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Abstract

The goal of the thesis is to find a Reduced Order Modelling method that speeds up bur-
nup simulations—as encountered in the core of a Molten Salt Fast Reactor—while keeping
accuracy loss minimal. Four different methods have been tested: Proper Orthogonal De-
composition (POD), heuristically corrected POD, Balanced Truncation (BT), and Balanced
Proper Orthogonal Decomposition (BPOD). The first two methods are inadequate, because
of stability issues. The third is stable, but fails to execute for burnup simulations. The
fourth, a midway method between the first and third, does work for burnup simulations.

Using BPOD with 4 orders for a 10 year burnup simulation of 1650 nuclides with 1000
simulation steps, we find a normalised relative error of 10 both for the total model and
each nuclide individually. The execution time per simulation step is reduced to 107 s.
These results are a factor 1000 better than known alternatives such as the ORIGEN burnup
program.

The conclusion contains recommendations for incorporating different fuel mixtures and non-
linearity of the burnup equation in the BPOD. The method could be generalised to handle
arbitrary burnup problems with a single Reduced Order Model.
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Treatise on the Significance of
Technical Style

During my bachelor studies of astronomy and physics, I made a life-changing discovery. The
discovery was that, although smart people get far, the people able to communicate their
ideas well get further. As a result, I studied rhetorics for a year. Without any real empirical
backing (except, maybe some of the more cited papers in the list of references) I make the
claim that there is a correlation between the amount of citations and the style of a paper.

One might ask: what exactly is meant by style?

Style exists only in dichotomy with content. For example, in the context of a scientific
paper, the content would be the idea that the writer means to communicate and the style is
everything else. Every word can be chosen differently, there are a thousand ways to structure
a paper and every visual aid can be modified indefinitely. Interesting is that although there is
are near infinite ways to change style, there are some which simply work better than others.
The effect of good style is that readers will grasp the idea that is being conveyed correctly
without losing attention. Conversly, bad style confuses or even infuriates the reader. I could
even argue that content is not merely the idea that the writer tries to convey, but rather the
idea the reader gets. Style and content thus live in duality to each other. Content cannot
be conveyed without style and style defines the content.

So, then, what makes technical style “technical” compared to common style?

I identify three aspects that differ: the addition of mathematical language, accurate
visual aids, and presupposed expertise. Mathematics allows us to express ideas about the
natural world in a very precise and concise language at the cost of having the strictest
possible grammar. Any mistake and the mathematical sentence loses its intended meaning.
Besides, it is easy to obfuscate concepts with mathematics—even a technical expert may
have difficulty understanding complex mathematics during a first reading. In my opinion,
mathematics should be used sparingly, and when used, it should be both effective and correct.
Whereas large tables and graphs are in most fields of studies eschewed, technicians love them.
Not everyone can instantly visualise y = (z — 2)(z + 2), but a graph would easily reveal a
parabola with a minimum at (0, —4). I'm of the opinion that it is nigh impossible to have too
many graphical aids, but each one of them should be kept as clean and simple as possible.
Lastly, writing for technical experts gives the unique opportunity to assume a huge body
of shared concepts, which can be used to your advantage. There are generally two types
of technical experts: those who understand the world through the abstract and those who
understand the abstract by looking at the world. The first thrive by mathematics and exact,
short sentences, while the second thrive by visual aids and more prose-like explanations.

Lastly, I would like to refer to the beautiful definition for style of Willem Elsschot in his
1933 novel 'Kaas’, which conceptualizes style as writing the minimal necessary to clearly com-
municate, while keeping it interesting by surprising the reader with an increasing rhythm.
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Chapter 1

Introduction

In the landscape of renewable energy there is one that is most controversial: nuclear energy.
Proponents argue that nuclear plants generate power without any carbon emission (Igini,
2023) on a small amount of space. For example, the small Dutch nuclear power plant in
Borssele generates 0.48GW net (N.V. EPZ, 2023)—day and night, wind and no wind—on
less than 10 hectares. A similar amount of solar energy, as generated by the Nufiez de Balbao
Photovoltaic Plant in Spain under ideal conditions during the day, requires 1000 hectares of
space (Iberdrola corp., 2019).

So why did we not go nuclear? Critics argue nuclear plants do not solve the problems
of a sustainable future. Although there is no carbon emission, a nuclear reactor produces
radioactive waste, which can remain a problem for thousands of years (World Nuclear Asso-
ciation, 2022). Furthermore, there are legitimate safety concerns nuclear energy. Accidents
can lead to disasters when mishandled, as the historical Chernobyl disaster showed (World
Nuclear Association, 2024).

A more nuanced view is that nuclear energy is a potential solution for our future energy
needs, but more research into the subject is required to mitigate the current safety and waste
issues.

Nuclear reactor physicists around the world are working on improving nuclear reactor de-
signs and waste management schemes, such as in the European MIMOSA project (MIMOSA,
2024). The MIMOSA project tries to incorporate molten salt reactors into a multiple cycle
nuclear reactor scheme to optimise fuel efficiency and reduce the amount of nuclear waste
(figure 1.1). Molten salt reactors—integral to MIMOSA—are heavily investigated, but are
not yet in use. Challenges include mitigating corrosion of the reactor vessel, numerically
simulating safety measures and modelling fuel burnup (Serp et al., 2014).

Fuel burnup simulations, numerically tracking the amount of each nuclide for days to
years, are central to predicting requirements of the recycling schemes; we want to know how
much of a particular isotope we need to process years into the future. SERPENT, a Monte
Carlo neutron transport code (Leppénen et al., 2015), tracks 1726 different nuclides, with
decay constants ranging from 1072 seconds to 10%° seconds. The governing equation for the
burnup process is a coupled linear set of ordinary differential equations

dN(t)

=~ = AN, (1.1)

where N(t) is the nuclide vector and A is a square burnup matrix. Keeping track of a of a
vector with 1650 nuclides is expensive, so schemes exist to speed up the simulation. Some
of the schemes rely on eliminating short-lived nuclides, whilst others rely on mathematical
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Figure 1.1: General overview of the MIMOSA project

Light water reactors (LWR)—with the possible addition of fast reactors (FR)—produce spent
mixed oxide (MOX) fuel, which is sent to the La Hague reprocessing plant. The reprocessing
plant has many output products. Plutionium can be processed in the MELOX plant with
fresh uranium to new MOX/MIX fuel (MIX meaning mixed fuel) for the light water reactors.
From Uranium reprocessed uranium (REPU) fuel can be made. To minimise the amount of
Fission Products (FP) and other radioactive material that needs to be vitrified or stored, the
MIMOSA scheme adds a chloride based molten salt reactor (MSR), which can use plutonium-,
minor actinides- (MA) and thorium-chloride salt to create more energy (MIMOSA, 2024).

approximations of the burnup equations. Two schemes achieve the best performance. The
fastest scheme is the ORIGEN program (Croff, 1983), which takes around 0.01 seconds per
simulation step, with about 1% error and over 10% differences for specific nuclides (Isotalo
& Aarnio, 2011). The most accurate is the CRAM (Chebyshev rational approximation
method) which takes around 0.05 seconds for a single burnup step, with less than 1% error
for individual nuclides (Isotalo & Aarnio, 2011).

The current thesis takes a novel approach to achieve speedup of the burnup equations,
namely Reduced Order Modelling (ROM). ROM is a (data-driven) technique to transform the
model to a lower-dimensional model which accurately approximates the original Full Order
Model (FOM) at a lower cost. ROM techniques trace their origin to a paper by Karl Pearson
in 1901, who introduced the principle component analysis (Pearson, 1901). In the second
half of the twentieth century the fields of aerospace engineering, fluid dynamics and electrical
engineering started developing more and better ROM methods. Castagna et al. (2020)
attempted to apply ROM to nuclear fuel burnup, with moderate success; the authors used
a simple Proper Orthogonal Decomposition (POD) technique and only published memory-
saving results. The question thus remains: how much speedup can we achieve?

Structure of the thesis

Due to comparative nature of the thesis, the structure is unorthodox. Although the first
numbered chapter is comparable to a background, chapter two through five are more alike
a scientific paper on their own. Each chapter introduces a method, gives the conceptual
background, explains the method, shows results, concludes, and discusses recommendations



for further research.

The first numbered chapter, the Molten Salt Fast Reactor model, introduces a simplified
version of the Molten Salt Fast Reactor (MSFR) as proposed by MIMOSA, whilst focusing on
the numerical essentials: the properties of the burnup matrix. As will become abundantly
clear throughout the thesis, the 40 orders of difference between the largest and smallest
decay constant—called stiffness of the problem—challenges the stability of the Reduced
Order Modelling (ROM) methods. To test the methods, we introduce a simplified decay
chain model at the end of the chapter, of which we can tune the stiffness. The chapter
provides tools to test the limits of each ROM method.

Chapters two to five all follow a similar structure, but deal with a different ROM tech-
nique.

Chapter two introduces the simplest technique, being Proper Orthogonal Decomposi-
tion (POD). Chapter three introduces a heuristically corrected POD, which aims to increase
stability, a feature lacking in the simple POD. Chapter four introduces the more advanced
Balanced Truncation (BT) from control theory, which can guarantee stability under the right
circumstances. Chapter five presents the midway solution, Balanced Proper Orthogonal De-
composition (BPOD), which combines the stability of BT with the computational power of
the POD.

While the chapters can be read individually and in any order, they do build on each other.
References within each chapter help the reader find relevant sections of previous chapters.

The conclusion, reiterates the results of each method, discusses the strengths and weak-
nesses of the four methods, and provides a recommendation in which to conduct further
research.

Reproducibility

Most of Reduced Order Models (ROMs) were run on a ASUS zenbook UX310U laptop, with
a 2.30 GHz base clockspeed processor and 8 GB memory. More demanding calculations ran
on a computer cluster.

To maximize the reproducibility of the work, the code is accessible online, divided into
two repositories. The first is a 600 lines custom-build python package that simulates de-
cay chains and performs Proper Orthogonal Decomposition (POD): https://github.com/
JonathanPilgram /BurnupROM-PythonPackage. The second is a collection of scripts—
Python, Julia and Serpent—that perform numerical experiments, with a collection of Jupyter
notebook files to generate visual aids and plots for the thesis:
https://github.com/JonathanPilgram /BurnupROM-ScriptsAndData.

You are free to use the code of each repository for any legal purpose, preferably with
acknowledgement.
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Chapter 2

Molten Salt Fast Reactor

Molten salt reactors are one of the six candidates for the fourth generation of nuclear reactors
(Serp et al., 2014), and are an essential part of the European developed MIMOSA scheme.
A molten salt reactor replaces the solid nuclear fuel pellets with a liquefied fuel salt mixture
containing nuclear fuel. The fuel salt melts at 565°C for Lithium based salts (CNRS, 2013,
p.4) and circulates around in the core. The molten salt serves two purposes: it cools the
reactor by carrying away the heat, and it also acts as the fuel to keep the nuclear reaction
going. Figure 2.1 shows a general overview of the Molten Salt Fast Reactor (MSFR) reactor
design.

Advantages of the MSFR, over current pressurised water reactors include, but are not
limited to the four listed below.

First, an MSFR tweaks the design of a molten salt reactor by eliminating the moderator,
resulting in a fast neutron spectrum. Fast neutrons increase the number of neutron produced
per fission event. A so-called better neutron economy converts more nuclear waste products
into usable fuel (Duderstadt & Hamilton, 1976, p.86-88).

Second, the increased operating temperature leads to a higher efficiency. The steam
turbines can convert heat more efficiently to electricity at a higher temperature.

Third, the MSFR can use online recycling. Current pressurised water reactors must shut
down during refuelling for an average of 30 days once every 12, 18, or 24 months (Foro
Nuclear, 2024). During a shut down, other power plants must compensate for the loss of
power, which is costly. MSFRs overcome the refuelling shutdown with online recycling: a
recycling plant continuously filters waste products from the reactor core and replaces them
with new fuel during operation, potentially allowing the reactor to run indefinitely.

Fourth, the MSFR includes a novel safety feature called a freeze plug; a frozen plug of
reactor salt that seals the bottom of the reactor core. The nuclear reaction generates heat,
which means that the plug must be actively cooled; otherwise, the plug melts, draining the
reactor core into safety tanks, which would happen in case of a total power failure (Tiberga
et al., 2019).

In summary, the MSFR offers potential improvements over current nuclear reactors,
including better neutron economy, higher thermal efficiency, continuous recycling, and new
fail-safes such as the freeze plug.

On the other side, there are still technical problems to be solved, such as the ever-changing
liquid fuel salt composition corrodes common steels used for the reactor vessel (Guo et al.,
2018). Besides, the ever changing salt composition affects neutron physics of the reactor.
Keeping track of the fuel salt composition is necessary to ensure safe and efficient operation
of the reactor.
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Figure 2.1: Conceptual overview of the MSFR

The cylindrical core of liquid fuel salts is green, while the solid blanket salts used for breeding
are in red. Blue areas are empty space, possibly for pumps to force flow through the orange
heat exchangers. Bubble injectors filter out Fission Products (FP) and neutron sponges, such
as xenon gas, by forcing the FP and xenon to the separation system on top, indicated in
yellow. A novel safety measure of the MSFR is visible at the bottom in purple; in case of
an overheating accident, the core automatically drains through the so-called freeze plugs to
safety tanks (CNRS, 2013, p.2-5).

2.1 Fuel salt composition

The initial fuel salt mixture put into a reactor is one of two types: fluoride-based and
chloride-based salts (Serp et al., 2014), referring to the anions of the salt mixture. To keep
the scope of this research limited, we focus on chloride-based fuel salts. The corresponding
cation is natrium. A percentage of the cations are replaced with fissile, fissionable and fertile
materials.

Table 2.1: Plutonium fractions of spent UOX fuel

The percentages are the molar fractions of each isotope. Last column reports the total per-
centage of fissile plutonium isotopes in UOX fuel. Adapted from table 4.1 in the work of
Mesthiviers (2022, p.87).

Pu-238 Pu-239 Pu-240 Pu-241 Pu-242 fissile
3.10% 52.14% 25.20% 11.80% 7.76% 63.94%

The neutron economy of the MSFR make it an good tool for burning through spent fuel,
such as UOX fuel. The plutonium composition of UOX fuel is shown in Table 2.1. Burning
spend fuel has two advantages: we get more energy out of the same resources and we can
burn the problematic radioactive transuranics.

The MIMOSA scheme, as seen in Figure 1.1, uses the MSFR as a crucial link in the
long-term processing of reactor fuel.

When the MSFR starts operation the neutrons start interacting with the initial fuel
mixture. After minutes there are more than 1000 different nuclides present in the core. As
the nuclide mixture determines the chemical and physical properties of the reactor core,
keeping track of them is important, but computationally expensive. The current chapter
details the accurate, but expensive method of a full order simulation. The next chapters
present ways to cut down on the computational costs using reduced order models.
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Figure 2.2: The geometry and neutron flux of the molten salt fast reactor model

Figure (a) depicts the XY-plane of the reactor geometry. The 60 cm iron reflector is grey,
the 1 meter radius cylindrical core with chloride based fuel salt is yellow/beige, and black
indicates the outside. Figure (b) depicts the normalised neutron flux of the fuel for the x-
coordinate, which is expected from the radially symmetric simple geometry.

Section 2.2 presents a simplified model of the MSFR simulated using SERPENT. The
simplifications allow us to study the burnup properties of the MSFR.

Section 2.3 details the burnup calculations and properties of the burnup matrix, which
holds all the numerical information relevant to the burnup of a reactor. As the full burnup
of the MSFR is both computationally expensive and challenging due to the large number
of nuclides with timescales varying over 40 orders of we need a simpler model for testing
purposes.

Section 2.4 provides that further simplified model: the decay chain model. Although
decay chains exist in burnup matrices, we mainly use the decay chain model as a tunable
version of our reactor to benchmark Reduced Order Modelling (ROM) techniques.

2.2 SERPENT reactor model

We use SERPENT (Leppénen et al., 2015), a continuous-energy Monte Carlo and photon
transport code, to simulate the Molten Salt Fast Reactor (MSFR) model and generate a
burnup matrix using the JEFF-3.3 nuclear dataset (Nuclear Energy Agency, 2017).

Based on the work of Bouma (2024, p.19-20), we simulate a cylindrical reactor core
with a radius of 100 cm and a height of 200 ¢cm surrounded by a 60 cm thick iron reflec-
tor, as shown in Figure 2.2a. The fuel mixture consists of NaCl — PuCls — ThCly, with
molar fractions of 46.5% NaCl, 18.5% PuCls, and 35% ThCly. The isotope mixture is
their naturally occurring fractions, except for plutonium; we used the fractions found in
spent nuclear fuel from pressurised water reactors, as shown in Table 2.1. Figure 2.2b dis-
plays the resulting radial flux. We used version 2.1.29 of SERPENT for all reactor physics
simulations (Leppénen et al., 2015). The full input script is available in the repository
https://github.com/JonathanPilgram /BurnupROM-ScriptsAndData.


https://github.com/JonathanPilgram/BurnupROM-ScriptsAndData

2.3 Burnup calculations

Before delving into the mechanisms of the burnup calculations, we need to clarify some
assumptions. We focus on simulating the burnup of the salt mixture inside the Molten Salt
Fast Reactor (MSFR) over timescales from days to years, so we assume a mixed core; we
disregard spatial dependence in the nuclide composition, reducing the reactor to a single point
in space. The most questionable assumption is that we are dealing with linear time-invariant
models, meaning that the reactor physics can be approximated by a single, time-independent
burnup matrix, A. Although this assumption is not entirely accurate, as A both affects and
depends on the nuclide composition, it provides a reasonable approximation. Besides, if
the neutron flux increases, the nuclear reaction occur more frequently, but the decay rates
remain constant, modifying the burnup matrix.

One of the main challenges of burnup calculations for nuclear reactors is the problem’s
stiffness; see Section 2.3.2. The timescales of nuclides in a burnup calculation span over 40
orders. We could try to introduce cut-offs to ignore values far outside the timescale of interest,
but the coupling of nuclides in a nuclear reactor prevents simple implementations; a short-
lived, seemingly insignificant nuclide can decay into a significant long-lived nuclide. Ignoring
nuclides with short timescales without corrections is innefective. The extreme stiffness of
the burnup problem presents a major challenge when applying reduction techniques, as the
effects of stiffness on Reduced Order Model (ROM) are not well understood.

2.3.1 The burnup matrix

The burnup matrix A(¢(t), N(t)) &~ A is a square matrix encapsulating all the time scales of
the different processes occurring in a nuclear reactor. Each element of the matrix represents
a rate of change of the nuclide vector N (t); positive values an increase of a certain nuclide,
while negative values a decrease. Mathematically, this is expressed as:

dN(¢)

T AN(t). (2.1)
Equation 2.1 eexpressesents a system of coupled linear ordinary differential equations. Nu-
merically, we solve the burnup equation for the full system with Radau methods, an L-stable
fully implicit method that efficiently handles stiff problems—refer to Hairer and Wanner
(1996, Sec. IV.8) for more details. The SERPENT simulation program, used to generate
burnup matrices for nuclear reactors, orders the nuclide vector in increasing ZAI (Z = proton
number, A = mass number, I = isomeric state) notation. ZAI notation numbers nuclides as

10000-Z + 10 - A +1,

where Z is the proton number, A the mass number, and I the isomeric state (Serpent Wiki,
2020); the ZAI notation increases with nuclide mass. In this notation, interactions that
produce nuclides with a higher proton number appear in the upper half of the burnup matrix,
while interactions producing nuclides with a lower proton number appear in the lower half.

Fuel in a reactor core undergoes two main processes: nuclear decay and nuclear reactions.
Specific to MSFR is the optional implementation of online recycling, which SERPENT can
model through an extension made by Aufiero et al. (2013). Although the current work does
not include recycling, Appendix A provides information about the recycling matrix.

Decay and reactions have a different effect upon the burnup matrix. Decay rates are
always the same, independent of neutron flux or fuel composition. The nuclear reactions are
dependent on both neutron flux and fuel composition. Neutron flux multiplies the reaction
part of the burnup matrix with a scalar, whilst nuclide composition changes the elements of
the matrix relative to each other.



Figure 2.3 shows the sparsity pattern of the burnup matrix when considering decay and
Figure 2.4 the sparsity pattern of solely nuclear reactions. Although, only the decay rates
are time-independent, for the proceeding work we also assume the nuclear reactions to be
time-independent.
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Figure 2.3: Sparsity pattern burnup matrix with solely decay

The matrix is ordered according to ZAI numbering, shown on the axis. Negative values on
the diagonal indicate unstable nuclides. Beta decay lines are visible near the diagonal. These
are positive values, which indicate creation of daughter nuclides. The rarer alpha decay is
visible as dots in the helium row on top of the matrix. Less visible are the positive val-
ues of the daughter nuclides above the diagonal. Alpha decay happens for light and heavy
nuclides. Some of the heaviest nuclides undergo spontaneous fission, which creates the pop-
ulated columns on the right. The sum of the diagonal and off-diagonal elements is positive,
corresponding to the extra nuclei created during alpha decay, spontaneous fission and some
rare decay modes emitting particles.

2.3.2 Numerical imprecision and condition numbers
Computers use bits to represent numbers, using floating point formats for real numbers.
The number of bits used to store the floating point limits the precision of the representation.
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Figure 2.4: Sparsity pattern burnup matrix with solely reactions

The matrix is ordered according to ZAI numbering, shown on the axis. The values on the
diagonal are negative, indicating reaction rates of nuclides. The reaction products are positives
on the off-diagonal. We discern three regions. First, the upper left corner (ZAI<100) where
capture and all transfer reactions occur, thus the matrix is densely populated. Second, the
middle area (100<ZAI<1500), where capture, limited transfer and (n,2n) reactions occur,
creating the sparse pattern. Third, the right columns (1500<ZAI), where fission can also
occur. The columns represent the Fission Products (FP). The off-diagonal elements of the
matrix are larger than the negative values on the diagonal, because fission and the (n,«)
transfer reaction creates extra nuclides. The columns represent the FP.
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Python, for example, uses 64 bits floating point numbers by default. The IEEE Standard
for Floating-Point Arithmetic defines the binary64 format as a floating point number with
15.95 decimal significant digits.

So, why care about numerical precision up until almost sixteen digits of precision? Be-
cause operations like multiplication and taking an inverse propagate numerical errors; the
condition number is the maximum amplification factor of the error. The condition number
of a matrix, subject to the Euclidean norm, is defined as the ratio between the largest and
smallest singular value
Omax(A)
Umin(A) '

In a square matrix, the singular values correspond to the eigenvalues.

If the base ten logarithm of the condition number approaches the significant digits of
the floating point format used to store the number, then the error amplification can be
significant—the matrix is ill-conditioned (Cheney & Kincaid, 2007, p. 321). The values in
the SERPENT burnup matrix range from Apin = 10729 s7! to Apax = 1020 s71, representing
a stiffness of 10%0. We estimate the condition number to be x ~ 10%°. We conclude that
amplification of numerical errors poses a problem when manipulating the burnup matrix.

K(A) = (2.2)

A high condition number also indicates a model that is very sensitive to small changes in
input, which can mean instability. Besides, iterative solving methods need more iterations
when solving stiff/ill-conditioned problems, which increase computational demands.

2.4 Decay chain test model

The Molten Salt Fast Reactor (MSFR) burnup problem stiffness of 100 creates an ill-
conditioned burnup matrix. If we test different methods for creating a more efficient Reduced
Order Model (ROM), then we need a way to circumvent the ill-conditioned burnup matrix
if the method struggles with precision. For this we introduce the decay chain test model,
which can be used as a stepping stone to test and compare different techniques of making a
ROM.

A decay chain consists of a series of nuclides that decay sequentially. Figure 2.5 shows an
example of a real decay chain. The decay chain model can generate arbitrary decay chains,
varying in length of nuclides and the distribution of decay constants. The primary purpose
is to create a simplified, yet physically inspired, model that we can adjust. We use the model
throughout the thesis as a first stepping stone for testing the ROM methods.

The Bateman equations, governing radioactive decay, describe the rate of change of the
number of atoms for each nuclide V;

dé\tf’ = NjAjbjsi — Nii. (2.3)
J

The first term is a source term, summing over all nuclide amounts y Nj, factored in the

decay rate of each nuclide \; and the branching ratio from nuclide j to i: b;_;. The second

term represents decay of nuclide i, given by its density and decay rate. A bit of rewriting

reveals many similarities with Equation 2.1; in fact, they state the same.

The decay rate constant A expresses different rates of decay. The decay rate relates to the
average lifetime of nuclides as A = 1/7, where 7 indicates the time after which the number
of parent atoms reduces to 1/e. The simplest decay chain model assumes the same decay
constant for each nuclide. In reality, not all nuclides are equal; for example, Bismut-209 has
a half-life (6.3-10%% s) longer than the current known age of the universe (De Marcillac et al.,

11
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Figure 2.5: Example decay chain of Uranium-238

The decay chain terminates when it reaches the stable lead nuclide after 14 decay steps. Note
that there are alternative decay paths; some nuclides have more than one possible decay
products. Data provided by the National Nuclear Data Center (2023) and figure by Tosoka
(2014).

2003), while Hydrogen-5 has a half-life less than 100-10~2* s (Kondev et al., 2021, p.20). The
ratio between the smallest and largest decay constant in a chain—referred to as the stiffness
of the problem—can theoretically be 10° . To simulate interactions between nuclides with
decay constants spanning orders of magnitude, we use a logarithmic distribution

1Olog(Amin)"Flog()\max/)\min) fOl“ Amin < A < Amax
A (N) = SAS 2.4
@ 0 otherwise. 24)

Here A, denotes the randomly sampled decay constant for nuclide n, while Api, and Apax
denote the sample range. By creating opposite signed pairs in the decay matrix, we can form
a chain. The decay chain model terminates with a stable nuclide. The result is a burnup
matrix, as shown in Figure 2.6.

12
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Figure 2.6: Sparsity pattern decay chain model of 9 nuclides
Filled circles represent negative values, whilst empty circles represent positive values. Each
pair (in columns) has the same magnitude, but opposite signs. The last nuclide has no
negative value associated with it, indicating a stable nuclide.

The Bateman equations (Equation 2.3) for a decay chain are simpler than a full burnup

system, so we solve them with the implicit Euler method: a first-order backward difference
solver. Although the Radau method offers higher precision, the implicit Euler method is
quicker. A full description of the method is available in Butcher (2003, p. 57).

Figure 2.7 gives two examples of the decay chain model: one with constant decay con-

stants and one with decay constants taken according to Equation 2.4.

Unvarying decay constants

Varying decay constants

1.00- 1.00-
075 075
0.50 - 0.50
0.25 0.25
0.00 - 0.00 -
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Time (s) Time (s)

Figure 2.7: Two simulation examples of decay chain models with 9 nuclides

The initial condition is Ni(¢o) = 1, whilst the rest is zero. The decay chains terminate with
a stable nuclide. Both models are simulated using the Radau method with 1000 integration
steps over 1 second. The left plot shows a decay chain with decay constant A = 20 s~!
for every nuclide. The right plot depicts the decay constants sampled from the distribution
described in Equation 2.4, with Amin =5 st and Amax = 75 s L.

The Python class used for the decay chain model can be found in Appendix B.
The decay chain model presented is not meant to simulate real nuclides, although it
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can do so by setting the decay constants to their physical values. The model is primarily
used for testing purposes, such as comparing different ROM methods and finding the limit
of the methods. In theory, the model can be modified to include more complex processes,
such as recycling. Throughout the next chapters, we frequently use the decay chain model.
Appendix C summarises the default settings of the decay chain simulations.
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Chapter 3

Proper Orthogonal Decomposition

Burnup calculations of a full reactor system are expensive; the calculation tracks 1650 nu-
clides with decay constants spanning 40 orders. For example, solving the burnup equations
of the Molten Salt Fast Reactor (MSFR) model for 500 time steps using an efficient Radau
solver takes over an hour, with a processor clock speed of 2.30 GHz. This is where Reduced
Order Model (ROM) can offer a solution. ROM is essentially a collection of techniques that
perform a basis transformation to a lower-dimensional (lower-order) basis, while retaining
as much information as possible. Previous work in ROM has shown promising results in
the field of nuclear reactor physics. Castagna et al. (2020) shows the possibility of saving
memory by a factor 500 with intrusive Proper Orthogonal Decomposition (POD) techniques
and Bouma (2024, p.11-28) shows similar time savings with the technique.

Questions remain: for instance, why did Castagna et al. (2020) not report any time sav-
ings? Bouma (2024, p.11-28) observes that the intrusive POD method can generate unstable
Reduced Order Models (ROMs) and provides us with a clue; sometimes the eigenvalues of
the ROM lie in a unstable region, but a detailed explanation of the observed instabilities is
missing. The current chapter goes one step further by providing the underlying mechanics
of the instabilities and mitigating them.

The first section of this chapter explains the POD in-depth. Essential concepts are
introduced, followed by mathematical description of how to use POD to make ROMs, which
leads to a summary of implementation steps. The second section presents results of POD
ROMs of decay chain models for varying stiffness, number of reduced modes, and number
of snapshots. A novel finding is the number of reduction failures when of the standard
POD method; the failure mechanism is further investigated. The third section concludes the
chapter: the POD is inadequate for reliably reducing burnup problems—recommendations
for improvements are given.

3.1 Introduction to Proper Orthogonal Decomposition

Data produced by high dimensional coupled models have correlation between variables.
Proper Orthogonal Decomposition (POD)-based Reduced Order Models (ROMs) leverage
the correlation to find a more efficient ordered basis; the POD realigns and orders linear
combinations of nuclides from most to least variation.

Although one does not expect POD to be very useful in two dimensions, it is a good
example to illustrate the technique. Two dimensional data form an ellipse when plotted, as
shown in Figure 3.1. The ratio between the major and minor axis corresponds to the degree
of correlation. POD realigns basis in such a way, that the first basis vector is the direction
of greatest variation; the major axis of the ellipse. We require each additional basis vector
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of the POD to be orthogonal to all previous basis vectors, whilst maximising the variation.
For the ellipse the second basis vector of the POD is the minor axis of the ellipse. The size
of the first basis vector relative to the second increases if the ratio between the major and
minor axis increases, i.e. more correlation in the data.

The ellipse example clarifies two important aspects of the POD:

e POD creates an ordered orthogonal basis, which is ordered from most to least variation
in the data.

e The effectiveness of POD-based ROMs increases with increased correlation in the data.

To give an extreme example for the second aspect. If data is perfectly correlated, we can re-
duce the model to a single dimension without any loss of information—the data is described
by a linear relation.

For two-dimensional data, the method is not of much use as we can reduce the model by
one dimension. Besides, the accuracy loss of reducing this one dimension is probably signifi-
cant. Looking at the ellipse we can see that the quality of the model depends on the relative
length of the major to the minor axis. For a high-dimensional model POD transformation is
more useful. POD produces a basis ordered by variation, such that each basis vector contains
less information than the previous one; we expect that the information contained in last few
basis vectors of the POD is insignificant compared to the first. POD essentially realigns and
orders the variables from most to the least variation.

Physical systems exhibit regularities/correlation. For example, all fission reactions ex-
hibit a recognizable camel curve for Fission Products (FP). Decay chains are correlated, as
particles are conserved; decrease in one nuclide correlates with increase in another. Physicists
catch the natural correlations in their formulas. The formulas for burnup are too unwieldy
for solving large systems, which is where Reduced Order Modelling (ROM) comes in.
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Figure 3.1: Sample points of a covariate Gaussian distribution

The arrows represent the directions of the greatest variance, which would be the basis vectors

after a POD transformation. The arrows coincide with the eigenvectors of the covariance
matrix of the distribution. Figure adapted from Nicoguaro (2016).
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First, we generate snapshots of the system, which are solutions of the equations at cer-
tain time steps. POD converts the snapshots to an orthonormal basis of linear subspaces in
a least squares optimal sense (Rathinam & Petzold, 2003, p1893), meaning that the basis
vectors are ordered according to significance. The first basis vector predicts on average the
greatest variance in the data, the next basis vector the next greatest variance and so on
(Cordier & Bergmann, 2008, p.23-24). By truncating this basis to certain order, we obtain
a transformation that can transform both the governing equations and nuclide vector of
a Full Order Model (FOM) to a reduced space of quasinuclides: a quasinuclide represents
a linear combination of real nuclides. Simulating the Reduced Order Model (ROM) with
quasinuclides is cheaper, but is an approximation of the FOM; using more quasinuclides is
computationally more expensive but approximate the FOM better.

POD allows both intrusive and non-intrusive approaches. Intrusive means that we trans-
form both the nuclides and mathematical model to the reduced space, which allows the ROMs
to use information about the governing equations. Although we use intrusive ROM in the
thesis, there also exist non-intrusive ROMs. The POD can also be used non-intrusively, which
means that the technique tries to rebuild the data of the snapshots in a reduced space without
any description of the underlying mechanics. Scheepmaker (2024) used non-intrusive POD
for making a predictive ROM of a high-temperature gas-cooled reactor and Alsayyari et al.
(2021) used an adaptive non-intrusive POD method for nonlinear time-independent param-
eterized partial differential equations, such as neutron transport. Non-intrusive approaches
excel when the underlying physics is hard to describe or simulation code is inaccessible.

In the fuel of a nuclear reactor we can approximate all the interactions with a system of
coupled ordinary differential equations with a single burnup matrix; the complexity comes
from the number of interactions—the burnup matrix includes 1650 different nuclides. Sec-
tion 2.3 details the burnup matrix. The method of choice for burnup calculations is intrusive
modelling, which can leverage the governing equations to reach a higher accuracy for the
same amount of input data (Rathinam & Petzold, 2003).

The next subsections introduce five essential concepts: the snapshot matrix, determining
the POD, Singular Value Decomposition (SVD), singular values and burnup model projec-
tion. The first four are part of the offline (preparatory) phase, which needs to be done once.
The last is the online phase, which can be ran for as many cases as required.

3.1.1 Snapshot matrix

The snapshot matrix is essential for the data-driven approach of constructing the POD; data-
driven means that we capture data from the FOM to perform the reduction. The data is
collected in a snapshot matrix. Each snapshot (column) of the matrix represents the output
of the FOM at a different time step (Cordier & Bergmann, 2008, p.29-36). The output of
burnup calculations is the nuclide composition, which is represented by a vector. The nuclide
vectors N(¢) for different time steps are concatenated, forming the snapshot matrix S,

S = [N(to), N(t1), ..., N(tm)l. (3.1)

The snapshot matrix has dimensions mime steps X Tnuclides- Generally, generating more snap-
shots with the FOM increases the accuracy of the ROM, but requires more expensive simu-
lations of the FOM. The so-called offline phase of the ROM takes longer.

3.1.2 Determining the Proper Orthogonal Decomposition
From the m xn snapshot matrix S, we can determine the POD. First calculate the covariance
matrix

1
C=—-8Ts. (3.2)

m—1
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Then the POD modes are the ordered eigenvectors of the covariance matrix
C =dA>™ = PADT, (3.3)

C is symmetric, therefore ®~1 = ®7. FEach eigenvector is a mode of the POD and the
corresponding of the eigenvalue give the significance of the POD mode (Weiss, 2019, p.4—
6). Taking the eigenvalue decomposition is computationally an ill posed problem; numerical
errors get larger. The stiffness of the burnup problem exceeds the numerical precision of the
commonly used Float64 data type, hence numerical errors get significant.

3.1.3 The Singular Value Decomposition
Weiss (2019, p.16-17) shows that the eigenvalue decomposition of the covariance matrix is
equivalent to the SVD of the m X n snapshot matrix.

s=uxvT, (3.4)

where U is an m X m orthogonal matrix containing the temporal information and V is a
n X n containing spatial information, which we disregard. (For a non-intrusive approach, this
information is used.) ¥ is a m X n diagonal matrix containing the ordered singular values
0, which relate to the eigenvalues \; as

o2

A= ——. 3.5
om—1 (3.5)
Numerically, the SVD is more stable than the eigenvalue decomposition at a higher com-
putational cost (Golub & Van Loan, 2013, Sec. 2.4). As the SVD is calculated during the

offline phase, which we do once, the extra computational costs are acceptable.

3.1.4 Singular Values
Singular values can be used to calculate the expected precision of ROM, as they are ordered

o1 > 09 > -+ > o,. The relative information content of a lower order model is defined by
(Cordier & Bergmann, 2008, p.11-16)

RIC(M) = 2%710 (3.6)

i=191

The numerator is a sum of all singular values o; of the model reduced to order M. The
denominator is the sum of all singular values of the full model of order N. The equation
shows that the accuracy of the reduced order model is determined by the sum of the singular
values included in ROM versus the total sum of the singular values. Whilst the equation can
be useful, more often than not the order reduction is determined heuristically; one can plot
the singular values and then choose the reduction order based on the speed of the singular
value decrease. Figure 3.2 shows the singular values of an eight nuclide decay chain, which
shows that a reduction to six orders would be accurate.

Either way, reducing the model increases simulation speed at the cost of accuracy; the
expected results of the trade-off can be predicted by looking at the singular values.

Performing the dimensionality reduction involves truncating the matrix to column r. The
result is a matrix @i of n X r size—n being the number of dimensions of the full order model.
The matrix ®p is left invertible, meaning <I>£<I)R = I, but (I>R<I>£ # I, with I the identity
matrix.

Truncating the basis concludes the offline phase of the POD process.
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Figure 3.2: The singular values of Figure 3.4 on a logarithmic scale

The Full Order Model is an eight nuclide decay chain, so eight singular values. The plot
shows that the singular values decay fast after the sixt singular value, which indicates that
the relative error of the ROM is low when including six or more orders.
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Figure 3.3: Summary of the offline phase of the POD

First a snapshot matrix is generated (Section 3.1.1), then the POD modes (Section 3.1.2)
are determined using the SVD (Section 3.1.3). The singular values give a way to predict the
relative information content of each mode (Section 3.1.4), which can be used to choose the
order of the ROM. Figure from the work of Paul et al. (2018).
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3.1.5 Projecting the burnup model
The POD essentially produces a basis transformation, so running the ROM is a matter of
applying the basis transformation. We use a Petrov-Galerkin projection (Redmann & Dulff,
2022). Given the burnup equation

dN(%)

———= = AN(t), 3.7

= AN() (37)
where N is the nuclide vector of length n. A is a square matrix of size n X n containing
constants.
To run the model in the reduced space, we project on the truncated POD modes ®p

N = ®zNp <+ Ny = ®EN. (3.8)

The resulting system of equations is

di@RNR — ADRNR
t N (3.9)
d—f = ¢LADRNy = ARNp.

Nrg is the state vector in the reduced order space, determined by the initial condition of the
state vector
Nr(to) = ®EN(to). (3.10)

The reduced order solution is transformed back to the full order system by applying the
ROM basis to the state vector
N = ®pNg. (3.11)

3.1.6 Summary
The first three steps are the offline phase, summarised in Figure 3.3. The last three steps
are the online phase, where speed-up is acquired.

1. Acquire the snapshot matrix S with results of the Full Order Model (FOM).
. Calculate the Singular Value Decomposition (SVD) of S SVD(S) = USVT.
. Truncate L to acquire the Reduced Order Model (ROM) basis ®,..

2
3
4. Project the FOM to the reduced space using Equation 3.8 and 3.10.
5. Simulate the ROM using Equation 3.9.

6

. Transform back to the FOM using Equation 3.11.

Figure 3.4 shows an example of eight successive orders of Proper Orthogonal Decomposition
(POD) based Reduced Order Models (ROMs) of a decay chain.

3.2 Reduction performance on decay chain models

Section 3.1 explains the methodology of the Proper Orthogonal Decomposition (POD) for
Reduced Order Model (ROM); now we turn to the performance of the technique with the
decay chain test model—introduced in Section 2.4. An excerpt of the script for the perfor-
mance measurement is found in Appendix D. First, we study the effect of reduction orders
and snapshots on the accuracy of the Reduced Order Models (ROMs). However, sometimes
the reduced model ’fails’—the normalised relative error is larger than 95%. The failure
mechanisms are investigated.
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Figure 3.4: Full order vs. reduced orders of a decay chain

The first plot shows a decay chain model with 8 nuclides (N1 (to) = 1, the rest zero), simulated
for 1 second. The decay constants are: A\ = 52.7 s7 5, A2 = 24.2 71, A3 = 10.6 s75, g =
8.3 sfl,/\s = 15.2 sfl,)\g = 6.9 sfl,)w = 32.0 s7! and Ng is stable. Figure 3.2 shows the
singular values of the model. The decay chain has been reduced using 1000 snapshots. Each
successive order approximates the full order model better, which is verified by the normalised
relative error: e,—; = 1.00, €,—2 = 0.86,€r—3 = 0.51, €,—g = 0.12, 6,5 = 4.6 - 1072, ¢, =
7.3-107% €,—7 =2.1-107* ;=5 = 1.6 - 107°.
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3.2.1 Modes vs snapshots

There are two input parameters for the POD reduction. The number of modes of the ROM
and the number of data snapshots. Modes are the number of orders remaining in the ROM,;
modes represent quasinuclides. Similar to Bouma (2024, p.12-18) we make make a table that
shows the effect of the input parameters on the normalised relative error. The normalised
relative error is defined as

|[FOM — ROM]|?
[FOM|]>

€ =

(3.12)

where FOM is the full order solution and ROM is the reduced solution projected on the same
full order space.

For two orders of stiffness stiffness (A € [1,100]) 10 nuclide decay chain the results are
shown in Table 3.1. For every set of input parameters, 100 different decay chains are reduced;
The numbers reported are the average with the standard deviation.

The results indicate that more modes and snapshots increase the accuracy of the ROMs,
albeit with diminishing returns. We just need enough modes and snapshots to capture the
Full Order Model (FOM). More snapshots also decreases the variability in effectiveness of
the ROM; the chance is higher that every characteristic is caught in the snapshots.

Interesting is the percentage of reduced models with € > 0.95, as seen in Table 3.2, which
decrease with increasing snapshots/modes. Besides being worthless models, the so-called
failures are statistically a different group. Only 16% of data should lie above one standard
deviation and 2.5% above two. If we look in Table 3.1, then we find that the failure rate
is higher than predicted by statistical fluctuations, suggesting a different mechanism in the
case of failures.

Table 3.1: Relative normalised error for extremely low stiffness 10 nuclide decay chain

A 10 nuclide long long decay chain with stiffness of 2 orders is reduced to varying orders and
with varying snapshots. Each number represents an average (with standard deviation) of the
Proper Orthogonal Decomposition (POD) reduction of 100 different decay chains. Relative
normalised errors higher than ¢ > 0.95 are disregarded as reduction failures. The table shows
that more modes increase accuracy; more snapshots also increase accuracy. More snapshots
decreases the variability of reduction accuracy.

Snapshots
Reduction 5 10 20 40 80

3Modes 0.65+0.25 0.50+0.28  0.43 +0.25 0.40 + 0.24 0.36 + 0.27
5Modes 0.37+£0.28 0.27 + 0.28 0.23 + 0.28 0.14 + 0.22 0.09 + 0.14

7Modes 0.42+0.31 0.13+0.20 0.07 + 0.15 (2.5 + 5.3)102 (0.9 + 2.9)-102
9 Modes 0.41+0.31 (1.2+3.6)102 (0.8+2.9)102 (0.7 +4.3)102 (0.4 +1.9)-103

Table 3.2: Percentage of failed reductions of Table 3.1
All POD-based ROMs with a relative error higher than ¢ > 0.95 are deemed a failure. Lower order
models with less snapshots fail more often.

Snapshots
Reduction 5 10 20 40 80

3Modes 37% 21% 10% 7% 11%
5Modes 31% 19% 5% 4% 0%
7Modes 34% 11% 5% 2% 0%
9Modes 26% 1% 1% 0% 0%
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3.2.2 The cause of failure
To understand failure, we must first recognize succes, so we investigate a successful POD
ROM of a decay chain. The eigendecomposition of the burnup equation (Equation 3.7) gives

AN() S~ ) NS
&—;Cﬂbl(t)—;@e . (3.13)

C; are constants, determined by the initial composition of N(tg), ¢;(t) = ¢i* are the eigen-
functions and A; are the eigenvalues of the decay matrix. The eigenfunctions show that a
single positive eigenvalues give an exponentially growing solution. For the negative eigen-
values, the speed of decay corresponds to the magnitude of the eigenvalue.
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Figure 3.5: Full Order Model and succesful Reduced Order model

A 10 nuclide decay chain with A € [1,100] has been reduced using five snapshots. Figure (a)
shows a the stable FOM. The eigenvalues of the nine unstable nuclides, shown in Figure (b)
explain the stabililty: they are all real, negative and are spread logarithmically uniform. A
succesful 3-order POD ROM, shown in Figure (c) shows similair eigenvalue structure. The
three eigenvalues, show in Figure (d), are negative, but not all real. The two eigenvalues with
an imaginary part are complex conjugates. The ratio between the real part of the largest and
second largest eigenvalue of the reduced decay matrix is 10, which is smaller than the stiffness
of the chain.
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Figure 3.6: Reduction failures of a 10 nuclide decay chain using five snapshots.

The stiffness is similar to Figure 3.5, which is A € [1,100]. Figure (a) shows an ‘exploding’
type of unstable ROM. This type of failure is caused by one or more positive eigenvalues
(indicated with a red marker), which is the case as seen in Figure (b). Figure (c) shows
another type of failure: ‘collapse’. The eigenvalues, shown in Figure (d), are strictly negative,
but the ratio of the real part of the largest and second largest eigenvalue(s) is 525—larger
than the possible stiffness of the chain. The large gap in the eigenvalues indicates a ‘collapse’.

Figures 3.5 (a,b) show a decay chain with A € [1,100] with its respective eigenvalues.
As expected, the eigenvalues are negative, real and within the range set by the limits of the
constants in the decay matrix.

A successful POD reduction, as Figures 3.5 (c,d) show, has a similar structure in the
eigenvalues of the reduced decay matrix. The eigenvalues are strictly negative and do not
differ more than the stiffness of the FOM. Eigenvalues of the reduced decay matrix are not
necessarily real, but can be complex conjugate pairs. Equation 3.13 allows complex conjugate
pairs, as the imaginary components cancel each other out.

Reduction failures with an normalised relative error € > 0.95 are caused by two types of
eigenvalue structures.

Any positive eigenvalue creates the ’exploding’ failure, such as Figures 3.6 (a,b) show.
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It does not matter how small the positive part is; if enough time passes, the exponentially
growing eigenfunction dominates. The inevitable moment where the exponentially growing
solution dominates is determined by the particular initial composition and magnitude of the
positive eigenvalue. A stable ROM must exclude positive eigenvalues from the reduced decay
matrix.

A large gap, larger than the stiffness of the FOM, between the largest and second largest
eigenvalue(s) of the reduced decay matrix, causes the ’collapsing’ structure, visible in Fig-
ures 3.6 (¢,d). The first mode decays much more quickly than the others; and relatively
contains more information as the gap in eigenvalues increases. The longer lived modes
contain relatively little information, so the solution flatlines after the decay of the initial
condition. The eigenvalues of the reduced decay matrix must be comparable in magnitude.

What causes the change in the eigenvalues? For a square matrix A transformed by a
rectangular matrix ® g, such as a truncated POD transformation,

Ar = dLADR, (3.14)

we define the error matrix as the difference between the full matrix A and the reduced matrix
AR
E=A—-Ar=UxXVT -~ UgXgV{, (3.15)

where we have used the Singular Value Decomposition (SVD) for the second equality. Split
A into the part used for the reduction and the truncated part

E=U <%R ZO ) VT —UpSgVE = UrSrViE = Arp. (3.16)
T
Equation 3.16 shows we can rewrite A + E = Ar + 2Ap, which means that the singular

values (root of eigenvalues) of Ar and Ap are independent. Apply the Bauer-Fike theorem
with a spectral norm (Horn & Johnson, 2012, p.405-406)

A=A < &(S)[[E]l2- (3.17)

if \is any eigenvalue of A + FE, there exist an eigenvalue A of A, such that the inequality
holds. k(S) is the condition number of .S, which is the eigenvector basis of A; kmin(S) = 1,
but for decay chain matrices it is comparable to the stiffness of A. ||E||s = max(0;), 0; € Xp
is the Frobenius norm of F.

Equation 3.17 provides an upper limit on the shift of eigenvalues of the reduced bur-
nup matrix compared to the original matrix. A stiffer matrix A increases the value k(.5)
and reducing the model to less modes increases ||E||2, both allowing more movement of the
eigenvalues. So generally, we can assume that higher stiffness and less reduced orders leads
to more reduction failures.

We reduce 1200 different decay chains with varying stiffness and reduction orders to
quantify the failure rate, which is shown in table 3.3. The table confirms the assumption
that for stiffness below the floating point precision (~ 10!%) the failure rate increases with
higher stiffness or less reduced modes. The number of failures also decreases with increasing
data snapshots, which can be explained with a similar reasoning as above, but include extra
terms in the error matrix F, caused by taking a subset of the data.

Above floating point precision the number of failures first decreases with increasing reduc-
tion orders, but then increases again, which suggest a different mechanism. Floating point er-
rors are introduced when performing the transformation to the reduced basis Ag = <I>£A<I> R
Each multiplication amplifies numerical errors with a maximum of the condition number
of A, which is determined by the stiffness. The numerical errors cause every eigenvalue to
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move slighty from its exact position. The eigenvalues close to the positive plane thus have a
chance to hop from the stable to unstable region. With more reduced orders there are more
eigenvalues that have a chance to hop over the line, thus increasing the chance of a failure

with increasing orders.

Table 3.3: Unstabilized Proper Orthogonal Decomposition reduction performance

200 nuclides long decay chains with decay constants logarithmically uniformly picked with vary-
ing stiffness (Amin = 1, Amax varies) are reduced to 10, 30 or 50 orders based on 50 or 500
evenly-spaced snapshots. Each number represents an average (with standard deviation) of 100
different decay chains. Relative normalised errors higher than € > 0.95 are disregarded as re-
duction failures. More snapshots and modes perform better at the cost of speedup. The number
of failures tends to increase with stiffness, whilst decreasing with more modes and snapshots,
except for the extremely stiff (10%°) models, which behave rather erratically.

50 Snapshots

500 Snapshots

Reduction €total Speed-up Fails €total Speed-up Fails
Stiffness =10° 10Modes 0.40+0.26 21.5+14 77% 0.27+0.30 21.8+24 54%
30Modes 0.48+0.31 989+029 70% 0.12+021 998+019 35%
50 Modes 0.39+0.30 6.46+018 44% 0.08+017 649+0.20 16%
Stiffness =102 10 Modes 0.43+0.35 214+12 89% 0.19+0.26 21.0+2.2 70%
30Modes 0.42+035 9.84+021 69% 027+035 987+019 56%
50 Modes 0.18+0.24 6.39+018 56% 0.10+020 6.37+0.23 44%
Stiffness =102° 10 Modes 0.60+0.10 225+13 97% 0.29+0.38 213+ 14 89%
30Modes 0.25+0.34 9.66+0.25 63% 013+0.23 9.62+020 66%
50 Modes 0.36+0.35 630+015 85% 018+028 6.21+£027 82%
Stiffness =10%° 10 Modes 0.4 23.0 99% 0.26+0.26 21.30+0.53 94%
30 Modes 0.58+0.29 962+014 92% 0.14+0.18 9.66+0.17 97%
50 Modes 0.3 6.1 99% 100%

3.3 Chapter review
The current chapter discusses the Proper Orthogonal Decomposition (POD) technique of
making Reduced Order Models (ROMs). The method is summarised in Section 3.1.6. Section
3.2 shows results of the method when tested with the decay chain test model of Section 2.4.
The results show that standard POD Reduced Order Model (ROM) is unreliable; the ROM
produces ’collapsing’ and ’exploding’ models as seen in Section 3.2.2. The first is caused by
excessive spread in the eigenvalues of the reduced modes, which happens when the number
of reduced modes is low. The quickest decaying mode contains too much information. The
second is caused by positive, unstable eigenvalues—the solution exponentially grows. The
POD projection and numerical errors can displace eigenvalues to the positive plane.

Table 3.3 gives an overview of the reduction performance on varying stiffness decay
chain models with varying number of snapshots and reduction modes; we can draw seven
conclusions about POD ROMs:

1. More reduction modes increase accuracy.
2. More snapshots increases accuracy.

3. Speed-up is only dependent on the number of reduced modes; fewer modes increase
speed.

4. Stiffer models are harder to reduce; accuracy decreases and the failure rate increases.

5. More snapshots and reduced modes decrease the failure rate.
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6. If the stiffness of the Full Order Model (FOM) exceeds the floating point precision
(~ 10%), then failure rate increases.

7. Due to over a 90% failure rate for stiffness of 100, POD ROMs are inadequate to
reduce full burnup problems.

The first three conclusions are readily inferred from the theory of POD ROMs. We need to
strike a balance between minimising the number of reduced modes and maintaining sufficient
accuracy; more snapshots can help, but increase the expense in the offline phase, as the FOM
needs to be simulated more. The fourth and fifth is not obvious; for example, a POD review
study of Lassila et al. (2014) does not mention stiffness of the FOM when discussing stability.
The sixth shows that both numerical precision and the POD projection influence the failure
rate, albeit in a different ways. The standard POD performs best for low stiffness, highly
stable problems; burnup analysis are neither. One advantage is the simplicity of the technique
and possible reduction effectiveness. The technique easily extends to a broader input range
by concetatenating data for different inputs to the snapshot matrix. For burnup anylisis the
seventh conclusion holds true, which is consistend with previous reseach by Bouma (2024,
p.25-28). To reduce the SERPENT burnup matrix (stiffness ~ 100), we must use a more
robust technique; the standard POD technique fails too often at this level of stiffness.

A possible solution is to use symmetric inproduct, which theoretically guarantees that the
eigenvalues do not cross from the negative to the positive plane when projecting the POD on
the full order space (Tabandeh et al., 2016)(Rezaian & Wei, 2020). Currently, it is unclear
wheter it would work when the stiffness of the problem exceeds the numerical precision.
Besides, implementing such methods require rewriting large codebases, as standard packages
are lacking.

The next chapter presents an alternative, easier to implement, strategy, which detects
and moves the unstable eigenvalues.
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Chapter 4

Heuristically Corrected Proper
Orthogonal Decomposition

The standard POD technique produces ROMs, which efficiently simulate the burnup equa-
tion. The ROMs, if successful, depending on the number of reduction modes and snapshots
are accurate, while achieving significant speedup. Nevertheless, standard POD Reduced
Order Modelling (ROM) is not recommended for the extremely stiff burnup problem; the
ROMs are unstable for 90% of the decay chains with a stiffness of 10*0 with no a priori way
to determine success.

The current chapter mitigates unstable ROMs by eigenvalue shift and reassignment.
The idea is to detect the eigenvalues that cause the ROM to fail and modify them. It is a
straightforward approach that is easy to implement.

The first section explains the three step stabilisation method for the POD. The second
section shows results of the corrected POD by showcasing specific decay chains and providing
a table with many repeated reductions. Finally, the last section reviews the corrected POD
and gives recommendations for further improvements.

4.1 Search and reassign

Section 3.2.2 shows that there are two causes of failure. Either a positive value causing an
‘exploding’ solution, or too much spread in the negative eigenvalues causing a ‘collapsing’
solution. There is no way to determine the outcome before performing the reduction process.
However, we can implement mitigation strategies. This research implements three mitigation
strategies, one for ‘collapsing’ and two for ‘exploding’ solutions. The eigenvalue structure of
a ‘collapsing’ Reduced Order Model (ROM) has a huge gap between the largest and second
largest eigenvalue of the reduced decay matrix. An ‘exploding’ ROM has at least one positive
eigenvalue. Given that the Full Order Model (FOM) has strictly negative eigenvalues, which
is true for stable models, there are two mechanisms that move eigenvalues into the positive
plane. Numerical imprecision, caused by the mathematical operations of the reduction and
projection, cause small movements of all eigenvalues. The second involves large movements
of some eigenvalues caused by the Proper Orthogonal Decomposition (POD) method itself.

4.1.1 Preventing eigenvalue gaps: use enough reduced modes

As the POD Reduced Order Modelling (ROM) method randomly displaces eigenvalues, the
mitigation for ‘collapse’ is to add more modes. A large gap between the first and second most
negative eigenvalue causes the ‘collapse’. More modes means a greater number of different
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eigenvalues of the reduced decay matrix, increasing the likelihood of filling the gap. Above
a certain number of reduced modes, unfilled gaps become unlikely. Stiffer problems create
a wider range of eigenvalues, increasing the gap size, thus generally require more modes
to counteract gap formation. We determine the minimal number of modes to counteract
‘collapse’ by testing varying reduction modes. In other words, use more modes until we have
success.

4.1.2 Preventing small numerical errors: shifting eigenvalues
We can shift all eigenvalues slightly towards the negative plane to counteract most insta-
bilities caused by numerical errors. Numerical errors allow every eigenvalue to shift slightly
with every mathematical operation. The magnitude of the shift scales with the condition
number of the matrices involved in the mathematical operation. The movements are small,
when compared to the maximum displacement the POD allows.

Given a matrix A, we can shift the eigenvalues by adding another similarly sized scalar
matrix B = ¢I. The matrices commute: AB = BA. Commuting matrices are simultaneously
diagonalizable, by virtue of the spectral theorem, thus

A+B=UDsU ' +UDgU ' =U(Da + Dp)U". (4.1)

The diagonal matrices D4 and Dp contain the eigenvalues of the matrices A and B respec-
tively; D4 + Dp effectively shifts the eigenvalues. The amount by which the eigenvalues are
shifted is determined heuristically.

4.1.3 Preventing eigenvalue displacement: reassign eigenvalues

The POD method can displace eigenvalues within the limit set by Equation 3.17; eigenvalues
of the FOM can move to almost anywhere in the positive plane. We can make an eigenvalue
decomposition of the reduced burnup matrix

Ap = URARUy' (4.2)

to find positive eigenvalues. We change the sign of the positive real component of the
eigenvalue, reassigning the eigenvalue to the negative plane. The reduced burnup matrix is
recomposed with the eigenvalue decomposition using the reassigned eigenvalues

AR = UR/A\RUél. (4.3)

4.1.4 The overall mitigation strategy
We stabilise the Proper Orthogonal Decomposition (POD) Reduced Order Model (ROM)
with three steps:

1. Use enough modes to prevent ‘collapsing’ Reduced Order Models (ROMs).

2. If there are positive eigenvalues, shift all eigenvalues by a negative value with Equa-
tion 4.1 , mitigating numerical errors.

3. If positive eigenvalues remain in A as found with Equation 4.2 | reassign them to the
negative plane and rebuild the burnup matrix according to Equation 4.3 .

4.2 Performance

The stabilisation strategy should create Reduced Order Models (ROMs) that model the Full
Order Model (FOM) accurately. We use a decay chain model with varying stiffness to check
the performance. Not only do we check if the results are as intended, but we can also see
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Figure 4.1: Heuristically corrected POD strategy and performance

For the three levels of stiffness we reduced a single 200 nuclide-long decay chain to increment-
ing modes, using 500 snapshots. If the reduced burnup matrix contains positive eigenvalues,
indicating an unstable model, then the mitigation strategy of Section 4.1.4 is applied; first
the eigenvalues are shifted by —10~® and remaining positives are reassigned to the negative
plane. For a stiffness of 10° (top figure) the stabilisation methods work as expected; there are
no relative errors above one. The method also works for a stiffness of 10** (middle figure),
although the spread in error increases. The bottom figure shows the result for a stiffness
of 10%® for which the stabilisation does not work. The errors become larger than one and
reduced models failed to solve, shown as missing data points.
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how often the eigenvalues are shifted and reassigned. An excerpt of the code is found in
Appendix E.

Figure 4.1 shows the reduction strategy applied for a decay chain with stiffness of 103,
102, 10%°, and 10%0.

For low reduction orders, we see that the normalised relative error is close to 1, as ex-
pected; the model collapses very often due to the large difference between the most and
second most significant mode.

For a stiffness of 10°, the stabilisation works as intended when enough reduced modes
are used. Eigenvalue shift stabilises most unstable ROMs, which suggests that the unstable
eigenvalues are within 108 of the stable plane.

When the stiffness gets higher, such as to 12 orders of stiffness, the stabilisation method
reassigns eigenvalues frequently, which is not very reliable. The normalised relative error
can still exceed one after reassignment and the errors tend to be higher than without reas-
signment. Reassignment, however, does successfully prevent real ‘exploding’ models for a
stiffness lower than the Float64 (10'%) precision.

If the stiffness exceed Float64 precision, such as at 10%° | then the reassignment strat-
egy is triggered, but the reassigned eigenvalues do not stabilise the model. The problem
is that the stabilisation strategy is dependent on correct detection of positive eigenvalues.
The eigenvalue algorithm accuracy decreases with increasing condition number; the possible
difference between the real eigenvalue and the numerically found eigenvalue increases with
increasing condition number/stiffness. The numerical errors cause false negatives and false
positives when determining the positive eigenvalues, so random eigenvalues get reassigned
without the intended stabilisation.

Table 4.1 confirms the previous observations. For a stiffness of 105 the stabilisation
method prevents failure, especially when using more reduction modes, which suggests that
the only failures remaining are ‘collapsing” models due to insufficient reduced modes. For a
stiffness of 10'2, the number of failures increases, which is explained by the poorer perfor-
mance of the stabilisation and the higher chance for the eigenvalues to contain a gap that
causes a ‘collapse’. For stiffness beyond numerical precision, such as 10%° and 104 | the
corrected POD performs worse than the uncorrected POD described in Chapter 3. The in-
crease of failures could be explained by extra numerical errors introduced by the stabilisation
methods, but a precise explanation is currently lacking.

4.3 Chapter review

A Proper Orthogonal Decomposition (POD) with enough reduced modes, which shifts and
reassigns positive eigenvalues, guarantees stability when the Full Order Model (FOM) has
a stiffness lower than the numerical precision. When the stiffness is larger than numerical
precision, the strategy does not work as intended, which is confirmed by Table 4.1. We
conclude about the stabilisation strategy of the current chapter:

1. Enough reduced order modes (around 50 for a 200 order FOM) counteract collapsing
models effectively.

2. Shifting eigenvalues stabilises most exploding models for stiffness many orders beneath
numerical precision.

3. Reassigning eigenvalues to the negative plane stabilises exploding models for stiffness
smaller than numerical precision.

4. Both strategies are prone to false positive detection of unstable eigenvalues.
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Table 4.1: Performance of the heuristically corrected POD on decay chains

The performance of the corrected Proper Orthogonal Decomposition (POD) has been tried
for four levels of stiffness decay chains. Each decay chain is 200 nuclides long and reduced to
varying orders using 500 snapshots. The values are the average and sigma deviation of 100
reruns. A fail is defined as €totar > 0.95. Compared to Table 3.3 the reduction fails less for
stiffness of 10° and 102, but the number of times ‘detection’ of positive eigenvalues trigger
shifting and reassignment of eigenvalues significantly exceeds the fails of the uncorrected
POD, suggesting false positive detections of unstable eigenvalues. For a stiffness of 10%® and
10%, the stabilisation method seem to destabilise the Reduced Order Model (ROM) when
compared to the uncorrected POD method.

Reduction €Etotal Speed-up Shifted Reassigned Fails
Stiffness =10° 10 modes 0.37 £0.29 222+13 35% 35% 45%
30 modes 0.19+0.31 10.45+0.96 41% 28%  34%
50 modes 0.06 +£0.15 6.63 +£0.19 50% 5% 8%
60 modes 0.02+0.07 5.76 £0.12 59% 4% 1%
Stiffness =10'2 10 modes 0.33+0.28 22.0+2.5 23% 23% 72%
30 modes 0.28 +0.35 10.24 +0.76 40% 33% 47%
50 modes 0.06 £0.15 6.524+0.24 67% 62%  18%
60 modes 0.10+0.20 5.72+0.15 71% 67%  14%
Stiffness =102° 10 modes 0.55+0.36 22.2 4+ 2.1 14% 14%  83%
30 modes 0.67 £0.30 10.14 +0.48 6% 6% 94%
50 modes 0% 0% 100%
60 modes 0% 0% 100%
Stiffness =10%° 10 modes 0.12 23.15 1% 1%  98%
30 modes 0% 0% 100%
50 modes 0.79 47 2% 2% 98%
60 modes 0.8 2.6 1% 1% 99%

5. Stiffness larger than the numerical precision cause too many false positive and false
negative detection of positive eigenvalues for the stabilisation strategy to work correctly.

6. The current stabilisation strategy is not adequate to stabilise the POD method for
application of burnup calculations.

There are possible improvements for the stabilisation strategy. Increasing the numerical pre-
cision could help to more accurately detect the positive eigenvalues. For example, the Julia
language allows straightforward implementation of higher precision floating point formats.
Rezaian and Wei (2018) presents a more complex and efficient eigenvalue reassignment strat-
egy, which corrects the POD better.

Besides POD there are more methods to create Reduced Order Models (ROMs). Mo-
ment matching ROMs, beyond the scope of the current research, could be very useful for the
burnup problem, as they guarantee stability. They can include parameters, such as neutron
flux or fuel composition, in the Reduced Order Model (ROM) (Quarteroni & Rozza, 2014,
p.159-185).
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Chapter 5

Balanced Truncation

Moore (1981) realised that there is another way to reduce physical systems. Instead of min-
imizing the residual of the correlation inner product of data with the POD, we can optimize
for the observability and controllability of the system. Observability and controllability are
quantities that connect a system state to the measured output and chosen input respectively.
Balancing these two quantities gives an ordered basis of the system from most likely state
to least likely state given experimental conditions; Balanced Truncation (BT) truncates the
least likely states, to produce a ROM.
Assume that we have a linear time invariant system, so we can write

AN(t)
—.— = AN(t) + But), (5.1)
y(t) = CN(t)

N(t) is the state of the system; A is the state evolution matrix; B the input matrix with
u(t) the input; C is the measurement matrix and y(¢) is the measurement. Each column of
B and each row of C' can be thought of as a different input or measurement device. The
number of rows of B is equal to the number of rows of A and the number of columns of C
is equal to the number of columns of A.

Conceptually A represents the ‘invisible’ internals of the system; the columns of B repre-
sent external forces; C' represents the influence of the system on the environment. BT finds
lower order matrices that represent the system als closely as possible considering interactions
to and from the environment.

BT has four advantages over POD. First, the explicit split between the system state,
measurement and input is that we can modify measurement and input settings without
modifying the system itself. Second, a stable FOM guarantees a stable ROM with BT.
Stability can be guaranteed. Third, BT requires no expensive snapshots to be generated,
skipping the offline phase of the POD. Fourth, the upper error bound can be calculated a
priori, so we can choose the reduction order according to our need.

A disadvantage is that BT requires the state matrices A, B,C to be known explicitly,
i.e. it is an intrusive modelling method. Additionally, it more computationally expensive
compared to POD, which makes it unfeasible beyond a certain system size.

The first section introduces control theory. The second section tests the BT on decay
chain models. The third and final section reviews the chapter and concludes that although
BT performs better than POD for stiffness up to Float64 precision (10'®), we need another
technique for reducing the burnup problem.

35



5.1 Introduction to Balanced Truncation

To understand what Balanced Truncation (BT) is, we need to introduce five concepts from
control theory: controllability, observability, Lyapunov equations, balancing transformation,
and truncation. The next five subsections explain each of these concepts. The final subsection
provides a summary with concrete implementation steps, so we can use the method for
constructing a Reduced Order Model (ROM).

If the reader would like to go more in-depth with control theory, the author recommends
the Control Bootcamp video lecture series by Steve Brunton (Steve Brunton, 2017).

5.1.1 Controllability

Systems, belonging to a certain space, are not always able to reach every state in the space
using the input of the system. Water in an open pan, dictated by temperature, cannot
reach states above the boiling point because it evaporates, even if we input a lot of energy.
Another example is a car, which, although described by six dimensions (three for place and
three more for the direction), can hardly reach states far above the road, ridiculous amounts
of speed or very steep angles. Certain states are unreachable, even by the best controller.

Formally, given a state evolution matrix A with R™ dimensions and control matrix B, we
define the controllability as

C =[B,AB,A’B, ... ,A"1B]. (5.2)

The span of the independent columns of C' forms a Krylov subspace, representing the direc-
tions in which the state can be manipulated with a certain control input u(t). If C spans
the full state space—the number of independent columns is equal to the that of the state
space—then every state can be reached within a finite time with some input signal u(t)
(Brunton & Kutz, 2022, p.322-324).

To quantify the controllability we can use the infinite controllability Gramian,

We = / eATBB* e T dr, (5.3)
0

which can be thought of as an eigenvector decomposition of the control space. The span of
the controllability Gramian gives the directions which the system can reach, the eigenvalues
the inversely correspond to the costs; directions with smaller eigenvalues cost more energy
and vice versa (Antoulas, 2005, p. 67-74, 78-80).

5.1.2 Observability

Conceptually, observability refers to the group of system states N(¢) that can be determined
on the measurement history y(¢). For example, for a thermometer that can only measure
up to 80 degrees Celsius the state of the system is unobservable when put in boiling water.
Another example would be the speedometer in a car. Although the full movement state
of a car can be described using a three dimensional vector, we usually only care about the
magnitude and thus not observe the full state, but only a subspace of it.

For a state evolution matrix A with R"™ dimensions and measurement matrix C, the
observability is defined as

C
CA

o=| CA | (5.4)

lcAn )
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The span of the independent rows of O form a subspace of states that can be inferred from
any measurement history y(¢). If the observability matrix spans the full state space, then
the system is fully observable in a finite time (Brunton & Kutz, 2022, p.324).

We can also define an infinite Gramian for the observability Wp

Wo:/ eATCrCeM dr, (5.5)
0

which can be thought of as an eigenvector decomposition of the control space. The span of
the observability Gramian and corresponding eigenvalues indicate which directions are costly
to observe; directions corresponding to smaller eigenvalues are harder to observe and vice
versa (Antoulas, 2005, p. 74-80).

5.1.3 Lyapunov equations
Equation 5.3 and 5.5 are in practice not very useful. Instead, we can calculate the Gramians
via Lyapunov equations (Antoulas, 2005, p. 78-79). The controllability Gramian W can
be found by solving

AWe + WeA* + BB* =0, (5.6)

and the observability Gramian by
A*Wo + WpA+ C*C = 0. (5.7)

The mathematical properties of the Lyapunov equations require that the matrices W¢, B,
Wo, C must be symmetric. The Gramians are thus symmetric matrices.

5.1.4 Balancing transformation

The controllability and observability Gramians quantify which states are hard to reach or
observe, both of which are not interesting states, as the system is seldom in a hard to reach
state or we do not know if it is in a hard to observe state. It would be beneficial to find
a basis that spans directions that are both easy to control and observe. Finding this basis,
which is done by balancing the two Gramians, is called a balancing transformation.

The balanced transformation is performed by a simultaneous diagonalization of the con-
trollability and observability Gramians. Start with

We =UU", (5.8)
where U is the Cholesky factor of W. We then take an eigenvalue decomposition of
U*WoU = KX?K*, (5.9)

with K the eigenvectors and X2 the eigenvalues—square of the singular values ¥.. The
balancing transformation T of the system is (Antoulas, 2005, p.207-211)

T=S"?K*U T ' =UK%"'/2, (5.10)

5.1.5 Truncation
The system of Equation 5.1 can be projected to the balanced space similarly to Section Pro-
jecting the burnup model. Begin by balancing

N(t) = TN(t), (5.11)
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where N(t) is the system state in the balanced basis. Equation 5.1 can be expressed in this
balanced coordinate as

dN(Y) _ T~YATN(t) + T7' Bu(t) = AN(t) + Bu(t)

dt (5.12)

y(t) = CTN(t) = CN(¢).

Making a ROM is then as easy as truncating the least reachable and observable dimensions
by truncating the balanced transformation 7" — Ty in the equation above. We have achieved
BT. If we determine the Hankel singular values with

o =V AM(WeWo), (5.13)

where \;(WcWp) are the eigenvalues of the product of the Gramian, then the error of the
ROM is bounded by twice the sum of the truncated Hankel singular values

€e<2 ) o (5.14)

where N is the dimension of the Full Order Model (FOM) and k is the dimension of the
ROM (Antoulas, 2005, p.211-215).

5.1.6 Summary
BT is a Reduced Order Modelling (ROM) method which truncates a basis that is balanced
between the most controllable and observable states. The steps are:

1. Determine the system matrices A, B, C from Equation 5.1.

2. Solve for the controllability and reachability Gramians W and Wp with Lyapunov
Equations 5.6 and 5.7.

Calculate the balancing basis 7' and the inverse 7! with Equations 5.8 — 5.10.
Truncate the matrices 7" and T~! to obtain T and T}gl.

Simulate the reduced system using Equation 5.12.

Transform back to full order space with N(t) = Tr'N(t).

o o W

The Python Control Systems Library (https://python-control.readthedocs.io/en/0.10.0/)
provides useful routines for using BT.

5.2 Reduction performance on decay chain models

Balanced Truncation (BT) should preserve stability of the original model and only requires
a description of the system to make a Reduced Order Model (ROM). The current section
implements BT for decay chain models, so we can compare the performance with that of the
(heuristically corrected) Proper Orthogonal Decomposition (POD).

The general description of a linear time invariant system is given by equation 5.1. We
see that the matrices A, B, and C determine the system fully, so we need to define each of
the three matrices for the decay chain.

The state evolution matrix A is the decay matrix, as it describes how the system evolves
through time. A is a square matrix of size N X N, where N is the number of nuclides in the
chain.

The system input matrix B has some freedom of choice. For example, we could input
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different initial fuel compositions. In the simplified case of the decay chain, however, the
input is the first nuclide. B is thus a single column vector of size N.

The measurement matrix C represents all the states that can be measured. As we are
running a simulation, we have access to all nuclide information independently, so the matrix
C is an identity matrix of size N X N.

As initial state we use X(t9) = 0 and for the input vector we use u(tg) = N(ty) and

u(t > 0) = 0. An excert of code executed for measuring the performance can be found in
Appendix F.

We now investigate two decay chain examples where POD Reduced Order Models (ROMs)
fail and compare them with BT.
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Figure 5.1: Collapsing Proper Orthogonal Decomposition compared to Balanced Truncation

A 200 nuclide decay chain (A € [1,10%]) has been reduced to 10 modes using POD with 500
snapshots. Figure (a) shows the eigenvalues of the reduced modes; the eigenvalues have a
large gap indicating a collapsing model, which is confirmed by (b). BT for the same decay
chain locates the eigenvalue much closer together, as seen in (c). The resulting simulation is
shown in (d), which has a normalised relative error of 4% with the Full Order Model (FOM).
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Figure 5.2: Exploding Proper Orthogonal Decomposition compared to Balanced Truncation

A 200 nuclide decay chain (A € [1,10%]) has been reduced to 10 modes using POD with 500
snapshots. The particular decay constants cause the POD to create a positive eigenvalue
(indicated with a red marker), as seen in (a). The simulation has been extended to 200
seconds in (b) to show the exponential growth clearly. BT for the same decay chain guarantees
stability; the eigenvalues are all in the stable region as seen in (¢). The BT ROM simulation,
shown in (d), has a 5% normalised relative error.

5.2.1 Stability comparison
Decay chains showed instabilities after reduction in the previous chapters about (heurstically
corrected) POD, especially as stiffness of the decay constants increases. There were two types
of unstable models: ‘collapsing’, caused by a large difference in the most and second most
negative eigenvalue and ‘exploding’, caused by a single or more positive eigenvalues; both
are described in detail in Section 3.2.2.

BT should produce only stable ROMs if the FOM is stable, ensuring reliability of the
reduced model. To test, we compare a specific case of POD ‘collapse’ and ‘explosion’ with a

BT ROM for the same chain.

Figure 5.1 shows a 200 nuclide decay chain with five magnitude orders of stiffness of
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which the 10 order POD ROM collapses. BT on the same chain does produce a stable ROM,
as the eigenvalues are placed much closer together. The relative normalised error is only 4%,
which is on the low side of the error bound for what POD ROMSs can achieve according to
Table 3.3 and 4.1.

Figure 5.2 shows similar results for another five magnitude orders of stiffness decay chain,
which explodes when using POD; the normalised relative error with the FOM is 5%.

BT does not only give a stable result where POD does not, but it also provides an efficient
ROM.

Repeated BT reductions, as shown in Table 5.1, demonstrates that stability and efficiency
of decay chains are reliable. None of the 800 decay chains failed to reduce with BT. The
average and variation of the normalised total error with the FOM is also much lower than
for (heurstically corrected) POD.

For higher stiffness, the variation increases. The average total error is lower for 10 reduced
modes, probably because stiffer decay chains have more extremely short lived nuclides, which
can be left out without loss of accuracy. For more modes, the variation in error dominates
the average error, limiting the average error.

Table 5.1: Reduction performance of Balanced Truncation

For each stiffness and reduction setting, 100 different 200-nuclide-long decay chains have been
reduced using BT. The average and standard deviation are reported in the table. For stiffness
of 10° and 10'2, none of the reductions failed. With increasing reduced modes precision
increases while losing speed-up compared to the FOM. Results for stiffness of 10%® and 10%°
are not reported, as all reductions failed. The 64 bit implementation of BT did not work for
stiffness beyond numerical precision.

Reduction Etotal Speedup Fails

Stiffness =105 10 modes (3.7 +1.1)102  20.88+0.36 0%
30 modes (0.2+15)10%  9.83+078 0%
50 modes (0.1 +1.2)-10° 7.20 +0.55 0%
60 modes (1.0+25)10"  7194+053 0%

Stiffness =102 10 modes  (20.66 +7.9)10% 20.70 +0.91 0%
30 modes (2.7 +6.7)10%  10.1+1.1 0%
50 modes (0.6 + 4.6)-10° 9.00 +0.78 0%
60 modes (0.2+17)10%  913+0.80 0%

5.2.2 Limit of Balanced Truncation
BT produces reliable and efficient ROMs for a stiffness of 10° and 10'2, but for stiffness higher
than 64 bit numerical precision, such as 10% and 10%°, the method does not work. Although
the real system is stable, the 64 bit approximation is not. The Lyapunov equations can not be
solved precise enough within the numerical precision, so the controllability and observability
Gramians are not stable. Without stable Gramians the balancing transformation can not be
performed (Antoulas, 2005, p. 242); the code throws an stability error and exits.

We can call systems with stiffness beyond numerical precision ‘pseudo-unstable’: they
are stable, but appear unstable within our observed precision.

5.3 Chapter review

This chapter recasts the burnup problem in terms of control theory, specifically Balanced
Truncation (BT). Section 5.1 explains the concepts of BT. Section 5.2.1 compares the perfor-
mance of BT with that of (heurstically corrected) Proper Orthogonal Decomposition (POD)
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from previous chapters, as shown in Figure 5.1 and 5.2. Table 5.1 shows the performance
of BT on decay chains of stiffness—10° and 10'?>—lower than numerical precision. Higher
stiffness does not work. Based on the findings we can make several conclusions:

1. Balanced Truncation guarantees stability if the Full Order Model (FOM) is stable and
the stiffness of the FOM is within numerical precision.

2. The BT Reduced Order Models (ROMs) of 200 nuclide decay chains are at least 90%
precise for 10 reduced modes.

3. The precision increases with more reduced modes.
4. The precision of the ROMs is reliable, as the variation is comparable to the error.

5. Less reduced modes increase speed-up, up to 20 times for 200 nuclide decay chains
reduced to 10 modes.

6. BT with 64 bit floats is not fit to reduce burnup problems, as the method fails every
time.

Compared to (heurstically corrected) POD, BT has advantageous properties. Under the right
circumstances, the stability is guaranteed and the ROMs are reliably efficient. However, for
burnup problems with a stiffness of 10 | the method does not work because the lower
numerical precision cause ‘pseudo-instabilities’.

The method could work if the numerical precision is increased to a level where the
Gramians of the burnup problem can be determined correctly. However, determining the
Gramians with increased precision may become too expensive to compute within reasonable
time. Additionally, it requires extensive tailoring of the available libraries.

Maybe, just maybe, we can combine the reliability and stability of BT with the compu-
tational advantages of POD to have the best of both worlds. The next chapter presents the
Balanced Proper Orthogonal Decomposition, a hybrid of the BT and POD.
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Chapter 6

Balanced Proper Orthogonal
Decomposition

Hanging between POD and BT is the Balanced Proper Orthogonal Decomposition (BPOD).
The idea is to find a balancing transformation similar to BT, but approximating controllabil-
ity and reachability matrices with a singular value decomposition of data snapshots (Willcox
& Peraire, 2002). BPOD is an intrusive method: full knowledge of the system matrices is
required (Taira et al., 2017).

The BPOD guarantees conservation of stability, like BT; the reachability and observabil-
ity subspaces are not explicitly calculated, so we can circumvent the computational issues of
the BT found in the previous chapter.

Similar to BT, BPOD relies on a linear time-invariant system for the nuclide vector N(¢)

dN(t) _
—3 = AN() + Bu(t) (6.1)
y(t) = ON(1)

Chapter 5 provides the details of each of the system matrices A, B, C and system input u(t).
Contrary to BT, BPOD does not first balance the full system description and then truncate
it, but the other way around: the system is truncated and then balanced, which makes it
less demanding.

The chapter first introduces the method, ending with a summary of the concrete steps.
The second section tests the reduction performance of BPOD on decay chains of stiffness
10%, 102, 10%°, and 10%°. The third section shows the performance of a 1650 nuclide burnup
problem. Finally, the fourth section reviews the chapter and gives recommendations for
improvements.

6.1 Introduction to Balanced Proper Orthogonal Decomposition
Balanced Proper Orthogonal Decomposition (BPOD) is unique in the way that it uses a
limited amount of data to directly generate a truncated balancing transformation. This
section explains the differences with previous methods and concludes with a summary on
how to perform the BPOD. This section is based on Rowley (2005), which provides a concise
and clear explanation of the BPOD.
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6.1.1 Input impulse response

A system, as described by Equation 6.1, can be characterized by the impulse response to the
possible inputs (Brunton & Kutz, 2022, p.370-371). If we limit our inputs, then we need to
simulate only a few impulse responses. The relevant inputs are defined by B. Therefore, set

N (to) = by (6.2)
into the burnup equation
dNg(t
d";( ) _ AN (). (6.3)

Here, by, is the kth column of the B matrix. In other words, we capture the impulse response
of the possible inputs.

For the decay chain, this is a single vector with the initial composition of the chain. For
more complex simulations, we could choose for example B to represent different initial fuel
mixtures.

6.1.2 Output impulse response
Similar to the input impulse response, we can simulate the output impulse response, how-
ever, this process is more involved.

First, determine the Proper Orthogonal Decomposition (POD) modes ¢y, of {CNy --- CNy}.
Chapter 3 explains the POD modes. Choose a suitable projection rank r for the POD modes
¢m. The output impulse response can be found by putting

z(0) = C%¢, (6.4)
into the adjoint system
dZ,(t)
= A*Z,(t). .
- (t (65)

The adjoint system must be simulated r times.

6.1.3 Data matrices
Define t1._,7 as a concatenation of all time steps between [t;, ¢7] multiplied by the square
root of the quadrature coefficients ¢, i.e. the time step. Using this notation we can write

{V01N(t1) ---+/6p N(t7)} = N(t1.7). (6.6)
We collect the simulated impulse response data in the matrix
X = {Ni(tr.»r) -+ Ni(tro7)} (6.7)

and the output response data in the matrix

Y = {Zi(tisr) - Zo(tisr)) (6.8)

6.1.4 Balanced Proper Orthogonal Decomposition Transformation
The controllability and observability Gramian can be approximated as (Moore, 1981),

We=XX*"Wo=YY". (6.9)

Now, supposen that we take the Singular Value Decomposition (SVD) of Y*X and truncate
the singular values to R

YV*X =USV* = (Ur Ur) <EOR 8) <¥R> = UrSRV, (6.10)
T
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then we define the matrices
Tr = XVaSy''?, Sgp =5, 2Usv™. (6.11)

Rowley (2005) shows when the singular values are not truncated, that Tr and Sgr are equal
to the balancing transformation and the inverse. The matrices directly provide a truncated
balanced transformation.

6.1.5 Projection
The projection to the Reduced Order Model (ROM) space is similar to Balanced Truncation
(BT), shown in Section 5.1.5,

N(t) = TgNg(t), Ng(t) = SrN(?), (6.12)

where Ng(t) is the nuclide vector in the truncated balanced basis. Equation 6.1 can be
expressed as (Brunton & Kutz, 2022, p.371-372)

dNg(?)
dt

= SRATRNR(t) + SRBu(t) = ARNR(t) + BRu(t)
y(t) = CTRNR(t) = CRNR(t).

(6.13)

6.1.6 Summary
The Balanced Proper Orthogonal Decomposition (BPOD) method can be summarised by
the following eight steps:
1. Define system matrices A, B, C.
Solve the system %it) = AN(t) for every input column of B.
Compute the Proper Orthogonal Decomposition modes of {CNj(¢),...,CNg(t)}.
Solve adjoint system dﬁ—y) = A*Z(t) r times for z,(0) = C*¢,.
Form data matrices X,Y with Equation 6.7 and 6.8.

Compute the Singular Value Decomposition of Y*X.

A S i

Determine the BPOD transformation with Equation 6.11.
8. Project and run the model in the reduced space according to Equation 6.13.

Note that only step 6 and 7 perform operations with possibly ill-conditioned matrices, how-
ever, this should not pose problems. The balanced space is symmetric, so is the inner product.
Symmetric inner products are known to be stable (Tabandeh et al., 2016).

6.2 Reduction performance on decay chains

The properties of the Balanced Proper Orthogonal Decomposition (BPOD) mean that the
Reduced Order Model (ROM) should be stable, if the Full Order Model (FOM) is stable and
the data snapshots X, Y represent the model well. We want to choose a solver with minimal
numerical errors for stiff problems. The solver of choice is the Rodas5P method implemented
in Julia, which benchmarks as the best within the Rodas family for high accuracy require-
ments (Steinebach, 2023). Furthermore, Julia offers faster executing times when compared
to Python and allows intuitive multithreading.

Choose A to be the decay matrix of 200 nuclides, B a 200 long column vector with the
one on the first entry and zeros on all others, and C' to be a 200 X 200 identity matrix.
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The initial state of the system is z(tp) = 0, so we start the simulation by u(tg) = N(to),
after which we set u(t > 0) = 0. Due to a partial rewrite to Julia, the steps for measuring
performance are

1. Generate a decay chain using Python.

2. Pass the system to Julia.

3. Find the BPOD transformations Tk and Sg, using the RodasbP solver.

4. Pass the transformations to Python.

5. Compare performance FOM with ROM using implicit Euler method in Python.
An excerpt of the Julia and Python script is added in Appendix G.

100 different decay chains with stiffness 10°, 102, 10%°, and 10%° have been reduced to
2, 4, 6, 8 and 10 reduction orders, for a total of 2000 reductions. The results are listed in
Table 6.1.

The speedup decreases with more modes, but remains a bit above that of Balanced Trun-
cation (BT), as seen in Table 5.1 and is similar to Proper Orthogonal Decomposition (POD),
as seen in Table 3.3.

Interesting is the behaviour of the normalised relative total error and failure rate. Con-
trary to the stability guarantee predicted by the theory, the BPOD has some failures for all
levels of stiffness. However, at stiffness lower than numerical precision, 106, the failures stop
for more modes, suggesting some type of ‘collapse’. For stiffness above numerical precision
the normalised total error first decreases with more modes before flattening out after 8 modes
for stiffness 10%° and 6 modes for stiffness 10 . At the same time the failure rate increases,
until also flattening out for a stiffness of 104°.

The exact cause of the failures and flattening of error is unknown. A quick experiment
with similar decay chains, but 256-bit precision for the multiplication and Singular Value
Decomposition (SVD) of the data matrices X,Y, gives similar results, which suggests that
the failures are caused by something else.

We suggest that the failure is caused by the numerical solvers of the decay chain, which
is supported by the fact that error and failure rate flatten out. The BPOD method can not
approximate the FOM better than allowed by the precision of the data. We could test this
hypothesis by using preciser solvers with more snapshots.

For now, we conclude that the BPOD implementation for decay chains can be improved,
but the BPOD method can be tried on a real burnup problem, as the failure rate is the lowest
for the extreme stiffness of 10° compared to (corrected) POD and BT reduction methods.

6.3 Reduction of Reactor Burnup

So far the Balanced Proper Orthogonal Decomposition (BPOD) shows promising results in
regards to reliability and efficiency for reducing a full burnup problem. Using the Molten Salt
Fast Reactor (MSFR) reactor model, described in Section 2.2, as an example, we test BPOD
on a burnup problem. We can use the script for the decay chain performance of Appendix G
with a Radau solver instead. We use the Radau solver to make a Full Order Model (FOM)
simulation, shown in Figure 6.1. We took A(t=30 days) to ensure xenon saturation. The
simulation shows the conversion of fuel to Fission Products (FP).

Surprisingly, the 64-bit eigenvector decomposition finds positive eigenvalues, although
the simulation is stable up until 10 years. The positive eigenvalues are probably negative
eigenvalues, which are displaced to the positive plane due to numerical errors. Increasing the
timescale of the simulation, or using a eigenvector corresponding to a positive eigenvalue does
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Table 6.1: Decay chain reduction performance of Balanced Proper Orthogonal Decomposition
For every stiffness and reduced modes, a 100 different decay chains have been reduced using
BPOD with 500 snapshots. The values reported are the average, with the standard variation.
Fails are defined as €otal > 0.95. Increasing reduced modes generally significantly increases
accuracy, however, for a stiffness of 10%® accuracy increases only up to 8 modes and for stiffness
of 10° up until 6 modes. The speedup decreases with more modes, as expected. Currently,
the failure rate for low orders and low stiffness remains unexplained. For stiffness 10%° the
failure rate increases for more modes. For stiffness 10%° the failure rate also increases with

the modes, but flattens out after 6 modes.

Reduction Etotal Speedup Fails

Stiffness = 10° 2modes (373.533 +3.4)-10° 28.12 + 0.63 2%
4 modes (19.28 + 2.4)-102 28.05+0.40 10%

6 modes (11.46 + 4.5)-102 26.89+0.42 17%

8 modes (7.6 + 2.2)-102 253+22 0%

10 modes (3.7 + 1.4)-102 2233 +£0.53 0%

Stiffness =10 2 modes (36.05 + 5.2)-102 28.29+0.39 2%
4 modes (15.12 + 3.5)-10? 27.58 + 0.62 4%

6 modes (8.7 &+ 3.1)-10? 26.80+0.54 1%

8 modes (3.9 +1.8)-1072 2493 4+ 0.43 0%

10 modes (2.3 +1.1)-102 22.24 + 0.53 0%

Stiffness =102° 2 modes 0.38 +0.13 2821+ 0.56 4%
4 modes (12.08 + 5.8)-102 27.6 £1.2 13%

6 modes 0.08 4 0.11 26.97 £ 043 23%

8 modes (2.5 + 1.6)-102 2498 +0.45 22%

10 modes (2.0 +1.7)-102 22.0+1.4 32%

Stiffness =10 2 modes 0.34 + 0.12 28.254+0.45 12%
4 modes (13.2 +9.3)-10? 2818 - 0.44 20%

6 modes 0.07 +0.13 26.81+0.46 55%

8 modes 0.06 + 0.13 252 +21 51%

10 modes (3.3 +£9.2)-10? 22214+ 0.39 49%

not cause instability. We can thus confidently ascribe the positive eigenvalues to numerical
errors, caused by the condition number of the burnup matrix.

The preparatory phase of the BPOD, which is finding the transformation matrices to and
from the reduced space, starts with collecting 500 snapshots of the system. The runtime is
approximately 10 minutes per mode, as each mode requires collecting 500 more snapshots
of the adjoint system. A run with 1000 snapshots did not show any significant improvement
over 500 snapshots per simulation, suggesting that the number of snapshots could be lowered
further than 500 to decrease data collection runtime.

The BPOD reduces burnup problems efficiently. With as few as 4 reduced modes based
on 500 snapshots, the total normalised relative error and the maximum error for any nuclide
which reaches an atomic density of 10 (blem™, is below 107, as Figure 6.2 shows. The
figure also shows that the total error and maximum nuclide error are near identical, which
is confirmed by inspecting the accuracy of the FP, as seen in Figure 6.3.

There were no failed reductions within the dataset, so BPOD seems reliable for burnup
problems. Probably because the change in neutron density is generally much slower than for
decay chains, which allows the RodasbP to solve accurately.
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Figure 6.1: Full order simulation of MSFR burnup

The burnup matrix A(t = 30 days) is simulated to ¢t = 3 - 108s & 10 years. The simulation
of Figure (a) shows the steady decrease of fissionable nuclides and the production of many
Fission Products. A zoom of the eigenvalue plot is shown in Figure (b). Most eigenvalues are
negative, but some are positive (indicated with red markers). These should also be negative,
but the numerical error of the eigenvector decomposition moves the eigenvalues.

Compared to other methods that approximate the burnup matrix, the BPOD ROM
performs extremely well. The maximum nuclide error is a factor 1000 lower and the runtime
a 1000 times faster than alternative methods reported by Isotalo and Aarnio (2011)!

6.3.1 Caveats and improvements
The current implementation of BPOD has some caveats that show room for improvement.
The implementation can be improved in reliability, applicability and accuracy.

Although the method seems reliable for reactor burnup problems, this should be further
investigated, as the decay chain model showed instabilities. We suggest implementing the
method in one language, reducing the chance for unexpected behaviour of the code. Between
Python and Julia, we would choose Julia, which offers more control over the numerical
differential equation solver and executes at a higher speed.

The current model has been trained on a single initial fuel mixture. We could generalise
the method by encoding information of different fuel mixtures in the system response matrix
B, adding columns for different initial mixtures. Training i-mixtures would extend the
preparatory phase of the BPOD by a factor ¢ as the whole preparatory phase up until the
data matrices X,Y needs to be repeated.

Furthermore, the current model assumes a linear time-invariant burnup matrix A, while
in reality it depends on both the nuclide composition N(¢) and the neutron flux ¢(¢). Similar
to Bouma (2024, p.29-38) we could split the burnup matrix into a constant part and variable
part. Leveraging the system description of Equation 6.1, we could write

dlzit) = A1N(t) + Azu(o(t),N(t)) (6.14)
y(t) = CN(t)

Looking at the properties of the burnup matrix, as described in Section 2.3.1, we should
choose Aj as the decay part of the burnup matrix concerning decay. As should then represent
the response of the system to every nuclide, which approximately is the part of the burnup
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Figure 6.2: Performance of Balanced Proper Orthogonal Decomposition for t = 3-10%

The BPOD is based on 500 snapshots generated with Rodas5P. Figure (a) shows the decrease
in error between the Reduced Order Model (ROM) and FOM, which decreases up until 6
modes. The maximum individual nuclide error—maximum nuclide error—for nuclides which
reach an atomic density of more than 10 b cm™ is compared to the total normalised relative
error; the difference is minimal. The ROM ran for 1000 steps. The runtime per simulation
step, shown in Figure (b), inexplicably first decreases, before increasing with more modes,
but generally is in the order of 107 seconds.

matrix concerning reactions. The input vector u(¢(t), N(t)) ~ ¢(t)N(t) can then be used to
simulate changes the flux and nuclide composition. It could even be possible to choose Ao
in such a way that it encodes fuel mixture information. If so, then a single transformation
can be found to reduce general burnup problems. There are two downsides: the preparatory
phase could significantly increase, as many simulations are needed to get data on all possible
inputs, and the ROM should probably include more modes than four to remain accurate for
the full parameter space, which would come at the cost of speedup.

6.4 Chapter review
The chapter starts by introducing the Balanced Proper Orthogonal Decomposition (BPOD),
which leverages simulated impulse responses on the (adjoint) system to gather data matrices.
The data matrices can be used to directly find a truncated balancing transformation, skipping
directly calculating the system Gramians. The method is summarised in Section 6.1.6.
Section 6.2 shows results of the BPOD on decay chains, which give mixed results. The
speedup is similar to that of Proper Orthogonal Decomposition (POD), but accuracy and
stability for decay chains are lacking; an explanation is lacking, especially when looking at
the results for the full burnup problem of Section 6.3, which is stable and accurate. Currently,
the hypothesis for the instability is that the BPOD stability depends on the accuracy of the
dataset, which could be too low for the decay chains.

We conclude:
1. BPOD achieves similar speedup to POD.

2. A few BPOD modes create an accurate Reduced Order Model (ROM) of nuclear
burnup—4 modes give a normalised relative error of 107,

3. BPOD can create a unstable ROM from a stable Full Order Model (FOM), although
an explanation for this is lacking.
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Figure 6.3: Zoom in of a subset of Fission Products at t = 3-108 for one and two modes

A bar plot the FP atomic density confirms that no individual nuclide performs worse than
others. The BPOD reduces all nuclides with the same precision. However, the error at the
end of the simulation is clearly higher than the total normalised error reveals for one mode,
as seen in Figure (a). A small error at the beginning can grow larger. Adding a second mode,
as seen in Figure (b) fixes resolves the problem.

4. The right choice of solver for the burnup equation is crucial for BPOD.

5. Collecting the datasets for the BPOD takes a significant amount of simulation time,
which can still be optimised.

6. The total error of the model is equivalent to the individual nuclide error; no nuclide is
reduced worse than another.

7. BPOD is a promising technique for reducing nuclear burnup problems: the speedup
and accuracy is a factor 1000 better than reported alternatives (Isotalo & Aarnio,
2011).

Section 6.3.1 discusses three possible improvements. The first is to make a pure Julia imple-
mentation for the burnup problem; the second is to modify the system matrix B to include
more fuel mixtures in the ROM; the third is to modify the system according to Equation 6.14
to include non-linear behaviour of burnup.

Furthermore, the differential solving method should be investigated. The solver can cause
inaccuracies and takes up the most significant portion of determining the BPOD. The cur-
rent implementation uses constant time-stepping, but variable time-stepping should increase
the accuracy of the datasets, which is possible according to Equation 6.7. It could even be
possible to implement another approximation method for generating the BPOD datasets.
For example, the Chebyshev rational approximation method of Isotalo and Aarnio (2011).
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Chapter 7

Conclusions

The fuel mixture in nuclear reactors is constantly changing, due to decay of unstable nuclides
and nuclear reactions with the free neutrons in the reactor core. The burnup equation, gov-
erning the fuel mixture change, is a set of coupled ordinary first order differential equations.

Solving the burnup equation would not pose a problem if it were not for the size of the
system. The fuel of the Molten Salt Fast Reactor (MSFR), a very promising new reactor
type, such as described in Chapter 2, contains 1650 different nuclides during operation. The
matrix A is of size 1650 x 1650, with entries ranging from 102° s=! to 10?° s~!. Directly
solving the differential equation can take a long time and is not recommended.

Reduced Order Modelling (ROM), a technique that reduces the order of a system while
keeping accuracy loss to a minimum, can speed up burnup simulations. Four different meth-
ods have been investigated and compared. The stiffness, determined by the fraction of the
largest and smallest value in the burnup matrix, is 10°. Such extreme stiffness causes nu-
merical issues, so we introduce a simplified verion of the burnup problem, that of an arbitrary
decay chain: a chain of nuclides decaying into one another. The stiffness can be tuned.

Chapter 3 focusses on the Proper Orthogonal Decomposition (POD), which is easy to
implement and can a huge speedup. The idea is to generate snapshots of the model and
use the correlation in the snapshots to find a transformation to a lower order basis of the
most significant correlations. However, testing the POD on 200 nuclide long decay chains
of stiffness 10°, 102, 10%°, and 100, shows increasing instabilities; the normalised relative
error of the Reduced Order Model (ROM) compared with the Full Order Model (FOM) is
€ > 0.95 in these cases. The eigenvalues of the ROM are either spread too far from each
other, causing quick decay of the initial condition, or the eigenvalues are moved into the
possitive plane, causing exponentially growing solutions. As the amount of unstable models
is above 90% for stiffness 10%°, we conclude that POD is not suited for nuclear burnup.

Chapter 4 modifies the POD algorithm by heuristically searching and replacing the eigen-
values that cause the unstable models. Add sufficient modes to prevent the spread of eigen-
values and shift or reassign the positive eigenvalues to the negative plane to avoid exponential
growth. This correction strategy proves too simplistic, as the stability issues are for stiffness
of 10%° and 100 are worse. About 98% of the models fail to achieve an normalised relative
total error of € < 0.95.

Chapter 5 implements a method taken from control theory: Balanced Truncation (BT).
The method aims to find a transformation that balances the controllability and observability
of the system with using the system description, i.e. no data is required. The first is the
system states that can be reached with the possible inputs and the second are the states
that can be observed with the measuring devices. The balancing transformation transforms
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the system to an ordered space according to the expected observed abundance of system
states. Truncate the least abundant states to create a ROM. BT produces accurate results
without any unstable models, but there is a shortcoming. The controllability and observ-
ability Gramians, crucial matrices for calculating the balancing transformation, cannot be
determined if the stiffness of the problem goes beyond the 10'® Float 64 precision. None of
the decay chains with stiffness of 10%> and 10%° could be reduced.

Chapter 6 introduces Balanced Proper Orthogonal Decomposition (BPOD), a midway
technique between POD and BT. The idea is to perform a balancing transformation but use
the POD to directly calculate the truncated basis transformation from data snapshots. The
method therefore does not determine the controllability and observability Gramian, allowing
application to any stiffness. Furthermore, it reduces the system in the symmetric balanced
space, which is beneficial for numerical stability. BPOD inexplicably can fail for all levels
of stiffness decay chains, it does performs better with regard to stability than the previous
methods for the highest stiffness: creating stable Reduced Order Models (ROMs) for about
50% of decay chains with stiffness 100.

Of the four techniques, only the BPOD, is applied to a full burnup problem of the MSFR.
Within the limits of a single initial fuel mixture and the assumption A(N(t), ¢(t)) ~ A, the
ROMs perform well. For a ROM of 4 orders the runtime per burnup step is around 10 s
with a total and nuclide specific normalised relative error below 107°. Both results are by a
factor 1000 better than the best burnup methods reported by Isotalo and Aarnio (2011)

Recommendations

We advise against POD for reducing burnup equations. The technique does not work for
stiff burnup problems. Even with some, although heuristic, corrections, the method cannot
reliably produce ROMs. Besides, there are more efficient reduction methods.

BT is a useful technique, currently limited by the Float 64 precision of Python. A imple-
mentation with higher floating point precision, in for example Julia, should work for burnup
problems. As BT does not require data snapshots, it could be quick to set up and create
ROMs for different scenarios. This can be worth pursuing.

BPOD is the most promosing. The implementation of this thesis already reduces burnup
problems with succes. Incorporating a range of initial fuel mixtures requires small modifica-
tions and the accuracy /stability can be improved with a more accurate solver using variable
time stepping. Furthermore, it could be possible to modify the system according to Sec-
tion 6.3.1, so it incorporates the non-linearity of the burnup matrix. If done correctly, this
could open the door to using BPOD to speedup general burnup simulations, independent of
intial fuel mixture and neutron flux.
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Appendix A

Recycling

A well designed recycling process conserves the amount of particles and chemical balance of
the fuel mixture; there is a constant stream of old fuel being replaced with fresh fuel. The
specifics of a real recycling process are still unclear, as no setup has yet been build. However,
we can include a theoretical recycling process to our burnup calculations by adding terms to
the burnup matrix.

Previous research by Aufiero et al. (2013) has defined an extended burnup code to include
recycling. First, add a term representing the effective removal times of recycled chemical
specie. Effective removal times are quite similar to decay, as chemical processes have different
separation efficiencies for different specie; every cycle there is certain fraction separated. For
example after a recycling for one year the fraction of a certain nuclide has halved (assuming
no production of that nuclide), then we can define a effective "half-removal’ time of one year.
Recycling can thus be modelled like decay with an effective removal times instead of decay
times. Recycling adds terms to the burnup matrix for nuclide amount N;

dN;
dt

the A;repro contains the effective reprocessing time for the recycled nuclides N;.
To keep the chemical composition constant there are two additional processes. Each time
a heavy metal nuclide (denoted as HM) fissions it needs te be replaced

dN;
3 = > Nig-oky (A.2)
k=HM

= —N; A repro- (A1)

with fresh fuel feed, defined by the atomic fraction ¢; of the fuel feed. Furthermore the anions
of the fuel salt (natrium) need to be taken out when new atoms are created by fission, but
added again when fission products (denoted FP) are taken out by the recycling process

dgffa == 2 Nig-ony- (Z FY!HZ) + 3 Nidiepro (A.3)

k=HM I=FP I=FP

FY_,; is the fission yield of fission product [ out of fissioning heavy metal nuclide k.

Recycling adds negative diagonal elements to the burnup matrix, associated with the re-
cycled nuclides. Furthermore, the process adds some positives on the off diagonals associated
with fresh fuel and fresh anions. For a well-designed recycling process the negatives elements
should outweigh the positives. In an optimal scenario the sum of the recycling part of the
burnup matrix would be as much negative as the decay and reaction part are positive; the
amount of particles in the reactor core is conserved.
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Appendix B

Decay chain class

The full code is available on https://github.com/JonathanPilgram /BurnupROM-PythonPackage.

import numpy as np

import time

import scipy

import matplotlib.pyplot as plt
import math

class DecayChain:
"""Class to simulate the decay process of a single chain of
nuclides.

Parameters
N_nuclides : int
Amount of nuclides to simulate
info : bool
Controls whether to print extra information like plots and
simulation time
full _info : bool
Shows even more information like snapshots and full
solution

Internal data
initial_composition : numpy zero array of size N_nuclides
Used to set the initial composition of the nuclides
decay_array : numpy zero array of size N_nuclides x N_nuclides
The decay array used for the chain, starts as zeros array
of size

Initializes

solution : None
The solution of the full model
decay_array_red : None
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Comes from reduce_model.py

initial_composition_red : None

Comes from reduce_model.py

rom_basis : None

Comes from reduce_model.py

simulation_time_rom : None

Added by reduce_model.py

decay_constants : None

def

Added by build_decay_chain()

__dinit__(

self,

N_nuclides: int,
info: bool = False,

full_info: bool = False,

) -> None:

def

def

self .N_nuclides = N_nuclides

self.info = info

self.full_info = full_info

self.initial_composition = np.zeros(self.N_nuclides)

self.decay_array = np.zeros((self.N_nuclides, self.
N _nuclides))

self.decay_array_red = None

self.initial_composition_red = None

self.rom_basis = None

self.solut = None

_bateman_equation(self, t, N) -> list:
"""Private function: Returns the coupled bateman equations
for use by scipy"""
dNdt = np.zeros_like(N)
for varying_nuclide in range(self.decay_array_temp.shape
[01):
for nuclide in range(self.decay_array_temp.shapel[1]):
dNdt [varying_nuclide] += (
self .decay_array_temp[varying_nuclide, nuclide
] * N[nuclidel
)
return dNdt

_run_simulation/(
self, decay_array: np.array, initial_composition: np.array

, solver: str

"""Private function: wrapper for the scipy integrator"""
self.decay_array_temp = decay_array

return scipy.integrate.solve_ivp(
self._bateman_equation,
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[0, self.sim_time],

initial_composition,

t_eval=np.linspace(0, self.sim_time, self.sim_steps +
1,

method=solver,

def run_simulation(
self, sim_time: int, sim_steps: int, solver: str = "Radau"
) -> None:
"""Runs the simulation using the solver of choice, default
is Radau solver
Other solvers are:
'Euler_backward', 'Euler_forward', 'RK45'

Saves the result in object as solution:

solution.t - The list with evaluation times
solution.y - 2D list with solutions for each nuclide
paramters
sim_time : int

The simulation time in seconds, saved to object
sim_steps : int

Amount of timesteps to simulate, saved to object
solver : str (default: Radau)
Solver of choice. All scipy solvers available and
Euler_forward, Euler_backward, saved to object

data saved
simulation_time_fom : float
Simulation time for the full order solution in seconds
nnn
self.sim_time = sim_time
self.sim_steps = sim_steps
self.solver = solver
if np.all(self.initial_composition == 0):
print ("Did you forget to set initial_composition?")

start = time.time ()
if solver == "Euler_ backward":
solution = self._backward_euler(self.decay_array, self

.initial_composition)
else:
solution = self. run_simulation(
self .decay_array, self.initial_composition, solver
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self.simulation_time fom = time.time() - start
if self.info == True:
print ("Simulation time:" + str(self.
simulation_time_fom))
self._plot_simulation(solution)

if self.full_info == True:
print (solution)
self.solution = solution

def _plot_simulation(self, solution) -> None:

"""Shows a plot of the decay simulation for debugging
purposes"""

N_nuclides = solution.y.shape[0]

for i in range(N_nuclides):
plt.plot(solution.t, solution.y[i], label=str(i))

if N_nuclides < 15:
plt.legend ()

plt.xlabel("Time (s)")

plt.ylabel("Nuclide amount")

plt.title("Full order decay chain with " + str(N_nuclides)
+ " nuclides")

plt.show ()

def _backward_euler(self, decay_array: np.ndarray,
initial_composition: np.ndarray):
"""Private function to run the simulation with first order
backward euler

parameters
Decay array: np.ndarray
The decay array
initial_composition: np.ndarray
The initial composition

Return
solution
Array containing the solution values"""
nuclides_considered = np.shape(decay_array) [0]
result = np.zeros(
(nuclides_considered, self.sim_steps + 1)
)
result[:, 0] = initial_composition
sim_times = np.linspace(0, self.sim_time, self.sim_steps +

1)
x_old = result[:, O]
K_iter = (
-decay_array

61



+ np.diag(np.ones(nuclides_considered)) * self.
sim_steps / self.sim_time
)
for step in range(self.sim_steps):
rhs = x_old * self.sim_steps / self.sim_time
result[:, step + 1] = np.linalg.solve(K_iter, rhs)
x_old = result[:, step + 1]

solution = scipy.optimize.OptimizeResult(t=sim_times, y=

result)
return solution

62



Appendix C

Default simulation paramaters decay
chain models

Figures and tables in the thesis use roughly the same settings for the decay chain simulation.
If not explicitely mentioned otherwise, the settings mentioned in this chapter are used.

Decay constants
If a range of decay constants is mentioned, such as A € [a, ], then it means that the model
is initialized with logarithmically uniform random decay constants picked from that range,
as described by Equation 2.4. The default decay chain terminates with a stable nuclide; the
decay constant is set to zero.

Every rerun generates new random decay constants with the same settings, i.e. from the
same range.

Simulation parameters
The default end-time is determined by

2
T = Z )T ~ 2Atotal, (C]-)

i=1 "

which ensures that whole chain decayed. The default simulation is done with 10000 simula-
tion steps using implicit Euler method.
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Appendix D

Excerpt of Proper Orthogonal
Decomposition code

The full code is available on: https://github.com/JonathanPilgram/BurnupROM-ScriptsAndData.
import rom

import numpy as np

# Function to compare FOM with POD reduction
def POD(N_rom, N_snaps, stiffness):

model = rom.DecayChain(N_nuclides)
rom.build_decay_chain(model, 1, 10**stiffness)
model.initial_composition[0] = 1

model . run_simulation (
np.sum(2 / model.decay_constants[:-1]), N_steps, "
Euler_backward"
)
rom.spatial_snapshots(model, N_snaps)
rom.reduce_SVD(model, N_rom)
rom.run_simulation_reduced (model)

TE = rom.return_error (model)
SE = rom.return_error (model, range(N_nuclides))
speedup = model.simulation_time_fom / model.

simulation_time_rom
return TE, SE, speedup
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Appendix E

Excerpt of Heuristically Corrected POD
code

The full code is available on: https://github.com/JonathanPilgram/BurnupROM-ScriptsAndData.

import rom
import numpy as np

# Compares FOM with corrected POD
def POD(N_rom, N_snaps, stiffness):

shift = 0

reassign = 0

model = rom.DecayChain(N_nuclides)
rom.build_decay_chain(model, 1, 10**stiffness)
model.initial_composition[0] = 1

model . run_simulation (
np.sum(2 / model.decay_constants[:-1]), N_steps,

Euler_backward"
)
rom.spatial_snapshots(model, N_snaps)
rom.reduce_SVD(model, N_rom)
positive_eigs, _ = rom.analyze_eigenvalues(model.
decay_array_red)
# Stabililastion method
if len(positive_eigs) > O:

model.decay_array_red -= np.identity(N_rom) * 1e-8
shift =1
eigval, eigvec = np.linalg.eig(model.decay_array_red)

if len(eigvall[eigval > 0]) > O:
eigvall[eigval > 0] = (
-eigval[eigval > 0].real + 1.0j * eigvall[eigval >

0] .imag
)
model .decay_array_red = np.real(
eigvec @ np.diag(eigval) @ np.linalg.inv(eigvec)
)
reassign = 1
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rom.run_simulation_reduced (model)

TE = rom.return_error (model)
SE = rom.return_error(model, range(N_nuclides))
speedup = model.simulation_time_fom / model.

simulation_time_rom
return TE, SE, speedup, shift, reassign
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Appendix F

Excerpt of Balanced Truncation code

The full code is available on: https://github.com/JonathanPilgram/BurnupROM-ScriptsAndData.

import rom
import numpy as np
import control as ct

# Compares FOM with BT
def BT(N_rom, N_snaps, stiffness):

model = rom.DecayChain(N_nuclides)
rom.build_decay_chain(model, 1, 10**stiffness)
model.initial_composition[0] = 1

model . run_simulation (
np.sum(2 / model.decay_constants[:-1]), N_steps, "
Euler_backward"
)
rom.reduce_abstract (model, N_rom)
A model.decay_array
B np.zeros ((200, 1))
B[0] =1
C = np.diag(np.ones (200))
state = ct.ss(A, B, C, 0)
state_red = ct.balred(state, N_rom)

model.decay_array_red = state_red.A
model.initial_composition_red = state_red.B[:, 0]
model.rom_basis = state_red.C
rom.run_simulation_reduced (model)

TE = rom.return_error (model)

SE = rom.return_error (model, range(N_nuclides))
speedup = model.simulation_time_fom / model.

simulation_time_rom
return TE, SE, speedup
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Appendix G

Excerpt of Balanced Proper Orthogonal
Decomposition code

Two scripts have been used in the Balanced Proper Orthogonal Decomposition (BPOD)
chapter. The first is a Julia script to determine the BPOD, which takes python data of
the system as input. The second is a python script that measures performance for decay
chains. General burnup requires some modification of the code for decay chains. The most
important is to choose Radau as solver. The full code is available on: https://github.com/
JonathanPilgram /BurnupROM-ScriptsAndData.

Julia code to determine transformations

using HDF5

using LinearAlgebra, GenericlLinearAlgebra
using DifferentialEquations

using SparseArrays

function balanced_P0OD(h5file, input, output)

# Read the hbfile

save_file = joinpath(output, "OUT_" % hb5file)

python_data = hbopen(joinpath(input, h6file), "r") do file
data = read(file["A data"])
indices = read(file["A_indices"])
indptr = read(file["A_indptr"])
shape = read(file["A_shape"])
intial_composition = read(file["NO"])
N_rom read(file["N_rom"])
N_fom read (file["N _fom"])
N_snapshots = read(file["N_snapshots"])
time = read(file["time"])
A = Matrix(SparseMatrixCSC(shape[1], shape[2], indptr .+

1, indices .+ 1, data))

N_steps = read(file["N_steps"])
stiffness = read(file["Stiffness"])
run = read(file["Run"])
# Write the burnup array to the output file
h5write (save_file, "A_data", data)
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hbwrite(save _file, "A indices", indices)
hSwrite (save_file, "A_indptr", indptr)
hbwrite (save_file, "A_shape", shape)

# Return data

(A, intial_composition, N_rom, N_fom, N_snapshots, time,

N_steps, stiffness, run)
end

# Set parameters

N_rom = python_datal[3] # reduced order modes
N_fom python_datal[4] # full order modes
N_snapshots = python_data[5]

time = python_data[6]

tspan = (0.0, time)

burnup_array = python_datal[1]'
initial_composition = python_data[2]
solve_method = Rodas5P ()

N_steps = python_datal7]

stiffness = python_data[8]

run = python_data[9]

# Bateman equation implementation

function burnup_equations!(dN, N, burnup, t)
mul! (dN, burnup, N)

end

# Solve for the normal POD_modes
println("Starting")

system = ODEProblem(burnup_equations!, initial_composition,
tspan, burnup_array)

solution = solve(system, solve_method, dt=time / N_steps,
saveat=time / N_snapshots)

X = hcat(solution.u...)

U, _, _ = svd(X)

P0OD_modes = U[:, 1:N_rom]

# Solve for the adjoint solutions
Y = []
for POD_vector in 1:N_rom
adjoint_initial = POD_modes[:, POD_vector]
adjoint_system = ODEProblem(burnup_equations!,
adjoint_initial, tspan, burnup_array')
adjoint_solution = solve(adjoint_system, solve_method,
time / N_steps, saveat=time / N_snapshots)
push! (Y, hcat(adjoint_solution.u...))
end
Y = hcat(Y...)
XY = Y' x X
# Determine balanced POD transformation
U, singular_values, Vh = svd(XY)
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U ="Ul:, 1:N_rom]

Vh = Vh([:, 1:N_rom]

singular_values =
to_FOM
to_ROM

singular_values[1:N_rom]

# Save result to hdf5 format
A = sparse(burnup_array)

"to_FOM", Float64.(to_FOM))
"to ROM", Float64.(to ROM))
"N_snapshots", N_snapshots)
"N _rom", N_rom)
"N _fom", N_fom)

hb5write (save_file
hb5write (save_file
hSwrite (save_file
hS5write (save_file
hbwrite (save_file
h5write (save_file
hb5write (save_file
hb5write (save_file
hb5write (save_file
hb5write (save_file
end

3

b

3

b

"time", time)

"N_steps", N_

"Run", run)
"Stiffness",

X * Vh * Diagonal(singular_values
Diagonal (singular_values

steps)

stiffness)

"initial_composition",

(-1 02)

(-1 /7 2)) = U' *x Y

initial_composition)

Python code to measure performance on decay chains

import rom

import numpy as np
import hbpy

import control as ct

from scipy.sparse import csr_matrix

import os

# Loops a folder of processed chains

for chain in sorted(os.listdir(processedChains)):
# Reads data from Julia

with hbpy.File(processedChains + chain,

t_sim = file["time"]J[()]

N_rom
N_snapshots =

to FOM = file["to FOM"][:].T
file["to ROM"][:].T

to_ROM

file["N rom"]J[()]

file["N_snapshots"][()]

NO = file["initial_composition"][:]
data = file["A data"][:]
indices = file["A indices"][:]
indptr = file["A_indptr"]L[:]
shape = tuple(file["A_shape"][:])
run = file["Run"]1[(Q)]
N_steps = file["N_steps"]1[()]
stiffness = file["Stiffness"]J[()]
burnupMatrix = csr_matrix((data,

)

# Runs the FOM and ROM
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Bpod = rom.DecayChain(N_nuclides)

Bpod.decay_array = burnupMatrix
Bpod.initial_composition = NO
Bpod.run_simulation(t_sim, N_steps, "Euler_backward")

rom.reduce_abstract(Bpod, N_rom)

Bpod.decay_array_red = to_ROM @ Bpod.decay_array @ to_FOM

Bpod.initial_composition_red = to_ROM @ Bpod.
initial_composition

Bpod.rom_basis = to_F0OM

rom.run_simulation_reduced (Bpod)

TE = rom.return_error (Bpod)
SE = rom.return_error (Bpod, range(N_nuclides))
speedup = Bpod.simulation_time_fom / Bpod.simulation_time_rom
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