leveraged Legendre
transformations to derive generalized formulations applicable under
a variety of imposed thermodynamic specifications. In addition, they
provided a derivation for the Q-functions previously introduced by
Michelsen [18]. Their derivation mandates the use of two Lagrange
multipliers, and they provided the expressions for these Lagrange
multipliers.

In this work, we revisit the UVN-flash problem by reformulating it
as a constrained entropy maximization problem in the TVN-space. We
then cast it as an unconstrained saddle-point problem using a single
Lagrange multiplier. Furthermore, we provide an explicit derivation of
the Lagrange multiplier without using the Legendre transforms. This
reformulation of the UVN-flash problem within the TVN-space elimi-
nates the need for nested Newton iterations to compute the temperature
𝑇 consistent with a given internal energy 𝑈 , volume 𝑉 and mole
numbers 𝐍. It thus removes a computational bottleneck inherent in
both Michelsen’s Q-function approach [18] and the method of Castier’s
unconstrained minimization [10]. This advantage becomes especially
significant when using complex equations of state.

The structure of the paper is as follows. We begin with a precur-
sor to stability analysis in Section 3, where we present the relevant
formulations and the generation of initial guesses for both stability
and flash calculations. This is followed by a recap of the UVN flash
formulation in natural variables in Section 4. Next, in Section 5, we re-
formulate the UVN-flash problem in TVN-space by using the method of
2
Lagrange multipliers. In Section 6, we provide a detailed derivation of
Michelsen’s Q-function, illustrating its direct application in solving the
UVN-flash problem. We then discuss the numerical approach, including
the necessary gradient and Hessian computations (derived in Appendix
A). Finally, we present the results in Section 7 and conclude with key
findings and implications in Section 8.

2. Preliminaries

For the sake of clarity, in this section, we define the following
concepts in the context of UVN-flash.

2.1. Trial phase

The trial phase is an incipient phase introduced to assess the thermo-
dynamic stability of a system. It involves perturbing the composition of
the system and evaluating whether the introduction of this new phase
leads to an increase in entropy (for UVN flash calculations). If the
entropy increases, the system is unstable as a single phase, and phase
separation is favorable.

2.2. Reference phase

The reference phase (⋆) represents a hypothetical single-phase sys-
tem characterized by the total internal energy 𝑈⋆, volume 𝑉 ⋆ and total
mole numbers 𝐍⋆ = (𝑁⋆

1 ,… , 𝑁⋆
𝑛).

2.3. Stability analysis

Stability analysis is typically performed prior to flash calculations,
as it determines the stability of a multicomponent mixture across 𝑝
phases, where 𝑝 represents the number of phases in the system. The
primary objective of this analysis is to establish whether the mixture
will remain in 𝑝 phases or separate into 𝑝 + 1 phases. In most cases,
we focus on systems with at most two phases, typically a vapor–liquid
mixture. In such cases, stability analysis determines whether the mix-
ture can remain as a single phase or will separate into a vapor–liquid
equilibrium.

A crucial aspect of stability analysis is its role in providing an initial
guess for subsequent flash calculations. If instability is detected, the
analysis often yields valuable information about the incipient phase,
such as its temperature, concentration, and internal energy density,
which can significantly aid in the convergence of the flash calculation
algorithm.

2.4. Flash calculation

When a stability test indicates that a mixture is thermodynami-
cally unstable, a flash calculation is performed to determine the phase
equilibrium of the multicomponent mixture under specified conditions,
such as pressure and temperature, internal energy and volume, or
entropy and volume. The flash calculation calculates the amounts and
compositions of each phase, assuming the system reaches equilibrium.

In this study, the UVN flash problem is addressed using an equation
of state derived from the Helmholtz energy function. Specifically, we
will use the Peng–Robinson [22] Equation of State (EOS) for all our
results. This EOS enables the computation of thermodynamic properties
for given 𝑇 , 𝑉 , and 𝐍. For specified values of internal energy 𝑈 , volume
𝑉 , and mole numbers 𝐍, the phase split calculations proceed as follows.
The details of the algorithm can be found in Castier [10] and Smejkal
et al. [11].

1. Initial Stability Test: Assess the stability of the single-phase
mixture.

P. Kumar and P.I.R. Esquivel

Fluid Phase Equilibria 599 (2026) 114528
2. Iterative Phase Adjustment and Equilibrium:

(a) If unstable: Introduce a new phase, using stability anal-
ysis results for an initial guess.

(b) Equilibrium Calculation: Determine phase equilibrium
(temperature, volumes, compositions) for the current
number of phases.

(c) Stability Re-evaluation and Phase Count Update: Check
the stability of the resulting phase split by testing the
stability of one arbitrarily selected phase from the equi-
librium.

• Phase Addition: If the selected phase is unstable,
add another phase.

• Delayed Phase Merging: After at least three it-
erations of equilibrium calculations for the cur-
rent number of phases, attempt to merge a phase
whose mole fraction is below a specified threshold
(e.g., 10−6) and distribute its total energy, volume
and moles uniformally among remaining phases. If
the total entropy increases1 upon merging, remove
the candidate phase.

(d) Repeat: Continue equilibrium calculation and stability
re-evaluation until a stable phase split is achieved.

3. Termination: Output the stable equilibrium state (temperature,
phase volumes, and compositions).

Accordingly, we begin with stability analysis in the next section,
followed by the flash procedure in the subsequent section.

3. Stability analysis precursor

Stability analysis is a fundamental step in assessing the thermody-
namic stability of a mixture and determining whether phase separation
occurs. A detailed discussion and performance comparison of various
phase stability analysis methods are beyond the scope of this paper;
interested readers are referred to dedicated literature on this topic
(e.g., Nichita [23], Smejkal et al. [11], Michelsen and Mollerup [3]).
In this section, we briefly present the formulation of the UVN stability
problem, discuss initialization strategies, and outline an algorithm to
generate initial guesses for flash calculations based on stability analysis
results.

The UVN stability problem can be reduced to the TVN stability
problem as follows. For given 𝑈⋆, 𝑉 ⋆ and 𝐍⋆, we can solve

𝑈 (𝑇 , 𝑉 ⋆,𝐍⋆) = 𝑈⋆, (1)

for 𝑇 , as discussed by Mikyska [24] and Nichita [25]. Therefore, we
provide the formulation of TVN stability analysis in the following
subsection.

3.1. TVN stability formulation

In this section, we briefly discuss the formulation of TVN stability
as UVN stability can be reduced to TVN stability [23]. The TPD (Tan-
gent Plane Distance) function for volume-based stability analysis was
originally introduced by Nagarajan et al. [26] for PT conditions and

1 For UVN flash problems, the total entropy should increase. For other
specifications, the corresponding thermodynamic potential should evolve ap-
propriately from one iteration to the next: for example, Helmholtz free energy
in TVN, Gibbs free energy in TPN, and enthalpy in PSN should decrease,
whereas entropy in PHN should increase.
3
later extended to TVN conditions by Nichita et al. [27,28]. The TPD
function, denoted by 𝐷 at temperature 𝑇 , is given by:

𝐷(𝑇 , 𝒄′) = −
(

𝑃 ′ − 𝑃⋆) +
𝑛
∑

𝑖=1

(

𝜇′
𝑖 − 𝜇⋆

𝑖
)

𝑐′𝑖 , (2)

where 𝜇′
𝑖 = 𝜇𝑖(𝑇 , 1, 𝒄′) and 𝜇⋆

𝑖 = 𝜇𝑖(𝑇 , 1, 𝒄) are the chemical potentials of
component 𝑖 in the trial and reference phases, respectively. Similarly,
𝑃 ′ = 𝑃 (𝑇 , 1, 𝒄′) and 𝑃⋆ = 𝑃 (𝑇 , 1, 𝒄) denote the pressures in the two
phases. The molar concentration of component 𝑖 in the trial phase is
given by 𝑐′𝑖 =

𝑁 ′
𝑖

𝑉 ′ , where 𝑁 ′
𝑖 is the mole number of component 𝑖

and 𝑉 ′ is the molar volume of the trial phase. Similarly, the molar
concentration of component 𝑖 in the reference phase is given by 𝑐𝑖 = 𝑁𝑖

𝑉 ,
where 𝑁𝑖 is the mole number of component 𝑖 and 𝑉 is the molar volume
of the reference phase. The concentration vectors are denoted by
𝒄 = {𝑐1,… , 𝑐𝑛} for the reference phase, and
𝒄′ = {𝑐′1,… , 𝑐′𝑛} for the trial phase.

A non-negative value of 𝐷 indicates that the reference phase is
stable. The existence of a state with 𝐷 < 0 can be detected by examining
the stationary points of 𝐷. The stationary points of 𝐷 are given by
𝜕𝐷
𝜕𝑐′𝑖

= 0, ∀𝑖 ∈ {1,… , 𝑛}. (3)

Mikyska et al. [24] reformulated the stability condition (Eq. (3)) using
the volume function 𝛷𝑖, related to the fugacity coefficient 𝜙𝑖 via

𝛷𝑖 =
1

𝑍𝜙𝑖
, 𝑍 = 𝑃𝑉

𝑛𝑅𝑇
. (4)

Their stability equation in terms of 𝛷𝑖 is given by:

ln
𝑐′𝑖
𝑐𝑖

+ ln𝛷𝑖(𝒄) − ln𝛷𝑖(𝒄′) = 0, ∀𝑖 = 1,… , 𝑛. (5)

This system (5) can be solved using the Newton–Raphson method. At
each iteration step 𝑘, the update direction 𝛥𝒄′,𝒌 is obtained by solving:

𝐉(𝒄′,𝒌)𝛥𝒄′,𝒌 = −𝐅(𝒄′,𝒌), (6)

where the residual vector 𝐅 has components:

𝐹𝑖(𝒄′) = ln
𝑐′𝑖
𝑐𝑖

+ ln𝛷𝑖(𝒄) − ln𝛷𝑖(𝒄′), ∀𝑖 ∈ {1,… , 𝑛}, (7)

and the Jacobian matrix 𝐉 is given by:

𝐽𝑖𝑗 (𝒄′) =
𝛿𝑖𝑗
𝑐′𝑗

−
𝜕 ln𝛷𝑖(𝒄′)

𝜕𝑐′𝑗
, (8)

where 𝛿𝑖𝑗 is the Kronecker delta. The update step is then performed as:

𝒄′𝑘+1 = 𝒄′,𝒌 + 𝜆𝑘𝛥𝒄′,𝒌, (9)

where 𝜆𝑘 ∈ (0, 1] is a step size, possibly determined by line search. For
further details on this, we refer the reader to [24]. The pseudocode
for stability analysis is provided in the appendix as Algorithm 2. The
convergence of the stability test strongly depends on the choice of an
appropriate initial guess for 𝒄′. Effective initialization is crucial for
numerical stability and robustness in stability analysis.

3.2. Initialization for stability analysis

In this section, we discuss the initialization strategy for TVN stability
analysis. We adopt the simplex-based initialization method proposed
by Smejkal et al. [11], which leverages the geometric properties of the
feasibility domain of admissible molar concentrations. In this approach,
the feasible domain is represented as an 𝑛-simplex, where 𝑛 denotes the
number of components in the mixture. Initial guesses are generated by
computing the barycenter of the simplex and the midpoints between
the barycenter and each of the 𝑛 + 1 vertices. This procedure yields

P. Kumar and P.I.R. Esquivel Fluid Phase Equilibria 599 (2026) 114528
Fig. 1. Depiction of the initial guesses for 𝐜′ in a binary mixture where the two
components have molar volumes 𝑏1 and 𝑏2, respectively.
Source: Adapted from [29].

𝑛+ 2 initial estimates, ensuring a well-distributed set of starting points
for the stability analysis.

The admissible molar concentrations 𝑐′𝑖 must satisfy the following
conditions:
𝑛
∑

𝑖=1
𝑐′𝑖𝑏𝑖 < 1, 𝑐′𝑖 ≥ 0, 𝑏𝑖 > 0, ∀𝑖 ∈ {1,… , 𝑛}, (10)

where 𝑏𝑖 denotes the co-volume of the component 𝑖 from the Peng–
Robinson EOS. Fig. 1 (adapted from [29]) illustrates the initial con-
centration guesses for a binary mixture. The four points marked with
circles: the barycenter 𝐶 and the midpoints 𝑀0,𝑀1, and 𝑀2, are used
sequentially as initial guess to perform the stability analysis. The results
of the stability analysis are then used to generate the initial guess for
phase split calculations. These results, however, are in the form of
concentration and temperature of the trial phase. A procedure is needed
to convert the stability analysis results into the initial guess for phase
split calculations, which is addressed in the following subsection.

3.3. Initial guess for flash from stability analysis

The results of the stability analysis provide the initial guess required
for phase split calculations. A good initial guess is crucial for ensuring
convergence in the numerical optimization procedures used in phase
split calculations, as discussed in Section 6. However, the results from
stability analysis are not immediately suitable as initial guesses for flash
calculations. Stability analysis provides the concentrations of the incip-
ient phase along with the specific internal energy; but an additional
parameter, the volume of the trial phase, is needed to initiate phase
split calculations.

We begin by assuming that the trial phase occupies half of the total
system volume. The mole numbers of each phase are determined by
multiplying the phase volume with the species concentrations obtained
from the stability test. The internal energy of each phase is then
computed using the internal energy density and phase volume. Next,
the phase temperature is determined by solving Eq. (1) and finding
a temperature consistent with the given internal energy, volume, and
mole numbers. This provides a complete initial estimate.

This initial estimate is then iteratively refined to find a two-phase
split with a higher total entropy than the reference single phase, while
satisfying the feasibility conditions (10) at each step. At each step, the
total entropy of the two-phase system is evaluated. If the entropy in-
creases and all feasibility conditions are met, the solution is accepted. If
these criteria are not satisfied, the trial phase volume is further halved,
and the internal energy and mole numbers are adjusted accordingly.
4
This iterative process continues until a feasible phase split is achieved
or until the predefined iteration limit is reached. This pseudocode is
outlined in Algorithm 1. Alternatively, the procedure can be initiated
with a small volume of the incipient phase, which is then iteratively
doubled until convergence. However, a comparative analysis of these
initialization strategies is beyond the scope of the present work. The
stability analysis in our implementation serves exclusively to generate
a good initial guess for the subsequent flash calculations.

Algorithm 1 Initial Guess Generation and Feasibility Check for Phase
Equilibrium
Require: Total internal energy 𝑈⋆ [J], volume 𝑉 ⋆ [m3], and mole

numbers 𝐍⋆ = [𝑁⋆
1 ,… , 𝑁⋆

𝑛], the trial phase concentration vector
𝐜 [mol/m3] and the trial phase internal energy density 𝑢 [J/m3].

Ensure: Feasible initial guess for phase split or termination if no
solution exists

1: Compute temperature 𝑇 ⋆ = for given 𝑈⋆, 𝑉 ⋆,𝐍⋆ of the reference
phase by solving Eq. (1).

2: Compute entropy 𝑆⋆ = 𝑆(𝑇 ⋆, 𝑉 ⋆,𝐍⋆) of the reference phase using
the equation of state (EOS)

3: Initialize the trial phase 𝐼 as follows:
𝑉 𝐼 = 0.5 ⋅ 𝑉 ⋆

𝐍𝐼 = 𝑉 𝐼 ⋅ 𝐜
𝑈 𝐼 = 𝑢 ⋅ 𝑉 𝐼

4: Initialize iteration count: 𝑛iters ← 0
5: while 𝑛iters < max_iters do
6: Compute total entropy for the two-phase system:

𝑆two-phase = 𝑆(𝑈 𝐼 , 𝑉 𝐼 ,𝐍𝐼) + 𝑆(𝑈⋆ − 𝑈 𝐼 , 𝑉 ⋆ − 𝑉 𝐼 ,𝐍⋆ − 𝐍𝐼)

7: Compute entropy difference: 𝛥𝑆 = 𝑆two-phase − 𝑆⋆

8: Update phase properties vector 𝐱 for the trial phase:
𝐱 =

[

𝐍𝐼 , 𝑉 𝐼 , 𝑈 𝐼]

9: Check feasibility of 𝐱 using equations Eq. (10).
10: if 𝛥𝑆 > 0 and 𝐱 is feasible then
11: Return feasible initial guess 𝐱
12: if 𝑉 𝐼∕𝑉 ⋆ < 10−8 then
13: Terminate: No feasible solution found
14: Update phase properties:

𝑉 𝐼 ← 𝑉 𝐼∕2

𝑈 𝐼 ← 𝑢 ⋅ 𝑉 𝐼

𝐍𝐼 ← 𝑉 𝐼 ⋅ 𝐜

15: Increment iteration count: 𝑛iters ← 𝑛iters + 1
16: Return failure: No feasible solution found

The final feasible solution obtained from the stability analysis serves
as the initial guess for phase split calculations. However, since the
initialization is adapted from a TVN stability formulation, it may not
always provide a suitable ascent direction for entropy in UVN prob-
lems. In such rare cases where Algorithm 1 fails to yield a good
initial estimate, a fallback to the nested loop approach proposed by
Castier [10] can be employed. This method involves solving an inner
isothermal flash problem to compute phase volumes and internal ener-
gies, thereby generating a coarse UVN initial estimate. The practicality
of this fallback is supported by the availability of established PTN flash
routines. For the test problems considered in this work, this fallback
was not necessary. In the following section, we review the phase split
calculation method presented by Castier [10] and Smejkal et al. [11],
which serves as the foundational framework for our work.

P. Kumar and P.I.R. Esquivel Fluid Phase Equilibria 599 (2026) 114528
4. Direct entropy maximization formulation for UVN flash calcu-
lations

The UVN flash problem can be formulated as a direct entropy
maximization problem, constrained by specified system properties as
discussed by Castier [10], Smejkal et al. [11] and more recently by
Paterson et al. [12]. Consider a multicomponent mixture composed of 𝑛
species, distributed across 𝑝 phases and a total energy 𝑈⋆, total volume
𝑉 ⋆ and the mole numbers vector 𝐍⋆. The total entropy of the system,
denoted as 𝑆(UVN), can be expressed as:

𝑆(UVN) =
𝑝
∑

𝑘=1
𝑆(𝑈𝑘, 𝑉 𝑘,𝐍(𝑘)), (11)

where 𝑈𝑘, 𝑉 𝑘, and 𝐍(𝑘) = {𝑁 (𝑘)
1 ,… , 𝑁 (𝑘)

𝑛 } represent the internal energy,
volume, and mole numbers of each component in phase 𝑘, respectively.
The superscript (UVN) highlights the fact that entropy here is expressed
as a function of 𝑈, 𝑉 ,𝐍. Additionally, the problem is subject to the
following constraints:

𝑈⋆ =
𝑝
∑

𝑘=1
𝑈𝑘, 𝑉 ⋆ =

𝑝
∑

𝑘=1
𝑉 𝑘, 𝑁⋆

𝑖 =
𝑝
∑

𝑘=1
𝑁 (𝑘)

𝑖 , 𝑖 = 1,… , 𝑛. (12)

To simplify the problem, we can apply these constraints and reformu-
late the problem as an unconstrained optimization problem. This is
done by writing the properties of phase 𝑝 as a function of the properties
in the other phases. For the entropy function, this reads:

𝑆(UVN)
unc =

[𝑝−1
∑

𝑘=1
𝑆(𝑈𝑘, 𝑉 𝑘,𝐍(𝑘))

]

+ 𝑆(𝐱(𝜉)), (13)

where
𝐱(𝜉) ∶=

(

𝑈 (𝜉), 𝑉 (𝜉),𝐍(𝜉)) , (14)

where 𝑈 (𝜉) ∶= 𝑈⋆ −
∑𝑝−1

𝑘=1 𝑈
𝑘, 𝑉 (𝜉) ∶= 𝑉 ⋆ −

∑𝑝−1
𝑘=1 𝑉

𝑘 and 𝐍(𝜉) ∶=
{𝑁⋆

1 −
∑𝑝−1

𝑘=1 𝑁
(𝑘)
1 ,… , 𝑁⋆

𝑛 −
∑𝑝−1

𝑘=1 𝑁
(𝑘)
𝑛 }. Throughout this text, we denote

the total system entropy, when expressed as a function of the reduced
set of independent variables {𝑈𝑘, 𝑉 𝑘,𝐍(𝑘)}𝑝−1𝑘=1 for the unconstrained
optimization problem, as 𝑆unc. Here, the subscript unc signifies the use
of this reduced variable set, and the superscript (𝜉) denotes properties
of the remaining phase 𝑝 as defined by (14).

The unconstrained optimization problem now involves solving for
the (𝑝 − 1)(𝑛 + 2) unknowns: 𝑈𝑘, 𝑉 𝑘, and 𝐍(𝑘) for each phase 𝑘 ∈
{1, 2,… , 𝑝−1}. Formally, we want to solve the following unconstrained
optimization problem:
𝐱 = argmax

𝐲
𝑆(UVN)
unc (𝐲), (15)

where 𝐲 now entails all the (𝑝−1)(𝑛+2) unknowns. The solution to this
optimization problem will be discussed in detail in Section 6. We will
refer to this approach as the UVN approach throughout the rest of the
paper.

Before proceeding further, we highlight a difficulty inherent to this
approach. Given that the equation of state is in the form 𝑓 (𝑇 , 𝑉 ,𝐍),
Eq. (13) requires writing the entropy 𝑆 as a function of 𝑈 , 𝑉 and 𝐍.
Therefore, the approach requires determining the temperature 𝑇 by
solving the equation:
𝑈 (𝑇 , 𝑉 ,𝐍) = 𝑈

for given 𝑈, 𝑉 and 𝐍. Once 𝑇 is determined, the equation of state can
then be used to compute the corresponding entropy. This process results
in a nested Newton method where each iteration of the outer optimiza-
tion problem requires multiple iterations of the inner solver to achieve
convergence, thereby increasing the computational complexity of the
solution procedure. We refer to this process as implicit temperature
calculation throughout the paper.

To circumvent this difficulty, we reformulate the optimization prob-
lem directly in terms of 𝑇 , 𝑉 , and 𝐍. This reformulation avoids the
need to perform multiple implicit temperature calculations and will be
discussed in the next section.
5
5. Reformulation of entropy maximization: Transition from un-
constrained UVN to constrained TVN space

This section discusses the reformulation of UVN-flash problem in
terms of the variables inherent to the Helmholtz energy-based equa-
tion of state (EOS), specifically in the TVN-space. This reformulation
circumvents the need for repeated implicit temperature calculation to
determine the temperature at each iteration. The objective function in
this formulation is given by:

𝑆(TVN)
unc =

[𝑝−1
∑

𝑘=1
𝑆
(

𝑇 , 𝑉 (𝑘),𝐍(𝑘))
]

+ 𝑆
(

𝑇 , 𝑉 (𝜉),𝐍(𝜉)) , (16)

subject to the constraint 𝑈⋆ =
∑𝑝

𝑘=1 𝑈
(

𝑇 , 𝑉 (𝑘),𝐍(𝑘)). Note that the
constraints for the total volume 𝑉 ⋆ and total moles 𝐍⋆ are directly
incorporated in the arguments of the entropy of phase 𝑝. However, the
constraint of internal energy has not yet been incorporated. Rewriting
this constraint in functional form yields

(𝐱) ∶=
[𝑝−1
∑

𝑘=1
𝑈
(

𝑇 , 𝑉 (𝑘),𝐍(𝑘))
]

+ 𝑈
(

𝑇 , 𝑉 (𝜉),𝐍(𝜉)) − 𝑈⋆. (17)

The solution ̂𝐱 satisfies the following constrained optimization problem:

max
𝐱

𝑆(TVN)
unc (𝐱) subject to (𝐱) = 0, (18)

where the optimization variable 𝐱 ∶=
(

𝑇 , 𝑉 (1),𝐍1,… , 𝑉 (𝑝−2),𝐍𝑝−2,… ,
𝑉 (𝑝−1),𝐍𝑝−1) is a vector of (𝑝 − 1)(𝑛 + 1) + 1 unknowns.
This constrained optimization problem can be reformulated as an

unconstrained saddle point problem using the method of Lagrange
multipliers. The Lagrangian function is defined as:
(𝐱, 𝜆) = 𝑆unc(𝐱) + 𝜆(𝐱), (19)

where 𝜆 is the Lagrange multiplier. For convenience, where possible we
omit the superscript (TVN) from the objective function. However, it is
included when needed to ensure clarity. To find the optimum of the
original constrained problem, we need to find the stationary points of
the Lagrangian by solving the following system of equations:
∇𝐱,𝜆 = 0,

where ∇𝐱,𝜆 =
(

∇𝐱,
𝜕
𝜕𝜆

)

. The gradient ∇𝐱 of the Lagrangian with
respect to 𝐱 is given by:

∇𝐱 =
(

𝜕
𝜕𝐱1

, 𝜕
𝜕𝐱2

,… , 𝜕
𝜕𝐱(𝑝−1)(𝑛+1)+1

)

.

The condition ∇𝐱,𝜆 = 0 leads to two sets of equations.

1. Stationarity Condition:
∇𝑆unc(𝐱) = −𝜆∇(𝐱). (20)

This ensures that the gradient of the objective function 𝑆unc is
parallel to the gradient of the constraint .

2. Primal Feasibility Condition:
(𝐱) = 0. (21)

This ensures that the constraint is satisfied.

This formulation leads to a system of (𝑝 − 1)(𝑛 + 1) + 2 equations.
Specifically, for 𝑝 = 2, the system contains one additional equation
compared to the approach of Smejkal et al. [11]. For 𝑝 = 3, the number
of equations is the same in both approaches. However, for 𝑝 ≥ 4, our
approach requires solving 𝑝−3 fewer equations as compared to Smejkal
et al. [11].

To summarize, this section presented the reformulation of entropy
maximization in TVN-space for the UVN-flash problem. The next sec-
tion begins with a discussion of the numerical optimization procedure,
followed by a derivation of the Lagrange multiplier, a simplification
of the Lagrangian, and an analysis of the stationary conditions of the
resulting objective function.

P. Kumar and P.I.R. Esquivel Fluid Phase Equilibria 599 (2026) 114528
6. Computational framework

This section outlines the optimization of the objective function, as
defined in Eq. (13) for Smejkal’s approach and Eq. (19) for our method.
Additionally, we derive an explicit expression for the Lagrange multi-
plier and use it to simplify the Lagrangian in our approach, making the
implementation more straightforward. Finally, we conclude this section
by performing a consistency check of the formulation. For simplicity,
we assume the number of phases is known a priori, as determined by
a stability analysis.

6.1. Numerical optimization

Formally, we seek to solve the following unconstrained optimization
problem:

𝐱 = argmax
𝐲

 (𝐲), (22)

where  is the objective function. To solve this, we need to find the
stationary points of the gradient of the objective function, denoted as
𝑔(𝐱). This gradient is expressed as:

𝑔(𝐱) =
⎧

⎪

⎨

⎪

⎩

∇𝑆(Smejkal)
unc (𝐱UVN), UVN,

∇𝑆(Ours)
unc (𝐱TVN) + 𝜆∇(𝐱TVN), Ours,

(23)

where 𝐱UVN and 𝐱TVN are the respective independent variables for
each case:

𝐱UVN ∶= (𝐍1, 𝑉 (1), 𝑈 (1),… ,𝐍𝑝−1, 𝑉 (𝑝−1), 𝑈 (𝑝−1)), (24a)

𝐱TVN ∶= (𝐍1, 𝑉 (1),… ,𝐍𝑝−2, 𝑉
(𝑝−2),𝐍𝑝−1, 𝑉 (𝑝−1), 𝑇). (24b)

Here, 𝐍𝑘 represents the mole vector in phase 𝑘, while 𝑈 (𝑘) and 𝑉 (𝑘)

correspond to the internal energy and volume of phase 𝑘, respectively.
We will revisit the alternate forms of 𝑔(𝐱) for our approach in the next
section where we derive the Lagrange multiplier 𝜆.

The optimization problem can now be written as solving 𝑔(𝐱) = 0.
This is a nonlinear system which can be solved using a nonlinear solver,
such as Newton–Raphson or a variant. To apply the Newton–Raphson
method, we need the gradient of 𝑔(𝐱). The gradient of 𝑔(𝐱) is the Hessian
of the objective function  , given by:

H(𝐱) =
[

𝜕2
𝜕𝐱𝑖𝜕𝐱𝑗

]

.

In this context, the Hessian for both optimization approaches is ex-
pressed as:

H(𝐱) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜕2𝑆(UVN)
unc (𝐱)
𝜕𝐱𝑖𝜕𝐱𝑗

, UVN

𝜕2𝑆(TVN)
unc (𝐱)

𝜕𝐱𝑖𝜕𝐱𝑗
+ 𝜆

𝜕2(𝐱)
𝜕𝐱𝑖𝜕𝐱𝑗

, Ours

(25)

where 𝐱 is defined as per Eq. (24), and the entropy function 𝑆unc(𝐱) is
given by Eq. (13) in Smejkal’s formulation and by Eq. (16) in our ap-
proach. The additional term in our formulation accounts for the contri-
bution of the constraint function (𝐱) through the Lagrange multiplier
𝜆, ensuring that the optimization respects the imposed constraints.

Eq. (23) can be solved using a non-linear solver. We employ New-
ton’s method, which updates the solution iteratively as follows:

𝐱𝑘+1 = 𝐱𝑘 + 𝛼𝑘𝛥𝐱𝑘, (26)

where 𝛼𝑘 is the step size and the update direction 𝛥𝐱𝑘 satisfies:

H(𝐱)𝛥𝐱 = −𝑔(𝐱), (27)
𝑘 𝑘 𝑘

6
where H(𝐱𝑘) is the Hessian and 𝐠(𝐱𝑘) is the gradient. If H(𝐱𝑘) is sin-
gular or ill-conditioned, alternative approaches such as Levenberg–
Marquardt regularization, modified Cholesky decomposition, or quasi-
Newton methods (e.g., BFGS) can be employed [11,23]. However, no
such issues were encountered in our test cases. For implementation,
we use Newton’s method from NLsolve.jl in Julia, with third-order
backtracking Line Search. It is important to note that when Newton’s
method is combined with Line Search, the underlying optimization
often minimizes a merit function (typically the sum of squares of the
residuals). Stationary points of this merit function can include not
only the true solutions to the original system but also local maxima
or spurious solutions, which is a critical consideration in problems
like phase stability where identifying correct equilibria is vital (see,
e.g., [30]). While this potential issue exists, in our test cases, the algo-
rithm consistently converged to valid solutions without encountering
spurious ones. The good initial guess generated from stability analysis
results likely contributed to this robust behavior.

The gradients and Hessian can be computed using automatic differ-
entiation (AD).2 However, we provide the derivations of the gradients
for our approach in Appendix A along with the outline of the Hessian
matrix, as we intend to use these gradients (of entropy and the con-
straint function) to compute the Lagrange multiplier, which is further
discussed in the following section.

6.2. Derivation of the Lagrange multiplier

In this section, we discuss the computation of the Lagrange multi-
plier 𝜆. Expanding the stationarity condition (20), we get

𝜕𝑆unc

𝜕𝑁 (𝑘)
1

= −𝜆 𝜕
𝜕𝑁 (𝑘)

1

, … ,
𝜕𝑆unc

𝜕𝑁 (𝑘)
𝑛

= −𝜆 𝜕
𝜕𝑁 (𝑘)

𝑛

, (28a)

𝜕𝑆unc

𝜕𝑉 (𝑘)
= −𝜆 𝜕

𝜕𝑉 (𝑘)
, (28b)

𝜕𝑆unc
𝜕𝑇

= −𝜆 𝜕
𝜕𝑇

. (28c)

From Eq. (28c), we isolate 𝜆 as:

𝜆 = −
𝜕𝑆unc∕𝜕𝑇
𝜕∕𝜕𝑇

(29)

Substituting the expressions from Eqs. (A.3) and (A.10) into Eq. (29),
we get

𝜆 = − 1
𝑇
. (30)

The explicit dependence of the Lagrange multiplier 𝜆 on temper-
ature 𝑇 removes the need to treat 𝜆 as an independent optimization
variable. This simplification reduces the dimensionality of the problem,
as 𝜆 is no longer an unknown but is instead directly determined
by 𝑇 . By substituting (30) into the stationarity condition (20), the
optimization process becomes more efficient, as we discuss in detail
in the following section.

6.3. Objective function reformulation

With this choice of the Lagrange multiplier 𝜆, Eq. (19) simplifies to

(𝐱) = 𝑆unc(𝐱) −
1
𝑇
(𝐱), (31)

where 𝐱 is given by (24). As 𝜆 is now a fixed parameter and not a free
variable to be determined, the function (𝐱) no longer corresponds to

2 Automatic differentiation computes exact derivatives of a function by ap-
plying the chain rule to the sequence of operations performed in the program,
without the approximation errors associated with numerical methods like finite
differences. In our case, we use forward-mode AD to obtain derivatives at
machine precision.

P. Kumar and P.I.R. Esquivel

.

Fluid Phase Equilibria 599 (2026) 114528
the standard Lagrangian used in constrained optimization. To avoid
confusion, we refer to it as the Lagrange function. Substituting the
expressions for the reduced entropy 𝑆unc(𝐱) from (16) and the constraint
(𝐱) from (17), we get

(𝐱) =
𝑝−1
∑

𝑘=1
𝑆
(

𝑇 , 𝑉 (𝑘),𝐍(𝑘)) + 𝑆
(

𝑇 , 𝑉 (𝜉),𝐍(𝜉))

− 1
𝑇

(𝑝−1
∑

𝑘=1
𝑈
(

𝑇 , 𝑉 (𝑘),𝐍(𝑘)) + 𝑈
(

𝑇 , 𝑉 (𝜉),𝐍(𝜉)) − 𝑈⋆

)

.

(32)

Rearranging terms and combining the entropy and internal energy
contributions, we obtain

(𝐱) =
𝑝
∑

𝑘=1

[

𝑆
(

𝑇 , 𝑉 (𝑘),𝐍(𝑘)) −
𝑈
(

𝑇 , 𝑉 (𝑘),𝐍(𝑘))

𝑇

]

+ 𝑈⋆

𝑇
. (33)

Next, recalling the thermodynamic relation 𝐴 = 𝑈 −𝑇𝑆, where 𝐴 is the
Helmholtz free energy, we get

(𝐱) =
𝑝
∑

𝑘=1

[

𝑆
(

𝑇 , 𝑉 (𝑘),𝐍(𝑘)) −
𝐴
(

𝑇 , 𝑉 (𝑘),𝐍(𝑘)) + 𝑇𝑆
(

𝑇 , 𝑉 (𝑘),𝐍(𝑘))

𝑇

]

+𝑈⋆

𝑇

(34)

Upon simplifying the terms involving entropy and Helmholtz energy,
we arrive at

(𝐱) = −
𝑝
∑

𝑘=1

𝐴
(

𝑇 , 𝑉 (𝑘),𝐍(𝑘))

𝑇
+ 𝑈⋆

𝑇
. (35)

Rearranging the terms gives

(𝐱) = 𝑈⋆

𝑇
−

𝑝
∑

𝑘=1

𝐴
(

𝑇 , 𝑉 (𝑘),𝐍(𝑘))

𝑇
. (36)

Finally, segregating the residual terms corresponding to the 𝑝th phase,
we get

(𝐱) =
𝑈⋆ −

(

∑𝑝−1
𝑘=1 𝐴

(

𝑇 , 𝑉 (𝑘),𝐍(𝑘)) + 𝐴
(

𝑇 , 𝑉 (𝜉),𝐍(𝜉))
)

𝑇
. (37)

Notably, this function is identical in form to the Q-function intro-
duced by Michelsen [18]. We refer to this as the Helmholtz energy-
based Q-function (𝐴𝑄, for short). Correspondingly, we designate
the function represented by (32) as Entropy-based Q-function (𝑆𝑄
for short). Michelsen presented this function without a derivation.
Medeiros et al. [21] later presented the derivation of the Q-function
within TPN-framework using two Legendre transformations. They also
mentioned that a single Legendre transform would be required in TVN-
space. In this paper, we have shown that in TVN-space, the Q-function
can be derived using only one Lagrange multiplier. While the final
forms of the Q-functions are similar, the derivation paths differ due to
different underlying thermodynamic basis, i.e., TPN vs TVN framework.

Both 𝑆𝑄 and 𝐴𝑄 are mathematically equivalent as 𝐴𝑄 is de-
rived directly from 𝑆𝑄 by using the relation 𝐴 = 𝑈 − 𝑇𝑆. The
Lagrange multiplier 𝜆 is explicitly determined as −1∕𝑇 , effectively
reducing the number of unknowns by one compared to the standard
constrained optimization formulation Eq. (23), where 𝜆 is treated as
an additional unknown alongside the state variables. Additionally, the
𝑆𝑄 approach requires more function evaluations compared to the
𝐴𝑄. Specifically, 𝑆𝑄 involves evaluating both the entropy and the
internal energy of each phase, while 𝐴𝑄 requires only the evaluation
of the Helmholtz energy. This suggests that the 𝐴𝑄 formulation is
computationally more efficient than 𝑆𝑄. Consequently, we restrict
our numerical results in Section 7 to 𝐴𝑄 formulation.

To maximize the entropy, the saddle point of the Lagrange function
must be found by solving the system of equations ∇(𝐱) = 0. The
Hessian matrix in this formulation simplifies significantly as below:

H(𝐱) =
[

𝜕2(𝐱)
]

. (38)

𝜕𝐱𝑖𝜕𝐱𝑗

7
Both Michelsen and Mederios et al. discussed a nested loop approach
where a PT-flash can be solved in the inner loop. Additionally, they
mentioned the use of a more efficient Newton’s method and employing
the nested loop approach as a fallback strategy. In this work, we restrict
our focus to Newton’s method. However, the convergence of Newton’s
method relies on the availability of sufficiently accurate initial esti-
mates, as also noted by [10,11,18,21,30]. For a broader discussion of
numerical techniques for saddle point problems, we refer the interested
reader to the review by Benzi et al. [31]. Fortunately, the results
obtained from the stability analysis provide high-quality initial guesses.
Furthermore, for transient simulations e.g., pipeline transportation of
multicomponent mixture, the results from previous time steps serve as
a good initial guess. The analysis of the stationary conditions of the
Lagrange function will be presented in the following subsection.

6.4. Analysis of stationary conditions and thermodynamic consistency

In this subsection, we analyze the stationary conditions of the
function  defined in Eq. (31) to verify the thermodynamic consistency
of our formulation. We demonstrate that setting the gradient of  with
respect to all variables to zero recovers the necessary and sufficient
conditions for thermodynamic equilibrium, including satisfaction of the
total internal energy constraint and adherence to conditions of thermal,
mechanical, and chemical equilibrium. To demonstrate consistency, we
first show that the formulation with the Lagrange function defined as
per Eq. (31) inherently satisfies the constraint of the total internal en-
ergy. The gradient of the Lagrange function with respect to temperature
𝑇 is given by:
𝜕
𝜕𝑇

=
𝜕𝑆unc
𝜕𝑇

− 1
𝑇

𝜕
𝜕𝑇

+ 
𝑇 2

. (39)

Substituting expressions from (A.3) and (A.10), we get
𝜕
𝜕𝑇

= 1
𝑇

𝑝
∑

𝑘=1
𝐶𝑣

(

𝑇 , 𝑉 (𝑘),𝐍(𝑘)) − 1
𝑇

𝑝
∑

𝑘=1
𝐶𝑣

(

𝑇 , 𝑉 (𝑘),𝐍(𝑘)) + 
𝑇 2

= 
𝑇 2

, (40)

where 𝐶𝑣 represents the heat capacity at constant volume. Using the
optimality condition, 𝜕𝜕𝑇 = 0 yields:

𝑇 2

= 0 ⟹  = 0. (41)

In words, setting the derivative 𝜕
𝜕𝑇 to zero at a stationary point re-

covers the constraint  = 0, ensuring that stationary points satisfy
the total internal energy balance. Next, we verify consistency with
respect to thermodynamic equilibrium by computing the gradients with
respect to the volume and the mole numbers. The gradient of the
Lagrange function with respect to the volume 𝑉 (𝑘):
𝜕

𝜕𝑉 (𝑘)
=

𝜕𝑆unc

𝜕𝑉 (𝑘)
− 1

𝑇
𝜕

𝜕𝑉 (𝑘)
. (42)

Substituting the expressions from Eqs. (A.6) and (A.14), we obtain

𝜕
𝜕𝑉 (𝑘)

= 𝜕𝑃 (𝑘)

𝜕𝑇
− 𝜕𝑃 (𝜉)

𝜕𝑇
− 1

𝑇

(

𝑇
(

𝜕𝑃 (𝑘)

𝜕𝑇

)

𝑉 (𝑘) ,𝐍

− 𝑃 (𝑘) −

(

𝑇
(

𝜕𝑃 (𝜉)

𝜕𝑇

)

𝑉 (𝜉) ,𝐍
− 𝑃 (𝜉)

))

.

Here, the superscript (𝜉) denotes evaluation at 𝐱(𝜉). After simplification,
this reduces to
𝜕

𝜕𝑉 (𝑘)
= 𝑃 (𝑘)

𝑇
− 𝑃 (𝜉)

𝑇
. (43)

Similarly, the gradient of the Lagrange function with respect to the
mole number 𝑁 (𝑘)

𝑖 of component 𝑖 in phase 𝑘 is:

𝜕
(𝑘)

= −
𝜕𝜇(𝑘)

𝑖
𝜕𝑇

+
𝜕𝜇(𝜉)

𝑖
𝜕𝑇

− 1
𝑇

(

𝜇(𝑘)
𝑖 − 𝑇

𝜕𝜇(𝑘)
𝑖

𝜕𝑇
−

(

𝜇(𝜉)
𝑖 − 𝑇

𝜕𝜇(𝜉)
𝑖

𝜕𝑇

))
𝜕𝑁𝑖

P. Kumar and P.I.R. Esquivel

Fluid Phase Equilibria 599 (2026) 114528
= −
𝜇(𝑘)
𝑖
𝑇

+
𝜇(𝜉)
𝑖
𝑇

. (44)

Combining these results, the full gradient of the Lagrange function
∇𝐱(𝐱) is:

∇𝐱(𝐱) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∇𝐱(1)

⋮

∇𝐱(𝑝−2)

∇𝐱(𝑝−1)

𝜕
𝜕𝑇

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (45)

where the individual entry

∇𝐱(𝑘) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−
𝜇(𝑘)
1
𝑇

+
𝜇(𝜉)
1
𝑇

⋮

−
𝜇(𝑘)
𝑛
𝑇

+
𝜇(𝜉)
𝑛
𝑇

𝑃 (𝑘)

𝑇
− 𝑃 (𝜉)

𝑇

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (46)

and 𝜕𝜕𝑇 is given by Eq. (40). The final gradients of the Lagrange function
are structurally identical to those reported by Smejkal et al. [11],
with the key distinction that our formulation allows all functions to
be evaluated directly as a function of 𝑇 , 𝑉 and 𝐍, whereas, Smejkal’s
formulation requires an inner Newton iteration to first determine
the temperature. The optimality condition ∇𝐱(𝐱) = 0 leads to the
following system of equations.
𝜇(1)
1 = 𝜇(2)

1 = ⋯ = 𝜇(𝜉)
1 , (47a)

𝜇(1)
2 = 𝜇(2)

2 = ⋯ = 𝜇(𝜉)
2 , (47b)

⋮ (47c)

𝜇(1)
𝑛 = 𝜇(2)

𝑛 = ⋯ = 𝜇(𝜉)
𝑛 , (47d)

𝑃 (1) = 𝑃 (2) = ⋯ = 𝑃 (𝜉), (47e)

 = 0 (recovered from 𝜕
𝜕𝑇

= 0). (47f)

These conditions represent the necessary and sufficient criteria for
thermodynamic equilibrium: equality of temperature (implicit as 𝑇 is
a single variable), equality of pressure across all coexisting phases,
equality of chemical potential for each component across all coexisting
phases, and satisfaction of the total internal energy constraint. This
correspondence demonstrates that the stationary points of  coincide
with thermodynamic equilibrium states, thereby validating the consis-
tency of our formulation with established thermodynamic principles.
The same analysis applies to the Helmholtz-based Q-function 𝐴𝑄 in
(37). Please refer to Appendix B for details.

With the theoretical framework established, we now proceed to the
results section, where we present numerical results obtained using the
methodology discussed in this section which leverages the Lagrange
function defined in Eq. (37).

7. Results

In this section, we present the results obtained using the approach
discussed in previous section and compare them with existing liter-
ature. Our treatment focuses exclusively on the two-phase test cases
examined by Castier [10], Smejkal et al. [11], and Bi et al. [20]. These
problems have also been discussed by Nichita [23] and Bi et al. [29] in
the context of stability analysis. Specifically, we consider Problems 1–6
8
Table 1
Specification: Problems 1–4.
 Property Problem 1 Problem 2 Problem 3 Problem 4
 𝑈[J] −756500.8 −1511407.6 −331083.7 −636468.0
 𝑉 [cm3] 52869.0 4268.1 80258.1 9926.71
 𝑁𝑐1 [mol] 10.0 0.95 15.1 10.0
 𝑁𝐻2𝑆 [mol] 90.0 99.05 84.9 90.0

Table 2
Specification: Problems 5-6.
 Property Problem 5 Problem 6
 𝑈 [J] −16272506.4 24858.2
 𝑉 [cm3] 479845 289380.3
 𝑁𝐶2

 [mol/m3] 10.8 10.8
 𝑁𝐶3𝐻6

 [mol/m3] 360.8 360.8
 𝑁𝐶3

 [mol/m3] 146.5 146.5
 𝑁𝑖𝐶4

 [mol/m3] 233 233
 𝑁𝑛𝐶4

 [mol/m3] 233 233
 𝑁𝐶5

 [mol/m3] 15.9 15.9

Table 3
Specification: Pure component CO2.
 Property 𝑈 [J] 𝑉 [m3] 𝑁CO2

 [mol]
 Value −87211375.744478 1 10000

from these studies, along with a pure component test case introduced
by Smejkal et al. [11]. These problems are defined in Table 1, 2 and 3.
Notably, no variable scaling was employed during the optimization pro-
cess in our approach. This contrasts with methods like that of Smejkal
et al. [11], who used variable scaling via a Jacobi preconditioner.

We begin by discussing the outcomes of the stability analysis,
which serve as the foundation for determining the initial phase split.
These results are then used to perform flash calculations, the details of
which are presented subsequently. Finally, we validate our results with
literature, followed by a discussion of the speedup gains.

For all calculations, the Peng–Robinson equation of state (EOS) [22],
based on Helmholtz energy, is employed. Additional details regarding
this EOS can be found in Appendix D.

7.1. Stability analysis

While phase stability analysis is a necessary preliminary step to ob-
tain suitable initial guesses for the flash calculations in our framework,
a detailed analysis of phase stability methods is outside the scope of
this paper. For completeness, we first present the results of the stability
analysis before proceeding to the flash results. We have obtained these
results (for all the formulations) using the methodology discussed in
Section 3. Our study reports the local minimum for each problem, with
the results summarized in Tables 4–6. For each case, we report the
computed values of temperature, component concentrations, and the
tangent plane distance function 𝐷, as defined in Eq. (2), with the results
reported to two significant digits. However, for values smaller than 1,
the results are reported to four significant digits. In all cases, our local
minima are in close agreement with the values (either global or local)
reported by Nichita [23] for the multicomponent case and Smejkal
et al. [11] for the single component case. The stability analysis reveals
minimal discrepancies in concentration values, with errors remaining
below 0.085%. The largest errors occur in Problem 6, with the highest
being 0.085% for 𝑐′𝐶5

. In the following section, we utilize these stability
results to initialize the phase split calculations.

7.2. Flash calculations

In this section, we present the initial guesses derived from stability
analysis, generated using the Algorithm 1 described in Section 3.3.

P. Kumar and P.I.R. Esquivel Fluid Phase Equilibria 599 (2026) 114528
Table 4
Results of stability analysis: Nichita [23] vs our results.
 Problem 1 Problem 2 Problem 3 Problem 4
 Property Nichita Current Nichita Current Nichita Current Nichita Current
 𝑇 [K] 151.83 151.83 291.91 291.91 297.84 297.84 361.80 361.80
 𝑐′𝑐1 [mol/m3] 104.13 104.12 146.11 146.18 188.14 188.14 1011.37 1011.36
 𝑐′𝐻2𝑆

 [mol/m3] 564.39 564.35 736.15 736.58 1057.84 1057.84 10056.7 10037.91
 𝐷 [Pa/K] 875.34 875.45 26771.1 26722 0.0 2.08e−12 0.5063 0.467
Table 5
Results of stability analysis Nichita [23] vs our results.
 Problem 5 Problem 6
 Property Nichita Current Nichita Current

 𝑇 [K] 122.97 122.97 394.54 394.54
 𝑐′𝐶2

 [mol] 0.3294 0.3294 46.41 46.41
 𝑐′𝐶3𝐻6

 [mol] 3.10 3.10 1739.38 1738.53
 𝑐′𝐶3

 [mol] 0.9066 0.9066 719.16 718.79
 𝑐′𝑖𝐶4

 [mol] 0.3860 0.3860 1262.45 1261.59
 𝑐′𝑛𝐶4

 [mol] 0.2934 0.2934 1305.65 1304.69
 𝑐′𝐶5

 [mol] 0.0038 0.0038 101.09 101.00
 𝐷[Pa/K] 35298.75 35298.74 16.3045 16.10

Table 6
Results for pure CO2 from stability analysis. Smejkal et al. [11] vs our results.
 Property Smejkal Current
 𝑇 [K] 280.0 280.0
 𝑐′ [mol/m3] 19469.17 19487.12
 𝐷 [Pa/K] 4608.22 4608.27

While Smejkal et al. [11] highlight the use of stability analysis to obtain
initial guesses for flash calculations, their work does not explicitly
provide these values for all the test cases, limiting the reproducibility
of their results. To bridge this gap, we report the detailed initial guesses
obtained from our stability analysis, followed by the results of the cor-
responding flash calculations. The initial guesses are comprehensively
summarized in Tables 7–9, with the results reported to four significant
digits.

Flash calculations are performed based on these initial guesses. For
all results presented here, we have used the Helmholtz energy-based
Q-function defined as per Eq. (37). Tables 10–12 present the results
using Newton method with a third-order backtracking line search. The
stopping criterion is set to a relative tolerance of 1 × 10−8. The results
are reported to six significant digits. In addition to the internal energy,
volume and mole numbers, we also report the entropy of the reference
phase and the two-phase system, denoted as 𝑆𝐼 and 𝑆𝐼𝐼 , respectively. A
reasonable agreement is observed with the results reported by Smejkal
et al. [11] for problems 1–6.

To further evaluate the generality of our method, we also consider
a single-component test case, as discussed by Smejkal et al. [11], with
specifications defined in Table 3. The stability analysis (see Table 6)
reveals that the fluid is unstable as a single-phase fluid. Based on this
analysis, an initial phase split was obtained, as shown in Table 9. Flash
calculations are subsequently performed using this initial phase split,
and the results are presented in Table 13. Our findings show excellent
agreement with the results reported in the literature [11].

7.2.1. Speedup
We now turn our attention to the computational speedup achieved

by our TVN approach compared to the UVN formulation. Both formu-
lations are compared by directly using the same nonlinear solver in
Julia employing Newton’s method with line search. The results, sum-
marized in Tables 14 and 15, were obtained using Newton–Raphson
9
with a relative tolerance of 1 × 10−6 and per-variable, scale-invariant
convergence criteria. Specifically, convergence is declared when, for
each variable 𝑖,
|𝐹𝑖(𝑥𝑘)|

|𝐹𝑖(𝑥0)| + 𝜖
< 10−6,

|𝑥𝑘+1𝑖 − 𝑥𝑘𝑖 |

|𝑥𝑘𝑖 | + 𝜖
< 10−6,

where 𝐹 ∶ R𝑛 → R𝑛 is the nonlinear system of equations being solved,
𝐹𝑖 denotes its 𝑖𝑡ℎ component, 𝑥𝑘𝑖 is the 𝑖𝑡ℎ component of the iterate at
step 𝑘 and 𝜖 is a small constant (e.g., machine precision) added to pre-
vent division by zero. While moderate, a tolerance of 1×10−6 is standard
in comparative studies and sufficient to obtain physically meaningful
results, ensuring a fair comparison of computational performance.

Both the TVN and UVN formulations require a comparable number
of outer iterations across all test cases. A notable advantage of the TVN
approach, however, lies in its circumvention of inner iterations, which
represent a significant computational bottleneck in the UVN method.
These inner iterations correspond to the total number of nonlinear
function evaluations invoked by automatic differentiation (AD) during
the inner Newton steps—specifically in the evaluation of the gradient
and Hessian. Corresponding to each outer iteration in the UVN method,
there are four evaluations of the inner nonlinear function defined by Eq.
(D.4): two gradients (one per phase) and two Hessians (one per phase).
Each of these inner evaluations entails determination of the phase
temperatures 𝑇1 and 𝑇2 by solving Eq. (1). It is important to note that
the number of inner iterations reported in Table 14 is implementation-
dependent. A potential strategy is to initialize the inner Newton solver
with temperature values carried over from the previous outer iteration.
This approach, however, introduces a risk of numerical instability,
especially in early iterations where the temperatures of the two phases
may differ significantly. Consequently, the present study adopted a
fixed initial temperature guess, e.g., 𝑇 = 300.0, for all inner solves.
However, for dynamic simulations, employing the temperature from
the previous time step as the initial guess is a generally recommended
practice. Under such conditions, a reduction in the number of inner
iterations is anticipated. Nonetheless, the theoretical minimum number
of inner iterations remains 4𝑂𝐼 , where 𝑂𝐼 denotes the number of outer
iterations.

In contrast, the TVN approach circumvents this nested computa-
tional structure entirely, thereby diminishing both memory allocation
and computational expenditure. Whereas the UVN method necessitates
between 26 and 149 inner iterations across all test cases, the TVN
formulation incurs no such computational overhead. For example, in
Problem P5, the TVN approach achieves convergence about 30 times
faster than the UVN method. This demonstrates the efficiency of the
TVN formulation for the considered set of test problems.

It is worthwhile to note that variable scaling, where all variables are
normalized by their respective total specified quantities, can improve
the numerical stability and convergence behavior of the UVN method.
However, as shown in Table 15, the UVN implementation exhibits
scale-invariant results, with minimal impact of scaling on execution
times across all test problems. While scaling does not significantly affect
performance or convergence on the set of problems examined in this
study, it may still offer benefits for numerical robustness in challenging
cases.

P. Kumar and P.I.R. Esquivel Fluid Phase Equilibria 599 (2026) 114528
Table 7
Initial guesses obtained from stability analysis for Problems 1, 2, 3, and 4.
 Property Problem 1 Problem 2 Problem 3 Problem 4
 Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2
 𝑁𝑐1 [mol] 0.0003 9.9997 0.0195 0.9305 0.0005 15.0995 1.2549 8.7451
 𝑁𝐻2𝑆 [mol] 28.5304 61.4696 0.0982 98.9518 0.0583 84.8417 12.4787 77.5213
 𝑉 [m3] 0.0008 0.0520 0.0001 0.0041 2.45e−6 0.08026 0.0012 0.0087
 𝑈[J] −717694 −38806 −379.56 −1.511e6 −891.17 −330193 −94307.8 −542160
Table 8
Initial guesses from stability analysis for Problems 5 and 6.
 Property Problem 5 Problem 6
 Phase 1 Phase 2 Phase 1 Phase 2
 𝑁𝐶2

 [mol] 0.6328 10.2672 0.8394 9.9624
 𝑁𝐶3𝐻6

 [mol] 84.6926 276.1074 31.4435 329.3565
 𝑁𝐶3

 [mol] 22.4028 124.0972 13.0002 133.4998
 𝑁𝑖𝐶4

 [mol] 26.3615 206.6385 22.8175 210.1825
 𝑁𝑛𝐶4

 [mol] 82.5333 150.4667 23.5972 209.4028
 𝑁𝐶5

 [mol] 9.1875 6.7125 1.8268 14.0732
 𝑉 [m3] 0.0150 0.4648 0.0181 0.2713
 𝑈 [J] −8.2275e6 −8.0450e6 −211881.92 236740.12
Table 9
Initial guesses obtained from stability analysis for pure component (CO2).
 Property Phase 1 Phase 2
 𝑁𝐶𝑂2

 [mol] 2435.89 7564.11
 𝑉 [cm3] 0.125 0.875
 𝑈 [J] −3.129 × 107 −5.592 × 107

Furthermore, the TVN approach benefits from having inherently
‘‘well-behaved’’ optimization variables. For instance, temperature typ-
ically varies within a relatively narrow range-on the order of a few
hundred Kelvins, whereas internal energy spans a much broader do-
main, often involving large-magnitude negative and positive values.
Consequently, no explicit variable scaling was applied during the opti-
mization process for the test cases considered.

8. Conclusion

In this work, we presented a reformulation of the UVN-flash prob-
lem in TVN-space. We simplified the numerical approach by transi-
tioning from the unconstrained UVN space to the constrained TVN
space. This reformulation eliminates the need for implicit temperature
determination for given 𝑈, 𝑉 and 𝐍 at inner iterations of UVN-flash
calculations, thereby significantly improving the efficiency of flash
calculations.

We applied the method of Lagrange multipliers to transform the
constrained optimization problem into a saddle point problem. By
deriving the necessary gradients and Hessian, we obtained an explicit
expression for the Lagrange multiplier in terms of temperature, elim-
inating the need to treat it as an independent variable. This led to
the entropy-based Q-function (𝑆𝑄), which upon further simplification
yielded the Helmholtz energy-based Q-function (𝐴𝑄) originally pro-
posed by Michelsen. The saddle points of the 𝐴𝑄 function correspond
to the maximization of entropy and are found by solving a system of
nonlinear equations resulting from the stationarity conditions of the
Lagrangian.

We also provided an explicit algorithm for generating high-quality
initial guesses directly from stability analysis results. This crucial step
greatly facilitates the convergence of the flash algorithm. We subse-
quently applied the reformulated approach to a set of test cases from
the literature and validated the results against published data. We
employed the Newton method with line search for solving the resulting
nonlinear system and observed consistent convergence on all test cases.
10
Finally, we compared TVN reformulation against the UVN ap-
proach, which involves the entropy maximization in its natural vari-
ables (𝑈, 𝑉 , and 𝐍). Our results show that the TVN formulation delivers
substantial improvements in computational performance on all the
test cases, making it a promising alternative for efficient and scalable
UVN-flash calculations.

CRediT authorship contribution statement

Pardeep Kumar: Writing – original draft, Validation, Software,
Methodology, Formal analysis, Conceptualization. Patricio I. Rosen
Esquivel: Writing – review & editing, Supervision, Project administra-
tion, Funding acquisition, Conceptualization.
Declaration of Generative AI and AI-assisted technologies in the
writing process

During the preparation of this work the authors used GitHub Copilot
in order to propose wordings and mathematical typesetting. After
using this tool/service, the authors reviewed and edited the content
as needed. The authors take full responsibility for the content of the
publication.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This research was generously supported by Shell Projects and Tech-
nology, and we deeply appreciate their invaluable contribution.

We would like to express our sincere gratitude to Prof. Ruud
Henkes (TU Delft) and Prof. Benjamin Sanderse (CWI Amsterdam,
TU Eindhoven) for their expert guidance and insightful contributions
throughout this research.

Our heartfelt thanks also go to Dr. Jannis Teunissen (CWI Ams-
terdam), and Dr. Marius Kurz (CWI Amsterdam) for their constructive
feedback on the manuscript.

We are grateful to Prof. Jiri Mikyska (Czech Technical University
in Prague) for his invaluable insights and stimulating discussions on
UVN-flash.

We also thank the anonymous reviewers for their valuable feedback.

P. Kumar and P.I.R. Esquivel Fluid Phase Equilibria 599 (2026) 114528
Table 10
Comparison of flash results for Problems 1 and 2: Smejkal et al. [11] vs. our results.
 Problem 1 Problem 2
 Smejkal Current Smejkal Current

 𝑈 [J] −211544.585681 −211544.596326 −1510985.753624 −1510985.755666
 𝑉 [cm3] 51366.638771 51366.638597 4165.673900 4165.674425
 𝑁𝑐1 [mol] 9.664320 9.664319 0.930730 0.930730
 𝑁𝐻2𝑆 [mol] 54.315978 54.315976 98.941685 98.941685

 𝑆𝐼 [J K−1] −4847.824318 −4847.824867 −7391.709463 −7391.709647
 𝑆𝐼𝐼 [J K−1] −4335.499136 −4335.499558 −7390.326639 −7390.326837

 𝑇phase 1 [K] 297.997716 297.997717 298.000861 298.000876
 𝑇phase 2 [K] 297.997716 297.997717 298.000856 298.000875
 𝑃phase 1 [Pa] 2500170.787203 2500170.880449 2500317.847486 2500318.645643
 𝑃phase 2 [Pa] 2500170.787153 2500170.880622 2500317.776275 2500318.640970
Table 11
Comparison of flash results for Problems 3 and 4: Smejkal et al. [11] vs. our results.
 Problem 3 Problem 4
 Smejkal Current Smejkal Current

 𝑈 [J] −330516.922985 −330516.953672 −390660.034825 −390689.64236
 𝑉 [cm3] 80256.537494 80256.537579 6414.083981 6414.415486
 𝑁𝑐1 [mol] 15.099651 15.099651 6.448582 6.448928
 𝑁𝐻2𝑆 [mol] 84.862887 84.862889 56.390527 56.394270

 𝑆𝐼 [J K−1] −2613.988230 −2613.988418 −4579.402758 −4579.403289
 𝑆𝐼𝐼 [J K−1] −2613.987835 −2613.988023 −4579.402147 −4579.402679

 𝑇phase 1 [K] 297.996887 297.99689 361.997885 361.997922
 𝑇phase 2 [K] 297.996887 297.99689 361.997885 361.997922
 𝑃phase 1 [Pa] 2500125.243552 2500125.055235 10130505.626170 1013051.326715
 𝑃phase 2 [Pa] 2500124.858262 2500125.511354 10130505.626049 1013051.327506
Table 12
Comparison of flash results for Problems 5 and 6: Smejkal et al. [11] vs. our results.
 Problem 5 Problem 6
 Smejkal Current Smejkal Current

 𝑈 [J] −379886.931385 −380012.963119 174870.975415 174842.436972
 𝑉 [cm3] 401197.390420 401192.630291 273147.423428 273150.189814
 𝑁𝐶2

 [mol] 4.203436 4.242459 10.064693 10.066498
 𝑁𝐶3𝐻6

 [mol] 68.225832 68.231202 333.710698 333.715455
 𝑁𝐶3

 [mol] 24.416960 24.419097 135.325654 135.327702
 𝑁𝑖𝐶4

 [mol] 18.529159 18.531724 213.665513 213.668936
 𝑁𝑛𝐶4

 [mol] 13.885437 13.887650 213.118914 213.122442
 𝑁𝐶5

 [mol] 0.325600 0.325674 14.391190 14.391459

 𝑆𝐼 [J K−1] −73647.697512 −73640.643944 −9052.552759 −9052.541673
 𝑆𝐼𝐼 [J K−1] −54939.068244 −54937.804163 −9052.431373 −9052.420341

 𝑇phase 1 [K] 299.999735 300.004829 394.998501 394.998498
 𝑇phase 2 [K] 299.999735 300.004829 394.998501 394.998498
 𝑃phase 1 [Pa] 700082.833469 700360.612384 4230233.608414 4230243.484716
 𝑃phase 2 [Pa] 700082.833469 700360.612385 4230233.576530 4230243.508068
Table 13
Comparison of flash results for pure CO2: Smejkal vs. our results.
 Property Smejkal Current

 𝑈 [J] −16873789.390417 −16873791.656255
 𝑉 [cm3] 481283.619636 481283.486064
 𝑁𝐶𝑂2

 [mol] 2818.038884 2818.038719

 𝑆𝐼 [J/K] −584388.217059 −584388.23982
 𝑆𝐼𝐼 [J/K] −583476.321606 −583476.346351

 𝑇phase 1 [K] 299.040785 299.04079
 𝑇phase 2 [K] 299.040785 299.04079
 𝑃phase 1 [Pa] 6570486.596964 6570487.390738
 𝑃phase 2 [Pa] 6570486.595448 6570487.390738
11
Table 14
Iteration counts for TVN (𝐴𝑄) and UVN formulations using line search.
 Problem TVN UVN Outer UVN Inner
 P1 10 9 110
 P2 4 4 40
 P3 4 4 26
 P4 9 10 69
 P5 10 10 149
 P6 5 5 52
 PCO2 9 8 108

P. Kumar and P.I.R. Esquivel Fluid Phase Equilibria 599 (2026) 114528
Table 15
Execution time comparison (in milliseconds) for TVN (𝐴𝑄) and UVN formulations
using line search. The execution time reported is the average over 100 repetitions.
 Problem TVN (ms) UVN no scale (ms) UVN scaled (ms)
 P1 0.18 2.20 2.06
 P2 0.07 0.92 2.00
 P3 0.04 0.75 0.70
 P4 0.14 1.83 2.98
 P5 1.23 40.19 39.99
 P6 0.68 15.93 17.04
 PCO2 0.05 1.00 0.99

Appendix A. Gradient computation for the Lagrangian function

In this section, we discuss the evaluation of the gradients of the en-
tropy function defined by Eq. (16) and the constraint function defined
by Eq. (17). These gradients are needed to compute the value of the
Lagrange multiplier 𝜆. The gradient ∇𝑆unc(𝐱) of the entropy function
𝑆unc(𝐱) is defined as:

∇𝑆unc(𝐱) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∇𝑆(1)
red
⋮

∇𝑆(𝑝−2)
red

∇𝑆(𝑝−1)
red

𝜕𝑆unc
𝜕𝑇

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,∀𝑘 ∈ {1,… , 𝑝 − 1}, (A.1)

where ∇𝑆(𝑘)
unc ∈ R𝑛+1, and 𝜕𝑆unc

𝜕𝑇 =
∑𝑝

𝑘=1
𝜕𝑆(𝑘)

𝜕𝑇 ∈ R, and where 𝑆(𝑘) =
𝑆
(

𝑇 , 𝑉 (𝑘),𝐍(𝑘)) is the entropy of the phase 𝑘. The individual entries of
∇𝑆(𝑘)

unc are given as below.

∇𝑆(𝑘)
red =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜕𝑆unc

𝜕𝑁 (𝑘)
1

⋮

𝜕𝑆unc

𝜕𝑁 (𝑘)
𝑛

𝜕𝑆unc

𝜕𝑉 (𝑘)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜕𝑆(𝑘)
red

𝜕𝑁 (𝑘)
1

−
𝜕𝑆(𝜉)

red

𝜕𝑁 (𝜉)
1

⋮

𝜕𝑆(𝑘)
red

𝜕𝑁 (𝑘)
𝑛

−
𝜕𝑆(𝜉)

red

𝜕𝑁 (𝜉)
𝑛

𝜕𝑆(𝑘)
red

𝜕𝑉 (𝑘)
−

𝜕𝑆(𝜉)
red

𝜕𝑉 (𝜉)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (A.2)

We can simplify the partial derivatives using thermodynamic identities
as follows:

𝜕𝑆unc
𝜕𝑇

=
𝑝−1
∑

𝑘=1

𝜕𝑆
(

𝑇 , 𝑉 (𝑘),𝐍(𝑘))

𝜕𝑇
+

𝜕𝑆
(

𝑇 , 𝑉 ⋆ −
∑𝑝−1

𝑘=1 𝑉
(𝑘),𝐍(𝜉)

)

𝜕𝑇

= 1
𝑇

𝑝
∑

𝑘=1
𝐶𝑣

(

𝑇 , 𝑉 (𝑘),𝐍(𝑘)) . (A.3)

Furthermore, the thermodynamic identity for the volume derivative of
entropy is given by:
(𝜕𝑆
𝜕𝑉

)

𝑇 ,𝐍
=
(𝜕𝑃
𝜕𝑇

)

𝑉 ,𝐍
. (A.4)

Next, for the derivative with respect to 𝑁 , we can substitute 𝑆 in terms
of Helmholtz energy 𝐴 as follows:

(𝜕𝑆
𝜕𝑁

)

𝑇 ,𝑉
=

⎛

⎜

⎜

⎜

⎝

𝜕
(

− 𝜕𝐴
𝜕𝑇

)

𝑉 ,𝑁

𝜕𝑁

⎞

⎟

⎟

⎟

⎠𝑇 ,𝑉

. (A.5)

Since 𝑉 is constant, we consider only 𝑇 and 𝑁 as variables, yielding:

(𝜕𝑆
𝜕𝑁

)

𝑇
=

⎛

⎜

⎜

⎜

𝜕
(

− 𝜕𝐴
𝜕𝑇

)

𝑁
𝜕𝑁

⎞

⎟

⎟

⎟

= −
𝜕𝜇
𝜕𝑇

.

⎝ ⎠𝑇

12
Finally, the gradient of the reduced entropy for phase 𝑘 is given by:

∇𝑆(𝑘)
red =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜕𝑆unc

𝜕𝑁 (𝑘)
1

⋮

𝜕𝑆unc

𝜕𝑁 (𝑛)
𝑛

𝜕𝑆unc

𝜕𝑉 (𝑘)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−
𝜕𝜇1(𝑇 , 𝑉 (𝑘),𝐍(𝑘))

𝜕𝑇
+

𝜕𝜇1
𝜕𝑇

(𝐱(𝜉))

⋮

−
𝜕𝜇𝑛(𝑇 , 𝑉 (𝑘),𝐍(𝑘))

𝜕𝑇
+

𝜕𝜇𝑛
𝜕𝑇

(𝐱(𝜉))

𝜕𝑃 (𝑇 , 𝑉 (𝑘),𝐍(𝑘))
𝜕𝑇

− 𝜕𝑃
𝜕𝑇

(𝐱(𝜉))

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (A.6)

It is interesting to note that, while Smejkal’s approach expresses the
gradient of 𝑆unc using the terms of the form 𝑎

𝑏 , our formulation in-
stead involves partial derivatives of the form 𝜕𝑎𝜕𝑏 . For instance, in our
approach, the derivative of 𝑆unc with respect to 𝑁 (𝑘)

1 is expressed as
𝜕𝑆unc

𝜕𝑁 (𝑘)
1

= −
𝜕𝜇1(𝑇 , 𝑉 (𝑘),𝐍(𝑘))

𝜕𝑇
+

𝜕𝜇1(𝐱(𝜉))
𝜕𝑇

,

whereas in Smejkal’s approach, it is given by
𝜕𝑆unc

𝜕𝑁 (𝑘)
1

= −
𝜇1(𝑈 (𝑘), 𝑉 (𝑘),𝐍(𝑘))

𝑇
+

𝜇1(𝐱(𝜉))
𝑇

.

This pattern persists across other derivatives as well, underscoring a
fundamental difference in the treatment of thermodynamic variable de-
pendencies between the two methodologies. We remark here that 𝑈 (𝑘)

is defined differently for both approaches. For Smejkal’s approach, it is
the unknown of the optimization problem, whereas for our approach it
is defined as 𝑈 (𝑘) ∶= 𝑈 (𝑇 , 𝑉 (𝑘),𝐍(𝑘)). Having computed the gradients of
the entropy function, we now turn our attention to the computation of
the gradient of the constraint function :

∇(𝐱) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∇(1)

⋮
∇(𝑝−2)

∇(𝑝−1)

𝜕
𝜕𝑇

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, ∀𝑘 ∈ {1,… , 𝑝 − 1}, (A.7)

where ∇(𝑘) ∈ R𝑛+1 and 𝜕𝜕𝑇 =
∑𝑝

𝑘=1
𝜕𝑈 (𝑘)

𝜕𝑇 ∈ R, 𝑈 (𝑘) ∶= 𝑈 (𝑇 , 𝑉 (𝑘),𝐍(𝑘)),
and

∇(𝑘) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜕
𝜕𝑁 (𝑘)

1

⋮

𝜕
𝜕𝑁 (𝑘)

𝑛

𝜕
𝜕𝑉 (𝑘)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜕(𝑘)

𝜕𝑁 (𝑘)
1

− 𝜕(𝜉)

𝜕𝑁 (𝜉)
1

⋮

𝜕(𝑘)

𝜕𝑁 (𝑘)
𝑛

− 𝜕(𝜉)

𝜕𝑁 (𝜉)
𝑛

𝜕(𝑘)

𝜕𝑉 (𝑘)
− 𝜕(𝜉)

𝜕𝑉 (𝑘)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (A.8)

We can simplify these gradients using standard thermodynamic identi-
ties. First, recall that the heat capacity at constant volume, 𝐶𝑣, is given
by the following thermodynamic relation:

𝐶𝑣 =
(𝜕𝑈
𝜕𝑇

)

𝑉 ,𝐍
. (A.9)

Consequently, the partial derivative of the constraint with respect to
temperature becomes:

𝜕
𝜕𝑇

=
𝑝
∑

𝑘=1
𝐶 (𝑘)
𝑣 . (A.10)

Next, utilizing the thermodynamic identity
(𝜕𝑈)

= 𝑇
(𝜕𝑃)

− 𝑃 , (A.11)

𝜕𝑉 𝑇 ,𝐍 𝜕𝑇 𝑉 ,𝐍

P. Kumar and P.I.R. Esquivel Fluid Phase Equilibria 599 (2026) 114528
we obtain the following expression for the partial derivative of the
constraint with respect to volume:
𝜕(𝑘)

𝜕𝑉 (𝑘)
=
(

𝜕𝑈 (𝑘)

𝜕𝑉 (𝑘)

)

𝑇 ,𝐍
= 𝑇

(𝜕𝑃
𝜕𝑇

)

𝑉 (𝑘) ,𝐍
− 𝑃 . (A.12)

For the partial derivative of the constraint with respect to the mole
number of component 1 in phase 𝑘, we proceed as follows:

𝜕(𝑘)

𝜕𝑁 (𝑘)
1

=

(

𝜕𝑈 (𝑘)

𝜕𝑁 (𝑘)
1

)

𝑇 ,𝑉 (𝑘)

=

(

𝜕𝐴(𝑘) + 𝑇𝑆(𝑘)

𝜕𝑁 (𝑘)
1

)

𝑇 ,𝑉 (𝑘)

=

(

𝜕𝐴(𝑘)

𝜕𝑁 (𝑘)
1

)

𝑇 ,𝑉 (𝑘)

+ 𝑇

(

𝜕𝑆(𝑘)

𝜕𝑁 (𝑘)
1

)

𝑇 ,𝑉 (𝑘)

= 𝜇(𝑘)
1 − 𝑇

(

𝜕𝜇(𝑘)
1

𝜕𝑇

)

, (A.13)

where 𝜇(𝑘)
1 is the chemical potential of component 1 in phase 𝑘. Similar

expressions hold for components 2,… , 𝑝−1. Finally, we can summarize
the gradient of the constraint with respect to the generalized state
variables:

∇(𝑘)(𝐱) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜇(𝑘)
1 − 𝑇

𝜕𝜇(𝑘)
1

𝜕𝑇
−

(

𝜇(𝜉)
1 − 𝑇

𝜕𝜇(𝜉)
1

𝜕𝑇

)

⋮

𝜇(𝑘)
𝑛 − 𝑇

𝜕𝜇(𝑘)
𝑛

𝜕𝑇
−

(

𝜇(𝜉)
𝑛 − 𝑇

𝜕𝜇(𝜉)
𝑛

𝜕𝑇

)

𝑇
(

𝜕𝑃 (𝑘)

𝜕𝑇

)

𝑉 (𝑘) ,𝐍
− 𝑃 (𝑘) −

(

𝑇
(

𝜕𝑃 (𝜉)

𝜕𝑇

)

𝑉 (𝜉) ,𝐍
− 𝑃 (𝜉)

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(A.14)

Appendix B. Gradient of the Helmholtz-based Q-function

This appendix provides analytical expressions for the gradient of the
Helmholtz-energy-based Q-function (𝐱), defined as:

(𝐱) =
𝑈⋆ −

(

∑𝑝−1
𝑘=1 𝐴

(

𝑇 , 𝑉 (𝑘),𝐍(𝑘)) + 𝐴
(

𝑇 , 𝑉 (𝜉),𝐍(𝜉))
)

𝑇
, (B.1)

where 𝑉 (𝜉) ∶= 𝑉 ⋆ −
∑𝑝−1

𝑘=1 𝑉
(𝑘), 𝐍(𝜉) ∶= 𝐍 −

∑𝑝−1
𝑘=1 𝐍

(𝑘).

Partial derivative with respect to temperature:
𝜕
𝜕𝑇

= −𝑈⋆

𝑇 2
− 1

𝑇
𝜕𝐴
𝜕𝑇

+ 𝐴
𝑇 2

= −𝑈⋆

𝑇 2
+ 𝑆

𝑇
+ 𝐴

𝑇 2

= 𝐴 + 𝑇𝑆 − 𝑈⋆

𝑇 2
= 𝑈 − 𝑈⋆

𝑇 2
, (B.2)

where 𝑆 =
∑𝑝

𝑘=1 𝑆
(𝑘), 𝐴 =

∑𝑝
𝑘=1 𝐴

(𝑘), and 𝑈 =
∑𝑝

𝑘=1 𝑈
(𝑘). Thus, the

stationarity condition 𝜕
𝜕𝑇 = 0 enforces conservation of total internal

energy, i.e., 𝑈 = 𝑈⋆.

Partial derivatives with respect to phase volumes: For 𝑘 = 1,… , 𝑝−
1,

𝜕
𝜕𝑉 (𝑘)

= 1
𝑇

[

𝜕𝐴
𝜕𝑉 (𝑘)

(

𝑇 , 𝑉 (𝜉),𝐍(𝜉)) − 𝜕𝐴
𝜕𝑉 (𝑘)

(

𝑇 , 𝑉 (𝑘),𝐍(𝑘))
]

= 𝑃 (𝑘) − 𝑃 (𝜉)

𝑇
, (B.3)

where 𝑉 (𝜉) = 𝑉 ⋆ −
∑𝑝−1

𝑘=1 𝑉
(𝑘) is the residual phase volume, and 𝑃 (𝑘) =

− 𝜕𝐴
𝜕𝑉 (𝑇 , 𝑉 (𝑘),𝐍(𝑘)) denotes the pressure in phase 𝑘.

Partial derivatives with respect to mole numbers: For each com-
ponent 𝑖 in phase 𝑘 = 1,… , 𝑝 − 1, the gradient with respect to 𝑁 (𝑘)
𝑖

13
is:

𝜕
𝜕𝑁 (𝑘)

𝑖

= 1
𝑇

[

𝜕𝐴
𝜕𝑁 (𝑘)

𝑖

(

𝑇 , 𝑉 (𝜉),𝐍(𝜉)) − 𝜕𝐴
𝜕𝑁 (𝑘)

𝑖

(

𝑇 , 𝑉 (𝑘),𝐍(𝑘))
]

=
𝜇(𝜉)
𝑖 − 𝜇(𝑘)

𝑖
𝑇

, (B.4)

where 𝜇(𝑘)
𝑖 = 𝜕𝐴

𝜕𝑁 (𝑘)
𝑖

(𝑇 , 𝑉 (𝑘),𝐍(𝑘)) denotes the chemical potential of
component 𝑖 in phase 𝑘.
Interpretation. These expressions demonstrate that stationarity of 
corresponds to thermodynamic equilibrium, enforcing:

• Equality of pressure across all phases: 𝑃 (1) = ⋯ = 𝑃 (𝜉),
• Equality of chemical potentials for each component across phases:
𝜇(1)
𝑖 = ⋯ = 𝜇(𝜉)

𝑖 for all 𝑖,
• Conservation of total internal energy: 𝑈 = 𝑈⋆.

These conditions are both necessary and sufficient for thermody-
namic equilibrium under the specified constraints, thereby confirming
the consistency of the Helmholtz-based Q-function. The pseudocode for
this Q-function is provided in Algorithm 3.

Appendix C. Hessian of the Helmholtz-based Q-function

The Hessian matrix 𝐻(𝐱) ∈ R[(𝑝−1)(𝑛+1)+1]×[(𝑝−1)(𝑛+1)+1] of the
Helmholtz-Based Q-function  defined by Eq. (37), admits the follow-
ing block structure:

H(𝐱) =
⎡

⎢

⎢

⎣

H𝑁,𝑁 H𝑁,𝑉 H𝑁,𝑇
H𝑉 ,𝑁 H𝑉 ,𝑉 H𝑉 ,𝑇
H𝑇 ,𝑁 H𝑇 ,𝑉 H𝑇 ,𝑇

⎤

⎥

⎥

⎦

.

Each block has the following structure:
H𝑁,𝑁 ((𝑝 − 1)𝑛 × (𝑝 − 1)𝑛):

H(𝑘,𝓁)
𝑁,𝑁 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜕2
𝜕𝑁 (𝑘)

1 𝜕𝑁 (𝓁)
1

⋯
𝜕2

𝜕𝑁 (𝑘)
1 𝜕𝑁 (𝓁)

𝑛
⋮ ⋱ ⋮

𝜕2
𝜕𝑁 (𝑘)

𝑛 𝜕𝑁 (𝓁)
1

⋯
𝜕2

𝜕𝑁 (𝑘)
𝑛 𝜕𝑁 (𝓁)

𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

H𝑁,𝑉 ((𝑝 − 1)𝑛 × (𝑝 − 1)) and H𝑁,𝑇 ((𝑝 − 1)𝑛 × 1):

H(𝑘,𝓁)
𝑁,𝑉 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜕2
𝜕𝑁 (𝑘)

1 𝜕𝑉 (𝓁)

⋮
𝜕2

𝜕𝑁 (𝑘)
𝑛 𝜕𝑉 (𝓁)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, H(𝑘)
𝑁,𝑇 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜕2
𝜕𝑁 (𝑘)

1 𝜕𝑇
⋮

𝜕2
𝜕𝑁 (𝑘)

𝑛 𝜕𝑇

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

H𝑉 ,𝑉 ((𝑝 − 1) × (𝑝 − 1)) and H𝑉 ,𝑇 ((𝑝 − 1) × 1):

H(𝑘,𝓁)
𝑉 ,𝑉 = 𝜕2

𝜕𝑉 (𝑘)𝜕𝑉 (𝓁)
, H(𝑘)

𝑉 ,𝑇 = 𝜕2
𝜕𝑉 (𝑘)𝜕𝑇

.

H𝑇 ,𝑇 (1 × 1):

H𝑇 ,𝑇 = 𝜕2
𝜕𝑇 2

.

For practical implementation, the computation of required gradients
and Hessians is performed using automatic differentiation (AD). AD
tools are employed due to their established robustness, computational
efficiency, and their ability to evaluate analytical derivatives to ma-
chine precision. In this work, we have used the ForwardDiff.jl
package [32] for AD.

Appendix D. Peng–Robinson equation of state

We employ the Peng–Robinson equation of state (EOS) [11], which
is formulated as follows:

𝑃 (𝑇 , 𝑉 ,𝑁 ,… , 𝑁) = 𝑁𝑅𝑇 −
𝑎(𝑇)𝑁2

, (D.1)
1 𝑛 𝑉 − 𝐵 𝑉 2 + 2𝐵𝑉 − 𝐵2

P. Kumar and P.I.R. Esquivel Fluid Phase Equilibria 599 (2026) 114528
where 𝑇 is the temperature, 𝑉 is the volume, 𝑁𝑖 represents the number
of moles of component 𝑖 in the system, 𝑅 is the universal gas constant
and 𝑁 is the total number of moles in the system. The parameters
𝑎(𝑇) and 𝐵 characterize intermolecular forces and volume exclusion,
respectively. The parameters 𝑎(𝑇) and 𝐵 are defined as follows:
𝐵 = 𝑏𝑁, (D.2a)

𝑎 =
𝑛
∑

𝑖=1

𝑛
∑

𝑗=1
𝑥𝑖𝑥𝑗𝑎𝑖𝑗 , (D.2b)

𝑎𝑖𝑗 = (1 − 𝛿𝑖𝑗)
√

𝑎𝑖𝑎𝑗 , (D.2c)

𝑎𝑖(𝑇) = 0.45724
𝑅2𝑇 2

crit,𝑖
𝑃crit,𝑖

[

1 + 𝑚𝑖

(

1 −
√

𝑇𝑟,𝑖
)]2

, (D.2d)

𝑏 =
𝑛
∑

𝑖=1
𝑥𝑖𝑏𝑖, (D.2e)

𝑏𝑖 = 0.0778
𝑅𝑇crit,𝑖
𝑃crit,𝑖

, (D.2f)

where 𝑥𝑖 = 𝑁𝑖∕𝑁 is the mole fraction of component 𝑖. 𝑇crit,𝑖, 𝑃crit,𝑖 and
𝑇𝑟,𝑖 = 𝑇 ∕𝑇crit,𝑖 are the critical temperature, critical pressure and the
reduced temperature of component 𝑖, and 𝛿𝑖𝑗 is the Kronecker delta.
The parameter 𝑚𝑖 accounts for the acentric factor 𝜔𝑖 as:

𝑚𝑖 =

{

0.37464 + 1.54226𝜔𝑖 − 0.26992𝜔2
𝑖 , 𝜔𝑖 < 0.5,

0.3796 + 1.485𝜔𝑖 − 0.1644𝜔2
𝑖 + 0.01667𝜔3

𝑖 , 𝜔𝑖 ≥ 0.5.
(D.3)

The residual internal energy, 𝑈 , in the context of the Peng–Robinson
EOS is expressed as follows.

𝑈 (𝑇 , 𝑉 ,𝑁1,… , 𝑁𝑛) = 𝑁
𝑇𝜕𝑇 (𝑎) − 𝑎

2
√

2𝑏
ln
[

𝑉 + 𝛿1𝐵
𝑉 + 𝛿2𝐵

]

− 𝑁𝑅(𝑇 − 𝑇0) +
𝑛
∑

𝑖=1
𝑁𝑖 ∫

𝑇

𝑇0
𝑐ig𝑝,𝑖(𝜉) 𝑑𝜉 +𝑁𝑢0, (D.4)

where 𝜕𝑇 (𝑎) is the temperature derivative of 𝑎(𝑇), 𝑇0 is a reference
temperature, 𝛼𝑖𝑘 are empirical constants, 𝛿1 = 1 +

√

2and𝛿2 = 1 −
√

2.
The residual entropy, 𝑆, is given as

𝑆(𝑇 , 𝑉 ,𝑁1,… , 𝑁𝑛) = 𝑁𝑅 ln
[𝑉 − 𝐵

𝑉

]

+𝑁
𝜕𝑇 (𝑎)

2
√

2𝑏
ln
[

𝑉 + 𝛿1𝐵
𝑉 + 𝛿2𝐵

]

+ 𝑅
𝑛
∑

𝑖=1
𝑁𝑖 ln

𝑉 𝑃0
𝑁𝑖𝑅𝑇

+
𝑛
∑

𝑖=1
𝑁𝑖 ∫

𝑇

𝑇0

𝑐ig𝑝,𝑖(𝜉)

𝜉
𝑑𝜉, (D.5)

where 𝑐ig𝑝,𝑖(𝑇) is the ideal gas heat capacity of component 𝑖 and 𝑃0 is a
reference pressure. The heat capacity 𝑐ig𝑝,𝑖(𝑇) can be written as:

𝑐ig𝑝,𝑖(𝑇) =
3
∑

𝑘=0
𝛼𝑖𝑘𝑇

𝑘. (D.6)

Now, we can simplify the integral in (D.4) as

∫

𝑇

𝑇0
𝑐ig𝑝,𝑖(𝜉) 𝑑𝜉 =

3
∑

𝑘=0
𝛼𝑖𝑘

𝑇 𝑘+1 − 𝑇 𝑘+1
0

𝑘 + 1
,

and the integral in (D.5) as

∫

𝑇

𝑇0

𝑐ig𝑝,𝑖(𝜉)

𝜉
𝑑𝜉,= 𝛼𝑖0 ln

(

𝑇
𝑇0

)

+
3
∑

𝑘=1
𝛼𝑖𝑘

𝑇 𝑘 − 𝑇 𝑘
0

𝑘
.

The coefficients 𝛼0, 𝛼1, 𝛼2, 𝛼3 for the fluids considered in this work
are listed in Table D.16, while the parameters of the Peng–Robinson
equation of state are summarized in Table D.17. It is important to
note that the arguments of logarithmic terms must remain positive in
Eqs. (D.4) and (D.5). If this condition is violated, the current step should
be rejected or appropriately truncated to maintain physical consistency.
The reference state is specified at 𝑇0 = 298.15K and 𝑃0 = 1 bar, where
the molar internal energy is defined as
𝑢 = 𝑢(𝑇 , 𝑃) = ℎ(𝑇 , 𝑃) − 𝑅𝑇 = −𝑅𝑇 = −2478.95687512 Jmol−1.
0 0 0 0 0 0 0

14
Table D.16
Correlation coefficients 𝑐ig𝑝 [11].
 Component 𝛼0 𝛼1 𝛼2 𝛼3
 C1 19.25 5.213 × 10−2 1.197 × 10−5 −1.132 × 10−8
 H2S 31.94 1.463 × 10−3 2.432 × 10−5 −1.176 × 10−8
 C2 5.409 1.781 × 10−1 −6.938 × 10−5 8.713 × 10−9
 C3H6 3.710 2.345 × 10−1 −1.160 × 10−4 2.205 × 10−8
 C3 −4.224 3.063 × 10−1 −1.586 × 10−4 3.215 × 10−8
 iC4 −1.390 3.847 × 10−1 −1.846 × 10−4 2.895 × 10−8
 nC4 9.487 3.313 × 10−1 −1.108 × 10−4 −2.822 × 10−8
 nC5 −3.626 4.873 × 10−1 −2.580 × 10−4 5.305 × 10−8
 CO2 19.80 7.344 × 10−2 −5.602 × 10−5 −1.715 × 10−8

Table D.17
Parameters of Peng–Robinson EOS [11].
 Component 𝑇crit [K] 𝑃crit [bar] 𝜔 [-]
 C1 190.4 46.0 0.011
 H2S 373.2 89.4 0.081
 C2 305.4 48.8 0.099
 C3H6 364.9 46.0 0.144
 C3 369.8 42.5 0.153
 iC4 408.2 36.5 0.183
 nC4 425.2 38.0 0.199
 nC5 469.7 33.7 0.251
 CO2 304.14 73.75 0.239

This definition ensures that the molar enthalpy of the ideal gas at the
reference conditions is zero [11], i.e., ℎ(𝑇0, 𝑃0) = 0. Furthermore, the
molar entropy of each pure component as an ideal gas is also set to
zero at this state, 𝑠ideal𝑖 (𝑇0, 𝑃0) = 0.

The expressions for the Helmholtz free energy and the chemical
potential are provided in the book by Michelsen and Møllerup [3].
For completeness, we reproduce them here. The residual part of the
Helmholtz free energy is given by:

𝐴(𝑇 , 𝑉 ,𝑁1,… , 𝑁𝑛) = −𝑁𝑅𝑇 ln
[𝑉 − 𝐵

𝑉

]

−𝑁
𝑎(𝑇)

2
√

2𝑏
ln
[

𝑉 + 𝛿1𝐵
𝑉 + 𝛿2𝐵

]

(D.7)

The residual part of chemical potential of the 𝑖th component can
be calculated as the partial derivative of the Helmholtz free energy 𝐴
with respect to 𝑁𝑖, keeping temperature 𝑇 , volume 𝑉 , and all other
mole numbers constant:

𝜇𝑖(𝑇 , 𝑉 ,𝑁1,… , 𝑁𝑛) =
(

𝜕𝐴(𝑇 , 𝑉 ,𝑁1,… , 𝑁𝑛)
𝜕𝑁𝑖

)

𝑇 ,𝑉 ,𝑁𝑗≠𝑖

=𝑅𝑇
(

𝜕𝐹 (𝑇 , 𝑉 ,𝑁1,… , 𝑁𝑛)
𝜕𝑁𝑖

)

𝑇 ,𝑉 ,𝑁𝑗≠𝑖

, (D.8)

where the dimensionless Helmholtz energy is defined as 𝐹 ∶= 𝐴∕(𝑅𝑇)
(see [3]).

The partial derivative of 𝐹 with respect to 𝑁𝑖 is given by:
𝜕𝐹
𝜕𝑁𝑖

= −𝑔 −𝑁𝑔𝐵𝐵𝑖 −
𝐷
𝑇
𝑓𝐵𝐵𝑖 −

𝑓
𝑇
𝐷𝑖, (D.9)

where

𝑓 = 1

2
√

2𝐵
ln
(

𝑉 + 𝛿1𝐵
𝑉 + 𝛿2𝐵

)

, (D.10)

𝑔 = ln
(𝑉 − 𝐵

𝑉

)

, (D.11)

𝑔𝐵 = − 1
𝑉 − 𝐵

, (D.12)

𝑓𝑉 = 1
𝑅(𝑉 + 𝛿1𝐵)(𝑉 + 𝛿2𝐵)

, (D.13)

𝑓𝐵 =
𝑓 + 𝑉 𝑓𝑉

𝐵
, (D.14)

𝐷𝑖 = 2
𝑛
∑

𝑗=1
𝑁𝑗𝑎𝑖𝑗 , (D.15)

𝑏 = (1 − 𝑙)(𝑏 + 𝑏)∕2, (D.16)
𝑖𝑗 𝑖𝑗 𝑖 𝑗

P. Kumar and P.I.R. Esquivel Fluid Phase Equilibria 599 (2026) 114528
𝐵𝑖 =
2
∑𝑛

𝑗=1 𝑁𝑗𝑏𝑖𝑗 − 𝐵

𝑁
. (D.17)

Appendix E. Pseudocode for stability analysis

For completeness, we have included a concise pseudocode outline
for the stability analysis in this section. Step 3 of the pseudocode is
implemented using the NLsolve.jl solver.

Algorithm 2 Stability Analysis under UVN Specification
Require: Specified internal energy 𝑈spec, volume 𝑉spec, total composi-

tion 𝒛spec, and thermodynamic model
1: Estimate temperature 𝑇spec consistent with 𝑈spec, 𝑉spec, 𝒛spec
2: Generate a set of trial concentrations {𝒄(𝑗)} using a scaled simplex
centered at the barycenter

3: for each trial concentration 𝒄(𝑗) do
4: Find the trial phase concentrations 𝒄′, by solving the nonlinear
system Eq. (5) at 𝑇 = 𝑇spec using Newton’s method, following the
procedure in Section 3.1:

1. Set initial concentration guess 𝒄′,0, iteration counter 𝑘 ← 0
and the solution 𝒄⋆ ← 𝒄′,0.

2. Set tolerance: 𝑥𝑡𝑜𝑙 ← 1 × 10−8, 𝑓𝑡𝑜𝑙 ← 1 × 10−8, 𝜖 ← ×10−10

3. Repeat for 𝑘 = 0, 1, 2,… until convergence:
(a) Compute the Newton step 𝛥𝒄′,𝑘 by solving:

𝐉(𝒄′,𝑘)𝛥𝒄′,𝑘 = −𝐅(𝒄′,𝑘)

(b) Update the concentration vector using a suitable step
length 𝜆𝑘 (Line search with third order Backtracking):
𝒄′,𝑘+1 = 𝒄′,𝑘 + 𝜆𝑘𝛥𝒄′,𝑘

(c) Terminate if, for every component 𝑖,

|

|

𝐹𝑖(𝒄′,𝑘)||
|

|

𝐹𝑖(𝒄′,0)|| + 𝜖
< 𝑓𝑡𝑜𝑙,

|

|

|

𝑐′,𝑘+1𝑖 − 𝑐′,𝑘𝑖
|

|

|

|

|

|

𝑐′,𝑘𝑖
|

|

|

+ 𝜖
< 𝑥𝑡𝑜𝑙,

Once converged, assign the final concentration vector
𝒄⋆ ← 𝒄′,𝑘.

5: Compute internal energy density 𝑢∗ ← 𝑈 (𝑇spec, 1.0, 𝒄⋆).
6: Evaluate tangent plane distance 𝐷∗ as per Eq. (2)
7: if 𝐷∗ ≥ 0 then
8: Mark system as phase-unstable for this trial
9: Store 𝒄∗ and 𝐷∗

10: return Maximum 𝐷∗, corresponding 𝒄∗, and list of all unstable
points

Appendix F. Pseudocode for 𝑨𝑸

The pseudocode for the 𝐴𝑄 formulation is briefly outlined in
this section. For a robust implementation, the automatic addition and
removal of phases, even during two-phase calculations, is critical, as
detailed in Section 2.4. We have excluded this aspect from the current
pseudocode to maintain focus on the core formulation. For details, we
refer the reader to Castier [10]. Note that the objective function for
line search can be either the sum of squares of the residual or, as in
this work, a cubic polynomial approximation, following the approach
discussed in detail in Numerical Recipes [33].

Data availability

No data was used for the research described in the article.
15
Algorithm 3 Pseudocode for 𝐴𝑄
Require: Total internal energy 𝑈⋆ [J], volume 𝑉 ⋆ [m3], and mole

numbers 𝐍⋆ = [𝑁⋆
1 ,… , 𝑁⋆

𝑛], the trial phase concentration vector
𝐜 [mol/m3] and the trial phase internal energy density 𝑢 [J/m3]

1: Generate initial guess using Algorithm 1: 𝑥 ← 𝑥(0)

2: Define gradient (see Appendix B) using AD (Note: AD gives exact
derivative to machine precision.)
𝑔(𝑥) = ForwardDiff.gradient(, 𝑥)

3: Define Hessian (see Appendix C) using AD
𝐻(𝑥) = ForwardDiff.hessian(, 𝑥)

4: Initialize iteration count: 𝑛iters ← 0
5: Set tolerance: 𝑥𝑡𝑜𝑙 ← 1 × 10−8, 𝑓𝑡𝑜𝑙 ← 1 × 10−8

6: while 𝑛iters < max_iters do
7: Compute Newton step 𝛿𝑥 by solving 𝐻(𝑥) 𝛿𝑥 = −𝑔(𝑥)
8: 𝑥new ← 𝑥 + 𝛿𝑥
9: Feasibility Check:
10: Let 𝑥trial = 𝑥 + 𝛿𝑥.
11: If 𝑥trial does not satisfy conditions Eq. (10) or
12: any logarithmic argument in Eq. (D.4) or Eq. (D.5) is not

positive for 𝑥trial:
13: Reduce step size for 𝛿𝑥 using line search with third-order

backtracking (see [33]) and retry this step.
14: Else:
15: 𝑥new = 𝑥trial
16: Convergence Check:
17: grad_converged ←

‖𝑔(𝑥new)‖∞
‖𝑔(𝑥(0))‖∞+𝜖 < 𝑓𝑡𝑜𝑙

18: step_converged ←
‖𝑥new−𝑥‖∞
‖𝑥‖∞+𝜖 < 𝑥𝑡𝑜𝑙

19: If grad_converged or step_converged
20: return 𝑥new, 𝑛iters
21: Update current solution: 𝑥 ← 𝑥new
22: Increment iteration count: 𝑛iters ← 𝑛iters + 1
23: return failure ⊳ Maximum iterations reached without

convergence

References

[1] M.L. Michelsen, The Isothermal Flash Problem. Part II. Phase-Split Calculation,
Fluid Phase Equilibria, 1981.

[2] M.L. Michelsen, The Isothermal Flash Problem. Part I. Stability, Fluid Phase
Equilibria, 1982.

[3] M.L. Michelsen, J.M. Mollerup, Thermodynamic Models : Fundamentals &
Computational Aspects, Tie-Line Publications, 2007.

[4] A.R.J. Arendsen, G.F. Versteeg, Dynamic thermodynamics with internal energy,
volume, and amount of moles as states: Application to Liquefied Gas Tank, Ind.
Eng. Chem. Res. 48 (2009) 3167–3176.

[5] M. Castier, Dynamic simulation of fluids in vessels via entropy maximization, J.
Ind. Eng. Chem. 16 (2010) 122–129.

[6] F.M. Goncalves, M. Castier, O.Q.F. Araújo, Dynamic simulation of flash drums
using rigorous physical property calculations, Braz. J. Chem. Eng. 24 (2007)
277–286.

[7] M. Lu, L.D. Connell, The transient behaviour of CO2 flow with phase transition
in injection wells during geological storage – Application to a case study, J. Pet.
Sci. Eng. 124 (2014) 7–18.

[8] D. Müller, W. Marquardt, Dynamic multiple-phase flash simulation: Global
stability analysis versus quick phase determination, Comput. Chem. Eng. 21
(1997) S817–S822.

[9] K.M. Brantferger, G.A. Pope, K. Sepehrnoori, Development of a thermody-
namically consistent, fully implicit, equation-of-state, compositional steamflood
simulator, in: SPE Symposium on Reservoir Simulation, SPE, Anaheim, California,
1991, pp. SPE–21253–MS.

[10] M. Castier, Solution of the isochoric–isoenergetic flash problem by direct entropy
maximization, Fluid Phase Equilib. 276 (2009) 7–17.

[11] T. Smejkal, J. Mikyška, Phase stability testing and phase equilibrium calculation
at specified internal energy, volume, and moles, Fluid Phase Equilib. 431 (2017)
82–96.

http://refhub.elsevier.com/S0378-3812(25)00198-0/sb1
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb1
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb1
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb2
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb2
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb2
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb3
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb3
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb3
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb4
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb4
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb4
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb4
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb4
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb5
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb5
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb5
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb6
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb6
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb6
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb6
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb6
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb7
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb7
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb7
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb7
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb7
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb8
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb8
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb8
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb8
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb8
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb9
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb9
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb9
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb9
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb9
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb9
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb9
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb10
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb10
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb10
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb11
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb11
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb11
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb11
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb11

P. Kumar and P.I.R. Esquivel Fluid Phase Equilibria 599 (2026) 114528
[12] D. Paterson, E.H. Stenby, W. Yan, Use of canonical variables to solve state
function based flash problems, Fluid Phase Equilib. 571 (2023) 113795.

[13] D. Paterson, M.L. Michelsen, W. Yan, E.H. Stenby, Extension of modified RAND
to multiphase flash specifications based on state functions other than (T, P),
Fluid Phase Equilib. 458 (2018) 288–299.

[14] D. Paterson, W. Yan, M.L. Michelsen, E.H. Stenby, Multiphase isenthalpic flash:
General approach and its adaptation to thermal recovery of heavy oil, AIChE J.
65 (2019) 281–293.

[15] D. Paterson, Flash Computation and EoS Modelling for Compositional Thermal
Simulation of Flow in Porous Media. Springer Theses, Springer International
Publishing, Cham, 2019.

[16] V. Lipovac, O. Duran, E. Keilegavlen, F. Radu, I. Berre, Unified flash calculations
with isenthalpic and isochoric constraints, Fluid Phase Equilib. 578 (2024)
113991.

[17] M. Fathi, S. Hickel, Rapid multi-component phase-split calculations using volume
functions and reduction methods, AIChE J. 67 (2021) e17174.

[18] M.L. Michelsen, State function based flash specifications, Fluid Phase Equilib.
158-160 (1999) 617–626.

[19] S. Saha, J.J. Carroll, The isoenergetic-isochoric flash, Fluid Phase Equilib. 138
(1997) 23–41.

[20] R. Bi, A. Firoozabadi, P.C. Myint, Phase-split computations in the internal energy,
volume, and moles (UVN) space, Fluid Phase Equilib. 526 (2020) 112729.
16
[21] F. Medeiros, E.H. Stenby, W. Yan, State function-based flash specifications for
open systems in the absence or presence of chemical reactions, AIChE J. 67
(2021) e17050.

[22] D.-Y. Peng, D.B. Robinson, A new two-constant equation of state, Ind. Eng. Chem.
Fundam. 15 (1976) 59–64, Number: 1.

[23] D.V. Nichita, Robustness and efficiency of phase stability testing at VTN and
UVN conditions, Fluid Phase Equilib. 564 (2023) 113624.

[24] J. Mikyška, A. Firoozabadi, Investigation of mixture stability at given volume,
temperature, and number of moles, Fluid Phase Equilib. 321 (2012) 1–9.

[25] D.V. Nichita, A unified presentation of phase stability analysis including all major
specifications, Fluid Phase Equilib. 578 (2024) 113990.

[26] N. Nagarajan, A. Cullick, A. Griewank, New strategy for phase equilibrium and
critical point calculations by thermodynamic energy analysis. Part I. Stability
analysis and flash, Fluid Phase Equilib. 62 (1991) 191–210.

[27] D.V. Nichita, J.-C. de Hemptinne, S. Gomez, Isochoric phase stability testing for
hydrocarbon mixtures, Pet. Sci. Technol. 27 (2009) 2177–2191.

[28] D.V. Nichita, Fast and robust phase stability testing at isothermal-isochoric
conditions, Fluid Phase Equilib. 447 (2017) 107–124.

[29] R. Bi, A. Zidane, A. Firoozabadi, Stability analysis in the internal energy, volume,
and moles (UVN) space, Fluid Phase Equilib. 512 (2020) 112468.

[30] N. Jorge, Numerical Optimization, in: Springer Series in Operations Research and
Financial Engineering, Springer New York, 2006.

[31] M. Benzi, G.H. Golub, J. Liesen, Numerical solution of saddle point problems,
Acta Numer. 14 (2005) 1–137.

[32] J. Revels, M. Lubin, T. Papamarkou, Forward-mode automatic differentiation in
Julia, 2016, arXiv:1607.07892 [cs].

[33] W.H. Press, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes: The Art of
Scientific Computing, third ed., Cambridge University Press, Cambridge, 2007.

http://refhub.elsevier.com/S0378-3812(25)00198-0/sb12
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb12
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb12
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb13
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb13
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb13
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb13
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb13
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb14
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb14
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb14
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb14
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb14
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb15
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb15
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb15
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb15
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb15
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb16
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb16
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb16
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb16
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb16
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb17
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb17
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb17
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb18
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb18
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb18
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb19
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb19
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb19
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb20
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb20
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb20
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb21
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb21
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb21
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb21
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb21
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb22
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb22
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb22
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb23
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb23
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb23
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb24
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb24
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb24
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb25
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb25
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb25
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb26
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb26
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb26
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb26
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb26
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb27
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb27
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb27
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb28
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb28
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb28
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb29
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb29
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb29
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb30
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb30
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb30
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb31
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb31
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb31
http://arxiv.org/abs/1607.07892
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb33
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb33
http://refhub.elsevier.com/S0378-3812(25)00198-0/sb33

	Solving the UVN-flash problem in TVN-space
	Introduction
	Preliminaries
	Trial Phase
	Reference Phase
	Stability Analysis
	Flash Calculation

	Stability Analysis Precursor
	TVN Stability Formulation
	Initialization For Stability Analysis
	Initial Guess for Flash from Stability Analysis

	Direct Entropy Maximization Formulation for UVN Flash Calculations
	Reformulation of Entropy Maximization: Transition from Unconstrained UVN to Constrained TVN Space
	Computational Framework
	Numerical Optimization
	Derivation of the Lagrange Multiplier
	Objective Function Reformulation
	Analysis of Stationary Conditions and Thermodynamic Consistency

	Results
	Stability Analysis
	Flash calculations
	Speedup

	Conclusion
	CRediT authorship contribution statement
	Declaration of Generative AI and AI-assisted technologies in the writing process
	Declaration of competing interest
	Acknowledgments
	Appendix A. Gradient Computation for the Lagrangian function
	Appendix B. Gradient of the Helmholtz-Based Q-function
	Appendix C. Hessian of the Helmholtz-Based Q-function
	Appendix D. Peng–Robinson Equation of State
	Appendix E. Pseudocode for Stability analysis
	Appendix F. Pseudocode for ACQ
	Data availability
	References

