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Summary

3D rendering is traditionally based on a tristimulus approximation, where all
light, color, and spectral distributions are represented using three (RGB) values.
For enhanced physical accuracy, spectral rendering algorithms can be employed.
However, these methods are typically more computationally expensive and require
scene and material data measured from the real world. With few exceptions, spec-
tral rendering remains confined to academic research, with limited adoption in
production pipelines due to the many challenges it poses. In this dissertation, we
identify several of these challenges and propose practical solutions to each.
Chapter 2 addresses the problem of spectral wavelength sampling. Spectral

Monte Carlo rendering tends to converge more slowly than tristimulus methods,
due to the need to sample across the spectral domain. We propose a multi-pass
approach: in an initial low-resolution render, we estimate camera-incident spectral
radiance distributions. These estimates are then used to importance sample the
spectral domain during the main render. This approach reduces sample rates in
regions with high spectral variance, with little computational overhead.
Chapter 3 focuses on the challenge of color-to-spectrum uplifting. Since most

available scene/material data is RGB-only, it is common to apply spectral uplifting
to reconstruct plausible spectra. Traditional methods are typically deterministic,
when in reality there is no one-to-one mapping. We propose an artist-controllable
uplifting scheme that allows users to specify texture appearance under varying
lighting and observer conditions. Our method formulates uplifting as a constrained
optimization problem, using an interpolation scheme and data-driven reflectance
generation to ensure physical plausibility. The resulting solution is lightweight, in-
tegrates easily into existing workflows, and provides intuitive control.
Chapter 4 revisits the uplifting problem beyond simple direct illumination. Our

earlier method assumes appearance design under direct lighting only, making it dif-
ficult to control scene appearance under indirect illumination. We introduce a more
refined uplifting scheme that incorporates spectral constraints applied to scene
surfaces. These constraints guide spectral appearance even under light transport.
Our method supports a more flexible authoring process, solves for uplifted spectra
efficiently, and maintains a smaller memory footprint during rendering by using a
compact spectral texture representation.
Appendix A focuses on the t-distributed stochastic neighbor embedding (t-SNE)

algorithm. This non-linear form of dimensionality reduction is standard in ex-
ploratory data analysis, despite its high runtime and memory costs. To enable
future data exploration methods in the context of spectral material design, we pro-
pose a novel t-SNE minimization. Our method constructs a pair of spatial hier-
archies over embedding data, which are simultaneously traversed to approximate
many computations. We demonstrate a significant performance increase over the
state-of-the-art on a variety of datasets.
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Samenvatting

3D-rendering is veelal gebaseerd op een tristimulusbenadering, waarbij al het
licht, kleuren en spectrale waardes worden gerepresenteerd met drie (RGB) ge-
tallen. Voor fysieke nauwkeurigheid kunnen spectral rendering-algoritmen worden
ingezet. Deze zijn echter computationeel duurder en vereisen gemeten materiaal-
eigenschappen. Hierdoor blijft spectral rendering voornamelijk beperkt tot acade-
misch onderzoek, met beperkte actuele toepassingen vanwege de vele problemen
die het met zich meebrengt. In dit proefschrift identificeren we een aantal van
deze problemen en stellen we praktische oplossingen voor.
Hoofdstuk 2 behandelt het probleem van spectral wavelength sampling. Spec-

tral Monte Carlo-rendering convergeert meestal trager dan tristimulusmethoden,
vanwege de noodzaak om het spectrale domein te sampelen. We stellen een
multipass-benadering voor: in een initiële render bouwen we spectrale schattingen
vanaf de camera. Deze schattingen worden vervolgens gebruikt om het spectrale
domein gestuurd te samplen tijdens de echte render. Onze aanpak verlaagt de
benodigde samples in gebieden met hoge variatie, met minimale rekenkosten.
Hoofdstuk 3 richt zich op het omzetten van kleuren naar spectra (spectral up-

lifting). Aangezien de meeste materiaaleigenschappen enkel in RGB-formaat be-
schikbaar zijn, is het gebruikelijk om uplifting toe te passen om plausibele spectra
te reconstrueren. Traditionele methoden zijn doorgaans deterministisch, terwijl
er in werkelijkheid geen eenduidige oplossing bestaat. Wij stellen een stuurbare
upliftingmethode voor, waarmee gebruikers het uiterlijk van texturen kunnen spe-
cificeren onder verschillende lichtomstandigheden. Onze methode formuleert up-
lifting als een optimalizatieprobleem, waarbij een data-gedreven aanpak worden
gebruikt om fysieke plausibiliteit te waarborgen. De uiteindelijke oplossing is snel,
eenvoudig te integreren in bestaande methods, en biedt intuïtieve controle.
Hoofdstuk 4 herbekijkt dit upliftingprobleem buiten louter directe belichting.

Onze eerdere methode gaat uit van directe verlichting, wat het moeilijk maakt om
het uiterlijk van scènes te beheersen onder indirecte verlichting. We introduceren
een verfijndere methode die spectrale instellingen op scène-oppervlakken toepast.
Deze instellingen sturen het spectrale uiterlijk ook tijdens lichttransport. Onze me-
thode ondersteunt een flexibeler ontwerpproces, lost efficiënt op, en behoudt een
klein geheugengebruik tijdens rendering dankzij een compacte representatie.
Bijlage A richt zich op het t-distributed stochastic neighbor embedding (t-SNE)

algoritme. Deze niet-lineaire dimensiereductie is standaard in data-analyse, on-
danks de hoge reken- en geheugenkosten. Om toekomstige methoden voor data-
exploratie in de context van spectraal materiaalontwerp mogelijk te maken, stellen
we een nieuwe t-SNE-minimalisatie voor. Onze methode bouwt een paar hiërar-
chieën op over de data, die gelijktijdig worden doorlopen om veel berekeningen te
benaderen. We tonen een aanzienlijke prestatieverbetering aan ten opzichte van
huidige methodes op een verscheidenheid aan datasets.
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1 Introduction

On May 17th, 1861, James Clerk Maxwell gave an evening lecture on color the-
ory at the Royal Institution in London [1]. Like many of his contemporaries, he
had developed an interest in physiology and color perception. In this area, he fur-
thered the work of Thomas Young, who postulated that human vision was principally
founded on three types of receptors [2, 3]. Before them, even Isaac Newton had
been fascinated by color, writing in Opticks [4] in his own curious manner:

I speak here of Colours so far as they arise fromLight. For they appear some-
times by other Causes, as when by the power of Phantasy we see Colours in
a Dream, or a Mad-man sees things before him which are not there [...]

To illustrate the developing theories, Maxwell - remembered for far greater con-
tributions to science than this minor evening lecture - demonstrated what we now
understand to be the first color photograph.
For this, he enlisted the help of the photographer Thomas Sutton, who laboriously

created three black-and-white negatives of ”a bowmade of ribbon, striped with var-
ious colours”, exposed separately through red, green, and blue filters. During his
lecture, Maxwell projected these negatives through the same filters, superimpos-
ing the images atop one another. While the process was cumbersome, the resulting
projection reproduced the ribbon and its intricate patterns to some extent. As this
should not have worked with the techniques of that time, the production’s details
led to some debate [5]. Nevertheless, there is little doubt that Maxwell’s photo-
graph aptly demonstrated the foundational principle of color primaries.
Human color vision is not, as even Newton sometimes postulated, sourced from

some physical constitution of light. It is inherent to the physiology of the visual sys-
tem, beginning with the stimulation of three photo-receptors, each having different
but somewhat overlapping sensitivities to the spectral distribution of light [2]. Con-
sequently, almost all visible colors can be reproduced by mixing an appropriate set
of three lights - three primaries - in the right amounts. In Maxwell’s demonstrative
photograph, these were additive amounts of red, green, and blue-filtered light. In
a much later letter to William Thomson [6], he would write:

Colour as perceived by us is a function of three independent variables [...]
at least three are I think sufficient, but time will show if I thrive.

Through Maxwell’s contributions, and those of Young, von Helmholtz, and many
others, the tristimulus theory of color indeed thrived, remaining established into
the current era [7]. We now understand that light and color are disconnected con-
cepts, linked by the Young-Helmholtz trichromatic theory. Modern color science is
founded on this theory exactly because most humans are trichromats.
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The reader may be familiar with these notions even if they are not a color sci-
entist. Describing color in terms of primaries is foundational to many other fields:
dye mixing, graphic design, printing, and the myriad of electronic displays that sur-
round us. Computer-generated images are likewise often represented using three
channels. This, inevitably, brings us to the topic of rendering.
Rendering is the process of computationally generating ”photographs” from a

virtual scene description, and serves as the technological backing to many movies,
video games, and simulations. In rendering, the notion of trichromacy has been
somewhat extended beyond the scope of color representation. It is standard to
encode not just rendered outputs, but scene inputs such as material and illumi-
nant properties, in terms of color. Further, many computations pertaining to high-
dimensional physical quantities are approximated using three values. This tris-
timulus rendering is known to be insufficient for physically accurate rendering [8].
Spectral phenomena such as fluorescence are challenging to implement [9, 10],
while certain physiological color phenomena remain entirely unaccounted for.
Notably, color metamerism - different spectral distributions resulting in the same

color signal in some circumstances - cannot currently be expressed in tristimulus
rendering. In his Experiments on Colour [1], Maxwell encounters this phenomenon:

That these experiments are really evidence relating to the constitution of
the eye, and not mere comparisons of two things which are in themselves
identical,may be shown by observing these resultant tints through coloured
glasses, or by using gas-light instead of day-light. The tints which before ap-
peared identical will now be manifestly different [...]

And yet, this deliberate approximation has enabled rendering to mature at a
lower computational cost. Expectedly, modern industry pipelines and workflows
operate almost exclusively on the approximation of tristimulus rendering. More
accurate spectral rendering models forego this assumption, but these are more
computationally expensive and can necessitate scene/material properties that are
measured from the real world. Spectral material and illuminant data is laborious to
capture, and increases the memory consumption of material models. With few ex-
ceptions, spectral approaches therefore remain the domain of academic research
and the rare predictive renderer.
However, production rendering is increasingly physically-based. There is a no-

table demand for virtual cloning; the accurate matching of real and digital objects
and footage [11]. This merging of the physical and the virtual necessitates the vir-
tual to become physically accurate, which lies beyond the scope of current tristim-
ulus approaches. As such, the path forward appears to forego this approximation,
if we can suitably overcome the many workflow incompatibilities and production
challenges faced when switching from tristimulus to spectral rendering.
To this effect, we reach the core of this dissertation; to deconstruct several of

these challenges, and to propose workable solutions to each. In the following, we
detail the topics addressed in this body of work.
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1.1 Spectral wavelength sampling
Spectral rendering methods generally extend existing Monte Carlo light transport
algorithms. Such algorithms gather the illumination contributing to a point or area
- such as a camera pixel - by randomly sampling paths of light scattered through
a scene which gather at this area. In the limit, we consider all contributing paths.
With finite samples, we can estimate a plausible image by applying this process to
all pixels. Estimator error translates to noise in the image.
Spectral renderers sample, in addition to paths, the domain of visible wave-

lengths. In effect, we evaluate each path for a randomly selected wavelength, in-
stead of the traditional three values. This increases the necessary sample rates for
a low-error image, which prior work improves through wavelength clusters [12–14]
sampled from relevant distributions [14, 15].
In Chapter 2, we propose a multi-pass approach. During a first low-resolution

render, we build coarse estimates of camera-incident distributions of spectral ra-
diance. Then, during the actual render, we use these distributions to importance
sample the spectral domain, favoring selection of wavelengths that contribute more
to the output image. Hereby, we reduce sample rates in areas of spectral variance,
with little computational overhead.

1.2 Color-to-spectrum uplifting
Spectral rendering necessitates spectral scene data as inputs, representing physi-
cal quantities. As spectral material capture remains a laborious process - and most
production pipelines favor color data either way - little tooling exists for artists to
leverage such data. It is common to simply sidestep this issue and uplift exist-
ing color data to an appropriate spectral representation, particularly surface re-
flectance data. This is an ill-posed problem, as a color can stem from any number
of metameric reflectances. Most solutions establish 1-to-1 mappings of colors to
spectra, opting for the smoothest bounded function as a correct output [16–21].
In Chapter 3, we explore the limitations of this mapping, as it eliminates the

under-constrained color behavior of the real world, where objects do unexpectedly
mismatch due to metamerism. We propose a controllable uplifting scheme, using
a fitted convex polytope that encloses a set of to-be-uplifted color inputs. We then
solve for spectra associated with the polytope’s vertices, and employ generalized
barycentrics to transfer these spectra to the interior colors. As we control selection
of metamers for the vertex spectra, we can modify the uplifting’s exact behavior.
In Chapter 4, we refine this concept, foregoing a fitted polytope for a larger color

system boundary, whose interior we tessellate. We associate controllable spectra
with vertices inserted in this tessellation, and thereby obtain more fine-grained
control over the behavior of our uplifting. Using a small basis, we show that our
method even provides a compact representation for acquired spectral texture data.
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1.3 Color-to-spectrum control
Accompanying controllablemodels for spectral uplifting, we explore constraint types
that artists can specify. These enable us to solve for the target spectra, which in
turn control these models. Our focus thus shifts between establishing 1-to-n spec-
tral upliftings and specifying the resulting metameric behavior.
In Chapter 3, we define constraints in terms of illuminant- or observer-induced

mismatching in a simplified linear color system. We enable artists to specify color
behavior under such mismatches, and generate spectra matching this behavior. To
validate inputs, we employ prior work on metamer mismatch boundaries [22].
In Chapter 4, we additionally consider illuminant-induced mismatching from the

perspective of a surface point affected by indirect illumination in a scene. For such
a point, we estimate incident irradiance to solve for a metamer mismatch boundary
describing the uplifted non-linear color behavior. Finally, this allows us to arbitrarily
place markers on scene surfaces and control the uplifted behavior with respect to
the indirect illumination.

1.4 Bridging tristimulus and spectral workflows
A recurring theme throughout this dissertation is the set of differences and dis-
connects between tristimulus and spectral rendering workflows. In the spectral
part, the complexity of scene inputs can hamper artistic control, yet also enables
physical accuracy. With tooling such as controllable color-to-spectrum uplifting,
we may be able to remove this disconnect. In effect, by carrying over the practical
approaches available in tristimulus workflows, we can address its limitations.
In the following chapters, we detail our efforts. In each chapter, we describe

a particular problem, explore the surrounding body of work, propose a practical
solution, and evaluate said solution’s efficacy compared to existing priors. Finally,
in Chapter 5, we reflect on our efforts and provide a perspective on the future.







2 Improved Spectral Sampling
using Multiple Passes

Abstract
Spectral Monte Carlo rendering simulates advanced light phenomena such as dis-
persion, but typically shows a slow convergence behavior. Properly sampling the
spectral domain is challenging in scenes with complex spectral distributions.

In this chapter*, we propose a multi-pass approach. We generate coarse screen-
space estimates of incident spectral radiance, and use these to then importance
sample the spectral domain. Hereby, we lower variance and reduce noise with little
overhead. Our method handles challenging scenarios with difficult spectral distri-
butions, multiple emitters, and participating media. Finally, it can be integrated
into existing spectral rendering pipelines for an additional acceleration.

* This chapter is based on ”A Multi-Pass Method for Accelerated Spectral Sampling”,
previously published in Computer Graphics Forum (Pacific Graphics 2021) [23].
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2.1 Introduction
When producing photorealistic imagery, modern rendering systems typically em-
ploy advanced Monte Carlo light transport algorithms. Many of these systems are
trichromatic, modeling all light, color, and different spectral distributions as a com-
bination of three (RGB) values. This trichromatic approximation is known to be
insufficient for accurate color reproduction [8]. Further, it makes it profoundly dif-
ficult to simulate physical phenomena such as chromatic light dispersion, diffrac-
tion, fluorescence, and polarization. Although extended spectral light transport al-
gorithms have overcome these limitations, these are far more computationally ex-
pensive. They necessitate sampling of the spectral domain, significantly increasing
the sample rates required to avoid noise.

In recent years, techniques decreased spectral noise by either tackling specific
problems such as path-reuse during wavelength-dependent scattering [12–15], or
through the application of novel rendering techniques [24]. Despite major im-
provements, modern spectral renderers may still converge poorly, which is partially
attributed to the additional sampling of the spectral domain. Spectral sampling is
generally done uniformly or with respect to sensor responses [12]. This increases
variance when the observed radiance becomes highly non-uniform due to a mul-
titude of complicated emission and reflectance spectra. Although spectral power
distributions (SPDs) can be leveraged for importance sampling [14, 15], we show
that this is not an optimal solution for many but the simplest scenarios.

Our contribution consists of an extended light transport algorithm where, before
rendering, we invest time to build coarse screen-space estimates of incident spec-
tral radiance distributions, and sample these distributions in amanner which avoids
bias. This allows us to improve convergence behavior in complicated scenes with
many different non-uniform spectra. We extend a unidirectional path tracer and
show that our method improves performance where others may currently fall short.
We additionally demonstrate a combination with continuous multiple importance
sampling (CMIS) [14], leading to further improvements.

After covering notations and the state-of-the-art (Section 2.2), we expand on
the components of our method (Section 2.3). We next discuss our implementation
(Section 2.4) and evaluate its efficacy (Section 2.5) before concluding (Section 2.6).

2.2 Background

Spectral light transport Physically-based renderers are concerned with evalu-
ating the light transport equation [25, 26], for which we use the path-integral for-
mulation [27]. We measure the spectral radiance 𝐼 entering a single pixel 𝑗 as

Eq 2.1 𝐼𝑗 =∫
Λ
∫
Ω
𝑓𝑗(𝑥̄,𝜆) 𝑑𝜇(𝑥̄) 𝑑𝜆,
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where Λ denotes the spectral domain of wavelengths and Ω the path space of light
transport paths 𝑥̄ = 𝑥0,…,𝑥𝑛−1 of finite lengths 𝑛 along which light viably travels
from a light source to our sensor. The throughput for a single path and a given
wavelength is then measured by 𝑓𝑗(𝑥̄,𝜆). While this is challenging to solve directly,
we can apply Monte Carlo integration to form the estimator

Eq 2.2 ̂𝐼𝑗 =
1
𝑁

𝑁
∑
𝑖=1

𝑓𝑗(𝑥̄𝑖,𝜆𝑖)
𝑝(𝑥̄𝑖,𝜆𝑖)

,

which converges as 𝑁 →∞. Here 𝑝(𝑥̄𝑖,𝜆𝑖) describes a probability density function
(PDF) for the sampling of combined path-wavelength pairs, decomposed as

Eq 2.3 𝑝(𝑥̄,𝜆) = 𝑝(𝜆) ⋅𝑝(𝑥̄ ∣ 𝜆).

For a uniform distribution, the convergence rate of this estimator resembles𝒪(𝑁−1/2).
If a distribution is similar in shape to the integrand, variance may be reduced as
samples are focused on places of interest — known as importance sampling. If a
distribution differs significantly from the integrand, a slower convergence is likely.

The wavelength sampling distribution 𝑝(𝜆) can be efficiently constructed as the
product of a sensor response 𝑝𝑠 and another distribution 𝑝𝑒, i.e. 𝑝(𝜆) = 𝑝𝑠(𝜆)⋅𝑝𝑒(𝜆).
The latter distribution is typically uniform or, preferably, proportional to emission in
a scene. Evans and McCool [15] propose selecting a random emitter in the scene
to obtain 𝑝𝑒. More recently, West et al. [14] applied a mixture of a scene’s emission
spectra for their technique.

Multiple wavelength sampling Evans and McCool [15] first noted that Equa-
tion 2.2 evaluates a single wavelength per light transport path, and proposed to
propagate wavelength clusters until wavelength-dependency occurs, at which point
all wavelengths but one are discarded to prevent exponential path growth. This was
extended by Radziszewski et al. [12] to propagate multiple wavelengths along a sin-
gle path in the case of non-specular dispersive scattering, and was formalized by
Wilkie et al. [13] with hero wavelength spectral sampling (HWSS). The authors se-
lect a hero wavelength 𝜆ℎ for which they compute a light transport path. A set of 𝐶
wavelengths is then stratified across the spectrum using a rotation function

Eq 2.4 𝜆𝑠 = (𝜆ℎ−𝜆𝑚𝑖𝑛+
𝑠
𝐶
𝜆̄) 𝑚𝑜𝑑 𝜆̄+𝜆𝑚𝑖𝑛.

where 𝜆𝑚𝑖𝑛,𝜆𝑚𝑎𝑥 are the bounds of the spectral range, and 𝜆̄ = 𝜆𝑚𝑎𝑥−𝜆𝑚𝑖𝑛. These
wavelengths are measured across the same path, and results are combined using
multiple importance sampling [27] (MIS), leading to the following estimator:

Eq 2.5 ̂𝐼𝑗 =
1
𝑁

𝑁
∑
𝑖=1

𝐶
∑
𝑠=1

𝑓𝑗(𝑥̄𝑖,𝜆𝑠𝑖 )

∑𝐶
𝑘=1𝑝(𝑥̄𝑖,𝜆

𝑘
𝑖 )
.
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This concept has been extended to handle fluorescent effects [28]. In a different
approach, Petitjean et al. [24] apply gradient-domain rendering [29, 30] to spectral
rendering. They do not evaluate secondary wavelengths for the same path, but in-
stead generate and later reconnect additional subpaths, allowing them to estimate
spectral image gradients. These are used to reduce variance in a later step.
More recently, West et al. [14] show in their work on CMIS that stratifying wave-

lengths as in Equation 2.4 is inefficient if 𝑝(𝜆) is not uniform. They propose rotating
samples over the invertible cumulative density function (CDF) 𝑃𝜆 of this distribu-
tion, yielding the following rotation function:

Eq 2.6 𝜆𝑠 = 𝑃−1
𝜆 ((𝑢+

𝑠
𝐶
) 𝑚𝑜𝑑 1) ⋅ 𝜆̄ +𝜆𝑚𝑖𝑛.

Here a uniformly distributed random variable 𝑢 is instead stratified across a uni-
form distribution, and secondary wavelengths are then recovered through inversion
transform sampling. As West et al. [14] use a mixture of emitter SPDs for 𝑝𝑒(𝜆),
their technique shows improvements especially for spiky illuminants.

2.3 Methodology
We reason that for spectral importance sampling, the distribution 𝑝(𝜆) in Equa-
tion 2.3 should be optimally proportional to 𝐼𝑗, as then wavelengths with significant
contribution are more densely sampled. Due to the complex nature of light trans-
port, spectral renderers typically employ a predefined distribution for wavelength
sampling. As mentioned, it is the product of sensor response 𝑝𝑠 and a distribution
𝑝𝑒 likely based on emission spectra. For example, a mixture of a scene’s𝑁𝑒 emitter
spectra 𝐸1,…,𝐸𝑁𝑒

is constructed as

Eq 2.7 𝑝𝑒(𝜆) =
1
𝑤𝑒

𝑛
∑
𝑖=1

𝐸𝑖(𝜆) ∶ 𝑤𝑒 =
𝑛
∑
𝑖=1

𝜆
∑
𝑗=1

𝐸𝑖(𝑗)

where𝑤𝑒 serves as a normalization constant. Such amixture distribution is suitable
for scenes with few or similar emitters, where it is likely proportional to observed
radiances. Unfortunately, this strategy can be suboptimal even in simple scenar-
ios (Figure 2.1). With non-uniform reflectance and participating media, observed
radiances are usually not proportional to emitted radiances, and may vary signifi-
cantly on a per-pixel basis. Further, in the presence of multiple emitters with thin,
non-overlapping spectral bands, a mixture distribution is likewise suboptimal as no
single emitter is sampled efficiently.
We propose to instead generate a viable 𝑝𝑒 on a per-pixel basis, by prepending

additional render passes to a conventional light transport algorithm. We split such a
pass into two stages (Figure 2.2). In the first stage, we obtain a coarse but unbiased
estimate ̃𝐼 of the entire image. We do not map this image into a color space, but
instead store the produced spectral-radiance values. In the second stage, we use
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Fig 2.1 A light path passing through a dispersive medium is evaluated for wavelength 𝜆𝑖, on which
emitter 𝐸𝑎 contributes greatly. Optimal wavelength sampling is proportional to the sensor
response curve 𝑆, absorption at surface 𝑅, and the emitter 𝐸𝑏 to which the path connects.
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Fig 2.2 Method overview. For every pixel 𝑗, we obtain a coarse unbiased spectral-radiance estimate
̃𝐼𝑗, which we process in a reconstruction function 𝑟, and subsequently use as a wavelength
sampling distribution, improving estimator efficiency.

a reconstruction function 𝑟 on this image to obtain a biased but relatively noise-
free estimate. In any subsequent pass, we can then employ the filtered radiances
in 𝑟( ̃𝐼) as distributions for wavelength importance sampling. Instead of fitting a
single spectral distribution to a scene, we essentially learn per-pixel distributions
proportional to the incident radiance. This expands Equation 2.2 to the following:

Eq 2.8 ̂𝐼𝑗 =
1
𝑁

𝑁
∑
𝑖=1

𝑓𝑗(𝑥̄𝑖,𝜆𝑖)

𝑟( ̃𝐼𝑗)(𝜆𝑖) ⋅𝑝𝑠(𝜆𝑖) ⋅𝑝(𝑥̄𝑖 ∣ 𝜆𝑖)
,

where 𝑟( ̃𝐼𝑗)(𝜆)⋅𝑝𝑠(𝜆) produces a viable probability density for sampling 𝜆 based on
the estimate now available in pixel 𝑗. We detail our approach in the following.
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Coarse estimate In a first pass, we obtain the coarse estimate ̃𝐼. This step is
straightforward: it has to remain cheap as it impacts total runtime. As the estimate
should capture all aspects of incident spectral radiance, we cannot rely on biased
alternatives and employ a path tracer with simple cost-saving measures, inducing:

1. A separate sample rate 𝑁 <𝑁, reducing accuracy.

2. A separate image resolution, scaling the original by a factor 𝛼𝑠 ≤ 1, increasing
error at discontinuities.

3. Restriction to tracing paths of interest fully. Paths not encountering wavelength-
dependent phenomena after several bounces are terminated early.

The reconstruction function will recover a spectral distribution that is adequate for
our purposes. If necessary, said function filters noise, performs resampling, and
accounts for culled paths with a fallback distribution (Equation 2.7). We evaluate
the impact of image scaling and sample rates in Section 2.5. One measure we do
not consider is a reduced spectral resolution, as this may cause thin wavelength
bands to be insufficiently represented for effective importance sampling.

Reconstruction function The reconstruction function 𝑟 processes the coarse im-
age estimate ̃𝐼. For simplicity, we employ a joint/cross bilateral filter [31, 32] for
fast edge-preserving filtering. It leverages a secondary guide image 𝐼 ′ to mark dis-
continuities; we rely on secondary scene information such as direct depth, normals,
and albedo. Conventional renderers expose these attributes and a single ray per
pixel suffices. Discontinuities are marked by the difference in pixel values in the
guide image; therefore similar pixels separated by some discontinuity can still be
considered during filtering. The filter is defined as

Eq 2.9
𝑟𝑓𝑖𝑙𝑡( ̃𝐼𝑗) =

1
𝑤𝑗

∑
𝑘∈Ω

𝐺𝜎𝑠(‖𝑘−𝑗‖) 𝐺𝜎𝑟(‖𝐼
′
𝑘−𝐼

′
𝑗‖) ̃𝐼𝑘

∶ 𝑤𝑗 = ∑
𝑘∈Ω

𝐺𝜎𝑠(‖𝑘−𝑗‖) 𝐺𝜎𝑟(‖𝐼
′
𝑘−𝐼

′
𝑗‖),

where Ω is a local image neighborhood of pixels around 𝑗, and 𝐺𝜎𝑟 and 𝐺𝜎𝑠 are
range and spatial Gaussian filters with standard deviations 𝜎𝑟 and 𝜎𝑠, respectively.
The weight 𝑤𝑗 is a normalization factor that ensures all weights sum to 1, even
in a discrete filter. We combine with joint bilateral upsampling [33], to perform a
combined edge-aware resampling and filtering to a target resolution.
While we considered more advanced filters such as NL-means [34], we saw little

improvement at a considerable computational overhead. Further, while we consid-
ered more recent work on denoising, these typically focus on trichromatic render-
ing, while we explicitly retain high-resolution spectral distributions after filtering.
The filtered distributions should sufficiently cover the contributing wavelengths,

as these might otherwise introduce bias when importance sampling. To avoid this
issue, even for low sample rates, we employ defensive mixture sampling, adding
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an offset to our sampling distribution. Instead of a constant offset, we define a
spectral distribution 𝑝𝜖 based on emitter spectra present in the scene:

Eq 2.10 ∀𝜆 𝑝𝜖(𝜆) =
⎧
⎨
⎩

𝑤𝜖 if ∃ 𝐸 ∶ 𝐸(𝜆) ≠ 0,
0 else.

Here, 𝑤𝜖 is a normalization weight ensuring a normalized distribution. The appli-
cation of mixture sampling yields the defensive function 𝑟𝑑𝑒𝑓( ̃𝐼𝑗) = 𝜖 ⋅𝑝𝜖+(1−𝜖) ⋅ ̃𝐼𝑗,
where the choice of 𝜖 ∈ [0,1] trades off potential benefits and detriments of the dis-
tributions in ̃𝐼. Note that, if a collection of emitters contributed on all wavelengths
uniformly, 𝑝𝜖 would become a constant offset.

Multiple pre-passes The described procedure lends itself to multiple passes.
One pass serves as input to sample the next estimate, generating spectral distri-
butions of continually improving quality. For 𝐾 passes, we recursively define:

Eq 2.11 ̃𝐼𝑘𝑗 =
1
𝑁𝑘

𝑁𝑘

∑
𝑖=1

𝑓𝑗(𝑥̄𝑖,𝜆𝑖)

𝑝𝑘
𝑗 (𝜆𝑖) ⋅𝑝𝑠(𝜆) ⋅𝑝(𝑥̄𝑖 ∣ 𝜆𝑖)

, 𝑘 ∈ [1,…,𝐾],

where 𝑝𝑘
𝑗 (𝜆) in turn samples the 𝑘−1th pass as

Eq 2.12 𝑝𝑘
𝑗 (𝜆) =

⎧
⎨
⎩

𝑟( ̃𝐼𝑘−1𝑗 )(𝜆) 𝑘 > 1,
𝑝𝑒(𝜆) 𝑘 = 1.

The first pass (𝑘 = 1) reduces to Equation 2.2, falling back to a default distribution
such as an emitter mixture (Equation 2.7). The image scale 𝛼𝑘

𝑠 and sample rate
𝑁𝑘 of the coarse estimate now vary in subsequent passes. We analyze several
configurations (passes, scaling, and sample rate) in Section 2.5.

Sample reuse Note that samples from earlier passes are not combined with sam-
ples in later passes. As each pass forms an independent estimator with a unique
distribution, a naïve averaging of different passes may lead to a noisier image. Ro-
buster combinations of repeated passes have been explored in the context of path
guiding [35], but may necessitate variance estimation and introduction of bias. In
the interest of predictive spectral rendering, we do not include this combination.

Fallback mechanism A limitation of our method is the handling of near-uniform
spectral distributions. Given uniformly distributed incident radiance, the best strat-
egy remains to sample wavelengths uniformly or based on an emitter. Our estimate
is unlikely to match such distributions perfectly. Consequently, we would expect re-
duced efficiency. To counteract this, we use the previously described multi-pass
method to detect such cases in an earlier, cheaper pass, skipping the computation
of all affected pixels in later passes.
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We set a threshold on the mean squared error (MSE) between our normalized
distribution and a default distribution 𝐸 such as an emitter mixture (Equation 2.7),
to determine when to fall back. We establish a threshold ℎ and define the function

Eq 2.13 𝑡ℎ( ̃𝐼) =
1
Λ

Λ
∑
𝑖=1
( ̃𝐼[𝑖]−𝐸[𝑖])2 ≤ℎ,

where we assume a discrete spectral representation withΛ bins, using ̃𝐼 [𝑖] and 𝐸[𝑖]
to access the spectral entries. Inserting this function into Equation 2.12 yields:

Eq 2.14 𝑝𝑘
𝑗 (𝜆) =

⎧
⎨
⎩

𝑟( ̃𝐼𝑘−1)𝑗(𝜆) 𝑘 > 1 ∧ 𝑡ℎ( ̃𝐼𝑘−1𝑗 ),
𝑝(𝜆) 𝑘 = 1 ∨ ¬ 𝑡ℎ( ̃𝐼𝑘−1𝑗 ).

Later passes only contribute to pixels with significantly different spectral distribu-
tions, eliminating most of the overhead of our method where it is unnecessary.

Integration with multiple wavelength sampling Reusing a light transport path
for multiple wavelengths as in HWSS [13] remains an efficient technique for spec-
tral noise reduction. West et al. [14] demonstrate the advantages of independent
sample placement across spectral distributions, as opposed to a stratified one. We
follow their approach, sampling a number of wavelengths warped according to our
method’s derived spectral distributions as per Equation 2.6. We construct an MIS
estimator to combine 𝐶 independently placed wavelengths as

Eq 2.15 ̂𝐼𝑗 =
1
𝑁

𝑁
∑
𝑖=1

𝐶
∑
𝑠=1

𝑓𝑗(𝑥̄𝑖,𝜆𝑠𝑖 ) ⋅𝑤(𝑥̄𝑖,𝜆
𝑠
𝑖 )

𝑟( ̃𝐼𝑗)(𝜆𝑠𝑖 ) ⋅𝑝𝑠(𝜆) ⋅𝑝(𝑥̄𝑖 ∣ 𝜆
𝑠
𝑖 )
,

where𝑤(𝑥̄,𝜆) denotes the MIS weight accommodating for repeated sampling of 𝑥̄𝑖
using the different wavelengths. By applying, for example, the balance heuristic [27]

Eq 2.16 𝑤(𝑥̄𝑖,𝜆𝑠𝑖 ) =
𝑝(𝑥̄𝑖 ∣ 𝜆𝑠𝑖 )

∑𝐶
𝑘=1𝑝(𝑥̄𝑖 ∣ 𝜆

𝑘
𝑖 )
,

we obtain the following estimator:

Eq 2.17 ̂𝐼𝑗 =
1
𝑁

𝑁
∑
𝑖=1

𝐶
∑
𝑠=1

𝑓𝑗(𝑥̄𝑖,𝜆𝑠𝑖 )

𝑟( ̃𝐼𝑗)(𝜆𝑠𝑖 ) ⋅𝑝𝑠(𝜆) ⋅∑
𝐶
𝑘=1𝑝(𝑥̄𝑖 ∣ 𝜆

𝑘
𝑖 )
.

This is identical to the CMIS estimator described by West et al. [14] but, instead of
a fixed distribution, leverages our per-pixel distribution.
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2.4 Implementation
We implement our method in Mitsuba [36], a research-oriented C++-based ren-
derer. To simulate wavelength dependency, we extend specular and non-specular
dielectric BSDFs with Cauchy’s equation, enabling light dispersion in dielectric ma-
terials. Mitsuba uses a discrete binned spectral representation, which we configure
to use 64 equally-sized bins over a 360−830 nm range (approximately 7 nm per bin
in the visible light spectrum), mirroring CIE observer functions [37]. This discretiza-
tion suffices for accurately representing emitters with thin wavelength bands, which
are common for fluorescent lights and other gas-discharge lamps.
Ourmethod has two parts: preprocessing, which consists of earlier render passes

with reconstruction passes in between, and rendering, which produces a final es-
timate. Given this distinction, we can prepend the preprocessing to clones of
Mitsuba’s unbiased path tracing and volumetric path tracing integrators. These
support next-event-estimation, and we extend them to leverage HWSS [13] and
CMIS [14] for wavelength-dependent paths. For non-wavelength-dependent paths,
all wavelengths are propagated. The only further modification to these integrators
is the replacement of their respective wavelength sampling distributions with our
distributions of choice. As a sensor response curve, we adapt the curve described
in [12] for all evaluated methods.

2.5 Results
We evaluate our method on scenes with varied combinations of spectral distribu-
tions; the full set of reflectance spectra from a Macbeth Color Checker [38] and
emission spectra covering common types of emitters, such as LEDs, incandescent
bulbs, and fluorescent lights, from the Lamp Spectral Power Distribution Database
(LSPDD) [39] under CC-Y-NC-ND 2.5 CA license, listed in Table 2.1 and displayed
in Figure 2.3. We use the participating media parameters readily available in Mit-
suba [40]. For each render, we produce RGB and full spectral outputs, the latter
of which we use for error computations. References are produced with 𝑁 = 256𝑘
samples for smaller scenes and 𝑁 = 512𝑘 for larger scenes, with an unbiased uni-
directional path tracer. We provide comparable error metrics as MSE. For a fair
comparison, the measured runtime of our method always includes preprocessing
overhead.

2.5.1 Parameter Evaluation
We first define a baseline configuration and then vary specific parameters. To avoid
over-fitting, we use a separate geometrically simple scene with spectra not applied
in the rest of the paper. Derived parameters are kept constant for all further re-
sults. We manually fix parameters whose influence is minimal; the range compo-
nent of the bilateral filter 𝜎𝑟 = 0.015 by visually determining that edge preservation



16 2. Improved Spectral Sampling

Name Short LSPDD idx. Type Color temp.

GE Candle INC 2484 Inc. 2450K
Philips Candlelight LED1 2471 LED1 2700K
Ledtech PAR20 LED2 2470 LED2 5828K
Globe Twister CFL1 2488 CFL 4749K
ELume PAR30 LN Flood CFL2 2627 CFL 4066K
Energystar Twister CFL3 2479 CFL 2700K

Tab 2.1 Emission spectra. Name, LSPDD index [39], emitter type and color temperature. Short
names are referenced in the text.
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Fig 2.3 Emission spectra. We show used emission spectra (Table 2.1) obtained from the
LSPDD [39]. Note the differences between incandescent, LED and CFL emitters.

is maintained, the amount of safe defensive mixture sampling with 𝜖 = 0.05 (lower
values occasionally produce undersampled wavelengths, but have little influence
on effectiveness), and the fallback threshold ℎ = 0.0002 (hereby, it only triggers on
distributions near-identical to Equation 2.7).

The sample rate 𝑁 does affect convergence (Figure 2.4), and we render our
test scene for increasing 𝑁 while generating a single pre-pass at full image scale
(𝐾 = 1,𝑎𝑠 = 1,𝜎𝑠 = 1). The influence on convergence diminishes for larger values, in-
dicating that a low sample rate of𝑁 = 128 suffices for our test scene. Our method’s
overhead is evident: a doubling of 𝑁 incurs an expected doubling of preprocessing
time, implying the importance of a careful choice. We consider three configura-
tions of multiple passes (Figure 2.5). The topmost configuration (image scaled)
quarters the number of pixels in each earlier pass, while the middle configuration
(sample scaled) quarters the sample rate instead. The bottom configuration (both
scaled) halves both parameters in each earlier pass. Each configuration requires
near-equal preprocessing times, barring minor differences in scheduling and fil-
tering. For each configuration, we show the influence of different sample rates (𝑁)
and spatial filtering (𝜎𝑠) over two passes (𝐾 = 2). Using (𝑁 = 128,𝜎𝑠 = 1) we then
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Fig 2.4 Parameter evaluation. We show the influence of a single pass with varying sample rate, on
estimator convergence and runtime.
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Fig 2.5 Parameter evaluation. We show the influence of different parameters in conjunction with
two or more passes in three configurations

vary the number of passes. Evidently, an increased sample rate provides minor
benefits at significant cost, so we retain 𝑁 = 128. We further select 𝜎𝑠 = 1.75 as
a suitable spatial filter. Finally, while improvements from two or more passes are
almost negligible, we select 𝐾 = 2 as this allows us to leverage the fallback mecha-
nism, reducing preprocessing overhead where a simpler sampling strategy suffices.
Ultimately, differences between the three configurations are minimal, as such we
select the sample scaled configuration, which remains the simplest approach.
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Fig 2.6 Single emitter results. We compare uniform sampling (Unif.), emitter sampling (Em.) and
our method (Ours.) across four scenes with a single emitter whose distribution is varied
(Table 2.1). In these scenes, emitter sampling is near-optimal. Our method matches emitter
sampling in effectiveness, and outperforms it when emitter sampling becomes suboptimal.

2.5.2 Method Evaluation
We evaluate three wavelength sampling distributions for 𝑝𝑒: a uniform distribution
(Unif.), the emitter mixture described in Equation 2.7 (Em.), and our per-pixel distri-
bution (Ours), each multiplied by a sensor response 𝑝𝑠. We provide MSE over time
for each method, and additionally show difference images for 𝑁 = 256 spp. We
evaluate both single and multiple wavelength sampling. Note that, for the latter,
sampling a uniform distribution does not equate HWSS [13]. Said method strati-
fies wavelengths across the full spectrum (Equation 2.4), which can be problematic
for a wide spectral range with a limited sensor response. We instead stratify across
the distribution (Equation 2.6) as demonstrated in CMIS [14]. For the emitter dis-
tribution, multiple wavelength sampling employs evaluates CMIS [14].

Single emitter scenes We first compare each method in four scenes (Figure 2.6)
containing a single emitter whose spectral distribution is made to vary. Emitter
sampling is near-optimal in these scenes, and we expect our method to match it in
performance. As demonstrated, this is the case. Our method delivers lower error
in all cases, but is offset by an increase in runtime attributed to its preprocessing
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Fig 2.7 Multiple emitter results. We compare uniform sampling (Unif.), emitter sampling (Em.) and
our method (Ours) in two scenes using a varied number of spectral distributions (Table 2.1).
Plotted graphs are acquired over the whole image, and listed errors are for highlighted image
insets. Our method is generally effective, but shows the strongest improvement in areas
where there is significant absorption or chromatic dispersion.

overhead. As the estimator converges, this overhead diminishes relative to the
total runtime. Interestingly, a notable improvement is visible in the Uniform scene,
where our method affects areas with heavy absorption. Emitter sampling reduces
to uniform sampling, losing its efficiency. Even with multiple wavelength sampling
- which typically increases runtime costs - this difference remains significant.

Multiple emitter scenes We next compare each method in two scenes (Fig-
ure 2.7: Lenses, Drinks, Boxes) of varying complexity, each containing multiple
different emitters. In the Lenses scene, we highlight two insets (A, B, 𝑁 = 256 spp.)
where highly dispersive phenomena are visible, demonstrating that our method
provides a suitable sampling distribution for fine details. Error decrease varies
strongly across the image, as in many places methods either do not necessitate
wavelength sampling, or our method’s fallback mechanism triggers. For 𝑁 = 1024
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spp, we see an overall decrease in error compared to emitter sampling by 19.2%.
The error decrease is small in some areas (inset A: 9.4%) but comparatively strong
in others (inset B: 33.9%). We then demonstrate handling of participating media in
the Drinks scene. Areas undergoing heavy absorption show strong improvements
(inset A: 21.1%), though complex highlights caused by different emitters are also
handled (inset B, 20.1%). Overall, for 𝑁 = 1024 spp., this error decrease incurs a
17.6% time overhead. This overhead diminishes to 3.7% for 𝑁 = 4096 spp., while
the error decrease is only slightly reduced (inset A: 18.3%, inset B: 15.1%).
Across tests, emitter sampling remains comparatively performant. While for sim-

pler scenarios our method is on par, the difference becomes pronounced when
there is heavy absorption. Uniform sampling is easily outperformed by eithermethod
in all test cases, demonstrating the benefits of a proper sampling distribution.

2.6 Conclusion
We have developed a multi-pass method for accelerated spectral rendering, which
is a simple method counteracting wavelength sampling problems in spectral light
transport. We demonstrated that investing compute time to derive an approximate
spectral-radiance distribution per pixel can improve convergence and reduce vari-
ance when using this distribution for importance sampling. Our method handles
complex non-uniform spectral distributions, which are common in real-world emis-
sion and reflectance spectra. Given the benefits for difficult scenarios, we hope
that it will contribute to making the use of spectral rendering more common.
In the future, we hope that integration with other spectral effects, such as fluores-

cence, becomes possible. This may be possible by storing unshifted wavelengths
in the pre-pass.







3 Direct Spectral Uplifting
via Controllable Color Constraints

Abstract
Spectral rendering is a crucial solution for photorealistic rendering. However, most
available texture assets are RGB-only, and access to spectral content is limited.
Uplifting methods that recover full spectral representations from RGB inputs have
therefore received much attention. Yet, most methods are deterministic, while in
reality, there is no one-to-one mapping. As a consequence, the appearance of up-
lifted textures is fully determined under all illuminants. Hereby, metamers, which
are materials with differing spectral responses that appear identical under a spe-
cific illumination, are excluded.

In this chapter*, we propose a method which makes this uplifting process control-
lable. Hereby, a user can define texture appearance under various lighting con-
ditions, leading to a greatly increased flexibility for content design. Our method
determines the space of possible metameric manipulations and enables interac-
tive adjustments, while maintaining a set of user-specified appearance constraints.

To achieve this goal, we formulate the problem as a constrained optimization, build-
ing upon an interpolation scheme and data-based reflectance generation, which
maintain plausibility. Besides its value for artistic control, our solution is lightweight
and can be executed on the fly, which keeps its memory consumption low and
makes it easy to integrate into existing frameworks.

* This chapter is based on ”Metameric: Spectral Uplifting via Controllable Color Constraints”,
previously published in SIGGRAPH Conferece Proceedings (SIGGRAPH 2023) [41].
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3.1 Introduction
Physically-based rendering systems are able to generate increasingly photorealis-
tic imagery. While early approaches encoded physical properties as RGB colors,
spectral rendering has become an important component for realism. A trichro-
matic approximation cannot accurately predict color phenomena under complex
lights [8]. Spectral rendering, albeit at increased computational costs, addresses
this shortcoming by performing light-transport for various wavelengths. It enables
accurate color reproduction and supports phenomena such as fluorescence.
For spectral rendering, scene assets need spectral material properties, e.g., re-

flectance. This is a challenge, as spectral material capture is laborious and the re-
latedmemory consumption can be significant. Further, content-authoring pipelines
tend to target RGB and no solution allows an artist to easily interact with spectral
definitions. Instead, a large body of work sidesteps these issues by uplifting colors
to full spectra. This is an inherently ill-posed problem, as a color can stem from an
infinite number of metameric spectra. Typically, solutions opt for the smooth and
bounded shapes seen in reflectances, establishing a 1-to-1 mapping between RGB
and resulting spectra. Such a conversion is restrictive, as it disallows metameric
behavior. Hence, color matching becomes an issue; an uplifted material produces
well-specified colors only under a single illuminant. In consequence, an artist may
have to tweak materials to produce expected results under different illuminants.
We propose to make spectral uplifting controllable, so a user can define simul-

taneous material appearances under different illuminants through metameric be-
havior. For an input texture, we derive a simple polytope, forming a convex hull
around the RGB texture data in an ℝ3 space. For each vertex of this hull, a smooth
and bounded reflectance is generated, respecting user-provided color constraints
that define how the reflectance stored in each vertex should appear under differ-
ent illuminants. We then use generalized barycentric coordinates to transfer the
spectra from the vertices of the convex hull to the enclosed RGB texture data. By
employing prior work on metamer mismatch volume estimation [22], we can ensure
that user-provided color constraints are restricted to possible solutions, ensuring a
minimal roundtrip error. As the uplifting builds upon an interpolation scheme, our
solution provides a simple, compressed format for spectral textures, leading to a
practical representation for spectral-rendering contexts.
Specifically, we make the following contributions:

• An efficient uplifting technique supporting color-constancy;

• A solution for constrained artistic control;

• A compact representation for spectral textures.

In the following, we cover the relevant background (Section 3.2), before present-
ing our method (Section 3.3) and results (Section 3.5). Finally, we discuss our
findings (Section 3.6) and conclude (Section 3.7).
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3.2 Background

Color theory Color as a phenomenon is determined by the signals of a set of
observing sensors, which respond differently to the spectral distribution of incident
light [37]. Such sensors are described by observer functions. Given an illuminant’s
spectral power distribution (SPD) 𝑒(𝜆) (equal energy E or D65 daylight illuminant
are often-chosen whitepoints), we can express the response to a spectral surface
reflectance 𝑟(𝜆) as

Eq 3.1 Φ(𝑟) =∫
Λ
𝜙(𝜆) 𝑒(𝜆) 𝑟(𝜆) 𝑑𝜆,

where 𝜙(𝜆) is a drop-in for the set of observer functions, and Λ the range of light
(often the visible spectrum). This is formalized by the International Commision
on Illumination (CIE) in the CIE XYZ color space with a trio of standard observer
functions 𝑥̄, 𝑦̄ and 𝑧̄. A variety of color spaces is defined as linear transformations
of CIE XYZ, such as sRGB, which is prevalent in computer graphics.
The mapping Φ in Equation 3.1 describes a linear transformation from an essen-

tially infinite-dimensional spectral space 𝕏 to a (usually) three-dimensional color
space. We call this combination of observer functions and illuminants a color sys-
tem. The set of possible responses {𝑟 ∈ 𝕏 | Φ(𝑟) ≠ 0} in any given color system
forms a convex region, referred to as its object color solid (OCS).

Metamerism We summarize Finlayson andMorovic [42] and Logvinenko et al. [43],
who discuss metamerism and related concepts. Given a known color system and
signal, uplifting means inverting Equation 3.1 by finding a reflectance s.t.

Eq 3.2 Φ−1(Φ(𝑟)) = 𝑟.

This is an ill-posed problem due to the underdetermined nature of the linear system
in Equation 3.1. Thus, there is a convex set of reflectances, being metameric with
respect to this color system, i.e.,

Eq 3.3 Φ−1(Φ(𝑟)) = {𝑟 ′ ∈ 𝕏 | Φ(𝑟) = Φ(𝑟 ′)}.

All spectra in the above metamer set are solutions to Equation 3.2. A secondary
color system Ψ with differing observer or illuminant, applied to the reflectances in
this metamer set, might have its signal responses differ. This is called respectively
observer-induced and illuminant-induced mismatching. Formally, if the metamer
setΦ−1(Φ(𝑟)) is mapped toΨ, this results in a non-singleton OCS called ametamer
mismatch region. This region represents the full range of colors that may be ob-
served after a color-system change.
Much work focuses on estimating OCS boundaries. Given its novelty, we highlight

the work of Logvinenko et al. [43]. It uses a linear mapping Γ ∶ 𝕏 → ℝ6 s.t. Γ(𝑟) =



26 3. Direct Spectral Uplifting

(𝑧,𝑧′), where 𝑧 =Φ(𝑟) and 𝑧′ =Ψ(𝑟) form the corresponding color signals over the
set of Equation 3.3. The authors show that, for a given 𝑧, the set of signals in a
metamer mismatch volume is a cross-section of Γ:

Eq 3.4 ℳ(𝑧,Φ,Ψ) = {𝑧′ ∈ ℝ3 | (𝑧,𝑧′) ∈ Γ}.

While points inside themismatch volume are formed by different metamers, bound-
ary points reduce to a single optimal spectrum. A notable property of optimal
spectra is that they are elementary step-functions, consisting only of transitions
between zeroes and ones. Knowledge on optimal spectra has expanded over the
years [44–46]. In our work, we apply the method of Mackiewicz et al. [22] to find
optimal spectra on mismatch volume boundaries, leading to a conservative ap-
proximate convex hull around ℳ. This approach establishes maximal theoretical
boundaries to metameric mismatching. Empirically-established boundaries seem
substantially smaller [47], when ignoring structural colors.

Spectral distributions We briefly expand on the properties of natural spectra. Il-
luminants typically describe a quantity of energy per wavelength, while reflectances
describe a surface’s effectiveness in reflecting said energy. Illuminants are posi-
tively unbounded and express a variety of shapes dependent on the involved phys-
ical processes. In contrast, reflectances are bounded to (0,1), as they are energy-
conserving. Fluorescent effects break this constraint, but should not be encoded
as one-parameter functions. Further, reflectances are typically band-limited in the
visible spectrum. This is considered a property of natural pigments, but not of
structural colors [48]. In this and much of the related work, we restrict ourselves
to handling smooth reflectances.

Spectral uplifting While we briefly cover prior methods, we refer the reader to
Weidlich et al. [49] for a broader categorization.
An early method for spectral uplifting, which nowadays has mostly theoretical im-

plications, was proposed by MacAdam [16]. The more recent and long-time stan-
dard method of Smits [17] describes uplifting as an optimization problem, gener-
ating combinations of seven precomputed primary spectra. While this approach is
fast, the resulting reflectances can break boundedness constraints. More recently,
Meng et al. [18] precompute sets of spectra on a grid spanning the xy chromatic-
ity plane, recovering intermediates through interpolation. Their method produces
smooth reflectances, but introduces round-trip errors for highly saturated colors.
Otsu et al. [19] improve on this approach by clustering measured spectra into a
KD-tree over the xy plane. Inside each cluster, the authors interpolate weights
applied to PCA-derived basis functions. While the resulting reflectances are in-
herently smooth, discontinuities arise at cluster boundaries, as different bases are
used. Finally, Mallet and Yuksel [50] describe convex combinations of three bases
on sRGB gamut vertices, enabling reconstruction of input data with little roundtrip
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error. However, due to the saturated shapes of their basis, uplifted spectra become
arguably blocky. Further, their approach is restricted to uplifting of in-gamut sRGB
data. Our method extends this concept, while avoiding such problems.
In their work, Jakob and Hanika [20] use a low-dimensional parameterization

of a sigmoidal function space. They precompute function coefficients inside a
three-dimensional color lookup table. Function reconstruction from interpolated
coefficients is inherently fast, and produces smooth reflectances with low round-
trip error. Several extensions cover out-of-gamut spectral effects such as fluores-
cents [51, 52]. A similar, Fourier-space based approach is demonstrated by Peters
et al. [21], addressing certain round- issues of the sigmoidal. Tódóva et al. [53,
54] expand on this method, to our knowledge being the first to introduce con-
strained spectral uplifting. They enable seeding of the method’s coefficient gen-
eration, such that certain acquired spectra are reproduced accurately. Coefficient
generation is costly, however, and their complex encoding of seeded constraints
introduces overhead during rendering. Our approaches differ fundamentally. We
generate reflectances from user-provided color constraints, implying we recover
color-matched spectra, not reproductions. While enforcing color-constancy, this
enables authoring of metamers for which spectral acquisition is difficult. Com-
bined with our toolkit’s interactivity, this allows artistic expression in uplifting.

3.3 Methodology
Here, we present our constrained spectral uplifting, illustrated in Figure 3.1. The
core of our solution comprises three elements. First, we generate a low-complexity
convex hull in ℝ3 around the texel colors of an RGB texture, and recover generalized
barycentric coordinates to represent these texel colors as convex combinations of
the hull’s vertices. Second, we generate a small number of metamers with minimal
round-trip error for the vertices of this convex hull, fulfilling artist-provided con-
straints that indicate the appearance of the vertex reflectances in different color
systems. Third, during rendering, we spectrally uplift the input texture as a convex
combination of the vertex metamers.
We first cover our method’s foundation (subsection 3.3.1), followed by convex-hull

construction (subsection 3.3.2). We then describe solving for vertex reflectances
and texture uplifting (subsection 3.3.3). Afterwards, we analyze user-guided uplift-
ing and explain how to steer it via a set of RGB textures with known color systems
(subsection 3.3.4). We reserve implementation details for Section 3.5.

3.3.1 Foundation
As a color system describes a linear transformation (Equation 3.1), for any given
color signal within that color system, there exists a set of metameric reflectances.
Let 𝑛 color signals Φ(𝑟1),…,Φ(𝑟𝑛) with corresponding reflectances 𝑟1,…,𝑟𝑛. We
can then define a convex combination of these color signals using scalar weights
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Fig 3.1 Method overview. As a preprocess, we (a) generate a low-complexity convex hull around a
texture’s RGB inputs. For each hull vertex, we then (b) generate a spectral reflectance sat-
isfying artist-configurable color constraints. Finally, during rendering, we (c) recover texture
reflectances as convex combinations of vertex reflectances.

𝑎1,…,𝑎𝑛, satisfying ∀𝑖 𝑎𝑖 ≥ 0 and ∑𝑎𝑖 = 1. Due to linearity:

Eq 3.5 ∑Φ(𝑟𝑖)𝑎𝑖 =Φ(∑𝑟𝑖𝑎𝑖) .

In consequence, we see a direct relationship between linearly combined reflectances
and linearly combined color signals. For example, the mean of two metamers is it-
self a metamer. This principle holds for arbitrary reflectances (Figure 3.2), and is
used in most prior work.

Meng et al [18] apply this observation to interpolate spectra mapped to the xy
chromaticity plane. Yet, a colorspace is trichromatic (ℝ3). Any interpolation be-
tween three points leads to a triangle, while points outside the triangle’s plane
cannot be interpolated. Therefore, mapping multiple color signals to a plane is
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Refl.

XYZ

Weight 0 1

Fig 3.2 Following Equation 3.5, we show colors obtained from linearly mixing two reflectances, and
corresponding results obtained from mixing their respective colors instead.

inherently problematic. Instead, we generate a convex hull with 𝑛 vertices around
the input colors in an ℝ3 space such as CIE XYZ. This hull is minimally a 3-simplex
(tetrahedron), though added vertices provide benefits such as a finer-grained con-
trol over uplifting. As all input colors of the texture to be uplifted lie within the
hull, we can describe these colors as convex combinations of the hull’s vertices,
with scalar weights 𝑎1,…𝑎𝑛 (∀𝑖𝑎𝑖 ≥ 0, ∑𝑎𝑖 = 1). As each vertex position is a color
signal, we can find a suitable reflectance for each vertex from the signal’s metamer
set. Following Equation 3.5, we then recover valid reflectances for each input color,
by computing the convex combination for these vertex reflectances.

3.3.2 Convex hull
In theory, the advantage of interpolating reflectances from the convex hull is that
if vertex reflectances are bounded to [0, 1], so will a resulting convex combination.
Yet, the convex hull should not jut out of the color space, as, otherwise, reflectances
cannot be reliably found for these vertices; they would not map to any color signal
in the color system. This situation is common when only relying on a tetrahedron.
For example, consider an RGB texture covering most of the gamut, and its ℝ3 rep-
resentation (Figure 3.3). An enclosing tetrahedron’s vertices would lie outside the
color-system boundaries. We avoid this issue using a general polygonal hull.
For a general polygonal hull, we can determine suitable weights to enable convex

combinations. We rely on Mean Value Coordinates (MVCs) [55], using the method
of Ju et al. [56] to adapt MVCs for triangle meshes. MVCs are in [0,1], sum to
one, and are continuous within a hull’s interior. The latter property ensures that
recovered reflectances do not impress sudden discontinuities between upliftings,
which is a problem Otsu et al. [19] encounter.

Hull generation Tan et al. [57, 58] show in their image segmentation work, that
four to ten vertex structures encompass most input images, implying that a coarse
hull typically suffices. We similarly generate an enclosing mesh around input colors
using the Quickhull algorithm [59] and subsequently perform a progressive mesh
simplification [60] using repeated edge contractions. To generate a simplified
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Fig 3.3 A pair of ℝ3 mappings of texture data, in linearized sRGB.

convex hull, we should place a vertex resulting from a contraction strictly outside
the existing hull. Sander et al. [61] formulate such an optimization by ensuring that
each new vertex strictly adds volume to a mesh. They then perform the contractions
in an order that greedily minimizes this added volume. This approach might move
contracted vertices outside the color system’s gamut, in which case Tan et al. [57,
58] encounter reconstruction errors. To ensure valid vertex placement, we establish
boundary constraints as follows.
First, we determine the region of possible color signals that a color system can

produce, which is a convex hull; the OCS (Section 3.2). For example, a green il-
luminant will not allow any reflectance to produce a red color. We find this OCS
hull using the recent sampling-based approach of Mackiewicz et al. [22]. We then
restrict vertex contractions to the hull’s interior as otherwise, at a later stage, we
cannot find reflectances for vertices outside the color system. Whenever a poten-
tial contraction falls outside the hull, the vertex is projected to the hull’s surface. If
this reprojection results in a contraction with negative volume, it is discarded and
another is selected. Contractions are then repeated until the intended number of
vertices is reached, or no further contractions can be performed without breaking
the above constraints. We show a convex hull generated by repeated progressive
mesh simplification in Figure 3.4.

3.3.3 Reflectance generation
Given the convex hull, we next generate reflectances for its vertices.
As in prior work, instead of working with spectra directly, we use weighted sums

of basis functions obtained through PCA, which is an established representation
for low-banded spectra based on measured data [19, 62–65]. We build our basis
using a dataset of ∼ 41𝑀 reflectances [47], which gathers earlier works [66–69]
representing a variety of natural and synthetic materials such as sediment, wood,
plant-life, skin, food, paints, plastics, and textiles. Reflectances are measured over
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Fig 3.4 Progressive mesh simplification [59] of a convex hull, following the work of Tan et al. [57,
58], fitted around texture data (left). This results in simpler structures, but through volume-
preserving constraints remains convex. Contracted vertices are bounded to a object color
solid, the convex region of possible responses in a color system.

the 400−700nm spectral range at 10nm intervals.

PCA reduces the dimensionality of a space. This leads to smooth reflectances,
given a low number of basis functions; prior work has established that three func-
tions are minimally required for most reflectances [62]. In short, we represent input
reflectances as discretized, 𝑘−dimensional vectors 𝑟, resampling inputs if neces-
sary. We then acquire 𝑚 basis functions (𝑚≤ 𝑘) using PCA, encoding the first 𝑚
principal component eigenvectors in a 𝑘×𝑚 matrix 𝐵. Contrary to prior work, we
retain𝑚>3 functions, ensuring that a single color system does not fully determine
the resulting reflectance, leaving room for metameric mismatching.

We next formulate a discretization of Equation 3.1: Φ(𝑟) = Φ𝐵𝑤, where 𝑤 is an
unknown𝑚−dimensional weight vector and Φ(𝑟) is a known color signal. The cor-
responding color systemΦ is encoded as a 3×𝑘matrix of observer functions, multi-
plied with a measured illuminant. Solving for𝑤 allows us to recover reflectances as
𝑟 = 𝐵𝑤, which we store explicitly as a 𝑘−dimensional vector in the corresponding
hull vertex. We solve via a linear-programming optimization [70]. Hereby, we can
enforce the solution’s boundedness using additional constraints, i.e., 0 ≤ 𝐵𝑤 ≤ 1.
With a single color-system constraint (e.g, colors under D65), we can always find

a reflectance (Equation 3.3). However, the system is underconstrained, thus, we
can attempt to satisfy 𝑐 secondary constraintsΨ1(𝑟),…,Ψ𝑐(𝑟) under different color
systems Ψ1,…,Ψ𝑐 simultaneously. In other words, for each vertex, we can specify
its color signals in different color systems (e.g., colors under D65 and FL11). The
metamer set, with respect to all constraints, is then:

Eq 3.6 Φ−1(Φ(𝑟)) = {𝑟 ′ ∈𝒳 | Φ(𝑟) = Φ(𝑟 ′)∧∀𝑖Ψ𝑖(𝑟) =Ψ𝑖(𝑟 ′)}.

Involving all constraints, a solution𝑤 implies the existence of a reflectance 𝑟 = 𝐵𝑤,
which lies in the intersection of all color signals’ respective metamer sets. The
opposite also holds; no shared metamer exists if the sets’ intersection is empty.

Determining high-dimensional metamer set boundaries is expensive, unless re-
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strictions are imposed [42]. However, we can establish boundaries onmismatching
between color signals in different color systems. To determine the region of valid
weights𝑤, we hence restrict the space of solutions by establishing input constraints
in ℛ3, one constraint at a a time. In each step, we produce a metamer mismatch
volume (Equation 3.4), s.t. prior constraints are satisfied. We employ the method of
Mackiewicz et al. [22] to find this volume, clipping the constraint space as before.
The order of constraints does not matter, as the resulting set of solutions lies within
the insersection of all metamer sets.
Optimization then leads to a valid weight 𝑤 among all possible solutions in the

remaining set. We optimize for the smallest norm. If a metamer mismatch volume
collapses to a point, a single weight forms the optimal solution. Upon finding 𝑤,
we convert back to a spectrum (𝑟 = 𝐵𝑤) and store the result in the corresponding
hull vertex. We store this spectrum and not the weight, as the number of vertices
is low, and we avoid this multiplication during rendering. This further allows using
an acquired reflectance, should this be available for the vertex.

Texture reconstruction Once vertex reflectances are determined, uplifting of the
input texture’s color signals is straightforward by invoking the corresponding con-
vex weights and Equation 3.5. Indeed, uplifting a pixel 𝑝 boils down to a matrix
multiplication between MVC weights and vertex reflectances - for a single wave-
length, only an inner product is needed. Specifically, given the MVC vector of pixel
𝑝; 𝐴(𝑝) ∶= (𝛼1,⋯,𝛼𝑛), and vertex reflectances 𝑅1,⋯𝑅𝑛, the uplifted spectrum is
equal to 𝐴(𝑝)(𝑅1,⋯,𝑅𝑛).

3.3.4 User interaction
To enable constrained control, our toolkit provides an interface. To begin uplifting,
a user provides an input texture and primary color system (e.g. CIE XYZ and D65).
As our method can uplift without secondary constraints, we immediately show re-
flectances and spectral renders of the input texture for different color systems. The
interface then focuses on the convex hull in ℝ3. Users can modify the hull to suit
their needs, or add constraints to vertices.
As the user selects a vertex, a weight map illustrates how texels are affected

by changes to this vertex. Next, the user can add a color system (e.g., FL11), and
the interface shows a mismatch volume for the vertex in this system. The volume’s
interior describes all color signals that can be produced under FL11, while maintain-
ing appearance in D65. The user can freely modify the vertex color in this second
system, and a reflectance is generated fulfilling both constraints (D65 and FL11).
As the volume is color-coded, a user can intuit how a secondary constraint affects
appearance of affected texels under FL11. Once satisfied, the user can add further
constraints on other vertices, or via additional color systems.
The interface is interactive and provides direct visual feedback. An executable

is available, and we show an example session in a supplementary video.
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Image seeding Direct vertex manipulation gives full control and allows precise
definitions. An additional option is to define constraints indirectly by providing
measured images, which can be acquired or authored. The user then provides a
color system per input image. The first image and color system (e.g., D65) is used
as a reference. As input constraints can fall outside of the metamer mismatching
boundaries of convex hull vertices, we cannot guarantee that a solution exist s.t.
the input is reproduced without roundtrip error. In consequence, we minimize this
error while preserving the primary input image. We proceed as follows.
We sample a random subset of texels from the primary image, and obtain sec-

ondary color signals at these texels from the secondary images. For each sample,
we test whether a solution exists by attempting to recover a suitable reflectance, as
authored textures may violate constraint boundaries, and otherwise sample again.
We now have a set of texels with valid color constraints, and connect these to
the convex hull using the previously computed MVCs. We next solve for vertex
reflectances whose convex combinations satisfy the constraints at each sampled
texel. This can again be specified as a linear programming optimization, in which
basis function weights are found from which we can derive vertex reflectances.
If no solution exists, we reduce or relax the set of texel constraints. Hereby, we in-

crease the space of possible solutions, but incur roundtrip error in secondary color
systems. As the convex hull is unaffected, the primary will always be reproduced.

3.4 Implementation

Spectral-rendering systems typically vectorize evaluation of a single light path across
several wavelengths. In line with this, we describe our approach. Texture sampling
can be described as a function accepting a combined position-wavelength pair, i.e.
𝑓(𝑝, {𝜆1,…,𝜆𝑘}), with 𝑘 = 4 being common. To facilitate vectorized texture access,
we store the 𝑚 constrained vertex spectra of our convex hull in a 1×𝑚 texture 𝑅.
Here 𝑛 is the number of wavelength bins used and each pixel stores the bin’s 𝑤
components.
We further store the convex weights 𝑎1,…,𝑎𝑛 for each pixel in a two-dimensional

texture 𝐴, which is the size of our input rgb texture.
Texture sampling is then expressed as a vectorized inner product:

𝑓(𝑝, {𝜆1,…,𝜆𝑘}) =
⎡
⎢
⎣

𝑟(𝜆1)
⋮

𝑟(𝜆𝑘)

⎤
⎥
⎦
=
⎡
⎢
⎣

𝐴(𝑝) ⋅𝑅(𝜆1)
⋮

𝐴(𝑝) ⋅𝑅(𝜆𝑘)

⎤
⎥
⎦
,

where the convex weights𝐴 are shared across all products, while the per-wavelength
reflectances 𝑅 are evaluated independently. Internally, the system uses XYZ color
values for a device-independent representation.



34 3. Direct Spectral Uplifting

3.5 Results
First, we evaluate accuracy, discuss implementation details, and establish used
parameters. We then evaluate our method’s per-vertex reflectance recovery (sub-
section 3.5.1), followed by full-texture upliftings (subsection 3.5.2). Finally, we detail
rendering performance (subsection 3.5.3).

Implementation We implement most components as a preprocess in our uplift-
ing toolkit. We operate on CIE XYZ values internally, enabling device-independent
operations. We rely on OpenMesh [71] for mesh simplification, and the COIN-OR
CLP solver [72] for linear-programming. We offload most work to OpenGL; MVC
computation and rendering of uplifted textures are examples, though we note that
MVCs are sensitive to numerical precision due to imprecise trigonometric func-
tions. Finally, our user interface leverages Dear ImGui [73].
We define a straightforward exportable texture format consisting of two data

blocks; vertex reflectances and MVCs. Disk storage is compressed using zlib [74].
We further implement a texture plugin forMitsuba 3 [75]. Uplifting is implemented
as four inner products, vectorized over four wavelengths. MVCs are shared across
vector units, while vertex data is sampled per unit. We show example renders in
Mitsuba, using authored spectral materials (Figure 3.8).

Setup We set a 400−700nm spectral range for all methods, and describe discrete
spectra using 𝑘 = 64 bins to handle high-frequency illuminants, resampling PCA
inputs where necessary. Our choice of spectral range is motivated by our basis;
our toolkit supports wider ranges such as the customary 360−380nm. Across tests,
we use 𝑛 = 8 convex hull vertices; note that our method uses higher numbers if a
hull cannot be simplified further.
While prior work employs𝑚=3 basis functions, Mackievicz et al. [22] show that

metamer mismatching boundaries are reduced by any linear model. The choice of
𝑚 thus pivots on two factors; low values generate low-banded reflectances, while
high values enable metameric mismatching. We generate mismatch volumes and
interior metamer sets for 𝑚 = 6,8,…,16 selecting 𝑚 = 12 for further tests (Fig-
ure 3.5). As shown, mismatch boundaries are conservative approximations depen-
dent on 𝑚. However, we do not consider this a problem, as Zhang et al. [47] show
that empirically measured boundaries are smaller than the theoretical maximum.

3.5.1 Single-reflectance recovery
We sample reflectances from a BabelColor Average dataset [59], andmeasure color
signals for standard illuminants D65, A, E, FL2, FL11, and LED-RGB1. We uplift for
D65 using the methods of Smits [17], Meng et al. [18], Otsu et al. [19], and Jakob
and Hanika [20]. We then apply our method without and with 𝑐 = 1,2,3 secondary
constraints, for FL2, FL11 and LED-RGB1.
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Fig 3.5 We generate metamer mismatch volumes (top) for illuminant-induced mismatching (𝐷65→
𝐹𝐿11) of a neutral gray reflectance, using 𝑚 basis functions. We show sampled metamer
reflectances (bottom) for each volume for𝑚≥6. In more restrictive cases (𝑚<6), volumes
collapsed to singletons.

Figure 3.6 shows roundtrip colors and CIE LAB Δ𝐸00 color difference for each
method (Δ𝐸00 ≤ 1 implies no perceptible difference; Δ𝐸00 ≤ 2 implies minimal mis-
matching). With the exception of Smits [17], all methods correctly recover for D65.
Further, all methods except Otsu et al. [19] display metameric mismatching for FL11;
our method without additional color constraints is no exception here (Δ𝐸00 = 7.85).
With constraints, results improves significantly; we measure Δ𝐸00 ≤ 0.72 (𝑐 = 2) and
Δ𝐸00 ≤ 0.14 (𝑐 = 3), far below the perceptible limits for all illuminants.
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Sigmoid n = 4 n = 8 n = 16 Ground

Runtime (s) 31.35 32.83 34.18 35.10 36.40
Memory (MB) 16.0 16.0 32.0 64.0 792.0

Tab 3.1 Runtime/texture memory during rendering; our method with 𝑛 vertices, the sigmoidal [20],
and a hyperspectral ground with 186 bins. Run on Ryzen 9 5950X & NVIDIA RTX 3070.

3.5.2 Multiple-reflectance recovery
We demonstrate manual texture authoring in Figure 3.8. We establish a baseline
for D65 using the sigmoidal [20]. Without further constraints, our method pro-
duces smooth metamers to the baseline. We then show two mismatched upliftings
under FL11, illustrating the variety our method enables (note the Δ𝐸00 measures).
We further show that a user can generate color-constant upliftings for FL11, while
mismatching for D65.
We next test recovery of hyperspectral data, sampling textures from the HyTex-

ila dataset [76] in Leaf, Textile, Stone and Wood categories. Each 10242 texture
stores 186 spectral channels (400−1000nm). We acquire color textures under the
illuminants used in subsection 3.5.1, and perform renders for D65 using the sig-
moidal [20]. We seed our method with color images under FL2, FL11, and LED-
RGB1. While we expect to avoid metameric failure, roundtrip error is likely for sec-
ondary color systems, as constraints are relaxed to preserve the convex hull.
Figure 3.7 shows roundtrip error and recovered reflectances. Both methods

correctly handle D65, but show mismatching in some situations. Our method’s
constraint fitting varies in quality between images; Leaf/Wood textures are re-
covered without perceptible error, while Textile/Stone uplifts show mismatching
under FL11, as our method fails to correctly fit a number of outlier texels (e.g. Tex-
tile; Δ𝐸00 ≤ 4.56,𝜇 = 0.95). The sigmoidal, in comparison, reconstructs the smooth
reflectances of Wood/Stone textures, but produces visible metameric failure for
Leaf/Textile.

3.5.3 Memory and runtime
We compare memory and runtime of the methods used in subsection 3.5.2. We
render a 10242px image at 256 𝑠𝑝𝑝. (averaging ten renders), s.t. a screen-filling
render of the Wood texture is generated. All methods use single-precision, though
we speculate that half-precision suffices for parts of each method. For our method,
we measure for 𝑛 = {4,8,16} vertices. All choices gave a valid convex hull.
Table 3.1 lists results for each method. Results are as expected; the sigmoidal

shares texture reads across four wavelengths, and is as fast as trichromatic ren-
dering. Our method requires five reads per four wavelengths (one for MVCs, four
for wavelength reflectances), whose size depends on vertex count. Note the slight
overhead for increased counts. All methods compare favorably to the hyperspectral,
as excessive memory consumption makes this intractable for large scenes.
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Fig 3.6 Single-reflectance recovery for samples from a BabelColor Average dataset [59]. We display
roundtrip and ground truth for upliftingmethods (top). We constrain ourmethod for FL2, FL11,
and LED-RGB1, in addition to D65. We further show CIE LAB Δ𝐸00 of each roundtrip (center).
We finally compare uplifted reflectances and different constraint sets (bottom).
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Fig 3.7 Multiple reflectance recovery for ground truth spectral images from the HyTexila dataset [76].
We constrain our method for FL2, FL11, and LED-RGB1, in addition toD65. We show roundtrip
results and Δ𝐸00 for our method and the sigmoidal of Jakob and Hanika [20] (left), and
compare pairs of uplifted reflectances for each image (right).
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3.6 Discussion
In the following, we reflect on prior results and several aspects of our method.

Reflectance recovery Our method’s ability to recover the right metamers de-
pends on secondary constraints (subsection 3.5.1). While recovery for D65 is with-
out error, results for 𝑐 ≥ 2 and the shapes of recovered spectra are similar to those
of Otsu et al. [19]. As their approach requires no secondary constraints, this bears
discussion. In short, their method restricts the PCA basis to a representable set
through clustering and use of𝑚=3 functions. This leads to recovery of low-banded
reflectances reproducing the BabelColor Average dataset [59] particularly well, but
remains a 1-to-1 mapping. If we explicity select metamers in Figure 3.6, their
method mismatches, arbitrarily favoring our method. This is not a failure of either
method, instead demonstrating the necessity of constrained uplifting. To produce
similar results to Otsu et al. [19] without secondary constraints, we could apply their
clustering approach, using a different basis set across convex hull vertices.
During hyperspectral texture recovery (subsection 3.5.2), our method recovers

the D65 input, but mismatches in a number of texels for e.g. FL11. Vertex con-
straints are fitted on a sampled subset of the image. We relax this fitting s.t. the
convex hull is preserved. As the hull specifies a particular convex combination
for each sample, this implies constraints can at times not perfectly fit all samples.
The reconstruction is hence imperfect, though error is mostly imperceptible. The
sigmoidal [20] provides good reconstruction of Wood and Stone textures, as the
function’s shape matches their reflectances. However, this method shows full mis-
matching for Leaf, where recovered reflectances do not resemble the ground truth.

Basis function restrictions We employ 𝑚 = 12 basis functions in tests, which
exceeds the minimum [62], but enables metameric control. This flexibility implies
that a low number of constraints admits many solutions, making results nondeter-
ministic. To avoid this behavior, one could vary 𝑚 depending on the context. We
leave this as future work, but if we can establish in which volume (Figure 3.5) a
constraint lies (preferably without solving for volumes), this enables reflectance re-
covery using the minimum required basis, while allowing artists to leverage more
bases when necessary.
We further note that, as our basis uses common material data, reproduction is

not guaranteed for all materials. If necessary, our toolkit supports loading bases
that target specific material classes.

Convex hull restrictions Our method has a notable limitation; image segmen-
tation through a convex hull restricts the set of available upliftings. Consider an
input image with two identical texels. No constraint can separate these texels into
separate metamers, as they share weights and thus upliftings. If the input were
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Example upliftings
D65 as primary, ΔE to sigmoidal
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Fig 3.8 Example upliftings. Using one-to-one uplifting produces one reflectance. We uplift colors
under D65 which we then constrain to mismatch for FL11 (top-left), and the exact inverse
(top-right). We show false color textures to illustrate differences to the sigmoidal of Jakob
and Hanika [20]. We further show upliftings targeting only part of a texture (bottom-left), as
well as enforced metameric behavior (bottom-right).

separated into partial sets of independently uplifted texels, this can be handled.
Alternatively, given an acquired image, one can start with a color system where
texels are different. Then it is possible to produce metameric matching (e.g., the
mug in Figure 3.8). This indicates that the choice of input color system is influen-
tial, and can be restrictive.

3.7 Conclusion
Our novel method for spectral uplifting of RGB textures is controllable and allows a
user to define material appearance under different illuminants simultaneously. It
generates reflectances from a small number of metameric mismatching constraints
and uplifts through a simple interpolation. The latter results in a compressed rep-
resentation for spectral textures with minimal roundtrip error.
Previous uplifting without control cannot target metameric behavior or color con-

stancy. Integrating our work into content pipelines can help with such issues, and
we have published our toolkit to support widespread use.







4 Controlled Spectral Uplifting
for Indirect-Light-Metamerism

Abstract
Spectral rendering has received increasing attention in recent years. Yet, solutions
to define spectral reflectances are mostly limited to uplifting techniques which
deterministically augment existing RGB inputs. Only recently has uplifting been
able to ensure a certain surface appearance under direct illuminants. Yet, prior
work in this area limits artist expressiveness and is not well suited for designing
the appearance of a scene, as indirect illumination is ignored entirely.

In this chapter*, we present an uplifting technique with fine-grained spectral ap-
pearance control under direct and indirect illumination, even enabling the place-
ment of spectral constraints in a specific scene. Our approach allows for a flexible
authoring process, and solves for the resulting spectra efficiently. Additionally, we
show that our method’s memory overhead during rendering is kept small, by intro-
ducing a compact spectral texture format.

* This chapter is based on ”Controlled Spectral Uplifting for Indirect-Light-Metamerism”,
previously published in SIGGRAPH Asia Conferece Proceedings (SIGGRAPH Asia 2024) [77].
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4.1 Introduction
Spectral rendering has started taking a critical role in production in recent years.
Trichromatic systems approximate radiance and reflectance as RGB values, but
spectral representations are required for accurate color reproduction under dif-
ferent illuminants. However, spectral surface reflectance data is challenging to
acquire at the scales required for textures, and impose a significant memory im-
pact during rendering. One common option is spectral uplifting, which generates
spectra from existing RGB inputs. This process is ill-posed due tometamerism; dif-
ferent reflectances can produce the same color under a given light source. Hence,
uplifting typically establishes a one-to-one mapping, e.g., opting for the smoothest
reflectance, and hereby inherits problems of trichromatic rendering, as a produced
reflectance might exhibit a wanted appearance under one illuminant only. There-
fore, working in a full spectral pipeline remains challenging.
Recent work introduced constrained spectral uplifting [53, 78], focusing in par-

ticular on appearance control under various illuminants. Yet, in practice, there
are limitations, including performance impacts, limited control, and ignored in-
terreflections, which can significantly impact the appearance of a scene.
Our approach to spectral uplifting extends prior work, while being simple and effi-

cient. Ourmethod supports reproducing spectral measurements, direct-illumination
and direct-observer color constraints, and, for the first time, scene constraints on
color appearance under complex indirect illumination. We uplift input color data
via a ℝ3 convex polytope en-globing the data with specific spectra on each ver-
tex. The polytope’s interior is tessellated into simplices, and interior vertices can
be added for fine-grained control. We retrieve the reflectance of a particular color
value by localizing the surrounding simplex, and performing interpolation between
the spectra of the simplex’ vertices. We further extend prior work on metamer
mismatch volumes [22, 42, 43], incorporating estimated light transport to handle
indirect illumination in a scene environment. Using a small basis, we ”bake” the
uplifting into an efficient texture format, which supports localized constraints ap-
plied to parts of the scene, and is practical for rendering. Finally, we make our
source code available online*.
In short, we make the following contributions:

• A controllable spectral uplifting method via several types of constraints;

• A solution for metamer color control, particularly indirect light;

• A compact spectral texture format suitable for spectral rendering.

In the following, we cover related material (Section 4.2) and our method (Sec-
tion 4.3). We evaluate roundtrip error of relevant methods and apply spectral au-
thoring (Section 4.4), discuss our findings (Section 4.5), and conclude (Section 4.6).

* https://graphics.tudelft.nl/indirect_uplifting

https://graphics.tudelft.nl/indirect_uplifting
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4.2 Background

Color Theory While spectra consist of various wavelengths, human color per-
ception builds mainly upon three sensors. Consequently, colors are equated to a
sensor trio observing the spectral distribution of light, described by observer func-
tions [37]. Denoting three observer functions as 𝑒, and given illuminant distribution
𝑖, we express the response to surface reflectance 𝑟 under direct illumination as

Eq 4.1 Φ(𝑟) =∫
Λ
𝑒(𝜆) 𝑟(𝜆) 𝑖(𝜆) 𝑑𝜆,

where Λ describes typically the visible spectrum (e.g. 360− 830nm). This is for-
malized in the CIE XYZ standard observers and derived color spaces such as
sRGB. A color system combining observer and illuminant describes a linear trans-
formation Φ(𝑟) ∶ 𝕏 → ℝ3. Of particular interest is the valid region of responses
{𝑟 ∈ 𝕏 | Φ(𝑟) ≠ 0}, which forms a convex region called the object color solid.
The illuminant 𝑖 describes radiant energy over wavelength, while reflectance 𝑟 de-

scribes a surface’s efficacy in reflecting said energy. Illuminants are positively un-
bounded and vary in shapes dependent on the underlying processes. Reflectances
are [0,1]-bounded and are generally low-banded in the visible spectrum. This prop-
erty holds for most pigments, but not for structural colors [48]. We, as most related
work, restrict ourselves to smooth reflectances.

Metamer Mismatching We briefly cover metamerism and metamer mismatch-
ing; for extended overviews, please refer to [42, 43]. Given some color system,
consider the problem of inverting Equation 4.1, i.e. Φ−1(Φ(𝑟)) = 𝑟. It is ill-posed;
as it is typically a set of reflectances:

Φ−1(Φ(𝑟)) = { 𝑟 ′ ∈ 𝕏 | Φ(𝑟) = Φ(𝑟 ′) },

i.e. many reflectances achieve a particular color signal. Thismetamer set is convex.
Metamers produce the same signal under Φ, but in a secondary color system Ψ
(differing in observer or illuminant) they produce different responses. Mapping the
set toΨ, we find a non-singleton color solid called ametamer mismatch region. We
describe the method of Mackiewicz et al. [22] to find mismatch region boundaries,
as we extend this method to incorporate indirect illumination (subsection 4.3.3).
Consider mapping 𝒯 ∶ 𝕏 → ℝ6, 𝒯(𝑟) = (𝜙,𝜓), where 𝜙 = Φ(𝑟), 𝜓 = Ψ(𝑟) form

color signals in two color systems. For given signal𝜙, the set ofmismatched signals
under Ψ is a cross-section of𝒯, i.e.:

ℳ(𝜙,Φ,Ψ) = { 𝜓 ∈ 𝑅3 | (𝜙,𝜓) ∈𝒯 },

where we simplify notations by identifying 𝒯 with its image. While this region’s
interior can be complex, boundary spectra are unique step-wise functions con-
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sisting only of transitions between zeroes and ones. These optimal spectra are
extrema [44, 46]. Finding the mismatch boundary 𝛿ℳ thus reduces to extremiz-
ing spectra mapped to𝒯, subject to Φ(𝑟) = 𝜙. In practice, one spherically samples
unit vector 𝑢̂ ∈ℛ6, and projects the color system spectra in𝒯 along 𝑢̂. In the dis-
crete case, reflectance 𝑟 is represented as a 𝑘-dimensional vector, Φ,Ψ are 𝑘×3
color system matrices, and we can solve for the boundary with a linear program:

Eq 4.2 max
𝑟∈Φ−1(𝜙)

([
Φ
Ψ
]𝑢̂)

T

𝑟

This produces a discrete reflectance on the boundary 𝛿ℳ(𝜙,Φ,Ψ).

Spectral Uplifting A recent overview of the scope of spectral uplifting is given
by Weidlich et al. [49]. Uplifting is having a known color signal 𝜙 and then finding
a metamer 𝑟 ∈ Φ−1(𝜙). Across different methods, three criteria are identifiable:
smoothness of produced reflectances, boundedness, and roundtrip error.

The earliest approaches to spectral uplifting are now of mostly theoretical in-
terest, as they produce blocky distributions or break boundedness [16, 17]. The
later approach of Meng et al. [18] precomputes spectra on a grid spanning the
xy-chromaticity plane, uplifting colors through interpolation of these spectra. It
produces smooth reflectances, but requires scaling for values above or below the
plane, introducing errors. Otsu et al. [19] address this by clustering sets of spectra
into a spatial hierarchy covering the xy-chromaticty plane. Inside clusters, the au-
thors store localized bases for spectrum recovery. While efficient, this introduces
discontinuities between clusters, uplifting gradients poorly. More recently, van de
Ruit and Eisemann [78] precompute spectra on a convex polytope enclosing an
input texture, ensuring correct recovery if such a polytope can be found.

A separate class of techniques started with Jakob and Hanika [20], who demon-
strate a low-dimensional parameterization of a sigmoidal function space, for which
they precompute coefficients across a three-dimensional color lookup table. Sub-
sequent function reconstruction is fast, and produces smooth reflectances with
minimal roundtrip error. This approach has been extended to handle out-of-gamut
spectra [51, 52]. Afterwards, a more complex, Fourier-space approach is introduced
by Peters et al. [21], addressing issues of the sigmoidal.

As previously stated, most methods establish 1-to-1 mappings, associating a spe-
cific metamer with a color. Two techniques differ in this aspect. Tódová et al [53,
54] extend the Fourier-space representation [21], seeding that method’s coeffi-
cients s.t. specific spectra are reproduced. Van de Ruit and Eisemann [78] uplift
based on specified color constraints. While their approach targets specific color
behavior, control is limited. We detail these limitations later (subsection 4.3.1), as
we extend their work. Our solution is the first to integrate indirect illumination.
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Fig 4.1 Uplifting prodecure. We treat input colors as ℝ3 positions and sample an enclosing bound-
ary on the input’s color system, while artist-specified constraints then specify spectra in the
interior. Boundary and interior spectra are connected using a Delaunay tessellation, and
inputs are then uplifted using barycentric interpolations inside the tessellation’s simplices.

4.3 Method
We now present our constrained spectral uplifting. We first cover our method’s
foundation (subsection 4.3.1), followed by the basic uplifting procedure (subsec-
tion 4.3.2). We then derive a color system to constrain the uplifting under indirect
illumination (subsection 4.3.3), and finally specify a practical texture format for ren-
dering (subsection 4.3.4).

4.3.1 Foundation
A color system (Equation 4.1) describes a linear transformation, preserving convex-
ity. Let 𝑟1,…,𝑟𝑛 be 𝑛 reflectances with corresponding mappings Φ(𝑟1),…,Φ(𝑟𝑛). If
we combine these mappings using convex weights𝑤1,…,𝑤𝑛 ∶ ∀𝑖𝑤𝑖 ≥ 0∩∑𝑖𝑤𝑖 = 1,
we observe:

Eq 4.3 ∑𝑤𝑖Φ(𝑟𝑖) = Φ(∑𝑤𝑖𝑟𝑖) ,

i.e., the color signal of linearly combined reflectances equals the linear combination
of the corresponding color signals. When interpolating two metamers, the result
itself is a metamer - but it also holds for arbitrary reflectances. This principle is
employed in most prior work. Van de Ruit and Eisemann [78] note that, minimally,
interpolation ofℛ3 color signals must occur within a 3-simplex, as planar methods
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Fig 4.2 Color system support. We show sample boundary spectra and the support of our basis
with 𝑚= 32,24,16,8 components. We further show support of a discrete system (𝑘 = 64) of
sampled MacAdam limits, as well as the sRGB gamut, which is enclosed for all choices of𝑚.

unavoidably struggle with error [18, 19, 50]. However, instead of a simplex, they
solve for a complex polytope enclosing an input RGB texture. Uplifting then reduces
to a linear mixture of the polytope’s uplifted vertices. The authors enable targeted
uplifting by constraining the vertex spectra, but this is limited in effect; vertices
necessarily lie on the polytope, away from the input, and therefore constraints never
affect or modify the input’s uplifting directly. In contrast, our method allows for
interior constraints, which can directly affect the uplifting of specific RGB inputs.

4.3.2 Tessellated Color System
Convex reconstruction of a polytope interior avoids roundtrip error, which is why we
also use this as our foundation. However, we select a polytope that describes the
color-system boundary, which encloses all color inputs. Given the polytope vertices,
we can construct a Delaunay tessellation, which results in a set of 3-simplices,
each associated with four vertices. Each vertex contains a spectrum producing the
color encoded by the vertex position under the illuminant of the color system. We
detail spectrum generation further below. Uplifting a color input then reduces to
(a) localizing the enclosing simplex for the color within the tessellation, and (b) a
barycentric interpolation of the simplex’ associated spectra (Equation 4.3). Further,
we can constrain the interior by inserting vertices into the tessellation, which then
affect the uplifting. Figure 4.1 shows an overview of the uplifting procedure.

Boundary spectra Reflectances on the color-system boundary are extrema, be-
ing the MacAdam limits. Interpolation between such saturated distributions results
in correct but physically implausible spectra. We therefore find a smaller boundary
formed by smooth spectra as outlined below.
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Like prior methods, we use a weighted PCA basis to construct low-banded spec-
tra [19, 62–65, 78]. We use a dataset of ∼ 41𝑀measured reflectances (400−700nm)
from a variety of materials [47]. Let reflectance 𝑟 be a discretized 𝑘-dimensional
vector. We apply PCA to the dataset and retain the first 𝑚 principal components
as a 𝑘×𝑚 matrix 𝐵. Then we represent a reflectance as 𝑟 = 𝐵𝑤, where 𝑤 are 𝑚-
dimensional coefficients. Though𝑚=3 suffices to reproduce most colors [62], we
retain 𝑚> 3 as in prior work [78]. Otherwise, if the system were fully determined,
we would eliminate the ability to output metamers.
To generate a boundary within this basis, we employ the method of Mackiewicz et

al. [22]. We spherically sample a unit vector 𝑢̂ ∈ℛ3, and project the 𝑘×3 discretized
color system Φ onto 𝑢̂. Maximizing this projection necessarily results in a position
on the system boundary. Expressed in our basis, this becomes:

Eq 4.4 max
𝑤

(Φ𝑢̂)T𝐵𝑤, with ∀𝑖0 ≤ (𝐵𝑤)𝑖 ≤ 1.

As PCA acts as a dimensionality reduction, resultant spectra become low-banded,
enabling their use for interpolation. Figure 4.2 illustrates color system support and
boundary spectra for choices of 𝑚.

Interior spectra In the polytope interior, we allow user-specified constraints.
Each provides a color signal - in effect a vertex position - and an associated re-
flectance, uplifted or provided. We detail three supported constraint types.

1. Measurement: Given a concrete spectral reflectance 𝑟, we project it into the
PCA basis, which gives a 𝑤, minimizing ||𝐵𝑤−𝑟||, and then insert vertex Φ(𝐵𝑤).
Similar to Tódová et al. [53], we can reproduce the representations of spectral mea-
surements. We investigate full spectral texture reproduction in subsection 4.4.2.

2. Direct color: Given input of 𝑛 color constraints {𝜓1,…,𝜓𝑛} under 𝑛 color
systems {Ψ1,…,Ψ𝑛}, the linear program

Eq 4.5 min
𝑤

||𝐵𝑤||, with ∀𝑗Ψ𝑗𝐵𝑤 =𝜓𝑗 and ∀𝑖0 ≤ (𝐵𝑤)𝑖 ≤ 1

produces coefficients for a constraint-satisfying metamer, which we insert as
vertex Φ(𝐵𝑤). Following van de Ruit and Eisemann [78], we restrict inputs to the
intersection of relevant mismatch regions.

3. Indirect color: Given a scene with observer, and an observed surface position
with surface reflectance 𝑟, we enable constraining the observed color 𝜓 at this
position under an indirect color system Ψ(𝑟). We derive this color system in the
following (subsection 4.3.3).
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Fig 4.3 Shown are two folded patches on a white plane, illuminated under 𝐷65. While identical
under direct light, these concave surfaces differ in appearance due to interreflections. We
show the used reflectance spectra (top-left), and indirect mismatching regions generated at
equidistant points on a patch (bottom-left).

4.3.3 Indirect Color System
While prior constraint types enable uplifting control, they can only account for mis-
matching in a linear form. Illuminant- and observer-induced mismatching, in this
way, occur when directly observed. Yet, in complex scenes, illuminant-induced mis-
matching can occur due to complex light transport and interreflections (Figure 4.3).
To control this effect, we derive a convex formulation of a non-linear color system,
w.r.t. a constraint reflectance 𝑟 at some surface position in a scene.
In the following, we estimate the indirect light transport from this point and then

factor out 𝑟. We use this factorization to formulate a maximization that finds the
metamer mismatch boundary under indirect illumination.

Path-integral formulation For an environment with a particular constrained re-
flectance 𝑟 at a given surface point, we define a color system over a per-wavelength
incident radiance 𝐼𝑟 and observer function 𝑒:

Eq 4.6 Ψ(𝑟) =∫
Λ
𝑒(𝜆) 𝐼𝑟(𝜆) 𝑑𝜆.

The radiance measure 𝐼𝑟 can be expressed using a path-integral formulation of
light transport [79]:

Eq 4.7 𝐼𝑟(𝜆) =∫
Ω
𝑓𝑟(𝑥̄,𝜆) 𝑑𝜇𝑥̄

where 𝜇 forms a measure over samples in the path domain Ω, and 𝑓𝑟 ∶ (Ω,Λ) →ℛ
denotes the per-wavelength measurement contribution along a light path of length
𝑛, 𝑥̄ = {𝑥1,…,𝑥𝑛}. This contribution describes light throughput (geometric terms,
cosine attenuation, bidirectional reflectance, illuminant) along the path.
Let {𝑟1,…,𝑟𝑛−1} be underlying reflectances at path vertices not on a light source.

We can factor out these reflectances using a secondary function 𝑓0 ∶ Ω→ ℝ, which
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Fig 4.4 Formulation. We show a light path {𝑥1,𝑥2,𝑥3}, and constraint reflectance 𝑟 at surface 𝑥1.
Further reflectances are expressed as convex combinations of spectra in simplices from our
tessellation, which can contain 𝑟.

is independent of reflectances (∀𝑟∈𝕏 𝑟(𝜆) = 1). We employ 𝑓0 to express

Eq 4.8 𝑓𝑟(𝑥̄,𝜆) = 𝑓0(𝑥̄)
𝑛−1
∏
𝑖=1

𝑟𝑖(𝜆),

which implies that BRDFs in our formulation need to allow for associative rear-
rangement of surface reflectances.

Following this, we can express path reflectance 𝑟𝑖 w.r.t. the constraint reflectance
𝑟. Recall that uplifting is the convex combination of four spectra, associated with
vertices of a 3-simplex. As 𝑟 is one vertex in our tessellated color system, each
encountered spectrum 𝑟𝑖 on surfaces along the path either uses 𝑟 or not. Figure 4.4
illustrates an example.

Leveraging this, we denote simplex spectra and associated convex weights as
(𝑠1,𝑎1),…,(𝑠4,𝑎4), such that 𝑟𝑖 =∑4

𝑗=1 𝑠𝑗𝑎𝑗. It follows that:

𝑟𝑖 =
⎧
⎨
⎩

𝑎𝑘𝑟 +∑4
𝑗≠𝑘 𝑠𝑗𝑎𝑗 (∃𝑘 𝑠𝑘 = 𝑟)

0𝑟 +∑4
𝑗=1 𝑠𝑗𝑎𝑗 (𝑒𝑙𝑠𝑒)

→ 𝑟𝑖 = 𝑎𝑖𝑟 +𝑤𝑖

where 𝑎𝑖 ≥ 0 is either zero or a convex weight, and 𝑤𝑖 thereby sums the weighted
remainder spectra. This enables us to expand Equation 4.8 as:

𝑓0(𝑥̄)
𝑛−1
∏
𝑖=1

(𝑎𝑖𝑟 +𝑤𝑖)= 𝑓0(𝑥̄)( 𝑟𝑛−1(𝑎1𝑎2⋯𝑎𝑛−1)Eq 4.9
+ 𝑟𝑛−2(𝑤1𝑎2⋯𝑎𝑛−1+𝑎1𝑤2⋯𝑎𝑛−1)
+ 𝑟𝑛−3(𝑤1𝑤2𝑎3⋯𝑎𝑛−1+⋯)
⋮
+ 𝑟0(𝑤1𝑤2⋯𝑤𝑛−1))

For a power 𝑏 < 𝑛, we define 𝑡𝑏 as the coefficient of 𝑟𝑏 in Equation 4.9. The
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contribution then simplifies to a truncated power series:

𝑓𝑟(𝑥̄,𝜆) = 𝑓0(𝑥̄)
𝑛−1
∑
𝑏=0

𝑡𝑏(𝑥̄,𝜆) 𝑟𝑏(𝜆)

We now revisit the path-integral formulation (Equation 4.7). Given the complexity
of light-transport, we apply Monte Carlo integration, introducing the estimator

𝐼𝑟(𝜆) ≈ ̂𝐼𝑟(𝜆) =
1
𝑁

𝑁
∑
𝑖=1

𝑓𝑟(𝑥̄𝑖,𝜆)
𝑝(𝑥̄𝑖)

,

converging to the expected value as 𝑁 →∞. Here 𝑝(𝑥̄𝑖) is the probability density
of sample 𝑥̄𝑖. Given a known, finite length 𝑛 across paths - which we note as a
potential approximation - the estimator becomes

̂𝐼𝑟(𝜆) =
1
𝑁

𝑁
∑
𝑖=1

𝑓0(𝑥̄𝑖)
𝑝(𝑥̄𝑖)

𝑛−1
∑
𝑏=0

𝑡𝑏(𝑥̄𝑖,𝜆) 𝑟𝑏(𝜆)

=
𝑛−1
∑
𝑏=0

(
1
𝑁

𝑁
∑
𝑖=1

𝑓0(𝑥̄𝑖) 𝑡𝑏(𝑥̄𝑖,𝜆)
𝑝(𝑥̄𝑖)

)𝑟𝑏(𝜆)Eq 4.10

=
𝑛−1
∑
𝑏=0

𝑐𝑏(𝜆) 𝑟𝑏(𝜆) , where 𝑐𝑏(𝜆) ∶=
1
𝑁

𝑁
∑
𝑖=1

𝑓0(𝑥̄𝑖) 𝑡𝑏(𝑥̄𝑖,𝜆)
𝑝(𝑥̄𝑖)

,

producing a power series as a simplified expression.
In practice, we estimate the coefficient spectra 𝑐0,…,𝑐𝑛−1 by accumulating in-

cident radiance along 𝑁 paths and, for each path expressed thus, factoring out 𝑏
interreflections of constraint reflectance 𝑟. Given these coefficients, we can employ
Equation 4.10 to express light transport under mismatching constraint reflectances.
This follows prior approximations of interreflections, which treat surfaces as a finite
number of patches [80].

Mismatch volume boundary We next employ Equation 4.10 to specify an esti-
mate of an indirect color system (Equation 4.6), which becomes

Ψ(𝑟) ≈ Ψ̂(𝑟) =∫
Λ
𝑒(𝜆) ̂𝐼𝑖(𝜆) 𝑑𝜆 =∫

Λ
𝑒(𝜆)

𝑛−1
∑
𝑏=0

(𝑐𝑏(𝜆) 𝑟𝑏(𝜆)) 𝑑𝜆,

which forms a non-linear system.
We build upon the method of Mackiewicz et al. [22] to determine mismatch

boundary 𝛿ℳ. First, we discretize the color systems (3×𝑘), specifically the up-
lifting’s color system Φ with known signal 𝜙, and define discretized indirect color
system spectra as Ψ̃0,…,Ψ̃𝑛−1, where Ψ𝑏 = 𝑒 ∘ 𝑐𝑏; here ∘ denotes a component-
wise multiplication. We then spherically sample a unit vector 𝑢̂ ∈ ℝ6, along which
we project color system spectra. As with the linear form (Section 4.2), maximizing
in the direction of this projection results in a position on the region’s boundary. We
denote 𝑢̂ ∶= (𝛼,𝛽), where 𝛼,𝛽 ∈ ℝ3, forming
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Eq 4.11 max
𝑟∈Φ−1(𝜙)

(Φ𝛼)T𝑟 +
𝑛−1
∑
𝑏=0

(Ψ̃𝑏𝛽)T𝑟𝑏

which adopted to our basis becomes

max
𝑤

(Φ𝛼)T(𝐵𝑤)+
𝑛−1
∑
𝑏=0

(Ψ̃𝑏𝛽)T(𝐵𝑤)𝑏

with ΦT(𝐵𝑤) = 𝜙 and ∀𝑖0 ≤ (𝐵𝑤)𝑖 ≤ 1.

We show mismatch volumes generated over a patch with varying interreflections
in Figure 4.3. Note that this problem is convex as the solution spans 𝑟, which
is [0,1]-bounded, while 𝑏 ≥ 0 and ∀𝑏𝑐𝑏 ≥ 0. However, as our basis uses negative
components, this convexity does not necessarily hold. We may thus find mismatch
boundaries that are interior to the exact boundary, which is sufficient for our appli-
cation in practice.

Indirect reflectance generation We next generate a metamer in the mismatch
volume. Given indirect color constraint 𝜓 and discretized color system spectra
Ψ̂1,…,Ψ̂𝑛−1, we extend Equation 4.5, solving:

min
𝑤

‖𝐵𝑤‖, 𝑤𝑖𝑡ℎ ∀𝑖0 ≤ (𝐵𝑤)𝑖 ≤ 1

with 𝜙 =Φ𝑇(𝐵𝑤) and 𝜓 =∑𝑛−1
𝑏 Ψ̂𝑇

𝑏 (𝐵𝑤)
𝑏.

Note that, as the mismatch volume we present to the user to specify 𝜙 is a color
solid, we can avoid this minimization. Instead, we can tessellate this solid in 𝕣3,
localize 𝜓’s enclosing simplex within the tessellation, and perform interpolation of
the simplex’ vertex coefficients. This 𝑤 then encodes the wanted metamer 𝐵𝑤.

4.3.4 Texture format
Our uplifting is a reconstruction localized to a simplex in the tessellation. A direct
approach to storing an uplifted input, is the index to its enclosing simplex, together
with three convex weights, as the fourth can be deduced (∑𝑎𝑖 = 1). Given that
weights are in [0,1] and the number of simplices in the tessellation is low, a low-bit
RGBA texture typically suffices. However, users may define conflicting constraints,
as we discuss in Section 4.5, implying additional operations during rendering.
Instead, we preprocess and ”bake” our reflectances, representing each reflectance

in the orthonormal basis 𝐵. We already rely on coefficients in this basis throughout
our entire pipeline, including the reflectances stored in vertices of the tessellation.
Hence, to encode an uplifted reflectance, we find the enclosing simplex and use
the interpolated basis coefficients. This representation is compact and conversion
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Fig 4.5 Constrained reflectances. We show sample spectra from constrained spectral texture
reconstruction (Figure 4.9) for our method (𝑚 = 12), the sigmoidal [20] and the bounded
MESE [21]. Our uplifting is constrained with 𝑛 random samples from the input texture.

is easily parallelized. We scale our basis to a [−1,1] boundary on the projection of
PCA inputs; recovered coefficients are thus [0,1]-bounded. This enables a fixed-
point representation; in practice, we store 128 bits per pixel, packing 8, 12 or 16
coefficients at 16, 10 or 8 bits respectively. Note that texture filtering is applied
to coefficients after unpacking; the filtered result is then used for uplifting. We
evaluate variants of our representation in subsection 4.4.1.

4.4 Evaluation

In the following, we discuss implementation, evaluate uplifting quality (subsec-
tion 4.4.1) and spectral texture recovery (subsection 4.4.2). Afterwards, we demon-
strate the indirect color system (subsection 4.4.3).
Our implementation relies on a sequential quadratic programming [81] algorithm

in the NLopt framework [82] for the constrained optimization and Qhull [83] for
the Delaunay tessellations. Uplifting and rendering use OpenGL, and we employ
continuous wavelength hero sampling [13]. During uplifting, discrete spectra use
𝑘 = 64 bins to handle high-frequency illuminants. For color solid sampling, we use
128 spherical samples in all cases. Our method supports any spectral range, but
uses 400−700nm due to the dataset underlying our basis. A supplemental video
shows real-time spectral modifications on a RTX 3070. When a user first places an
indirect constraint in a scene, we trace 65K paths GPU-side, and reduce to a power
series CPU-side, which takes under a second. Texture baking occurs whenever a
relevant constraint is edited, and takes 12.5 ms for a 4K texture.
Throughout the evaluation, we compare with the sigmoidal uplifting [20] and the

Fourier-space bounded MESE [21]. For the latter, we select 𝑚 = 12 coefficients
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Fig 4.6 Unconstrained reflectances. We show sample spectra from unconstrained uplifting (Fig-
ure 4.8) for our method (𝑚=12), the sigmoidal [20] and the boundedMESE [21]. All spectra
accurately reproduce the RGB input under 𝐷65.

(11 moments). This method has high accuracy on RGB roundtrip with fewer coef-
ficients; however, it proved insufficient to reproduce complex metamers on mis-
match boundaries. Note that the method’s reconstruction time is quadratic w.r.t.
the choice of 𝑚. In the authors’ implementation, we use their mirrored, warped
configuration.
We evaluate color accuracy for the different methods using CIE Δ𝐸00 color differ-

ence [84]. Note the following thresholds: Δ𝐸 ≤ 1 implies no perceptible difference;
Δ𝐸 ∈ (1,2] implies a very closematch; Δ𝐸 > 2 implies close but visible mismatching.

4.4.1 Reconstruction of RGB data
We first evaluate unconstrained uplifting of RGB input data. We measure color re-
production of BabelColor Average patches [38] under 𝐷65. Prior methods achieve
sufficient accuracy here; ideally we produce the same roundtrip error or less. For
our method, we test bases with 𝑚 = 8,12,16 principal components at 32 bit, and
low-bit packed variants storing 16,10,8 bits per coefficient. For the boundedMESE,
we likewise test a variant storing 10 bits per coefficient, using the same code as
our method.
Figure 4.7 shows roundtrip results for all methods and Figure 4.1 lists mean and

maximum Δ𝐸00. While roundtrip of full-precision variants of our method consis-
tently improves on prior methods, none produces perceptible error. The exception
is our method’s 𝑚 = 16 packed variant, which visibly mismatches darker colors
due to the low bitrate. As packed variants are intended for practical rendering we
discard 𝑚=16 variants in the following.
Figure 4.8 shows unconstrained uplifting of RGB textures, achieving similar er-

ror. All methods uplift correctly, though in packed variants our method avoids mis-
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matching, while the bounded MESE struggles with darker colors. We further show
uplifted spectra from these textures (Figure 4.6); evidently, the basis can introduce
an oscillating behavior near spectral range boundaries, compared to the smoother
outputs of prior methods. This is explained by the use of warped coefficients, which
was presented by the authors of bounded MESE ; i.e. greater precision is given to
the centre of the visible range.

4.4.2 Reconstruction of spectral data
We next demonstrate recovery of hyperspectral textures. Given their size, such
data is typically impractical for rendering. We approximate the textures in a com-
pact format. We repeat a prior experiment [78], fitting textures from the HyTexila
dataset [76]; each 10242 texture stores 186 spectral channels over 400− 1000nm
(744𝑀𝐵). We then sample 𝑛 = 0,1,4,16,64,256 spectra from the texture, inserting
these in our tessellation as measurement constraints. As 𝑛 increases, we expect
our method to increasingly resemble the input texture. We could fit all pixels into
our basis directly instead. However, as spectral texture capture is challenging, we
test whether a smaller input suffices. For the bounded MESE, we fit per pixel,
though we note that the work of Tódová et al. [53, 54] enables a compact fitting of
this method.
Figure 4.6 compares outputs under standard illuminants 𝐷65, 𝐹𝐿11, and 𝐿𝐸𝐷−

𝑅𝐺𝐵1. All unconstrained methods correctly handle recovery under 𝐷65, but visibly
mismatch under one of the other illuminants. Given any number of constraints, our
method’s output strongly improves. For 𝑛 ≥ 16, all outputs achieve mean Δ𝐸00 ≤ 1.2,
outperforming prior methods. We show several output spectra for all methods and
sample counts in Figure 4.5.

4.4.3 Reconstruction of indirect color constraints
Finally, we evaluate indirect color constraining (subsection 4.3.3). We set up a sim-
ple scenario; a neutral-gray surface, illuminated by a constant 𝐷65 environment.
The surface consists of flat and folded parts, perpendicular to an orthogonal cam-
era. We constrain the flat part to simply reproduce the input RGB color. We then
constrain the center of the fold, where interreflections occur and metameric mis-
matching is possible. We generate amismatch volume for the constraint, and select
constraint values that we subsequently apply to the surface.
Figure 4.10 displays results; for each position, we render with the𝑚=12,𝑝𝑎𝑐𝑘𝑒𝑑

variant of our method. All variants of the surface correctly reproduce the intended
colors; roundtrip error remains below perceptible limits. Error on the flat patch
(mean Δ𝐸00 = 0.34) is partially due to the low-bit representation used for rendering.
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Fig 4.7 Unconstrained color uplifting. We uplift color patches [38] and render under 𝐷65. Left.
Output for our method (𝑚= 8,12,16), low-bit variants, the sigmoidal [20] and the bounded
MESE [21]. Right. Δ𝐸00 values are listed for all results.
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Fig 4.8 Unconstrained texture uplifting. We uplift RGB textures and render under 𝐷65. We show
output for our method (𝑚=12 coefficients), a low-bit packed variant, the sigmoidal [20] and
bounded MESE [21]. Mean and maximum Δ𝐸00 are listed for all outputs.
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Ours (m=8) Ours (m=12) Ours (m=16)

Δ𝐸00,𝜇 0.00046 0.00056 0.01024
Δ𝐸00,𝑚𝑎𝑥 0.00588 0.00725 0.07291

Ours (m=8, packed) Ours (m=12, packed) Ours (m=16, packed)

Δ𝐸00,𝜇 0.00048 0.11862 0.60964
Δ𝐸00,𝑚𝑎𝑥 0.01079 0.87168 1.89340

Sigmoidal MESE (m=12, packed) MESE (m=12, packed)

Δ𝐸00,𝜇 0.01467 0.05829 0.29709
Δ𝐸00,𝑚𝑎𝑥 0.03181 0.17747 1.39676

Tab 4.1 Perceptual error metrics. We list mean and maximum CIE LAB Δ𝐸00 for unconstrained
RGB texture uplifting Figure 4.8. We compare output for our method (𝑚= 8,12,16), low-bit
variants, the sigmoidal [20] and the bounded MESE [21].
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Fig 4.9 Constrained texture recovery. We reproduce a spectral texture dataset [76] under three
standard illuminants for the sigmoidal [20], the boundedMESE [21], and our method (𝑚=12)
using 𝑛 = 0,…,256 constraints. Mean Δ𝐸00 is listed for all outputs.
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Fig 4.11 Examples renders. Mug. We enforce metamerism under 𝐹𝐿2, hiding a surface texture
visible under 𝐷65. Cornell box. We constrain a neutral gray surface to cancel red scattering
from the left wall. Ajar (a). We constrain wall reflectances to obtain differing interreflections
under 𝐷65. Ajar (b). We constrain the door’s wood texture, instead of the wall.
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4.5 Discussion

Reflectance reconstruction Our method recovers metamers with roundtrip un-
der 𝐷65, outperforming or matching prior methods even in the (𝑚 = 12, packed)
variant. While produced reflectances remain smooth, prior methods better target
a low-banded output through their smaller basis or warped coefficients, or non-
linearity, though at the cost of potential mismatching under secondary illuminants.
Specifically in Figure 4.9, all unconstrained methods mismatch for one or more il-
luminants. We hence emphasize the necessity of constrainable uplifting, as even a
single interior constraint allows us to recover smooth, correctly matching spectra.
If no constraints are present, one can even insert smooth spectra into the interior.
Our theory supports specular materials. However, as their view-independence

makes constraint placement intuitive, implementing general BRDFs is future work.

Scene constraint specification In our implementation, users specify constraints
by directly clicking in the scene. We then sample the underlying surface and con-
struct an interior vertex in the tessellation. This enables significant user control;
Figure 4.11 demonstrates example scene modifications.
However, as users edit parts of a scene, they may define conflicting constraints,

e.g., two metamers sharing the same tessellation vertex and affecting the same
object. This can be supported with a texture atlas; a user then guides the process
via texture masks, encoding weights for each constraint which are blended during
uplifting. While this implies additional operations are needed during uplifting, it is
irrelevant in practice as our texture has constant evaluation cost.

Basis function encoding We employ 𝑚 = 12 basis functions in most results,
enabling metamerism. To store basis coefficients in our texture, we scale the basis,
enabling low-bit representation of [−1,1] coefficients. Instead of a basis encoding
a full color system, we can compute a targeted basis for just the spectra in a texture.
This may allow us to improve the precision or size of our texture.

4.6 Conclusion
Our solution enables authorable spectral rendering. Tessellated uplifting improves
upon prior solutions in expressivity, while remaining compact for rendering. Fur-
ther, we introduced indirect illuminant constraints, forming a novel artistic tool. Our
representation is efficient - our implementation reaches interactive frame rates -
while opening up new avenues for spectral material design.
In this work, we targeted accurate reflectance representations. In the future, we

may focus on perceptual aspects. For one, representations may be further com-
pressed without visible difference. For another, our work shows that, despite the
human visual system’s limitations, we are capable of differentiating reflectances in
the right scene context. Yet, during material design, this context is often lacking.
We hope that novel interfaces relying on our solution may alleviate this problem.
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5 Conclusion

We asserted in Chapter 1 that production rendering is increasingly physically
based, in part due to a demand for virtual cloning. As such, the path forward ap-
pears to forego the tristimulus approximation. It was from this perspective that
we deconstructed several challenges posed by spectral rendering, and proposed
potential solutions to each.
In Chapter 2, we addressed wavelength sampling. Spectral light transport ne-

cessitates handling of wavelengths in addition to light paths. Given this, existing
implementations show poor convergence behavior in scenarios with high-variance
spectral radiance. We proposed a multi-pass approach. Before rendering, we
built coarse estimates of camera-incident radiance. By employing these priors
for importance sampling, we could favor wavelengths contributing more to the fi-
nal image. Our evaluation demonstrated improved convergence on instances of
non-uniform illuminant and material data. This is complementary to existing tech-
niques. When combined with prior spectral sampling methods [12–14], we gener-
ally achieve performance not much worse than in tristimulus rendering. We discuss
several remaining cases in Section 5.1.
Spectral material data is challenging to acquire and costly to render. Further,

little tooling exists to handle spectral data, as production workflows generally tar-
get tristimulus rendering. For surface reflectances, this problem can be bypassed
through color-to-spectrum uplifting. However, since existing methods target 1-to-1
uplifting, color metamerism was until now not considered. In Chapter 3 and Chap-
ter 4, we proposed efficient forms of controllable spectral uplifting that lift this
restriction. Our methods aimed at practical applications, enabling the use of ac-
quired spectral data, while exposing uplifted color behavior through a scene editor.
Particularly, in Chapter 4, we demonstrated control over metameric mismatching
under indirect scene illumination.
Curiously, spectral uplifting lessens the disconnect between tristimulus and spec-

tral workflows, as scene input can be entirely trichromatic independent of the sys-
tem. However, as we expose mismatching behavior to the artist, the spectral work-
flow is more capable. This may enable the design of novel scene appearances, and
we hope this can become a powerful addition to the rendering toolbox.

5.1 Future challenges
Many challenges have been addressed in the existing body of work, but several
avenues of research remain.
While we demonstrated an improved wavelength sampling approach for non-

uniform camera-incident radiance (Chapter 2), related issues remain. Advances
in guiding and visibility sampling have seen little expansion to the spectral do-
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main [35, 85]. A related problem is that of fluorescence. Prior work addresses
efficient representations and sampling techniques [28, 86], but performance re-
mains subpar and the selection of specific wavelengths requires further work.
Fluorescence has been addressed in the context of uplifting [51, 52]. However,

to our knowledge, no tooling effectively exposes this effect to lighting or mate-
rial designers. Our work on mismatching under indirect light (subsection 4.3.3)
demonstrates the benefits of scene-focused tools, and could incorporate such flu-
orescent effects. Likewise, tooling can be adapted to control layered spectral ma-
terials; paint mixings and coatings are common examples. The uplifting of layered
materials can show unexpected color behavior due to repeated scattering. Other
sources of repeated scattering (participating media) also show this behavior.
Further, as uplifting of tristimulus inputs expands a single material into many

potential options, novel interfaces could be developed to explore the many com-
binations of spectral lights and uplifted materials that are now possible. This may
be a problem of data generation and exploration. Explorative interfaces have been
demonstrated in the context of texture generation [87]. Given the potential com-
plexity of the underlying domain, interactive exploration of such data may require
efficient embedding algorithms (Appendix A).
Finally, perceptual aspects have been little explored in spectral rendering. While

color metamerism is subtle, our work demonstrates that humans are sensitive to
somemetamer changes in a scene. Given the right approach, the spectral data may
be further compressed. For example, we might exploit subjective effects, such
as color constancy. Human vision is insensitive to minute changes in illuminant
or material conditions, enabling simplification of spectral data across repeated
renders in a manner similar to temporal filtering methods.

5.2 Closing words
As we stated previously, there is an inherent disconnect between tristimulus and
spectral rendering. The latter methodology is rarely used in production. In this
dissertation, we hope to have contributed to closing this gap, so that a single future
methodology can emerge. Perhaps, just as the distinctions between notions of light
and color once seemed unclear, so may this methodology appear trichromatic, but
be spectral. Indistinguishable in performance, yet all the more able.

It is a good thing to have two ways of looking at a subject,
and to admit that there are two ways of looking at it.

James Clerk Maxwell
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A Dual-Hierarchy t-SNE
as Linear-Time Minimization

Abstract
t-distributed Stochastic Neighbour Embedding (t-SNE) has become a standard for
exploratory data analysis, as it is capable of revealing clusters even in complex
data while requiring minimal user input. While its run-time complexity limited it to
small datasets in the past, recent efforts improved upon the expensive similarity
computations and the previously quadratic minimization. Nevertheless, t-SNE still
has high runtime and memory costs when operating on millions of points.

In this appendix*, we present a novel method for executing the t-SNEminimization.
While our method overall retains a linear runtime complexity, we obtain a significant
performance increase in the most expensive part of the minimization. We achieve
a significant improvement without a noticeable decrease in accuracy even when
targeting a 3D embedding. Our method constructs a pair of spatial hierarchies over
the embedding, which are simultaneously traversed to approximate many N-body
interactions at once. We demonstrate an efficient GPGPU implementation and
evaluate its performance against state-of-the-art methods on a variety of datasets.

* This appendix is based on ”An Efficient Dual-Hierarchy t-SNE Minimization”,
previously published in IEEE TVCG (IEEE VIS 2021) [88].
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A.1 Introduction

The exploration of high-dimensional data has received significant interest. Non-
linear dimensionality reduction techniques havemade it possible to visualize struc-
tures in large-scale high-dimensional datasets, leading to discoveries in many dif-
ferent domains, such as immunology [89] and forensic analysis [90]. The ability
to successfully preserve local structures in the data is especially important. The t-
Distributed Stotachstic Neighbour Embedding (t-SNE) algorithm [91] achieves this
goal by matching pairwise similarity distributions, representing the original data
in the high-dimensional space and a possible embedding in a low-dimensional
space. The algorithm consists of two phases. First, a similarity distribution is
constructed over the high-dimensional data. Second, a minimization is performed
using the Kullback-Leibler (KL) divergence [92] between this distribution and a low-
dimensional distribution, which is initially constructed over a random embedding.

Both phases of the t-SNE computation are costly operations, becoming impracti-
cal for very large datasets. While significant effort has been invested into lowering
the computational cost of the similarity computations [93–97], the minimization
remains costly. Here, efforts have focused on efficiently mapping the minimization
to GPU hardware [98, 99] or on reducing the 𝒪(𝑁2) runtime complexity; the com-
monly used Barnes-Hut t-SNE (BH-SNE) [97] initially obtained a 𝒪(𝑁 log𝑁) runtime
complexity, and 𝒪(𝑁) complexities were achieved afterwards by both Linderman
et al. [100] and Pezotti et al. [101]. While effective for smaller 2D embeddings,
millions of points remain costly and there is a significant overhead in 3D.

Our work introduces a pair of sparsely constructed spatial hierarchies to acceler-
ate the t-SNE minimization. The first hierarchy is constructed over the embedding,
and the second over a discretization of the embedding’s space. We approximate
N-body computations, a costly part of the t-SNE minimization, by computing in-
teractions between the two hierarchies using a dual-hierarchy traversal. During
traversal, we eliminate the majority of these interactions using an improved formu-
lation of the BH-SNE approximation [97]. While our minimization retains a 𝒪(𝑁)
runtime complexity, the number of considered interactions is significantly reduced.
As N-body computations previously dominated the runtime of t-SNE for two- and
especially three-dimensional embeddings, our method provides a strong improve-
ment, significantly outperforming the state-of-the-art while generating high-quality
embeddings. Further, our method is designed with GPGPU programming in mind,
leveraging the compute capabilities of modern GPUs.

We first formally introduce t-SNE (Section A.2) and related work (Section A.3).
We then cover our method (Section A.4), its implementation details (Section A.5),
and evaluation (Section A.6), before concluding (Section A.7).



A.2. t-SNE A69

A.2 t-SNE

t-SNEmodels a dataset of points𝑋 = 𝑥1,…,𝑥𝑁 in a high-dimensional space through
pairwise similarities, represented as a symmetric joint probability distribution 𝑃.
Likewise, a randomly initialized embedding of low-dimensional points 𝑌 = 𝑦1,…,𝑦𝑁
is represented in a similarity distribution 𝑄. The goal of t-SNE is to minimize the
difference between 𝑃 and 𝑄 according to a cost function.

The distribution 𝑃, defined over the high-dimensional data points, represents the
joint similarity 𝑝𝑖𝑗 between all pairs 𝑥𝑖 and 𝑥𝑗. This similarity can be interpreted as
the probability of these data points being near to each other in high-dimensional
space. In a similar manner, the similarity between representative low-dimensional
embedding points 𝑦𝑖 and 𝑦𝑗 is represented as 𝑞𝑖𝑗. To minimize the difference be-
tween 𝑃 and 𝑄, the cost function 𝐶 is used

Eq A.1 𝐶(𝑃,𝑄) = 𝐾𝐿(𝑃 ‖ 𝑄) =
𝑁
∑
𝑖=1

𝑁
∑
𝑗≠𝑖

𝑝𝑖𝑗 ln(
𝑝𝑖𝑗
𝑞𝑖𝑗

),

which is the KL-Divergence between 𝑃 and 𝑄. During minimization the positions of
embedding points are updated tominimize this cost. The joint similarity 𝑝𝑖𝑗 is mod-
eled through centering of a pair of Gaussian kernels on either high-dimensional
data point as

Eq A.2 𝑝𝑖𝑗 =
𝑝𝑖|𝑗+𝑝𝑗|𝑖

2𝑁
,

where

Eq A.3 𝑝𝑗|𝑖 =
exp(−(‖𝑥𝑖−𝑥𝑗‖2)/(2𝜎2

𝑖 ))
∑𝑁
𝑘≠𝑖 exp(−(‖𝑥𝑖−𝑥𝑘‖2)/(2𝜎

2
𝑖 ))

and variance 𝜎𝑖 is defined according to the local density in the high-dimensional
space around 𝑥𝑖. As 𝑝𝑗|𝑖 acts on a local neighbourhood outside of which influence
diminishes rapidly, the effective number of considered points is typically much
lower than 𝑁. It is instead based on a user-controlled perplexity value 𝜇, and 𝜎𝑖 is
then chosen such that

Eq A.4 𝜇 = 2−∑
𝑁
𝑗 𝑝𝑗|𝑖 log𝑝𝑗|𝑖

holds for each 𝑖. For the low-dimensional similarity 𝑞𝑖𝑗, a Student’s t-Distribution
with one degree of freedom is used instead of a Gaussian distribution. 𝑞𝑖𝑗 is defined
as

Eq A.5 𝑞𝑖𝑗 = ((1+‖𝑦𝑖−𝑦𝑗‖
2
)𝑍)

−1
,
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where

Eq A.6 𝑍 =
𝑁
∑
𝑘=1

𝑁
∑
𝑙≠𝑘

(1+‖𝑦𝑘−𝑦𝑙‖2)
−1 .

Intuitively, to ensure that distribution 𝑄 closely represents 𝑃, their local neighbour-
hoods should match each other. Hence, the algorithm iteratively moves randomly-
initialized embedding points around to match this criterion. This movement stems
from a gradient descent applied to 𝐶. In each iteration, the gradient is computed
and subsequently used to update the positions of the embedding points relying on
its analytical formulation over 𝑦𝑖:

𝛿𝐶
𝛿𝑦𝑖

= 4(𝑍
𝑁
∑
𝑗≠𝑖

𝑝𝑖𝑗𝑞𝑖𝑗(𝑦𝑖−𝑦𝑗)−
𝑁
∑
𝑗≠𝑖

𝑞2𝑖𝑗𝑍(𝑦𝑖−𝑦𝑗))Eq A.7

= 4(𝐹𝑎𝑡𝑡𝑟
𝑖 −𝐹𝑟𝑒𝑝

𝑖 ).

As shown, the gradient is decomposed into 𝐹𝑎𝑡𝑡𝑟 and 𝐹𝑟𝑒𝑝, which allows for a po-
tential reformulation as an N-body problem, where each of the𝑁 embedding points
exerts attractive and repulsive forces on surrounding points. As is typical for N-body
problems, the computational complexity is 𝒪(𝑁2).

A.3 Related Work

After the introduction of t-SNE [91], Barnes Hut SNE (BH-SNE) [97], reduced the
runtime complexity to 𝒪(𝑁 log𝑁), and memory complexity to 𝒪(𝑁). It models the
similarity computation in Equation A.3 as a k-nearest-neighbour (KNN) graph prob-
lem, computed using Vantage Point trees [102]. In addition, a Barnes-Hut approx-
imation [103], previously used in physics calculations, significantly reduces the
number of force computations in the N-body problem.

More recent developments can be divided into two areas: improving similar-
ity computations and improvements/replacements of the minimization algorithm.
Early on, Approximated tSNE (A-SNE) [95], relied on principles of Progressive Vi-
sual Analytics [104, 105] to selectively refine parts of approximate embeddings
during the optimization, while replacing a precise KNN-graph with an approxi-
mate graph relying on a forest of randomized KD-trees. A similar approach was
demonstrated with LargeViz [96], which instead leverages randomized projection
trees to obtain similarities. In addition, it links the minimization’s objective func-
tion to a probabilistic graph-visualization model, which is optimized through an
asynchronous stochastic gradient descent. A rather different approach is Uni-
form Manifold Approximation and Projection (UMAP) [93], which instead performs
a minimization between topological representations of the high-dimensional and
low-dimensional spaces. While it provides superior performance to all t-SNE vari-
ants described so far, it has been shown to suffer from many of the same down-
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sides [106]. Despite the improvements, current available implementations are or-
ders of magnitude slower than more recent GPGPU solutions.
A fast GPU-based approach is CUDA-SNE [99]. The method approximates KNN

in a manner similar to A-SNE [95] with the GPU-based FAISS library [107], and
maps the BH-SNE [97] optimization to a GPGPU programming environment. Al-
though this approach achieves good performance on large datasets, it largely re-
lates to engineering optimizations and remains bound by 𝒪(𝑁 log𝑁) runtime com-
plexity.
More recently, linear runtime complexity was reached by Fast Fourier transform

accelerated interpolation-based t-SNE (FIt-SNE) [100], demonstrated with a CPU-
based implementation. It uses an alternative approximation for computing repul-
sive forces by redefining them in terms of a convolution over an equispaced grid,
which is subsequently interpolated to recover repulsive forces.
A similar GPU-based approach was developed by Pezotti et al. [101], named

GPGPU linear complexity t-SNE (L-SNE). The authors rewrite Equation A.8 as a
function of scalar and vector fields— continuous functions assigning scalar or vec-
tor values to positions in space — which are then approximated in a discrete format
using a GPU texture in 𝒪(𝐹𝑁) time (where 𝐹 is the size of the discrete texture).
Afterwards, force components are recovered through texture interpolation, which is
highly efficient on GPUs. The method’s runtime is dominated by the computation
of this field texture, which suffers from scaling in either 𝐹 or 𝑁 and is particularly
inefficient for 3D embeddings. In the following, we briefly cover this field-based
formulation before presenting our approach, which avoids these shortcomings.
Given are the scalar and vector fields 𝒮 ∶ ℝ𝑑 →ℝ and 𝒱 ∶ ℝ𝑑 →ℝ𝑑, 𝑑 being the

dimensionality of the embedding, typically 2 or 3. At an arbitrary position 𝑝 the
fields are defined as

𝒮(𝑝) =
𝑁
∑
𝑖
(1+‖𝑦𝑖−𝑝‖2)

−1 ,Eq A.8

𝒱(𝑝) =
𝑁
∑
𝑖

𝑦𝑖−𝑝
(1+‖𝑦𝑖−𝑝‖2)

2Eq A.9

Based on the Student’s t-distribution, 𝒮 represents the effective density of the
embedding space, while 𝒱 represents the gradient of the repulsive forces applied.
Assuming for now that these fields are available, attractive forces can be approxi-
mated in a restricted neighbourhood as

Eq A.10 𝐹̂𝑎𝑡𝑡𝑟
𝑖 = 𝑍̂ ∑

ℓ∈𝑘𝑁𝑁(𝑖)
𝑝𝑖ℓ𝑞𝑖ℓ(𝑦𝑖−𝑦ℓ),

as seen in BH-SNE [97]. The normalization factor 𝑍̂ is now approximated in linear
time by consulting the scalar field:

Eq A.11 𝑍̂ =
𝑁
∑
ℓ=1

(𝒮(𝑦ℓ)−1).
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The repulsive force for a single point is approximated as

Eq A.12 𝐹̂𝑟𝑒𝑝
𝑖 =𝒱(𝑦𝑖)/𝑍̂ .

Computing an approximate gradient now requires linear runtime, as the fields are
queried in constant time, approximated in a discrete texture format, and separately
computed through a summation of the contributions of all embedding positions.
Formally, positions in the fields sum kernels 𝑆 and 𝑉 as follows:

Eq A.13 𝒮(𝑝) =
𝑁
∑
𝑖
𝑆(𝑦𝑖−𝑝), 𝑆(𝑡) = (1+‖𝑡‖2)−1 ,

Eq A.14 𝒱(𝑝) =
𝑁
∑
𝑖
𝑉(𝑦𝑖−𝑝), 𝑉(𝑡) = 𝑡(1+‖𝑡‖2)−2 .

While this leads to a linear runtime, there are two observations. The kernels 𝑆 and
𝑉 are again based on a Student’s t-distribution and have limited effects on far-
away positions, but are applied to all positions with full accuracy. In addition, as
the kernels have a fixed support in the embedding space, the field’s discrete repre-
sentation must grow with the embedding as the minimization progresses, gradually
becoming larger. Pezotti et al. [101] propose that 𝐹 ll𝑁 generally holds. However,
while the texture grows slowly in two dimensions, the addition of a third dimension
(which implies a cubic scaling of 𝐹) strongly reduces potential effectiveness. While
theoretically of linear runtime, the solution is not optimal when 𝐹 becomes large.

A.4 Dual-Hierarchy t-SNE Minimization

Here, we present our approach to an efficient t-SNE minimization using the field-
based formulation [101]. Our approach reduces the field texture’s construction
time, which dominates the original runtime and renders the solution impractical
for higher embedding dimensionalities. We observe that this discrete representa-
tion in form of a texture requires evaluating many small regions with varying local
interactions, but similar global interactions. We propose to represent both the
embedding and the discrete field as spatial hierarchies, henceforth referred to as
the embedding hierarchy and the field hierarchy respectively. We perform a dual
traversal over these hierarchies, during which we employ an improvement of the
approximation criterion used in BH-SNE [97] to selectively compute interactions
between hierarchy nodes, which represent large regions in the embedding and the
field (Figure A.1). These interactions between the regions are not directly trans-
ferred to data points but are first stored in the hierarchy itself; specifically, for a
region, the interaction is added to its corresponding node of the hierarchy. Hereby,
we benefit from both hierarchies. After dual traversal, we accumulate these inter-
actions that are stored throughout the hierarchy to form a complete, yet sparsely-
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...

Fig A.1 We use embedding and field hierarchies (top), comparing their nodes to compute inter-
actions between many points and large portions of the field in a single step (bottom left).
Where refinement is necessary, we descend one or both hierarchies (bottom mid), continu-
ing until points interact with a full-resolution field (bottom right).

computed approximated field. In this way, we improve upon the original 𝒪(𝐹𝑁)
complexity of the field computation, as our cost approaches 𝒪(𝑁). We provide a
proof in the supplementary material, but suggest to first follow the algorithm in
this section to ease understanding. Figure A.2 shows an overview of our method,
divided into three steps: hierarchy construction, dual traversal, and field accumu-
lation. We detail each step in the following.

A.4.1 Hierarchy Construction
We construct hierarchies over the embedding and field (Figure A.2, first part).
Meyer et al. [108] showed that a careful choice of the spatial hierarchy provides
performance improvements to BH-SNE [97]. We chose our structures with efficient
execution on the GPU in mind.
As embedding hierarchy, we select an implicit linear bounding volume hierarchy

(BVH), constructed in linear time on the GPU (Section A.5). In a BVH, each node
stores an axis-aligned bounding box (AABB) encompassing the child-node bound-
ing boxes, while leaf nodes directly contain one or more objects (i.e., embedding
points). BVHs provide a close fit around contained data, and allow for refitting
of AABBs without fully rebuilding the hierarchy. The latter is an important cost-
saving measure, made possible because embedding positions move slowly during
the minimization. As with BH-SNE [97], nodes in the embedding hierarchy track
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Fig A.2 We generate embedding and field hierarchies (a), and dual traverse these using a work queue
(b). When approximation of the interactions between node pairs suffices, we cull these pairs.
Further, we evaluate and store interactions between pairs at different levels of detail in the
hierarchies. A final traversal (c) constructs the field used in the t-SNE minimization.

their center of mass, defined as the average of the contained embedding points.
The center of mass 𝑐𝑖 of a node 𝑒𝑖 with mass 𝑚𝑖 is simply

Eq A.15 𝑐𝑖 =
1
𝑚𝑖

∑
𝑗∈𝑒𝑚𝑏(𝑒𝑖)

𝑦𝑗,
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where 𝑒𝑚𝑏(𝑒𝑖) defines the indices of the points in the node.
Observing the discrete grid nature of the field texture, we select a sparse implicit

quad-/octree for the field hierarchy. We mark cells of interest in the grid that we
build our hierarchy upon. This is done in 𝒪(𝐹 log𝑁) time, but marking costs are
negligible in practice (< 1% of total compute time). For each grid cell, we descend
the previously generated embedding hierarchy to determine if the cell overlaps or
borders embedding points. We then construct the sparse field hierarchy with the
marked cells as leaf nodes. Computing the field for these locations suffices, as
it will only be accessed here during the minimization. Each node 𝑓𝑗 in the hier-
archy has scalar and vector field entries 𝒮̂𝑗 and 𝒱̂𝑗, which are initialized as 0 at
the start of every iteration of the minimization and used as intermediate storage
during traversal. Contrary to the embedding hierarchy, nodes in the field hierarchy
represent regions and their center of mass 𝑐𝑗 is simply their region’s geometric
center.

A.4.2 Dual Traversal
With both hierarchies available, we perform a dual traversal (Figure A.2, second
part), formulated as a top-down breadth-first traversal of a single, larger tree. This
tree consists of nodes representing node pairs (𝑒𝑖,𝑓𝑗), where 𝑒𝑖 and 𝑓𝑗 are respec-
tively nodes in the embedding and field hierarchies. Each node pair represents a
potential interaction between the embedding points and field regions described
by the two contained nodes. We model traversal using a work queue, in which we
store node pairs in the dual hierarchy that still have to be traversed. At the start of
traversal, a root node pair, i.e., (𝑒0,𝑓0), is pushed on the queue. During traversal, a
node pair is popped from the queue, and is subsequently subdivided. We descend
one level in both hierarchies under each node if possible. If both nodes are leaves,
we compute the underlying interactions directly. Otherwise, the different possible
pairs of child nodes from both hierarchies are tested via an approximation criterion
(subsection A.4.3), to determine if they represent interactions with a sufficient ac-
curacy. If this criterion fails for a child node pair, it is pushed on the work queue for
further subdivision. If it holds, we will not further descend into the dual hierarchy
underneath this child node pair but process them directly.
To process a node pair, we compute the interactions by using an approximation

of the kernels in Equation A.13 and Equation A.14:

Eq A.16 𝒮̂(𝑒𝑖,𝑓𝑗) =𝑚𝑖 𝑆(𝑐𝑖−𝑐𝑗),

Eq A.17 𝒱̂(𝑒𝑖,𝑓𝑗) =𝑚𝑖 𝑉(𝑐𝑖−𝑐𝑗).

Both values are computed once and will be used for all 𝑚𝑖 points in the embed-
ding node and all regions under the field node instead of evaluating 𝑚𝑖 values for
potentially many field cells. These values are atomically added to 𝒮̂𝑗 and 𝒱̂𝑗 in the
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field node 𝑓𝑗.
Traversal is finished once the work queue is empty. We purposefully subdivide

node pairs before testing an approximation criterion — as opposed to the inverse
— for implementation reasons (Section A.5).

A.4.3 Barnes-Hut Approximation
We modify the dual-hierarchy approximation criterion of BH-SNE [97] to determine
whether a node pair can be processed. Originally, given lengths 𝑟𝑖, 𝑟𝑗 of the diago-
nals of two nodes’ AABBs, and node centers 𝑐𝑖,𝑐𝑗, the following term is evaluated:

Eq A.18
𝑚𝑎𝑥(𝑟𝑖, 𝑟𝑗)
‖𝑐𝑖−𝑐𝑗‖

< 𝜃.

The parameter 𝜃 defines a maximum allowed ratio, interpreted as the tangent of
an angle in a triangle whose opposite and adjacent edges have lengths𝑚𝑎𝑥(𝑟𝑖, 𝑟𝑗)
and ‖𝑐𝑖 −𝑐𝑗‖ respectively. A larger 𝜃 means larger bounding boxes closer to each
other pass the test, leading to earlier processing in the hierarchy (faster traversal)
but a coarser approximation. Similarly, if 𝜃 = 0, the hierarchies are traversed fully,
leading to an inefficient but accurate computation. For single-hierarchy traversals,
𝜃 typically lies between 0.1 and 0.5 [97]. The condition is simple as it is evaluated
many times, assuming that all bounding boxes in both hierarchies have regular
sides (as is the case for quad-/octrees).
Hierarchies such as a linear BVH tend to produce irregular bounding boxes that

closely fit the contained data. Here, the Barnes-Hut criterion is suboptimal, as it
considers a bounding box based on its diagonal, which is not a good representative
of all sides when having a highly irregular bounding box. Hence, we modify Equa-
tion A.18 to project the diagonals 𝑑𝑖,𝑑𝑗 of the nodes’ bounding boxes so the approx-
imation criterion accurately matches this irregularity, leading to projected diagonal
lengths 𝑟 ′𝑖 , 𝑟

′
𝑗 . We visualize our approach in Figure A.3.

To obtain projected diagonal lengths, we first compute a unit vector ̂𝑡 along the
difference 𝑐𝑖−𝑐𝑗, but reflected across axes so it is near-orthogonal to the diagonals.
In two dimensions, this is simply:

Eq A.19 ̂𝑡 = |
𝑐𝑖−𝑐𝑗

||𝑐𝑖−𝑐𝑗||
|[
−1
1
].

A suitable length is then obtained through vector rejection as:

Eq A.20 𝑟 ′𝑖 = ‖𝑑𝑖− ̂𝑡 (𝑑𝑖 ⋅ ̂𝑡)‖.

We compute 𝑟 ′𝑗 in the same manner and usemax(𝑟 ′𝑖 , 𝑟
′
𝑗 ) for the comparison in Equa-

tion A.18. We evaluate this criterion in Section A.6.
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Fig A.3 Simple modification to Barnes-Hut approximation [103]. Instead of constant radii based on
bounding box diagonals, we reproject diagonals, handling irregular bounding boxes regard-
less of their respective positions to each other.

L1

L2...

L0 Accumulated field

Fig A.4 The field hierarchy is ascended from leaf nodes (L0) and intermediate values in consecutive
smaller levels (L1, L2, …) are added, resulting in an approximate field. A sparse vector field
is visualized, red and green colors marking x- and y-directions of the vectors.

A.4.4 Field accumulation

After dual traversal, we collect the approximate interactions stored in the hierar-
chies (Figure A.2, third part). In particular, field hierarchy nodes now store inter-
mediate parts of the actual fields in 𝒮̂𝑗 and 𝒱̂𝑗. As in [101], we want to interpolate
the discrete field to obtain approximate field values at embedding positions, which
is difficult in a hierarchy. Hence, we flatten it to recover a coarsely approximated
texture, i.e., we ascend the field hierarchy upwards once for each non-empty leaf
node, accumulating encountered field scalar and vector values and storing their
sum in the respective texture position of said leaf node. This requires 𝒪(𝐹 log𝐹)
time when gathering upwards from a leaf to the root. Performing the operation in
reverse would lead to 𝒪(𝐹) time but is less practical on GPU hardware. Afterwards,
the field can be queried for interpolated scalar and vector field values per point.
Figure A.4 displays an accumulation of different levels of the field hierarchy.
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A.5 Implementation
Our technique is implemented following a GPGPU approach. We develop our im-
plementation in a combination of the OpenGL 4.6 API and CUDA 11, although the
concepts we described can be applied on other APIs. Our implementation is avail-
able online*.
Mirroring the algorithmic description, our t-SNE implementation consists of two

parts. We first generate the joint similarity distribution 𝑃 in the same manner as
Chan et al. [99], using approximate KNN information with 𝑘 = 3𝜇 obtained through
the GPU-based FAISS library [107]. The formulation of the distributions remains
the same as BH-SNE [97]. Second, we mirror the matrix-based minimization used
by Pezotti et al. [101]. During theminimization, we invest time at the start of each it-
eration to rebuild or refit our spatial hierarchies, and then perform a dual-hierarchy
traversal, replacing the expensive field computation.

A.5.1 Hierarchy Construction
As mentioned, we implement the embedding hierarchy as an implicit linear BVH,
constructed on the GPU in 𝒪(𝑁) time. We outline the general method, but refer
the reader to Lauterbach et al. [109] for a full description. In short, the linear BVH
method reduces BVH construction to a single sorting operation. Each of the 𝑁
embedding points is assigned a Morton code based on their discretized position
in 2D/3D space. Based on these codes, the points are bucketed in leaf nodes,
which are subsequently arranged along a space-filling z-order or Morton curve in
a 𝒪(𝑁) parallel radix sort, using the Morton codes as keys. After sorting, levels
of the hierarchy are constructed iteratively by grouping nodes, which share the
same high order bits in their respective Morton codes. Our implementation adopts
the work-queue based approach of Garanzha et al. [110]. Faster and more recent
construction algorithms can be used at the cost of increased code complexity. For
a parallel radix sort, we leverage the implementation available in the CUDA-based
CUB library [111], which can access specific buffer objects in OpenGL through the
included interoperability library.
We implement the field hierarchy as a sparse implicit quad-/octree due to the

discrete nature of the field texture. As nodes in this hierarchy are regular, we do
not store bounding box information, instead deriving these from node indices when
necessary. The only information we store in a node is its type and the mentioned
intermediate scalar and vector values used during traversal.
Although the embedding changes rapidly during early iterations, changes are less

pronounced later on. Early iterations of t-SNE, typically the first 250, use early exag-
geration, multiplying 𝑝𝑖𝑗 by some scalar to aggressively separate clusters. We use
this to our advantage to reduce hierarchy-construction costs significantly. While
we rebuild hierarchies on every iteration during early exaggeration, we only do so

* https://www.github.com/markvanderuit/dual_hierarchy_tsne

https://www.github.com/markvanderuit/dual_hierarchy_tsne
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at regular intervals after. We can often simply refit bounding boxes around the
newly updated positions, avoiding costly sorting. As the number of leaves in the
field hierarchy can change at each iteration — leading to a substantially different
spatial hierarchy — we included the cells bordering embedded points as leaves,
which enables a reuse.

A.5.2 Dual Traversal
As described in Section A.4, dual-hierarchy traversal is formulated as a breadth-
first traversal, in which node pairs are read, subdivided, and tested for further
traversal. We leverage a pair of work-queues to track traversal. At the start of
traversal, an initial set of node pairs (matching to root nodes) is written to the first,
or primary work-queue. During a single step of traversal, all node pairs on the pri-
mary work-queue are subdivided and tested for Equation A.18. Node pairs which
fail the approximation criterion are pushed on the secondary work-queue, which
is subsequently swapped with the primary work-queue for the next traversal step.
We repeat this process until the primary work-queue is empty or the leaf levels are
reached, at which point traversal has completed.
As root nodes encompass the entire embedding, they will always be subdivided.

As an optimization, we start traversal at a lower level in both hierarchies by pushing
all pairs corresponding to the selected levels on the work-queue (we use levels 3/2
for a 2D/3D embedding, leading to 4096 node pairs for hierarchies with fan-outs
4/8).
To optimize subdivision, we leverage local cross-communication capabilities of

modern GPUs (subgroups in OpenGL/GLSL, warps in CUDA) to test multiple com-
binations of node pairs per GPU thread (invocation) while minimizing memory op-
erations. To subdivide a single node pair on both sides, we use two threads (four
for quadtrees, eight for octrees), having each thread load a single child node from
both sides of the hierarchies. The total number of node pairs that must be tested
(four for binary trees, 16 for quadtrees, 64 for octrees) can be obtained by rotating
the child nodes on one side of the hierarchy along the 2/4/8 threads, using the
subgroup capabilities.

A.5.3 Single-Hierarchy Fallback
As described in Section A.3, the discrete field grows in size as the minimization
progresses. At its start, the small discrete field implies few regions of interest re-
quire computation, leading to a sparse hierarchy. In this scenario, a dual traversal
is inefficient as the field hierarchy’s levels have too few nodes to fully occupy the
GPU. We establish a maximum positive difference in depths 𝑑𝑒,𝑑𝑓 between the
embedding and field hierarchies (i.e., 𝑑𝑒−𝑑𝑓 ≤ 𝑑𝑚𝑎𝑥) to determine when dual hier-
archy traversal is used. We empirically established 𝑑𝑚𝑎𝑥 = 4 as a suitable threshold.
Whenever we forego a dual-hierarchy traversal, we only construct the embedding
hierarchy, and depth-first traverse it for the entire field in 𝒪(𝐹 log𝑁) time.
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Ours L-SNE [101]

Component Time complexity Space complexity Component Time complexity Space complexity

Hierarchy 𝒪(𝐹+𝑁+𝐹 log𝑁) 𝒪(𝐹 +𝑁)
Dual traversal 𝒪(𝑚𝑎𝑥(𝐹,𝑁)) 𝒪(𝐹 +𝑁)
Field comp. ** 𝒪(𝐹 log𝐹) 𝒪(𝐹) Field comp. 𝒪(𝐹𝑁) 𝒪(𝐹 +𝑁)
𝐹𝑟𝑒𝑝 lookup * 𝒪(𝑁) 𝒪(𝐹 +𝑁) 𝐹𝑟𝑒𝑝 lookup * 𝒪(𝑁) 𝒪(𝐹 +𝑁)
𝐹𝑎𝑡𝑡𝑟 comp. 𝒪(𝐾𝑁) 𝒪(𝐾𝑁) 𝐹𝑎𝑡𝑡𝑟 comp. 𝒪(𝐾𝑁) 𝒪(𝐾𝑁)
Apply forces * 𝒪(𝑁) 𝒪(𝑁) Apply forces * 𝒪(𝑁) 𝒪(𝑁)

FIt-SNE [100] BH-SNE [97]

Component Time complexity Space complexity Component Time complexity Space complexity

Point-grid 𝒪(𝑝𝑁) 𝒪(𝑝𝑁𝑖𝑛𝑡+𝑁)
Grid-grid 𝒪(𝑝𝑁𝑖𝑛𝑡 log𝑝𝑁𝑖𝑛𝑡) 𝒪(𝑝𝑁𝑖𝑛𝑡) Hierarchy 𝒪(𝑁) 𝒪(𝑁)
𝐹𝑟𝑒𝑝 comp. 𝒪(𝑝𝑁) 𝒪(𝑝𝑁𝑖𝑛𝑡+𝑁) 𝐹𝑟𝑒𝑝 comp. 𝒪(𝑁 log𝑁) 𝒪(𝑁)
𝐹𝑎𝑡𝑡𝑟 comp. 𝒪(𝐾𝑁) 𝒪(𝐾𝑁) 𝐹𝑎𝑡𝑡𝑟 comp. 𝒪(𝐾𝑁) 𝒪(𝐾𝑁)
Apply forces * 𝒪(𝑁) 𝒪(𝑁) Apply forces * 𝒪(𝑁) 𝒪(𝑁)

* Component has negligible computational runtime (Figure A.9).
** Component can be performed in 𝒪(𝐹) time (subsection A.4.4).

Tab A.1 Time/space complexities for the stages of our and other methods. 𝑁 is input size, 𝐾 is
restricted neighbourhood size, and 𝐹 is field size for our method and L-SNE [101]. 𝑁𝑖𝑛𝑡 and
𝑝 are parameters of FIt-SNE [100]: 𝑁𝑖𝑛𝑡 represents a discrete grid size, and 𝑝 represents a
number of equispaced points over said grid. Note that 𝐹, 𝑁𝑖𝑛𝑡 and 𝑝 are independent of 𝑁.

Dataset Points Dims. Iters. 𝜇

MNIST 60000 784 1000 50
Fashion 60000 784 1000 50
ImageNet 1250000 128 4000 10
Word2Vec 3000000 300 4000 5

Tab A.2 Sizes, dimensions and selected minimization parameters for each dataset.

A.6 Evaluation

We first evaluate specific choices of our method, and afterwards compare against
state-of-the-art solutions in terms of computational cost and embedding quality.
All experiments run on a particular dataset use the same configuration and param-
eters. Further, all experiments are conducted on a single machine with an Intel
Core i7-9900 (16 logical threads @3.1 GHz), 16 GB of DDR4 RAM and a GeForce
RTX 2080 Ti GPU with access to 11 GB VRAM. For each experiment, we record
the minimization runtime and resulting KL-divergence as a direct measure of how
far a specific minimization has progressed. As KL-divergence is directly coupled
to minimization, we additionally consider an unrelated metric, selecting Nearest-
Neighbourhood-Preservation (NNP) as described by Venna et al. [112]. It measures
how well local neighbourhoods in the low-dimensional embedding preserve charac-
teristics of their high-dimensional counterparts. In order to obtain correct results
for NNP, the gradient descent must be (mostly) converged. Hence, we use a larger
number of iterations for larger datasets.
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Dataset CUDA-SNE L-SNE Ours

MNIST 5.86s 1.70s 1.36s
Fashion 5.74s 1.83s 1.40s
ImageNet 94.12s 346.94s 51.10s
Word2Vec 94.90s 212.11s 86.90s

Tab A.3 Compared runtimes of methods for a 2D minimization, using the datasets in Table A.2.

For testing, we select four datasets that are frequently applied in the evalua-
tion of dimensionality reduction algorithms such as t-SNE. As different datasets
typically differ in size, dimensionality, and structure, we select separate iterations
and perplexity 𝜇 for each dataset. Specific sizes and parameters selected for each
dataset are displayed in Table A.2.
The commonly-used MNIST dataset consists of labeled 28×28px grayscale im-

ages of handwritten digits, each represented as a vector storing an image’s pixel
values. MNIST is often used for this kind of evaluation as it contains 10 clearly-
defined classes corresponding to 10 different digits. The similar Fashion-MNIST [113]
contains images of 10 different types of clothing, instead of digits, which are some-
times closely related but harder to separate into clusters with an algorithm such as
t-SNE. For this reason, we included it in our evaluation.
The ImageNet dataset [114] stores approximately 1000 categories of random

images of objects at varying resolutions. We use a reduced and formatted ver-
sion previously published by Fu et al. [115], processed such that each vector in the
dataset has a dimensionality of 128.
The GoogleNews dataset stores a collection of three million words, each repre-

sented as a vector generated by Word2Vec [116]. This tool consumes a text corpus
— in this case originating from Google News — and assigns words in the corpus a
representative vector in such a way that words are closely related if they share a
similar context.

A.6.1 Hierarchy Evaluation
We first evaluate our choice of spatial hierarchy. Although our method works with
different hierarchies, we focus on the implicit linear BVH [109]. Use of alternatives
such as a quad-/octree is possible. However, BVHs have several benefits: they fit
the contained data closely, and their bounding volumes can be refitted when data
changes. Refitting instead of rebuilding provides a significant reduction in runtime
over consective iterations. We compare minimizations of MNIST and ImageNet in
four cases: using quad-/octrees, using a BVH rebuilt every iteration, and using BVHs
that are rebuilt after four or eight iterations of refitting. No refitting is performed in
the first 250 iterations as early exaggeration takes place. Results are displayed in
Figure A.5. The quad-/octree has to be rebuilt every iteration. It only matches the
BVH performance when the latter is always rebuilt. The benefit of the BVH becomes
apparent when refitting is used, e.g., during four iterations. However, this degrades
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2D/3D embeddings of the MNIST and ImageNet datasets. We minimize for increasing num-
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Fig A.7 Evaluation of 𝜃 for generation of 2D/3D embeddings. We show the resulting relative runtime
and KL-divergence of three datasets. Baseline results (𝜃 = 0) are 100% and are established
with GPGPU linear complexity t-SNE [101]. In larger datasets and small 𝜃 < 0.2, 3D mini-
mizations may exceed the memory capacity of our GPU and are not shown.

BVH quality, and refitting for too many iterations results in unpredictable runtimes.
This is seen in the ImageNet minimization for 8 iterations of refitting. Also, as the
embedding still undergoes significant changes after the early exaggeration phase,
refitting degrades the hierarchy quality. We show iteration runtimes in Figure A.10,
where these effects are visible. In practice, we employ four consecutive iterations
in all other examples.
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Fig A.8 Comparison of linear complexity t-SNE [101], a CUDA implementation of FIt-SNE [99, 100],
and our method (DH-SNE) across four datasets. We show minimization runtimes and of KL-
divergence for 2D/3D embeddings over increasing subsets of data (left, horizontal axes are
logarithmic). We next show NNP in the form of precision/recall curves (right). Our method
outperforms the state-of-the-art on large datasets in terms of runtime for both 2D/3D, while
retaining a similar quality to linear tSNE [101].

A.6.2 Barnes-Hut Evaluation

Next, we evaluate our modified Barnes-Hut approximation criterion in conjunction
with a BVH. This criterion handles irregular bounding volumes, which occur in a
BVH, better than the original. We compare minimizations of MNIST and ImageNet
with our criterion and the regular criterion [103]. We test for differing 𝜃 ∈ [0.2,0.6]
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Fig A.9 Comparison of the runtimes of the most expensive components of our method on three
datasets of varying sizes, for 2D/3D embeddings. The different perplexity values listed
in Table A.2 imply different local neighbourhood sizes, leading to varying attractive force
computation costs (Equation A.10). As demonstrated, runtime is dominated by KNN and
attractive force computations on larger datasets.

and record resulting (relative) runtime and KL-divergence. Results are displayed
in Figure A.6. While the improvements are stronger for larger values of 𝜃, the new
criterion outperforms the regular criterion in all cases.
Larger 𝜃 leads to a coarser approximation and faster traversal as nodes are culled

earlier. While this parameter was evaluated in BH-SNE [97] in the context of single-
hierarchy traversal, the established 𝜃 ≤ 0.5 does not hold for our method. In addi-
tion, the parameter’s impact on traversal may vary across 2D/3D embeddings. We
investigate its effect in both scenarios in Figure A.7. We consider 𝜃 = 0.25 a good
tradeoff for 2D, and 𝜃 = 0.4 for 3D. There is a noticeable increase in KL-divergence
for larger 𝜃 across datasets, which becomes visible as grid-like patterns.

A.6.3 Comparative Evaluation
Finally, we compare with state-of-the-art techniques with linear runtime complex-
ity. First, we select the field-based L-SNE developed by Pezotti et al [101], with
which we generate both 2D/3D comparisons. This technique shows excellent per-
formance on smaller datasets and provides high quality embeddings in compar-
ison with earlier techniques. We use field scalings of 2.0 (2D) and 1.2 (3D) for
measurement with both our method and L-SNE. We also select a current version
of CUDA-SNE [99] which, instead of a Barnes-Hut approximation, recently adapted
the 𝒪(𝑁) FIt-SNE [100] to the GPU. Although their approach incurs an overhead
for smaller datasets, it outperforms the original implementation due to a linear run-
time. This implementation only generates 2D embeddings, so we only compare it in
this regard. Older BH-SNE [97] or baseline 𝒪(𝑁2) t-SNE algorithms [91] have been
omitted, as their practical performance is typically orders of magnitude slower.
As our technique uses a field similar to Pezotti et al. [101], we expect to pro-

duce similar embeddings at improved runtime performance. With regards to FIt-
SNE [100], we expect to reach similar or improved performance on large datasets,
while producing substantially different embeddings, as our minimization differs
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Fig A.10 Influence of refitting a BVH during minimization of the ImageNet dataset. We show runtime
per iteration for all 4000 iterations (top) and the last 250 iterations (bottom). Note the spike
in runtime after early exaggeration for 8 iterations of refitting.
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Fig A.11 Embeddings of datasets (Table A.2), generated by our method.

from theirs by definition. To correctly compare the different minimization meth-
ods, we ensure they use identical KNN information and an identical joint similarity
distribution 𝑃. We further ensure all methods use an identical initial embedding,
and use identical parameters for their gradient descent. Differences betweenmeth-
ods then correspond solely to the differences in their respective complexities. We
provide an overview of the different time/space complexities of each method in
Table A.1.
The first two rows of Figure A.8 show minimization runtimes for 2D/3D embed-

dings separately. We run on increasingly large subsets of the datasets to show how
minimization progresses. A logarithmic scale is used on horizontal axes to account
for large dataset sizes. We list exact runtimes of minimizations on the full dataset
in Table A.3.
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Our technique performs exceedingly well for sufficiently large datasets; starting
at approximately 27K points (indicated by a dotted vertical line) it outperforms com-
pared methods in both the relatively small MNIST and Fashion datasets. On the
full datasets, a 1000 iteration minimization requires 1.36𝑠, compared to 1.70𝑠 for L-
SNE [101]. This gap widens significantly in the 1.2M point ImageNet dataset, where
our method completes a 4000 iteration minimization in 51.10𝑠, down from 346.94𝑠.
On the 3M point Word2Vec dataset, FIt-SNE [100] performs a 4000 iteration min-
imization in 94.90𝑠, while our method requires 86.90𝑠. Convergence between the
methods on the Word2Vec dataset is explained by attractive-force computations
(Equation A.10), which become exceedingly expensive for denser local neighbour-
hoods. For comparison: both existing methods perform relatively poorly on the
smaller ImageNet dataset, where a higher perplexity value leads to larger neigh-
bourhoods. To confirm this, we display runtimes of separate components in our
method in Figure A.9. Evidently, attractive-force computation becomes a dominat-
ing factor in the minimization.

Observed scaling for 3D embeddings remains linear in all experiments, though
there is a runtime overhead compared to 2D embeddings. This is expected, given
the computational overhead involved in a third dimension. Linear complexity tSNE [101]
is impractical for large datasets, as runtime spikes around 100K points, while our
technique is orders of magnitude faster and completes a full 4000 iteration mini-
mization on the 3M point Word2Vec dataset in 238.67𝑠.

While our technique improves runtime, embedding quality is another important
metric. In the last two rows of Figure A.8, we examine KL-divergence of generated
embeddings for increasingly large subsets of the datasets, in addition to computed
NNP. The NNP metric is displayed in the form of precision/recall plots. For this, we
repeat an experiment performed by Pezotti et al. [101]. For each point in a dataset,
we observe points in an increasingly large neighbourhood of a size 𝑘 based on
perplexity. For every value from 𝑘 = 1 to 𝑘 = 3𝜇, we compute 𝑇, defined as the
accurate number of points belonging to both points’ neighbourhoods. Precision
is computed as 𝑇/𝑘 and recall is computed as 𝑇/(3𝜇). By averaging generated
curves for each point, a representative curve is obtained for the entire dataset.

As demonstrated, our approximation has a minor impact on embedding quality
compared to linear complexity tSNE [101]. The CUDA-SNE [99] implementation of
FIt-SNE [100] interestingly delivers a lower quality of embeddings for the specified
metrics. As explored by Linderman et al. [100], FIt-SNE reaches comparable levels
of quality to BH-SNE [97], so these results are expected. The field-based approx-
imation used by Pezotti et al. [101] is established to be more accurate, which is
a quality our method mostly retains. We display embeddings generated with our
method in Figure A.11. Further, we show example minimizations in a supplemental
video.
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A.7 Conclusion
We have presented a novel and improved minimization algorithm for t-SNE, pro-
viding significant performance improvements above the state-of-the-art, especially
for large datasets and higher dimensional embeddings. The latter point is a crucial
step forward, as it can improve embedding quality and could be of high relevance
in many applications relying on a 3D visualization. For this reason, we have made
an implementation of our method available on Github *.
Our method illustrates that a field-based formulation of t-SNE, previously shown

to have linear runtime, can still be significantly accelerated via a dual-hierarchy
traversal. This allows us to compute N-body interactions efficiently, as is demon-
strated in a GPGPU-based environment on modern graphics hardware. Our exper-
iments reveal significant run-time improvements with regards to linear complexity
t-SNE [101] and FIt-SNE [99] for two- and three-dimensional embeddings, while
achieving comparable quality.
With these improvements, the t-SNE algorithm is, at this stage, dominated by the

required KNN and attractive force computations, which are interesting challenges
for future work.
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